
Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

Building Ontology-Based
Information Systems

Doctoral Thesis

Petr Křemen

Prague, February 2012

Ph.D. Programme: Electrical Engineering and Information Technology

Branch of study: Artificial Intelligence and Biocybernetics

Supervisor: Dr. Zdeněk Kouba

Acknowledgement
First of all, I would like to thank my family. Without support of my wife Zuzana as
well as energy and joy that my children David and Jakub passed to me, this work could
hardly have been completed.

My great thanks belong to my supervisor Zdeněk Kouba for his fruitful advices, as well
as his admirable patience. Also I would like to thank all my colleagues in the Knowledge
Based and Software Systems Group at the Department of Cybernetics of the Czech
Technical University for creating working environment that was a pleasure for me to
work in.

III

Abstract. Recently, information systems have started to use semantic web ontologies,
namely expressed by means of OWL (Web Ontology Language), to store and manage
domain knowledge. Comparing to relational databases, ontologies are more flexible to use
and provide higher expressiveness for modeling complex domain relationships. However,
an information system designer lacks adequate methodologies, techniques and tools that
would enable him/her to develop and maintain an information system backed by OWL
ontologies. This includes flexible, yet rigor and easy-to-use, programmatic access to OWL
ontologies including synchronization of the model of an object-oriented language with
the ontology, management of the ontology lifecycle as well as efficient and expressive
means for ontology querying.

This thesis addresses these problems and proposes a methodology, as well as techniques
and software implementations instantiating the methodology that allow ontology designers
to overcome the above described problems. JOPA system, a Java implementation of
the techniques introduced in this thesis, offers a semi-automated way for synchronizing
an ontology with the application domain model using OWL integrity constraints, as
well as efficient and highly expressive query language SPARQL-DLNOT that allows to
formulate complex OWL queries. The SPARQL-DLNOT query engine, together with its
various optimizations, has been designed as a part of this work and is discussed in detail.
To show the feasibility of the proposed methodology, its application on the design of
StruFail, a web-based information system for management knowledge about structural
failures is described.

Abstrakt. Pro zachyceńı doménových znalost́ı se v informačńıch systémech zač́ınaj́ı
využ́ıvat ontologie sémantického webu, typicky vyjádřené v jazyce OWL (Web Ontology
Language). Ve srovnáńı s relačńımi databázemi jsou ontologie flexibilněǰśı a poskytuj́ı
pokročilé vyjadřovaćı prostředky pro zachyceńı složitých vztah̊u v dané expertńı oblasti.
Návrháři informačńıch systémů však postrádaj́ı vhodné metodiky, techniky a nástroje,
které by jim umožnily vyvinout a udržovat informačńı systémy založené na ontologíıch
vyjádřených v jazyce OWL. Mezi tyto chyběj́ıćı metodiky patř́ı formálńı a současně snadno
použitelný zp̊usob programového př́ıstupu k OWL ontologíım zahrnuj́ıćı synchronizaci
modelu v daném objektově-orientovaného jazyku s ontologíı, správu životńıho cyklu
ontologie a v neposledńı řadě rovněž expresivńı a efektivńı prostředky pro pokládáńı
ontologických dotaz̊u.

Tato disertačńı práce se věnuje zmı́něným problémům a představuje novou metodiku
společně se souvisej́ıćımi technikami a softwarovými implementacemi, které umožňuj́ı
návrháři informačńıho systému výše uvedené problémy překonat. Systém JOPA je realizaćı
představené metodiky v jazyce Java a nab́ıźı možnost semi-automatické synchronizace
ontologie s aplikačńım doménovým modelem s použit́ım integritńıch omezeńı pro jazyk
OWL a rovněž formulovat expresivńı dotazy do OWL ontologíı pomoćı jazyku SPARQL-
DLNOT . V této práci je rovněž představen návrh dotazovaćıho inferenčńıho stroje
v systémech Pellet a OWL2Query včetně několika optimalizačńıch technik. Závěrem je
diskutováno využit́ı představené metodiky a souvisej́ıćıch technik při návrhu informačńıho
systému StruFail.

Brief Contents

1. Introduction 1

2. Description Logic Reasoning in Semantic Web 7

3. Ontologies in Information Systems 45

4. Proposed Methodology and Framework 55

5. Software Implementation 77

6. Use Cases 91

7. Conclusions 101

Bibliography 102

Acronyms 115

A. SPARQL-DL Atom Abbreviations 117

B. SPARQL-DLNOT Atom Cost Estimates 119

C. Comparing Ontologies using OWLDiff 121

VII

Contents

1. Introduction 1
1.1. Ontologies in Information Systems . 1
1.2. Thesis Contributions . 3
1.3. Thesis Outline . 3

2. Description Logic Reasoning in Semantic Web 7
2.1. RDF and RDFS . 7
2.2. OWL and OWL 2 . 11
2.3. SPARQL . 12
2.4. Description Logic SROIQ . 14
2.5. Consistency Checking in Description Logics 19

2.5.1. Tableau algorithm for ALC . 20
2.6. Basic Reasoning Services for Description Logics 24
2.7. Expressive Description Logic Queries . 28

2.7.1. SPARQL-DL Language . 29
2.7.2. Conjunctive ABox Queries . 34
2.7.3. Evaluating Conjunctive ABox Queries 35
2.7.4. Distinguished Conjunctive Queries with Negation 40

2.8. Integrity Constraints in OWL . 41

3. Ontologies in Information Systems 45
3.1. Ontology-Based Information System Architecture 45

3.1.1. Systems with Generic Architecture 46
3.1.2. Systems with Domain-Specific Architecture 48

3.2. Accessing OWL Ontologies Programmatically 48
3.2.1. Type 1 APIs . 49
3.2.2. Type 2 APIs . 51

3.3. Relationship of this Thesis to Related Work 53
3.3.1. Ensuring Proper Application-Ontology Contract 53
3.3.2. Providing Expressive Query Language with Efficient Implementation 54

4. Proposed Methodology and Framework 55
4.1. Ontology Persistence Layer . 55

4.1.1. Ontology-Object Model Contract 56
4.1.2. Ontology Access Layer . 58

IX

4.2. SPARQL-DLNOT Language . 60
4.2.1. Optimizing Conjunctive ABox Queries with Undistinguished Vari-

ables . 62
4.2.2. Evaluating SPARQL-DLNOT . 65

5. Software Implementation 77
5.1. Java OWL Persistence API . 77

5.1.1. Object-Ontology Mapping in Java 80
5.1.2. Transactional Processing in Java 82

5.2. SPARQL-DL engine in Pellet and OWL2Query 83
5.2.1. Evaluation of the Query Engine 83
5.2.2. Performance of Different Engine Implementations 84
5.2.3. Performance of the Dynamic Reordering Method 86
5.2.4. Performance of the Undistinguished Variables Optimizations . . . 87

6. Use Cases 91
6.1. StruFail System . 91

6.1.1. System Design . 92
6.1.2. System Usage . 96

7. Conclusions 101

Bibliography 102

Acronyms 115

A. SPARQL-DL Atom Abbreviations 117

B. SPARQL-DLNOT Atom Cost Estimates 119

C. Comparing Ontologies using OWLDiff 121
C.1. OWLDiff Comparison Options . 121

C.1.1. Syntactic Diff . 122
C.1.2. Redundancies . 122

X

List of Figures

1.1. A roadmap for the work presented in this thesis. Green parts correspond
to my novel contributions presented in this thesis, while red/orange parts
correspond to related work by other authors. Blue parts are my novel
contributions that are linked to the topic of this thesis, but not presented
here in detail for the sake of compactness. Yellow parts represent systems
that are sketched in this thesis and that were designed and partially
implemented by me, while other parts of these systems were implemented
under my supervision. 4

2.1. An RDF graph example. Vertices denote subjects and objects of triples,
while edges denote predicates. Vertex and edge URIs are abbreviated
using prefixes, in the same way as in the N3 syntax. 9

2.2. Example RDF document in N3 syntax. 9
2.3. Example RDF document in RDF/XML syntax. 10
2.4. Simple SPARQL query to the ontology presented in Example 1. The query

asks for all individuals (failures) that affect something (some object). . . 13
2.5. Initial state of the tableau algorithm. 23
2.6. Graph G4 evolved deterministically from G0 using u-rule, ∃-rule, ∀-rule. . 24
2.7. Graphs G5 and G6 produced by application of the t-rule on vertex 0. . . 25
2.8. Graphs G7 and G8 produced by application of the t-rule on vertex 1. . . 26
2.9. The difference between undistinguished and distinguished variables is

demonstrated on a simple SPARQL-DL query [PV (?v1, affects, !u2)],
SPARQL syntax of which is in Figure 2.4. While distinguished variables
are bound to individuals (that are always interpreted as domain elements),
undistinguished variables (in this case !u2) might be satisfied with a
domain element (here a2

I) that is not an interpretation of any individual
in K. 33

2.10. Query graph GQ1 for Q1. 35

3.1. Ontology-based system architecture as presented in [1]. (The Figure is
reproduced with the permission of its authors.) 47

3.2. Type 1 APIs comparing to type 2 APIs. Top: Java code generated by
Sapphire (type 2). Bottom: The same logic implemented in Jena (type 1)
API. Jena code is much less readable (and thus maintainable) than the
Sapphire code. Both examples are taken from [2]. 50

XI

4.1. Activity diagram of a transaction run over the Ontology Persistence layer.
The business logic access to the front-end layer is represented by the
shaded symbols for signal receipt/signal sending. 59

4.2. Cores extracted fromQX : [PV (?v3,R1, !u1),PV (!u1,R2, ?v2),PV (?v2,R3, !u4),
PV (!u1,R4, !u3),PV (!u2,R5, !u3),PV (!u3,R6, ?v1),PV (?v1,R7, c),PV (c,R8, !u5),
PV (?v2,R9, ?v1)]. Dotted arrows represent the edges of GQU that build
up the cores γ1, γ2, γ3, while simple arrows represent edges of GQD . The
gray rounded rectangles demarcate cores extracted from the QX (maximal
connected components of GQU). 63

4.3. Exploiting concept hierarchy for down-monotonic variable optimization in
LUBM dataset. 75

5.1. JOPA overall architecture. 78
5.2. Integrity Constraint Serialization in OWL using RDF/XML syntax. . . . 79
5.3. An example of generated Java model entity. V, CV are generated classes

that serve as vocabularies. 81

6.1. Fundamental Parts of the StruFail Ontology. 92
6.2. Part of the Structure Taxonomy. 93
6.3. Integrity constraint sets for StruFail application. Each vertex corresponds

to an OWL 2 DL class and an edge corresponds to an OWL 2 DL object
property. 94

6.4. Exploration of the knowledge base by predefined queries. 97
6.5. Failure report. 98

C.1. Protégé Syntactic comparison example. Axioms in one ontology, which do
not appear in the other ontology, have green font color in its tree. 123

C.2. Redundancies comparison example. Axioms that can be inferred from the
other ontology by an OWL reasoner, and thus might be redundant, are
marked red. Upon selecting such an axiom, a justification of the inferrence
appears in a box at the bottom of the tree. 124

XII

List of Tables

2.1. SROIQ axiom examples. F means Failure, S means Structure, hF means
hasFactor, af means affects, PS means PillarScour, CB means CharlesBridge,
KM means KarluvMost, iFO means isFailureOf. 16

2.2. Concept and role constructors for SROIQ. 18
2.3. SROIQ axioms. 19
2.4. Completion rules used for expanding a set of ALC completion graphs.

G = 〈VG, EG, LG〉 is the completion graph chosen in the current iteration. 21
2.5. SROIQ reasoner API. The services take as an input an ontology K, a

concept C(i), a role R(i) and an individual a. The last column denotes the
maximal cost of the operation. Due to the complexity of tableau reasoning,
the cost is measured in the amount of estimated time spent on tableau
algorithm runs. An average time taken by a single tableau algorithm run
is denoted as tCC . 27

2.6. Interpretation of SPARQL-DL semi-ground atoms. 32
2.7. Semantics of selected integrity constraints. Each construct of the form∧

1≤i≤N
Xi denotes a list X1, . . . , XN . Definition of integrity constraints

semantics for other axiom types and other class and property constructors
can be found in [3]. 42

4.1. Interpretation of extra SPARQL-DLNOT semi-ground atoms, complement-
ing the Table 2.6. 61

5.1. Performance of query evaluation over LUBM(1). O2Q resp. Der mean
OWL2Query, resp. Derivo query engines, and P , resp. J means Pellet,
resp. JFact tableau reasoner and PDM means Pellet with down-monotonic
variable optimization. Next, results denotes number of results of the
query. All times are in milliseconds. 86

5.2. Performance of the dynamic reordering using the Pellet SPARQL-DL
engine over the UOB dataset. Each UQx denotes a corresponding query
from the UOB DL benchmark. atoms∗ denotes number of query atoms
after performing the domain/range simplification, results denotes number
of results of the query and static, dynamic and no denote query execution
times for these reordering strategies. 87

XIII

5.3. Performance evaluation of the core strategy of the Pellet SPARQL-DL
reasoner over the LUBM(1) and UOB(1) DL dataset. The rows labeled
simple denote the simple evaluation strategy as described in Example 11,
while the rows labeled with core denote the evaluation using cores. The
query evaluation took Time ms (without the initial consistency check),
results denotes the number of bindings valid for the query and NB =
(NIC + |IN |NIR)/103, where NIC is the count of IC calls and NIR is the
count of IR calls. 88

A.1. SPARQL-DL atom names. Atoms prefixed with * sign are not considered
in this thesis, as explained in Section 2.7.1. 117

B.1. Rough estimates of SPARQL-DLNOT atom evaluation costs. Notation:
ˆV (Q) = V (Q) \ B is a set of all unbound (i.e. not in B) distinguished

variables in Q. Additionally, terms with circumflex denote either a named
individual/concept/role, or a variable from B. E.g. x̂ means either x
(individual) or x ∈ B (variable bound with unknown individual). Handling
of NOT atoms, as well as detailed description of the notation and rationale
behind these estimates are presented in Section 4.2.2. 120

XIV

1. Introduction
During last years, ontologies [4] have become popular knowledge representation means
for wide spectra of problems that deal with incomplete, complex or evolving knowledge,
e.g. using ontologies as a background knowledge for automated planning [5], or as a
communication language between agents in multi-agent systems [6]. Still, most applica-
tions of ontologies are in the field of knowledge modeling for the semantic web [7], [8] – a
collection of computer-understandable web pages meaning of which is precisely captured
by ontologies.

Plenty of languages for ontology representation have been introduced so far, see Chapter
4 of [9] for an overview. These languages differ in expressiveness, as well as level of
formality, ranging from informal, over semi-formal (e.g. OKBC frames [10], topic maps
[11]) to formal ones (e.g. KIF [12], conceptual graphs [13]).

However, since 2004, the field has been dominated by formal languages and technologies
comprising the so called “Semantic Web Stack” [14], namely W3C1 recommendations
Resource Description Framework (RDF) [15], RDF Schema (RDFS) [16], Web Ontology
Language (OWL) [17] and OWL 2 [18]. Significant profiles OWL DL and OWL 2 DL of
the latter are built on top of description logic calculus, thus being decidable and having
well-defined declarative semantics, details of which are provided in Section 2.4. When
referring to ontologies in this thesis, I assume that they are expressed in conformance to
these standards.

1.1. Ontologies in Information Systems
As the amount of knowledge published using semantic web principles expands, a need for
information systems that would be able to author/manage/search the knowledge grows.
Ontology editors (e.g. Protégé [19]) are systems that allow for creating/editing/exploring
arbitrary ontologies without making any assumptions about the particular domain of
the ontology. However, for an information system to be usable by a non-expert in
ontological engineering, domain-dependent business logic (e.g. complex computations)
and domain-dependent user interface (e.g. specific visualization) is needed.

Design and maintenance of these, typically object-oriented, domain-dependent infor-
mation systems that use semantic web ontologies as their data source is non-trivial and
has many specifics comparing to the design and maintenance of typical database-backed2

1Home page of the consortium is at http://www.w3.org, cit. 8/10/2010.
2Although various database technologies have been introduced during past decades, including network,

hierarchical [20], or object databases [21], from this point on, I consider only relational databases
[22] – the main-stream technology backing most production-quality database applications.

1

http://www.w3.org

information systems.
First, databases accept Closed World Assumption (CWA), which allows them to easily

impose integrity constraints on data. For example, if a database prescribes that the
surname of a person must be known, and it is not, the closed world assumption is used
to infer that no such name exists and constraint violation is reported. Such integrity
constraints are important for ensuring data quality but they make the data structure
rigid and of limited flexibility. Even a small change (e.g. attribute addition/removal) of
the data model requires significant work of an application designer that has to adjust
the application business logic accordingly, including updating the application model
(typically object model in an object-oriented language), and recompiling the application.

Ontologies, on the other hand, accept Open World Assumption (OWA), thus being
suitable for inferring new knowledge in the domain, rather than for data validation. For
example, an ontology that prescribes that each person must have a surname, might be
consistent no matter whether the surname of a person is known or not – if the surname
is not known, its existence (although not necessarily its particular value) is inferred.
However, the differences between (open-world) ontological and (closed-world) database
descriptions are often neglected by information system designers who make assumptions
about ontology structure, as if it was a database schema. As a result, subsequent
ontology evolution [23] during application runtime (discussed also in [24]), may violate
the original assumptions (called consistency of the ontology and the dependent application
in [25]) of the information system designer (e.g. incomplete ontological data with respect
to application data structures) at some point. If these assumptions are not formally
expressed, it is impossible to guarantee correct functionality of the business logic if
the ontology evolves. Thus, on the one hand, ontology changes might cause improper
behavior or failure of the application. On the other hand, the application might damage
the ontology by producing ontological data that cause its inconsistency.

Second, comparing to databases, OWL ontologies are expressive enough to represent
taxonomies (“each woman is a person”) as well as complex relationships between objects,
like relation composition (e.g. “being someone’s uncle means being a brother of his/her
parent”), cardinality restrictions (e.g. “each person has exactly two arms”), logical
negation (e.g. “every person not being a man must be a woman”), etc. This significantly
extends the knowledge that can be represented in a declarative manner (and thus reusable
in more applications). In order to exploit such expressive descriptions in applications,
complex query languages implemented in efficient query engines are necessary. Such
queries have to be able to retrieve not only data about particular domain individuals,
but also metadata about relationships valid generally in the domain.

This mismatch was faced during the design of an information system aimed at manage-
ment of structural failure records (for details see Section 6.1). As the domain knowledge
is evolving (e.g. new material characteristics, construction technologies and intervention
procedures are introduced on the fly) and complex (e.g. transitive part-of relationships
on structures, taxonomies of failure/structure types), its implementation using relational
database technology would be difficult and hard-to-maintain. This was the motivation
(identified also in [25], [26] and [27]) for representing the domain knowledge by means of
semantic web ontologies.

2

1.2. Thesis Contributions
This thesis proposes a methodology for designing information systems that are backed by
evolving semantic web ontologies expressed in the OWL 2 language. The overall roadmap
of this thesis is depicted in Figure 1.1. Specific novel contributions of this thesis are:

• proposal of a formal contract between an ontology and an object model of an
information system; the contract captures the assumptions of the application
designer imposed on the ontology and helps to keep the information system up-to-
date with respect to the evolving ontology (published in [28]),

• technique for validation of the contract. Once the contract turns out to be invalid,
either the application or the ontology has to be adjusted (published in [28]),

• transactional support that aims at keeping the ontology consistent while being
accessed by the information system (published in [28]),

• expressive query language SPARQL-DLNOT that is used for evaluation of ontological
queries and metaqueries in the information system,

• evaluation and optimization techniques for SPARQL-DLNOT , (published in [29]
and [30]),

Techniques presented in this thesis have been implemented in the JOPA system
(published in [28]). One of its parts that can be also used as a separate library is the
SPARQL-DLNOT engine OWL2Query. The engine is a generalization and extension of
the SPARQL-DL [31] engine (published in [29]) that I have designed and implemented
in the Pellet reasoner [32].

In addition to the contributions presented in this thesis, some of my other works
are closely related to them. First, my SPARQL-DL engine in Pellet has been used
for ontology-driven composition of relational data mining workflows (published in [5]).
Second, I proposed an ontology comparison scenario, and designed OWLDiff (published in
[33]), a system that implements it. OWLDiff was used during the design and development
of the prototypical ontology-based information system StruFail (published in [34]), to
compare different versions of civil engineering ontologies. For this reason, I shortly sketch
ontology comparison scenario as well as OWLDiff in Appendix C. Optimization of OWL
inference justification generation algorithms implemented in OWLDiff are not described
in this thesis and are published in [35].

1.3. Thesis Outline
The thesis has the following structure. Chapter 2 presents the necessary theoretical
background on semantic web ontologies, description logic reasoning and querying. Next,
Chapter 3 discusses existing works that relate to the problem of using ontologies in
information systems. At the end of the chapter, relation of my work to the existing

3

Figure 1.1.: A roadmap for the work presented in this thesis. Green parts correspond
to my novel contributions presented in this thesis, while red/orange parts
correspond to related work by other authors. Blue parts are my novel
contributions that are linked to the topic of this thesis, but not presented
here in detail for the sake of compactness. Yellow parts represent systems that
are sketched in this thesis and that were designed and partially implemented
by me, while other parts of these systems were implemented under my
supervision.

4

approaches is shown. Both Chapter 2 and Chapter 3 build up the knowledge necessary to
understand the methodology, techniques and algorithms for using ontologies in information
systems proposed in Chapter 4.

Chapter 5 discusses prototypical implementations of the algorithms and together with
conducted experiments demonstrate their feasibility. Chapter 6 presents the experience
of using the methodology during the design of the StruFail system and its reusability for
other approaches.

Partial results of my research related to this thesis were previously published, namely
[28] (copyrighted by IEEE), [30] (copyrighted by Springer Verlag), [34], [36] (copyrighted
by IGI Global), and [29]. Parts of the thesis are also related to some works authored or
coauthored by me, namely [35] (copyrighted by Springer Verlag), [33] (copyrighted by
IEEE), and [5] (copyrighted by IEEE).

5

2. Description Logic Reasoning in
Semantic Web

Nowadays, OWL and OWL 2 are standards for representing semantic web ontologies.
Their genesis can be tracked from two perspectives. First, OWL stemmed from the
principles of semantic web [7] and, as such, can be seen as an expressive semantic
annotation language and a successor of RDFS. Second, OWL and OWL 2 are backed
by expressive-yet-decidable description logics SHOIN and SROIQ that have been
introduced in last years as a result of intensive research in complexity and decidability of
expressive description logics.

I will try to follow both perspectives. First, I shortly introduce RDF, RDFS, OWL
and OWL 2, the fundamental technologies of the semantic web stack, as mentioned
in Chapter 1, and shortly overview SPARQL Query Language for RDF (SPARQL). The
following tutorial-based course of presentation should help the reader understand most
important aspects of the declarative knowledge representation by means of semantic
technologies, yet it is far from complete – for example I omit rule languages (like Semantic
Web Rule Language (SWRL) [37]), that are often used for formalizing complex business
logic scenarios, and especially their integration with semantic web ontologies, see e.g.
[38], [39], [40], [41].

Next, I will introduce the description logic SROIQ that backs OWL 2 and provide
details on consistency checking and other basic reasoning services in description logics.
These reasoning services are often used for evaluation of expressive queries that are
introduced next in this chapter. After an overview of query languages to description
logics, I will introduce the SPARQL-DL query language, extension of which is part of
the framework presented in Chapter 4, and present evaluation techniques for a subset
of SPARQL-DL – conjunctive ABox queries. Last but not least, I recall the integrity
constraint proposal for OWL that is used in Chapter 4 as the logical language for
expressing contract between an application and an ontology.

2.1. RDF and RDFS
W3C Recommendations RDF and RDFS, standardized in 2004, became one of the first
widely accepted technical means for the realization of the semantic web. Due to their
mutual dependencies, RDF and RDFS are often considered as one language, denoted as
RDF(S). I will not introduce formal definitions here, as they are not important from the
perspective of my thesis; interested reader can find formal definitions in the respective
W3C Recommendations, i.e. [15], [42] and [16].

7

RDF describes knowledge about web resources in the form of a (multi-)graph. An RDF
document consists of triples (edges of the graph), each of the form

S(ubject) P(redicate) O(bject).

where S and O represent vertices of the graph, while P represents an edge of the graph –
a binary relation between S and O. There are three basic objects in RDF:

URIs, representing named resources, e.g.
http://krizik.felk.cvut.cz/ontologies/2011/example.owl#Failure, denoted as
f : Failure in Figure 2.1,

blank nodes, representing anonymous resources, e.g. : q in Figure 2.1,

literals, representing basic data values (integers, strings, etc.), e.g. ′′5′′,

where only Uniform Resource Identifiers (URIs) or blank nodes can serve as subjects
of triples and only URIs can serve as predicates of triples. Next, RDF defines a few
constructs, like containers (bags, sequences, alternatives) and collections (lists). While
containers are open/extensible and can be accessed by index, collections are closeable1

and can be accessed sequentially. Semantics of RDF is captured by two rule-based
entailment regimes – simple entailment and RDF entailment. These regimes are rather
weak and only provide a few rules to interpret triples as a graph (e.g. a predicate of
a triple is inferred to be of type rdf : Property), or define semantics to blank nodes
(e.g. a URI subject of a triple can be generalized to a blank node). In addition to the
RDF/XML syntax, that is recommended by authors of RDF for use in applications, RDF
can be serialized in other syntaxes, e.g. N-triples that simply list RDF graph edges, or
its more compact and better readable extension N3.

Example 1 An RDF graph example is shown in Figure 2.1. This graph corresponds to
an RDF document, N3 serialization of which is shown in Figure 2.2 and RDF/XML
serialization of which is shown in Figure 2.3.

Note, that a resource can be used in various subject/predicate/object positions in a
single RDF document. In this case, f : isFailureOf is used in all three positions – as a
subject, as a predicate, and as an object.

To understand the meaning of the graph, RDF itself does not help much, as only the
predicate rdf : type is defined in the RDF vocabulary. The triple

f : Watering rdf : type f : Failure .

has the meaning “Watering is a Failure”, while the triple

: q rdf : type owl : Restriction .

has the meaning that “there is a resource (represented by blank node : q) of type
owl : Restriction”.

1After creation of a closeable collection, no more elements can be added to it.

8

Figure 2.1.: An RDF graph example. Vertices denote subjects and objects of triples,
while edges denote predicates. Vertex and edge URIs are abbreviated using
prefixes, in the same way as in the N3 syntax.

@prefix f: <http://krizik.felk.cvut.cz/ontologies/2011/example.owl#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

f:Failure owl:equivalentClass
[rdf:type owl:Restriction ;
owl:onProperty f:isFailureOf ;
owl:someValuesFrom owl:Thing] .

f:isFailureOf rdfs:subPropertyOf f:affects .
f:Watering rdf:type f:Failure .
f:PillarScour f:isFailureOf f:CharlesBridge .

Figure 2.2.: Example RDF document in N3 syntax.

9

<?xml version="1.0"?>
<!DOCTYPE rdf:RDF [

<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >
<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >
<!ENTITY owl "http://www.w3.org/2002/07/owl#" >

]>
<rdf:RDF xmlns="http://krizik.felk.cvut.cz/ontologies/2011/example.owl#"

xml:base="http://krizik.felk.cvut.cz/ontologies/2011/example.owl"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:owl="http://www.w3.org/2002/07/owl#">
<owl:Class rdf:ID="Failure">

<owl:equivalentClass>
<owl:Restriction>

<owl:onProperty rdf:resource="#isFailureOf"/>
<owl:someValuesFrom rdf:resource="&owl;Thing"/>

</owl:Restriction>
</owl:equivalentClass>

</owl:Class>
<owl:ObjectProperty rdf:ID="isFailureOf">

<rdfs:subPropertyOf rdf:resource="#affects"/>
</owl:ObjectProperty>
<owl:Thing rdf:ID="PillarScour">

<isFailureOf rdf:resource="#CharlesBridge"/>
</owl:Thing>
<Failure rdf:ID="Watering"/>

</rdf:RDF>

Figure 2.3.: Example RDF document in RDF/XML syntax.

10

RDFS is a schema language for RDF that can serve for building simple ontologies,
including class and property definitions and hierarchies (with multiple inheritance), and
property domains and ranges. The semantics of RDFS is captured by several inference
rules, referred as RDFS entailment, see [42].

Example 2 RDFS gives meaning to the RDF property rdfs : subPropertyOf in Fig-
ure 2.1. The triple

f : isFailureOf rdfs : subPropertyOf f : affects .

says that “if f : isFailureOf relates two resources, then these resources are also related
by f : affects”. Thus, RDFS entailment allows to infer (among others) that

f : PillarScour f : affects f : CharlesBridge .

from the graph in Figure 2.1.

2.2. OWL and OWL 2
OWL, standardized [17] in 2004 and its successor OWL 2, standardized [18] in 2009,
aim at representing expressive ontologies on the semantic web. OWL extends RDFS
by expressive modeling constructs including boolean operations (intersection, union,
complement), existential and universal quantification, number restrictions, and other.
Unfortunately, automated reasoning in OWL (and thus also in OWL 2) is undecidable.
To cope with decidability and computational complexity, various profiles of OWL and
OWL 2 have been defined. OWL has been defined in three variants with decreasing
expressiveness:

OWL Full is an extension of RDFS. It offers all features of OWL, which makes it
undecidable, as observed in [43].

OWL DL is a decidable sublanguage of OWL Full, corresponding to the description
logic SHOIN (D). For details on SHOIN (D), see [17].

OWL Lite is a sublanguage of OWL DL with better practical tractability (computa-
tional complexity is exponential in time for OWL Lite and even nondeterministic
exponential in time for OWL DL, see [44]).

OWL 2 is an extension2 of OWL with several expressive modeling constructs, like
qualified number restrictions or role chains. Similarly to OWL, also OWL 2 has several
variants:

OWL 2 Full is an extension of OWL Full, thus being undecidable.
2OWL 1.1 was used as a previous name for OWL 2.

11

OWL 2 DL is a decidable extension of OWL DL, corresponding to the description
logic SROIQ(D) that is in turn an extension of SHOIN (D). Description logic
SROIQ(D) is introduced in Section 2.4.

OWL 2 EL, OWL 2 QL, OWL 2 RL are three tractable profiles of OWL 2 DL. These
profiles trade some of OWL 2 DL expressiveness for tractability and thus are
suitable for specific application scenarios.

Although syntactic variants of description logic knowledge modeling constructs are the
crucial parts of OWL and OWL 2, the specifications define other features for ontology
management (ontology importing mechanism, ontology version URIs) or ontology meta-
data (annotations on classes, properties, individuals and axioms). Although important
from the point of practical usability3, these additional features do not require logical rea-
soning and thus, whenever no confusion is possible, I will often use the terms OWL 2 DL
and SROIQ(D) interchangeably (and similarly the terms OWL DL and SHOIN (D)).

