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Abstract

Drawing has been a natural way for humans to express their thoughts and ideas since
ancient times. People got used to create and understand illustrations. Many well-
defined formal notations have evolved including technical drawings, musical scores, and
various diagrams. On the other hand, people use free-form sketches or ad hoc intuitive
notations often. Electronic devices equipped with a touch screen take part in our daily
lives and make it is easier to create and share drawings. Naturally, it is more and more
desired to have methods for automatic recognition and understanding of drawings. It
is much easier and desired in the case of formal drawings consisting of well defined
entities. A computer system can work further with such recognized drawing — beautify
the drawing, rearrange a diagram, perform some actions according to a diagram, or
manufacture something according to a technical drawing. On the other hand, it is
extremely difficult and potentially unnecessary in the case of free-form sketches. It is
often enough to provide the user with tools for easier creation and manipulation with
sketches. The reason is that these sketches are meant to be understood by humans only
and the computer system serves for their creation, storage, and sharing. Obviously, we
can classify drawing into formal drawings and free-from sketching.

This thesis deals with two tasks: recognition of formally defined diagrams and seg-
mentation of object of interest in free-form sketches. These two apparently different
topics are strongly related. We assume that the drawing is created on an electronic
device and thus it is in form of a sequence of strokes rather than a raster image.

We propose a recognition framework for arrow-connected diagrams. We introduce a
model for recognition by selection of symbol candidates, based on evaluation of rela-
tions between candidates using a set of predicates. It is suitable for simpler structures,
in which the relations are explicitly given by symbols, arrows in the case of diagrams.
Knowledge of a specific diagram domain is used. The two domains are flowcharts and
finite automata. We created a benchmark database of diagrams from these two do-
mains. Although the individual pipeline steps are tailored for these, the system can
be readily adapted for other domains. The recognition pipeline consists of the follow-
ing major steps: text/non-text separation, symbol segmentation, symbol classification,
and structural analysis. We performed a comparison with state-of-the-art methods for
recognition of flowcharts and finite automata and verified that our approach outper-
forms them. We also analysed our system thoroughly and identified most frequent
causes of recognition failures.

The situation is more complicated in the case of a free-from sketching where the user
can draw and write anything freely. We cannot expect any particular structure. We can
often find a combination of pictorial drawing with more structured figures and text in
form of labels. The classical segmentation by recognition can not be used here. In some
cases, the understanding of a sketch might be difficult even for humans. Specifically,
the identification of an individual object in a drawing may differ from user to user,
case to case. Recent research showed that a single linkage agglomerative clustering
of strokes with trainable distance function can be used for segmentation of objects
from predefined symbol classes in formal drawings. The proper distance function can
be learned from annotated data. It requires a lot of data and time. We propose
an approach combining several pre-trained distance functions for particular structures
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together to segment object in free-form sketches. We show that the desired segmentation
can be achieved in many cases by combining together distance functions trained for very
general object types like rows, columns, words, or compact images. We also show that
the best combination of distance functions can be found from a very limited data in real
time. We propose a segmentation approach, which estimates the optimal combination
of clustering distance functions from an initial selection of one object. It results in
segmentation of objects, which have similar characteristics to the initial one. Based on
this approach, we designed a selection tool bringing additional functionality allowing
to select and manipulate the segmented objects seamlessly. The method is suitable for
fast rearrangement of sketches during collaborative content creation (brainstorming).
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Abstrakt

Kresba je pro ¢lovéka pfirozenym nastrojem k vyjadieni jeho myslenek a napadu jiz od
déavnych dob. Lidé si zvykli vytvafet a chapat ilustrace. Vyvinulo se mnoho dobte defi-
novanych formalnich notaci zahrnujicich technické vykresy, hudebni zapisy, ¢i razné di-
agramy. Na druhou stranu lidé stale ¢asto pouzivaji volnou kresbu ¢i skici s intuitivnimi
ad hoc notacemi. Diky tomu, Ze se elektronickda zafizeni s dotykovou obrazovkou stala
béznou soucdsti nagich zivotu, je stdle jednodussi vytvaret a sdilet kresby. Pfirozené
jsou tak stale vice zaddny metody pro automatické rozpoznavani a porozuméni kresbam.
Zajisté je daleko snazsi a zadanéjsi dosdhnout toho u formélnich kreseb skladajicich se
z jasné definovanych entit. Poéitacovy systém muze s rozpoznanou kresbou déle pra-
covat. Miuze kresbu zkraglit, pfeusporddat diagram, vykonat urcité akce vyjadiené
diagramem nebo zhotovit vyrobek na zakladé technického vykresu. Na druhou stranu
je to velmi obtizné a casto zbytecné v piipadé volné kresby. V takovém piipadé je
totiz Casto pozadovano spiSe poskytnout uzivateli nastroje pro snadnéjsi tvorbu a ma-
nipulaci s kresbou. Duvod je ten, ze kresbé ma porozumét pouze clovék a pocitacovy
systém slouzi pouze k jejimu vytvoteni, uchovéni a sdileni. O¢ividné tak muzeme kresbu
rozdeélit na formalni a volnou.

Tato préice se zabyva dvéma tlohami: rozpoznavanim forméalné definovanych dia-
gramu a segmentaci objekti zdjmu ve volné kreslenych skicach. Tato dvé zdanlivé
odlisna témata maji mnoho spole¢ného. V obou ptipadech predpodkladame, ze kresba
byla vytvorena na elektronickém zarizeni a sklada se z posloupnosti tahti. Nejednd se
tedy o rastrovy obrazek.

Navrhujeme rdmec pro rozpozndvani Sipkami pospojovanych diagrami.
Predstavujeme model rozpoznavani zalozeny na vybéru vhodnych kandidata na sym-
boly prostifednictvim vyhodnoceni vztahu mezi kandidaty za pouziti predikati. Je to
vhodné pro jednodussi struktury, kde jsou vztahy explicitné dané samotnymi sym-
boly, Sipkami v piipadé diagramu. Znalost specifické domény diagramu je vyuzita.
Dvéma vybranymi doménami jsou vyvojové diagramy a kone¢né automaty. Pro tyto
dvé domény jsme vytvorili referenéni databézi. Ackoliv jsou jednotlivé kroky procesu
rozpoznavani prizpusobeny na miru zminénym doménam, lze systém snadno prizpusobit
doménam dalsim. Proces rozpozndvani se skldda z néasledujicich vyznamnych kroku:
oddéleni textu od zbytku tahti, segmentace symbolu, klasifikace symboli a struk-
turni analyzy. Provedli jsme srovnani s nejlepSimi alternativnimi metodami pro
rozpoznavani vyvojovych diagramu a konecnych automati a ovérili, Zze nds postup
je predci. Soucasné jsme diukladné analyzovali nas systém a identifikovali nejcastéjsi
pric¢iny selhani rozpoznavani.

Situace se komplikuje v piipadé volné kresby, kde muze uzivatel nakreslit prakticky
cokoliv. Nelze ocekédvat zddnou konkrétni strukturu skici. Casto nardzime na kombi-
naci obrazku s vice strukturovanymi schématy a textem v podobé ruznych popiski.
Klasicka segmentace prostiednictvim klasifikace zde nemuze byt pouzita. V nékterych
pripadech muze byt porozuméni skici obtizné i pro ¢lovéka. Obzvlasté nazor na identi-
fikaci jednotlivych objekti v obrazku se muze lisit podle uzivatele, konkrétniho piipadu
a kontextu. Nedavny vyzkum ukézal, Ze lze Uspésné segmentovat objekty z predem
definovanych tiid symbola ve formalnich kresbach sdruzovéanim tahu hierarchickym
shlukovanim pomoci metody nejblizétho souseda. Pouzije se naucitelna vzdalenostni
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funkce. Vhodné parametry vzdélenostni funkce lze naucit z anotovanych dat. Vyzaduje
to ovSem dostatek dat a ¢asu. My navrhujeme postup, ktery kombinuje nékolik predem
naucenych vzdalenostnich funkei pro urc¢ité struktury dohromady tak, aby bylo mozno
segmentovat objekty ve volné kresbé. Ukazujeme, ze pozadované segmentace lze ¢asto
dosdhnout tim, ze se zkombinuji vzdalenostni funkce naucené pro velmi obecné typy
objektu jako jsou fadky, sloupce, slova nebo kompaktni nacrtky. Ukazujeme také,
ze nejlepsi kombinace téchto vzdalenostnich funkef 1ze nalézt v redlném case pomoci
velmi omezeného mnozstvi dat. Navrhujeme postup, ktery odhaduje optimalni kombi-
naci vzdélenostnich funkci shlukovaciho algoritmu z inicidlniho vybéru jednoho objektu
uzivatelem. Vede to na segmentaci objektt, které maji podobnou charakteristiku jako
uzivatelem vybrany objekt. Na zakladé tohoto postupu jsme vytvorili nastroj, ktery
umoznuje velice snadno a rychle vybrat jednotlivé objekty a manipulovat s nimi. To je
velmi uzite¢né naptiklad pfi reorganizaci skic béhem kolaborativni prace na interaktivni
tabuli.
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1. Introduction

Handwriting and drawing is a natural way for humans to express and record their
thoughts. Two-dimensional structure of drawing allows to cram more information into
a limited space of a drawing canvas. Structure of the drawing is very important. The
useful information is not only contained in the individual entities of the drawing, but in
the relations between them as well. These relations are given by the relative position of
individual entities. People commonly use various kinds of schemas, diagrams, technical
drawings or sketches to illustrate things, which would be too difficult to describe in
words. It is often said that a picture is worth a thousand words. Moreover, people
figured out how to draw long time before the first alphabet and writing had been
invented.

Research in handwritten document analysis has shifted from the recognition of plain
text to recognition of more structured inputs such as mathematical and chemical formu-
las, music scores, or diagrams. The substantial attention has been paid to recognition
of mathematical formulas. The syntax of mathematical notation is well formalized and
the structure is often recursive and very rich. In this thesis, we deal with understanding
of sketches with a simple non-recursive structure, specifically arrow-connected diagrams.
While the recognition of mathematical expressions and other recursive complex struc-
tures is often based on parsing probabilistic grammars, we show that this approach is
impractical for simpler structures where the relations are explicitly given by symbols,
arrows in the case of diagrams. We propose a model for recognition by selection of
symbol candidates, based on evaluation of relations between candidates using a set of
predicates.

Second topic covered in this thesis deals with sketches of no explicit structure. We
speak about free-form sketches where people use ad hoc notions to express their ideas.
Combinations of pictures, schemas, tables, text labels or whole paragraphs are common.
The full understanding of a free-form sketch is extremely difficult and thus we often
seek another goal: to design smart tools making it easier and more convenient to create
or edit such sketches. One of the most common tasks is a rearrangement of objects.
These objects must be identified first. Usually, it is done by the user using a selection
tool. The number of objects can be large and repeating selection can be tedious. We
designed a tool for automatic segmentation of all objects at once. It tries to find a
structure in the sketch from an initial selection of one single object.

This chapter presents the motivation for recognizing hand-drawn schemas and shows
its applications in Section 1.1. State-of-the-art and related work is surveyed in Sec-
tion 1.2. We formulate the problem and describe the goals of this thesis in Section 1.3.
The specific contribution of this thesis is pointed out in Section 1.4. Finally, the struc-
ture of this thesis is outlined in Section 1.5.
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1.1. Motivation

1.1. Motivation

Despite the fact that handwriting and drawing is a natural way for humans to express
and record their thoughts, it is still not a typical way of human-computer interaction.
We can find two exceptions here: handwritten plain text and professional graphic de-
sign. Recognition of handwritten plain, especially English, text is one of the biggest
achievements. Today’s recognizers are so accurate, that we may consider it a solved
problem. A big advantage is that the input of handwritten plain text is one dimensional
and can be done word by word and thus it can be mediated through a very small touch
screen. Users write using only their fingers very often. In that case, we are talking
about touch input. This was a significant motivation for development of successful rec-
ognizers and we can find them in every current touch input device. However, a bigger
canvas is usually necessary to create structured two-dimensional drawing conveniently.
Moreover, it is highly impractical to draw with a finger and thus a stylus is required.
In that case, we are talking about ink input. The second exception is a graphic design,
which is usually performed on professional tablets. These devices have been available
for a long time. However, they are expensive and only professionals use them commonly.
We can characterize it as art and these drawings usually do not require any recogni-
tion or formalization. They are not meant to be understood by computers. They are
designed to be understood by another people. A computer system is used to mediate
their creation, storage, and propagation.

(c) Professional tablet (d) Interactive whiteboard"

Figure 1.1. Illustrative images of devices designed to mediate human-computer interaction
based on handwriting and drawing.

!Courtesy of we-inspire (http://we-inspire.com/)
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1. Introduction

Even with the recent advancement in the technology, it is still common that users use
mouse and keyboard to create various drawings and schemas using old style drag and
drop interfaces. It is more natural and faster to draw such drawings directly. However,
it requires advanced algorithms able to recognize and formalize such input to provide
the same result as achieved when using classical user interfaces. Their availability is
still very limited. This situation is getting gradually better with the rise of devices
allowing the ink input. Smart phones and tablets are getting larger screens with more
precise and accurate styluses. These devices are becoming a part of our daily lives. It is
the reason for the demand on algorithms, which make the human-computer interaction
based on structured two-dimensional handwriting and drawing more common.

O D,“I
BT
0,1

(a) A sketched finite automaton.

(b) Recognized result visualized by Graphviz.

Figure 1.2. An example of (a) a typical input and (b) the desired output of the proposed
diagram recognizer.

Mlustrative examples of the most common devices mediating human-computer inter-
action based on handwriting and drawing are shown in Figure 1.1. We can divide them
into two main groups with respect to their basic usage: personal devices and interactive
white boards (smartboards). Personal devices are smart phones, tablets, or tablet PCs.
Usually only one user is drawing at one time and it is the owner naturally. It is thus
advantageous to adapt the recognition algorithm to her/his writing style. On the other
hand, an interactive whiteboard is usually placed in a seminar room and it is used simul-
taneously by multiple users. The task of the recognizer is thus much more difficult since
multiple writing/drawing styles may appear in one document. Moreover, simultaneous
editing must be solved to avoid conflicts. Smartphones are usually not proper devices
for drawing more complex sketches. They have smaller screens usually not equipped by
a stylus. Users often use touch input only and very rarely draw more complex drawings.
The touch input is used for handwriting and making special gestures. The gestures do
not represent handwritten words or drawn symbol directly. They are rather associated
to some actions: paste a particular word/symbol, open/close a particular application.
The advantage is that the gestures can be designed in such a way to be easily performed



1.2. State of the Art

by the user and recognized by the system. On the other hand, the disadvantage is that
the user must remember them, which limits their maximal number directly. Tablets
and interactive whiteboards are two devices really appropriate for sketching.

When a drawing is created using an ink input device, we talk about on-line input and
recognition. An on-line input is considered to be a sequence of handwritten strokes,
in which a stroke is a sequence of points captured by an ink input device between
pen-down and pen-up events. Every stroke point is defined by its coordinates on the
planar drawing canvas. Additional data like a time stamp or a pressure value may be
provided. A complementary off-line input is represented by a picture, which is obtained
by scanning a paper or taking a photo of a whiteboard with a drawing. All dynamic
information (order of strokes, speed, pressure) is missing and recognition is thus more
difficult. Applications of an off-line recognition are typically different (digitization of
old documents) and it is not dealt with in this thesis.The output is a structure, which
describes the sketched diagram syntactically. Individual symbols are identified and
relations between them are detected. Additionally, text is divided into logical blocks
with known meaning. Several formats can be used to represent the recognition result,
as exchange formats for diagrams have not been unified. We use the DOT graph
description language, supported by the popular graph visualizer GraphvizZ. Once we
have such a representation, we can use it. A very common goal is a beautification of
the drawn diagram. Beautified diagrams might be used in presentations, for example.
Figure 1.2 shows an example of a drawn finite automaton and its beautified version
created by Graphviz.

Our personal research motivation in this topic is based on the experience of our
research group with recognition of mathematical expressions using a grammar-based
structural analysis. It has many common aspects with the recognition of diagrams.
However, the complex structure of mathematical expressions is much different from the
simple structure of arrow-connected diagrams. We wanted to explore possibilities in
designing a structural analysis, which would not be based on a 2D grammar. Our goal
was to show that using a grammar on such a simple structure can be cumbersome. We
hoped to find a simpler solution capable of easy adaptation for new domains without
necessity of an expert to create a new grammar. Additionally, we have seen the success
of recognizers for mathematical expressions and felt that there is a gap in research, be-
cause there was no successful recognizer for diagrams like flowcharts when our research
began.

1.2. State of the Art

This section will survey work related mainly to the first topic of this thesis — recognition
of online hand-drawn diagrams. Additional work related to the second topic of the
thesis (segmentation of objects in free-from sketches) will be introduced later in the
introduction of the corresponding Chapter 5.

Research in handwritten document analysis has shifted from the recognition of plain
text to recognition of more structured inputs. Probably the most attention and effort
have been put into recognition of mathematical expressions. The mathematical notation
is a well-known language that has been used all over the world for hundreds of years.
It has very rich and well defined recursive structure. Its recognition has many practical
applications. Research in this field laid the foundations for further development in other
domains of structured handwritten input. Therefore, we will pay an extra attention

’http://graphviz.org/
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to this topic in the next section. After that we will survey research in recognition of
various diagrams and then we will focus specifically on flowcharts and finite automata.
Finally, we will explore alternative approaches to support design of diagrams, mostly
flowcharts. Here we leave the pure recognition approaches and reveal efforts to make
the recognition easier using certain restrictions on the way how users create diagrams.

Before we do so, we must mention that there has been also research in off-line diagram
recognition [Refaat et al., 2008]. In that case, input is an image and thus any temporal
information is missing. Off-line recognition faces different challenges (especially in
segmentation) and typically leads to different applications. This thesis does not consider
these topics. We will focus on on-line data and recognition only.

1.2.1. Mathematical Formulas

Recognition of mathematical formulas is a useful example of structural recognition as it
has brought seminal methods and successful recognizers. Its research has begun a long
time ago with the work of Andreson [1968]. Although it deals with printed mathematical
expressions, it laid the foundations of syntactic analysis. First work focused on on-line
handwritten expressions was done by Belaid and Haton [1984]. They combined top-
down and bottom-up syntactic parsers to tackle the structural analysis. Since then,
recognition of mathematical expressions has evolved into today’s mature research field.

The Competition on Recognition of On-line Handwritten Mathematical Expressions
(CROHME) has further boosted research and provides a reliable comparison ground.
The commercial winner of CROHME 2014 [Mouchere et al., 2014], MyScript?, achieves
62.7 % accuracy of correctly recognized formulas, while the non-commercial winner —
Alvaro et al. [2014] — achieves 37.2%. Recognizer designed by [Le et al., 2014] was
another very successful participant of the competition.

Recognition of mathematical formulas and diagrams face some similar problems.
Individual symbols have to be segmented, recognized, and embedded into the domain
structure. However, the structure of mathematical formulas is strong and recursive, and
grammars are thus suited to their expression. All of the participants of the CROHME
contest used grammar driven parsing for the structural analysis. In contrast, diagram
structure is simpler and less formalized and grammars do not seem to be the best model
for their capture.

Recognizer of mathematical expressions finds its place in many applications.
MyScript created an ink-based calculator for smartphones. It is more often used at
schools for automatic evaluation of exams or to support the education. Another practi-
cal example of working recognizer is the Math Input Panel delivered by Microsoft since
Windows 7. Taranta and LaViola [2015] are authors of Math Boxes, a pen-based user
interface for simplifying the task of hand writing difficult mathematical expressions.
It is an example showing the importance to provide a recognizer with a powerful user
interface. The recognition result is immediately visualized — visible bounding boxes
around certain subexpressions are automatically generated as the system detects spe-
cific relationships including superscripts, subscripts, and fractions. Upon accepting new
characters, box boundaries are dynamically resized and neighbouring terms are trans-
lated to make a room for the larger box. A feedback on structural recognition is given
via the boxes themselves and the feedback on character recognition is by morphing the
user’s individual characters into a cleaner version stored in an ink database. Therefore,
the recognized expression is beautified but it still keeps handwritten appearance.