Example 3 The RDF document in Example 1 represents a valid OWL 2 DL (and also
valid OWL DL) ontology. Thus, an OWL 2 DL agent understands the ontology as a set of
description logic axioms (Please refer to the first four axioms in Table 2.1 in Section 2.4
for details on their syntax and semantics):

Failure ≡ ∃isFailureOf · > (α1)
isFailureOf v affects (α2)
Failure(Watering) (α3)
isFailureOf(PillarScour,CharlesBridge) (α4)

Axioms α2, α3 and α4 capture the same meaning as the triples already interpreted by
RDF and RDFS, see Section 2.1, while α1 represents a novel knowledge, not understood
by RDFS. Comparing to RDFS entailment, an OWL reasoner is able to infer from the
ontology that (i) f : Watering is related through f : isFailureOf (and thus also through
f : affects) with some (in this case anonymous) object and (ii) classifies f : PillarScour
as a f : Failure. These inferences can be rewritten to RDF triples as

f : Watering f : isFailureOf : b .
f : Watering f : affects : b .
f : PillarScour rdf : type f : Failure .

2.3. SPARQL
For RDF ontologies, several query languages appeared during last ten years, but only
one won – SPARQL has been standardized [45] in 2008 by W3C and its new version

3E.g. OWL 2 axiom annotations will be used in Chapter 5 for differentiating OWL axioms from OWL
integrity constraints

12

PREFIX: <http://krizik.felk.cvut.cz/ontologies/2009/failures.owl#>
SELECT ?x
WHERE {
?x :affects _:y .

}

Figure 2.4.: Simple SPARQL query to the ontology presented in Example 1. The query
asks for all individuals (failures) that affect something (some object).

SPARQL 1.1, extending its predecessor with advanced constructs, like aggregate functions,
or path expressions, is currently under standardization process [46].

A basic SPARQL query is formulated using basic graph patterns, i.e. generalized RDF
graphs containing variables, in addition to URIs, blank nodes and literals. Basic graph
patterns can be combined into complex graph patterns using algebraic operations, like
UNION (union of two relations), OPTIONAL (analogous to SQL left outer join of two
tables/relations), or FILTER (relation row filter). Basic result set of a SPARQL graph
pattern is a relation (table), that can be directly outputted (SELECT query type), or
transformed to an RDF graph (CONSTRUCT query type) or to boolean true/false result
(ASK query type).

I will not introduce full SPARQL syntax and semantics, as they are not directly related
to this thesis. Instead, I will document its use on a simple example.

Example 4 Let’s take a SPARQL query in Figure 2.4. The query contains a variable
?x that can match URI resources, and a blank node variable : y, that can match any
resources existence of which is inferred from the RDF graph. This distinction between
variables and blank nodes is similar to the difference of distinguished variables and
undistinguished variables defined in Section 2.7.1 (detailed discussion on distinguished
and undistinguished variables in SPARQL can be found in [47]).

Results of this query differ based on the entailment regime that is used for evaluating
the SPARQL query. The SPARQL specification allowed to use the RDF, RDFS, and
OWL DL entailment regimes, similarly to the different interpretation of RDF graphs
shown in Examples 1, 2, and 3. As a result,

• when evaluating the query using RDF entailment, no binding for ?x is returned,

• when evaluating the query using RDFS entailment, a single binding for ?x is
returned: f : PillarScour,

• when evaluating the query using OWL DL entailment, two bindings for ?x are
returned: f : PillarScour, f : Watering.

13

2.4. Description Logic SROIQ
Now, let’s switch the view and focus on the details of reasoning in OWL – the description
logics. In general, description logics [48] are (typically decidable) subsets of First-Order
Predicate Logic (FOPL). Basic building blocks of each description logic are named
concepts (corresponding to OWL classes, e.g. Failure), named roles (corresponding
to OWL object properties, e.g. isFailureOf) and individuals (corresponding to OWL
individuals, e.g.CharlesBridge). Axioms in description logic define generic knowledge
about the domain (e.g. concept and property taxonomies), as well as assertions about
individuals in the particular world. Each description logic is characterized by a set
of available concept, role, and axiom constructs, like boolean operations ¬C, C1 u C2,
C1 t C2, universal quantification ∀R · C, existential quantification ∃R · C and other.

OWL 2 DL, the most expressive-yet-decidable language from the OWL family, seman-
tically corresponds to the description logic SROIQ(D), introduced in [49]. Here, I will
introduce the SROIQ description logic that does not support data properties and data
types, comparing to SROIQ(D). Although they are important from the practical point
of view, data types do not pose any challenge with respect to the goals of this thesis, but
would require extra syntax and notation which would worsen readability significantly.
For details on OWL 2 and SROIQ(D), please refer to [18] and [49].

NOTE: I will often make use of the semantic correspondence be-
tween OWL 2 DL and SROIQ description logic, and reuse SROIQ
syntax for writing OWL axioms. Also, when needed, I will use
OWL named individuals instead of SROIQ individuals, OWL ob-
ject properties instead of SROIQ roles and OWL classes instead of
SROIQ concepts. For example, for description of algorithms and
techniques next in this chapter, SROIQ logic is more appropriate,
while implementations and applications described in Chapter 5 and
Chapter 6 work with OWL ontologies – thus OWL terminology is
more appropriate there.

Definition 1 (SROIQ syntax) A SROIQ vocabulary is a tuple V = 〈CN,RN, IN〉,
where CN , RN , IN are mutually disjoint, CN is a set of named concepts (denoted A(i)),
RN is a set of named roles (denoted R(i)) and IN is a set of individuals (denoted a(i)).
A set of all roles is defined as RN ∪RN−, where RN− is a set of inverse roles defined as
RN− = {R− | R ∈ RN}. Expressions of type R−− are not considered – they are always
shortened to R.

A SROIQ theory4 K = T ∪ R ∪ A is a set of SROIQ axioms divided into three
components: TBox T , RBox R, and ABox A. SROIQ axioms αT ∈ T , αR ∈ R and
αA ∈ A have the following form (C(i) ∈ SC is a concept, R(i) ∈ RN ∪ RN− is a role,

4Strictly speaking, not each SROIQ theory represents an ontology. However, since this thesis uses
description logics only as a formalism for ontology axiomatization, I will often refer to a SROIQ
theory as an ontology.

14

S(i) ∈ SN ⊆ RN ∪RN− is a simple role, as defined in [49]):

αT ← C1 v C2 | C1 ≡ C2

αR ← Sym(R) | Asy(S) | Tra(R) | Ref(R) | Irr(S) | Dis(S1, S2)
| R1 ◦ . . . ◦Rn v R

αA ← C(a) | R(a1, a2)

where axioms of the type R1 ◦ . . . ◦Rn v R form a regular hierarchy, as defined in [49].
The set SC of complex concept descriptions can be constructed in SROIQ using the
following grammar rule:

C ←> | ⊥ | A | {a} | ¬C | C1 u C2 | C1 t C2

| ∃R · C | ∀R · C | ≥ nS · C | ≤ nS · C | ∃S · Self,

where n is a non-negative integer.

�

TBox axioms define concept taxonomies in terms of subsumption (v) and equivalence
(≡) of two concepts. Note that either the left-hand side, or the right-hand side, or
both sides of αT might be complex concepts (not only named concepts). Thus, in
addition to simple hierarchies (e.g. Church v Structure), also concept definitions
(e.g. α1 and α6 in Table 2.1), or even general concept inclusions can be defined (e.g.
∃isFailureOf · Church ≡ (≥ 2 hasFactor · Factor)) .

RBox axioms define role taxonomies and role characteristics. Axiom R1 ◦ . . . ◦Rn v R
allows to define simple role hierarchies (e.g. isFailureOf v affects), as well as
complex role chains (e.g. isFailureOf ◦ partOf v isFailureOf). Next, common binary
relation characteristics can be defined for roles, like (a)symmetry, (ir)reflexivity,
disjointness, or transitivity (e.g. Tra(isPartOf)).

ABox axioms define the particular relational structure between individuals in terms of
their types (e.g. α3 and α5 in Table 2.1), or their relationships to other individuals
(e.g. α4 in Table 2.1).

As mentioned in Definition 1, several syntactic restrictions on SROIQ are placed in
[49], to ensure decidability. I will present them only informally here :

• simple role is a role that is “not implied by the composition of roles”, i.e. it is
either not present on the right hand side of an axiom R1 ◦ . . . ◦Rn v R, or it is, in
which case n = 1 and R1 is simple.

• regular hierarchy is a set of axioms of the form R1 ◦ . . . ◦ Rn v R that are “not
cyclic” and contain only simple roles (or R, but only in either R1 or Rn positions)
on their left-hand side.

15

axiom αi I |= αi iff
α1 F ≡ ∃iFO · > FI ⊆ {x | ∃y : 〈x, y〉 ∈ iFOI}

“Each failure is related to an object which it is a failure of
(although the object need not be known explicitly).”

α2 iFO v af iFOI ⊆ afI

“Whenever something is a failure of an object, it also
affects it.”

α3 F(W) WI ∈ FI

“Watering is a failure.”
α4 iFO(PS,CB) 〈PSI ,CBI〉 ∈ iFOI

“Pillar scour is a failure of Charles Bridge.”

α5 (F u (≥ 2 hF · >))(PS) PSI ∈ FI ∩

x
∣∣∣∣∣∣
∣∣∣∣{y | 〈x, y〉 ∈ hFI}

∣∣∣∣ ≥ 2


“Pillar scour is a failure caused by at least two factors.”

α6 F v ∀af · S FI ⊆ {x | ∀y : 〈x, y〉 ∈ afI =⇒ SI}
“Failures affect only objects.”

α7 {CB} ≡ {KM} CBI = KMI

“CharlesBridge and KarluvMost are the same objects.”

Table 2.1.: SROIQ axiom examples. F means Failure, S means Structure, hF means
hasFactor, af means affects, PS means PillarScour, CB means CharlesBridge,
KM means KarluvMost, iFO means isFailureOf.

16

Semantics of SROIQ is provided as follows:

Definition 2 (SROIQ semantics) The semantics is defined using interpretation I =
〈∆I , ·I〉, where ∆I is the interpretation domain and interpretation function ·I maps

• elements of CN (named concepts) to subsets of ∆I,

• elements of RN (named roles) to subsets of ∆I ×∆I,

• elements of IN (named individuals) to elements of ∆I.

The interpretation function is extended to complex concept/role constructors as shown
in Table 2.2. For a SROIQ theory K,

• an interpretation I is a model of K, denoted as I |= K, whenever I |= α for
each axiom α ∈ K. The relation I |= α is defined in Table 2.3,

• K is consistent, if I |= K for some interpretation I,

• an axiom α is a logical consequence of K, denoted as K |= α, if I |= α,
whenever I |= K.

�

In Tables 2.2 and 2.3, the last column shows the common description logic symbol it
is used for the construct, e.g. O stands for nominal support, or I stands for5 inverse role
support in the particular logic. Rows having ALC in the last column denote constructs
that belong to the attributive language with complements (ALC), a subset of SROIQ
introduced in [50] that is considered one of the fundamentals for description logic research
in the past decades. This language will be used to demonstrate description logic reasoning
in Section 2.5.1.

Syntax of SROIQ, introduced in this section, is redundant. All ABox axioms can
be expressed by TBox axioms with the same meaning, e.g. α4 can be replaced by
{PillarScour} v ∃isFailureOf · {CharlesBridge}. Another common syntactic sugar is to
denote (≥ nC ·R) u (≤ nC ·R) as (= nC ·R), or to denote (≥ nR · >) as (≥ nR)
and similarly for = and ≤. Also, [49] introduces some other constructs that are expressible
(as already shown in [49]) using the syntax introduced here, including negative property
assertions, or stating that two individuals are different.

Let’s discuss another important aspect of SROIQ. Analogously to other description
logics, SROIQ is monotonic, i.e. all logical consequences of an ontology must hold also
after introducing additional axioms to the ontology. Monotonicity of SROIQ is closely
related to OWA, i.e. whatever is not known is not assumed to be false, but might be
true or false based on some future knowledge.

5Note that in this thesis, the symbol I is used primarily for denoting an interpretation. Usage of the
symbol I to denote inverse role construct will be stated explicitly each time it is used.

17

concept C interpretation CI description symbol
> ∆I (universal concept) ALC
⊥ ∅ (bottom concept) ALC
¬C ∆I \ CI (negation) ALC

C1 u C2 C1
I ∩ C2

I (intersection) ALC
C1 t C2 C1

I ∪ C2
I (union) ALC

∃R · C {a | ∃b : 〈a, b〉 ∈ RI ∧ b ∈ CI} (full existential
quantification) ALC

∀R · C {a | ∀b : 〈a, b〉 ∈ RI =⇒ b ∈ CI} (value restriction) ALC
{a} {aI} (nominals) O

∃S · Self {a | 〈a, a〉 ∈ SI} (self restriction) R

≤ nS · C

a
∣∣∣∣∣
∣∣∣∣{b | 〈a, b〉 ∈ SI ∧ b ∈ CI}∣∣∣∣ ≤ n

 (qualified number
restriction) Q

≥ nS · C

a
∣∣∣∣∣
∣∣∣∣{b | 〈a, b〉 ∈ SI ∧ b ∈ CI}∣∣∣∣ ≥ n

 (qualified number
restriction) Q

role R interpretation RI description
>R ∆I ×∆I (universal role)
R− {〈a, b〉|〈b, a〉 ∈ RI} (inverse roles) I

Table 2.2.: Concept and role constructors for SROIQ.

Example 5 To demonstrate open world assumption, consider four consistent SROIQ
ontologies:

K1 = {Failure(PillarScour),Failure v ∀isFailureOf · Structure}
K2 = K1 ∪ {Failure v (= 1 isFailureOf)},
K3 = K2 ∪ {isFailureOf(PillarScour,CharlesBridge)},
K4 = K3 ∪ {isFailureOf(PillarScour,KarluvMost)}.

A logical consequence of K3 (and also K4) is the axiom Structure(CharlesBridge) saying
that CharlesBridge is an instance of Structure, although K3 does not contain this axiom.
Similarly, a logical consequence of K4 is the axiom {CharlesBridge} ≡ {KarluvMost}
saying that CharlesBridge and KarluvMost are the same individuals, although K4 does
not contain this axiom. On the other hand, although K2 does not contain the ax-
iom isFailureOf(PillarScour,CharlesBridge), its opposite, i.e. the axiom {PillarScour} v
∀isFailureOf · ¬{CharlesBridge} is not a logical consequence of K2. Adding this axiom into
K3 would cause its inconsistency.

These examples show the benefits of ontologies for “completing” incomplete knowledge
(e.g. on the semantic web). However, they are insufficient for applications that need

18

axiom αT I |= αT iff description symbol
C1 v C2 C1

I ⊆ C2
I (subsumption) ALC

C1 ≡ C2 C1
I = C2

I (equivalence) ALC
axiom αR I |= αR iff description

R1 ◦ . . . ◦Rn v R R1
I ◦ . . . ◦Rn ⊆ RI (role hierarchy) R

Tra(R) 〈a, b〉 ∈ RI ∧ 〈b, c〉 ∈ RI =⇒
〈a, c〉 ∈ RI

(transitivity) trans

Sym(R) 〈a, b〉 ∈ RI =⇒ 〈b, a〉 ∈ RI (symmetry) R
Asy(S) 〈a, b〉 ∈ SI =⇒ 〈b, a〉 /∈ SI (asymmetry) R
Ref(R) ∀a : 〈a, a〉 ∈ RI (reflexivity) R
Irr(S) ∀a : 〈a, a〉 /∈ SI (irreflexivity) R

Dis(S1, S2) S1
I ∩ S2

I = ∅ (disjointness) R
axiom αA I |=A iff description

C(a) aI ∈ CI (concept assertion) ALC
R(a1, a2) (a1

I , a2
I) ∈ RI (role assertion) ALC

Table 2.3.: SROIQ axioms.

to define the form of data they manipulate – this problem is addressed by integrity
constraints introduced in Section 2.8.

2.5. Consistency Checking in Description Logics
There are several approaches that can be used for deciding consistency of an ontology
in description logics. First, there are attempts to exploit the analogy of description
logics with other logic formalisms. In [51] and [52], an ontology is translated into FOPL
and then it is processed by an existing FOPL reasoner. Other approaches try to make
use of translation into modal logics or propositional dynamic logics (for both see [48]).
Adaptations of well-known resolution techniques for description logics are studied in [53]
and [54].

However, current state of the art description logic reasoners (e.g. Pellet [55]) are
typically based on a form of a tableau algorithm. The main idea of a tableau algorithm
can be expressed as “Try to construct a model of the ontology. If a model can be
constructed, then the ontology is consistent, otherwise it is not.” In case of description
logics, tableau algorithms won over the other approaches due to their transparentness
and possibility of efficient optimizations (see Chapter 9 in [48]).

In this section I will introduce the tableau algorithm for a subset of SROIQ description
logic – the attributive language with complements ALC, introduced in [50]. ALC allows
to use only boolean constructs (¬,u,t) and quantifiers (∀, ∃) for constructing complex

19

concepts – it disallows number restrictions, nominals, inverse properties as well as RBox
axioms. Detailed description on constructs available in ALC is shown in Table 2.2 and
2.3 in Section 2.4. Comparing to the tableau algorithm for SROIQ that is introduced
in [49], tableau algorithm for ALC is more compact and readable, while allowing to use
the same optimizations discussed in Section 2.6.

Tableau algorithms aim at constructing a model of an ontology. During the algorithm
run, each (possibly infinite) candidate model is represented by a (necessarily finite)
completion graph. A completion graph is a labeled oriented graph G = 〈VG, EG, LG〉,
where each x ∈ VG is labeled with a set LG(x) of concepts, and each edge 〈x, y〉 ∈ EG is
labeled with a set LG(〈x, y〉) of roles. Furthermore, a completion graph G

• contains a direct clash, if {A,¬A} ⊆ LG(x) for some named concept A, or
⊥ ∈ LG(x), or ¬> ∈ LG(x),

• is complete w.r.t. to the set J of completion rules, if no completion rule
from J can be applied on it.

2.5.1. Tableau algorithm for ALC
First, let’s consider a tableau algorithm for consistency checking of an ALC ontology
K = T ∪ A.

1. (PREPROCESSING) All concepts in K have to be transformed into Negation Nor-
mal Form (NNF). This means to “move negation in front of named concepts” using
equivalences, like ¬(C1 u C2) ≡ ¬C1 t ¬C2, or ¬(∃R · C) ≡ ∀R · ¬C. Furthermore,
each equivalence axiom C1 ≡ C2 ∈ T has to be replaced by two subsumption
axioms C1 v C2 and C2 v C1. See [48] and [50] for more details.

2. (INITIALIZATION) Initial state of the algorithm is S0 = {G0}, where G0 =
〈VG0 , EG0 , LG0〉 is a completion graph, that “corresponds to A”, i.e.
• VG0 contains all named individuals occurring in some axiom of A,
• EG0 contains all pairs 〈a1, a2〉 occurring in some R(a1, a2) ∈ A,
• LG0 labels each vertex (individual) a with a set {C | C(a) ∈ A}, and each

edge 〈a1, a2〉 with a set {R | R(a1, a2) ∈ A}.

3. (CONSISTENCY TEST) Denote the current state as S. Remove from S any G
that contains a direct clash. If S = ∅ then return INCONSISTENT.

4. (MODEL TEST) Take arbitrary G ∈ S that does not contain a direct clash.
If G is complete with respect to the completion rules in Table 2.4, then return
CONSISTENT.

5. (RULE APPLICATION) Find a completion rule that is applicable on G. Denote
the new state S ′ created from the current state S and go to step 2.

20

v-rule
if: (C1 v C2) ∈ T and (¬C1 t C2) /∈ LG(a) for some a that is not blocked.

then: S ′ = S ∪ {G′} \ {G}, where G′ = 〈VG, EG, LG′〉.
LG′ = LG except LG′(a) = LG(a) ∪ {¬C1 t C2}.

u-rule
if: (C1 u C2) ∈ LG(a), for some a that is not blocked and {C1, C2} * LG(a).

then: S ′ = S ∪ {G′} \ {G}, where G′ = 〈VG, EG, LG′〉.
LG′ = LG except LG′(a) = LG(a) ∪ {C1, C2}.

t-rule
if: (C1 t C2) ∈ LG(a), for some a that is not blocked and {C1, C2} ∩ LG(a) = ∅.

then: S ′ = S ∪ {G1, G2} \ {G}, where Gk = 〈VG, EG, LGk
〉.

LGk
= LG except LGk

(a) = LG(a) ∪ {Ck} for k ∈ {1, 2}.

∃-rule

if: ∃R · C ∈ LG(a1), for some a1 that is not blocked, and there is
no a2 ∈ VG, such that both R ∈ LG(〈a1, a2〉) and C ∈ LG(a2).

then: S ′ = S ∪ {G′} \ {G}, where G′ = 〈VG ∪ {a2}, EG ∪ {〈a1, a2〉}, LG′〉.
LG′ = LG except LG′(a2) = {C}, LG′(〈a1, a2〉) = {R}.

∀-rule

if: ∀R · C ∈ LG(a1), for some a1 that is not blocked and there is
a2 ∈ VG, such that R ∈ LG(〈a1, a2〉), but not C ∈ LG(a2).

then: S ′ = S ∪ {G′} \ {G}, where G′ = 〈VG, EG, LG′〉.
LG′ = LG except LG′(a2) = LG′(a2) ∪ {C}.

Table 2.4.: Completion rules used for expanding a set of ALC completion graphs. G =
〈VG, EG, LG〉 is the completion graph chosen in the current iteration.

The tableau algorithm evolves a set S of completion graphs (corresponding to partial
candidate models) according to the completion rules in Table 2.4. Whenever a rule
application causes a clash in a completion graph, the graph is discarded (which prunes
candidate models corresponding to the graph). The algorithm terminates when no more
rules can be applied on a clash-free completion graph (ontology is consistent), or when
no completion graph remains to be explored (ontology is inconsistent).

To ensure termination of the algorithm it is necessary to detect cycles of the generated
model that might occur due to the application of the v-rule. The cycles are detected
using blocking that ensures that a completion graph, although representing possibly
infinite model, is always finite by ensuring that the completion rules do not generate
patterns that “repeat regularly”. The notion of regularity is different for each description
logic; for ALC, so called subset blocking [48] is used:

A vertex a1 in a completion graph G, but not occurring in A, is blocked by a
vertex a2, if there is an oriented path in G from a2 to a1 and LG(a1) ⊆ LG(a2).

The algorithm does not prescribe the order, in which the rules are selected. Of
course, this can significantly influence performance. E.g. non-deterministic rules (t-
rule in case of ALC) should be performed only when no other rule is applicable, to
prevent generating additional completion graphs, all of which need to be tested in

21

CONSISTENCY/MODEL TEST steps of the algorithm. As shown in [44], complexity of
ALC consistency checking is exponential in time (ExpTime-complete) and complexity
of SROIQ even nondeterministic exponential in time (NExpTime). To cope with the
complexity, many efficient optimizations of tableau algorithms have been proposed for
description logics, as presented in Chapter 9 of [48].

Correctness and Completeness I will not repeat the full proof of correctness and
completeness of the algorithm, that was already presented in [48] and [50]. I only sketch
main rationale behind the algorithm that helps to better understand its idea. Correctness
is a direct consequence of the semantics of completion rules. E.g. if there was a model
I corresponding to G and A1 u A2 ∈ LG(a) for some a, then, following Section 2.4,
aI ∈ (A1 u A2)I and aI ∈ A1

I ∩ A2
I . This is ensured by putting both A1 and A2 into the

L′G(a) by the u − rule. For the other direction and other rules the idea is similar.
Completeness is shown by constructing a canonical model I of K for each complete

completion graph that does not contain a direct clash, as follows:

• The interpretation domain ∆I contains all graph vertices,

• for each named concept A we define AI = {a | A ∈ LG(a)},

• for each named role R we define RI = {〈a1, a2〉 | R ∈ LG(〈a1, a2〉)},

Induction along the axiom types and complex concept structure shows that it is indeed a
model of the original ontology. E.g. if C(a) ∈ K, then aI ∈ CI must hold for any complete
graph G: (i) if C = A is a named concept, then indeed aI ∈ AI because A ∈ LG0(a)
(this is, how G0 was constructed in the INITIALIZATION step of the algorithm) and
LG0(a) ⊆ LG(a), (ii) if C = A1 u A2 where both A1 and A2 are named concepts, then
aI ∈ A1 u A2

I and thus aI ∈ A1
I and aI ∈ A2

I because {A1,A2} ⊆ LG′ where G′ is
a completion graph that resulted from application of the u-rule. If this rule was not
applied, then G ⊇ G′ is not complete, which contradicts our assumption. For the other
axiom types and concept constructs the idea is similar.

In case of ALC, there is a correspondence between a model and a complete completion
graph simple, as presented. However, tableau algorithms for expressive description logics
require more complex structures and more complex transformations to achieve such
correspondence, see e.g. [48] or [49] for more details.

�

Example 6 Let’s check consistency of an ALC ontology K = {α}, where α is the axiom
C(PillarScour) and C is

(∃isFailureOf · Column u ∃isFailureOf · Pillar u ¬∃isFailureOf · (Pillar u Column))

This axiom says that PillarScour is failure of some column and it is a failure of some
pillar but it is not a failure of an object that is a column and a pillar at the same time.

22

The first step is to transform the complex concept into NNF. This produces α2 that is
C2(PillarScour) where C2 is

(∃isFailureOf · Column u ∃isFailureOf · Pillar u ∀isFailureOf · (¬Pillar t ¬Column)),

where α2 is semantically equivalent with α i.e. {α} |= {α2} and {α2} |= {α}.
The initial state of the algorithm is S0 = {G0}, where graph

G0 = 〈{PillarScour}, ∅, {PillarScour 7→ {C2}}〉

is shown6 in Figure 2.5. At this point, the algorithm passes four sequences of the steps

Figure 2.5.: Initial state of the tableau algorithm.

CONSISTENCY TEST → MODEL TEST → RULE APPLICATION of the tableau
algorithm, that can be denoted as a state evolution during the step RULE APPLICATION
(the label over the arrow denotes the rule that was used):

{G0}
u-rule (twice)
−−−−−−−−−−→ {G1}

∃-rule−−−−→ {G2}
∃-rule−−−−→ {G3}

∀-rule−−−−→ {G4},

where G4 is depicted in Figure 2.6.
So far, only deterministic rules (i.e. those that do not increase the number of com-

pletion graphs) have been used. Looking carefully at Figure 2.6, it is clear that the
only rule that remains applicable is the t-rule. The rule can be applied on the concept
(¬Column t ¬Pillar) in the label of either vertex 0 or 1. Picking e.g. 0 and applying
t-rule produces a new state {G5, G6} depicted in Figure 2.7. Graph G5 contains a direct
clash, as Column and ¬Column is in the label of vertex 0, and thus G5 is discarded, as it
cannot be transformed to a model (e.g. the canonical model defined in the Correctness
and Completeness paragraph above). Thus, G6 is picked and t-rule is applied, which
results in a new state {G7, G8}, as shown in Figure 2.8.

While G7 contains a direct clash in vertex 1, completion graph G8 is complete with
respect to the ALC completion rules and does not contain a direct clash. Thus, a canonical
model I1 = 〈∆I1 , ·I1〉 can be constructed from G8 as follows:

∆I1 = {PillarScour, 0, 1},
isFailureOfI1 = {〈PillarScour, 0〉, 〈PillarScour, 1〉},

PillarI1 = {1},
ColumnI1 = {0},

PillarScourI1 = {PillarScour}.
6Visualization of completion graphs in this example has been created by my implementation of tableau

reasoner available at http://krizik.felk.cvut.cz/km/dl, cit. 12/1/2012.

23

http://krizik.felk.cvut.cz/km/dl

Figure 2.6.: Graph G4 evolved deterministically from G0 using u-rule, ∃-rule, ∀-rule.

I1 is not the only interpretation of K - another model of K might be I2, for which
Column = {0,PillarScour} and coincides with I1 on the rest. This documents the fact that
a complete completion graph corresponds to one (canonical) model, but might correspond
to other models as well.

2.6. Basic Reasoning Services for Description Logics
Last section demonstrated consistency checking in description logics on a tableau al-
gorithm for ALC, a subset of OWL DL. Although important, and typically also most
computationally demanding, consistency checking is not sufficient in practical applica-
tions. Additionally, description logic reasoners support other inference services, ranging
from basic queries (discussed in this section) to expressive queries and metaqueries
(discussed in Section 2.7.1). Although all of such queries make use of a (typically tableau)
consistency checking in their core, wide spectra of optimizations make reasonable to take
them as specialized services.

Basic services typically include
basic TBox queries like concept subsumption (or equivalence/disjointness/unsatisfiabil-

ity checking, etc.), e.g. whether

K |= ∃hasPart · Pillar v Bridge

“Are objects with at least one pillar always bridges ?”

basic RBox queries like role subsumption (or equivalence/disjointness checking, etc.),
e.g. whether

K |= isFailureOf v affects

24

(a) Graph G5

(b) Graph G6

Figure 2.7.: Graphs G5 and G6 produced by application of the t-rule on vertex 0.

“Do failures of objects always affect these objects ?”

basic ABox queries like instance checking (or role checking, instance retrieval, class
retrieval, etc.), e.g. whether

K |= (≥ 5 hasPart · Pillar)(CharlesBridge)

“Does Charles Bridge contain at least five pillars ?”

As shown in [48] and [56], in description logics providing full concept negation construct
(both ALC and SROIQ satisfy this), basic TBox and ABox inference services can be

25

(a) Graph G7

(b) Graph G8

Figure 2.8.: Graphs G7 and G8 produced by application of the t-rule on vertex 1.

reduced to one or more consistency checks. E.g. for K consistent, K |= C(a) holds
whenever K ∪ {(¬C)(a)} is inconsistent. For more details on basic inference problems
and their reduction, see [48].

Based on this, for the purpose of this thesis, I take a SROIQ reasoner as a black
box, providing a set of services defined in Table 2.5. The introduced set of operations
is not minimal, as all of them could be replaced by one or more CC calls, as discussed
above. Still, it is small enough to easily fit to the major Java-based APIs for OWL 2:
OWLAPI [57], Jena [58], or reasoner integration API OWLLink [59], as well as native
APIs of major OWL 2 reasoners, e.g. Pellet [55], JFact [60], or HermiT [61] (see [62] for
an extensive list of OWL 2 reasoner implementations).

26

operation o return value χ(o)

ABox


CC(K) true, iff K is consistent 1 · tCC
IC(K, C, a) true, iff K |= C(a) 1 · tCC
IR(K, C) all a ∈ IN , s.t. K |= C(a) |IN | · tCC
CR(K, a) all A ∈ CN , s.t. K |= A(a) |CN | · tCC

TBox



subC(K, C) all A ∈ CN , s.t. K |= A v C |CN | · tCC
superC(K, C) all A ∈ CN , s.t. K |= C v A |CN | · tCC
isSubC(K, C1, C2) true iff K |= C1 v C2 1 · tCC
eqC(K, C) all A ∈ CN , s.t. K |= A ≡ C |CN | · tCC
isEqC(K, C1, C2) true iff K |= C1 ≡ C2 1 · tCC

RBox



subP(K, R) all R ∈ RN , s.t. K |= R v R |RN | · tCC
superP(K, R) all R ∈ RN , s.t. K |= R v R |RN | · tCC
isSubP(K, R1, R2) true iff K |= R1 v R2 1 · tCC
eqP(K, R) all R ∈ RN , s.t. K |= R ≡ R |RN | · tCC
isEqP(K, R1, R2) true iff K |= R1 ≡ R2 1 · tCC

Table 2.5.: SROIQ reasoner API. The services take as an input an ontology K, a concept
C(i), a role R(i) and an individual a. The last column denotes the maximal
cost of the operation. Due to the complexity of tableau reasoning, the cost is
measured in the amount of estimated time spent on tableau algorithm runs.
An average time taken by a single tableau algorithm run is denoted as tCC .

The last column in Table 2.5 shows maximal number of consistency checks a tableau
reasoner has to perform to evaluate the operation. The set of operations has been selected
in such a way that the actual number of consistency checks (that are decidable but
at-least-exponential, as shown in Section 2.5.1), is typically much smaller due to the
optimizations sketched in the rest of this section and described in detail in [48] and [63].

Let’s shortly sketch optimizations of basic ABox queries first, as they are more
elaborated in literature with respect to conjunctive query answering. As shown in Section
2.5.1, by applying completion rules, a tableau algorithm evolves a set of completion
graphs (see [63] and [64]), that correspond to potential models of the ontology. Obvious
non-instances using completion optimization of IC, IR and CR refuses each C(a)
inference that is in clash with some complete completion graph G, i.e. whenever G
contains a vertex a labeled with ¬C, and similarly for R(a1, a2). E.g. during a call
to IC(C, a), the reasoner first looks into each completion G. If G contains a vertex a
that has a label ¬C, the reasoner rejects the entailment without any additional tableau
consistency check.

Another optimization makes use of a precompletion, which is a completion graph that
was obtained only by application of deterministic rules (in case of ALC all but t-rule).
Precompletion (e.g. G0 to G4 in Example 6) represents a common part of all models of the
ontology. In other words, all complete completion graphs (that can be transformed to all
possible models of the ontology) contain each precompletion as their subgraph. The most

27

informative precompletion is the “largest ones”, i.e. precompletion (e.g. G4 in Example
6) that contains no other precompletion as its subgraph. Obvious instances using
precompletion optimization of IC, IR and CR makes use of the largest precompletion
as a cache for inferences of the form C(a) and R(a1, a2) that are valid in all models of
K. E.g. during a call to IC(C, a), the reasoner first looks into the precompletion G. If
G contains a vertex a that has a label C (i.e. C ∈ LG(a)), the reasoner approves the
entailment withouts any additional tableau consistency check.

In addition to caching completion and precompletion information, IR and CR can be
further optimized using methods presented in [63], namely binary instance retrieval and
its variants. A naive way of finding all instances of a concept C is to perform an instance
check K |= C(a) for each individual a mentioned in K (linear instance retrieval). Binary
instance retrieval optimization tries to reduce the number of instance checks by checking
many individuals being instances of C during a single tableau algorithm run using the
divide and conquer strategy.

As for the TBox and RBox operations, these make use of concept/role taxonomies
that are cached during ontology classification by the reasoner, as described in [48]. In a
tableau reasoner, told concept/role taxonomy can be constructed from all C1 v C2 (resp.
R1 v R2) axioms that makes use of the transitivity of the v and ≡ relations. Although
this taxonomy is incomplete, many named concepts (resp. roles) can be immediately
decided to be part of the result of the subC(K, C) operation (resp. subP(K, R)), and
also other TBox/RBox operations in Table 2.5, without additional tableau consistency
checks.

2.7. Expressive Description Logic Queries
Basic reasoning services were just a first step towards queries that can be practically
used in Ontology-based Information System (OIS), introduced later in Chapter 3. Thus,
expressive query languages with varying features, and their implementations, were
introduced during last few years.

The very first common expressive language for ontology queries were conjunctive ABox
queries, that allow to retrieve individuals from an ontology, thus being similar to select-
project-join queries into relational databases. I will discuss conjunctive ABox queries, as
well as their extension with negation as failure called Distinguished Conjunctive Queries
with Negation (DCQNOT), later in this Section.

However, comparing to relational databases, OWL ontologies contain also significant
amount of metaknowledge for expressing taxonomies and complex characteristics of
classes (e.g. disjointness, equivalence) or properties (e.g. transitivity, functionality). To
address these constructs, query languages SPARQL-DL, SQWRL ([65]) and OWL-SAIQL
([66]) appeared during last years that allow evaluating mixed ABox, TBox and RBox
queries to retrieve individuals, classes, and properties.

SQWRL is a SWRL-based query language [37] that allows to pose queries by combining
OWL axioms and SWRL atoms, in which individual/class/property names can be replaced
by distinguished variables. Comparing to SPARQL-DL and OWL-SAIQL, SQWRL allows

28

also to formulate aggregate queries.
OWL-SAIQL was another proposal for expressive queries to OWL. It allows for

retrieving named classes as well as complex class descriptions, comparing to SQWRL
and SPARQL-DL.

SPARQL-DL allows for both distinguished variables and undistinguished variables
in queries and provides native SPARQL [45] syntax. Distinguished variables bind
individuals/classes/properties that are returned in the result set, while undistinguished
variables match domain elements that need not be interpretations of individuals in the
queried ontology. Thus, undistinguished variables are handling OWL semantics (and
thus also OWL DL entailment for SPARQL) closely, being able to match inferred domain
elements that are not represented by individuals. Specifying a variable as undistinguished,
rather than distinguished, might significantly influence the result set of a query, as shown
in Example 7 in Section 2.7.1.

Support for both undistinguished and distinguished variables were the principal reasons
to base my work in Chapter 4 on SPARQL-DL. Another reason was that SPARQL syntax
for SPARQL-DL simplifies introduction of OWL query semantics in already existing
semantic web applications backed by RDF and SPARQL, as no transformations between
query syntaxes are needed for the query engine users.

In this section I recall the two expressive query languages that generalize basic reasoning
services and that are used in this thesis:

1. SPARQL-DL queries, and

2. DCQNOT queries,

both of which play important role in the methodology and framework introduced in
Chapter 4. DCQNOT queries are used to formalize semantics of OWL integrity constraints,
as shown in Section 2.8, while SPARQL-DLNOT , an extended version of SPARQL-DL, is
used for posing expressive queries to OWL ontologies. Other expressive query languages
are discussed in Chapter 3. I will start with the definition of SPARQL-DL and introduce
also conjunctive ABox queries as their significant subset. DCQNOT queries are introduced
next.

2.7.1. SPARQL-DL Language
SPARQL-DL [31] was introduced as an expressive query and metaquery language to
OWL DL ontologies. Originally, it was designed as an advanced OWL-compliant en-
tailment regime for the SPARQL language, thus realizing the OWL DL entailment of
basic graph patterns, as discussed in Section 2.3. As a result, SPARQL syntax for basic
graph patterns was originally used for SPARQL-DL queries. Several alternative syntaxes
have been suggested for SPARQL-DL since that time. In [67], a new syntax called Terp
that combines the SPARQL syntax with simplified syntax for OWL class constructs,
was introduced. This syntax was meant as a more readable alternative for SPARQL
users. Another syntax called SPARQLAS that makes use of templates similar to OWL

29

functional syntax is introduced in [68]. Here, I will use the original SPARQL-DL abstract
syntax defined below exclusively.

Definition 3 (SPARQL-DL abstract syntax) Let’s have a SROIQ ontology K,
with vocabulary V = 〈CN,RN, IN〉, as defined in Section 2.4. Next, consider a set Vvar
of distinguished variables and a set Vbnode of undistinguished variables, both disjoint
from CN ∪RN ∪ IN . We define a query atom q using the following expansion7:

q ← Ty (a, c) | PV (a1, r, a2) | SA (a1, a2)
| DF (a1, a2) | SCO (c1, c2) | EC (c1, c2) | DW (c1, c2)
| CO (c1, c2) | SPO (r1, r2) | EP (r1, r2)
| IO (r1, r2)
| Fun (r) | IFun (r) | Sym (r) | Trans (r),

where a(i) ∈ IN ∪ Vvar ∪ Vbnode, c(i) ∈ SC ∪ Vvar, r(i) ∈ RN ∪ Vvar,

• A SPARQL-DL query Q is a list [q1, . . . , qn] of query atoms ql, interpreted as their
conjunction.

• Set V (Q) ⊆ Vvar (resp. U(Q) ⊆ Vbnode, resp. I(Q) ⊆ IN) consists of all distin-
guished variables (resp. undistinguished variables, resp. individuals) that appear as
arguments of some query atom of Q.

• A semi-ground query is a query Q with V (Q) = ∅. Each q ∈ Q is called a
semi-ground atom.

�

This definition differs slightly from the definitions in [31]. For the same reasons as
in Section 2.4, this definition omits data properties and parts of OWL that are not
backed by logical reasoning, that were presented in [31]. Thus Annotation, ObjectProperty
and DataProperty query atoms are omitted, and PropertyValue query atom can only
connect an individual/variable to another individual/variable, and not to data literal.
Another difference is that in the original definition a(i) is picked from the set of IN ∪
RN ∪ CN ∪ Vvar ∪ Vbnode, instead of IN ∪ Vvar ∪ Vbnode. The original definition reflects
OWL 2 mechanism for syntactic name overloading called punning that is not available in
SROIQ. This mechanism is purely syntactic means that allows for using the same name
for two different entities (e.g. for an individual Car and a concept Car), but with different
interpretation for each of the two meanings (e.g. CarI is a domain element whenever the
occurrence of Car is used in the position of an individual, and it is a set whenever Car is
used in the position of a concept).

7To keep descriptions compact and whenever it will not compromise readability, I will use shortened
versions of the original atom names, e.g. Type will be abbreviated as Ty, atom PropertyValue as PV,
or InverseFunctional as IFun, etc. Full atom names are listed in Appendix A.

30

Distinguished and undistinguished variables are an important notion. While distin-
guished variables have to be bound to an individual, undistinguished variables need not;
they might match “inferred individuals”. This distinction is formalized in detail in Defini-
tion 4. As a result, each SPARQL-DL query allows for undistinguished variables only in
position of an individual while allowing for distinguished variables in all other positions 8.
To make a clear distinction between undistinguished variables and distinguished variables
in a query, I prefix undistinguished variables (elements of U(Q) ⊆ Vbnode) with ! sign,
and distinguished variables (elements of V (Q) ⊆ Vvar) with ? sign.

Definition 4 (SPARQL-DL semantics) For a SROIQ ontology K with vocabulary
V = 〈CN,RN, IN〉 and a SPARQL-DL query Q of the form [q1, . . . , qn] as above, the
semantics is defined as follows. A function µ : Vvar → CN ∪RN ∪ IN is a binding for Q
if it is defined for all distinguished variables from V (Q) = {?v1, . . . , ?vN}, i.e. µ has the
form µ = {?v1 7→ X1, . . . , ?vN 7→ XN}, where Xl ∈ CN ∪RN ∪ IN . Each strict subset
of µ is a partial binding for Q. An application of a (partial) binding µ to query atom ql
results in a new query atom q′l = µ(ql), where each variable ?vk (from the domain of µ)
is replaced by an individual ak = µ(?vvk

). An application of a (partial) binding µ to Q
results in a query µ(Q) = [µ(q1), . . . , µ(qn)].

satisfaction A semi-ground query QS is satisfied by interpretation I, denoted I |= QS, if
there exists an extension σ of ·I, providing a mapping for undistinguished variables
to domain elements that satisfies each semi-ground atom qSi ∈ QS. The satisfaction,
denoted I |=σ q

S
i , is defined in Table 2.6 for each semi-ground SPARQL-DL query

atom.

logical consequence A semi-ground query QS is a logical consequence of K, denoted as
K |= QS, if I |= QS whenever I |= K.

solution A binding µ is a solution to Q (or also valid binding) if, when applied to all
(distinguished) variables in V (Q), we get a semi-ground query QS = µ(Q), for
which K |= QS.

�

Intuitively, a semi-ground query is a logical consequence of an ontology K, if the graph
(pattern) represented by the query “can be mapped” to each model of K. For an intuition
behind the notion of distinguished and undistinguished variables see Figure 2.9.

To demonstrate capabilities of SPARQL-DL, consider queries related to the LUBM
benchmark dataset [69], that is a synthetic OWL benchmark ontology of universities,
students, teachers and respective relations between them. These queries are used for
query engine implementation benchmarking in Section 5.2.1

8Definition of reasonable semantics for undistinguished variables in class/property positions is an open
problem – natural extrapolation of the RDF existential semantics of bnodes to “anonymous class”
semantics would cause that an infinite number of complex classes/properties could match given
bnode.

31

semi-ground qS I |=σ q
S if ∀x, y, z ∈ ∆I :

Ty (a, C) σ(a) ∈ CI

PV (a1, R, a2) (σ(a1), σ(a2)) ∈ RI

SA (a1, a2) σ(a1) = σ(a2)
DF (a1, a2) σ(a1) 6= σ(a2)
SCO (C1, C2) C1

I ⊆ C2
I

EC (C1, C2) C1
I = C2

I

DW (C1, C2) C1
I ∩ C2

I = ∅
CO (C1, C2) C1

I = ∆I \ C2
I

SPO (R1, R2) R1
I ⊆ R2

I

EP (R1, R2) R1
I = R2

I

IO (R1, R2) R1
I = (R2

−)I

Fun (R) 〈x, y〉 ∈ RI ∧ 〈x, z〉 ∈ RI =⇒ y = z

IFun (R) 〈x, y〉 ∈ (R−)I ∧ 〈x, z〉 ∈ (R−)I =⇒ y = z

Sym (R) 〈x, y〉 ∈ (R−)I =⇒ 〈y, x〉 ∈ (R−)I

Trans (R) 〈x, y〉 ∈ RI ∧ 〈y, z〉 ∈ RI =⇒ 〈x, z〉 ∈ RI

Table 2.6.: Interpretation of SPARQL-DL semi-ground atoms.

32

Figure 2.9.: The difference between undistinguished and distinguished variables is demon-
strated on a simple SPARQL-DL query [PV (?v1, affects, !u2)], SPARQL syn-
tax of which is in Figure 2.4. While distinguished variables are bound to
individuals (that are always interpreted as domain elements), undistinguished
variables (in this case !u2) might be satisfied with a domain element (here
a2
I) that is not an interpretation of any individual in K.

Example 7 (Distinguished and undistinguished variables) “Find all members
(?v1) of a research group (!u2) together with courses they take (?v3) and teachers (?v4) of
these courses (?v3).”:

[PV (?v1,worksFor, !u2),Ty (!u2,ResearchGroup),
PV (?v1, takesCourse, ?v3),PV (?v4, teacherOf, ?v3)]

This query shows the importance of undistinguished variables. When evaluating this
query against the LUBM(1) dataset [69], more than 1000 result bindings for variables
?v1, ?v3, ?v4 are found.

If the undistinguished variable !u2 is replaced by a distinguished one ?v2, the query has
a different meaning – the research group is required to be materialized in the knowledge
base (i.e. represented by an individual). This change, however, causes the query to return
no binding as all research groups are only inferred from the axiomatization of the LUBM
dataset and not explicitly represented by individuals in the ontology.

Example 8 (Variables in property position) “Find all the graduate students (?v1)
that are related (?v2) to a course (?v3) and find what kind of relationship (e.g. takesCourse,
teachingAssistantOf) it is”:

[Ty (?v1,GraduateStudent),PV (?v1, ?v2, ?v3),Ty (?v3,Course)].

33

Example 9 (Querying TBox and ABox) “Find all students (?v1) who are also em-
ployees and find what kind (?v2) of employee (e.g. ResearchAssistant) they are”:

[Ty (?v1, Student),Ty (?v1, ?v2), SCO (?v2,Employee)].

Example 10 (Querying RBox and ABox) “Find all people (?v1) that teach some
course (!u2) and that are members of Department0. The type of their membership
(worksFor, headOf) is captured by the distinguished variable ?v3.”

[SPO (?v3,memberOf),PV (?v1, ?v3,Department0),
Ty (?v1,Person),PV (?v1, teacherOf, !u2)].

Authors of [31] didn’t provide techniques for SPARQL-DL evaluation. I will discuss
this problem in Chapter 4 and present my novel evaluation and optimization techniques
for SPARQL-DL.

2.7.2. Conjunctive ABox Queries
Conjunctive ABox queries are a significant subset of SPARQL-DL queries. However,
they were discussed in literature [70], [71] long time before introduction of SPARQL-DL
in [31]. Contrary to SPARQL-DL, for conjunctive ABox queries there are evaluation
techniques (presented in the next section) known from literature, as well as implemented
in OWL reasoners.

Roughly speaking, conjunctive ABox queries ask for ontology individuals that comply
with some graph pattern. As conjunctive ABox queries can be expressed by means of
SPARQL-DL, I will reuse the syntax and semantics introduced in Section 2.7.1 to define
them9.

Definition 5 (Conjunctive ABox Query) A conjunctive ABox query Q is a
SPARQL-DL query

[q1, . . . , qn],

where each query atom ql is of the form Ty (a, C), or PV (a1, R, a2) and a(i) ∈ IN ∪Vvar∪
Vbnode, C ∈ SC, and R ∈ RN . Semi-ground conjunctive ABox queries are denoted as
boolean queries.

�

Definition 6 (Query Graph) A graph of a conjunctive ABox query Q is a directed
labeled graph GQ = 〈VQ, EQ,LQ〉, where the set of vertices VQ = V (Q) ∪ U(Q) ∪ I(Q) is
the set of distinguished variables, undistinguished variables and individuals that occur

9Previous works on conjunctive ABox queries used different syntaxes. E.g. the boolean
query [Ty (!u1,GraduateStudent),PV (!u1, takesCourse, !u2),Ty (!u2,Course)] would be rendered in
[70] as !u1 : GraduateStudent ∧ 〈!u1, !u2〉 : takesCourse ∧ !u2 : GraduateStudent, and in [71] as
GraduateStudent(!u1) ∧ takesCourse(!u1, !u2) ∧ GraduateStudent(!u2).

34

Figure 2.10.: Query graph GQ1 for Q1.

in some q ∈ Q. The set of directed edges EQ is a set of pairs 〈a1, a2〉, where atom
PV (a1, R, a2) ∈ Q and the labeling LQ is defined as L(a) = {C | Ty (a, C) ∈ Q} and
L(a1, a2) = {R | PV (a1, R, a2) ∈ Q}. Furthermore, Q has a cycle over V ′Q ⊆ VQ
whenever the undirected subgraph Sub(GQ,V ′Q) of GQ induced by V ′Q contains a cycle.
A query Q has a cycle, if Q has a cycle over VQ.

�

Example 11 Let’s take the following query Q1 (with the query graph shown in Figure
2.10) into the LUBM dataset [69]. “Find all students (?v1) that take courses (?v2) taught
by their advisors (!u4). Retrieve also the courses and the affiliation (?v3) of the students”:

[PV (?v1, advisor, !u4),PV (!u4, teacherOf, ?v2),Ty (!u4,Employee),
PV (?v1, takesCourse, ?v2),PV (?v1,memberOf, ?v3)] ,

and thus V (Q1) = {?v1, ?v2, ?v3}, U(Q1) = {!u4}, and I(Q1) = ∅. Although GQ1 contains
a cycle over {?v1, ?v2, !u4}, the only undistinguished variable in the cycle is !u4.

2.7.3. Evaluating Conjunctive ABox Queries
So far, significant attention has been paid to boolean queries, i.e. queries that test just
the possibility to map a query pattern to all models of an ontology, without retrieving
any variable binding. In [70] the problem of answering boolean queries is reduced to
the checking of concept satisfiability for the ALC language [48]. To get rid of variables,
the authors use rolling-up technique that reformulates evaluation of a general boolean
query as a set of instance retrievals or instance checks. Although for ALC the proposed
technique works fine, the authors noticed that its generalization beyond ALC towards
expressive description logics (e.g. SROIQ) is problematic and it is possible only (i) for
logics employing the tree-model property [48], or (ii) for queries, graph of which does not
contain cycles made of undistinguished variables.

These limitations of boolean query answering using tableau algorithms and rolling-up
technique were overcome in [64] by introducing a specialized tableau algorithm to directly
check entailment of boolean queries over SHIQ ontologies (a SROIQ subset). The
modified tableau algorithm extends the standard one for consistency checking in SHIQ

35

[72] with a novel blocking condition10. However, this technique to be applicable requires
all roles in a conjunctive query to be simple, i.e. not transitive and without transitive
subroles. As discussed in [64], the same approach can be generalized to unions of boolean
conjunctive queries in a straightforward manner.

The presence of transitive roles in query atoms is handled in [73] and [74] for description
logics SHIQ and SHOQ (another subset of SROIQ). In both works, the respective
logic (SHIQ, resp. SHOQ) is extended with role conjunction construct to capture
“shortcuts” introduced by a transitive role. This work has shown that the problem of
answering conjunctive queries for both of these subsets is decidable. However, there is
still no decision procedure for conjunctive query answering in the language as expressive
as SROIQ (or even SHOIN , the logic backing OWL DL).

This analysis shows, that for full SROIQ, decidability of conjunctive queries is
maintained only when the query language is restricted. Based on this, the rest of this
section presents methods, that are used in state-of-the-art SROIQ tableau reasoners
for evaluation of conjunctive queries without cycles over undistinguished variables.

Let’s have an ontology K, a SROIQ tableau reasoner as specified in Section 2.6, and
a conjunctive query Q without cycles of undistinguished variables. Before evaluating Q
against K it is necessary to check consistency of K. If the initial consistency check fails,
the query answering procedure stops with an empty result (for non-boolean Q) or false
(for boolean Q). If the initial consistency check succeeds, the tableau reasoner constructs
the completion and precompletion structures along the way, as described in Section 2.6.
Assume that K is consistent.

In the rest of this thesis, I assume only conjunctive ABox queries, the graph of which
is connected. Each query, a graph of which contains more connected components, can be
split into several queries that can be evaluated independently for efficiency reasons and
their results combined in the end, see [71].

Boolean Queries

A simple way to enforce the semantics of a boolean query Q, shown in Algorithm 1, is
presented in [70]. This algorithm makes use of so called rolling-up technique, represented
by function roll(Q, x), that transforms a boolean query Q, for which Sub(GQ, U(Q)))
is a tree11, into a single C(•) query atom. The rolling-up technique describes a query Q
by a complex concept description “from the position of a given term x”, by iteratively
replacing each query atom PV (x,R, y) with a query atom (∃R · CY)(x), where CY is
a concept that represents the rest of the query rolled-up into y in a similar way. As
presented in [70], Algorithm 1 is a decision procedure for boolean queries Q for which
Sub(GQ, U(Q)) is a tree. On line 3 boolean queries with at least one individual are

10That preserves the blocking in a tableau algorithm to occur too early and thus ensures existence
of a syntactic mapping from a boolean query to each of resulting set of completion trees if such a
mapping exists.

11Individuals are not considered in the subgraph, as they do not violate the applicability of the rolling-up
technique: each individual a can be forked into two vertices to break the cycle without any semantic
impact, as aI = ν(a) for any extension ν of the interpretation function I.

36

Algorithm 1 Evaluation of Boolean Queries.
Input: Consistent K; boolean query Q.
Output: true if K |= Q, false otherwise.

1: function evalBool(K, Q)
2: if some q ∈ Q references an individual a then
3: if IC(K,roll(Q, a), a) then return true

4: else
5: if CC(K ∪ {roll(Q, !u) v ⊥}) = false for some !u then return true

6: return false

evaluated by a single IC call, while line 5 handles queries with only undistinguished
variables as follows: whenever roll(Q, !u) v ⊥ is the cause for inconsistency, it must be
the case that (roll(Q, !u))I is non-empty in each model I of K, and thus I |= Q.

Example 12 Let’s continue with Example 11 and consider Q1g = µ12(Q1) as follows
(µ12 = {?v1 7→ Jim, ?v2 7→ Math, ?v3 7→ DeptMath}):

[PV (Jim, advisor, !u4),PV (!u4, teacherOf,Math),Ty (!u4,Employee),
PV (Jim, takesCourse,Math),PV (Jim,memberOf,DeptMath)] ,

Q1g can be evaluated by rolling-up e.g. into Jim, obtaining roll(Q1g, Jim) = CJim, where

CJim = ∃advisor · (Employee u ∃teacherOf · {Math}) u ∃takesCourse · {Math}
u∃memberOf · {DeptMath}

and checking IC(K, CJim, Jim), as described in Algorithm 1.

Queries without Undistinguished Variables

The authors of [71] present an algorithm for evaluating queries without undistinguished
variables. To make their algorithm compliant with the notions used in this thesis, I
modify their description by introducing functions next and evalAtom, resulting in
Algorithm 2. Function next(K, Q, µ) returns a query that is a reordering of atoms in Q.
As different orderings of the same set of atoms are interpreted equally (see Definition 4) a
naive implementation of next(K, Q, µ) might return Q. Reordering of query atoms that
preserves connectedness of the evaluated query, and minimizes the number of tableau
reasoner runs is discussed in [71]. The method is based on a cheap preprocessing of the
ontology and computing statistics (e.g. number of asserted instances of a class is used to
estimate actual, inferred, number of instances of a class). Based on these statistics, for each
permutation of the query atoms an execution time is estimated and the best ordering
is selected for execution. Formalization of this technique and its extension towards
SPARQL-DLNOT queries will be presented in Section 4.2.2. Given the current binding
µ, the function evalAtom(K, q, µ), shown in Algorithm 3, finds all (partial) bindings

37

Algorithm 2 Evaluation of conjunctive ABox queries without undistinguished variables.
Input: Consistent K; query Q = [q1, . . . , qN]; binding µ
Output: Set of all valid bindings µ′ for Q.

1: function evalDist(K, Q, µ)
2: if Q = [] then return {µ}
3: else
4: [q, qp1 , . . . , qpN−1]← next(K, Q, µ)
5: β ← ∅
6: for µ′ ∈ evalAtom(K, q, µ) do β ← β ∪ evalDist(K, [qp1 , . . . , qpN−1], µ′)
7: return β

µ′ ⊇ µ such that K |= µ′(q). For example, evalAtom(K,PV (?v1, teacherOf,Math), ∅)
returns a set {µk} of bindings µk = {?v1 7→ ak}, where ak ∈ IR(K,∃teacherOf · {Math}).

Algorithm 2 is executed by the function call evalDist(K, Q, ∅) that recursively
searches the state space of possible (partial) bindings and backtracks once all query
atoms are evaluated. The soundness of Algorithm 2 and Algorithm 3 is presented in [71].

Algorithm 3 Evaluation of a query atom.
Input: Consistent K; query atom q; binding µ.
Output: Set of all (partial) bindings µ′ ⊇ µ such that K |= µ′(q).

1: function evalAtom(K, q, µ)
2: if µ(q) = Ty (a, C) then
3: if IC(K, C, a) then return {µ}
4: else return ∅
5: if µ(q) = PV (a1, R, a2) then
6: if IC(K, (∃R · {a2}), a1) then return {µ}
7: else return ∅
8: β = ∅
9: if µ(q) is Ty (?v1, C) then

10: for a ∈ IR(K, C) do β ← β ∪ {µ ∪ {?v1 7→ a}}
11: else if µ(q) is PV (?v1, R, a2) (resp. PV (a2, R, ?v1)) then
12: for a1 ∈ IR(K, (∃R · {a2})), resp. (∃R− · {a2}) do β ← β ∪ {µ∪ {?v1 7→ a1}}
13: else if µ(q) is PV (?v1, R, ?v2) then
14: for a1 ∈ IR(K, (∃R · >)) do
15: for a2 ∈ IR(K, (∃R− · {a1})) do β ← β ∪ {µ ∪ {?v1 7→ a1, ?v2 7→ a2}}
16: return β

38

Handling Undistinguished Variables

In practical applications queries with both distinguished and undistinguished variables
are the most common. This section describes techniques for evaluating conjunctive
queries without cycles over undistinguished variables that were implemented in the Pellet
reasoner, yet not published so far. Techniques described in this section try to reduce the
number of calls to IC (some of which might require consistency checks). As shown in the
examples below, even if obvious non-instances using completion and obvious instances
using precompletion optimizations mentioned in Section 2.6 prevent other than a single
(initial) consistency check to occur, the number of IC calls might be still prohibitive for
an efficient evaluation.

Naive Evaluation Strategy The naive way to evaluate conjunctive ABox queries with
undistinguished variables is described in Algorithm 4. On line 3, each distinguished

Algorithm 4 Naive Evaluation Strategy.
Input: Consistent K; non-boolean query Q.
Output: Set β of all valid bindings µ′ for Q.

1: function evalNaive(K, Q)
2: β ← ∅
3: for each µ = {?v1 7→ a1, . . . , ?vN 7→ aN}, ?vk ∈ V (Q), ak ∈ IN do
4: if IC(K,roll(µ(Q), a1), a1) then β ← β ∪ {µ}
5: return β

variable is replaced with an individual mentioned in K and the resulting boolean query
is evaluated using the evalBool function described in Algorithm 1. The Algorithm 4 is
clearly sound, as it simply tries all possible bindings. However, as shown in Example
13, the exponential blow-up is what makes it unusable for queries with more than one
distinguished variable.

Example 13 Let’s evaluate Q1, see Example 11, against the LUBM(1) dataset. As
LUBM(1) contains more than 17000 individuals the variable substitution results in about
170003 = 5×1012 of different boolean queries to be checked on line 4 of Algorithm 4. Even
if checking logical consequence of each of them might be cheap in this case (the boolean
queries can be matched against precompletion and thus the only interaction with the
tableau reasoner remains the initial consistency check that constructs the precompletion),
Q1 evaluation still fails to terminate within reasonable time due to the huge number of
required IC operations.

Simple Evaluation Strategy As noticed in [71], for queries with distinguished variables,
the rolling-up technique can be used as a preprocessing step to reduce the number
of boolean queries to be tested using evalBool function. This approach results in
Algorithm 5. For each distinguished variable ?v a concept roll(Q, ?v) is computed and

39

instances of this concept are retrieved using the optimized IR service (line 3), as mentioned
in Section 2.6. Then, each individual from the retrieved set INv = IR(K,roll(Q, ?v))
is used as a candidate for ?v in the subsequent evalBool calls. The soundness of this
algorithm is ensured by the fact that the rolling-up technique describes only a subset
of Q (as it breaks some of the cycles), but not a superset and thus cannot discard any
binding that would be valid for Q.

Algorithm 5 Simple Evaluation Strategy.
Input: Consistent K; non-boolean query Q.
Output: Set β of all valid bindings µ′ for Q.