3https://dev.myscript.com/technology/math/
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Chan and Yeung [2000] created a survey of the research in the field of recognition of
mathematical expressions. Although it is an older paper, it shows the main principles,
which remain valid till today. Especially the approaches used in structural analysis like
parsing driven by a context-free grammar find its place even in different domains of
structured handwriting. More recent research was surveyed by Zanibbi and Blostein
[2012]. The paper also covers various topics related to the recognition: retrieval of
mathematical expressions, user interfaces that seamlessly integrate recognition and re-
trieval, representation of the expressions, applications and especially exploitation in
education.

1.2.2. Diagrams in General

Feng et al. [Feng et al., 2009] proposed a recognizer for on-line sketched electric circuits.
Hypotheses for symbol segmentation and classifications are generated using Hidden
Markov Models (HMM), and the selection of the best hypotheses subset relies on 2D
dynamic programming. A drawback is an extensive search space due to a large number
of hypotheses. This makes the system slow and prohibits it from practical use. Sezgin
and Davis [Sezgin and Davis, 2005] used similar approach for recognition of objects in
sketches from various domains like stick-figures, UML diagrams, or digital circuits. They
use specific stroke orderings to reduce the search space. Although multiple HMMSs are
used to model different sketching styles and thus different natural stroke orderings, so
called delayed strokes may impose a problem for this approach. Chemlnk, a recognition
system for chemical formula sketches [Ouyang and Davis, 2011], represents elements and
bonds between them. A hierarchy of three levels of details is used: inkpoints, segments,
and candidate symbols. The final recognition is performed by a joint graphical model
classifier based on Conditional Random Fields (CRF), which combines features from
the levels in the classification hierarchy. A similar approach was used by Qi et al. [Qi
et al., 2005] to recognize simple diagrams. The advantage of such methods is the joint
training of the classifier for all levels of features. It helps to incorporate the context
into the classification, however it makes the training of the system more difficult. Our
approach differs. Although we train the symbol classifier independently of the structure,
we do not make any hard decisions at this point. Relations between the symbols are
defined later with the help of context. Using binary predicates of the general maz-
sum labeling problem ([Werner, 2007]) rather than pairwise features does not require
additional training and yields optimal solutions. The model is thus much simpler and
more open to adaptations.

When dealing with arrow-connected diagrams, it is advantageous to exploit the key
property of arrows — they link two symbols together. Kara and Stahovich [2004] realized
that and designed SimuSketch, a sketch-based interface for Matlab Simulink software
package. It examines the sequence of strokes to identify the arrows in the sketch first.
The knowledge of the arrows is then used to segment the remaining symbols. They
comprise of stroke clusters indicated by the position of the arrows. It remains only to
classify them. However, it is difficult to recognize general arrows and thus they put
constraints on how the arrows can be drawn — they may consist of exactly one or two
strokes and the shape of the head is given. The classification is based on extraction
of five characteristic points of the arrow. Angles between these points and the speed
profile around them are examined. Stoffel et al. [2009] use exactly the same approach
to recognize commutative diagrams. They are formed by arrows that join relatively
simple mathematical expressions. As we already mentioned, the disadvantage of this
approach is that it is difficult to recognize arrows this way and it is a source of errors.
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Additionally, it cannot be used in domains where arrows consist of more strokes or
the arrow heads have different than classical shapes. Our approach also exploits the
property of arrows. The difference is that we do it in the opposite direction. We identify
remaining symbols first and then find arrows linking them without examination of their
exact appearance. Importance of arrows as connectors between two symbols has be
also shown by Freeman and Plimmer [2007]. They incorporated a generic recognition
technique of connectors into the recognition engine of their diagramming toolkit InkKit.
They combined techniques for syntactic and semantic recognition for various connectors
like directed arrows, undirected edges, or directed edges where the direction is given
by the semantics. They experimented with domains of UML Class diagrams or Entity
Relationship (ER) diagrams.

Liwicki and Knipping [2005] presented a system for recognizing sketched digital logic
circuits. A recognized circuit can be graphically simulated later (i.e. the signal is
propagated from the input to the output and the logical levels are visualized along
the circuit). This system was developed for school education where it can practically
demonstrate how individual logic gates and the whole circuits work. Their design is fully
based on hand-drawing, which is fast and natural. Even the simulation is controlled
by hand-drawings — inputs to circuits can be defined by writing numbers next to them.
Circuit gate symbols are recognized using a multilayer perceptron network. Alvarado
and Lazzareschi [2007] also studied the digital logic circuits and analysed considerable
drawing style variation between students to design a recognizer for simulation software
for schools. Digital logic circuits are diagrams with similar characteristics to flowcharts
of finite automata. They consist of interconnected symbols — gates. The difference is
that the symbols are not connected by arrows but undirected connectors. It makes
recognition easier, because recognition of arrow heads is challenging and it is missing
here. On the other hand, the symbols might be rotated and thus the symbol classifier
needs to deal with this. This is common for different domains like the already mentioned
electric circuits.

Finally, there were also attempts to develop universal formalisms for sketch recog-
nition applicable to various domains. LADDER [Hammond and Davis, 2005] is a
sketch description language that can be used to describe how shapes are drawn as well
as the whole syntax specifying a domain. A multi-domain sketch recognition engine
SketchREAD [Alvarado and Davis, 2004] is based on this language. Authors evaluated
the capabilities of the engine on family trees and electrical circuits. The parsing is
based on dynamically constructed Bayesian networks and it combines bottom-up and
top-down algorithms. Although this framework laid the foundations of multi-domain
sketch recognition, it has limitations. Individual shapes must be composed solely of pre-
defined primitives according to a fixed graphical grammar. Individual strokes must be
thus decomposed into primitives. Although the framework is designed to be recoverable
from low-level errors, it still imposes an additional source of errors.

1.2.3. Flowcharts and Finite Automata

To our knowledge, little work has been published in the domains of flowcharts and
finite automata. Lemaitre et al. [Lemaitre et al., 2011] proposed a grammar based
recognition system for flowcharts which uses the DMOS (Description and MOdifica-
tion of the Segmentation) method for structured document recognition. The applied
grammatical language EPF (Enhanced Position Formalism) provides a syntactic and
structural description of flowcharts, which is used for joint symbol segmentation and
classification. Carton et al. [Carton et al., 2013] further improved the system by com-
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bining structural and statistical approaches; they exploited the nature of the symbols
in flowcharts, which are closed loops. Such closed loops are detected first and classified
later using the structural approach. Although statistics are used, it is hard to find a
suitable threshold determining if a loop is really closed. Users often draw carelessly
and the appearance of symbols can be far from closed loops. Additional difficulties are
caused by the need to divide strokes into line segments. Experiments demonstrated
that the grammar based approach has still troubles with a big uncertainty in the input.
Experiments were performed on a benchmark database, which allows the comparison.
Their grammar-based approach is difficult to adapt for a new domain since new gram-
matical rules need to be defined for each symbol class. An example of a grammatical
description of a quadrilateral follows:

quadrilateral Q ::=
AT(wholePage) &&
oneEdge Cl &&
AT(edgeEnd C1) &&
oneEdge C2 &&

AT (edgeEnd C2) &
oneEdge C3 &&

AT (edgeEnd C3) &
oneEdge C4 &&
checkEdgesAreClose Cl C4 &&
addScore Q.

The work by Szwoch and Mucha [Szwoch and Mucha, 2013] is another effort to
recognize flowcharts using grammars. The authors assume that symbols consist of
single strokes, and this simplification forbids experiments on the benchmark database
and thus it cannot be compared with other methods.

Delaye [Delaye, 2014] has recently introduced a purely statistical approach to dia-
gram recognition based on strokes clustering and CRFs, where clusters represent graph
nodes. A hierarchical model is used by applying several values of clustering thresholds.
The graphs created are trees, and thus the task can be solved efficiently by the Belief
Propagation algorithm, which makes the system extremely fast. However, the approach
is purely statistical, which does not use information about the diagram structure. In-
consistent labelings can occur.

1.2.4. Alternative Approaches

Though there are few systems directly comparable to ours, interest in diagram de-
sign/sketching is evident. Miyao and Maruyama [Miyao and Maruyama, 2012] created
a flowchart designer based on the iterative recognition principle. Input is processed
in small pieces and immediate user feedback is awaited. If the user does not indicate
any error in the recognition, it is considered as ground truth. It is further possible
to connect symbols by gestures and to input text for a selected symbol. This works
well for flowcharts since symbols are loopy. However, the system puts unnatural re-
quirements on the user. A practical example of a successful diagram design based on
iterative recognition where one symbol is being recognized at a time can be found in
MS PowerPoint Ink Tools. Its functionality “Convert to Shapes” allows precisely this
and can be thus used to create flowchart right in the presentations. Text can be added
in a traditional way once the shape has been recognized.

In some cases, it is desired to keep the sketchy appearance of diagrams, thus smart
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sketching tools allowing common editing operations without any formalization of the
input have been proposed [Arvo and Novins, 2005; Plimmer et al., 2010].

In conclusion, although there exist various systems for structured handwriting, there
is no system for flowchart-like diagrams allowing practical use. Existing methods are
either purely statistical and do not use diagram structure adequately, or they rely on
grammars, which are too impractical for the minimalistic structure of diagrams.

1.3. Problem Formulation

As previously described, handwriting and drawing have many aspects. There exist
different scenarios and goals how to use them. Therefore, we divide this section into
two parts as we seek solutions for formally defined diagrams and free-form sketches.

When dealing with formally defined diagrams, we want to create a complete recog-
nition system for on-line hand-drawn diagrams from domains of arrow-connected dia-
grams. We want to design a formal structural analysis, which would exploit the simplic-
ity of the diagram structure. Our goal is to show that it is faster than grammar-based
approaches and it is easier to adapt the system for a new domain.

When dealing with free-from sketches, we want to show that despite the fact that
probably any recognition cannot be done in this case, there is still a lot we can do for the
user using knowledge of machine learning and user interface design. Object selection
and sketch rearrangement are two very common tasks, which could be performed much
faster and with ease if automatic or semi-automatic segmentation of objects of interest
was possible. We want to contribute into this problem.

The scientific goals of this thesis related to the two described topics are listed in the
two following sections.

1.3.1. Goals in Diagram Recognition

e We want to create a complete recognition pipeline, which will undergo all necessary
steps for recognition of on-line hand-drawn diagrams and its speed and precision
allow for practical use.

e We see a grammar-based structural analysis as a cumbersome overkill for recognition
of documents with such a simple structure as arrow-connected diagrams. We want to
show that structural analysis based on the max-sum labeling problem choosing the
optimal combination of symbol candidates can produce better consistent and valid
solution and can be faster. We also want to show that this approach allows easier
adaptation for new domains.

e Text/non-text separation is considered to be a good approach to divide the recog-
nition problem and lower the complexity. We want to verify our hypothesis that it
makes sense to use a biased classifier which makes a smaller error in the non-text
class at the cost of a higher error in the text class. We argue that the recognizer
is robust to remaining text strokes while missing strokes of symbols cause serious
problems.

e Arrows have varying appearance and thus they are difficult to recognize using appear-
ance based recognizers. We believe that it makes sense to exploit their key feature
— they link two symbols together. We want to show that it is feasible and more
accurate to consider each pair of previously detected non-arrow symbols and search
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for arrows as arbitrarily shaped connectors between two symbols. Here we show that
arrow heads can be found using relative stroke positioning.

Latest research has shown that it is possible and advantageous to generate artificial
samples for training of a symbol classifier. It helps to balance the training database.
We experimented with the promising Kinematic Theory and the distortion of the
Sigma-Lognormal parameters. We show that it increases precision and robustness
of classifiers for symbols from diagram domains. Especially, it helps to boost the
rejection ability of the classifier.

We consider an important goal to evaluate and to analyse the proposed recognizer.
We need to compare our approach with state-of-the art alternatives using traditional
criteria like correct stroke labelling. However, this is not informative enough and thus
we compared whole diagram structures for better understanding of the quality of the
recognition. Additionally, we analysed the effect of individual steps of the recognition
pipeline to the overall performance and found out the causes of recognition failures.

1.3.2. Goals in Segmentation of Objects in Free-From Sketches

We study how users sketch on interactive whiteboards, what these sketches look like,
and how would users cluster strokes into objects. Intuitively, every user might have
a different point of view on a sketch and also one user might have multiple points of
view on one sketch depending on his intentions with the sketch.

We explore the possibilities of trainable clustering algorithm to segment objects of
interest. It proved to be suitable for segmentation of objects from predefined symbol
classes in formal diagrams or objects having relatively stable appearance like individ-
ual words. We verified that it achieves promising results in the case that the objects
are more loosely defined.

Objects of interest might have fundamentally different characteristics from case to
case and from user to user. Therefore, it is necessary to train several clustering
algorithms to cover the variability in the free-form sketches. There is a need for
a framework which allows to combine these pre-trained algorithms together. We
verified our hypothesis that desired segmentation can be achieved in many cases
by combining together algorithms trained for very general object types like rows,
columns, words, compact images, visual subgroups, etc.

We designed a user interface allowing to indicate the user’s intentions. This informa-
tion is essential to create a suitable combination of pre-trained clustering algorithms.
It is crucial to allow the user to fix the segmentation if necessary and to manipulate
with the segmented objects with ease. The emphasis is put on rearrangement of the
whole sketch, which is very important during brainstorming sessions at interactive
whiteboards.

1.4. Thesis Contribution

This thesis contributes into two related topics: recognition of structured arrow-
connected diagrams and segmentation of objects of interest in free-from sketches. The
first one was done by me and the second one was conducted in collaboration with Flo-
rian Perteneder during my internship in Media Interaction Lab, University of Upper
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Austria. The thesis presents the advancements in both areas because they both be-
long to general problem of sketch understanding. Specifically, my contributions are the
following:

1. Benchmark database of flowcharts and finite automata. There was a lack
of good annotated data in the field of on-line handwritten diagrams. Therefore,
we gathered and annotated our own data and created a publicly available database
of on-line handwritten flowcharts and finite automata. It allows training of the
recognition system as well as its testing and comparison with others. We believe
that this helps to motivate the community to accelerate research in this field. The
annotation provides information about individual symbols, relations between them
and meaning of text blocks.

2. Diagram recognition pipeline. We designed a general recognition pipeline con-
sisting the followings steps: 1) preprocessing, 2) text/non-text separation, 3) uniform
symbol segmentation, 4) symbol classification, 5) arrow detection, 6) structural anal-
ysis, 7) text blocks detection and recognition. We contributed to each of the steps
to create a recognizer with state-of-the-art performance in domain of flowcharts and
finite automata [Bresler et al., 2016]. The major contribution related to the arrow
detection and structural analysis are described later.

3. Use of max-sum model for structural analysis. We proposed a model for
recognition by selection of symbol candidates, based on evaluation of relations be-
tween candidates using a set of predicates [Bresler et al., 2013, 2014]. This selection
is formulated as an optimization max-sum problem where the goal is to maximize
the sum of scores of selected symbol candidates that fulfil all the constraints given
by the unary and binary predicates. It is suitable for simpler structures where the
relations are explicitly given by the symbols, arrows in the case of diagrams. A
grammar-based structural analysis proven to be superior for dealing with a com-
plex recursive structure of mathematical expressions seems to be an over-kill when
dealing with this simple structure. We showed that it is slower, harder to adapt
for new domains, and achieves worse results in our comparison of state-of-the-art
methods. The advantage of our approach is that there is no need for additional
training. Although the max-sum problem is generally an NP-hard problem, the
instances generated during diagram recognition are solved relatively fast.

4. Arrow detector based on relative stroke positioning. We showed that com-
mon appearance-based classifiers used to recognize symbols from various domains
are not suitable for recognition of arrows. These uniform symbols have relatively
stable appearance. On the other hand, arrows have varying sizes and shapes. How-
ever, they have a very important property — they connect two uniform symbols.
We exploited this property and designed a specialized arrow detector [Bresler et al.,
2015a]. It searches for arrows as arbitrarily shaped connectors between two symbols.
A head of the arrow (and thus its direction) is detected using a Long Short Term
Memory Recurrent Neural Network (LSTM-RNN) as a classifier based on relative
positions of the head strokes and arrow end-points.

The joint contribution is following:

5. Segmentation of objects of interest in free-form sketches. We designed
a tool for segmentation and manipulation of objects of interest in free-form
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sketches [Perteneder et al., 2015]. We used a Single-Linkage Agglomerative Clus-
tering (SLAC) with a trained distance function. First, we conducted a background
study to find out what users consider as objects of interest. It turned out that there
usually exist multiple points of view on one particular sketch. Second, we trained
the clustering algorithm to segment different kinds of object. This way, we obtained
several clustering tools expressing existing points of view, so called perspectives. We
then combined these perspectives to obtain desired result indicated by an initial se-
lection. Third, we designed several tools to allow the user to seamlessly modify the
created cluster and to manipulate with them.

1.5. Thesis Organization

This Chapter 1 introduces the problem of recognizing handwritten diagrams, provides
a survey on state-of-the-art methods, sets out scientific goals, and summarizes contri-
butions of this thesis. The rest of the thesis is organized as follows:

e Chapter 2 describes the structure of diagrams supported by the recognition system.
It introduces the selected representative domains of flowcharts and finite automata
with their specifications and benchmark databases used for training and testing of
the system. It describes how we created our benchmark databases. We also discuss
the possibility to adapt the recognition system for other domains.

e Chapter 3 presents the recognition pipeline of our recognition system. It describes
in detail individual steps of the pipeline and provides their intermediate evaluation.

e Chapter 4 evaluates the whole recognition system on the benchmark database and
shows a comparison with other state-of-the-art methods. It also provides thorough
analysis of the system including failure analysis.

e Chapter 5 deals with free-form sketching and segmentation of objects in documents
without any particular structure.

e Chapter 6 contains conclusion of our work, summarizes the contribution of the
thesis, and outlines possible future work.
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2. Diagram Structure and Supported Domains with
Benchmark Databases

The diagram recognition system we propose is general and can be used in several do-
mains of arrow-connected diagrams. Supported diagrams consist of symbols with a
relatively stable appearance (called uniform symbols), interconnected by arrows. Ar-
rows and uniform symbols may consist of arbitrary number of strokes and both are
possibly assigned a text label: text inside the uniform symbol or in the vicinity of the
arrow. The domain syntax can bring additional constraints, e.g., forbid connecting
some symbols. Although the described structure is very simple, we can find it in var-
ious diagram domains like UML use case diagrams, Simulink diagrams, Concur Task
Trees, or business process diagrams (see illustrations in Figure 2.2). We worked in two
of the most common diagram domains, flowcharts (FC) and finite automata (FA). This
chapter describes these domains in detail and introduces the benchmark databases we
used for training and testing of the proposed recognizer.

The recognizer was initially developed for flowcharts. This choice was motivated by
an existing benchmark database created and published by Awal et al. [2011]. Later,
we decided to test the adaptability of the system for another domains. Here we chose
finite automata. Unfortunately, there was no benchmark database of handwritten finite
automata. Therefore, we decided to create our own database. With the experience of
benchmark database creation we also decided to create a new benchmark database of
flowcharts to obtain more data of a higher quality.

The rest of this chapter is organized as follows. Section 2.1 and 2.2 introduce the
domains of flowcharts and finite automata, respectively. They also describe the bench-
mark databases we used. In Section 2.3, we discuss the ability of the proposed system to
be adapted for other domains. Domains with a structure violating the requirements we
put on the supported structure are especially interesting. Finally, Section 2.4 describes
the process of creation of our benchmark databases. Statistics of all the used databases
are overviewed in Table 2.1.
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2.1. Flowcharts

2.1. Flowcharts

Flowcharts are very general diagrams used to express arbitrary processes or algorithms.
Although the set of symbols is unlimited due to the fact that the user may define
her/his own symbols, there exists a subset of the most frequently used ones. In our
work, we consider six symbol classes listed in Figure 2.1 together with an example of a
whole flowchart. This small subset is sufficient to assemble diagrams representing the
most common and famous algorithms (factorial numbers, bubble sort, neural network
training, etc.).

We use two benchmark database to train and test the recognizer in the domain of
flowcharts. The first one is the already mentioned benchmark database published by
Awal et al. [Awal et al., 2011]. We further reference it as FC_A. The database consists
of 327 diagrams drawn by 35 writers. Predefined diagram patterns representing well
known algorithms were used. The samples are divided into training and test datasets.
Several state-of-the-art methods were already tested on this dataset and thus it allows
comparison. The biggest disadvantage of the database is the lack of annotations pro-
viding information about the diagram structure. Only individual symbols are identified
and no temporal information is available. Additionally, the data is of low quality mostly
due to a low sampling frequency.