1: function evalSimple(K, Q)
2: β ← ∅, δ ← ∅
3: for ?v ∈ V (Q) do δ(?v)← IR(K,roll(Q, ?v))
4: for each µ = {?v1 7→ a1, . . . , ?vN 7→ aN}, ?vk ∈ V (Q), ak ∈ δ(?vk) do
5: if IC(K,roll(µ(Q), a1), a1) then β ← β ∪ {µ}
6: return β

Example 14 Evaluating Q1 against LUBM(1) using Algorithm 5, Q1 is rolled up into
each distinguished variable ?v1, ?v2 and ?v3. For ?v3, we get :

roll(Q1, ?v3) =
(
∃memberOf− · (∃advisor · (Employee

u∃teacherOf · ∃takesCourse− · > u ∃takesCourse · >)
)

For each ?vi an IR call is required. Due to the optimizations sketched in Section 2.6, the
number of evalBool (and thus IC) calls is significantly less than in Algorithm 4. In
case of Pellet, none of these instance retrieval executions requires a consistency check
and prune the number of candidates to about 3300 for ?v1, about 1500 for ?v2 and 15 for
?v3. Thus, the number of boolean queries, logical consequence of which is to be checked
by evalBool, is reduced to about 3300 × 1500 × 15, i.e. 75 × 106, still with just one
(initial) consistency check.

On the other hand, each partial combination of invalid bindings is checked many times
on line 5 of Algorithm 5. However, as I show in Section 4.2.1, it is not necessary to
try to extend partial binding (?v1 7→ Jim, ?v2 7→ Math) with a binding for ?v3, whenever
K |= takesCourse(Jim,Math)) does not hold. This observation could significantly reduce
the number of evalBool calls on line 5.

2.7.4. Distinguished Conjunctive Queries with Negation
DCQNOT were introduced in [3] to define semantics of OWL integrity constraints.
DCQNOT queries cannot be expressed by means of SPARQL-DL – the construct that is
missing in SPARQL-DL is negation as failure. Although syntax for DCQNOT used in
[3] is similar to [71], I will present relevant parts from [3] in SPARQL-DL-like syntax to
keep the notation compact.

40

Definition 7 (DCQNOT) A DCQNOT query Q (see Example 16) has the form

[q1, . . . , qM]

such that each atom qi is of the form Ty (a, C), or PV (a1, R, a2), or SA (a1, a2), or
NOT (Q2), where a(i) ∈ IN ∪ Vvar, C ∈ SC, R ∈ RN , and Q2 is a DCQNOT query.

The semantics of the DCQNOT extends the semantics of SPARQL-DL in Definition 4
with interpretation of NOT (Q2) atoms – for semi-ground Q2 with U(Q2) = ∅, it holds
that I |=σ NOT (Q2) whenever it does not hold that I |=σ Q2. Since U(Q2) = ∅, σ is
equivalent to ·I, see Definition 4.

�

Example 15 A DCQNOT query that asks for all failures of entities not known to be
Structures is as follows:

[Ty (?v1,Failure),PV (?v1, isFailureOf, ?v2),NOT ([Ty (?v2, Structure)])]

Although evaluation of DCQNOT queries is not discussed in [3], an extended version of
Algorithm 2 from Section 2.7.3, that supports additionally SA and NOT atoms can be used
for their evaluation. This will be discussed in Section 4.2 as a part of the SPARQL-DLNOT
evaluation technique.

2.8. Integrity Constraints in OWL
As shown in Example 5, OWA is the fundamental principle of description logics – they are
able to infer, but not to validate. However, semantic web applications and information
systems need to interact with users, connect to external data sources, in which cases
data validation is required. To cope with this issue, [3] proposes a special semantics for
SROIQ axioms, that is suitable for data validation and can be enforced by DCQNOT

queries introduced in Section 2.7.4. Integrity constraints are used in Section 4.1 to express
a contract between the application and the ontology.

The semantics makes possible to evaluate these axioms using CWA and the weak
unique name assumption rather than the standard OWL semantics, which is based on
the open world assumption and the lack of unique name assumption. Weak unique name
assumption [3] ensures that two named individuals with different identities are assumed
to be different (i.e. interpreted as different domain elements) unless their equality is
required to satisfy the axioms in the ontology. The differences between OWL semantics
and integrity constraints semantics are demonstrated in Example 16 below.

Definition 8 (Integrity Constraint) An integrity constraint β, has the syntactic form
of a SROIQ axiom as shown in Definition 1. β is valid w.r.t. an ontology K iff there is
no solution for the DCQNOT query T (β) defined in Table 2.7.

�

41

βi T (βi)

β1 A1 v ∀S · A2 [Ty (?v0,A1),PV (?v0, S, ?v1),NOT ([Ty (?v1,A2)])]

β2 A v (≤ 1S) [Ty (?v0,A),PV (?v0, S, ?v1),PV (?v0, S, ?v2),NOT ([SA (?v1, ?v2,]))]

β3 A v (≤ nS)
[

Ty (?v0,A) ∧
1≤i≤(n+1)

PV (?v0, S, ?vi),
∧

i<j≤(n+1)
NOT ([SA (?vi, ?vj)])

]

β4 A v (≥ nS)
Ty (?v0,A),

NOT
([∧

1≤i≤n
PV (?v1, S, ?vi),

∧
i<j≤n

NOT ([SA (?vi, ?vj)])
])

Table 2.7.: Semantics of selected integrity constraints. Each construct of the form∧
1≤i≤N

Xi denotes a list X1, . . . , XN . Definition of integrity constraints seman-
tics for other axiom types and other class and property constructors can be
found in [3].

42

Intuitively, each such solution to the query T (β) represents data that violate the
integrity constraint β.

Example 16 Consider ontologies from Example 5, this time using integrity constraints
semantics. Taking both subsumption axioms γ2 : Failure v ∀isFailureOf · Structure and
γ3 : Failure v (= 1 isFailureOf) as integrity constraints results in violation of :

• γ3 in case of K2 (there is no object in K2 known to have failure PillarScour),

• γ2 in case of K3 (CharlesBridge is not known to be an Structure), and

• γ3 in case of K4 (there are two objects that have recorded PillarScour as their failure,
although there must be exactly one).

E.g. γ2 can be validated by a DCQNOT query τ(γ2) from Example 15. Evaluating the
query against K3 returns a solution µ(?v1) = PillarScour and µ(?v2) = CharlesBridge,
because K3 |= Failure(PillarScour), and K3 |= isFailureOf(PillarScour,CharlesBridge), but
not K3 |= Structure(CharlesBridge).

As shown by Example 5 and 16, data validation is out of scope of traditional SROIQ
semantics (all ontologies are consistent in Example 5), but can be easily done using the
integrity constraint semantics (integrity constraints are violated for K2, K3 and K4). I use
this feature in Section 4.1 to define a contract between the ontology and the application
to ensure compatibility of the ontology with the application.

43

3. Ontologies in Information Systems
The idea of using semantic web ontologies as data sources for information systems has
been discussed in the semantic web community for long time, see e.g. [75] for a W3C
Working Group Note. This document advocates the use of semantic web ontologies in
RDFS or OWL for representing domain models of OIS, that are typically designed using
object-oriented principles and implemented in an object-oriented language, like Java, C#
or Python. According to the authors, such ontology-backed systems should benefit from:

reuse and interoperability, as “RDF and OWL models can be shared among applica-
tions and on the web”,

flexibility, as “RDF and OWL models can operate in an open environment in which
classes can be defined dynamically”,

consistency and quality checking across models,

reasoning, as “OWL has rich expressiveness supported by automated reasoning tools”.

Although these principles are clearly advantageous for information system design and
operation, the process of their implementation turned out to be rather slow. Most of
the problems stem from semantic incompatibility of object-oriented models and OWL
ontologies – the semantic clash between OWA of semantic web ontologies and CWA of
object-oriented models causes many problems in implementing the above requirements,
as discussed next in this chapter.

In the next parts of this chapter, I will present a general OIS architecture proposed in
[1], focusing on typical services/components that are typically provided by an OIS. Next,
I will discuss different types of OIS architectures and show current approaches to their
implementations together with the problems in meeting the above objectives.

3.1. Ontology-Based Information System Architecture
Authors of [1] identify widely accepted ontology life-cycle phases in ontology engineering
(requirement analysis, development, integration, evaluation) and subsequent ontology
usage (ontology population, cleansing, fusion, search & retrieval & reasoning). Based
on this ontology evolution model, they propose a generic layered architecture of an OIS
depicted in Figure 3.1. The architecture is a generalization of the NeON Toolkit [76]
ontology framework, an ontology engineering environment developed within the FP6
European project NeON (IST-2005-027595). Although this framework does not provide
uniform methodology for the architectural design of an OIS, it is comprehensive in terms

45

of services that have to be provided by an OIS – my proposal in Chapter 4 discusses
querying and support in designing other services using an object model that reflects
static parts of the ontology1. The architecture has the following components:

presentation layer that contains sophisticated User Interface (UI) components to present
ontological content,

logic layer that provides high-level ontological services for ontology engineering and
ontology usage lifecycle phases

data layer that provides an abstraction over various data sources

Each particular information system might require only some components (ontology
services in Figure 3.1) of the architecture. E.g. StruFail, the information system of
structural failures design of which is introduced in Section 6.1, requires no components
related to ontology engineering. Instead, it uses heavily “Core Ontology Services” as well
as “Reasoning Related Services”, or “Ontology-based Applications’ Front-end”. On the
other hand, ontology editors, like Protégé, use heavily ontology engineering services and
typically not ontology usage services.

According to the authors of [1], the architecture might be instantiated in different
ways, ranging from all-in-one rich clients, over tightly coupled component-oriented multi-
tier Java EE architecture to loosely coupled Service Oriented Architecture (SOA). The
multi-tier Java EE architecture is then demonstrated on a web-based information system
use-case based on the NeON Toolkit.

OIS architectures can be roughly classified as generic architectures (i.e. ontology-
independent architectures) and domain-specific architectures (i.e. ontology-dependent
architectures). This distinction significantly influences how the OIS will respond to
ontology changes. While systems with generic architecture do not depend on the ontology
under consideration and thus, ontology changes do not influence their operation, systems
with domain-specific architecture depend on (some part of) the ontology and thus, an
ontology change during OIS runtime might cause runtime crash of the system. This
problem will be discussed next in this section.

Although this thesis is primarily focused on OWL, resp. OWL 2, I will still address
existing approaches of accessing RDFS ontologies from OISs, as there is more work done
in this field, and many approaches for accessing OWL ontologies were inspired by the
RDFS ones.

3.1.1. Systems with Generic Architecture
Systems introduced in this section can have different use cases, but their architecture is
independent on a particular ontology in compile-time – their architecture (i.e. presenta-

1Other of my results related to this thesis – OWL comparison scenario and error explanation optimization
techniques that were implemented in the OWLDiff tool, contribute to collaborative editing and
debugging services. To keep this thesis compact, they are not included in the main course of this
thesis, but only sketched in Appendix C.

46

Figure 3.1.: Ontology-based system architecture as presented in [1]. (The Figure is
reproduced with the permission of its authors.)

47

tion layer, logic layer and data layer in terms of Figure 3.1) is generic enough to access
arbitrary ontologies (in the given ontology language, i.e. RDFS/OWL in our case).

ontology editors that are aimed at creating/editing/exploring ontologies. Examples of
OWL ontology editors are Protégé [19], NeON Toolkit [76], TopBraid Composer
[77], SWOOP [78], and other, see [79], [80], [9] or Wikipedia page “Ontology editor”
for an up-to-date list.

purpose-specific systems that are tailored to specific user scenarios, comparing to
ontology editors, but are still independent of the particular ontology. Examples of
such scenarios are semantic search (e.g. SWOOGLE [81], an indexing and retrieval
system for semantic web documents), semantic annotations of web resources (various
browser plug-ins, e.g. SemanticTurkey [82] for Mozilla Firefox [83]) or semantic
wikis (e.g. IkeWiki [84]).

ontology-specific systems, business components and user interface logic of which is
fully described in ontologies, following the principles of Model-Driven Architecture
(MDA) [85]. The business and UI logic is then generated ([86], [87]) in runtime
based on the ontological descriptions, see e.g. [88], [89].

3.1.2. Systems with Domain-Specific Architecture
Architecture of domain-specific systems depends on the structure of an ontology in
compile-time. These systems are not fully ontology-driven as they need to provide complex
(procedural) business logic (e.g. complex computations) or tailored user-interfaces for the
particular ontological domain of interest, that would be difficult or even impossible to
express by means of semantic web ontologies. The business and UI logic is then represented
by object model and its procedural logic, and the dependency of the information system
on the ontology is materialized by an Object-Ontology Mapping (OOM). As shown in
the next section, this dependency is usually ad-hoc which causes problems whenever
ontology changes during information system runtime.

Most of the ontology-based information systems fall into this group – this can be also
observed by the number of differed OOM techniques presented in Section 3.2.2. Examples
of these systems include a health information system [90] (UI logic is implemented in
Microsoft Access forms that reflect ontology classes and properties), a laptop e-shop [91]
(generated PHP scripts based on ontology classes and properties) or Nepomuk semantic
desktop [92] (generated Java object model for the Task Ontology2, using RDFReactor
[93]).

3.2. Accessing OWL Ontologies Programmatically
There were designed lots of approaches for implementation of the architectures presented
in the previous section. Although there are some approaches for programmatic access

2See http://www.semanticdesktop.org/ontologies, cit. 10/12/2011.

48

http://www.semanticdesktop.org/ontologies

to ontologies in other languages (see [94] for Perl, [95] for Python, [96] for PHP, or
ActiveRDF [24] for Ruby), most of the current approaches are tailored to Java, due to
its success in the semantic web community.

A good overview of the existing approaches is presented in [97]. The approaches can
be classified as (i) low-level (type 1) or (ii) high-level (type 2), according to the type of
the abstraction level of their object-model – type 1 approaches are generic, their object
model is independent on the particular ontology, but the programmatic use is rather
verbose. On the other hand, type 2 approaches map (part of) the ontology into the object
model, which makes the resulting object model dependent on the particular ontology
and application access more compact. An example of this, taken from [2], is presented
in Figure 3.2.

3.2.1. Type 1 APIs
As representatives of type 1 APIs for accessing OWL ontologies from Java consider two
wide-spread open-source libraries – OWLAPI [57] and Jena [58].

OWLAPI (originally named WonderWeb API) has been developed by the University
of Manchester for about 10 years. The 2.x versions of the API were aimed at providing
access to OWL ontologies. Since 2007, its developers started to implement OWL 2
features. Finally, OWLAPI 3 became one of the reference implementations of the set
of OWL 2 W3C recommendations released in 2009. It provides (i) OWL 2 metamodel
that is a direct implementation of the functional syntax standardized in [18], (ii) API
for basic reasoning services, e.g. consistency checking, or query answering, and (iii) API
for advanced ontology services, e.g. axiom justifications, or OWL storage back-ends.
Nowadays, OWLAPI is taken as a standard API for accessing OWL and OWL 2 ontologies
from Java, claiming more than 20000 downloads for the last two years3.

Jena has been developed by the HP Labs Semantic Web Programme for about 10
years. Although aiming initially on the programmatic access to RDF, RDFS and OWL
ontologies from Java, Jena is currently much broader project covering SPARQL processing
(ARQ), storage mechanisms (TDB, SDB), and other associated projects. However, the
current version of Jena (2.6.4) still lacks full OWL 2 support. Still, Jena remains an
important stake-holder in this field, claiming nearly 95000 downloads for the last two
years4.

Using APIs of type 1 is useful for developing generic systems described in Section
3.1.1. However, their use for development of domain-specific applications is typically
time consuming and error-prone, as the application developer is forced to produce lots of

3see https://sourceforge.net/projects/owlapi/files/stats/timeline?dates=2009-08-11+
to+2011-08-11, cit. 11/8/2011

4see https://sourceforge.net/projects/jena/files/stats/timeline?dates=2009-08-11+to+
2011-08-11, cit. 11/8/2011

49

https://sourceforge.net/projects/owlapi/files/stats/timeline?dates=2009-08-11+to+2011-08-11
https://sourceforge.net/projects/owlapi/files/stats/timeline?dates=2009-08-11+to+2011-08-11
https://sourceforge.net/projects/jena/files/stats/timeline?dates=2009-08-11+to+2011-08-11
https://sourceforge.net/projects/jena/files/stats/timeline?dates=2009-08-11+to+2011-08-11

Collection<Person> people = a_factory.getMembers(Person.class);
for (Person person : people) {

for (String emailAddress : person.getEmailAddress()) {
if ("FullProfessor7@Department0.University0.edu".equals(emailAddress)

) {
System.out.printf("Name:␣%s", person.getName());

}
}

}

static final String U_URI = "http://www.lehigh.edu/zhp2/2004/0401/univ-
bench.owl#";

Literal emailAddress = ResourceFactory.createPlainLiteral("
FullProfessor7@Department0.University0.edu");

OntClass personClass = model.getOntClass(U_URI + "Person");
OntProperty nameProperty = model.getOntProperty(U_URI + "name");
OntProperty emailProperty = model.getOntProperty(U_URI + "emailAddress")

;
ExtendedIterator<Individual> instances = model.listIndividuals(

personClass);
while (instances.hasNext()) {
Individual resource = instances.next();
if (resource.hasProperty(emailProperty, emailAddress)) {
RDFNode nameValue = resource.getPropertyValue(nameProperty);
Literal nameLiteral = (Literal) nameValue.as(Literal.class);
String name = nameLiteral.getLexicalForm();
System.out.printf("Name:␣%s", name);

}
}

Figure 3.2.: Type 1 APIs comparing to type 2 APIs. Top: Java code generated by
Sapphire (type 2). Bottom: The same logic implemented in Jena (type
1) API. Jena code is much less readable (and thus maintainable) than the
Sapphire code. Both examples are taken from [2].

50

similar source code snippets for the domain dependent logic. The verbosity of low level
APIs (see Figure 3.2 bottom for a Jena example) also causes the resulting applications
source code to be complex and hardly maintainable.

3.2.2. Type 2 APIs
For domain-specific architectures the verbosity of type 1 APIs was the main driving
force for the semantic web community to propose ad-hoc mappings between an object
model and an OWL ontology, often without properly understanding semantics of their
modeling choices. Implementations of these mappings are typically able to generate
type 2 APIs, which are easy to use by application developers, although they necessarily
provide simplified view of the ontology.

APIs for RDF like Sommer [98], Winter [99], Elmo [100], RDFReactor [93], or
RDF2Java [101] use OOM to map RDFS classes to Java classes and RDF properties
to Java properties (fields with setters/getters) according to an ad-hoc mapping. They
provide stateless proxy objects (e.g. RDFReactor) or stateful data access objects (e.g.
Sommer). Most tools provide an object model generator from an RDFS ontology
in compile-time. Querying capabilities of these APIs are rather limited. Sommer,
RDFReactor and RDF2Java support only queries available through the generated API,
e.g. “retrieve the author of a book” 5 could be written in Sommer object model as

Person author = book.getAuthor();

Elmo, on the other hand, can be used as a part of the Sesame API [102], that in turn can
be queried through a SPARQL [45] endpoint. Similarly, Winter (an extension of Sommer),
supports SPARQL queries through Java annotations directly on the classes/their fields
in the object model.

A case study, presented in [103], discusses and compares four Java-based approaches
– Sommer, Elmo, RDFReactor, RDFJava – and a python-based one – SuRF. Authors
interviewed the developers of these libraries and asked them questions regarding the
key idea, use cases, necessary configuration, etc. Based on their response, the authors
formulated a OOM (called object-triple mapping by the authors) that is generic enough
to describe an ontology in the object model expressed in PathLog [104].

Empire [105], contrary to the above mentioned systems, is the first (partial) implemen-
tation of the Java Persistence API (JPA) 2.0 [106] for RDFS ontologies. It extends the
set of JPA 2.0 annotations with custom annotations representing the mapping between a
Java class and an RDF class. This allows software designers to make smooth transition
from a database-backed JPA 2.0 code to an ontology-backed one. Furthermore, inspired
by JPQL[106] queries for JPA 2.0, it is possible to issue SPARQL queries the underlying
ontology through Empire.

5where book is defined earlier in the source code

51

APIs for OWL like Owl2Java [107], Sapphire [2], JAOB [108], or Jastor [109] try to
provide ad-hoc mappings of OWL ontologies into object models. These systems differ in
the level of approximation of the OWL (open-world) semantics in (closed-world) object
model. E.g., the last mentioned approach, Jastor, stems from the original technique
presented in [110]. Its authors propose a Java object model generator that takes an OWL
ontology and translates it to a set of Java interfaces and classes that are interconnected
to adapters, or cardinality constraints validators, with the aim to preserve as much OWL
semantics as possible.

Neither of the above APIs provide querying capabilities going beyond the simple API
calls, as discussed in the previous paragraph. This means, complex queries have to be
simulated using multiple calls to the generated object model API (similarly to Figure
3.2) which introduces a performance overhead, as demonstrated in [2].

While most of the type 2 approaches propose ad-hoc mappings between ontologies and
object models, authors of [111] introduce a model-driven architecture (MDA) to generate
ontology APIs. The application designer develops a domain model of the ontology for
his/her OIS using Unified Modeling Language (UML) and then transforms the domain
model into the specific object-oriented programming language.

As the expressiveness of OWL is richer than the expressiveness of both object models
and UML, it is obvious that the above mentioned mappings can not be lossless. Fur-
thermore, queries, as expressive as SPARQL-DL introduced in Section 2.7.1, cannot be
formulated in the existing APIs. All the same, existing ontology mappings and proposed
APIs are useful for rapid prototyping of applications, see e.g. [112].

Statically vs. Dynamically Typed Languages

An interesting problem relevant to type 2 APIs has been posed in [75] and in [24].
The authors identify mismatches between RDFS ontologies and statically-typed6 object-
oriented languages:

Class membership – an object cannot change its type during runtime in statically typed
object-oriented languages (e.g. Java), contrary to RDFS ontologies, in which an
individual can change its class membership.

Inheritance – multiple-inheritance is typically not possible in statically typed languages,
contrary to RDFS.

Object conformance and semi-structured data – objects in statically typed languages
have fixed structure (fields, methods), while two RDFS individuals belonging to
the same class can have different properties.

Runtime Evolution – both ontological schema and ontological data can evolve at runtime,
contrary to object model, that is static.

6Examples of statically typed languages are Java, or C#, contrary to Smalltalk, Perl, Python or Ruby
that are dynamically typed, i.e. the type/class of an object can change during runtime.

52

The authors of [24] argue that these mismatches make statically typed languages
inconvenient for accessing ontological data and propose using dynamically typed “scripting”
languages, e.g. Ruby. This argument is objected in [103] by claiming that ontology
schema tends to be static in practical applications. My experience is that the truth
is in the middle: some parts of the schema established by domain experts are rather
static, while other parts are being changed by domain experts on the fly. A significant
disadvantage of dynamic typing is its inconvenience for data validation, which is often
required for user inputs. My solution to this problem, presented in Chapter 4, is to split
the schema into the static and dynamic parts within a statically typed object-oriented
language, and thus exploit benefits of both approaches.

3.3. Relationship of this Thesis to Related Work
This section wraps Chapter 2 and Chapter 3 and relates them to the contributions of
this thesis. This thesis presents a framework and a methodology for building information
systems based on evolving ontologies, providing an expressive query language with
efficient evaluation and optimization techniques and object-oriented API conforming to
the ontology-application contract, together with prototypical implementations.

3.3.1. Ensuring Proper Application-Ontology Contract
One significant drawback of the current object-ontology mappings approaches introduced
in Section 3.2.2 is that they do not take into account potential ontology evolution (see
discussion to Figure 3.1 above) during the life of the information system. Hence, once a
mapping is established, it reflects the current snapshot of the ontology, but no indicator
exists to detect that the domain object model gets obsolete due to ontology evolution.

In contrary to these “ad-hoc” approaches described above, my approach, introduced in
Section 4.1, makes the contract between the information system and the ontology explicit
and formal. The proposed contract guards compatibility of the application with the
ontology and prevents application crash caused by unexpected data in the ontology. Also,
the contract can avoid unintentional putting of incomplete or inconsistent knowledge
to the ontology by the application. From the point of object-ontological mapping, my
approach lies in the middle between the type 1 and type 2 approaches to programmatic
access to ontologies, described in Section 3.2. The reason is that only relevant parts
of the ontology are bound to the application by the formal contract (similar to type
2 approaches introduced in Section 3.2.2), while the rest of the ontology is accessed
in a generic manner by the application (similarly to the type 1 approaches introduced
in Section 3.2.1).

Furthermore, the introduced approach allows to clearly distinguish competences in
the application development process. Ontology and formal contract maintenance is
the responsibility of the knowledge engineer educated in ontologies, but not necessarily
having sufficient programming skills. On the other hand, the application developer(s)
needn’t to be educated in ontological reasoning and knowledge engineering. Hence, this

53

approach has the potential to reduce the application development costs.

3.3.2. Providing Expressive Query Language with Efficient
Implementation

Expressive query language and optimized evaluation techniques are important parts of
an OISs, as also demonstrated on StruFail queries in Section 6.1. Based on the analysis
introduced in Section 2.7, I introduce SPARQL-DLNOT , an extension of SPARQL-DL
with additional OWL 2 constructs and negation as failure, a feature that allows to
use the query language not only for query answering but also for integrity constraints
checking [3]. Significant contribution of this thesis includes the first SPARQL-DL and
SPARQL-DLNOT evaluation technique and with their implementations in the leading
OWL 2 reasoner Pellet and OWL2Query engine respectively. The evaluation techniques
makes use of a simple yet well-defined API to existing OWL 2 reasoners presented in
Section 2.6. Furthermore, I designed, implemented and tested various optimizations of
the query engine, that are described in Section 4.2 :

• dynamic query reordering that is useful for long queries (containing 8 or more query
atoms) for which the exponential blow-up of exploring all possible static reorderings
is prohibitive,

• down-monotonic variables making use of cheap taxonomy computation to prune
invalid variable bindings,

• splitting the query into cores that significantly decreases execution times when both
distinguished and undistinguished variables (see Definition 5) are present. Compar-
ing to [73], [74], and [64], my optimizations are applicable to conjunctive queries
without cycles through undistinguished variables for a wide range of description
logics, including SHOIN and SROIQ.

54

4. Proposed Methodology and
Framework

This chapter introduces my proposal of a framework for designing ontology-backed
information systems. The framework combines an object-ontology mapping with precise
definition of the contract semantics together with expressive ontological queries.

4.1. Ontology Persistence Layer
By their nature, ontologies accept open world assumption to capture incomplete and
quickly changing knowledge present on the semantic web, as shown in Example 5
in Section 2.4. Thus, the life-cycle of an ontology is fast to reflect evolution of the
domain knowledge (e.g. in the construction engineering domain: new classes/properties
of construction materials, construction elements, etc.). On the other hand, an object
model of an application is closed by its nature. It is static, or slowly evolving as new
versions of the application are released. As a result, a mapping established between an
application object model and an ontology (e.g. OOM introduced in Section 3.2.2) tends
to get deprecated time to time during the life of the application.

Having this pitfall in mind, I propose a framework for accessing ontologies from
applications that should consist of the following parts: (i) a contract between the
ontology and the application, (ii) an object model that represents this contract in
the target object-oriented language, (iii) a platform-specific control logic that ensures
transactional ontology access and expressive querying capabilities, with the following
requirements:

• contract stability – the contract has to be static or slowly evolving comparing
to the ontology; the interface shall survive most ontology refinements,

• contract maintainability – the contract between an ontology and the respective
object model has to be easy to establish and maintain,

• non-restrictive – the framework has to provide full access to the ontological
knowledge, including entailment checking and expressive query answering,

• validation – the framework has to ensure that modification of the ontology by
the application violates neither the consistency of the ontology, nor the contract
between the application and the ontology.

55

Integrity constraints introduced in Section 2.8 fit well the needs of a contract between
an application and an ontology, as (i) they have well-defined semantics that can be checked
using OWL 2 DL reasoners that, in addition to tableau consistency checking, support also
DCQNOT queries introduced in Section 2.7.4. Examples of these implementations are
Pellet conjunctive query engine [32], or RacerPro nRQL engine [113], (ii) their semantics
adopts CWA and thus corresponds well to the close world character of the object model,
and (iii) they reuse OWL syntax which makes them easy to author and maintain using
standard OWL ontology editors.

Reusing OWL syntax for different semantics is subject of discussion in the community.
Experience proves that in this case, common syntax to integrity constraints and ontological
axioms is an advantage as it significantly simplifies integrity constraint authoring and
management using state-of-the-art OWL tools. For example in Protégé, the integrity
constraint designer creates a new OWL document for storing integrity constraints for
the developed application. Then, using import mechanism of OWL the original ontology
is imported and new integrity constraints could be easily constructed based on the
vocabulary and ontological axioms of the original ontology. In the proposed methodology,
integrity constraints are stored in a different OWL document than ontological axioms
and, additionally, are distinguished using OWL annotations (standardized in OWL 2),
see Figure 5.2 in Section 5.1.

To ensure stability of the interface, the contract should be designed with as few integrity
constraints as possible for proper application functionality. The more integrity constraints
the contract contains, the less stable the contract is, resulting in more frequent object
model revision.

4.1.1. Ontology-Object Model Contract
As discussed above, the contract between an ontology and an application is expressed
by means of integrity constraints [3]. As integrity constraints are more expressive than
object models, only some integrity constraint types can be directly expressed by means
of object model constructs. Let’s consider a SROIQ ontology K, a set KC of integrity
constraints, a set CN(KC) (resp. RN(KC)) of all named concepts (resp. named roles)
that occur in some integrity constraint γ ∈ KC. To define the translation between the
integrity constraints and the corresponding object model, I introduce the mapping L
that assigns1

• each named concept A ∈ CN(KC) an object class L(A), and

• each named role R ∈ RN(KC) a data field L(R),

in the specified object programming language L. Furthermore, I denote L(A, a) a run-time
object (instance) of the object class L(A), for which K |= A(a).

Basically, three types of integrity constraints with regard to their relation to the object
model and their evaluation strategy can be distinguished:

1Do not mix object language L with completion graph labeling function LG used in Section 2.5.1.

56

• compile-time constraints are those that can be compiled into the object model of
the object-oriented language under consideration. These constraints have the form
β1 and β2 in Table 2.7 and are easy to validate, as the validity check is performed
directly by the OO programming language compiler/interpreter/run-time and
respective DCQNOT queries do not need to be evaluated. Integrity constraints of
these types restrict the type of data field L(S) within a class L(A):

1. whenever both β1 and β2 are present, the data field L(S) is of type L(A2),
2. whenever only β1 is present, the type of L(S) is a set of L(A2),
3. whenever only β2 is present, the type of L(S) is L(>).