These deficiencies have motivated us to collect our own flowchart database and make
it public'. We reference this database as FC_B. We collected 28 diagram patterns drawn
by 24 writers, resulting in 672 samples. They were divided into training, validation, and
test datasets. Some of the patterns were taken from the FC_A database, and others
represent procedures for daily tasks. The database contains annotation of symbols
and relations among them. Arrows are provided with connection points and heads
annotated. Text blocks have their meaning attached.

2.2. Finite Automata

These diagrams are also called Finite State Machines (FSM) and represent mathemat-
ical models of computations used to design both computer programs and sequential
logic circuits. A particular finite automaton is defined by a list of its states, and the
triggering condition for each transition. Its behaviour can be observed in many devices
in modern society that perform a predetermined sequence of actions depending on a
sequence of events with which they are presented.

The finite automata domain includes three uniform symbol classes: state (a circle),
final state (two concentric circles), and initial arrow (straight arrow entering the initial
state). The text is usually simple — often just a single letter naming the state or
indicating an input attached to the arrow. It may also contain a lower index. Arrows
are typically curved, except the initial arrow which does not act as a connector of two
states. An example is shown in Figure 1.2.

No publicly available database of on-line sketched finite automata was known at the
time we started our research. We gathered and annotated our own database (referenced
as the FA database) and made it public'. The database contains samples of 12 diagram
patterns drawn by 25 users, which results in 300 diagrams divided into training, valida-
tion, and test datasets. As in the case of the FC_B database, it contains annotations of
symbols and relations among them. Additionally, arrows are provided with connection
points and heads annotated. Text blocks have their meaning attached.

"http://cmp.felk.cvut.cz/~breslmar/diagram_database
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2. Diagram Structure and Supported Domains with Benchmark Databases
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Figure 2.1. Example of a flowchart (a) with examples of uniform symbol classes (b).

Database || # of writers | # of patterns Training Vali(ﬁ t(i)(f);hagra’;nb Z - Sum
FC_A 35 28 200 - 127 327
FC_B 24 28 280 196 196 672

FA 25 12 132 84 84 300

Table 2.1. Statistics of the used benchmark databases.

2.3. Other Compatible Domains

There exists a range of diagram domains with supported simple structure of arrow-
connected diagrams. We already described the structure and introduce some examples
of such domains. Illustrative examples of diagram from these domains are shown in
Figure 2.2. Notice that uniform symbols or arrows from individual domains have some
very specific characteristics. Nevertheless, an adaptation of the recognition system for
these domains is straightforward because the recognition pipeline will remain exactly
the same with the same model used in the structural analysis. All we need to do is
to retrain or slightly adjust the following: the classifier separating text/non-text, the
distance function used for over-segmentation, symbol classifier.

However, there exist diagrams with a structure which is an extension of the basic
constructs. An example is an UML class diagram with structured text inside symbols.
In this case, it is not enough to identify text blocks when the structure is known. Some
kind of a hierarchical recognition would be necessary. The inner structure of each
symbol would have to be recognized using another model for structural analysis. Of
course, there are many domains beyond the scope of arrow-connected diagrams. An
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(f) Music Score

Examples of drawings from domains with potential application of our recog-
a)—e) show domains of arrow-connected diagrams where the adaptation is more or

less straightforward. However, a) shows that arrows might have dashed shafts which would
require an adjustment of the arrow detector; b) shows that a uniform symbol might have a
small glyph in its corner which would require adjustment of the uniform symbol classifier;
c¢) shows that arrows might be replaced by undirected connectors possibly provided with a
distinguishing glyph; d) shows that text inside a symbol might be further structured, which
would require adjustment in the model of structural analysis; e) shows that arrows might be
connected in nodes. Finally, f) shows a music score where the key relation between uniform
symbols and arrows is replaced by the relation between staff lines and notes.

extension for these would require modification of the max-sum model used for structural
analysis. It is possible if the fundamental relation between arrows and symbols can be
replaced by another relation defining the structure of the handwriting. For example,
the relation between notes and staff lines in the case of music scores.
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2. Diagram Structure and Supported Domains with Benchmark Databases

2.4. Benchmark Database

Creation of a benchmark database consists of two steps: data collection and data an-
notation. We created an application for each of these two steps. They are implemented
in C# and are meant to be run on a Tablet PC with Windows operating system.

We have gained experience with creation of benchmark databases during our work
on recognition of mathematical expressions [Stria et al., 2012]. [Wolin et al., 2007]
presented their effort to develop tools for a convenient annotation of diagrams from
the digital logic circuits domain. These diagrams have similar characteristics with our
chosen domains. We use very common approaches for individual tasks of the annotation
process.

2.4.1. Data Collection

We asked the same 25 writers to draw diagrams from both domains (one writer could
not participate in the collecting of flowcharts). We tried to cover the biggest spectrum of
different writers to embrace as much writing styles as possible. There were people with
8 different nationalities in age of 16-58, 10 of them were female, and two of them were
left-handed. To assure that the writers will draw meaningful diagrams of a reasonable
complexity, we prepared patterns which were supposed to be redrawn by the writers.
However, each writer was told to draw it in a way natural to him.

5 Diagram Collector = | B |l

Input X

Stop
Diagram: fc_001b
14 /40

User_032

Name: Unkown Writer
Gender: male
Ager: 28
Dominant Hand: right

I Save and Close ] [ Eraser ] ’ Select ] FIT VIEW

Figure 2.3. Screenshot of the application for data collection.

Before the data collection may begin, the writer must create a new session where
he fills all important personal information like name, gender, age, nationality, and
dominant hand (the name is removed before the database is published). The application
can always save and load the whole session. The writer always sees a pattern he is
expected to redraw. If the drawing canvas is not big enough, it is possible to scroll
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2.4. Benchmark Database

easily by moving the cursor towards an edge of the canvas in a desired direction. Zoom
is not allowed to keep a consistent scale within one particular drawing. However, to
allow the writer to review the whole diagram at once, it is possible to fit the drawing
into the canvas. It is done by holding the cursor on “FIT VIEW?” label. It is just for
reading and just for the time when the label is hold. The user can switch to eraser to
perform some corrections or the whole canvas can be cleared. The writer can move to
another diagram pattern or save and close the session when he is done.

2.4.2. Data Annotation

The annotation is done in two major steps: a) annotation of individual entities (uniform
symbols, arrows, and text blocks); b) annotation of relations between the entities. To
annotate an entity, the user must select strokes comprising the symbol using a lasso
tool. Selected strokes are highlighted. While a subset of strokes is selected a symbol
class is assigned by pressing the corresponding key. All annotated entities are listed in
the right side of the window and new one is automatically selected. No stroke can be
part of multiple entities. Therefore, the used symbols cannot be selected again and it
is convenient to annotate text blocks inside a uniform symbols first. Unused strokes
are red and used black. The user interface for annotating individual entities is shown
in Figure 2.4.

o Annotaticn Toalbox

writer00_fc_001 = Save

Lo=R X\

writerD00_fc_002
writerD00_fc_002b
writer000_fc_003
writer100_fc_003b
writer000_fc_006
writer100_fc_006b
wiiter000_fc_008
writerD00_fc_008b
writer00_fc_009
writer000_fc_00%
writer100_fc_010
writer000_fc_010b
writer00_fc_011
writerD00_fc_011b
writer100_fc_012
wiiter000_fc_012b
writerD00_fc_014
witerD00_fc_014b
writer000_fc_015
writer00_fc_015b
writer000_fc_016
writer100_fc_017
wiiterD00_fc_018 2

Delete Selected

g
connection - fw]
data - Je]
decision - ]
process - [a]
terminator - [g]
text - [d]

Symbol text:  R=R™n

text (1.000) + {(4,5,6,7.8.9.10)} Delete

text (1.000) + {{17.18.19.20.21.22.23 24.25)}

amow (1.000) + {{11,12)}
terminator (1.000) + {{0.1.2.3)}
data (1.000) + {(13.14.15.16)}

Sort

Delete

Find

Figure 2.4. Screenshot of the application for data annotation showing the annotation of indi-
vidual entities. The lasso tool is visualized with a chain of blue dots. Symbol classes with
assigned keys are shown in the bottom left list. The upper right canvas changes context
according to the selected entity. It visualizes the entity and allows to provide some details.
If a text block is selected, its meaning can be entered below the visualization canvas.

Upper right canvas visualizes a selected entity. It allows to provide some additional

details about the entity. If a text block is selected, the user is supposed to write down
its meaning. We use IXTEX notation in the case of subscripts or other mathematical
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2. Diagram Structure and Supported Domains with Benchmark Databases

expressions. If an arrow is selected, the user is supposed to annotate its connection
points. It is done by right clicking in the window. The start point is selected first,
selection of the end point follows then. Additionally, a new window pops up if an arrow
is selected to annotate which strokes form its head (see Figure 2.5). It will not appear
if the arrow head was already annotated. The remaining strokes automatically form
its shaft. Each stroke can be split into two by clicking with the middle mouse button.
The closest stroke point is selected and it belongs to both newly created strokes. It is
useful when the head and the shaft of an arrow are drawn by one stroke.

ol ArrowHeadAnnotationForm | S S

Figure 2.5. Screenshot of the window for annotation of arrow head. Selection is made using
a lasso tool. Strokes comprising the head are red. Each stroke can be split by selecting a
split point with the middle mouse button. It must be done to annotate a head drawn by one
stroke along with the shaft. The index of the selected splitting point is shown in the grey
box.

When all the entities are annotated and all information is provided, the user can
run automatic detection of relation between the annotated entities. Text blocks are
assigned to symbols they label and arrows are assigned two symbols they connect. This
detection uses the annotated connection points of arrows. Therefore, the two closest
symbols can be found easily. The whole detection of relations is very reliable. However,
if there is an error, the user can remove wrong relations and create new ones manually
by selecting participating symbols and the type of the relation. Before the relation
detection is done, the application verifies if the user provided correct and complete
annotation: it is checked that all strokes are part of some entity, each text block has its
meaning assigned, each arrow has its connection points and the head annotated. Each
annotated diagram is stored in a separate InkML file.
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(b) Visualization of a selected relation used for visual verification of the annotation.

Figure 2.6. Screenshots of the application for data annotation. The upper right canvas changes
context according to the selected entity. When an arrow is selected (a) the user is expected to
annotate the arrow’s connection points by right clicking. The closest stroke point is selected.
Start point (green) is selected first and end point (red) second. When a relation is selected
(b) all interacting symbols are visualized. The arrow connecting two symbols is shown in red
to visually separate the symbols.
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3. Diagram Recognition

The goal is to find a diagram structure, which describes the sketched diagram syn-
tactically. The system has to identify individual symbols and relations between them
during the process of recognition. Additionally, text must be recognized in a way that
it is divided into logical text blocks with known meaning. It is known to be a difficult
chicken-egg problem to find the symbols and the structure. The diagram structure
can be found by assembling symbols together. However, it is difficult to segment and
recognize the symbols correctly without knowing the structure. Therefore, we find
symbol candidates first by performing so called segmentation by classification using
over-segmentation. Without doing hard decisions in this step, we let the structural
analysis to choose the best combination of the symbol candidates able to assemble a
valid diagram structure.

The described approach may be divided into three steps: symbol over-segmentation,
symbol classification, and structural analysis. Before these can be performed it is wise
to do several preprocessing steps including normalization of the input. It is also desired
to divide the problem and separate text from other strokes. Finally, the text can be
recognized after the diagram structure is known as post-processing.

This chapter first introduces our demo application illustrating the recognition process
and possibilities with the formalized output in Section 3.1. The rest of the chapter then
follows the recognition pipeline depicted in Figure 3.3 and illustrated by an example in
Section 3.2. Specifically: Section 3.3 shows preprocessing steps, Section 3.4 describes
our text/non-text separation, Section 3.5 explains the symbol segmentation through
strokes clustering, Section 3.6 introduces our symbol detectors, Section 3.7 presents the
structural analysis, and Section 3.8 explains detection and recognition of text blocks.
Finally, a detailed description of the adaptation of the system from flowcharts to finite
automata is provided in Section 3.9. It illustrates the adaptability of the system.
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3.1. Demo Application

3.1. Demo Application

We created a demo application to show the capabilities of our diagram recognizer. It
allows the user to draw or import a diagram from an InkML file (e.g. one of the
diagrams from the benchmark databases). The diagram can be then recognized and
its beautified version can be saved as an image. We encourage the reader to experi-
ment with our demo application available at http://cmp.felk.cvut.cz/~breslmar/
diagram_recognizer/. We show it here as a motivation for the remainder of this
chapter.

There are two recognizers running in the background: flowchart recognizer trained
on the FC_B database and finite automata recognizer trained on the FA database.
The user can thus draw or import a diagram from one of these two domains and
then press the corresponding button to perform the recognition. The preview of the
recognition result is displayed first: the strokes are coloured based on the symbol they
were assigned to and individual symbols are additionally highlighted by their bounding
boxes. The user can go back to the diagram editing mode, redraw the diagram, and
perform the recognition again. Once he is satisfied with the result, the recognized and
beautified diagram can be exported either to the PNG image or to the representation of
DOT language. GraphViz library is used for the visualization and the user can choose
whether the layout of symbols should correspond to the drawn layout or if the layout
manager of GraphViz should be used. Figure 3.1 contains screenshots from the demo
application with explanation of the user interface.

If MS Visio is installed on the computer it is also possible to export a recognized
flowchart into it. In that case, MS Visio is automatically opened and the diagram is
automatically created. This software for diagram design can be then used to further
adjust the diagram — change graphical design or labels, reposition symbols or completely
modify the diagram. Figure 3.2 compares two possible outputs: GraphViz visualization
and MS Visio design. Finally, the DOT representation of the diagram used in this
section as an example is as follows:

digraph flowchart {
graph [ dpi = 300 ]

layout = neato;

splines = ortho;

node [shape = ellipse]; SO [ label = ”Begin” pos=70.9,-0.2!" ];

node [shape = parallelogram]; S1 [ label = ”Input x” pos="0.9,—1.1!1" ];
node [shape = rectangle]; S2 [ label = "n=7 R=1" pos=70.9,-2.117 |;
node [shape = parallelogram]; S3 [ label = "Disp R” pos=70.9,-3.1!" ];
node [shape = ellipse]; S4 [ label = ”Stop” pos="0.7,—-4!" |;

node [shape = rectangle]; S5 [ label = "R=R#n” pos=72.6,-2.1!" |;
node [shape = diamond]; S6 | label = "h=X" pos="2.7,-3.1!" |;

node [shape = rectangle]; S7 [ label = 7h=h+1" pos="4.5,-3.2!" ];

S7 —> S5 [ label = "7 |:

S5 —> S6 [ label =77 ];

S6 —> S3 [ label = "yes” |;

SO —> S1 [ label = »7 J;

S1 —> $2 [ label = »7 ];

S2 —> S5 [ label = 77 ];

S3 —> S4 [ label =77 ];

S6 —> S7 [ label = "No” ]; }
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3. Diagram Recognition

“®= Diagram recognizer 1.0 | S
. |
— —
(Regin)
\

Y
/ wpud X

e ‘ ,—-——b\\a RXwn g
AM? R/dci/&>¥ \f\th*’](

StoF

Recognize

4

| z |

(a) Sketching mode — the user can draw a diagram using an ink input device. It is possible to scroll
over the canvas using the the buttons on its edges. The recognition can be run by pressing a button
of the corresponding domain.
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(b) Recognition preview mode — recognized diagram entities are highlighted. The user can export the
diagram using GraphViz visualization or can go back to the sketching mode.

Figure 3.1. Screenshots of the demo application: a) sketching mode where the diagram can be
drawn or imported, b) recognition preview mode where the diagram can be exported.
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3.1. Demo Application

a5 Diagram export Elﬂu

n=7 R=1 —— ! R=R*n |a

yes No

I Save as ... I

(a) Window with GraphViz visualization. It can be directly saved as a PNG image or DOT represen-
tation.

Input x

(b) Diagram exported into MS Visio.

Figure 3.2. Screenshots of the two possible export options: a) visualization done by GraphViz,
b) the diagram exported into MS Visio.
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3. Diagram Recognition

3.2. Pipeline lllustration by Example

1. Input

—> Frocess 7 E ndl

2. Text/non-text classification

—> Frocess —— E nel

Strokes are classified into two classes: text and shapes. Strokes classified as text are

coloured in red.
= =D

Text strokes were removed. Notice that some text strokes were misclassified and
thus remained. It is a better situation than the opposite misclassification of shape
strokes.

3. Symbol over-segmentation
CO OO CO— OO
s 1 - ¢l
O (D
Strokes are grouped/clustered together to form (possibly overlapping) subsets of
strokes. Depending on the used technique, over-segmentation can generate a large

number of subsets. Only a small portion of these subsets represent a symbol. The
illustration shows only subsets very similar to symbols.
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4. Symbol classification

A) Uniform symbols

C ) D C =

Terminator 0.93
Connector 0.07

Terminator 0.89 Terminator 0.23

Connector 0.04
Process 0.34 Process 0.94
Process 0.47 Process 0.66

)

Terminator 0.52
Connector 0.02
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Process 0.78

C

Terminator 0.89
Connector 0.11
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3.2. Pipeline Illustration by Example

CO— g

Terminator 0.31 - rejected -
Ly
Process 0.19 - rejected -

>

- rejected -

Generated subsets of strokes are classified by a symbol classifier with a rejection
ability. Top two results are taken to create symbol candidates for further considera-
tion. Each symbol candidate is shown with a score assigned by the classifier. If both
of the two top results are valid symbol classes, they are both displayed. If none of
them is a valid symbol, the candidate is rejected.

B) Arrows

Terminator 0.93 Process 0.94

CO—=> 1=

Terminator 0.89 Process 0.94

CO—= =
/>©

Terminator 0.89 Process 0.66

Ol

Arrow 0.81

Process 0.94

Terminator 0.93 Terminator 0.89

O 1=

Arrow 0.23

Terminator 0.89

/>©

Arrow 0.74

Terminator 0.93 Terminator 0.89

O 1=

Arrow 0.21

All pairs of symbol candidates are considered and the arrow detector tries to find
an arrow connecting these two symbols. Detected arrows are candidates and can be

in conflict because even the uniform symbols

might be in conflict. This illustration

shows only few interesting examples of symbol pairs and detected arrows candidates.
The red arrow always leads from the blue symbol to the green one.
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Diagram Recognition

Structural analysis

Terminator 0.93 Process 0.94 Terminator 0.89

Structural analysis chooses the best combination of symbol candidates forming
a valid diagram. There might remain unused strokes (ideally, misclassified text
strokes).

Structural analysis exploits a broader context to select a globally optimal subset
of symbol candidates. A bad candidate might have a higher score than a good
candidate which is in direct conflict with it. However, the good candidate usually
fits better into the whole structure of the diagram. Consider the following example

commonly occurring in the finite automata domain.
Q State 0.98

State 0.94 o Q Q

Final State 0.91

OO0 OO

Arrow 0.81 Arrow 0.95

The inner circle of the final state is classified as a state. Its shape is more precise and
thus it has higher score than the final state. However, the arrow is better connected
(smaller distance between connection point of the arrow and the symbol) to the outer
circle than the inner circle and thus the candidate for the arrow linked to the final
state has much higher score. Therefore, the global score of the solution is higher
when using the symbol of final state although it has lower score than the state.

. Text blocks detection and recognition

—> L\( />©

Text block "Begin' Text block "Process" Text block "End"

Removed text and all unused strokes are divided into text blocks and recognized
using a text recognizer.

Output



3.3. Preprocessing

Terminator 0.93 Process 0.94 Terminator 0.89

All symbols are recognized.

3.3. Preprocessing

Our preprocessing phase targets only filtering of insignificant points within strokes.
This is necessary, since some of the used algorithms are not invariant to the distance
between neighbouring points. On the other hand, we do not perform any global scaling
of the input. The system is based on a data adaptive distance threshold, which will be
explained further.

To filter out insignificant points, the distance between neighbours is measured. When
the user draws very slowly, this distance decreases. There might even be duplicated
points in the extreme case. A chosen criterion is % of the median of distances between
consecutive points. A point is removed when the distance to the following point is
bellow this limit. The exception is every corner point (see details in Section 3.6.2),
which is always preserved. The described filtering removes roughly 40 % of points and
makes thus the whole recognition process faster.