Example 17 Whenever β1 is present, the object-oriented language run-time en-
sures that only instances of L(A2) can be assigned to the data field L(S) of an
instance L(A1, a). This ensures the ontology to contain only S fillers2 of type A2
for the instance a of type A1. The respective DCQNOT query T (β1) would return
a non-empty result set whenever K |= A1(a), K |= S(a, a2), and it does not hold
that K |= A2(a2) for some individual a2. Obviously, there cannot be any such a2 in
our example, such that µ = {?v0 → a, ?v1 → a2} is a solution to T (β1) – hence the
integrity constraint is satisfied.

• run-time constraints can not be compiled directly into the object model, but their
validation can be optimized in run-time by cheap procedural pre-checks within the
object model that save some of the full validity checks using a DCQNOT query (see
Table 2.7 in Section 2.8). Currently considered run-time constraints have the form
of cardinality constraints β3 and β4 from Table 2.7, but future extensions to other
integrity constraint types is anticipated.

Example 18 Whenever β3 is present (see Table 2.7), the ontology access layer can
check whether the number of fillers of field L(S) of an instance L(A1, a) is smaller
than n. If so, no an+1 S filler of a exists that might bind the variable ?vn+1 such
that µ = {?v0 → a, ?v1 → a1, . . . , ?vn+1 → an+1} is a solution to T (β3) – hence the
integrity constraint is satisfied.
Similarly, whenever β4 is present, the ontology access layer checks whether the
number of fillers of field L(S) in class L(A) is smaller than n. If so, the integrity
constraint is violated.

• reasoning-time constraints are all other integrity constraints that cannot be
reduced3 to integrity constraints of above mentioned types. Reasoning-time integrity
constraints cannot be cheaply checked by the ontology persistence layer itself, but
have to be evaluated using the DCQnot query engine.

2S filler of an individual a is an individual ax for which K |= S(a, ax)
3Notice, that some integrity constraints, although not listed in Table 2.7 explicitly, can be reduced

preserving their semantics into one or more constraints of type β1, . . . , β4. E.g. A1 v (= 1S) can
be replaced with two integrity constraints: (i) a compile-time constraint A1 v (≥ 1S) and (ii) a
run-time constraint A1 v (≤ 1S).

57

As stated by Theorem 1 in [3], two different trade-offs of integrity constraints expres-
siveness and ontology expressiveness are possible : (i) whenever the ontology is of full
SROIQ expressiveness (full OWL 2 DL without data types), the integrity constraints
must be of at most SROI, i.e. without cardinality restrictions, or (ii) whenever the
ontology is at most SRI, integrity constraints might be of SROIQ expressiveness. In
the former case, integrity constraints that can be used to define ontology-application
contract would be rather limited, supporting only constraints of the form β1 and β4 for
n = 1 (in such a case the constraint β4 could be rewritten as A v (∃S · >)). Integrity
constraints of the form β2 and β3 cannot be used here as they contain cardinality re-
strictions. In the latter case, the ontology cannot contain cardinality restrictions and
nominals (SRI expressiveness), but the ontology contract can benefit from all introduced
types of integrity constraints β1 - β4 (SROIQ expressiveness).

Note that pre-checking run-time cardinality constraints by simple counting of indi-
viduals introduced above fails whenever two or more individuals could be inferred to
be the same, i.e. K |= {a1} v {a2} for individuals a1 and a2, (in addition to asserted
{a1} v {a2} or {a2} v {a1} axioms). Fortunately, run-time cardinality restrictions are
allowed in integrity constraints only in option (ii) above, which enforces the ontology to be
at most SRI. In this case, no individuals can be inferred to be the same (as the Merge
operation in the SROIQ tableau algorithm [49] is not applicable), except individuals
in the transitive closure of the v relation (i.e. assertions of type {a1} v {a2}). This
transitive closure is maintained by the ontology persistence layer and used to distinguish
same individuals during cardinality restrictions checking.

4.1.2. Ontology Access Layer
The ontology access layer executes ontological queries/updates requested by the applica-
tion logic. The main task of the layer is to provide transactional access to the ontology,
with respect to the ACID (Atomicity, Consistency, Isolation, Durability) requirements
[114]. Atomicity, consistency and isolation is ensured by the transaction processing
mechanism explained later in this section. Durability is ensured by creating a simple
transaction log. As all object model changes can be expressed in terms of (i) axiom
additions, or (ii) axiom removals, the transaction log can be just a list of change records
of these two change types. Research of advanced aspects of durability is left to the next
work.

The overall operation cycle of a single transaction is shown in the UML activity diagram
in Figure 4.1. Each transaction can be seen in terms of two layers, (i) a front-end layer
(left box in the figure), that manages a cache of objects of the object model and a (ii)
back-end layer (right box in the figure) that serves as a primary storage of the ontology
and is responsible for evaluation of ontology queries, consistency checking and complete
evaluation of integrity constraint satisfaction.

As follows from [3], the relationship between the original SROIQ semantics of an axiom
and its integrity constraints semantics is rather subtle. E.g. ontology K1 = {A2 v ⊥} is
consistent, but inserting axioms A1(a1), S(a1, a2),A2(a2) causes its inconsistency. Hence,
no check of integrity constraints (e.g. β1 introduced above) can be performed. This is

58

Figure 4.1.: Activity diagram of a transaction run over the Ontology Persistence layer.
The business logic access to the front-end layer is represented by the shaded
symbols for signal receipt/signal sending.

59

the reason why consistency check (BA3) has to be performed before integrity constraint
violation check (BA4). On the other hand, inserting data A1(a1), S(a1, a2) to the ontology
K2 = ∅ keeps the ontology consistent, although the integrity constraint β1 will be violated
(for a general case this integrity constraint violation is detected in BA4 in Figure 4.1
at the latest, but pre-processing in FA2 and FA3 might detect this violation in earlier
stages of the life-cycle).

Since ontology consistency checking and evaluation of ontology queries is time consum-
ing, the front-end layer optimizes integrity constraint checking (FA2 and FA3) and keeps
cached the ontology changes that are propagated to the ontology at transaction commit
(FS4). Due to the time and space complexity of the ontology consistency check, that
is at least exponential in time, see Section 2.5.1, it is not feasible that each transaction
owns a separate instance of a SROIQ reasoner for its whole life duration. To handle
this problem, all transactions share one instance X of a SROIQ reasoner. During the
commit phase, at the beginning of BA3, a new reasoner instance X ′ is created. When
the commit succeeds (the changes violate neither integrity constraints nor ontology
consistency), data is propagated to the ontology, X ′ becomes shared (the back-end layer
benefits from serialized transactions, thus also achieving transaction isolation), replaces
X (BA5) and all pending transactions are informed about reasoner change (BS3). On
the other hand, transaction rollback causes X ′ to be disposed. The transaction scenario
requires that all queries in a transaction are evaluated (FR2, FS2, BR2, BA2, BS1, FR3
and FS3) before the first data modification (FR5) in the object model to prevent reading
outdated data – for the majority of practical scenarios, this restriction is not serious,
as data-editing clients fetch data first, provide them to a user interface and take back
changed data to be stored in the ontology.

To provide expressive query language for accessing ontological knowledge from ontology
access layer, I propose the SPARQL-DLNOT language introduced in the next section,
evaluation of which is performed in step BA2 in Figure 4.1. The language extends both
SPARQL-DL (with negation as failure and other query atom types like Ref (P)) and
DCQNOT (with undistinguished variables and expressive query atoms). This makes it
suitable for both expressive query answering and integrity constraint checking.

4.2. SPARQL-DLNOT Language
Let’s focus on a fundamental part of any OIS – expressive queries. In this section
I present SPARQL-DLNOT , my extension of SPARQL-DL introduced in Section 2.7
by novel OWL 2 DL query atoms and negation as failure. Afterwards, I present my
proposal for SPARQL-DLNOT evaluation and optimization. I published earlier versions
of the techniques presented in this section in [29] as the first proposal for SPARQL-DL
evaluation and optimization.

Definition 9 (SPARQL-DLNOT) A SPARQL-DLNOT query Q extends a SPARQL-DL
query in Definition 3 in the possibility of using extra query atoms:

q ← any SPARQL-DL query atom | ASym (s) | Ref (s) | IRef (s) | NOT (QN),

60

where s ∈ SN ∪ Vvar, and QN is a SPARQL-DLNOT query without NOT atoms. Also,
QN must not share undistinguished variables with any other atom q ∈ Q. Respective
parts of Definition 3 are modified as follows:

• Set V (Q) ⊆ Vvar (resp. U(Q) ⊆ Vbnode, resp. I(Q) ⊆ IN) consists of all distin-
guished variables (resp. undistinguished variables, resp. individuals) that appear as
arguments of some query atom of Q, or in V (QN) (resp. U(QN), resp. I(QN)), for
any atom NOT (QN) ∈ Q.

Semantics of semi-ground ASym, Ref, IRef, and NOT query atoms is shown in Table 4.1.

�

semi-ground qS I |=σ q
S if ∀x, y ∈ ∆I :

Ref (S) 〈x, x〉 ∈ SI

IRef (S) 〈x, x〉 /∈ SI

ASym (S) 〈x, y〉 ∈ SI ⇒ 〈y, x〉 /∈ SI

NOT (QN) there exists no binding µ′ for QN and no extension σ′ of σ, such
that I |=σ′ µ

′(QN)

Table 4.1.: Interpretation of extra SPARQL-DLNOT semi-ground atoms, complementing
the Table 2.6.

While Ref, IRef and ASym leverage the expressiveness of SPARQL-DL towards
OWL 2 DL, the negation as failure construct represented by NOT atoms makes
it possible to express non-monotonic queries (and thus also DCQNOT queries) by
means of SPARQL-DLNOT . On the other hand, comparing to the DCQNOT queries,
SPARQL-DLNOT is able to use undistinguished variables in the NOT atoms.

In Definition 9, QN is required not to share undistinguished variables with other atoms
in Q. This restriction is posed here to make the semantics of NOT atoms simple, see last
line in Table 4.1, and to make applicable the rolling-up technique, introduced in Section
2.7, for evaluation of SPARQL-DLNOT queries using SROIQ reasoners introduced
in Section 4.2.2. Without this restriction, the extended interpretation σ of undistinguished
variables from Definition 4 might contain a mapping for some undistinguished variable
!u ∈ U(QN) ∩ U(Q) for query Q where NOT (QN) ∈ Q. As discussed in Section 2.7.3,
the rolling-up technique describes the query as a tree, breaking any potential cycle and
getting rid of all undistinguished variables4. Because of this, σ(!u) might be different in
each independent applications of the rolling-up technique on parts of Q sharing !u (e.g.
QN on one side and Q without NOT (QN) on the other side).

4Except the case when no distinguished variable, nor individual is present, when the last undistinguished
variable is kept, see Section 2.7.3.

61

In Section 2.7.4, I have introduced the syntax of DCQNOT to be compatible with
the syntax of SPARQL-DLNOT queries – thus Example 15 shows an example of
DCQNOT/SPARQL-DLNOT query that can be used for data validation. Additional
constructs in SPARQL-DLNOT can be used to formulate expressive non-monotonic
queries, like the following query5:

Example 19 (Expressive RBox Query) Get all asymmetric strict subproperties
(?v1) of the memberOf property.

[SPO (?v1,memberOf),ASym (?v1),NOT (EP (?v1,memberOf))].

SPARQL-DL was designed to become a SPARQL entailment regime for OWL DL, see
[45]. Similarly SPARQL-DLNOT is an extension of SPARQL-DL that can be used as an
OWL 2 DL entailment regime for SPARQL 1.1 (see [46] for more details on entailment
regimes).

4.2.1. Optimizing Conjunctive ABox Queries with Undistinguished
Variables

Before introducing the SPARQL-DLNOT evaluation technique, I will present the novel core
evaluation technique for handling undistinguished variables in conjunctive ABox queries,
that I published in [30]. The technique is used for evaluation of undistinguished variables
in SPARQL-DLNOT presented in Section 4.2.2. Furthermore, it optimizes evaluation
of conjunctive ABox queries, comparing to the techniques introduced in Section 2.7.3.
None of the techniques presented in Section 2.7.3 takes into account partial bindings of
distinguished variables during their execution. This causes the rolling-up technique to
lose information about distinguished variable bindings of all but one (the variable to
which the query is rolled-up) distinguished variables in the query. The novel technique
presented here makes use of partial distinguished variable bindings to make the IR calls
more selective and also reduces the number of IC calls.

Cores

The main idea of the core evaluation strategy introduced in this section is that parts
of a query Q that contain undistinguished variables can be localized to cores that are
evaluated separately (as special query atoms COREγ, see below), while the rest of the
query is evaluated as a query without undistinguished variables using Algorithm 2
in Section 2.7.3. As a result, invalid partial bindings are pruned at early stages of the
query processing, even before other distinguished variables and some (or all) of the
undistinguished variables have to be evaluated.

5SPARQL-DL engine in Pellet as well as SPARQL-DLNOT engine OWL2Query, both introduced
in Section 5.2, support several non-monotonic query atoms. E.g. strictSubClassOf (?v1, ?v2), asking
for all pairs of subclasses that are not equivalent. This query atom has the same semantics as the
SPARQL-DLNOT query [SCO (?v1, ?v2),NOT ([EC (?v1, ?v2)])]. Non-monotonic atoms just refine the
possibilities for traversing concept and role hierarchies and are not elaborated here. I refer the reader
to the Pellet source code available at [55] for more details.

62

Figure 4.2.: Cores extracted from QX : [PV (?v3,R1, !u1),PV (!u1,R2, ?v2),
PV (?v2,R3, !u4),PV (!u1,R4, !u3),PV (!u2,R5, !u3),PV (!u3,R6, ?v1),
PV (?v1,R7, c),PV (c,R8, !u5),PV (?v2,R9, ?v1)]. Dotted arrows represent
the edges of GQU that build up the cores γ1, γ2, γ3, while simple arrows
represent edges of GQD . The gray rounded rectangles demarcate cores
extracted from the QX (maximal connected components of GQU).

Definition 10 (Core) Consider a conjunctive ABox query Q : [q1, . . . , qZ , qZ+1, . . . , qN]
with V (Q) 6= ∅ and U(Q) 6= ∅, where no query atom from QD : [q1, . . . , qZ] contains
an undistinguished variable and each query atom from QU : [qZ+1, . . . , qN] contains an
undistinguished variable. A core γ is each maximal subset of QU , for which the graph Gγ

is a maximal connected component of the graph GQU . A signature sig(γ) = V (Q) ∪ I(Q)
of γ is a set of all distinguished variables and individuals referenced in γ.

�

Note that the reordering of query atoms in Q in Definition 10 is possible, as all query
atom orderings are interpreted equally, see Definition 4. Definition 10 shows how to
construct cores: take all atoms from QU referencing any undistinguished variable from
some maximal connected component of GQU . Complex example of core partitioning is
shown in Figure 4.2.

Core Evaluation

Introduction of cores makes it possible to transform each queryQ : [q1, . . . , qZ , qZ+1, . . . , qN]
from Definition 10 into a new query Q′ : [q1, . . . , qZ ,COREγ1 , . . . ,COREγK

] that contains
no undistinguished variable (U(Q′) = ∅). As demonstrated in Example 20, this transfor-
mation replaces all atoms qZ+1, . . . , qN with a set of novel atoms denoted COREγi

, each
of which represents one core (query).

Query Q′ can be then evaluated with Algorithm 6. In the algorithm description on lines
6-7, newly introduced COREγ atoms are evaluated by calling the function evalCore,
shown in Algorithm 7. The function returns all (partial) bindings µ′ ⊇ µ such that
K |= µ′(COREγ) iff µ′ is a valid binding for γ.

63

Algorithm 6 Conjunctive ABox Query Evaluation using Core Evaluation Technique.
The algorithm extends Algorithm 2 introduced in Section 2.7.3, with evaluation of CORE
atoms using Algorithm 7.
Input: Consistent K; query Q = [q1, . . . , qN]; binding µ
Output: Set β of all valid bindings µ′ for Q.

1: function evalDistCore(K, Q, µ)
2: if Q = [] then return {µ}
3: else
4: [q, qp1 , . . . , qpN−1]← next(K, Q, µ)
5: ε← ∅
6: if q = COREγ then
7: ε← evalCore(K, γ, µ)
8: else
9: ε← evalAtom(K, q, µ)

10: β ← ∅
11: for µ′ ∈ ε do β ← β ∪ evalDistCore(K, [qk1 , . . . , qkN−1], µ′)
12: return β

Example 20 (Query Transformation) Using the core evaluation technique for eval-
uating Q1 from Example 11 requires its transformation into a single core γ and the
transformed version Q′1 of Q1 :

γ = [Ty (!u4,Employee),PV (?v1, advisor, !u4),PV (!u4, teacherOf, ?v2)],
Q′1 = [PV (?v1, takesCourse, ?v2),PV (?v1,memberOf, ?v3),COREγ].

At this point Q′1 is evaluated by Algorithm 6. Thus, first candidate bindings for ?v1,
?v2 and ?v3 are pruned iteratively using optimized IR operations (lines 12, 14, and 15
of Algorithm 3) instead of checking each candidate binding µ of variables ?v1, ?v2 and
?v3 using IC (line 5 of Algorithm 5). Next, when evaluating the COREγ atom a single
IC call (as a part of the evalBool call on line 4 of Algorithm 7) is required for each
boolean query µ(γ), the number of which is significantly less than in Example 14, see
Section 5.2.1.

Correctness Let’s show that Algorithm 6 generates the same set of results for query

Q′ = [q1, . . . , qZ ,COREγ1 , . . . ,COREγK
]

as Algorithm 4 (and 5) for query

Q = [q1, . . . , qZ , qZ+1, . . . , qN],

where Q′ is a transformation of Q as described in Section 4.2.1.
The following reasoning relies on the soundness of Algorithm 1 for boolean queries,

Algorithm 2 for queries without undistinguished variables, Algorithm 4, and Algorithm 5

64

Algorithm 7 Evaluation of an Atom in a Transformed Query.
Input: Consistent K; core γ; current binding µ.
Output: Set of all (partial) bindings µ′ ⊇ µ such that K |= µ′(q), resp. K |= µ′(γ).

1: function evalCore(K, γ, µ)
2: γ′ ← µ(γ)
3: if V (γ′) = ∅ then
4: if evalBool(K, γ′) then return {µ}
5: else return ∅
6: else
7: β = ∅
8: for µ′ ∈ evalSimple(K, γ′) do
9: β ← β ∪ {µ ∪ µ′}

10: return β

for queries with undistinguished variables. Let’s take a binding µ valid for Q, found by
Algorithm 4. Since QD = [q1, . . . , qZ] is a subquery (without undistinguished variables)
of both Q and Q′, µ is valid for QD and thus it will be found by Algorithm 2 for queries
with distinguished variables. For each atom COREγj

, the query γj, for 1 ≤ j ≤ K
is constructed only from some atoms of QU = [qZ+1, . . . , qN], and is evaluated with
Algorithm 7, which passes the core to the function evalBool on line 4, or to function
evalSimple, on line 8. Thus, since µ is valid for Q, it must be also valid for γj.

Let’s take a binding µ found by Algorithm 6. Since Algorithm 2 is sound, µ is valid
for QD, as atoms without undistinguished variables are evaluated using the evalAtom
function. Since each atom of QU is present in some core γj, for 1 ≤ j ≤ K, it must
have been evaluated by function evalBool, or evalSimple in function evalCore
(Algorithm 7), when evaluating a core atom COREγj

. Therefore, µ is valid for QU and
thus also for Q.

�

The core evaluation tries to evaluate as many query atoms as possible using the
atom-by-atom state space search for queries with distinguished variables (Algorithm 6).
This brings the possibility of making use of partial bindings to prune the state space
search and make IC and namely IR operations as selective as possible. The nature of
Algorithm 6 allows for application of further optimizations that reflect the query shape,
e.g. query reordering, described in Section 4.2.2.

4.2.2. Evaluating SPARQL-DLNOT

In this section, I introduce a generic technique for evaluating SPARQL-DLNOT on top
of an existing SROIQ reasoner, which provides a few reasoning services – IC, IR,
CR, subC, superC, isSubC, eqC, isEqC, subP, superP, isSubP, eqP, isEqP –
described in Table 2.5 in Section 2.6. Since the technique makes use of the core evaluation

65

introduced in Section 4.2.1, that in turn makes use of rolling-up technique introduced in
Section 2.7.3, several restrictions on the use of undistinguished variables apply. Having a
SPARQL-DLNOT query Q,

• no undistinguished variables can appear in DF atoms; evaluating such atoms is an
open issue,

• no cycle made of undistinguished variables can appear in the query, neither in
queries of the nested NOT atoms, e.g. query

Ty (?v,A),NOT ([PV (!u1,R2, !u2),PV (!u2,R2, !u3),PV (!u3,R3, !u1)])

cannot be answered. This is a generalization of the condition already required in
Section 2.7.3 for evaluating conjunctive ABox queries,

• no undistinguished variables are shared between query atoms and NOT atoms, as
already required in Definition 9.

The course of the SPARQL-DLNOT evaluation technique is as follows. First, a SPARQL-
DLNOT query Q is preprocessed resulting in a query that does not contain any SA atoms
with undistinguished variables. Then, the query is evaluated using an extension of
Algorithm 6, that uses the core evaluation technique to handle undistinguished variables.
After introducing the evaluation technique, I introduce several optimizations, namely
query reordering methods and using taxonomies to prune variable bindings for concept
and role variables.

Preprocessing

Let’s discuss preprocessing and normalization of SPARQL-DLNOT queries. The prepro-
cessing techniques can be divided into two groups:

required techniques that transform the query into the form suitable for evaluation using
algorithms in Section 4.2.2,

optional techniques that optimize query evaluation using methods introduced in Sec-
tion 4.2.2.

Techniques presented in the following paragraphs are applied for the maximal positive
subquery of the original SPARQL-DLNOT query, i.e. query composed of all but NOT
atoms. Of course, when evaluating NOTQ atoms, the techniques are applied for Q
recursively. Now, let’s discuss only the required preprocessing techniques. Optional
preprocessing is part of query evaluation optimizations and will be discussed in Section
4.2.2.

66

Required Preprocessing Techniques. As shown in Section 4.2.1, evaluation of undis-
tinguished variables is difficult, or even impossible in general case. However, for queries
without cycles of undistinguished variables an efficient technique – core evaluation – has
been defined in Section 4.2.1, to evaluate undistinguished variables in Ty and PV atoms.
At the beginning, cores of undistinguished variables are extracted from a SPARQL-DLNOT
query. The resulting query contains no undistinguished variables except in SA atoms
(note, that as shown above no DF atoms with undistinguished variables are allowed).
Thus, in the next step, such SA atoms with undistinguished variables are removed as
shown in Algorithm 8, ending up with a SPARQL-DLNOT query without undistinguished
variables but with extra CORE atoms.

Algorithm 8 Removing SA atoms with undistinguished variables.
1: function simplifySA(Q)
2: Q← Q \ {SA (x, x)}, where x /∈ Vvar.
3: if q = SA (!u, ?v) ∈ Q, or q = SA (?v, !u) ∈ Q then
4: µ = {!u 7→ ?v}
5: Q← simplifySA(µ(Q))
6: return Q

Algorithm 8 takes a SPARQL-DLNOT query Q and returns a transformed Q′ such
that K |= µ(Q) iff K |= µ(Q′). On line 2, this algorithm removes all trivially satisfied
atoms of the form SA (a, a) from the input SPARQL-DLNOT query Q. Only atoms of
the form SA (?v, ?v) are kept in order to produce binding for ?v in case no other query
atom references ?v. Next lines of the algorithm remove undistinguished variables from
SA atoms by replacing each undistinguished variable by the other term in the SA atom.
Let’s demonstrate them on an example.

Example 21 Consider a SPARQL-DLNOT query to the LUBM dataset:

[SA (!u2, ?v1),Ty (!u2, ?v3),NOT ([PV (?v1, teacherOf, !u4), SA (!u4,Course1)])].

Note, that this query is neither conjunctive ABox query (it contains a NOT atom),
neither DCQNOT query (it contains distinguished variable ?v3 in class position and
undistinguished variables !u1, !u4). This query asks for each person ?v1 that is the same
as another person !u2, with unknown type ?v3 (e.g. Employee, GraduateStudent), and that
is not known teacher of a course !u4 that is same as Course1.

Algorithm 8 removes both SA atoms and replaces !u2 with ?v1 and !u4 with Course1,
result of which is the query

[Ty (?v1, ?v3),NOT ([PV (?v1, teacherOf,Course1)])].

The meaning of this query is the same as of the original one – the SA atoms ensured that
the interpretation of undistinguished variable !u2 (resp. !u4) has to be the same as the
interpretation of ?v1 (resp. Course1), which is ensured by replacing the undistinguished
variables with distinguished ones in the new query.

67

This preprocessing cannot be used to get rid of SA atoms without undistinguished
variables, since K might contain individuals explicitly stated to be the same (e.g. {a1} v
{a2} in SROIQ). For example when evaluating the atom SA (?v1, ?v2), it is necessary
to bind to ?v1 and ?v2 all combinations of individuals in the equivalence set induced by
{a1} v {a2} axioms. Correctness of these transformations follows from the semantics of
SA atoms in Table 2.6 and the following idea: For each interpretation I, one can always
choose σ as follows – σ(a1) = σ(µ(a2)) if a2 is a distinguished variable and σ(a1) = σ(a2)
otherwise.

Evaluating Query Atoms

After the preprocessing phase, a SPARQL-DLNOT query Q contains no undistinguished
variables, except in the cores γ of the COREγ atoms. Thus, Q can be evaluated using
a similar strategy as Algorithm 6. The extended algorithm is depicted as Algorithm 9.
Algorithm 9 (initiated by the call evalSDLN(K, Q, ∅)) is recursive and performs a

Algorithm 9 SPARQL-DLNOT Query Evaluation Procedure.
Input: Consistent K; query Q = [q1, . . . , qN]; binding µ.
Output: Set β of all solutions for Q.

1: function evalSDLN(K, Q, µ)
2: if Q = [] then return {µ}
3: else
4: [q, qk1 , . . . , qkN−1]← next(K, Q, µ)
5: ε← ∅
6: if q = COREγ then
7: ε← evalCore(K, γ, µ)
8: else if q = NOT (QN) then
9: ε← {µ ∪ {?v1 7→ x1, . . . , ?vM 7→ xM}?vi∈P,xi∈CN∪RN∪IN}

10: where P = V (µ(Q \ {NOT (QN)})) ∩ V (µ(QN))
11: ε← ε \ evalSDLN(K, QN , µ)
12: else
13: ε← evalAtomSDLN(K, q, µ)
14: β ← ∅
15: for µ′ ∈ ε do β ← β ∪ evalSDLN(K, [qk1 , . . . , qkN−1], µ′)
16: return β

breadth-first search to materialize a binding for all distinguished variables in the input
query Q.

Algorithm 9 evaluates CORE atoms on line 7, NOT atoms on line 11 and all other
SPARQL-DLNOT atoms are evaluated on line 13 by the nested call to evalAtomSDLN
described in Algorithm 10. While µ contains the variable binding constructed so far, the
set ε contains all partial bindings µ′ that extend µ and are valid for q. The particular
query atoms are evaluated as follows:

68

• COREγ atoms introduced by core evaluation technique are evaluated by the original
procedure evalCore introduced in Section 4.2.1, where its correctness is discussed.
This procedure finds all solutions for a core γ that become candidate variable
bindings for the next recursion step on line 15 of Algorithm 9,

• NOT (QN) atoms are evaluated by finding all solutions for QN using the call
to evalSDLN. These bindings are subtracted from all possible bindings of all
distinguished variables that appear in QN as well as Q without NOT (QN), i.e.
variables appearing in V (µ(QN)) ∩ V (µ(Q \ {NOT (QN)})). Then, the resulting
bindings are passed to the next recursion step of Algorithm 9. Note, that V (µ(QN))\
V (µ(Q\{NOT (QN)})) might be nonempty, in which case QN contains distinguished
variables that are not contained outside the QN atom. These variables are not
bound in the result of the query Q and thus only existence of their binding to named
individuals/named concepts/named roles is checked by evalSDLN(K, QN , µ), to
satisfy the semantic condition for NOT atoms in Table 4.1.

• other SPARQL-DLNOT atoms are evaluated using Algorithm 10. This algorithm
evaluates SPARQL-DLNOT atoms in the very same manner as Algorithm 3 evaluates
query atoms of conjunctive ABox queries.

Correctness of Algorithm 9, that uses Algorithm 10, follows from the correctness of
Algorithm 6 and the semantics of additional SPARQL-DLNOT constructs. For NOT
query atoms, the semantic condition I |=σ µ(NOT (QN)) if there do not exist extension
σ′ of σ, and µ′ of µ such that I |=σ′ µ

′(QN) from Section 4.2 has to be ensured. The
key property is that QN does not share undistinguished variables with the rest of the
query outside NOT (QN). As a result, σ′ = σ ∪ σ′′, where σ′′ and σ do not overlap,
whenever I |=σ′′ µ

′(QN) for. The binding µ′ of distinguished variables in QN , generated
by evalSDLN(K, QN , µ) on line 11, exists whenever I |=σ′′ µ

′(QN) and thus also
I |=σ′ µ

′(QN). Thus, retracting the result of evalSDLN(K, QN , µ) from all possible
bindings of distinguished variables in QN gets rid of such µ′ (corresponding to such σ′)
in ε.

The correctness of the Algorithm 10 for evaluating SPARQL-DLNOT atoms is a
straightforward extension of the correctness of Algorithm 3, as defined in [71]. If
branches on lines 3, 8, as well as the first two options Ty (a, C) and PV (a1, R, a2) on line
38 are evaluated in the same manner as in Algorithm 3. Evaluation of query atoms SCO,
EC, SPO, EP, Ty, PV is analogous using the corresponding operations of the reasoner
interface defined in Table 2.5. Other query atoms are evaluated using the transformation
of OWL entailment to SHOIN satisfiability that stems from Figure 7 of [56] and thus I
will omit them here.