To perform a stroke segmentation or stroke splitting is another common preprocessing
step in many sketch recognition engines. Every stroke is divided into smaller segments
at splitting points which are typically defined as corner points. It is required when the
user draws multiple symbols by one stroke. However, we do not take this as an option
in the case of our domains. The structure of flowcharts and finite automata makes it
really unnatural for a user to do that. This decision is well justified empirically. During
analysis of the datasets we did not find a single stroke being part of two different
symbols. Therefore, we do not perform stroke segmentation generally on all strokes.
Nevertheless, we need to perform it just locally during recognition of arrows. If the
head and body of an arrow are drawn by one stroke, they must be split. More details
follow in Section 3.6.2.

The already mentioned adaptive distance threshold expresses whether two points or
strokes are mutually close. It depends on the used input device and a handwriting
style of the user. Therefore, it must be computed based on data prior to recognition
of each diagram. We denote it as distThresh. The threshold plays an important role
in various stages of the pipeline. A description of the procedure determining a value of
this parameter follows in Section 3.5.1. It describes strokes grouping where the distance
threshold is used and thus we can measure what values give us satisfactory results.

3.4. Text/Non-text Separation

Separating text from other strokes is motivated by the observation that the text bears
almost no information about the diagram structure. Ideally, all text strokes are removed
and the diagram without text is recognized. This divide and conquer strategy reduces
computational complexity significantly since the number of strokes is much lower. Text
strokes are replaced after recognition. The diagram structure helps forming text blocks
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3. Diagram Recognition
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Figure 3.3. The proposed recognition pipeline.

and finding symbols, to which the blocks are assigned. Detection and recognition of
the text blocks is described later in Section 3.8.

The text/non-text separation algorithm classifies single strokes into two classes — text
and shapes. Although there exist quite precise algorithms for such separation [Delaye
and Liu, 2014; Indermiihle et al., 2012; Otte et al., 2012; Van Phan and Nakagawa,
2014], they are not able to separate all text strokes. Their accuracy achieved on the
benchmark IAMonDo database! is between 97 % and 98 %. Moreover, these classifiers
tend to have a higher error in class shapes due to using unbalanced training datasets.
Our goal is the opposite one. We attempt achieving the minimal possible error rate for
class shapes while a slightly higher error rate in class text is acceptable. The justification
is that removing a shape stroke can easily cause a symbol not to be recognized, because
it becomes incomplete. Some remaining text strokes are not a problem as symbol
classifiers are robust enough to deal with noise.

We bias the classifier result and thus only strokes where the classifier is almost cer-
tain are marked as text. We implemented two classifiers performing best on the TA-
MonDo database [Otte et al., 2012; Van Phan and Nakagawa, 2014] and tested them
on flowcharts and finite automata. The best performing was the classifier proposed

"http://www.iam.unibe.ch/fki/databases/iam-online-document-database
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by Phan and Nakagawa [Van Phan and Nakagawa, 2014], which uses unary features to
classify individual strokes into two classes: text and non-text. It also considers relation-
ships between adjacent strokes in the writing order and uses binary features to classify
transitions between strokes into three classes: text—text, text—non-text, non-text—non-
text. Since it can be seen as a sequence labelling task, BLSTM RNN classifiers are used
to capture the global context. The probabilistic outputs from the two BLSTM neural
networks are combined together to obtain the final labeling probability. It achieves
precisions 98.62 % (98.75 % in the shapes class and 98.53 % in the text class) for FC_A,
99.53 % (98.94 % in shapes, 99.74 % in text) for FC_B, and 98.84 % (99.85 % in shapes,
97.83 % in text) for FA in the unbiased case. We were able to reach a biased result in
shapes /text class of 99.68 %/95.20 %, 99.41 %/98.75 %, and 100.00 %,/93.31 % for FC_A,
FC_B, and FA, respectively. See Table 3.1 for overview of the achieved results. Selec-
tion of the bias is a trade-off between the accuracy in both classes. Results for various
bias values are shown in Figure 3.4. We chose 0.99 for FC_A, 0.8 for FC_B, and 0.7 for
FA. Note that Van Phan and Nakagawa [Van Phan and Nakagawa, 2014] suggest to use
sum rule when combining the probability outputs of individual classifiers. Therefore,
the final labelling confidence is from interval [0,4), which explains the high values of
the bias.

Unbiased Biased Otte et al.
FC_A | FCB FA FC_A | FCB FA FC_A | FCB FA
Shapes | 98.75 | 98.94 | 99.85 | 99.68 | 99.41 | 100.00 | 94.22 | 94.39 | 95.21
Text 98.53 | 99.74 | 97.83 | 95.20 | 98.75 93.31 98.11 | 99.39 | 97.37
All 98.62 | 99.53 | 98.84 | 96.97 | 98.93 96.93 96.60 | 97.89 | 96.30

Table 3.1. Accuracy of stroke classification into text/non-text classes. We compare chosen
classifier by Van Phan and Nakagawa in unbiased and biased form with unbiased classifier
by Otte et al.

3.5. Symbol Segmentation

Segmentation is a process dividing strokes into subsets, each forming a particular sym-
bol. Ideally, the subsets should be disjoint and cover all the strokes. However, it cannot
reasonably be done without knowledge of the entire structure. It is unwise to make hard
decisions at this early step, and so starting with over-segmentation is better. It supplies
a larger number of subsets, which may share some strokes. The final decision on which
subsets fit the structure of the input diagram best is left for the structural analysis per-
formed later. Our system needs to segment uniform symbols only: arrows are detected
after the initial segmentation using the knowledge of recognized uniform symbols. The
text is recognized even later when the entire structure is known.

The most common approach to over-segmentation works under the assumption that
symbols are formed of spatially and temporally close strokes. Stroke grouping is per-
formed iteratively. Within the first iteration, every single stroke forms a subset of
size 1. Next, subsets of size k are created by adding a single spatially and temporally
close stroke to subsets of size k — 1. The maximal size of the subsets is given by the
domain and user’s drawing conventions. The spatial proximity is determined simply
by Euclidean distance between the two closest points. Temporal proximity is hinted at
by stroke indices in the drawing sequence. The approach has been used in our earlier
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work [Bresler et al., 2014] as well as by others [Feng et al., 2009; Ouyang and Davis,
2011; Alvaro et al., 2014].

Delaye and Lee [2015] showed that symbols may be segmented using Single-Linkage
Agglomerative Clustering (SLAC) using a properly trained distance function defined as
a weighted sum of several simple features. In addition to Euclidean distance between
strokes, the features express the difference between geometric and temporal character-
istics of two strokes. The distance is defined as:

k
d(s,t;w) =Y widi(s,t), (3.1)
=1

where s and ¢ are two given strokes and wj; is the weight for the feature d; that needs
to be learned. SLAC is a hierarchical bottom-up clustering technique, in which larger
clusters are created by iteratively merging the two closest clusters based on the distance.
The usage of a Single-Linkage clustering approach implies that the distance between
two clusters is given by the distance between their two closest elements. This permits
an efficient real-time implementation of complexity O(n?), where n is the number of
strokes. The clustering gives the final segmentation, which reaches typically lower recall
rates. We improved it by performing the over-segmentation by successive clusterings
with varying thresholds [Bresler et al., 2015b]. In comparison to the grouping-based
over-segmentation, this increased the precision (i.e., generated significantly fewer sub-
sets), at the cost of only very slightly decreased recall. We achieved 95.1 % /16.7 %,
98.4% /27.5%, 99.8% / 26.5 % recall / precision on FC_A, FC_B, FA databases, respec-
tively. The high recall is the main objective directly affecting the precision of the whole
system while the segmentation precision is a secondary objective, affecting mainly the
speed of the system. The recall achieved allows overall high precision. The segmentation
precision achieved shows that on average we do not generate more than 4-6 times more
segments than is the true number of symbols, which is important for fast recognition.

3.5.1. Comparison of Naive Stroke Grouping with Trained SLAC

Here we would like to discuss the advantage of using SLAC-based over-segmentation
as compared to naive stroke grouping. To do that, we first describe both approaches
in more detail and then show the performance differences. The following notations are
used in this section:

® Dsa = (s, Ys,artsarPs,a) € 5 the a-th point on a stroke s represented as a tuple
consisting of x and y coordinates, a timestamp, and a pressure value

® 5=DPs1Ds2 --- Psn,: @ stroke with n, points

o |[ps.a—peol = \/(ﬂfs,a —xp)? + (Ys,a — yrp)?: Euclidean distance between two points

Naive Stroke Grouping

As we already said, this approach iteratively creates new, larger groups/subsets of
strokes by adding a single stroke to existing smaller groups. New stroke must be
spatially and temporarily close to the subset. Three aspects must be considered: 1)
the maximal size of a subset, 2) a criterion determining if two strokes or a stroke
and a subset of strokes are spatially close, 3) a criterion for temporal connectivity. A
discussion of these aspects follows:
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3. Diagram Recognition

1. The maximal number of strokes forming a symbol depends on the selected domain
and the user’s drawing style. A greater bound increases the number of subsets
significantly. On the other hand, a too low bound might lead to misses of some
symbols. Based on the empirical analysis of the datasets, whose result is summarized
in the histogram in Figure 3.5, we set the bound to 5 for flowcharts and 3 for
finite automata. Note that symbols consisting of a higher number of strokes are
usually retraced and some strokes are not necessary for correct recognition (more
in Section 4.1). Examples of symbols consisting of more strokes than expected are
shown in Figure 3.6.

2. For finite automata, a distance between two strokes is defined as the Euclidean
distance between their two closest points. Formally, the distance between stroke
s and t in the finite automata domain is defined as follows:

dra(s,t) = min [psa — pey| (3.2)

For flowcharts, it is enough to consider the distance between end-points, because
symbols in flowcharts are drawn in a way when individual strokes are always linked
together by their end-points. Formally, the distance between stroke s and ¢ in the
flowchart domain is defined as follows:

drc(s,t) = min Ps,a — Pepllsa € {1,ns},b € {1,n4} (3.3)

A distance between a stroke and a subset of strokes is the distance between the stroke
and a closest stroke of the subset. Therefore, it is enough if there is one spatially
close stroke in the subset. In a diagram, we say that two strokes or a stroke and a
subset of strokes are close if the distance between them is smaller than a threshold
distThresh = o+ Dyyeq, where Dieq i a median of bounding boxes diagonal lengths
of all single strokes present in the diagram. The constant « has been empirically
chosen as 0.35 for both studied domains. The choice is based on the dependencies
plotted in Figure 3.7. Such approach is necessary, because different drawing styles
and used devices cause different scales. The threshold distThresh is applied in other
steps of the pipeline as the strokes grouping is not the only one process where we
need to determine the spatial proximity.

3. Each subset is required to be formed of at most two different groups of consecutively
drawn strokes. This criterion is natural. It may happen that the user draws just half
of a symbol, writes some different text, and finishes the symbol after that. However,
there are no symbols drawn with two or more interruptions in any of the FC_A,

FC_B, and FA databases.

We used all samples in the databases to establish values of the presented parameters.
Note that, within each sample, strokes forming texts and arrows were excluded since
strokes grouping is not intended to find text or arrows.

SLAC with Trained Distance Function

The disadvantage of the stroke grouping is the fact that the method considers too
many combinations of strokes, which are not important, because they can never form
a symbol. This inefficiency led us into experimentation with other possibilities.
Single-linkage clustering based on weighted combination of several features with train-
able parameters proposed by Delaye and Lee [2015] reaches a very high precision of
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Figure 3.5. Histogram of symbol sizes helps to determine the maximal size of strokes subsets.
The size is understood as the number strokes forming the symbol.

object segmentation. Its advantage is that it uses more features combined together and
can express more complex relations between strokes than just the Euclidean distance.
Another advantage is that single-linkage is a fast clustering algorithm. The time com-
plexity is quadratic in the number of strokes. It is only needed to compute the distance
between individual strokes once. The distance between two clusters is given by the
distance of their two closest strokes. We reimplemented the method and trained the
feature weights and the threshold as it is described in the work by Delaye and Lee. We
achieved a bit worse precision (cca. 3% less) on both, FC and FA, databases. We be-
lieve it is caused by slight differences in the input normalization. However, the method
is powerful and the result is satisfactory for our purposes.

We perform the clustering with the trained parameters and several values of the
threshold to get an over-segmentation to increase the recall. We obtained several values
of the threshold by multiplication of the original threshold h by a changing coefficient
¢ii hi = h-c¢;. We used increasing values of ¢; from the interval [¢inin, Cmaz] With the
step 0.1, where the bounds ¢, and ¢, must be found in a validation procedure.
Only the uniform symbols are our objects of interest, because our recognition system
deals with text and arrows separately. We used the validation dataset of the FA
database and training dataset of the FC database to find the bounds of the coefficient.
We tried all combinations of ¢y, from the range [0.1,1.0] and ¢4, from the range
[1.0,2.0]. The best combination of the bounds is that one, which gives the highest
recall. When more combinations give the same recall, the combination giving higher
precision is taken. We found out that the best values are ¢, = 0.5 and ¢pee = 1.2
for both domains.

A comparison of results achieved by both over-segmentation methods is shown in
Table 3.2. Notice that the text separation step precedes the over-segmentation step and
thus the most of the text strokes is removed. The text separator achieves the precision
in shapes/text class of 99.68 %/95.20 %, 99.41 %/98.75 %, and 100.00 %/93.31 % for
FC_A, FC_B, and FA, respectively. Since the over-segmentation is used to find uniform
symbols only, we do not consider text blocks or arrows as relevant objects. Therefore
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(a) Decision symbol from (b) Process symbol from file (c) State symbol form file
file writerl_-1 of the FC_A writer002_fc_010 of the FC_B writer002_fa_002 of the FA
database. Magenta and cyan database. database.
strokes are redundant.

Figure 3.6. Examples of symbols consisting of more strokes than expected from individual
databases. Individual strokes are in different colours for better visualization.

there are 921 /1337 / 488 relevant objects in the test dataset of the FC_A / FC_B /FA
databases. Notice that the clustering method achieved even higher recall than the naive
grouping in the case of FA. Obviously, a few symbols in the test dataset violated one
of the assumptions used in the process of strokes grouping. Specifically, they comprise
of more strokes than allowed. The advantage of the clustering approach is that we do
not need such assumption at all.

Database — Method | Retrieved | Relevant | Matched | Recall | Precision | F-measure
FC_A — grouping 19714 921 878 95.33% 4.45% 0.085
FC_A — clustering 5245 921 876 95.11% | 16.70% 0.284
FC_B — grouping 18618 1337 1315 98.35% 7.06 % 0.132
FC_B — clustering 5095 1337 1315 98.35% | 25.81% 0.409
FA — grouping 6 095 488 485 99.39 % 7.96 % 0.147
FA — clustering 1823 488 487 99.80% | 26.71% 0.419

Table 3.2. The results of strokes grouping and clustering on the test datasets of the FC and
the FA databases.

3.6. Symbol Recognition

Symbol recognition aims at classifying subsets of strokes (clusters) produced by seg-
mentation. Each cluster is either assigned a symbol class or is rejected. We treat arrows
in a special way since their form and shape varies, which is a difficulty for traditional
classifiers. There are two stages. The first stage, uniform symbols are recognized us-
ing a standard classifier. The second stage, arrows are detected as connectors between
symbol candidates found earlier. Both recognizers/detectors provide an ordered list of
symbol candidates. The structural analysis selects the best symbols from these lists.
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Figure 3.7. The result of experiments performed over FC_A, FC_B, and FA databases to obtain
an optimal value of a coefficient. The graph shows the accuracy which improves as a grows
(I., solid) and the growth of the number of strokes subsets (IL., dashed) at the same time.
The choice of « is thus a tradeoff. The chosen o = 0.35 is indicated by the red line.

3.6.1. Uniform Symbol Classifier

The classifier has to fulfil three requirements: 1) It has to be fast since many stroke
clusters need to be processed; 2) The rejection ability is mandatory as many stroke
clusters do not represent anything meaningful; 3) Each classification produces a score
(e.g., a posterior probability) to compare the candidates quality.

We used an off-the-shelf solution and combined the trajectory based normalization
and direction features proposed by Liu and Zhou [2006] as a descriptor, which served as
the input to the multiclass SVM classifier. The descriptor is based on hybrid features
capturing dynamic information as well as the visual appearance of symbols. It consists
of 512 features. It was primarily designed for recognition of Japanese characters and
thus works well for a high number of visually similar symbol classes since individual
Japanese symbols often differ in small details only. This property is desirable to enable
rejection of incomplete symbols produced by the over-segmentation. The analogy with
Japanese characters is illustrated in Fig. 3.8 and the achieved results confirm suitabil-
ity of the selected descriptor. Although there are different descriptors available [Delaye
and Anquetil, 2013], we did not experiment with them because we achieved satisfactory
results with the chosen solution. We trained the classifier with negative examples to
obtain the rejection ability. The dataset of symbols for training was obtained by apply-
ing the stroke clustering introduced in Section 3.5. If the cluster of strokes is annotated
as a uniform symbol in the database, it is labelled by that symbol. Otherwise it is
labelled as no_match, which denotes a negative example. Arrows as well as incomplete
parts of symbols are labelled as negative examples. Because the FC_A database does
not contain a validation set, we used a 5-fold cross-validation. Therefore, we merged
the training and validation datasets in case of FC_B and FA databases to have the same
conditions.

The number of negative examples is much higher than the number of uniform sym-
bols. Moreover, they are very inhomogeneous. It is thus necessary to cluster them
into subclasses. We employed k-means based on the descriptor to create m no_match
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Figure 3.8. Example of small differences between individual symbol classes in the case of
Japanese characters (a) and uniform symbols in diagrams (b).

subclasses, where m is domain dependent (m = 30 for flowcharts, m = 20 for finite
automata). The appropriate values of m were estimated from the data while pursuing
clusters with desirable properties such as homogeneity and separability. The larger
number of symbol classes in the flowchart domain naturally results in a greater m.
This brings a need for a modified loss function, which gives the zero penalty when a
negative example is classified into a different no_match subclass. Additionally, a greater
penalty is required for misclassification of a uniform symbol as a negative example than
in the opposite case. The ratio between these two penalties depends also on the ratio
between the number of uniform symbols and negative examples. A properly chosen loss
function can overcome the problem with an unbalanced database [Bresler et al., 2014].
However, our current implementation uses artificially synthesized samples to balance
the database. The samples were synthesized using the approach of Martin-Albo et al.
[2014]. It is based on Kinematic Theory and the distortion of the Sigma-Lognormal
parameters in order to generate human-like synthetic samples. See Figure 3.9 for a
better idea of how these samples look like. We generated up to 20 artificial samples
from each uniform symbol taken from the training dataset. From all the synthesized
samples of one class, we randomly chose a subset to get the desired number of symbols
for training. The counts of original samples taken from the training and test datasets
are shown in Table 3.3. We decided to supply each class of the uniform symbols with
artificial samples to obtain 2000/4000 samples altogether in flowchart/ finite automata
database. These numbers of samples ensure balanced datasets. This approach not only
helps to balance the dataset, it also supplies additional information on handwriting and
makes the classifier more robust. Therefore, we empirically set the smaller penalty to 1
and the bigger penalty to 2 just to increase recall at the cost of very small precision de-
crease. In the finite automata case, non-initial arrows and stroke subsets of final states
have exactly the same appearance as initial arrows and states, respectively. To benefit
from this knowledge of the domain, we excluded these two from negative examples,
which increases the recall of the symbol classifier. Specifically, the recall increased from
96.23 % to 98.98 % reported later in this section. Unfortunately, the FC_A database
does not contain any time information, which is crucial for the synthesis, thus artificial
samples cannot be obtained for this database.

Without negative examples, the proposed classifier achieved the precision of 98.9 %,
97.5%, and 100.0 % for FC_A, FC_B, and FA, respectively. If rejection is incorporated
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Figure 3.9. Example of the original data symbol from flowchart domain (a) and five syntheti-
cally generated samples from this symbol (b—f).