Let’s discuss the evaluation of novel SPARQL-DLNOTquery atoms Ref, IRef, ASym
that do not follow from [56]. I will discuss only evaluation of ground atoms on line 38 and
33. Evaluation of their counterparts with distinguished variables on line 36 and 30 just

69

Algorithm 10 SPARQL-DLNOT Atom Evaluation. The symbol | denotes alternatives.
Input: Consistent K; current SPARQL-DLNOT atom q′; binding µ; β = ∅.
Output: Set β of partial candidate bindings.
1: function evalAtomSDLN(K, q′, µ) . In each iteration, f is a fresh individual not appearing in K.
2: q ← µ(q′)
3: if q = Ty (?v2, C1) | PV (?v2, R, a1) | PV (a1, R, ?v2)) then
4: for a2 ∈ IR(K, C1) | ∃R · {a1} | ∃R− · {a1} do β ← β ∪ {µ ∪ {?v2 7→ a2}}
5: else if q = Ty (a1, ?v2) then for A2 ∈ CR(K, a1) do β ← β ∪ {µ ∪ {?v2 7→ A2}}
6: else if q = Ty (?v1, ?v2) then
7: for A2 ∈ CN and a1 ∈ IR(K,A2) do β ← β ∪ {µ ∪ {?v1 7→ a1, ?v2 7→ A2}}
8: else if q = PV (?v1, R3, ?v2) then
9: for a1 ∈ IR(K,∃R3 · >) and a2 ∈ IR(K,∃R3

− · {a1}) do β ← β ∪ {µ ∪ {?v1 7→ a1, ?v2 7→ a2}}
10: else if q = PV (?v1, ?v3, a2) | PV (a2, ?v3, ?v1) then
11: for R ∈ RN and a1 ∈ IR(K,∃R · {a2}) | IR(K,∃R− · {a2}) do
12: β ← β ∪ {µ ∪ {?v3 7→ R, ?v1 7→ a1}}
13: else if q = PV (a1, ?v3, a2) then
14: for R ∈ RN do if IC(∃R · {a2}, a1) then β ← β ∪ {µ ∪ {?v3 7→ R}}
15: else if q = PV (?v1, ?v3, ?v2) then for R3 ∈ RN and a1 ∈ IR(K,∃R3 · >) do
16: for a2 ∈ IR(K,∃R3

− · {a1}) do β ← β ∪ {µ ∪ {?v1 7→ a1, ?v3 7→ R3, ?v2 7→ a2}}
17: else if q = SA (?v1, a2) | DF (?v1, a2) or switched arguments then
18: for a1 ∈ IR(K, {a2}) | IR(K,¬{a2}) do β ← β ∪ {µ ∪ {?v1 7→ a1}}
19: else if q = SA (?v1, ?v2) | DF (?v1, ?v2) then
20: for a1 ∈ IN and a2 ∈ IR(K, {a1}) | IR(K,¬{a1}) do β ← β ∪ {µ ∪ {?v1 7→ a1, ?v2 7→ a2}}
21: else if q = SCO (?v1, C2) | SCO (C2, ?v1) then
22: for A1 ∈ subC(K, C2) | superC(K, C2) do β ← β ∪ {µ ∪ {?v1 7→ A1}}
23: else if q = EC (?v1, C2) | CO (?v1, C2) | DW (?v1, C2) or switched arguments then
24: for A1 ∈ eqC(K, C2) | eqC(K,¬C2) | subC(K,¬C2) do β ← β ∪ {µ ∪ {?v1 7→ A1}}
25: else if q = SCO (?v1, ?v2) | EC (?v1, ?v2) | CO (?v1, ?v2) | DW (?v1, ?v2) then
26: for A1 ∈ CN and A2 ∈ subC(K,A1) | eqC(K,A1) | eqC(K,¬A1) | subC(K,¬A1) do
27: β ← β ∪ {µ ∪ {?v1 7→ A1, ?v2 7→ A2}}
28: else if q = SPO (?v1, R2) | SPO (R2, ?v1) then
29: for R1 ∈ subP(K, R2) | superP(K, R2)) do β ← β ∪ {µ ∪ {?v1 7→ R1}}
30: else if q = EP (?v1, R2) | IO (?v1, R2) or switched arguments then
31: for R1 ∈ eqP(K, R2) | eqP(K, R2

−) do
32: β ← β ∪ {µ ∪ {?v1 7→ R1}}
33: else if q = SPO (?v1, ?v2) | EP (?v1, ?v2) | IO (?v1, ?v2) then
34: for R2 ∈ RN and R1 ∈ subP(K,R2) | eqP(K,R2) | eqP(K,R2

−) do
35: β ← β ∪ {µ ∪ {?v1 7→ R1, ?v2 7→ R2}}
36: else if q = (Fun | IFun | Trans | Ref | IRef | Sym | ASym)(?v) then
37: for R ∈ RN do if isSubC(K,>,≤ 1 R) | isSubC(K,>,≤ 1 R−) | isSubC(K,∃R·∃R·{f},∃R·
{f}) | isSubC(K, {f},∃R · {f}) | isSubC(K,∃R · Self,⊥) | isEqP(K,R,R−) | isSubC(K, {f} u ∃R ·
(¬{f} u ∃R · {f}),⊥) then β ← β ∪ {µ ∪ {?v 7→ R}}

38: else if q = Ty (a, C) | PV (a1, R, a2) | SA (a1, a2) | DF (a1, a2) | SCO (C1, C2) | EC (C1, C2) |
SPO (R1, R2) | EP (R1, R2) | DW (C1, C2) | CO (C1, C2) | Fun (R) | IFun (R) | Ref (R) | IRef (R) |
Sym (R) | Trans (R) | IO (R1, R2) | ASym (R) then

39: if IC(K, C, a) | IC(K,∃R · {a2}, a1) | IC(K, {a2}, a1) | IC(K,¬{a2}, a1) | isSubC(K, C1, C2) |
isEqC(K, C1, C2) | isSubP(K, R1, R2) | isEqP(K, R1, R2) | isSubC(K, C1,¬C2) |
isEqC(K, C1,¬C2) | isSubC(K,>,≤ 1R) | isSubC(K,>,≤ 1R−) | isSubC(K, {f},∃R · {f}) |
isSubC(K,∃R ·Self,⊥) | isEqP(K, R,R−) | isSubC(K,∃R ·∃R ·{f},∃R ·{f}) | isEqP(K, R1, R2

−) |
isSubC(K, {f} u ∃R · (¬{f} u ∃R · {f}),⊥) then β ← β ∪ {µ}

40: return β

70

evaluates the respective atom for each R ∈ RN replacing6 the distinguished variable(s).
While IRef (R) atoms can be evaluated by reformulating the query with other OWL 2
constructs (see next paragraphs), evaluating Ref (R) and ASym (R) needs an auxiliary
fresh individual f to capture cycles in the interpretation of R, similarly to the evaluation
of Trans (R) introduced in [56]. Details on evaluation of each of these atoms are provided
next.

According to Definition 2, Ref (R) is satisfied whenever all domain elements are
connected to themselves by RI in each model I. This is validated by isSubC(K, {f},∃R ·
{f}) that checks whether K |= {f} v ∃R · {f}. As f is fresh individual that is not
referenced elsewhere in K, it is general enough to “represent” any domain element. Thus,
the entailment holds whenever such RI connection is valid for each individual f from K.

According to Definition 2, IRef (R) is satisfied whenever no domain element is connected
to itself by RI in each model I. This is validated by isSubC(K,∃R ·Self,⊥) that checks
that K |= ∃R · Self v ⊥, i.e. RI never makes a loop over a domain element.

According to Definition 2, ASym (R) is satisfied whenever no two domain elements
a1 and a2 are connected by a relation R in both directions. This is validated by
isSubC(K, {f}u∃R·(¬{f}u∃R·{f}),⊥) that checks that K |= {f}u∃R·(¬{f}u∃R·{f}) v
⊥. This condition ensures nonexistence of a domain element fI connected by RI to
strictly another domain element (represented by a concept ¬{f}, element of which is
interpreted as a different individual than f) and then back by RI to fI .

�

Example 22 Evaluating the query atom Sym (?v) using Algorithm 10 (line 36) tries
every possible role R in RN and returns a binding {?v1 7→ R} whenever R is equivalent
to its inverse, as follows from Definition 2, which is checked by isEqP(O,R,R−) on line
37 of Algorithm 10.

Optimizations

The syntactic overhead of SPARQL-DL makes it possible to simplify queries before their
evaluation by removing (i) trivially satisfied atoms SA, SCO, EC, SPO, EP atoms (binary
atoms with reflexive semantics, see Section 2.7.1) that have both arguments identical,
e.g. SCO (C1, C2); (ii) atoms with >, ⊥ in particular positions, e.g. SCO (C,>), or
SCO (⊥, C). On the other hand, it is possible to immediately fail (i.e. return empty
result for) queries containing DW or DF atoms (binary atoms with irreflexive semantics)
that have both arguments identical. These preprocessing steps are not exhaustive, but
they are all cheap to compute (polynomial in time comparing to exponential complexity
of tableau reasoners) and since they decrease the number of atoms in the query, they are
valuable especially w.r.t. the cost based reordering presented next in this section.

Also many known preprocessing techniques are applicable for SPARQL-DLNOT queries.
Redundant atoms can be removed using the domain-range simplification introduced in

6Note that for the sake of brevity, Algorithm 10 uses symbol R for denoting general named roles,
although atoms Ref, IRef and Asym allow only simple roles. Thus, whenever speaking about these
atoms in this algorithm, R is used in the meaning of a simple role, see Section 4.2 and 2.4.

71

[71]. To avoid computing Cartesian product of the query results, a SPARQL-DLNOT
query is split into connected components, as discussed in Section 2.7.3 for conjunctive
ABox queries. Second, whenever the expressiveness of the ontology is ALC, it is possible
to make use of its tree model property, see [48], to get rid of as many undistinguished
variables as possible by replacing them with distinguished ones using technique described
in [72]. Last, but not least static query reordering method presented in [71] is applicable,
as discussed next.

Although not primary focus of this thesis, I sketch two optimization techniques that
I developed specifically for SPARQL-DLNOT : (i) static and dynamic query reordering,
and (ii) down-monotonic variable pruning.

Static Query Reordering. In [71] a static cost-based reordering method has been
introduced for conjunctive ABox queries. The idea is to estimate the cost of evaluating a
query atom by estimating the number of solutions to that query atom. The estimates are
based on statistics computed by cheap preprocessing of the ontology. These estimates
are then used to find a permutation of query atoms that will provide optimal execution.

For the purposes of SPARQL-DLNOT , I generalized this static reordering strategy,
as shown in Algorithm 11. The cost computation for given atom ordering is shown
in Algorithm 12. For each query atom q two functions are needed: estC(q, B), that
estimates the cost (measured by the expected number of tableau algorithm runs) needed
to evaluate an atom q, and estB(q, B), that estimates number of execution branches
generated by evaluating q (i.e. number of the partial bindings returned by Algorithm
10). Both functions take as an argument a collection B of bound variables, binding of
which is unknown at the time of computing the cost.

Algorithm 11 Static Query Reordering.
Input: Consistent K; SPARQL-DLNOT query Q; set B of bound variables.
Output: Optimal reordering of Q.

1: function staticNext(K, Q, µ)
2: if µ 6= ∅ then return Q

3: Q∗ ← Q and cost∗ ←∞
4: for Qp ∈ allPermutationsOfAtomsIn(Q) do
5: costp ← staticCost(Qp, ∅)
6: if cost∗ > costp then
7: cost∗ ← costp
8: Q∗ ← Qp

9: return Q∗

Algorithm 11 executes just once, at the beginning of query evaluation (line 2 in
Algorithm 11 returns the computed ordering otherwise), and “simulates” the run of
the SPARQL-DLNOT engine (without performing any expensive SROIQ reasoning) to
propose best ordering of query atoms to be executed by the real query engine. The
estimates estC and estB are obtained in two different ways:

72

Algorithm 12 Static Ordering Cost Computation.
Input: SPARQL-DLNOT query Q; set B of bound variables
Output: Cost of the evaluation of query Q.

1: function staticCost(Q,B)
2: if Q = ∅ then return 1
3: [q|Qr]← Q
4: return estC(q, B) + estB(q, B) · staticCost(r, B ∪ V ([q]))

estC(q, B) is the estimated cost of evaluating a query atom q given that variables in B
are bound. The estimated cost χ is measured in the number of tableau algorithm
runs tCC , as specified in Table 2.5. This estimate is computed based on the course
of evaluation of q in Algorithm 10. Rough estimates that correspond to worst cases
are shown in Table B.1 in Appendix B.

Example 23 As an example, the query atom q = PV (?v1, ?v2, a) is evaluated by
computing all instances (instance retrieval) of a concept ∃R · {a} for each R ∈ RN ,
thus estC(q, ∅) = |RN | · χ(IR), where χ(IR) = |IN | · tCC as defined in Table 2.5
in Section 2.6.

estB(q, B) is the estimated number of partial bindings of evaluating q given that
variables in B are bound. These estimates, represented by functions ε, are computed
based on a cheap preprocessing of the ontology making use of two structures:

Precompletion is used to get estimates for query atoms Ty, PV, SA, DF, like
number of named concepts for given individual, or number of same individuals,
as shown in Section 2.6. Note that precompletion is computed during the
initial consistency check by the tableau algorithm that has to be performed
before any query answering algorithm is executed.

Told Axioms are used to get estimates for all other SPARQL-DLNOT atoms, except
NOT and CORE. This includes told concept hierarchy (SCO,EC atoms) and
told role hierarchy (SPO, EP atoms).

These estimates have to be done for all query atom types, as shown in Table B.1
in Appendix B.

Example 24 As an example, estC(SCO (?v,Person), ∅) = |CN |tCC is equal to
the estimated time for retrieving all (direct and indirect) named subconcepts of
Person, where tCC is an estimated time for computing a single consistency check of
K, as discussed in Section 2.6.

Next, estB(SCO (?v,Person), ∅) is the estimated number of subconcepts of Person,
computed as the number of axioms of the form A v Person.

73

The estimation strategy for SPARQL-DLNOT query atoms, except NOT and COREγ,
are computed based on told axioms, precompletion and estimated cost of basic reasoner
API operations. Estimates for estC and estB of COREγ atoms, described in Table B.1,
follow the course of the simple evaluation strategy used in line 8 of Algorithm 7.

Comparing to COREγ atoms, estimation of NOT (Q′) atom evaluation costs is rather
difficult, as their evaluation depends strongly on the shape of Q′. Thus, at present, this
query atom type is excluded from query reordering optimizations and are evaluated
always as last atoms in the query. Whenever more NOT (Q′) atoms are present in a
query, their mutual ordering is arbitrary.

Although the estimates introduced presented in full in Table B.1 in Appendix B are
rough and neglect the particular query atom arguments, they are cheap to compute
and – when used in static reordering (or dynamic reordering introduced in the following
paragraph) – significantly improve typical query performance, as shown in Section 5.2.1.
Still, the estimates do not take into account whether the ontology is classified (i.e
concept hierarchy computed), or realized (i.e. membership of individuals to named
concepts computed), which are the operations that are often performed when handling
large data sets. More in-depth statistical analysis would need to study the particular
implementation/internal optimizations of tableau reasoner operations and will be part of
my future work.

Dynamic Query Reordering. Static reordering introduced in the previous paragraph
performs well whenever the number of query atoms is small (less than 8). As the size of
the query grows, computing all permutations turns out not to be scalable. Furthermore,
as the reordering method uses only rough estimates of knowledge base statistics, it is
prone to cumulating statistical errors. These problems can be overcome by reordering
query atoms dynamically, as shown in Algorithm 13.

Algorithm 13 Dynamic Query Reordering Function.
1: function dynamicNext(K, Q, µ)
2: [q∗|Qr]← Q and cost∗ ←∞
3: for q ∈ Qr do
4: if cost∗ > estC(µ(q), ∅) + α · estB(µ(q), ∅) then
5: cost∗ ← estC(µ(q), ∅) + α · estB(µ(q), ∅))
6: q∗ ← µ(q)
7: return [q∗|Qr \ {q∗}]

This method does not compute the best ordering of the query atoms in advance (and
thus does not require exploring exponential number of all permutations of query atoms),
instead it picks the best atom to be evaluated in the next execution step based on the
actual variable binding, thus being similar to a state space search. The cost is evaluated
as estC(µ(q), ∅) + α · estB(µ(q), ∅), where α is a parameter (weight). While α = 0
corresponds to a greedy search strategy, values of α > 0 represent the weights with which
the estimated cost of the rest of the query contributes to the atom cost.

74

(a) (b) (c)

Figure 4.3.: Exploiting concept hierarchy for down-monotonic variable optimization in
LUBM dataset.

Down-Monotonic Variables. Told concept and property hierarchies, discussed in pre-
vious paragraphs, can be reused also for pruning variable binding candidates as follows.
Consider the query

[SCO (?v1,Person),Ty (?v2, ?v1)]

which retrieves all individuals (?v2) of the concept Person together with their actual type
(?v1). When evaluating this query in this order, it is possible to exploit information from
the concept hierarchy and prevent variable ?v1 to be bound to named concepts that are
subconcepts of concept Person which produced no result when used as a binding for ?v1.

Thus, on line 22 of Algorithm 10, named concepts taken from subC(K,Person) =
{Person, Student,Employee,UndergraduateStudent,ResearchAssistant} are ordered accord-
ing to the topological ordering with respect to the told concept hierarchy – first, the most
general concepts are tested, and then their subconcepts, as demonstrated in Figure 4.3.
Left-most subfigure shows the initial partial binding {?v1 7→ Person} that is contained in
at least one solution. This makes possible that ?v1 binds to some of its subconcepts. Next,
partial binding {?v1 7→ Student} is found. Since it is not contained in at least one solution,
neither partial binding {?v1 7→ UndergraduateStudent} nor {?v1 7→ ResearchAssistant}
need to be tested. Last, as Employee has no subconcepts that are not pruned, down-
monotonic variable optimization cannot be used, no matter whether partial binding
{?v1 7→ Employee} is contained in any solution or not.

Generalizing this example, at a given execution point down-monotonic variable is any
variable ?v that occurs in an atom of the form Ty (•, ?v), or PV (•, ?v, •) later in the query
Q. Whenever the engine is about evaluating an atom q that contains a down-monotonic
variable ?v, it can safely perform the above described pruning.

75

5. Software Implementation
As a part of this thesis, I developed several software tools that show feasibility of the
methodology and framework proposed in Chapter 4. In this Chapter I will discuss generic
software tools that implement ideas and techniques introduced in the previous Chapter,
while in Chapter 6 I will discuss applications that use these generic tools. All tools
discussed in this chapter are released under an open-source license and involve

Java OWL Persistence API (JOPA) that implements the programmatic access to
OWL ontologies and implements techniques and ideas from Section 4.1.

Pellet SPARQL-DL engine that is an implementation of SPARQL-DL, a significant
subset of the SPARQL-DLNOT language described in Section 4.2. This engine has
been part of the Pellet distribution since 2008.

OWL2Query that is an implementation of SPARQL-DLNOT using techniques presented
in Section 4.2. This engine is generic and can be used with any OWL 2 DL reasoner
(e.g. through OWLAPI [57]).

5.1. Java OWL Persistence API
The reference implementation of the Ontology Persistence Layer is the Java Ontology
Persistence API (JOPA) 1 following the architecture presented in Figure 5.1. Due
to different semantics of regular axioms and integrity constraints (see Section 2.8),
the integrity constraints must be kept separately from the ontology to prevent OWL
reasoners from handling them as OWL axioms with standard OWL 2 DL semantics.
Integrity constraints for different applications can be kept in a single OWL document
and distinguished by OWL annotations with isIntegrityConstraintFor annotation property,
filler of which is the application identifier of the respective application, i.e.

constraint @ isIntegrityConstraintFor ′A′

says that constraint is interpreted as an integrity constraint for the application A. For
example, OWL integrity constraint 5.1 from the following example would be assigned to
application StruFail, ver. 0.1 as follows:

(Failure v ∀isFailureOf · Structure) @ isIntegrityConstraintFor ′StruFail− 0.1′,

or in RDF/XML syntax in OWL as depicted in Figure 5.2
1see http://krizik.felk.cvut.cz/km/jopa, cit. 12/10/2011

77

http://krizik.felk.cvut.cz/km/jopa

Figure 5.1.: JOPA overall architecture.

From the application developer point of view, the API of JOPA is similar to JPA 2.0
(see [106] for the description of JPA 2.0). In the object model, Java beans (called ’entities’
in the rest of this thesis) represent OWL classes, while their instances (called ’entity
instances’) correspond to OWL named individuals. Java annotations of entities and their
properties express the ontology – object model contract introduced in Section 4.1.1. With
respect to the open world assumption nature of OWL 2 DL semantics, it is important to
make a distinction between Java properties:

• value of which is inferred2 by an OWL 2 reasoner. To avoid value overriding
(and thus possibly also ontology inconsistency) their modification by client code is
prohibited,

• value of which is not inferred and thus can be freely modified by the application.
Values of these properties are loaded/stored directly from/to OWL axioms.

The persistence of entity instances is achieved by a transactional entity manager,
where transactions are handled as described in Section 4.1.2. Each entity instance has
very similar life-cycle as JPA 2.0 entity instances. The entity manager provides several
operations for managing life-cycle of instances (new, managed, detached, removed)3 of
the annotated Java beans similarly to JPA 2.0 entity managers, above all:

• persist operation for a new (resp. merge operation for a detached) entity instance
persists it by propagating corresponding changes in terms of newly added/removed
OWL axioms into the ontology,

2See inferred=true attribute in Figure 5.3.
3Readers not familiar with JPA instance states will find details in [106].

78

<?xml version="1.0"?>
<!DOCTYPE rdf:RDF [
<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#">
<!ENTITY ic "http://krizik.felk.cvut.cz/ontologies/2011/ic-example.owl#">
]>
...

<owl:Class rdf:about="⁣Failure">
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="⁣isFailureOf"/>
<owl:allValuesFrom rdf:resource="⁣Structure"/>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>
<owl:Axiom>

<isIntegrityConstraintFor>StruFail-0.1</isIntegrityConstraintFor>
<owl:annotatedSource rdf:resource="⁣Failure"/>
<owl:annotatedProperty rdf:resource="&rdfs;subClassOf"/>
<owl:annotatedTarget>

<owl:Restriction>
<owl:onProperty rdf:resource="⁣isFailureOf"/>
<owl:allValuesFrom rdf:resource="⁣Structure"/>

</owl:Restriction>
</owl:annotatedTarget>

</owl:Axiom>
...

Figure 5.2.: Integrity Constraint Serialization in OWL using RDF/XML syntax.

79

• refresh operation reloads the state of an entity instance from the ontology, and

• remove operation removes immediately the entity instance from the object model
and all related axioms from the ontology at the transaction commit.

5.1.1. Object-Ontology Mapping in Java
Entities are automatically generated directly from the respective set of integrity con-
straints using the OWL2Java tool which is a part of the JOPA distribution. OWL2Java
transforms the integrity constraints to Java objects according to the rules compliant with
meta-rules 1-3 introduced in the paragraph ’compile-time’ constraints in Section 4.1.1.

Example 25 Let’s consider the following integrity constraints for the StruFail applica-
tion, ver. 0.1, described in Section 6.1 (the respective isIntegrityConstraintFor annotations
are omitted for the sake of brevity):

Failure v ∀isFailureOf · Structure, (5.1)
Failure v ≤ 1 isFailureOf, (5.2)
Failure v ≥ 1 isFailureOf, (5.3)
Failure v ∀hasFactor · Factor. (5.4)

The integrity constraint (5.1) specifies that whenever a Failure instance is a subject of
the relation isFailureOf, the object of the relation must be an instance of Structure. Next,
each Failure instance must be in relation isFailureOf at least once (5.3) and at most once
(5.2). Last, each Failure instance might be connected through the relation hasFactor only
to instances of Factor (5.4). These integrity constraints are elaborated next in this section.

As an example, Figure 5.3 shows an entity corresponding to the integrity constraints
(5.1)-(5.4). The Java annotation in line 1 says that the Java class Failure is a rep-
resentation of the OWL 2 DL class Failure (the @OWLClass annotation defines the full
Internationalized Resource Identifier (IRI) of the respective OWL 2 DL class). Lines
3-10 are independent of the particular integrity constraints and thus do not influence
the object-ontology contract. Lines 3 and 4 make a value4 of rdfs : label of each Failure
instance accessible to the application logic. Lines 5 and 6 make read access to IRIs of
all inferred types for the given entity instance (e.g. each failure record is represented
as an OWL individual being an instance of the Failure class. But this individual might
also belong to the OWL class Event that is not a part of our example set of integrity
constraints.). Similarly, lines 9 and 10 provide read access to inferred values of all
OWL object and data property relationships, subject of which is the OWL individual
corresponding to the actual Failure instance. Lines 7 and 8 define an identifier of the
entity instance. The distinction between inferred and not inferred properties makes it

4 In OWL 2, each string literal value can be expressed in different language/regional variants. The
actual language is selected during instantiating the entity manager. Thus, each annotation property
value and data property value is loaded and stored in the actual language.

80

1 @OWLClass(iri = V.Failure)
2 public class Failure {
3 @OWLAnnotationProperty(iri = CV.RDFS_LABEL)
4 protected String label;
5 @Types(inferred=true)
6 protected Set<String> types;
7 @Id(generated = true)
8 protected String id;
9 @Properties(inferred=true)

10 protected Map<String,Set<String>> properties;
11 @OWLObjectProperty(iri = V.hasFactor)
12 protected Set<Factor> hasFactor;
13 @OWLObjectProperty(iri = V.isFailureOf)
14 @ParticipationConstraints({
15 @ParticipationConstraint(
16 owlObjectIRI = V.Structure,
17 min = 1,
18 max = 1)
19 })
20 protected Structure isFailureOf;
21 // setters/getters and other constraints omitted
22 }

Figure 5.3.: An example of generated Java model entity. V, CV are generated classes that
serve as vocabularies.

possible to use an OWL individual IRI (generated=true causes the entity manager to
generate a fresh identifier for an entity instance that has no correspondence to an OWL
individual yet) as the identifier of the corresponding entity instance. This decision cause
that multiple entity instances can share the same IRI (i.e. a Failure instance and an
Event instance can refer to the same OWL individual). In this case, the entity manager is
responsible for ensuring that at most one entity instance from the set of entity instances
sharing the same IRI is persisted. If not, the entity manager rolls back the current
transaction.

Lines 11-20 represent the mapping between the above mentioned integrity constraints
and the Java object model. Lines 13 and 20 represent directly the integrity constraint
(5.1). The Java annotation in line 13 defines the correspondence between the OWL 2 DL
property isFailureOf and the Java property isFailureOf. Line 20 defines the type of
the Java property isFailureOf as Structure, which is a Java representation of an
OWL 2 DL class Structure. Due to the strong typed character of the Java programming
language, (5.1) is ensured compile-time, see Section 4.1.1.

81

The integrity constraints (5.2) and (5.3) are expressed by the Java annotation in lines
14-19. This annotation defines the correspondence between the Java class Structure
and the OWL 2 DL class Structure specifying its full IRI (see line 16), the minimal
cardinality (see min=1 in line 17) and the maximal cardinality (see max=1 in line 18) of
the isFailureOf relationship. As the Java property isFailureOf is not a collection-valued
property but a single-valued property of type Structure, the specification of the maximal
cardinality is superficial here and could be omitted. However, the specification of the
minimal cardinality is important here and represents an integrity constraint with run-time
evaluation strategy, see section 4.1.1.

The integrity constraint (5.4) is reflected by the Java annotation in line 11, which
establishes the correspondence between the hasIssue Java property and the hasFactor
OWL 2 DL property. As there is no constraint on minimal cardinality of hasFactor,
the Java property hasFactor is a collection-valued property (a Set in particular). The
generic type Set<Factor> is used to ensure (5.4) in compile-time.

5.1.2. Transactional Processing in Java
The reference Java implementation JOPA implements the overall operation cycle depicted
in Figure 4.1 in the following way. Each transaction request causes a new Java thread to
be created, which serves the whole operation cycle. The activity FR5 is a general activity
that can be executed either by the persist/merge operation of the entity manager or by
changing a property of a managed entity bean. In the latter case, AspectJ run-time code
instrumentation [115] is used to schedule the ontology changes and detect preliminary
compile-time and run-time integrity constraint violations, as well as lazy fetching of
properties. Validation of compiled integrity constraints (see FA2) is ensured automatically
by the Java run-time, whereas the runtime integrity constraints (see FA3) need to be
verified by means of validators automatically generated from the respective integrity
constraints.

If the user wishes to save the changes (flow starting at FR4), the transaction gets
to close. Even if the compile-time and run-time constraints have been checked at the
moment, it is necessary to verify the consistency of the modified ontology (see BA3). If
the ontology is consistent, it is necessary to verify integrity constraints of all applications
using the ontology. This is done by asking DCQNOT queries representing the respective
integrity constraints (see Section 2.8). Advanced aspects of transactional support of the
JOPA entity manager have been studied and implemented by Martin Ledvinka in his
bachelor’s thesis [116] under my supervision – his prototype is currently being tested and
I plan to integrate it into the standard JOPA distribution.

There are currently two back-end OWLAPI-based [57] implementations: (i) a simple
implementation that accesses ontologies in OWL files, and (ii) a database-backed imple-
mentation that uses OWLDB [117] to store OWL ontologies in a relational database.
In both variants, any OWLAPI-compliant OWL 2 DL reasoner can be used to check
consistency, validate integrity constraints and evaluate SPARQL-DLNOT queries (flow
from FR2 to FS3 in Figure 4.1), although Pellet [32] is currently preferred as it provides
built-in optimized DCQNOT support. In case that another OWL 2 DL reasoner is used,

82

SPARQL-DLNOT engine OWL2Query, described in Section 5.2, can be used on top of it
to validate integrity constraints.

5.2. SPARQL-DL engine in Pellet and OWL2Query
Originally, I have implemented the evaluation and optimization techniques presented in
Section 4.2.2 for SPARQL-DL and my implementation is currently integral part of Pellet
[55], one of the most widely used OWL 2 DL reasoners.

To allow other OWL 2 DL reasoners to make use of the expressive querying functionality,
I generalized and extended the original Pellet engine towards SPARQL-DLNOT . This
open-source implementation is called OWL2Query5 and can be used

• as a standalone query engine

• as a part of the JOPA distribution

• as a Protégé 4.1 plug-in that contains, in addition to OWL2Query, also SPARQL-
DLNOT query visualization component developed by Bogdan Kostov in his Master’s
thesis [118] under my supervision.

Both Pellet and OWL2Query engines accept SPARQL-DLNOT queries in SPARQL
syntax6. Additionally, queries can be constructed programmatically in the similar manner
as Java Persistence Query Language (JPQL) queries in JPA.

5.2.1. Evaluation of the Query Engine
Experiments in this section will show overall execution time of selected benchmark queries
to

• compare my SPARQL-DL implementation to another recent OWLAPI-based
SPARQL-DL implementation presented in [119] (denoted Derivo in the next para-
graphs),

• demonstrate efficiency of the evaluation technique presented in Section 4.2.2 using
Pellet query engine (SPARQL-DL queries), OWL2Query engine backed with Pellet
reasoner and OWL2Query engine backed with JFact reasoner,

• present benefits of the core evaluation technique, static, dynamic query reordering
and down-monotonic variable optimization described in Section 4.2.2.

As none of the use cases presented in Chapter 6 provides dataset that is large enough
for demonstrating the efficiency of the evaluation technique, two benchmark datasets
will be used in this section:

5see http://krizik.felk.cvut.cz/km/owl2query, cit. 12/10/2011
6negation as failure support is added by SPARQL 1.1. that is currently being standardized

83

http://krizik.felk.cvut.cz/km/owl2query

• LUBM ontology [69] has expressiveness SHI(D) (subset of OWL DL). The ontology
has a dominant ABox part with approx. 17000 individuals in LUBM(1) while the
TBox consists of just several tens of classes and properties.