FC_A train. | FC_A test | FC_B train. | FC_B test | FA train. | FA test

Connection 144 94 270 112 - -
Data 337 214 865 356 - -
Decision 247 158 544 224 - -
Process 478 304 920 380 - -
Terminator 241 151 643 265 - -
Initial arrow - - - - 197 75

Final state - - - - 342 127

State - - - - 720 286

No-match 42319 31600 84 225 28 357 12326 4672

Table 3.3. The number of original samples in training and test datasets.

through negative examples, we keep the two topmost results of classification for each
stroke cluster to make the symbol candidate detection more robust. It might happen
that both results are no_match. Then, the corresponding cluster is rejected. This
yields the recall/precision of 94.13 %/43.13 %, 96.63 %/45.33 %, and 98.98 %/37.15 %
for FC_A, FC_B, and FA, respectively. The average recognition time per sample is
0.7ms (tested on a tablet PC Lenovo X230 — Intel Core i5 2.6 GHz, 8 GB RAM).

3.6.2. Arrow Detector

As stated earlier, it is difficult to perform recognition of an arrow based on its ap-
pearance, even if several arrow subclasses are considered. This was our initial ap-
proach [Bresler et al., 2013], which did not lead to satisfactory results. Some generic
recognizers for arrows are also known [Kara and Stahovich, 2004; Stoffel et al., 2009].
However, they expect a fixed form of arrows — the number of strokes as well as the
range of angles between them are restricted. This conforms to some domain specific
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solutions, but is impractical in general. The requirements on the user’s drawing style
are unnatural, a new model for each arrow form has to be defined, etc.

Therefore we created a new specialized arrow detector [Bresler et al., 2015a]. It ex-
ploits the special property of arrows (they connect two symbols) and detects candidates
after uniform symbol candidates have been recognized. We consider each pair of de-
tected uniform symbol candidates and try to find an arrow as an arbitrarily shaped
connector linking them. FEach arrow consists of a shaft and a head, hence the arrow
candidates detector works in two sequential steps:

1. Find the shaft of an arrow connecting two given symbols. The shaft is a sequence
of strokes leading from the vicinity of the first symbol to the vicinity of the second
symbol and is undirected.

2. Find the head located around one of the end-points of the shaft. It defines the arrow
orientation.

The detection of the arrow shaft can be done iteratively by simply adding strokes
to a sequence such that the first stroke starts in a vicinity of the first symbol and
the last stroke ends in a vicinity of the second symbol. A new stroke is added to the
sequence only if the distance between the end-point of the last stroke and the end-point
of the new stroke is smaller than a threshold. The algorithm must consider all possible
combinations of strokes creating a valid connection between the given two symbols.
The search space can be reasonably reduced by setting a maximal number of strokes in
the sequence. This number depends on the domain and the fact, how many strokes the
users use to draw arrow shafts. Typically, it is four and two for flowcharts and finite
automata, respectively. We can immediately remove some shafts, which are in a conflict
with another shafts, and keep those with the smallest sum of the following distances: a)
distance between the first symbol and the first stroke of the shaft, b) distance between
the second symbol and the last stroke of the shaft, ¢) distances between individual
strokes of the shaft.

Since we do not know the orientation of the arrow yet and the shaft is undirected,
we have to consider both end-points of the shaft and try to find two heads (one in
the vicinity of each end-point). Ideally we will be able to find just one head. In
practice, it can happen that we find two heads and we have to decide which one is
better. The detection of an arrow head is not a trivial task, because there might be a
lot of interfering strokes around the end-points of the shaft: heads of another arrows
or some remaining text. The decision which strokes represent the true arrow head we
are looking for and which are not, is a task, where the stroke positioning might be
used beneficially. First, we define a reference stroke (a sub-stroke of the shaft) and a
reference point (end-point of the shaft), which are used to express a relative position
of query strokes (details follow later in this section). Second, this information about
relative position is given to a classifier making the decision. The query strokes are all
strokes in a vicinity of a given end-point of the shaft, which are not a part of the shaft
itself nor the two given symbols. We make a classification into two classes: head and
not-head. The explanation for the evaluation of the relative position of strokes and the
classification is given later in this section. Let us just note that the classifier returns
a class, into which the query stroke is classified along with a potential>. We use this

2The potential is given by a neural network which we use as the classifier. Its detailed description
will be provided later in this section, in subsection Evaluation of Relative Position of Strokes. Note
that this potential is not the final score of the arrow.
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potential to decide which head is of better quality in the case we find two heads. We just
compute the sum of potentials of all strokes in each head and decide for the head with
the greatest value. This slightly favours heads consisting of higher number of strokes,
which is desirable in the most cases. A pseudocode for the described algorithm that is
divided into two procedures and presented as Algorithm 1 and Algorithm 2. The arrow
recognition pipeline is depicted in Figure 3.10.
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Figure 3.10. Arrow recognition pipeline. The recognition process is illustrated on a simple
example of two symbols from flowchart domain. The input is a pair for non-arrow symbols
and the output is an arrow connecting the given symbols.

It happens quite often that the user draws a shaft and a head of an arrow by one
stroke. Our algorithm would fail in that case. Therefore, we make one additional step
before we try to find the arrow head. We split the last stroke of the shaft into smaller
sub-strokes in such a way that the head is split from the shaft. Created sub-strokes are
divided into two groups. One group is used to finish the shaft again such that it reaches
the symbol again. Sub-strokes of the second group are put into the set of query strokes
possibly forming the head. Our splitting algorithm is described later in this section. If
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the shaft and the head are not drawn by one stroke, the algorithm will ideally perform
no segmentation and this step can be skipped.

The rest of this section describes extraction of the reference stroke and the reference
point, splitting algorithm to split the arrow head form the arrow shaft, and the evalu-
ation of the relative position of the head strokes with respect to the reference point of
the arrow shaft.

Input: symbolA, symbolB, strokes

Output: List of arrow candidates arrows

shaftCandidates = DetectShaftCandidates(symbolA, symbolB, strokes);
RemoveShaftsInConflict (shaft Candidates);

foreach shaft in shaftCandidates do

/* Segment strokes of the shaft to split the head in the case it
was drawn by one stroke together with the shaft. We keep only a
minimal number of strokes coming from the first given symbol to a
vicinity of the second given symbol. */
[shaftA, residualA] = Segment(shaft, symbolA, symbolB);

[shaftB, residualB] = Segment (shaft, symbolB, symbolA);

endpointA = shaftA.lastPoint;

endpointB = shaftB.firstPoint;

queryStrksA = StrokesInVicinity (endpointA, strokes \ shaftA.strokes);
queryStrksB = StrokesInVicinity (endpointB, strokes \ shaftB.strokes);

/* Classify the query strokes into two classes. Keep only stroke
classified as arrow’s head. Function returns a sum of potentials
of these strokes given by the classifier as well. x/
[headA, potential A] = Classify (queryStrksA U residualA, shaftA, endpointA);
[headB, potential B] = Classify (queryStrksB U residualB, shaftB, endpointB);

if headA == null && headB == null then continue;

if potentialA > potentialB then arrows.Add(new Arrow(shaft, headA));

else arrows.Add(new Arrow(shaft, headB));

end

Algorithm 1: Algorithm searching for arrows connecting two given symbols.

Reference Stroke and Reference Point

It is necessary to define a reference stroke. Position of all query strokes will be evaluated
relatively to it. Naturally, it seems that the arrow shaft should be the reference stroke.
However, it is better to use just a sub-stroke of the shaft for this purpose. The reason
is that the shaft might be arbitrarily curved or refracted, the whole arrow might be
arbitrarily rotated, and we want to normalize the input in such a way that the reference
stroke has always more or less the same appearance and the query strokes have always
more or less the same relative position. Therefore, we created a sub-stroke beginning
at the end-point of the shaft with the shape of a line segment. It is done iteratively by
adding points to the newly created stroke until the value of a criterion, which expresses
how similar the stroke is to a line, is greater than a threshold. The criterion is a ratio
of the distance between the end-points of the stroke and the path length of the stroke
(sum of distances between neighbouring points). We set the threshold empirically to
0.95. Another condition is that the distance between end-points of the stroke must be
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3.6. Symbol Recognition

Input: symbolA, symbolB, strokes

Output: List of shaft candidates shafts

openShafts = stack of unfinished shafts;

foreach stroke in strokes do

if stroke is not in a vicinity of symbolA then continue;

shaft = new Shaft(stroke); // create a shaft candidate of size 1
if Distance(symbolA, stroke.firstPoint) < Distance(symbolA, stroke.lastPoint)
then

shaft.firstPoint = stroke.firstPoint;
shaft.lastPoint = stroke.lastPoint;
else
shaft.firstPoint = stroke.lastPoint;
shaft.lastPoint = stroke.firstPoint;
end
openShafts.Push(shaft);
end
while openShafts is not empty do
shaft = openShafts.Pop();
if shaft.lastStroke is in a vicinity of symbolB then shafts.Add(shaft);
else if shaft.size <= mazSize then // maxSize = 1 for the FA domain
foreach stroke in strokes do
if shaft.Contains(stroke) then continue;
if Distance(stroke.firstPoint, shaft.lastPoint) < distThresh then
newShaft = clone of shaft;
newShaft.Append(stroke);
newShaft.lastPoint = stroke.lastPoint;
openShafts. Push(newShaft);
Ise if Distance(stroke.lastPoint, shaft.lastPoint) < distThresh then
newShaft = clone of shaft;
newShaft.Append(stroke);
newShaft.lastPoint = stroke.firstPoint;
openShafts.Push(newShaft);
end

o]

end
end

end

Algorithm 2: Algorithm searching for arrow shaft candidates (sequences of strokes)
connecting two given symbols — DetectShaftCandidates.
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3. Diagram Recognition

bigger than a threshold derived empirically from the average length of strokes, because
the possible presence of so called hooks at ends of strokes would cause a small value
of the criterion for short strokes. Figure 3.11 illustrates how the reference stroke is
determined as a sub-stroke of the shaft. Then we rotate the reference stroke and all
query strokes by such an angle that the vector given by the end-points of the reference
stroke will be pointing in the direction of the z-axis. In another words, it will ensure
that the true arrow heads should point from the left to the right. We have to define
a reference point for the purposes of our method evaluating the relative position of
strokes described further in this section. Obviously, it is the end-point of the shaft.

Because we still do not know the orientation of the arrow, we have to consider both
options: the arrow is heading to the first symbol or the second symbol. Therefore, we
define two reference points, end-points of the shaft. A reference (sub)stroke is associated
to each of these two points then. Figure 3.11 shows the whole process of the reference
stroke extraction and rotation.

Stroke Splitting

Stroke splitting (often referenced as segmentation) is very active field of research, be-
cause it is the frequently used preprocessing step. Therefore, there exist various papers
dealing with this task. The segmentation is performed by defining a set of splitting
points. The substantial information is the curvature and the speed defined at each
point, and geometric properties of stroke segments. The common approach is to find
tentative splitting points with high curvature and low speed. The best subset of these
points is selected according to the error function fitting points of each segment into se-
lected primitives. The most common primitives are line segments and arcs [El Meseery
et al., 2009; Wolin et al., 2009]. It is also possible to use machine learning to train
a classifier detecting the splitting points [Feng and Viard-Gaudin, 2008; Herold and
Stahovich, 2011].

The presented algorithms are sophisticated and allow to find segments fitting prede-
fined primitives. However, using any of these methods seems to be an overkill for our
task. We neither require splitting a stroke at any precisely defined point nor creating
segments with particular geometrical properties (line segments or arcs). All we need
is splitting the arrow head from its body. It is not important if both, the body and
the head, will be further split into several segments. We suggest to use a much simpler
algorithm for stroke segmentation. Its description follows.

We compute a value AA, which we call “accumulated angle”, associated to each point
of the stroke S = {p1,p2,...,pn} according to the following equation:

AA; = mean(Rank3{A(7,1),...,A(i,min(i — 1,n — i, R))}), (3.4)

where 7 is the index of the point in the sequence, Rank3 is an operator choosing up to
the three smallest values of a given set, R is the maximal radius, and A is a function
computing an angle between two vectors defined by the index of the given reference
point and its two neighbouring points chosen by the size of the radius. The function A
is defined as follows:

DiPi—r * PiPi+r
|pipi—r] - |PiDi4r ||

(3.5)

A(i,r) = arccos

Let us formally define the operator Rank3 in the following way. Let X = {X1,..., X, }

46



3.6. Symbol Recognition

(b) (©
V
N 0
& a
’ &_/
(d) ()

Figure 3.11. Example showing a diagram and the way of choosing the reference point, the
reference stroke, and the rotation. Individual pictures illustrate the following: (a) whole
diagram with a highlighted (red) arrow to be detected, (b) detected arrow shaft is blue and
right end-point is considered to be the reference point, second point is green, the angle o used
to rotate query strokes is marked, (c) rotation is done, the reference point is red as well as
strokes of the real arrow’s head, (d) analogously to (b) with the other end-point considered,
(e) analogously to (c) with exception that there is no real head, because the arrow orientation

is wrong.
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3. Diagram Recognition

be a set of elements, such that n > 3. Now we define the following ordering permutation:

o:{l,...,n} = {1,...,n} (3.6a)
Xo) £ Xo2) <+ < X (3.6b)

Then we can define Rank3 as follows:
RankS{X} = {XO'(I) ) XO'(2)’ Xcr(?))}' (37)

Let us note that AA; is computed according to Equation (3.4) only for ¢ € {2,...,n — 1}
and AA; = AA, = 0. We define the initial set of splitting points by taking
points where AA reaches a local minima and the value is smaller than mCoeff -
mean{AA;,...,AA,}. If that there are two splitting points too close to each other
(dist(ps, pj) < distThresh), we remove the one with the smaller AA value. We set
mCoeff = 0.5 and distThresh = 200 empirically. After this removal, the segmentation
is finished.

We tested the described algorithm on arrows from the validation datasets of FC_B
and FA databases, which were drawn by one stroke. It turned out that the algorithm
split the head from the body in 100% of cases. Let us emphasize that parameters
mCoeff and distThresh are tunable. It makes it easy to adjust for demands of a given
task.

Evaluation of Relative Position of Strokes

Let assume we are given a reference stroke (represented by its reference point R) and
a query stroke S = {p1,p2,...,pn}. To describe the relative position of S with re-
spect to R, the relative position of each point p; is expressed in polar coordinates

—

as angle a; = Rp;Z 7 and distance d; = ||Rp;||, see Figure 3.12. For each pair
of a reference and a query stroke, this induces a sample formed of feature vector
{lag, di], [ov2, da], . . ., [an, dy]} and a label indicating the class of the query stroke. We

use Long Short Term Memory (LSTM) Recurrent Neural Network (RNN) as a classifier,
because it reaches the best results in many related applications [Graves and Schmid-
huber, 2005; Otte et al., 2012; Indermiihle et al., 2012]. It is beneficial to normalize
inputs when dealing with neural networks. We set

gy = Mk (3.8)

Ok

where vy is an input value, v} is the normalized value, mj and o are the mean and
the standard deviation of all values of the same features from the training database,
respectively. This is applied to normalize the distance. The proposed features express
relative position of the query stroke with respect to the reference point as well as the
shape of the query stroke. It is possible to reconstruct the trajectory of the query stroke
from the sequence of features.

Experiments with the Arrow Detector

To train the proposed arrow head classifier, we extracted a reference point and stroke
for each annotated arrow as described in this section earlier. The only difference is
that the shaft is known. We created a set of query strokes and rotated these strokes
according to the reference stroke. We extracted features with respect to the reference
point for each query stroke and assigned a label to it based on the annotation from
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3.7. Structural Analysis

Figure 3.12. A pair of reference and query strokes and extracted sequences of features (angles
and distances). The reference point R is marked red. Both, the reference and the query
strokes, are already rotated. The query stroke is the sequence of points {p1,p2,...,0n}.

the database. Positive samples are those samples assigned by label head, negative are
those assigned by label not_head. In total, we extracted 1731/1407, 3686/3491, and
1480/1242, positive/negative samples from training datasets of FC_A, FC_B, and FA,
respectively.

We used LSTM RNN implemented in the library JANNLab [Otte et al., 2013]. We
also experimented with the Bidirectional LSTM and tested different amounts of nodes
in the hidden layer to get the best performance [Bresler et al., 2015a]. The optimal
compromise between the accuracy and the speed was achieved by LSTM with 8 nodes
in the hidden layer. The network was trained in 200 epochs with learning rate 0.001
and momentum 0.9. One classification takes 0.44 ms in average. The achieved precision
is 98.1%, 99.8 %, and 99.6 % for FC_A, FC_B, and FA, respectively.

As the second experiment, we took all annotated uniform symbols and tried to find
arrows with the proposed arrow detector to test its precision. The detected arrows were
compared with the annotated arrows. Notice that the text strokes were removed by our
text/non-text separator introduced in Section 3.4 and all pairs of symbols were consid-
ered. Conflicting arrow shafts were removed immediately. However, adding arrow heads
may cause another conflicts. The result of the arrow detector is thus a list of arrow
candidates, the remaining conflicts are intended to be solved by the structural analy-
sis described later in Section 3.7. We achieved the recall/precision of 92.4 %/63.1 %,
94.7%/75.0%, and 95.1%/44.6 % for FC_A, FC_B, and FA, respectively. Our arrow
detector performs 88 stroke classifications in average per diagram when searching for
arrow heads while there are 10 arrows in average per diagram.

3.7. Structural Analysis

The input to the structural analysis comprises of symbol candidates assigned by score.
Candidates for arrows also identify which two symbols they connect. The task is to
detect a subset of the candidates forming a valid diagram. The score of the individual
candidates itself does not suffice (even a bad candidate might have a high score). Re-
lations between the candidates have to be examined. Each relation is assigned its own
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score. The score of the entire diagram is calculated as the sum of scores of all selected
symbol candidates and relations among them. The highest score solution is sought in
an optimization task. Having the candidates selected, the diagram structure can be
easily reconstructed, because all the necessary information is carried by arrows.

We define three types of relations between symbol candidates: 1) Conflict — two
candidates share one or more strokes or two arrows are connected to the same connection
points of uniform symbols (this forbids parallel arrows in flowcharts); 2) Overlap — two
uniform symbol candidates have overlapping bounding boxes; 3) Endpoint — each arrow
requires existence of both uniform symbols it connects. All possible pairs of candidates
are examined to find first two relations. Potential conflicts are detected first, and if
none occurs, relations of type 2) are evaluated. Relations of type 3) are explicitly given
by the definition of arrows. Relations of type 1) get the score s, = —oo. Each relation
of type 2) gets the score

So = —Sanp/min(S4, Sp), (3.9)

where A and B are bounding boxes of the first and the second symbol. S4, Sp and
Sanp are areas of A, B and of their intersection. Finally, the relations of type 3) get
the score s, = —o0. The first two relations are effective if both symbol candidates are
selected in the solution, the third one is effective when the arrow is selected and one
of the connected uniform symbols is not. Negative scores of the relations express that
they are unwanted.

3.7.1. Max-Sum Formulation

The pairwise max-sum labeling problem?® [Werner, 2007] (a.k.a. computing the MAP
configuration of a Markov random field, discrete energy minimization, or valued con-
straint satisfaction) is defined as maximizing the sum of unary and binary cost functions
(potentials of discrete variables)

max [Zgu(kzu)+ 3 Guolku k)] (3.10)
ueV

keKV
€ {u,v}eFE

where an undirected graph G = (V,E), a finite set of labels K, and costs
9u(kw), guv(ku, ky) € R U {—o00} are given. We maximize over assignments of labels
from K to nodes of G. Each node u and edge {u, v} is then evaluated by the cost given
by gu and gy,

In our model, each symbol candidate defines a single node of the graph G. The edge
is defined for each pair of interacting nodes (i.e., two symbol candidates in a relation).
Two labels are used, K = {0, 1}, where 0 means the candidate is not selected as a part
of the solution while 1 means it is. Values g, (ky), guv(ku, kv) are set to express scores of
symbol candidates and relations, and to model natural restrictions as follows: g, (0) =0
and g, (1) = s for each symbol candidate v with the score s. Further, for all pairs of
objects {u,v} € E

1. guv(1,1) = s, = —oo if uw and v are in conflict.
2. guv(0,1) = s¢ = —oo if u is a symbol candidate and v is an arrow connected to that
symbol.

3We call it this way because it is our convention at CMP where we build on the research of Prof.
Michail I. Schlesinger from National Technical University of Ukraine.
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3. guw(l,1) = s, if u, v are two non-arrow symbol candidates with overlapping boxes
(so is given by (3.9)).

4. gup(k,?) = 0 otherwise.

A good commensurability of various scores in the model is confirmed by experiments.
We also tested a set up of the unary and binary potentials based on logarithms of scores,
which did not lead to better results.

3.7.2. Example

We illustrate the structural analysis by a simple example. Figure 3.13a contains an
input flowchart with labelled strokes. We assume that the following symbol candidates
were detected in this diagram:

1: process {t1} with score s;

connection {t4} with score s,
connection {tg} with score s3
terminator {tg} with score s4

arrow {to,t3} [1 — 2] with score s5
arrow {ts,ts,t7} [1 — 3] with score sg
7: arrow {ts,ts,t7} [1 — 4] with score s7

The strokes forming each symbol candidate are in curly brackets. For arrow candidates,
the values in the square brackets say which symbols are connected by the arrow. The
resulting max-sum model is depicted in Figure 3.13b.

3.7.3. Solving the Optimization Task

The max-sum problem is NP-hard, although some of its special forms, such as the
submodular max-sum problem, can be solved in polynomial time [Werner, 2007]. Un-
fortunately, this is not our case. However, the size of generated graphs is not so big
(72/50/84 nodes and 673/305/721 edges in average for FC_A/FC_B/FA). Therefore,
general branch and bound solvers are able to solve them quickly (see Section 4.1). We
tested the max-sum solver Toulbar2®. Its minor disadvantage is that it supports only
non-negative integer costs and thus it is necessary to transform the score values. An-
other option is to formulate the max-sum problem as an integer linear program (ILP)
and solve it using a general ILP solver. We tested IBM ILOG CPLEX library®. The
conversion is based on the linear programming relaxation of the problem [Werner, 2007]
and the ILP formulation is as follows:

mac |37 3w (R)gu(k) 43" D st ki)gun (k) (3.11)

keKueV kleK{uv}eE
s.t. Z pu(k) =1, Yu eV,
keK
>t (k, ) = (k) V{u,v} € E A Vk € K,
leK
P (K, €) = pyu (K, 0), V{u,v} € E A Vk,l € K,
p = 0.

“http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/ToolBarIntro
Shttp://www.ibm.com/software/integration/optimization/cplex-optimizer/
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3. Diagram Recognition

(a)

1: process {t;} 2: terminator {t;} 3: connection {tg} 4: terminator {tg}

5: arrow {t,, t3} [1 — 2] 6: arrow {ts, ts, t;} [1 — 3] 5: arrow {ts, tg, t;} [1 — 4]
(b)
Figure 3.13. Input flowchart (a) consisting of 8 strokes t1,...,ts forming 3 uniform symbols

and 2 arrows. Connection points are marked in blue and red for uniform symbols and arrows,
respectively. There are 4 uniform symbol candidates since stroke tg is classified as connection
(with score s3) and terminator (with score s4). The structural analysis is cast as a max-sum
problem (b) where rectangular nodes represent uniform symbol candidates while elliptic nodes
represent arrow candidates (formally, the nodes are of the same kind). Both possibilities for
labelling a particular node are represented inside the node (white circle — label 1, black circle
—label 0). Each label k in a node u is assigned by value g, (k). An edge connecting a label k
in a node uw and a label £ in a node v is assigned by value g, (k, £). Edges with zero costs are
not shown.
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3.8. Text Recognition

If components of p are restricted to integral values only (i.e., they are 0 or 1), we
obtain the desired ILP whose optimal value equals the optimal value of (3.10). The
label k, € K chosen in a node u € V' is the only label satisfying p, (k) = 1.

We made experiments with both formulations and compared the performance of
Toulbar2 and CPLEX. Both solvers find the exact solution and the recognition result
was the same. Toulbar2 was approximately 60 % faster on average. It appeared slower
for the smallest diagrams; this was caused by the data exchange trough files, which was
the only possibility supported by the binary distribution of Toulbar2. Some minimal
time was thus needed for the solver initialization. This minor technical limitation may
be resolved in the future. Details on runtimes are provided in Section 4.1.

3.8. Text Recognition

The text recognition is the last step of the diagram recognition pipeline. It is performed
when the diagram structure is already known. Strokes removed during the text/non-
text separation step together with strokes which were not identified as a symbol are
processed. The diagram structure provides enough information to group the unused
strokes into text blocks. Two types of text blocks are distinguished — those labeling
a uniform symbol and those labeling an arrow. The grouping is accomplished in two
stages accordingly. Text blocks inside symbols are found first, text blocks labeling
arrows are found subsequently.

Each text block labeling a uniform symbol U is determined by the area of the sym-
bol. It includes all unused strokes whose bounding box centroid is located inside the
bounding box of U.

Text blocks labeling arrows can be found easily by a grouping based on the spatio-
temporal proximity. Only strokes unused in the first stage are left. Text blocks are
determined by split points found in the sequence of the remaining strokes. A split
point is defined as a point in the stroke sequence where two consecutive strokes are not
linked. The measure is given as a weighted sum of six following features:

1. Distance between centroids of both bounding boxes.

2. Distance between the right edge of the first bounding box and the left edge of the
second bounding box.

3. Distance between top edges of both bounding boxes.
4. Distance between bottom edges of both bounding boxes.

5. Distance between the last point of the first stroke and the first point of the second
stroke.

6. Difference in length of diagonals of both bounding boxes.

All the features are normalized by the general distance threshold distThresh. There
must be set a threshold to decide which points are the split points. We found suitable
values of the weights and the threshold empirically. The text blocks are salient objects
in remaining unused strokes. It is illustrated by an example in Figure 3.14 where the
remaining text strokes labeling arrows are shown in red. Therefore, it is a relatively
easy task to find suitable values. The text blocks are attached to the closest arrows
afterwards.
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Figure 3.14. (a) Input flowchart and (b) text strokes. Text blocks are salient objects. Blocks
labeling arrows are highlighted in red.

In the end, all detected text blocks are recognized. In our demo application, we
use the MS Text Recognizer, which is a tool of the .NET framework. However, this
recognition is out of the scope of this thesis. The FC_A database does not even provide
meaning of the text and thus we did not measure the accuracy of the text recognizer. We
considered text blocks as another symbols and checked their correct segmentation only
making the text blocks segmentation the goal. The MS Text Recognizer is designed
for plain English text and exploits a vocabulary. Therefore, it fails inevitably when
recognizing text blocks containing math expressions in the case of flowcharts or state
labels containing subscripts in the case of finite automata.

3.9. Adaptation of the Recognizer for New Domains

The proposed diagram recognizer was designed for flowcharts. We decided later to
adapt it for finite automata. Here we will describe the necessary effort this adaptation
required. The reader can get an idea what it requires to adapt it for additional do-
mains. As we stated earlier, the adaptation mainly requires to retrain all the classifiers.
However, this process is highly automated since the descriptors and all methods remain
the same. Although the model used in the structural analysis remain the same, it is
advantageous to exploit the knowledge of the domain to increase the accuracy. Most
of the differences between the domains were mentioned earlier. This section serves as
a recapitulation. We will describe it in more detail and provide illustrative examples.
We will point out differences in the domains, which need our attention one by one.

e The ration between the number of text and non-text strokes is different in both
domains. The text in finite automata is very limited. It is used for very short labels
only. Therefore, a different bias needs to be used in the text/non-text separation
step. However, the classifier used for the separation must be retrained anyway and
the estimation of the bias is done empirically based on the data. The example showing
the different character of text in both domains is shown in Figure 3.15.

e Symbols consist of different number of strokes. Flowcharts contain more complex
symbols while finite automata contain only states, final states, and arrows, which
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(b)

Figure 3.15. Illustrative example showing the different character of text in a) flowchart and
b) finite automata domain. The ratio of text/non-text strokes is usually much higher in the
case of flowcharts.

are usually formed from one or two strokes only. It leads to a smaller number of
combinations and recognition might be faster. On the other hand, strokes are always
linked together by their endpoints and arrows are connected to symbols at certain
connection points only. It is not the case for finite automata. Therefore, each pair of
points must be considered when we measure distance between strokes or between an
arrow and a symbol. These differences are illustrated in Figure 3.16.

%jj () O 6

Figure 3.16. Illustrative examples showing differences in the construction of symbols and in
connection of arrows with symbols. a) shows a flowchart where arrows can be (intermittent)
polylines. However, the strokes are always linked by their endpoints. Moreover, arrows are
expected to be connected to symbols at one of its connection points (red) only. b) shows a
finite automaton where arrows are often curved and thus consist of less strokes. However, it
can be connected to a symbol at any point on its surface. Additionally, strokes of one symbol
may not be linked by their endpoints (e.g. the final state).

e Finite automata domain has a smaller number of symbol classes and thus the clas-
sification should be theoretically more precise. There are two particular difficulties.
The final state symbol consist of two concentric circles and the state symbol is rep-
resented by one circle only. Therefore, the inner or outer circle of a final state is
often classified as a state. Because it is easier to draw the first circle precisely, the
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score of state symbols is usually higher than the score of final states, because they
are not drawn so precisely. Although this misclassification can be often solved by
the structural analysis, it is advantageous to artificially increase the score of the final
states (e.g. the square root of the score which is from interval [0,1]). The second
difficulty is that there are initial arrows entering the first state. These arrows cannot
be detected by our arrow detector because they do not link two symbols. Therefore,
they must be detected using an appearance based symbol classifier. The problem
is that they look exactly the same as other arrows, which are among the negative
examples. Our solution is to remove other arrows from the negative examples. It can
happen then that an arrow will be classified as an initial arrow and will have higher
score. We use here the same trick as we used for the final states. We artificially
increased the score of arrows. The justification for this unnatural intervention is the
following. In both cases, only one symbol can be misclassified as the other one and it
cannot happen vice versa. An initial arrow cannot be classified as an arrow because
the other symbol to link it is missing. Similarly, the state cannot be classified as
a final state because the second circle is missing. Both cases are illustrated by an
example in Figure 3.16



4. Evaluation

A complete description of the proposed diagram recognizer for arrow-connected dia-
grams from domains of flowcharts and finite automata has been provided in previous
chapter of this thesis. Individual steps of the pipeline dealing with various recognition
subtasks have been presented along with the intermediate results. Here we report the
performance evaluation of the entire diagram recognizer.

We also encourage the reader to experiment with our demo application available
at http://cmp.felk.cvut.cz/~breslmar/diagram_recognizer/. I allows to draw a
diagram directly on the canvas or to import a previously captured data in the InkML
format (e.g., diagrams form the benchmark databases). The application performs the
recognition and provides a visualization of the beautified diagram using Graphviz. The
formal representation of the recognized diagram can be also saved in the DOT language.

This chapter is divided into two sections: Section 4.1 presents the achieved results
on the FC_A, FC_B, and FA benchmark databases. It shows the precision and the time
complexity of the proposed recognition system. It provides comparison with alternative
state-of-the-art approaches. Section 4.2 brings extensive analysis of the system. It
analyses failure cases and explains the impact of individual steps of the pipeline to the
overall precision. It helps to find and understand the limits and weak points of the
proposed diagram recognizer.
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4. FEvaluation

4.1. Experiments

We present an overall performance evaluation of the proposed diagram recognition
system (abbreviated 7). We made a comparison with two state-of-the-art methods:
the grammar based method (abbreviated «) by Carton et al. [Carton et al., 2013] and
the purely statistical method (abbreviated ) by Delaye [Delaye, 2014], and compared
our performance to their published results. The former approach was evaluated on the
FC_A database only, while the second one is more recent and was evaluated on the
FA database as well. FC_B is new (introduced in [Bresler et al., 2016]) and results
achieved on this database are thus reported without a comparison to others. However,
it shows that the higher quality data match well to capabilities of current devices. A
significantly higher accuracy is achieved.

We use two basic metrics to measure the recognition precision. The first metric (SL)
assesses the correct stroke labelling. We assign each stroke a label of the symbol class it
is classified to, and this assignment is checked against the ground truth in the database.
The second metric (SR1) assesses the correct symbol segmentation and classification.
It is more informative and provides a better insight into the recognition result quality.

The most direct way to decide if a symbol was correctly recognized is to check whether
it comprises exactly the same strokes and has the same label as the annotation. We
call this criterion the strict one. The metrics SL and SR1 are common and were used
by authors of both systems a and 8 and thus they allow fair comparison of individual
systems. However, the exact stroke matching is not necessarily required for the correct
diagram structure recognition. Users sometimes draw symbols by multiple strokes when
correcting or beautifying symbols. Some strokes are redundant in some way. See
Figure 3.6 for an example. It might happen that although the symbol is recognized
correctly, it is not formed of exactly the same strokes as its annotated pattern in the
database. For more insight, we define an additional more relaxed criterion (SR2) based
on matching each annotated symbol with one of the recognized symbols. Two symbols
match if they are of the same class and their bounding boxes overlap by 80 %. This
value was estimated empirically. It must be high enough to forbid matching of different
symbols. At the same time, it must be low enough to allow matching of symbols with
shrunk bounding boxes due to missing redundant strokes. In the case of arrows, we
also require that they connect the same symbols and have the same direction.

The error rate is expressed as the number of unmatched annotated symbols. This
criterion is more meaningful. It was used to assemble the histogram in Figure 4.1
showing how many diagrams were recognized with a particular number of errors. The
best results were achieved for the FA database, where nearly 80 % of diagrams were
recognized correctly. The worst results were achieved for the FC_A database, probably
because of its low quality. Inputs are noisy and there is no temporal information, thus
it has not been possible to synthesize additional samples to train our classifiers. Even
so, we have still achieved state-of-the-art precision, see details in Tables 4.1, 4.2 and 4.3.
Differences in symbol segmentation and recognition results given by the two criteria are
shown in Table 4.4.

The system has been implemented in C#, and tests were performed on a standard
tablet PC Lenovo X230 (Intel Core i5 2.6 GHz, 8 GB RAM) with 64-bit Windows 7. It
is a typical device, which can utilize our recognizer. Using this computer for the ex-
periments shows that the recognizer allows real time performance on average machines.
In fact, the target on tablet PCs and tablets with similar The average runtime needed
for recognition was 0.78s, 0.89s, and 0.69s for diagrams from FC_A, FC_B, and FA,
respectively. This means that our system is faster than the grammar based system pro-
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Figure 4.1. Counts of diagrams by the number of missing symbols in the result.

Class SL [%] SR1 [%

@ 1@ [0 | @] B 0

Arrow 83.8 - 87.5 | 70.2 - 76.6
Connection | 80.3 - 94.1 | 82.4 - 95.1
Data 84.3 - 95.3 | 80.5 - 90.5
Decision 90.9 - 88.2 | 80.6 - 72.9
Process 90.4 - 96.3 | 85.2 - 88.6
Terminator | 69.8 - 90.7 | 72.4 - 89.0
Text 97.2 — 99.2 | 74.1 - 89.7
Total 92.4 | 93.2 | 96.3 | 75.0 | 75.5 | 84.2

Table 4.1. Recognition results for FC_A database. Comparison of the proposed recognizer ()
to the grammar based method («) and to the purely statistical method (8). We list correct
stroke labelling (SL) and symbol segmentation and recognition measured with the strict (SR1)
method.

posed by Carton et al., which has an average recognition time 1.94s and slower than
the purely statistical approach by Delaye and Lee with an average recognition time
80 and 52ms for FC_A and FA, respectively. Table 4.5 lists the minimal, maximal,
average, and median time needed to solve the max-sum problem and to perform the
entire recognition. The values confirm that the optimization is solved relatively fast as
it consumes only a small proportion of the whole processing time. The speed of the
solver Toulbar2 is compared with CPLEX in Table 4.6.

4.2. System Analysis

Here we report on additional experiments performed to analyse the impact of the in-
dividual steps of the pipeline on the overall precision. We investigated which steps of
the recognition pipeline are responsible for misrecognition of symbols from individual
classes. Some of the recognition failures are illustrated by examples and commented.
We also tested the system having the advanced pipeline steps disabled one by one.
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Class SL (%] | SR1 [%]

Arrow 93.8 93.2
Connection 88.4 88.4
Data 96.1 93.8

Decision 90.3 92.0
Process 98.4 97.6

Terminator 99.7 98.9
Text 99.6 97.1
Total 98.4 95.3

Table 4.2. Recognition results for FC_B database. We list the correct stroke labelling (SL)
and symbol segmentation and recognition measured with strict (SR1) method.

e SL %] SRI [%]
B) | B | O

Arrow - 98.0 - 97.5
Initial arrow — 98.6 - 97.3
Final state — 99.2 - 99.2
State - 98.3 - 98.2
Label - 99.7 - 99.2
Total 98.4 | 99.0 | 97.1 | 98.5

Table 4.3. Recognition results for FA database. We compared the proposed system () with
the purely statistical method by Delaye (). We list the correct stroke labelling (SL) and
symbol segmentation and recognition measured with strict (SR1) method.

4.2.1. Failure analysis

The system fails to recognize some diagrams even when the best approaches are used
in each step of the pipeline. There are four possible reasons why a symbol may not
be recognized properly: a) some of its strokes were misclassified as text, b) the symbol
was not properly segmented, c) the symbol was rejected by the classifier, d) the struc-
tural analyser did not choose the symbol. The special case is the arrow, which is not
segmented as a uniform symbol. We say that wrong segmentation is the reason for its
misrecognition if the symbols it connects were not segmented correctly. Another excep-
tion is the text block, misrecognition of which is always caused by the misrecognition of
a symbol it labels and thus it is not a part of the analysis. The rate of each reason for
symbol misrecognition with respect to the symbol class is shown in Table 4.7. The av-
erage rates are shown for individual datasets in Figure 4.2. It turned out that the most
frequent reason for failure was the symbol misclassification in the case of flowcharts and
the wrong selection of symbol candidates by the structural analyser in the case of finite
automata. Diagrams with a high number of misclassified symbols showing different
kinds of errors in individual databases are analysed in Figures 4.3, 4.4, 4.5.

4.2.2. Advanced techniques analysis

We replaced the most advanced techniques for text/non-text separation, symbol seg-
mentation, and symbol classification by our previous or naive approaches. The results
are summarized in Table 4.8.

Our recognition system is robust enough to handle some remaining text in a dia-
gram. On the other hand, it can barely recover when some shape strokes are removed.
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SR1 [%] / SR2 [%
Class FCA [ F]C/B - FA
Arrow 76.6/78.3 | 93.2/943 | 97.5/98.1
Connection | 95.1/96.0 | 88.4/89.3 -
Data 90.5/91.4 | 93.8/94.7 -
Decision 72.9/76.1 | 92.0/95.1 -
Process 88.6/89.9 97.6/98.4 -
Terminator | 89.0/89.7 | 98.9/99.6 -
Text /Label | 89.5/91.6 | 97.1/98.7 | 99.2/99.4
Initial arrow - - 97.3/97.3
Final state - - 98.2/98.6
State - - 99.2/99.2
Total 84.2/85.4 | 95.3/96.6 | 98.5/98.8

Table 4.4. Comparison of the symbol segmentation and recognition rates using strict (SR1)

and structure based (SR2) method.

Running time [s]
Dtb. — - -
minimal maximal average median
FC.A | 0.11/0.19 0.66/4.61 0.14/0.78 0.12/0.71
FCB | 0.11/046 0.22/3.56 0.13/0.89 0.12/0.83
FA 0.12/0.27 0.37/1.43 0.14/0.69 0.13/0.62
Table 4.5. Optimization/total running time.
Database — Rur'lnlng time [ms] :
minimal maximal average median
FC.A 114/2  655/917 136/230 123 /218
FCB 114/3 216/598 126/129 122/48
FA 116 /19 370/720 137/235 129/229

Table 4.6. Running time consumed to solve the optimization by Toulbar2/CPLEX.

However, if there is a lot of remaining text, the system needs significantly more time
for recognition and can eventually get confused. To demonstrate how the system is
susceptible to the result of text/non-text separation, we evaluated it with three dif-
ferent text/non-text separation settings: a) using unbiased text / non-text classifier, b)
using the perfect text removal based on the annotation, c¢) performing no text/non-text
separation.

We used strokes grouping instead of the clustering to perform over-segmentation.
The iterative strokes grouping is a naive method achieving high recall values at the cost
of lower precision. SLAC is a more sophisticated method with a significantly increased
precision and only slightly worse recall, which guarantees a speed-up of the system.