• UOB ontology [120] is a SHOIN (D) extension of LUBM.

Both of the benchmarks are synthetic and describe the domain of universities, students,
teachers, courses and their mutual relationships. The UOB vocabulary slightly differs
from the LUBM vocabulary. First, both ontologies have different namespaces that are
omitted in the following paragraphs to improve readability. Second, some classes and
properties have different names, in our case memberOf and advisor in LUBM correspond
to isMemberOf and isAdvisedBy in UOB.

The LUBM dataset comes with 16 pure conjunctive ABox queries without undistin-
guished variables with different characteristics (low vs. high selectivity, small vs. large
input, etc.). In a similar fashion I constructed 10 SPARQL-DLNOT queries, presented
in the next section, some of which are extensions of the original conjunctive ABox
queries, making use of their benchmarking properties, like selectivity. Besides these
novel SPARQL-DLNOT queries, for testing dynamic query reordering and core evaluation
strategy, further specialized queries were created.

Before executing each of the queries in the subsequent sections an initial consistency
check of the ontology is performed to warm-up the respective OWL 2 DL reasoner and
to create the completion and pre-completion data structures as described in Section 2.6.

The consistency check execution time ranges from 800 ms to 1100 ms for LUBM(1)
and from 1800 ms to 2100 ms for UOB(1). All tests were run on Intel(R) Core(TM)2
CPU 6400 at 2.13GHz with 3GB RAM. All results are averages over 10 independent
runs of the query execution.

5.2.2. Performance of Different Engine Implementations
For benchmarking the overall performance of SPARQL-DLNOT implementations, the
following queries over LUBM/UOB datasets were created. These queries are modified
versions of original LUBM benchmark queries :

EQ1 is the query presented in Example 8,

EQ2 is the query presented in Example 9,

EQ3 is the query presented in Example 10,

EQ4 (mixed ABox + TBox + RBox query)
“Which courses (?v2) and of which type (?v3) is the GraduateStudent5 related to and
what kind of relation (?v1) it is.”

[PV (GraduateStudent5, ?v1, ?v2),Ty (?v2, ?v3), SCO (?v3,Course)],

84

EQ5 (Query with transitive property atom))
“What are the fillers of a transitive property for Department0”

[PV (Department0, ?v1, ?v2),Trans (?v2)],

EQ6 (Modified version of EQ4 - DisjointWith)
“Which graduate students (?v1) are related to some course (?v3) that is not a
GraduateCourse. What kind of relationship (?v2) and course (?v4) it is ?”

[Ty (?v1,GraduateStudent),PV (?v1, ?v2, ?v3),Ty (?v3, ?v4),DW (?v4,Course)],

EQ7 (mixed ABox + TBox query)
“Which persons (?v2) and of which type (?v1) teach a course (?v3) that they take at
the same time ?”

[SCO (?v1,>),Ty (?v2, ?v1),PV (?v2, takesCourse, ?v3),
PV (?v2, teachingAssistantOf, ?v3)],

EQ8 (mixed ABox + TBox query)
“Which persons (?v1) and of what type (?v3) has an advisor (?v2)”

[PV (?v1, advisor, ?v2),Ty (?v1, ?v3), SCO (?v3,Person)]

EQ9 (mixed ABox + TBox query)
“Which persons (?v1) of which type (?v2) are teaching assistants of a course (?v3)”

[SCO (?v2,Person),Ty (?v1, ?v2),PV (?v1, teachingAssistantOf, ?v2),Ty (?v2,Course)]

EQ10 (Query with negation)
“Which graduate students (?v1) are related (?v2) to any Employee (?v3) who is not a
full professor”

[Ty (?v1,GraduateStudent),PV (?v1, ?v2, ?v3),Ty (?v3,Employee),
NOT ([Ty (?v3,FullProfessor)])]

Results of evaluating these queries are depicted in Table 5.1. The results show that my
original implementation of the Pellet SPARQL-DL query engine is the most efficient one –
this is not surprising, as the query engine works directly in the Pellet internal model and
does not need to perform OWLAPI transformations like in the case of both OWL2Query
and Derivo implementations.

Another interesting result is that OWL2Query significantly outperforms Derivo on
all benchmark queries, due to the reordering optimizations sketched in Section 4.2.2.
Another important conclusion is that Pellet remains more efficient than JFact, due to
internal caching of completion trees and other optimizations.

The times for evaluation the query using the down-monotonic variables optimization
(see Section 4.2.2) are comparable except the query EQ7, in which case the query
evaluation time reduces significantly (e.g. in case of the pure Pellet implementation from
approx 300ms to approx. 70ms) due to the pruning of the down-monotonic variable ?v1.

85

query results P PDM O2Q+ P O2Q+ J Der + P Der + J
EQ1 4145 1430 1397 7961 > 15min. 23380 > 15min
EQ2 1094 53 44 3549 821919 10672 > 15min
EQ3 761 46 70 1497 > 15min. 5463 > 15min
EQ4 3 182 171 1929 > 15min. 3912 > 15min
EQ5 1 34 55 682 > 15min. 6040 > 15min
EQ6 0 35 33 246 200 255 3567
EQ7 0 303 70 7781 2183 11219 > 15min
EQ8 10804 213 199 3678 2162 9960 > 15min
EQ9 1628 104 123 3133 752 6688 > 15min
EQ10 11031 N/A N/A 23789 30007 N/A N/A

Table 5.1.: Performance of query evaluation over LUBM(1). O2Q resp. Der mean
OWL2Query, resp. Derivo query engines, and P , resp. J means Pellet, resp.
JFact tableau reasoner and PDM means Pellet with down-monotonic variable
optimization. Next, results denotes number of results of the query. All times
are in milliseconds.

5.2.3. Performance of the Dynamic Reordering Method
Neither the queries introduced in the previous section nor the benchmark queries of UOB
are long enough to be able to show benefits of the dynamic reordering method. Thus, I
had to create a fresh query set for these experiments.

Example 26 (A long query) The following query DQ7 retrieves all graduate students
that are taught by, have a common publication with and are teaching with someone
from the same university part. It also retrieves the respective courses, publications and
university parts.

[Ty (University, ?vw),PV (subOrganizationOf, ?vr, ?vw),
PV (memberOf, ?v1, ?vr),PV (memberOf, ?va, ?vr),
Ty (GraduateStudent, ?v1),PV (takesCourse, ?v1, ?v3),
PV (teacherOf, ?va, ?v3),PV (teacherOf, ?va, ?vz2),
PV (advisor, ?v1, ?vb),PV (teachingAssistantOf, ?v3, ?vz2),
PV (publicationAuthor, ?vq, ?v1),
PV (publicationAuthor, ?vq, ?va)].

If the actual binding for the publication is not important, a slightly modified version of
this query introducing an undistinguished variable would be DQ8, where ?vq is replaced
with !uq.

Performance of the dynamic reordering strategy for the UOB(1) benchmark queries
(presented in [120]) and DQ7, DQ8 is shown in the Table 5.2, but only for queries that

86

Query results atoms∗ static [ms] dynamic [ms] no [ms]
UQ1 32 2 220 150 470
UQ3 666 2 210 230 380
UQ4 383 3 560 650 390
UQ5 200 2 320 230 550
UQ8 303 2 5620 3430 6040
UQ9 1057 4 2840 530 570
UQ11 1930 5 1100 530 > 10min.
UQ12 65 3 210 380 530
UQ13 379 2 > 10min. > 10min. > 10min.
UQ14 6893 4 250780 232720 > 10min.
DQ7 2 12 > 10 min. 8910 > 10 min.
DQ8 2 11 > 10 min. 3540 > 10 min.

Table 5.2.: Performance of the dynamic reordering using the Pellet SPARQL-DL engine
over the UOB dataset. Each UQx denotes a corresponding query from the
UOB DL benchmark. atoms∗ denotes number of query atoms after performing
the domain/range simplification, results denotes number of results of the
query and static, dynamic and no denote query execution times for these
reordering strategies.

have (after performing the domain/range simplification presented in [71]) at least 2
atoms so that a reordering method becomes applicable. In all cases, 10% of individuals
were taken for computing the statistics and estimating query atom costs. We can see that
static and dynamic reordering (for α = 0) have similar performance for short queries,
while the dynamic reordering significantly overtakes the static one for the longer ones.

The significance of using a query reordering method is shown in the column no that
presents query execution times when the query is not reordered (i.e. for the default
ordering). For some queries the query execution times are more than an order of
magnitude worse than their static/dynamic reordering counterparts, while for others are
comparable to the reordering strategies.

5.2.4. Performance of the Undistinguished Variables Optimizations
Since neither of the benchmarks contains conjunctive queries with undistinguished
variables a new query set was created. The query set does not contain any query that is
itself just a single core, since for those queries the core evaluation performance is the
same for both the original execution and the core evaluation strategy. As can be observed
from the nature of the core evaluation strategy presented in Section 4.2.1, Algorithm 6 is
beneficial only for queries that contain some non-core atoms.

Consider the following set of queries:

Q1 is the query presented in Example 11,

87

LUBM(1) UOB(1)
results NB time [ms] results NB time [ms] engine

Q1 208 622673 74030 184 569650 132020 simple
30028 1800 54562 5100 core

Q2 1621 875340 5180 2256 1573345 10510 simple
3249 910 4517 2280 core

Q3 1099 924238 26130 2262 1581081 15010 simple
24216 1320 46838 3760 core

Q4 0 541 330 0 878 800 simple
541 310 878 380 core

Q5 208 4998812 38150 184 6015688 45512 simple
30028 2360 54562 4720 core

Table 5.3.: Performance evaluation of the core strategy of the Pellet SPARQL-DL reasoner
over the LUBM(1) and UOB(1) DL dataset. The rows labeled simple denote
the simple evaluation strategy as described in Example 11, while the rows
labeled with core denote the evaluation using cores. The query evaluation
took Time ms (without the initial consistency check), results denotes the
number of bindings valid for the query and NB = (NIC + |IN |NIR)/103,
where NIC is the count of IC calls and NIR is the count of IR calls.

Q2 (An acyclic query with one undistinguished variable)
“Retrieve all teachers of some course that is taken by at least one student.”

[PV (?v1, teacherOf, ?v2),PV (!u3, teacherOf, ?v2)],

Q3 is the query presented in Example 7,

Q4 is the same as Q3, but with ?v2 replaced by !u2,

Q5 (A query with two undistinguished variables, one of which is in a cycle – a modified
version of Q1 with ?v3 replaced with !u3.)

“Get all students that are members of some part of some organization and whose
advisor teaches a course they take. Get also the courses.” :

[PV (?v1, advisor, !u4),PV (!u4, teacherOf, ?v2),Ty (!u4,Employee),
PV (?v1, takesCourse, ?v2),PV (?v1,memberOf, !u3)],

The test results are shown in Table 5.3. Both the LUBM and UOB performance results
show that the more distinguished variables the query contains, the worse the performance
of the original execution is and that the core optimization technique overtakes the
optimized strategy by at least an order of magnitude.

The importance of undistinguished variables is presented by queries Q3 and Q4. For
both LUBM and UOB the query Q4 has no results, since there is no person working for

88

an explicitly asserted ResearchGroup. On the other hand, Q3 that matches also inferred
ResearchGroup instances has more than 1000 results in both cases.

89

6. Use Cases

The proposed methodology and its implementation JOPA is currently used in two
applications. One of them is StruFail, a knowledge base of structural failures, that serves
as a bank of structural damage cases due to floods. Semantic web ontologies are used
in StruFail to allow posing complex queries, as well as specifying user’s knowledge to
various levels of details and granularity. In the next section, I will discuss the use of the
methodology together with expressive queries in StruFail, that was designed as a part of
this thesis. StruFail business and UI logic was implemented as a part of the master’s
thesis of Jan Abrahamč́ık [121] under my supervision.

The other system is SHM-CMS [122], an intelligent ontology-based content management
system for the domain of risk assessment in construction engineering, describing content,
its types, dissemination and their relation to the constructions. The system is currently
under development in cooperation with VCE, Austria and Johannes Kepler Universität
Linz, Austria within the EU-funded project IRIS 1. I will not describe this application
in detail as I have not been involved in its design and development. Instead I refer the
reader to the bachelor’s thesis of Jǐŕı Kopecký [123], who implemented an initial version
of this system based on the methodology introduced in this thesis.

6.1. StruFail System

The main objective of the StruFail system is to provide a common platform for collecting
and sharing knowledge of previous documented failures, and sharing understanding what
went wrong and which protective measures worked best, among professionals from various
field of expertise. This allows professionals in the field to consciously rely on a sound
experience based on previous cases examined by others.

The system was developed in cooperation with the Institute of Theoretical and Applied
Mechanics of the Czech Academy of Sciences within the EU-funded project CHEF 2

and is freely available online3. Details on system usage and scope can be found in [34].
StruFail is built on top of the Java EE platform, deployed on the Glassfish application
server ver. 2 [124]. All libraries used by the system are licensed under some type of
open-source license.

1see http://www.vce.at/iris, cit. 5/1/2011
2see http://www.chef.bam.de, cit. 5/1/2011
3see http://www.itam.cas.cz/strufail, cit. 15/1/2011

91

http://www.vce.at/iris
http://www.chef.bam.de
http://www.itam.cas.cz/strufail

6.1.1. System Design
During the initial phase of system design, the ontology of structural failures4 was
iteratively defined (for the purpose of comparing subsequent ontology versions, I designed a
tool OWLDiff that is briefly described in Appendix C) with cooperation of the community
of civil engineering experts. The ontology describes relationships between structures,
failures and their manifestations together with respective taxonomies. Let’s recall the
fundamental parts of the ontology that are necessary for understanding the rest of this
thesis.

The civil engineering experts agreed on the fundamental notions that resulted in
the skeleton of the domain ontology, including classes Structure, Component, Failure,
Manifestation and RawMaterial and relationships between them, part of which is schemat-
ically depicted in Figure 6.1.

Figure 6.1.: Fundamental Parts of the StruFail Ontology.

A vertex-edge-vertex triple represents a (local) domain restriction and (local) range
restriction for an OWL object property. E.g., the edge isFailureOf going from Failure to
Structure depicts an axiom of the form

Failure v ∀isFailureOf · Structure.

UML relational multiplicity of each edge denotes number restrictions. E.g. axiom

Failure v (= 1 isFailureOf)

represents the multiplicity 1 at the end of the isFailureOf edge.
4see http://krizik.felk.cvut.cz/ontologies/2009/failures.owl, cit. 12/10/2011.

92

http://krizik.felk.cvut.cz/ontologies/2009/failures.owl

The dominant notion in the OWL ontology is the Structure class. Each instance of
this class represents a particular construction (e.g. “Charles Bridge in Prague”). Each
structure can have assigned one or more failure records (e.g. “Salination of building
material”). In fact, each Failure instance integrates one or more failure Manifestations
that occur with respect to the same factors (e.g. “A flood can cause partial collapse
of some walls of a structure, as well as moisture stains occurrence afterwards”). Each
failure Manifestation is connected to one or more Components (e.g. “foundations, wall”)
that were affected by the failure. A Component can bear information about RawMaterial
it was built from. Many of the shown classes are natural roots of rich specialization
hierarchies, namely structure types, components, materials, or factors. Due to their size
(most hierarchies contain tens to hundreds of classes), let’s sketch just an example of
them. Figure 6.2 shows a structure sub-hierarchy of different types of religious objects
and their subtypes.

Figure 6.2.: Part of the Structure Taxonomy.

These hierarchies are beneficial for the StruFail users both (i) when reporting a failure
– to specify their experience to different levels of accuracy (e.g. either Pyramid or Shrine
can be used to specify a part that is affected by a Failure), and ii) when exploring the
knowledge base – to specify queries to different levels of accuracy (e.g. one can query the
knowledge base to get typical damages that occur on pyramids, or on shrines in general.)

On the other hand, definition of taxonomical knowledge as well as axiomatization of
complex relationships, e.g. types of materials to be used for different components (parts
of the structure), turned out to be much more problematic and time-consuming task for
them.

Traditional Design

As the ontology content was not guarded by integrity constraints, the development of
StruFail was slow, as dynamic changes of attribute values and relationships in the ontology
by civil engineering experts obsoleted the developed user interface logic (see Figure 6.4

93

Figure 6.3.: Integrity constraint sets for StruFail application. Each vertex corresponds
to an OWL 2 DL class and an edge corresponds to an OWL 2 DL object
property.

and Figure 6.5) that crashed in runtime. E.g. some failure records were missing the
isFailureOf link to the corresponding structure records. Furthermore, these user interface
logic crashes didn’t point us to the problematic failure records that caused the crash,
which prolonged error debugging. This highlighted the need of contract introduced by
JOPA.

Due to the missing transactional support, every time the user wanted to see details of
a failure in the user interface, ontology consistency check had to be performed by the
underlying OWL reasoner Pellet before retrieving the respective failure record from the
ontology, because the failure record could already have been changed by another user.
Even for the ontology of structural failures containing several tens of failure records, the
consistency check took approx. 1 second, which significantly delayed the responses of the
user interface.

Design using JOPA

Using JOPA, a set of integrity constraints for StruFail was defined, based on the relevant
parts of the ontology, and user requirements. Main parts of the integrity constraint set
are presented in the UML class diagram in Figure 6.3. The visualization of integrity
constraints is analogous to the visualization of ontological axioms in Section 6.1.1. I.e.
each integrity constraint of type β1 in Section 2.8 is represented by a vertex-edge-vertex
triple. For example (5.1), i.e. the integrity constraint Failure v ∀isFailureOf · Structure,
is rendered as an edge labeled isFailureOf from the Failure class to the Structure class.
Each integrity constraint of type β2, β3, or β4 is represented by the respective UML
relational multiplicity, e.g. integrity constraints (5.2) and (5.3) in Section 5.1, i.e.
Failure v ≥ 1 isFailureOf, and Failure v ≤ 1 isFailureOf.

94

Relationship between the Ontology and the Integrity Constraints Let’s look closer
at the relationship between the schema in Figure 6.1 and the schema in Figure 6.3. They
look similar on the first sight, but there are substantial differences between them. While
Figure 6.1 depicts ontological relationships (i.e. interpreted under open world assumption)
that are valid for the whole domain and are used for inferencing (and thus also in query
answering), Figure 6.3 depicts only minimal set of integrity constraints necessary for
the business logic of StruFail that serve for object model synchronization and thus data
validation. The ontological knowledge depicts three5 OWL classes ComplexStructure,
Repair and Event that are not present in the integrity constraint set – these classes are
available only for inferencing and query answering in the UI and are not part of the
StruFail object model.

Note that in many cases the relationships multiplicities differ in the ontological
description and in the integrity constraint set. For example, in the ontological knowledge,
each Component is related through hasMaterial property to at least one RawMaterial, it is
made of (depicted in Figure 6.1 as multiplicity 1..∗ at the end of hasMaterial edge from
Component to RawMaterial). This is valid (using open-world assumption), no matter
whether the particular material is known or not. On the other hand, integrity constraint
set does not contain such restriction, as the StruFail business logic considers as valid
also Component instances without explicitly assigned RawMaterial instances (depicted
in Figure 6.3 as multiplicity 0..∗)– in this case the integrity constraint is less restrictive
than the ontological description. Note, that Component records without assigned materials
neither cause inconsistency of the ontology (because material assignment is inferred), nor
invalidate the integrity constraints (because material assignment is not compulsory).

A different example is the following one. In the ontological knowledge, some people
(instances of the class Person) might be reporters of a failure, while other need not (this
situation is depicted in Figure 6.1 as multiplicity 0..∗ at the end of the hasReporter edge).
On the other hand, a person is relevant to the StruFail application only if (s)he is a
failure reporter (depicted in Figure 6.1 as multiplicity 1..∗) – in this case the integrity
constraint is more restrictive than the ontological description. Note, that in this case
Person records without assigned failure reports do not cause ontology inconsistency, but
cause integrity constraint validations for StruFail.

Integrity Constraint Benefits After the definition of integrity constraints, the Java
object model was generated based on the integrity constraints, as described in Section 5.1
and UI logic (see Figure 6.4 and 6.5 in the next section) was developed on top of it.
Simultaneously, the ontology was edited by civil engineering experts to refine taxonomies
of structures, failure manifestations and materials, define complex relationships and
insert new (or modify existing) failure records. Several times, this concurrence in the
ontology access resulted in a clash of the data inserted by Protégé and the developed

5These are only examples to demonstrate the differences between ontological and integrity constraint
descriptions. The developed StruFail ontology is more complex and contains many additional classes,
object properties and their axiomatization, all of which is omitted here for the sake of readability,
but is available at http://krizik.felk.cvut.cz/ontologies/2009/failures.owl.

95

http://krizik.felk.cvut.cz/ontologies/2009/failures.owl

integrity constraint set. Most of the time the clash was caused by inserting invalid data,
like failure records without a link to corresponding structure records mentioned above.
In these cases civil engineering experts were notified about the integrity constraints
violation immediately while authoring the records in Protégé and thus they were able
to repair them before saving the ontology (and thus before providing the invalid data
to the StruFail system business logic). Comparing to the traditional design (see above),
this immediate feedback caused significant time savings for the application developers as
they didn’t need to debug the StruFail business logic that would crash in the application
runtime otherwise.

A few times civil engineering experts identified that the clash was caused by an incorrect
assumption of the domain knowledge, and thus incorrect definition of integrity constraints.
For example, the original requirement for a failure record was to have exactly one factor
attached, which corresponds to the integrity constraint Failure v (= 1 hasFactor). This
integrity constraint was violated by several failure records that have more than one
factor attached. In these cases, it was necessary to adjust the integrity constraints set,
regenerate the object model, adjust business logic and recompile the application.

When civil engineering experts filled failure records using Protégé, some of the records
were missing a link isFailureOf to the structure record they referred to, which caused
violation of the integrity constraint (5.2). As a result, when accessing the ontology, JOPA
generated an integrity constraints violation exception that provided the information
about invalid records of failures. After interpreting this integrity constraint violation
to the civil engineering experts, they repaired each failure record by linking it to the
corresponding structure record and the ontology became compliant with StruFail again.

As most of the user interactions with the system are read-only and the ontology does
not change, the transactional support in JOPA saved many consistency checks during
retrieval of failure records by StruFail users. The reason is that queries could be evaluated
(see activities FR2 to FS3 in Figure 4.1) without a consistency check. Once a change in
the data is detected (FR5), e.g. a user edits a failure record, evaluating a new query is
not possible until the failure edits are committed or rolled back and a new transaction is
started.

6.1.2. System Usage
Let’s briefly explore the capabilities of StruFail. The web UI allows users to both (i)
search various information about known failure cases, (ii) report new failures, the latter
being available only for registered users.

Exploration of Known Failure Cases

There are several options for retrieving information from StruFail. Menu items Struc-
ture and Failure show a page with structure/failure lists. Selection of the particular
structure/failure in the list navigates the user to its details.

A more advanced querying is available in the menu item Explore. Here, seven complex
query templates are defined that can be instantiated by the user. The queries can

96

be parameterized by ontological classes and properties forming hierarchies (through v
axioms). This allows posing both general and specific queries to cover large scale of
user requirements. One of the example queries is shown (together with its results) in
Figure 6.4.

Figure 6.4.: Exploration of the knowledge base by predefined queries.

This query retrieves all manifestations of failures that occur on a specified component
(e.g. “structural component” in this case) of a specified structure (e.g. “transport and
communication object” in this case). The query result is a table, each row of which
displays one particular manifestation of one particular component of one particular
structure. In this case two rows are retrieved that represent a scour manifested on the
8th and 9th pillar (components) of the Charles Bridge. The query is a conjunctive ABox
query of the following form

[PV (?m, hasAffectedPart, ?c),Ty (?c,Cc),PV (!f, hasManifestation, ?m),
PV (!f, isFailureOf, ?s),Ty (?s,Cs)],

where ?m, ?c, !f , ?s are variables denoting respectively a manifestation, component,
failure and structure and Cc, resp. Cs represent the actual parameter selected by
the user in the drop-down tree component, as depicted in Figure 6.4 (in this case
StructuralComponent and TransportAndCommunicationObject). Only the failure can be
represented by an undistinguished variable !f as it does not appear in the result set.

In addition to conjunctive ABox queries, the query set also contains expressive SPARQL-
DL queries, evaluated by the SPARQL-DLNOTquery engine introduced in Section 4.2.2.
For example, the following query asks for defects (and their manifestations) of structures
of given type, together with the particular type:

[Ty (?s, ?st), SCO (?st,Cs),PV (?f, isFailureOf, ?s),PV (?f, hasManifestation, ?m)],

where ?s, ?st, ?f , ?m are variables denoting respectively a structure, its type, related
failure and its manifestation. Another example query asks for a structure with its

97

Figure 6.5.: Failure report.

type that is related to an event. The type of relationship can be different (defined by
subproperties isFailureOf and isRepairOf of OWL object property affects) and is used to
distinguish failures and repairs related to a structure:

[PV (?s, ?iEO, ?e), SPO (?iEO, affects),Ty (?s, ?st),

where ?s, ?st, ?iEO, ?e are variables denoting respectively a structure, its type, the type
of relationship (isFailureOf, isRepairOf) and the particular failure/repair.

These queries provide the user with a completely new experience when interacting
with the ontological knowledge due to the possibility of retrieving object types (OWL
classes) and relationship types (OWL properties) along with the objects themselves.

Failure case reporting

Ontological knowledge is used not only for querying the knowledge base, but also for
inputing new failure records. Upon registration the new user is verified by the database
administrator and is given authorization to add new failure cases to the knowledge base.
New failures can be reported after logging into the web application using the menu
Failure → Add Failure (see example of a filled failure report form in Figure 6.5).

When filling-in a failure report a special attention should be paid to the categorization
of measures, manifestations and affected parts. The reporter is encouraged to classify

98

these attributes to predefined categories (e.g. Pillar as a subtype of a component, as
shown in the Figure 6.5). These categories can be chosen from class hierarchies that
correspond to the inferred taxonomies for the respective element (component, structure,
manifestation, etc.). Both structures and failures can be equipped with photos/other
related resources, like documents, measurement reports, etc.

99

7. Conclusions
This thesis proposes a methodology and a framework for designing information systems
on top of OWL ontologies, including expressive query language SPARQL-DLNOTand
its evaluation and optimization techniques. The framework allows the application to
insert/change/remove/retrieve data in evolving domain ontologies while the ontology is
“compliant” with the application object model. The notion of compliance is materialized
by integrity constraints that have to be valid on all ontological data before they can be
modified/retrieved by the application. This formalization of the application-ontology
compliance are a clear added value comparing to the state-of-the-art object-ontology
mappings that are ad-hoc. In my future work I would like to elaborate other types of
integrity constraints based on OWL 2 DL features, including inverse roles and OWL 2
keys. Also, other means for persisting OWL 2 will be explored including RDF triple-stores
or native OWL storage mechanisms, like Pellet DB [125].

An important part of the proposed framework is the expressive query language SPARQL-
DLNOT , its evaluation and optimization techniques that are presented and efficiency
of which is demonstrated on various experiments. The optimizations focus on queries
with undistinguished variables that is one of the crucial distinction of SPARQL-DLNOT
comparing to other expressive query languages for OWL. Although introduced core
optimization technique makes evaluation of queries with undistinguished variables sig-
nificantly faster, still, during the implementation of these optimizations in the Pellet
reasoner it turned out that evaluation of cores remains the major bottleneck for queries
with undistinguished variables. Thus, next work will study the overall impact of different
core evaluation strategies to avoid as many instance checks as possible.

Other optimizations involve dynamic query reordering targeted on long queries as
well as pruning variable binding using taxonomies for variables in class and property
positions. The presented algorithms were implemented and tested on top of a tableau
algorithm for OWL 2 DL consistency checking in the Pellet reasoner and the OWL2Query
engine. Still, its integration with another tableau-based inference engine, like [64], to
handle cycles of undistinguished variables seems beneficial and will be studied in detail
in the future. For SHIN , the presented techniques could be complemented by ABox
summarization [126] to avoid full computation of sets of completion trees for efficient
evaluation of queries without undistinguished variables. SPARQL-DLNOT query engine
performance is measured on well-known artificial benchmark data sets LUBM and UOB.

A prototype implementation JOPA of the introduced methodology was used during
the design of two applications: StruFail – a system for description of structural failures,
and SHM CMS – a system for semantic content management. The StruFail system
prototype has been used for demonstration of the application of the methodology in this
thesis. Although the sponsoring project CHEF ended before the large-scale deployment

101

of the StruFail system could have taken place, the system has been positively accepted by
several domain experts in the community. Based on their interest, the experience gained
during StruFail design and development is currently used for design and development of
a more sophisticated structural failure knowledge-based information system1 within a
5-year grant of the Czech Ministry of Culture. The scope of the novel system is broader.
It will enhance the features of the StruFail prototype e.g. with advanced failure authoring
tool as well as advanced search options, including full-text search capability as well as
definition of more predefined query types and even a graphical query editor to allow
creating arbitrary user-defined queries.

1see http://www.mondis.cz, cit. 12/1/2012

102

http://www.mondis.cz

Bibliography2

[1] Thanh Tran, Peter Haase, Holger Lewen, Óscar Muñoz-Garćıa, Asunción Gómez-
Pérez, and Rudi Studer. Lifecycle-support in architectures for ontology-based
information systems. In The Semantic Web, 6th International Semantic Web
Conference, 2nd Asian Semantic Web Conference (ISWC’07/ASWC’07), pages
508–522, Berlin, Heidelberg, 2007. Springer-Verlag.

[2] Graeme Stevenson and Simon Dobson. Sapphire: Generating Java Runtime
Artefacts from OWL Ontologies. In Proceedings of the Third International Workshop
on Ontology-Driven Information Systems Engineering, 2011.

[3] Jiao Tao, Evren Sirin, Jie Bao, and Deborah L. McGuinness. Integrity Constraints
in OWL. In Proceedings of the Twenty-Fourth AAAI Conference on Artificial
Intelligence, 2010.

[4] Thomas R. Gruber. A Translation Approach to Portable Ontology Specification.
Knowledge Acquisition, 5(2):199–220, 1993.

[5] Monika Žáková, Petr Křemen, Filip Železný, and Nada Lavrac. Automating
Knowledge Discovery Workflow Composition Through Ontology-Based Planning.
IEEE Transactions on Automation Science and Engineering, 8(2):253–264, 2011.

[6] Lin Wang and Zhao Hongshuai. Ontology for Communication in Distributed Multi-
agent System. International Symposium on Distributed Computing and Applications
to Business, Engineering and Science, 0:588–592, 2010.

[7] Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web. Scientific
American, 284(5):34–43, 2001.

[8] Nigel Shadbolt, Tim Berners-Lee, and Wendy Hall. The Semantic Web Revisited.
IEEE Intelligent Systems, 21(3):96–101, 2006.