We evaluated the system with uniform symbols classifiers trained without artificial
samples. These classifiers achieve a lower precision reflected in the lower accuracy
of the whole system. Moreover, it has reduced the ability to reject clusters, which
represent no symbols and thus the recognition time slightly increases. It is obvious that
the importance of classifiers trained with artificial samples increases in the flowchart
domain with a higher number of symbol classes. Unfortunately, the FC_A database does
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not contain the time information, which is necessary for the synthesis of the artificial
samples, thus we could not do this analysis on the database.

4.2.3. Analysis findings

Based on the performed analysis, we come to the following conclusions:

Text /non-text separation is very precise. It achieved 100 % precision in the shapes
class on the FA database and thus it was not responsible for a single error there. Even
in the case of the flowchart domain, it was responsible for symbol misrecognition only
in a few cases. Further analysis showed the importance of the text/non-text separation
step. Without text being separated, the time complexity increased and the precision
dropped significantly. On the other hand, it turned out that the results achieved with
unbiased classifiers or ground truth based separation are comparable to the baseline.
Naturally, the use of the ground truth led to the faster recognition, because all text
strokes were removed.

Symbol segmentation is the main culprit in symbol misrecognition for both
flowchart databases. This is caused by the fact that symbols consist of more strokes
and users sometimes retrace them. Moreover, when a symbol is not segmented cor-
rectly, it inherently causes misrecognition of arrows connected to it. Further analysis
showed that the naive strokes grouping can increase the precision. However, it can not
compensate the increase of processing time.

Symbol classification is the second most responsible step for symbol misrecog-
nition. Its failure means that the classifier rejected a symbol candidate. The use of
artificial samples to train the classifiers is more important in the case of the flowchart
domain, due to the higher number of symbol classes and the fact that some of them
might be of a very similar appearance.

Structural analysis is the last step of the recognition pipeline, in which the symbols
are selected from the symbol candidates. An error occurs in this step when the classifier
does not reject a symbol, but gives more alternatives for classification and the structural
analyser picks the wrong one. It typically happens in the case of two similarly looking
symbols like state / final state or connection / terminator.

Rates of reasons for symbol misrecognition in individual domains

07 T T T T

06k B rC A 1
' I rC B

05F | I FA

0.4
0.3
0.2

0.1

Relative rate of the reasons

0

Text separation ~ Segmentation Classification  Structural analysis
Reasons for symbol misrecognition

Figure 4.2. Average rates of causes of symbol misrecognition in individual domains.
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Figure 4.3. Examples of misrecognized diagrams from the FC_A database. The input diagrams
are shown in the left column, recognition results are in the right column. Symbol colouring is
explained in the legends, which are parts of the images. Each recognized symbol is surrounded

by its bounding box.
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explained in the legends, which are parts of the images. Each recognized symbol is surrounded
by its bounding box.
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5. Adaptive Tool for Object Segmentation

In this chapter, we investigate possibilities for structuring free-form sketches to facil-
itate fast and easy selection and rearrangement. Doing this, we aim for a domain-
independent approach that works for all forms of free-form sketching. As shown in
previous chapters, a lot of research in the field of symbol segmentation within well
structured domains [Alvaro et al., 2014; Bresler et al., 2013; Feng et al., 2009; Ouyang
and Davis, 2011; Stahovich et al., 2014] has exploited the knowledge of the domain
to perform segmentation by classification. However, in the case of free-form sketching,
such an approach cannot be used. Therefore, we use a data mining method called
cluster analysis. This divides elements (in our case, strokes) into disjoint sets, where
strokes within a cluster share similar characteristics. As we mentioned in Section 3.5,
Delaye and Lee [2015] presented a machine learning approach based on Single-Linkage
Agglomerative Clustering (SLAC) that successfully segmented sketches in several do-
mains.

We contribute to the field of free-form sketching by introducing a novel smart selection
tool called cLuster [Perteneder et al., 2015], which builds on the clustering approach
by Delaye and Lee [2015]. Below, we first introduce the problem of free-form sketching
and survey existing smart tools in Section 5.1. Section 5.2 brings a study we conducted
to reveal different understanding of sketches. Our tool is described in Section 5.3.
Evaluation and discussion are provided in Sections 5.4 and 5.7, respectively.
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5. Adaptive Tool for Object Segmentation

Figure 5.1. Users must often make large movements when working on large interactive sur-
faces. This quickly becomes cumbersome, especially when tools are not user-friendly and
ergonomically designed.

5.1. Introduction

In the case of free-form sketching, the user can draw practically anything from abstract
pictures to structured diagrams. Moreover, pictures can be combined altogether with
diagrams, text, formulas, etc. Therefore, it is extremely difficult to understand the
sketch and often impossible to formalize it. The mostly desired and expected feature
is the seamless selection and manipulation with parts of the sketch. Our research was
focused on large interactive surfaces — smart boards or digital whiteboards. Their large
size can cause strain and fatigue with extended periods of use. Their applications
should therefore be designed to mitigate these effects. Nevertheless, sketching tools
that mimic the use of traditional whiteboards [Haller et al., 2010; Mynatt et al., 1999]
are generally simplistic and lack the means to interpret sketched content. This results in
physically demanding and time-consuming selection tasks when users wish to structure
or rearrange their sketched content. To address this, many previous works have made
attempts to improve selection tools [Grossman et al., 2009; Lank and Saund, 2005;
Lindlbauer et al., 2013; Xu et al., 2012]. However, for structuring content, their solutions
still necessitate a high degree of effort from the user. Either users must make repeated
selections to rearrange content, or they must actively organize their content into layers.
In contrast to this, others have taken the approach of introducing sticky note-like objects
[Geyer et al., 2011; Guimbretiere et al., 2001; Hilliges et al., 2007] to contain a single
idea. This enables content to be structured or rearranged without the need for users to
make explicit selections, but comes with the cost of a reduced degree of flexibility and
freedom for content creation. Being able to efficiently cluster strokes into groups that
are sensible to users, in order to easily structure and rearrange content in free form
sketches is our main motivation.

Selection tasks are common in sketching tools. Using perceptual cues of Gestalt
theory, Dehmeshki and Stiirzlinger [2009, 2010] improved selection speed and results
of selection tools. Igarashi et al. [1995] also used proximity and regularity to find
structures in card stacks. Similarily, in Suggero [Lindlbauer et al., 2013], the authors
present a selection tool that is based on the Gestalt Laws. Both cLuster and Suggero
use the initial selection of a cluster to interpret the user’s intention; however, they differ
in their interaction possibilities. Furthermore, cLuster uses a more general feature set
and superimposes a concept to handle different perspectives.

The work from Shilman et al. [2002, 2004, 2003] shares some similarities with cLuster,
as it also uses a variety of spatial features. However, it primarily aims to distinguish
handwritten text/symbols from sketches, as well as interpret an overall spatial structure,
in order to convert them into type. This leads to a different way for dealing with
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ambiguity in grouping: while Shilman et al. [2002] uses context, cLuster uses an initial
grouping example provided by the user to resolve this. ScanScribe [Saund et al.,
2003; Saund and Mahoney, 2004] also includes mechanisms to form sensible groupings,
however, the underlying algorithms are fundamentally different to our approach as the
tool is pixel-based.

Smart Scribbles [Noris et al., 2012] provides the user-guided segmentation of draw-
ings. In a semi-automated workflow, users mark parts of drawings using rough scribbles.
The scribbles explicitly determine the number of segments and therefore can be seen
as very rough initial selections. In contrast, cLuster uses one precise initial selection
and determines the number of clusters automatically. Lazy Select [Xu et al., 2012]
and Sloppy Selection [Lank and Saund, 2005] are also examples of tools that interpret
the users’ intention even with an imprecise input. The authors analyse the performed
gesture as well as the structure of the existing content to increase certainty about the
users’ intention when only imprecise input is available. Handle Flags [Grossman et al.,
2009] is a localized selection technique to select single strokes or their clusters of ink
strokes that are clustered by proximity. While some of these selection tools perform
analysis for all objects in the background, the goal is usually to support the user in
creating one selection. In contrast to this, we aim to cluster all strokes and enable ways
to interact with them as objects that respond.

Flatland [Mynatt et al., 1999] provides a feature called Auto-Segmenting that com-
bines spatially close strokes for easy management of the spatial layout. It also introduces
the idea of manipulating content indirectly when other objects are moved, which we
extend in our work. Moran et al. [1997] extend the work done in Tivoli [Pedersen et al.,
1993] by including implicit recognition of regions that allow for organizing content spa-
tially. Despite these early efforts in large surface computing, improving the spatial
arrangement of objects is a complex topic. Many systems leave this task up to the user
[Guimbretiere et al., 2001; Hailpern et al., 2007; Hilliges et al., 2007] or provide only
minimal support [Geyer et al., 2011].

5.2. Background Study

To gain a better understanding of how users sketch on interactive whiteboards, what
these sketches look like, and how users would cluster strokes into objects, we conducted
a background study. We presented sketches to participants and asked them how they
would cluster them. Then we tried to find common themes amongst the participants’
clusters, resulting in a number of perspectives. These were then taken as the base for
training the weights of our clustering algorithm.

5.2.1. Methodology

We gathered more than 300 different real snapshots made on interactive whiteboards,
where ~ 70 % were produced by MIL research group at the University of Upper Austria
and ~ 30 % by an external company. The sketches were created over a period of two
years in real work scenarios by more than 15 individuals, and were the output of team
meetings, workshops, brainstorming as well as note-taking sessions during presentations.

To keep the length of the study within reasonable time constraints but neverthe-
less achieve a sufficient variety in our selected sketches, we categorized them into seven
different categories: Sentences and Paragraphs, Word Lists, Structured Words with An-
notation, Words in Visual Diagram Constructions, Diagrams/Image Sketches with La-
bels, Pure Diagrams, Pure Image Sketches. 1t is a slightly modified set of the categories
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Our Categorization Walny et al. Categorization
Sentences and Paragraphs Sentences and Paragraphs
grap Words grap
Word Lists Word Lists
Structured Words with Annotations - Words in spatial Organisations
+—
a<) Simple diagrammatic Constructs
Words in Visual Diagram Constructs a Words in Visual Constructs
g Mixed Words and Diagrams
|V
Diagrams and Sketches with Labels Diagrams with Labels
Pure Diagrams Pure Diagrams

Pure Image Sketches Figures

Figure 5.2. Sketch Categorization based on Walny et al.

defined by Walny et al. [2011], which covers the range between primarily word-based
constructs and pure diagrams as depicted in Figure 5.2.

In contrast to the data from traditional whiteboards presented by Walny et al., we
could see that participants made use of the additional virtual space and produced less
cluttered pages. While both types are used for quick communication, we feel that tradi-
tional whiteboards often house permanent information, whereas interactive whiteboards
are used much more for the specific purpose of sensemaking and/or presentation.

From the categorized sketches, we selected two exemplary pages for each category
(three from Words in Visual Diagram Constructions) of sufficient complexity (i.e. non-
trivial). Moreover, we tried to incorporate various drawing styles by using examples
from different authors. The selected sketches were presented to 14 participants (6 fe-
males) in a counterbalanced order. The group of participants (M = 30.6, SD = 8.0)
was from the local research campus and included novice users, who had never used
an interactive whiteboard, as well as experts. We asked them to find and highlight
potential clusters that they could identify as meaningful and important. In addition,
for each clustered page, we asked them to name the type of the clusters they used. We
repeated this process for each sketch until no additional clustering possibility could be
identified.
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5. Adaptive Tool for Object Segmentation

5.2.2. Results

Overall, each participant had to find clusters for 15 different sketches, which took them
approximately 45 min. each. On average, participants assigned 2.31 (SD = 0.35)
alternatives to each sketch. It became apparent that persons with a high level of
expertise in whiteboard usage identified more possibilities than persons with a low level
of expertise. This suggests that demands on flexible interpretation rise with increasing
experience. To avoid confusion with the sketch categories (cf. Figure 5.2), we will
call a way of clustering a single sketch perspective. We categorized the alternative
perspectives for each individual sketch and then summarized them for all sketches,
using the Grounded Theory approach [Glaser and Strauss, 1967]. Finally, we identified
nine main perspectives that are shown in Figure 5.3.

The bar chart presented in Figure 5.4 shows different perspectives in the order of
their occurrence and their mapping to the initial categories they have been identified
in. The occurrence is provided in a percentage number, which can be interpreted as
the chance that a particular perspective was identified in a sketch. This means that the
chance of being able to segment a sketch into Visual Subgroups is almost 40 %, while
segmentation following Categoric Units is applicable with only a 7% probability. On
average, a perspective occurs in 5.33 (SD = 1.05) different categories. This indicates
that they are quite universal and work over a large spectrum of sketches. Thus, we are
confident that the identified perspectives work as a basis for an automatic clustering
algorithm, to provide training datasets for different alternatives of segmentation.

5.3. Smart Clustering Tool

When aiming to provide users with a tool that allows for high-level interaction with free-
form sketches, the biggest challenge is to cluster existing strokes into sensible groupings.
Since users may write or draw anything, such sketches inherently lack an expected
structure. Even worse, as we have learned in our background study, one specific sketch
can be interpreted in multiple ways. Also, basic objects and their meaning might differ
between users, meaning that classifiers used to detect or recognize objects (e.g. symbols)
cannot be used. Therefore, we make use of data mining methods - specifically cluster
analysis. This is commonly used to find useful information in unknown data. In our
case, it is the information about which strokes belong together and represent an object.

5.3.1. Single Linkage Agglomerative Clustering

As we already mentioned in Section 3.5, Delaye and Lee [2015] showed that objects of
interest in handwritten documents could be found using Single-Linkage Agglomerative
Clustering (SLAC), equipped with a properly trained distance function. It is a hier-
archical bottom-up clustering technique. First singleton clusters consisting of a single
stroke are initialized. Larger clusters are created by iteratively merging the two closest
clusters based on the distance. Using a Single-Linkage clustering approach implies that
the distance between two clusters is given by the distance between their two closest
elements and not a cluster average. This permits an efficient real-time implementation
O(n?), where n is the number of strokes. The distances between strokes is only calcu-
lated once and not iteratively. A link is created at each merging step, which contains
information about the two clusters it links and the distance between them. This results
in a tree structure, a so-called dendrogram, that can be cut by using a suitable distance
threshold (see Figure 5.5). The distance between two strokes s and t is given by a
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45% B Pure Imagesketches
M Pure Diagrams
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Figure 5.4. The occurrence of the different perspectives in percent of the sketches where they
have been identified in. The colours show the mapping to the sketch categories to indicate
the relatively even distribution of the perspectives.

weighted sum of their features:

k
d(s,t) =) widi(s,1), (5.1)
=1

where w; is the weight for the feature ¢ that needs to be learned and d; is the value of the
feature. Previously annotated data is used to find suitable weights and the threshold
to cut the dendrogram.

For training purposes, two types of links are defined. C-links, which connect two
different clusters and M-links, which connect the two most distant sub-clusters of one
object (see Figure 5.5). To allow a cluster containing an object, the distance of C-links
must to be bigger, while the distance of M-links must be smaller than the threshold.
Otherwise the two clusters are merged. For details of the algorithm, see the original
paper [Delaye and Lee, 2015].

5.3.2. Our SLAC Adaptation

Delaye and Lee [2015] achieved promising results with segmenting benchmark datasets
in domains like flowcharts, finite automata diagrams, mathematical expressions, loosely
defined text blocks, and figures in free-hand sketches. However, they modified their
weights and thresholds to suit each domain. They also used different subsets of features
for different domains. Unfortunately, we are not dealing with any particular domain
and we do not know in advance what the user’s perspective is. Learning a new set
of parameters requires a lot of data (at least ten annotated sketches) and takes a
considerable amount of time (from minutes to hours depending on the complexity and
the amount of data). Thus, it cannot be done in real-time for each individual input.
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Figure 5.5. Illustrative example of a dendrogram and its cutting. The M-link is the link
between the most distant sub-clusters within a cluster. The C-link is the link to the next
cluster that will be merged.

Instead of aiming to learn the SLAC parameters for a specific domain, we used the
perspectives found in our background study to define characteristics for the objects
of our interest. This is why we performed our background study on a broad range
of sketches. We skipped the perspective Global, where the entire sketch was grouped
into one cluster and the perspective Categories that seemed of minor importance (see
Figure 5.4). Summarizing, we ended up using seven perspectives from our background
study: Visual Subgroups, Structural Similarity, Objects, Visual Text Units, Columns,
Hierarchies, Rows. We used these perspectives to annotate training data and to train
our system. This requires an additional layer to be built on top of the clustering method,
which combines several sets of weights (from each perspective) learned from different
annotated data to make the clustering tool suitable for an individual sketch viewed
under a particular perspective (see Figure 5.6). Based on this clustering system, we
can build tools that provide a quick adaptation according to the user’s intentions.
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Figure 5.6. The different perspectives can be imagined as multiple dendrograms that provide
different opportunities for clustering.
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5.3.3. Implementation

Our implementation is based on the learning algorithm from [Delaye and Lee, 2015].
Finding the right suitable measure for defining the distance between two strokes is a
challenge. Typically, features contain geometric, spatial, and temporal characteristics.
Delaye and Lee used a Greedy approach in which a new set of features was added
to improve the result iteratively until the improvement was smaller than a certain
threshold.

We wanted to use as many features as possible to deal with the significant variety
of input in free-hand sketches. However, it turned out that too specific features can
cause a loss of generality (details in Discussion in Section 5.7). Therefore, we did not
use features based on the speed of drawing, which could be misleading in the multi-
user scenario. Individual users may draw the same things with very different speeds.
Additionally, we omit computationally expensive features like the minimal, maximal,
and average distance between all pairs of points of two strokes, as well as features that
use stroke intersection information. Eventually, we used the same features that Delaye
and Lee used for segmentation of symbols in flowcharts and finite automata. These
features and their descriptions are presented in Table 5.1.

Features | Characteristics

F1 Minimum and maximum distance from any point of one stroke to the
center of the other stroke’s bounding box

F2 Minimum and maximum distance from any point of one stroke to an
extremity (first or last) points of the other stroke

F3 Minimum distance between extremity points of the two strokes

F4 Left, right, top, and bottom offset of the bounding box coordinates

F5 Ration of horizontal, vertical, and overall overlapping of strokes bounding
boxes

F6 Absolute difference in strokes bounding boxes width, height, and surfaces

F7 Number of strokes between the two strokes in the original drawing
sequence

F8 Difference in intrinsic parameters like arc length, closure, and ink
intensity

Table 5.1. List of the features we used.

We trained a set of parameters (the feature weights and the threshold) for each
perspective using associated annotated sketches (see Figure 5.6). To combine these sets
of pre-trained perspectives and find a new suitable distance threshold, we use a linear
combination of the original feature weights. This linear combination can be understood
as a definition of a new distance function:

p
de(s,t) =Y a;d;(s,t), (5.2)
j=1

where d. is the new distance function defined as a linear combination of the original
distance functions d; of individual perspectives defined by Equation (5.1). Finally, «;
are coefficients of the linear combination, the new tunable parameters, and p is the
number of perspectives. Hence, two kinds of parameters can be adjusted in our system
to adapt the clustering. The coefficients «; define the distance function and thus they
affect the structure of the dendrogram. A change of these parameters cause a need to
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rebuild the dendrogram. On the other hand, the distance threshold is just used to cut
the dendrogram and thus changing it is a cheap operation. The threshold adapts the
granularity of the clustering and hence it is also referred to as the granularity threshold.

5.3.4. Cluster Creation and Refinement

As we learned from our background study, the expectations of how a sketch should
be clustered can be quite diverse. Furthermore, even if expectations were to match
between users, one cannot expect even a very well-trained algorithm to be consistently
accurate. For this reason, we took advantage of the parameters that allow us to con-
figure the granularity and the type of clustering. To achieve the best performance, we
implemented a two-step approach, where users can firstly influence the process of clus-
tering by selecting an initial cluster and then change the proposed clusters manually if
required.

Selection of the initial cluster

While the distance threshold directly affecting a general cluster size is easy to under-
stand, the coefficients that describe the influence of the different perspectives are hard
to comprehend for users. Therefore, we have to think of ways for users to implicitly
rather than explicitly adjust these parameters.

A very quick solution is to use the equal coefficients for the linear combination (i.e.
a; =1/n,Vj =1,...,n, where n = 7 is the number of the trained perspectives). This
option may be sufficient when the objects of interest are salient and easily separable.
The user can then directly change the granularity threshold, e.g. by using a slider.

However, in most of the cases, it is more tricky to separate the objects and it is
necessary to adjust the coefficients of the linear combination. As it is not ideal to
set the coefficients of the linear combination manually, we provide the user with the
possibility to make an initial selection indicating one cluster, cf. Figure 5.7. Any
favourite selection tool may be used to do this. If the clustering is invoked afterwards,
our implementation does not only aim to find the required threshold that would create
desired clusters but also finds adequate coefficients of the linear combination providing
the right way of clustering. As we mentioned earlier, the learning algorithm uses two
types of links — M-links and C-links. The selected cluster is used to extract one M-
cluster (or none if the cluster consists of one stroke only). However, we have no other
clusters to extract C-links. Therefore, we search for a single stroke closest to the selected
cluster to create a new C-link.

Obviously, the initial cluster gives very limited information: 0 or 1 M-link and 1 C-
link. It is woefully little for learning parameters of the original clustering method.
However, it turned out to be enough to find proper coefficients of the linear combi-
nation of parameters from previously trained perspectives. To do this, we use exactly
the same learning algorithm as described before. However, this time we use the dis-
tance function d. and learn linear combination coefficients o; instead of the feature
weights w;. The algorithm still learns the threshold as well. We set the initial values of
coeflicients a;; = 1/n and of the threshold h = Z?Zl a; - hj. Since we use a limited set
of data, the algorithm works in real-time. In our experiments, the algorithm needed
340 ms on average using the standard tablet PC Lenovo X230 (Intel Core i5 2.6 GHz,
8 GB RAM).
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Figure 5.7. The initial selection serves as a template for the algorithm to cluster the rest of
the page. If a bullet point is selected, the page is clustered into bullet points. If a column is
selected, it is clustered into columns.

Manual cluster refinement

Although the initial interaction for selecting the right cluster performs relatively well, it
is necessary to provide error correction techniques [Mankoff et al., 2000a,b]. Especially
due to ambiguous expectations in our scenario, it might be necessary to adjust some of
the wrong clusters. Therefore, we implemented a very easy way to re-group some of the
wrong clusters. First of all, users can adapt the system threshold with a simple slider
to manipulate the cluster granularity. Figure 5.8 shows that clusters can additionally
be split by cutting them with a simple stroke gesture. By drawing a line gesture that
intersects two or more clusters, multiple clusters can be merged into one larger cluster.
All changes that will happen are shown in a real-time preview manner; this provides
the user with the ability to undo a split or merge action by tracing back along the
gesture-stroke. Moreover, it is possible to cancel an entire adaption by performing a
zig-zag gesture.

5.4. Evaluation

We evaluated our clustering method based on the seven trained perspectives of the
background study. To train these perspectives, we used an annotated training dataset.
This was created from the initial sketches we gathered, excluding the 15 sketches we
had used in the background study. These 15 sketches were used as a test dataset for
evaluation. The two sets were distinct and disjoint to ensure there was no bias from a
machine learning point of view.

Each sketch from the training dataset was annotated under all of the applicable
perspectives. As a result, our training set consisted of 84 sketches for Visual Subgroups,
40 for Structural Similarity, 57 for Objects, 30 for Visual Text Units, 30 for Columns,
49 for Hierarchies, and 24 for Rows. The test dataset was then used to compare
the results of our algorithm to the perspectives indicated by the participants in the
study. Summarizing, we asked the users about their expectations, trained the system
on different data, and then checked if it then met the expectations. Note that for each
sketch in the test dataset, we picked the two most commonly occurring user perspectives
from the study to use for ground truth annotation. In two cases, the most common
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Figure 5.8. Connecting two or more clusters with a single stroke merges them. Cutting through
a cluster with a stroke splits the cluster along the line.

expectations included just one cluster containing all strokes. We did not consider these
trivial cases. Thus, we obtained a test dataset containing 28 differently annotated
sketches. Since the result of the clustering strongly depends on the initial cluster, we
let an expert user perform three different initial selections, which he considered to be
reasonable. The initial selection always matched one of the annotated objects. In
general, a good initial selection should have a reasonable complexity and should be
close to other expected clusters to define informative C- and M-links for parameter
adaptation. In a few cases, there were not enough annotated objects to create three
different initial selections and thus only two were performed. In total, we have analysed
our method using 82 clustering trials.

Once the best linear combination of the perspectives was learnt from the initial
selection and the clustering was done, we counted how many corrective steps were
necessary to obtain the expected result. This is our measure for the quality of the
result. In an ideal case, the result matches the expectation and no further steps are
required. Figure 5.9 (top) shows an ideal example, where the expert initially selected
one column and the system recognized the remaining four columns. In the bottom
case, where one bullet entry was selected, the user interaction was required to achieve
the expected result. Three possibilities exist to improve an imperfect result: a) change
the distance threshold, b) split a cluster, and c¢) merge two clusters. A low number of
required steps (e.g. one or two) is considered to be a success since the user can achieve
the expected result with minimal effort.

Figure 5.10 shows the number of required steps that were necessary to get the final
result. In 44 % of all trials the desired result was achieved with zero or max. one
modification. In 22 % of all trials the desired result was achieved with two or three
modifications and in 24 % of all trials more than 7 modifications were required. On
average, the clustered sketches needed 2.76 (SD = 2.70) steps to achieve the expected
result, where the sketches contained on average 13.71 (SD = 10.02) annotated objects.
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5.5. Preliminary Field Test

In the course of an overarching research project, cLuster was deployed within a tablet
sketching application and was tested by two industrial design companies and one aca-
demic design institute. The designers considered the clustering feature to be particularly
useful for visual note-taking and conceptual sketching tasks. For visual note-taking dur-
ing meetings, they found it helpful for quickly rearranging sketched objects and words.
This made note taking a less linear activity and enabled the creation of more con-
cise notes. We were surprised by how they used the tool to retroactively disassemble
sketches during conceptual sketching tasks. They found it helpful since they no longer
needed to consider layers while creating content.

5.6. Applications and Interaction Techniques

In this section, we cover some of the interactive affordances of cLuster and present
several application scenarios that show the utility and the performance of our algorithm
in practice.

5.6.1. Advanced Crossing Selection

Obviously, our approach performs best once the user wants to cluster an entire page
with an initial cluster selection as a template. However, it can also be used to improve
the performance of crossing-based selection tools [Accot and Zhai, 2002] by suggesting
possible selections. Figure 5.11 depicts this approach in action; while crossing a stroke,
the system invokes a clustering process and suggests a selection to the user. The
predicted selection is then visualized as a surrounding hull. A small icon that follows
the users’ pen path can be used to trigger the suggested selection.

)

Figure 5.11. Advanced Crossing Selection: The first few selected strokes are used to cluster the
rest of the page and anticipate a likely selection. The user can confirm the proposed cluster
by lifting the pen up on the icon following the crossing path behind the pen.

5.6.2. Advanced Tapping Selection

While tapping is well suited for single targets, it is cumbersome for large groups [Mi-
zobuchi and Yasumura, 2004]. Nowadays, many applications (e.g. text editors) provide
the feature that enables users to quickly select a word by performing a double-click,
while three clicks in a row selects the entire paragraph. With cLuster, we can achieve
similar results in a sketching scenario. A single tap selects one cluster, while a second
tap adds the closest cluster to the selection (see Figure 5.12). After merging two clus-
ters this way, the resulting cluster is used to recalibrate the clustering algorithm. By
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performing a directional flick gesture, the user can also choose the direction in which
the next potential cluster should be found. After merging multiple clusters into one,
this selection can be further used.
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Figure 5.12. A tap selects a small unit, such as a single word. Directional flicks add nearby
clusters to the selection.

5.6.3. Advanced Rearrangement

Extensive re-arrangement is a domain where our approach really shines. Clustering the
entire page at once eliminates the need to repetitively select strokes when translating
groups.

All clusters are at hand and can be directly moved or altered. This reduces the effort
needed for structuring and rearrangement tasks immensely. However, in many cases
users want to move clusters to a position that is already occupied by existing content.
Knowing the placement of all the clusters, they can be moved out of the way to make
space, so that no temporary space is required. Initially, we used a coalition based
approach, similar to [Mynatt et al., 1999]. However, we soon realized that the behavior
was not ideal in many cases. Therefore, we investigated several options of how other
identified clusters could make space. Of course, each strategy has its pros and cons
and is very dependent on the type of sketches being manipulated. In the following, we
present two possible strategies:

Spring Strategy One basic arrangement strategy simulates a spring’s behaviour. The
general rule is that clusters try to remain as close as possible to their original position.
This is a very standard approach that can be used for a wide variety of applications.
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Figure 5.13. With the Spring Strategy, inactive clusters make way for incoming active clusters.
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Bubble Strategy Working with well organized sketches, such as lists or storyboards,
the Bubble Strategy is very effective. If a cluster is moved through a list, the other
clusters swap their positions with the current selection being moved. This creates
a bubble effect that enables easy exchange of clusters without changing the overall
list and without needing to rearrange a large number of list items when an entry is

relocated within the list.
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Figure 5.14. The Bubble Strategy makes clusters exchange place as soon as their hulls intersect.

5.6.4. Advanced Copy and Paste Across Applications

As highlighted in the introduction, there are two major types of collaborative content
creation applications on large interactive surfaces. Besides the sketching applications
that mimic traditional whiteboards and serve as a non-restrictive and flexible tool for
sketching and writing, there are other applications based on the concept of sticky notes
that provide a means to quickly rearrange, structure, and cluster ideas. Based on
cLuster, we can now quickly cluster objects in freehand sketches and transfer these
with one click to another application (see Figure 5.15).

Communkation ) [ o
PER:”MVAL 4 Communeatyyy T — ) P Inkrachy
{ SYMBOLIC Interactive oy A,
'.'(vfdto (‘a/).; Shoppiny
............... (stickers) Sonis

e RS taf,,n‘ o | QS e
TEXTUAL

{ Interact

B
ANNE R F Shdeshe

SERS

} .Pas?' 4 (

Figure 5.15. Clustering content enables users to port sketched content to object-based appli-
cations as part of more complex workflows.
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5.7. Discussion and Limitations

The insights we gained from analyzing the clusters given by the participants in our
background study showed that the expectations of what should be clustered are quite
diverse.
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Figure 5.16. In an interior design context cLuster can substitute tracing paper. Elements do
not have to be sketched on different layers but can be separated afterwards.

Choosing appropriate perspectives as well as the right features can be quite challeng-
ing when designing a clustering tool, which should be capable of clustering strokes in
several different ways. During our experiments, it turned out that it is reasonable to
keep both the perspectives and the features as general as possible. The perspectives
should be diverse to cover various scenarios, but also need to generalize well to work
for different types of strokes (text, figures). Defining too many perspectives can cause
an over-fitting of the system. Similarly, the used features should describe very gen-
eral characteristics. Amongst others, we experimented with additional features that
describe the difference using the colour and thickness of strokes. These attributes are
often used for headlines and hierarchies and we were optimistic to improve the separa-
tion of headers from the rest of the paragraphs. While the features helped in this very
particular case, they spoiled the behaviour in many other cases, e.g. when selecting an
initial cluster where the strokes were highlighted (crossed with a stroke with very high
thickness and transparent colour). In this case, the thickness feature became too dom-
inant and the importance of other features degraded. As a result, all non-highlighted
clusters fell apart. Therefore, we did not use these features in the final version of the
implementation.

The benefit of our clustering system is definitely the fast pace, in which it can cluster
an entire page of strokes. While it can also be used to improve the process of single
cluster selection, as we have shown with the Advanced Crossing and Advanced Tapping
example, the real advantage is in the overall clustering. First and foremost, this removes
the need for repetitive selections and thus enables fast reordering and structuring of
content. This helps to users to maintain their flow of thoughts and stay focused on their
main tasks. The automatic page clustering provides a promising alternative to manual
grouping and/or layering as is done in ordinary sketch applications. Since clustering
is applied afterwards, our approach does not distract users during the content creation
process. This thought was also confirmed by the industrial designers who tested our
prototype. Especially when creating perspective drawings of interior design concepts
(cf. Figure 5.16), the clustering algorithm does well in dividing up the different elements
within a room. This makes rearranging the elements in the room simple, and enables
designers to freely explore a variety of configurations without having to consciously
consider layers.

In a next step, knowing all clusters in a sketch can be used to define interesting
schemes for interaction between manipulated objects. We explored this concept by
implementing different Rearrangement Strategies and found that it is very valuable for
manipulation, e.g. of entries in hierarchical lists.

A strength of our tool is that it can adjust its way of clustering when given a new
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initial selection template, without needing its weights to be retrained. This makes the
approach very flexible, while it remains simple to use. As mentioned in the evaluation,
the selection of the initial cluster is critical for the system. It always tries to find a
combination of the perspectives that preserves this cluster during clustering. However,
there can be constellations that cannot be resolved (e.g. when some strokes are too
close to the initial cluster, or there are big gaps in the initial cluster) resulting in the
initial cluster breaking apart or merging with other strokes. In general, problems occur
when users decide to initialize the clustering with an initial selection that is far away
from every possibility the perspectives provide.

In the analysis, we have seen that our current approach failed for two sketches that
had a table structure and included structural elements (lines). When trying to cluster
content in cells, it often happened that nearby structural lines were included in clusters.
Consequently, other distant strokes were then also added to these clusters. The excep-
tional position of structural lines was also confirmed in our background study. Many
participants felt that they should not be part of the grouping, but rather be considered
as external elements. However, currently our approach is not capable of distinguishing
structural components from content. Classification of clusters is needed to solve this
issue, which is beyond the scope of this work and is left for future research.
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6. Conclusions

This thesis contributed to understanding of sketches drawn on-line on an ink-input
device. It was devoted to exploit the structure of the sketch during its recognition.
Two related topics are covered: recognition of formal diagrams and detection of objects
in free-form sketches. This final chapter summarizes the developments in both topics
and conclusions of this thesis. We also discuss possible future research directions.

We developed the diagram recognizer suitable for recognition of formal arrow-
connected diagrams. Although there exist many domains of such diagrams, we have
chosen two of the most common ones: flowcharts and finite automata. The system was
thus adapted for and tested on these two domains. Our implementation has achieved
the state-of-the-art results in comparison with other approaches. The recognition pro-
cess follows the designed recognition pipeline. We contributed in a certain degree to
each of the major steps of the recognition pipeline: text/non-text separation, symbol
segmentation, symbol classification/detection, structural analysis. The system can be
adapted for another diagrammatic domains with arrow-connected structure with only
minor adjustments of some steps of the pipeline. The most of the adaptation work runs
on its own when a new training dataset is available and consists mostly of retraining
the classifiers. A summary of our contribution to the recognition pipeline follows:

e We showed that it is advantageous to perform text/non-text separation beforehand
the recognition of the diagram structure. The text can be formed into logical blocks
and recognized afterwards. It is much easier because the already known structure
guides this process. It decomposes the problem and makes the recognition easier and
faster. To do that, we used the state-of-the-art text/non-text classifier and made it
biased to make smaller error in the non-text class.

e We observed that the recognition of arrows with a varying shape is a difficult task for
appearance-based classifiers. Therefore, we created a novel arrow detector. It exploits
the distinctive property of arrows — they connect two uniform symbols. Therefore, it
searches for arbitrarily shaped connectors linking two symbols together. It works in
a two-stage symbol recognition manner. Uniform symbols are detected first, because
it is much easier with their stable appearance. Arrows are detected afterwards in two
steps: a) detection of the shaft, b) detection of the head.

e With text removed and arrows being detected later in the second stage of the symbol
recognition, only the uniform symbols need to be segmented in the segmentation
step. This makes the task significantly easier. First, we employed a common stroke
grouping based on a spatio-temporal proximity to perform over-segmentation. Later,
we replaced this simple approach by a more sophisticated over-segmentation based
on hierarchical clustering using a trainable distance function. We showed that it can
achieve a significantly higher precision while the recall stays almost unchanged. It
makes the whole recognition system faster, because a smaller number of clusters has
to be concerned in further steps of the pipeline.

e We proposed a model for recognition by selection of symbol candidates, based on the
evaluation of relations between candidates using a set of predicates. The structural
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analysis finding the optimal combination of candidates is cast as a maz-sum labeling
problem. It proved to be a better approach for simple structures than the grammar-
based structural analysis, which seems to be slow an impractical in this case. We
showed that the instances generated during the diagram recognition are small enough
to be solvable by general solvers in real-time despite the fact that the max-sum
problem is NP-hard.

Despite the fact that handwriting recognition is a very popular field of research with
a lot of progress and attention in various domains like recognition of mathematical
expressions, only little has been done in diagram domains. There was a lack of high
quality benchmark database. Therefore, we collected and annotated our own bench-
mark database and made it publicly available. It helped us to develop and test our
diagram recognizer. Furthermore, it will allow to reliably compare results of differ-
ent approaches. We believe that it will likely attract attention of other researchers to
the topic. Hopefully, we will see a competition on recognition of on-line handwritten
diagrams soon.

The second topic covered in this thesis is object segmentation in free-form sketches.
Segmentation by classification is a common approach applied in formalized domains.
Unfortunately, it cannot be used in the case of free-form sketches, because there are
no symbol classes to perform the classification or they are not known in advance. An
alternative approach must be employed. We explored possibility to use a cluster analy-
sis. Here we made three contributions. First, we conducted a study in order to find out
what people see as individual objects in free-form sketches. It turned out that there are
usually more valid ways how to segment one sketch. We identified seven major points
of view how to perform the segmentation we call perspectives. Each perspective is de
facto a generalized structure. Second, we showed that SLAC with trainable distance
function can be trained separately for each of the defined perspectives and the desired
final segmentation can be done by simple linear combination of distance functions from
individual perspectives. Third, we designed a user interface allowing user to make an
wnitial selection to indicate his intention. The tool combines automatically the trained
perspectives according to one manually segmented object in such way, that the rest of
the sketch is segmented into an object similar to the initial one. The user interface
also contains tools for interaction with the created clusters. The user can thus adjust
seamlessly the clusters with merge/split gestures or rearrange the objects.

Finally, we identified the following future research directions regarding diagram recog-
nition and free-from sketching:

e The structural analysis and partially even other steps of the recognition pipeline
have a combinatorial characteristics. Its time complexity implies certain limits to
the scalability of the system. Therefore, it is reasonable to experiment with iterative
recognition using immediate user’s feedback on intermediate results. The problem
can be decomposed this way efficiently to reduce the recognition time significantly.
Moreover, it is easier for the user to recover the recognition from an error. We believe
that the proposed system is capable of such adaptation. Typical applications of the
diagram recognizer allow such iterative approach. It could be more attractive for the
user with a proper user interface.

e As we stated earlier, the adaptation of the proposed recognizer to other diagram-
matic domains should be straightforward. It makes sense to cooperate with diagram
users professionally. It would be interesting to see the usage of diagrams during
a creative process of sharing fresh ideas among cooperating people. This feedback
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should identify the most important domains and use cases. Professional diagram
users could point out important new notations for which some further adjustments
in the recognition pipeline could be developed. Another possibility is to extend it
to support domains beyond the scope of arrow-connected diagrams. This extension
would require a modification of the max-sum model. It is possible if the fundamental
relation between arrows and symbols can be replaced by another relation defining the
structure of the handwriting. The example is the relation between notes and staff
lines in the case of music scores.

Another possibility is to adapt the system for off-line recognition. In this case, the
input is an image with a diagram. The recognizer faces different problems. The
segmentation step becomes more challenging because any time information is missing.
However, the structural analysis might remain the same. The typical application of
such recognizer is different. Users would probably use it to digitize some old diagrams
written on a paper. Therefore, the input image can be a scan or a photo of the
document with the diagram.

The proposed clustering method for finding objects of interest in free-form sketches
might use very different features. For example, it might be beneficial to exploit a
colour of the stroke. Unfortunately, different users tend to use colours for completely
different purposes. Therefore, a different colour may imply that two strokes do not
belong together in one case while in another case the colour imply the opposite or
play no role at all. It can easily happen that some features can bring more confusion
than useful information. One option could be a dynamic feature selection. It would
be interesting to see if some features could be “deactivated” in dependence on other
features. Another possibility is to design a user interface which would allow better
indication of users intentions to achieve this feature selection.
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