[9] Asuncion Gomez-Perez, Mariano Fernandez-Lopez, and Oscar Corcho. Ontological
Engineering. Springer, 2005.

[10] Vinay K. Chaudhri, Adam Farquhar, Richard Fikes, Peter D. Karp, and James P.
Rice. OKBC: A Programmatic Foundation for Knowledge Base Interoperability. In
Proceedings of the Fifteenth National Conference on Artificial Intelligence (AAAI-
98), Madison, WI, 1998.

2Some bibliography items are not marked [online] although their URL is provided. These items are
primarily published in print, but their online source URL is shown here for the comfort of the reader.

103

[11] Jack Park and Sam Hunting, editors. XML Topic Maps: Creating and Using Topic
Maps for the Web. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2002.

[12] Philippe Martin. Knowledge Represenatation in CGLF, CGIF, KIF, Frame-CG
and Formalized English. In Conceptual Structures: Integration and Interfaces, 10th
International Conference on Conceptual Structures (UCCS’02), volume 2393 of
LNCS, pages 77–91. Springer Verlag, 2002.

[13] John F. Sowa. Semantics of Conceptual Graphs. In Proceedings of the 17th
conference on Association for Computational Linguistics, pages 39–44. Association
for Computational Linguistics, 1979.

[14] Ian Horrocks, Bijan Parsia, Peter Patel-Schneider, and James Hendler. Semantic
Web Architecture: Stack or Two Towers? In Principles and Practice of Semantic
Web Reasoning, pages 37–41, 2005.

[15] Jeremy J. Carroll and Graham Klyne. Resource Description Framework (RDF): Con-
cepts and Abstract Syntax [online]. W3C Recommendation, W3C, 2004. Available
at http://www.w3.org/TR/2004/REC-rdf-concepts-20040210, cit. 11/1/2012.

[16] Ramanathan V. Guha and Dan Brickley. RDF Vocabulary Description Language
1.0: RDF Schema [online]. W3C Recommendation, W3C, 2004. Available at
http://www.w3.org/TR/2004/REC-rdf-schema-20040210, cit. 11/1/2012.

[17] Peter F. Patel-Schneider, Patrick Hayes, and Ian Horrocks. OWL Web Ontology
Language Semantics and Abstract Syntax [online]. W3C Recommendation, W3C,
2004. Available at http://www.w3.org/TR/2004/REC-owl-semantics-20040210,
cit. 11/1/2012.

[18] Boris Motik, Peter F. Patel-Schneider, and Bijan Parsia. OWL 2
Web Ontology Language Structural Specification and Functional-Style Syn-
tax [online]. W3C Recommendation, W3C, 2009. Available at
http://www.w3.org/TR/2009/REC-owl2-syntax-20091027, cit. 11/1/2012.

[19] Protégé Homepage [online]. Available at http://protege.stanford.edu,
cit. 10/10/2011.

[20] Michael Stonebraker and Gerald Held. Networks, Hierarchies and Relations in
Data Base Management Systems. In ACM Pacific, pages 1–9, 1975.

[21] Won Kim. Introduction to object-oriented databases. MIT Press, Cambridge, Mass.,
1990.

[22] Edgar F. Codd. A relational model of data for large shared data banks. Communi-
cations of the ACM, 13(6):377–387, 1970.

104

http://www.w3.org/TR/2004/REC-rdf-concepts-20040210
http://www.w3.org/TR/2004/REC-rdf-schema-20040210
http://www.w3.org/TR/2004/REC-owl-semantics-20040210
http://www.w3.org/TR/2009/REC-owl2-syntax-20091027
http://protege.stanford.edu

[23] Asad M. Khattak, Khalid Latif, Songyoung Lee, and Young-Koo Lee. Ontology
Evolution: A Survey and Future Challenges. In Dominik Ślȩzak, Tai hoon Kim,
Jianhua Ma, Wai-Chi Fang, Frode E. Sandnes, Byeong-Ho Kang, and Bongen Gu,
editors, U- and E-Service, Science and Technology, volume 62, chapter 11, pages
68–75. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[24] Eyal Oren, Benjamin Heitmann, and Stefan Decker. ActiveRDF: Embedding
SemanticWeb Data into Object-oriented Languages. Journal of Web Semantics,
6(3), 2011.

[25] Yinglin Wang, Xijuan Liu, and Rongwei Ye. Ontology Evolution Issues in Adaptable
Information Management Systems. In Proceedings of the 2008 IEEE International
Conference on e-Business Engineering, volume 0, pages 753–758, Los Alamitos,
CA, USA, 2008. IEEE Computer Society.

[26] Alexander Maedche, Boris Motik, Ljiljana Stojanovic, Rudi Studer, and Raphael
Volz. Ontologies for Enterprise Knowledge Management. Intelligent Systems, IEEE,
18(2):26–33, 2003.

[27] Vadim Ermolayev, Natalya Keberle, and Wolf-Ekkehard Matzke. An Upper Level
Ontological Model for Engineering Design Performance Domain. In Proceedings
of the 27th International Conference on Conceptual Modeling (ER 2008), volume
5231 of LNCS, pages 98–113. Springer-Verlag, Berlin, Heidelberg, 2008.

[28] Petr Křemen and Zdeněk Kouba. Ontology-Driven Information Sys-
tem Design. IEEE Transactions on Systems, Man, and Cybernet-
ics, Part C: Applications and Reviews, to appear in 2012. Available
at http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=6011704,
cit. 11/1/2012.

[29] Petr Křemen and Evren Sirin. SPARQL-DL Implementation Experience. In
Proceedings of OWL: Experiences and Directions (OWLED 2008), volume 496 of
CEUR, 2008.

[30] Petr Křemen and Zdeněk Kouba. Conjunctive Query Optimization in OWL2-DL.
In Proceedings of the 22th International Conference on Database and Expert System
Applications (DEXA 2011), volume 6861 of LNCS. Springer Verlag, 2011.

[31] Evren Sirin and Bijan Parsia. SPARQL-DL: SPARQL Query for OWL-DL. In
Proceedings of OWL: Experiences and Directions (OWLED 2007), volume 258 of
CEUR, 2007.

[32] Evren Sirin, Bijan Parsia, Bernardo C. Grau, Aditya Kalyanpur, and Yarden Katz.
Pellet: A Practical OWL-DL Reasoner. Journal of Web Semantics, 5(2):51–53,
2007.

105

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6011704

[33] Petr Křemen, Marek Šmı́d, and Zdeněk Kouba. OWLDiff: A Practical Tool
for Comparison and Merge of OWL Ontologies. In Proceedings of DEXA 2011
Workshops, pages 229–233, Los Alamitos, CA, USA, 2011. IEEE Computer Society.

[34] Miloš Drdácký, Jaroslav Valach, Petr Křemen, and Jan Abrahamč́ık. Damage
Database, pages 185–195. Cultural Heritage Protection Against Flooding. Institute
of Theoretical and Applied Mechanics, 2011.

[35] Petr Křemen and Zdeněk Kouba. Incremental Approach to Error Explanations
in Ontologies. In Klaus Tochtermann, Tassilo Pellegrini, and Sebastian Schaffert,
editors, Networked Knowledge - Networked Media, Integrating Knowledge Manage-
ment, New Media Technologies and Semantic Systems, Studies in Computational
Intelligence. Springer, 2008.

[36] Petr Křemen, Miroslav Blaško, and Zdeněk Kouba. Semantic Annotation of Objects,
chapter XI. Handbook of Research on Social Dimensions of Semantic Technologies
and Web Services. IGI Global, 2009.

[37] Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said Tabet, Benjamin Grosof,
and Mike Dean. SWRL: A Semantic Web Rule Language Combining OWL and
RuleML. W3C Member Submission, W3C, 2004.

[38] Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and Andrea Schaerf.
AL-log: Integrating Datalog and Description Logics. Journal of Intelligent Systems,
10:227–252, 1998.

[39] Alon Y. Levy and Marie-Christine Rousset. CARIN: A representation language
combining Horn rules and description logics. In ECAI, pages 323–327. John Wiley
and Sons, Chichester, 1996.

[40] Riccardo Rosati. On the Decidability and Complexity of Integrating Ontologies
and Rules. Journal of Web Semantics, 3(1):61–73, 2005.

[41] Ian Horrocks, Peter F. Patel-Schneider, Sean Bechhofer, and Dmitry Tsarkov. OWL
Rules: A Proposal and Prototype Implementation. Journal of Web Semantics,
3:723–731, 2005.

[42] Patrick Hayes. RDF Semantics [online]. W3C Recommendation, W3C, 2004.
Available at http://www.w3.org/TR/rdf-mt, cit. 11/1/2012.

[43] Ian Horrocks. OWL: A Description Logic Based Ontology Language. In Principles
and Practice of Constraint Programming (CP 2005), pages 5–8, 2005.

[44] Evgeny Zolin. Description Logic Complexity Navigator [online]. Available at
http://www.cs.man.ac.uk/˜ezolin/dl, cit. 11/9/2011.

106

http://www.w3.org/TR/rdf-mt
http://www.cs.man.ac.uk/~ezolin/dl

[45] Eric Prud’hommeaux and Andy Seaborne. SPARQL Query Language
for RDF [online]. W3C Recommendation, W3C, 2008. Available at
http://www.w3.org/TR/rdf-sparql-query, cit. 10/10/2011.

[46] Steve Harris and Andy Seaborne. SPARQL 1.1 Query Lan-
guage [online]. W3C Working Draft, W3C, 2012. Available at
http://www.w3.org/TR/2012/WD-sparql11-query-20120105, cit. 13/1/2012.

[47] Bijan Parsia. Querying the Web with SPARQL. In Reasoning Web, volume 4126
of LNCS, pages 53–67. Springer, 2006.

[48] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter
Patel-Schneider, editors. The Description Logic Handbook, Theory, Implementation
and Applications. Cambridge, 2003.

[49] Ian Horrocks, Oliver Kutz, and Ulrike Sattler. The Even More Irresistible SROIQ.
In Patrick Doherty, John Mylopoulos, and Christopher A. Welty, editors, Proceed-
ings of the 10th International Conference on Principles of Knowledge Representation
and Reasoning (KR2006), pages 57–67. AAAI Press, 2006.

[50] Manfred Schmidt-Schauss and Gert Smolka. Attributive Concept Descriptions
with Complements. Artificial Intelligence, 48(1):1–26, 1991.

[51] Dmitry Tsarkov and Ian Horrocks. DL Reasoner vs. First-Order Prover. In
Proceedings of the 2003 Description Logic Workshop (DL 2003), volume 81 of
CEUR, pages 152–159, 2003.

[52] Dmitry Tsarkov, Alexandre Riazanov, Sean Bechhofer, and Ian Horrocks. Using
Vampire to Reason with OWL. In Proceedings of the International Semantic Web
Conference (ISWC 2004), pages 471–485. Springer, 2004.

[53] Boris Motik. Reasoning in Description Logics using Resolution and Deductive
Databases. PhD thesis, Universitat Karlsruhe, 2006.

[54] Hashim Habiballa. Resolution Based Reasoning in Description Logics. In Proceed-
ings of Znalosti 2006, 2006.

[55] Pellet Homepage [online]. Available at http://pellet.owldl.com, cit. 15/1/2007.

[56] Ian Horrocks and Peter F. Patel-Schneider. Reducing OWL entailment to description
logic satisfiability. Journal of Web Semantics, 1(4):345–357, 2004.

[57] Matthew Horridge and Sean Bechhofer. The OWL API: A Java API for OWL
ontologies. Semantic Web – Interoperability, Usability, Applicability, 2(1):11–21,
2011.

[58] Jeremy J. Carroll, Ian Dickinson, Chris Dollin, Dave Reynolds, Andy Seaborne,
and Kevin Wilkinson. Jena: implementing the semantic web recommendations. In
Proceedings of WWW (Alternate Track Papers & Posters), pages 74–83, 2004.

107

http://www.w3.org/TR/rdf-sparql-query
http://www.w3.org/TR/2012/WD-sparql11-query-20120105
http://pellet.owldl.com

[59] Thorsten Liebig, Marko Luther, Olaf Noppens, and Michael Wessel. OWLlink.
Semantic Web – Interoperability, Usability, Applicability, 2(1):23–32, 2011.

[60] JFact Homepage [online]. Available at http://jfact.sourceforge.net, cit. 12/11/2011.

[61] HermiT homepage [online]. Available at http://hermit-reasoner.com, cit. 12/11/2011.

[62] OWL 2 Reasoner Implementations [online]. Available at
http://www.w3.org/2007/OWL/wiki/Implementations, cit. 1/12/2011.

[63] Volker Haarslev and Ralf Möller. On the Scalability of Description Logic Instance
Retrieval. Journal of Automated Reasoning, 41(2):99–142, 2008.

[64] Magdalena Ortiz, Diego Calvanese, and Thomas Eiter. Data Complexity of Query
Answering in Expressive Description Logics via Tableaux. Journal of Automated
Reasoning, 41(1):61–98, 2008.

[65] Martin J. O’Connor and Amar K. Das. SQWRL: a Query Language for OWL. In
Proceedings of OWL: Experiences and Directions (OWLED), volume 529 of CEUR,
2009.

[66] Alexander Kubias, Simon Schenk, Steffen Staab, and Jeff Z. Pan. OWL SAIQL -
An OWL DL Query Language for Ontology Extraction. In Proceedings of OWL:
Experiences and Directions (OWLED 2007), volume 258 of CEUR, 2007.

[67] Evren Sirin, Blazej Bulka, and Michael Smith. Terp: Syntax for OWL-friendly
SPARQL queries. In Proceedings of OWL: Experiences and Directions (OWLED
2010), volume 614 of CEUR, 2010.

[68] SPARQL-DL with OWL Functional Syntax [online]. Available at
http://code.google.com/p/twouse/wiki/SPARQLAS, cit. 22/10/2011.

[69] Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. LUBM: A benchmark for OWL
knowledge base systems. Journal of Web Semantics, 3(2-3):158–182, 2005.

[70] Ian Horrocks and Sergio Tessaris. A Conjunctive Query Language for Description
Logic Aboxes. In Proceedings of the Seventeenth National Conference on Artificial
Intelligence and Twelfth Conference on on Innovative Applications of Artificial
Intelligence, pages 399–404, 2000.

[71] Evren Sirin and Bijan Parsia. Optimizations for Answering Conjunctive ABox
Queries. In Description Logics, volume 189 of CEUR, 2006.

[72] Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Reasoning with Individuals for
the Description Logic SHIQ. In Proceedings of the 17th International Conference
on Automated Deduction, CADE-17, pages 482–496, London, UK, 2000. Springer-
Verlag.

108

http://jfact.sourceforge.net
http://hermit-reasoner.com
http://www.w3.org/2007/OWL/wiki/Implementations
http://code.google.com/p/twouse/wiki/SPARQLAS

[73] Birte Glimm, Ian Horrocks, Carsten Lutz, and Uli Sattler. Conjunctive Query
Answering in the Description Logic SHIQ. In Proceedings of the 20th International
Joint Conference on Artificial Intelligence (IJCAI 2007), 2007.

[74] Birte Glimm, Ian Horrocks, and Ulrike Sattler. Conjunctive Query Entailment
for SHOQ. In Proceedings of the 2007 Description Logic Workshop (DL 2007),
volume 250 of CEUR, pages 65–75, 2007.

[75] Holger Knublauch, Phil Tetlow, Evan Wallace, and Daniel Oberle. A Semantic Web
Primer for Object-Oriented Software Developers [online]. W3C Note, W3C, 2006.
Available at http://www.w3.org/TR/2006/NOTE-sw-oosd-primer-20060309,
cit. 11/1/2012.

[76] NeON Toolkit Homepage [online]. Available at http://neon-toolkit.org,
cit. 5/7/2011.

[77] TopBraid Composer Homepage [online]. Available at
http://www.topquadrant.com/products/TB Composer.html, cit. 1/8/2010.

[78] SWOOP Homepage [online]. Available at http://code.google.com/p/swoop,
cit. 17/1/2009.

[79] Sabin Corneliu Buraga, Liliana Cojocaru, and Ovidiu Cătălin Nichifor. Survey
on Web Ontology Editing Tools. PERIODICA POLITECHNIC, Transactions on
AUTOMATIC CONTROL and COMPUTER SCIENCE, 2006.

[80] Seongwook Youn, Anchit Arora, Preetham Chandrasekhar, Paavany Jayanty,
Ashish Mestry and Shikha Sethi. Survey about Ontology Develop-
ment Tools for Ontology-based Knowledge Management [online]. Avail-
able at http://www-scf.usc.edu/˜csci586/projects/ontology-survey.doc,
cit. 25/11/2005.

[81] Tim Finin, Yun Peng, R. Scott, Cost Joel, Sachs Anupam Joshi, Pavan Reddivari,
Rong Pan, Vishal Doshi, and Li Ding. Swoogle: A Search and Metadata Engine
for the Semantic Web. In Proceedings of the Thirteenth ACM Conference on
Information and Knowledge Management, pages 652–659. ACM Press, 2004.

[82] Donato Griesi, Maria Pazienza, and Armando Stellato. Semantic Turkey: A
Semantic Bookmarking Tool (System Description). In Enrico Franconi, Michael
Kifer, and Wolfgang May, editors, The Semantic Web: Research and Applications,
volume 4519 of LNCS, pages 779–788, Berlin, Heidelberg, 2007. Springer-Verlag.

[83] Mozilla Firefox Homepage [online]. Available at http://www.mozilla.org/firefox,
cit. 10/9/2011.

109

http://www.w3.org/TR/2006/NOTE-sw-oosd-primer-20060309
http://neon-toolkit.org
http://www.topquadrant.com/products/TB_Composer.html
http://code.google.com/p/swoop
http://www-scf.usc.edu/~csci586/projects/ontology-survey.doc
http://www.mozilla.org/firefox

[84] Sebastian Schaffert. IkeWiki: A Semantic Wiki for Collaborative Knowledge
Management. In Proceedings of the 15th IEEE International Workshops on En-
abling Technologies: Infrastructure for Collaborative Enterprises, pages 388–396,
Washington, DC, USA, 2006. IEEE Computer Society.

[85] David Frankel. Model Driven Architecture: Applying MDA to Enterprise Computing.
John Wiley & Sons, Inc., New York, NY, USA, 2002.

[86] Lv an Tang, Hongyan Li, Baojun Qiu, Meimei Li, Jianjun Wang, Lei Wang, Bin
Zhou, Dongqing Yang, and Shiwei Tang. WISE: A Prototype for Ontology Driven
Development of Web Information Systems. In APWeb, pages 1163–1167, 2006.

[87] Mauri Leppänen. A Perspective Ontology and IS Perspectives. In Proceeding of
the 2008 conference on Information Modelling and Knowledge Bases XIX, pages
257–275, Amsterdam, The Netherlands, 2008. IOS Press.

[88] Rosemary Shrestha, Hector Sanchez, Claudio Ayala, Peter Wenzl, and Ar-
naud Elizabeth. Ontology-driven International Maize Information System
(IMIS) for Phenotypic and Genotypic Data Exchange, 2010. Available at
http://precedings.nature.com/documents/5029, cit. 15/10/2011.

[89] Amit Sheth and Cartic Ramakrishnan. Semantic (Web) Technology in Action:
Ontology Driven Information Systems for Search, Integration and Analysis. IEEE
Data Engineering Bulletin, 26:40–48, 2003.

[90] Craig E. Kuziemsky and Francis Lau. A Four Stage Approach for Ontology-based
Health Information System Design. Artificial Intelligence In Medicine, 50(3):133–
148, 2010.

[91] Moein Mehrolhassani and Atilla Elci. OLS: An Ontology Based Information System.
In Proceedings of International Conference on Complex, Intelligent and Software
Intensive Systems (CISIS 2008), pages 892–898, 2008.

[92] Gunnar A. Grimnes, Leo Sauermann, and Ansgar Bernardi. The Personal Knowl-
edge Workbench of the NEPOMUK Semantic Desktop. In Proceedings of the
6th European Semantic Web Conference on The Semantic Web: Research and
Applications, pages 836–840, 2009.

[93] Max Völkel. RDFReactor – From Ontologies to Programatic Data Access. In
Proceedings of Jena User Conference. HP Bristol, 2006.

[94] Edward Kawas and Mark D. Wilkinson. OWL2Perl: creating Perl modules from
OWL class definitions. Bioinformatics, 26(18):2357–8, 2010.

[95] SurfRDF Homepage [online]. Available at http://code.google.com/p/surfrdf,
cit. 10/8/2011.

110

http://precedings.nature.com/documents/5029
http://code.google.com/p/surfrdf

[96] RDFAPI Homepage [online]. Available at
http://www4.wiwiss.fu-berlin.de/bizer/rdfapi, cit. 10/8/2011.

[97] Jonas von Malottki. Java OWL APIs [online]. Available at
http://wiki.yoshtec.com/java-owl-api, cit. 6/10/2010.

[98] H. Story. Semantic Object (Medata) Mapper [online]. Available at
http://sommer.dev.java.net/sommer, cit. 6/10/2010.

[99] Carsten Saathoff, Stefan Scheglmann, and Simon Schenk. Winter: Mapping RDF
to POJOs revisited. In Proccedings of the ESWC 2009 Demo and Poster Session,
2009.

[100] Peter Mika and James Leigh. Elmo User Guide [online]. Available at
http://www.openrdf.org/doc/elmo/1.5/user-guide.html, cit. 6/10/2010.

[101] RDF2Java Homepage [online]. Available at http://rdf2java.opendfki.de,
cit. 21/8/2011.

[102] Jeen Broekstra, Arjohn Kampman, and Frank van Harmelen. Sesame: A generic
architecture for storing and querying RDF and RDF Schema. In Proceedings of the
first International Semantic Web Conference (ISWC 2002), volume 2342 of LNCS,
pages 54–68. Springer Verlag, 2002.

[103] Matthias Quasthoff and Christoph Meinel. Supporting Object-Oriented Program-
ming of Semantic-Web Software. IEEE Transactions on Systems, Man, and
Cybernetics, Part C: Applications and Reviews, 42(1):15–24, 2012.

[104] Jürgen Frohn, Georg Lausen, and Heinz Uphoff. Access to Objects by Path
Expressions and Rules. In Proceedings of the 20th International Conference on
Very Large Data Bases (VLDB’94), pages 273–284, 1994.

[105] Michael Grove. Empire: RDF & SPARQL Meet JPA [online]. Avail-
able at http://semanticweb.com/empire-rdf-sparql-meet-jpa b15617,
cit. 11/8/2011.

[106] Mike Keith and Merrick Schincariol. Pro JPA 2: Mastering the Java Persistence
API. Apress, Berkely, CA, USA, 1st edition, 2009.

[107] Michael Zimmermann. Owl2Java - A Java Code Generator for OWL [online].
Available at http://www.incunabulum.de/projects/it/owl2java, cit. 6/10/2010.

[108] Jonas von Malottki. JAOB (Java Architecture for OWL Binding) [online]. Available
at http://wiki.yoshtec.com/jaob, cit. 11/8/2011.

[109] Benjamin H. Szekely and J. Betz. Jastor Homepage [online]. Available at
http://jastor.sourceforge.net, cit. 6/10/2010.

111

http://www4.wiwiss.fu-berlin.de/bizer/rdfapi
http://wiki.yoshtec.com/java-owl-api
http://sommer.dev.java.net/sommer
http://www.openrdf.org/doc/elmo/1.5/user-guide.html
http://rdf2java.opendfki.de
http://semanticweb.com/empire-rdf-sparql-meet-jpa_b15617
http://www.incunabulum.de/projects/it/owl2java
http://wiki.yoshtec.com/jaob
http://jastor.sourceforge.net

[110] Aditya Kalyanpur, Daniel J. Pastor, Steve Battle, and Julian A. Padget. Automatic
Mapping of OWL Ontologies into Java. In Proceedings of the Sixteenth International
Conference on Software Engineering & Knowledge Engineering (SEKE’2004), pages
98–103, 2004.

[111] Fernando S. Parreiras, Carsten Saathoff, Tobias Walter, Thomas Franz, and Steffen
Staab. APIs à gogo: Automatic Generation of Ontology APIs. In Proceedings
of the 2009 IEEE International Conference on Semantic Computing (ICSC ’09),
pages 342–348, Washington, DC, USA, 2009. IEEE Computer Society.

[112] Maxim Davidovsky, Vadim Ermolayev, and Vyacheslav Tolok. Instance Migra-
tion Between Ontologies having Structural Differences. International Journal
on Artificial Intelligence Tools. Topical Issue on Intelligent Distributed Systems,
20(6):1127–1156, 2011.

[113] Volker Haarslev, Ralf Möller, and Michael Wessel. Querying the Semantic Web
with Racer + nRQL. In Proceedings of the KI-2004 International Workshop on
Applications of Description Logics (ADL’04), 2004.

[114] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Techniques.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1992.

[115] Ramnivas Laddad. AspectJ in Action: Practical Aspect-Oriented Programming.
Manning Publications Co., Greenwich, CT, USA, 2009.

[116] Martin Ledvinka. Transactional Processing of Ontologies. Bach-
elor’s thesis, Czech Technical University in Prague, 2011. Avail-
able at https://dip.felk.cvut.cz/browse/pdfcache/ledvima1 2011bach.pdf,
cit. 14/10/2011.

[117] OWLDB Homepage [online]. Available at http://owldb.sourceforge.net,
cit. 22/4/2011.

[118] Bogdan Kostov. Visualization of Expressive Queries into OWL 2 Ontologies.
Master’s thesis, Czech Technical University in Prague, 2010. Available at
http://cyber.felk.cvut.cz/research/theses/papers/124.pdf, cit. 14/10/2011.

[119] SPARQL-DL API [online]. Available at
http://www.derivo.de/en/resources/sparql-dl-api.html, cit. 20/10/2011.

[120] Li Ma, Yang Yang, Zhaoming Qiu, GuoTong Xie, Yue Pan, and Shengping Liu.
Towards a Complete OWL Ontology Benchmark. In ESWC, pages 125–139, 2006.

[121] Jan Abrahamč́ık. Using Ontologies for Knowledge Management of Structural
Failures of Constructions. Master’s thesis, Czech Technical University in Prague,
2010. Available at http://cyber.felk.cvut.cz/research/theses/papers/121.pdf,
cit. 20/10/2010.

112

https://dip.felk.cvut.cz/browse/pdfcache/ledvima1_2011bach.pdf
http://owldb.sourceforge.net
http://cyber.felk.cvut.cz/research/theses/papers/124.pdf
http://www.derivo.de/en/resources/sparql-dl-api.html
http://cyber.felk.cvut.cz/research/theses/papers/121.pdf

[122] Kamil Matoušek and Zdeněk Kouba. ODCA - Ontology-Based Document and
Content Annotation in Structural Health Monitoring. In Workshop on Database
and Expert Systems Applications, volume 2, pages 302–305, Berlin, 2011. IEEE
Computer Society.

[123] Jǐŕı Kopecký. Semantic Web-Based Content Management System. Bach-
elor’s thesis, Czech Technical University in Prague, 2011. Avail-
able at https://dip.felk.cvut.cz/browse/pdfcache/kopecji5 2011bach.pdf,
cit. 20/11/2011.

[124] Glassfish Homepage [online]. Available at http://glassfish.java.net,
cit. 1/8/2009.

[125] PelletDB homepage [online]. Available at http://clarkparsia.com/pelletdb,
cit. 22/4/2011.

[126] Julian Dolby, Achille Fokoue, Aditya Kalyanpur, Li Ma, Edith Schonberg, Kavitha
Srinivas, and Xingzhi Sun. Scalable Grounded Conjunctive Query Evaluation over
Large and Expressive Knowledge Bases. In Proceedings of the 7th International
Conference on The Semantic Web, volume 5318 of LNCS, pages 403–418, Berlin,
Heidelberg, 2008. Springer-Verlag.

[127] Matthew Horridge, Bijan Parsia, and Ulrike Sattler. Justification Oriented Proofs
in OWL. In Proceedings of the 9th International Semantic Web Conference (ISWC
2010), volume 6496 of LNCS, pages 354–369, 2010.

[128] Petr Křemen and Zdeněk Kouba. Incremental Approach to Error Explanations
in Ontologies. In Proceedings of the 7th International Conference on Knowledge
Management (I-KNOW 2007), pages 332–339. Know-Center, Austria, 2007.

[129] Ludmila Tichá, Zdeňka Civ́ınová, Michaela Morysková, Ilona Trt́ıková, and Lenka
Němečková. Jak psát vysokoškolské závěrečné práce [online], 2011. Available at
http://knihovna.cvut.cz/redir.php?id file=1017, cit. 5/12/2011.

113

https://dip.felk.cvut.cz/browse/pdfcache/kopecji5_2011bach.pdf
http://glassfish.java.net
http://clarkparsia.com/pelletdb
http://knihovna.cvut.cz/redir.php?id_file=1017

Acronyms

Notation Description Page List
DCQNOT Distinguished Conjunctive Queries with Nega-

tion
28, 29, 40–42, 56, 57,
60–62, 67, 82

CWA Closed World Assumption 2, 41, 45, 56

FOPL First-Order Predicate Logic 14, 19

IRI Internationalized Resource Identifier 80–82

JOPA Java OWL Persistence API 77
JPA Java Persistence API 51, 83
JPQL Java Persistence Query Language 83

MDA Model-Driven Architecture 48

NNF Negation Normal Form 20, 22

OIS Ontology-based Information System 28, 45, 46, 52, 54, 60
OOM Object-Ontology Mapping 48, 51, 55
OWA Open World Assumption 2, 17, 41, 45
OWL Web Ontology Language 1–3, 7, 11, 12, 29, 45,

46, 48, 49, 52, 77

RDF Resource Description Framework 1, 7, 8, 11–13, 29, 49
RDFS RDF Schema 1, 7, 11, 45, 46, 49, 51,

52

SOA Service Oriented Architecture 46
SPARQL SPARQL Query Language for RDF 7, 12, 13, 29, 49
SWRL Semantic Web Rule Language 7

UI User Interface 46, 48, 95, 96
UML Unified Modeling Language 52
URI Uniform Resource Identifier 8, 9, 12, 13

115

A. SPARQL-DL Atom Abbreviations

full atom name abbreviation
Type Ty
PropertyValue PV
SameAs SA
DifferentFrom DF
SubClassOf SCO
EquivalentClass EC
DisjointWith DW
ComplementOf CO
SubPropertyOf SPO

full atom name abbreviation
EquivalentProperty EP
InverseOf IO
∗ObjectProperty OP
∗DataProperty DP
Functional Fun
InverseFunctional IFun
Transitive Trans
Symmetric Sym
∗Annotation A

Table A.1.: SPARQL-DL atom names. Atoms prefixed with * sign are not considered in
this thesis, as explained in Section 2.7.1.

117

B. SPARQL-DLNOT Atom Cost
Estimates

This section shows rough estimates of the cost of evaluating SPARQL-DLNOT query
atoms that can be used for computing the static query reordering optimization and
dynamic query reordering optimization, as shown in Section 4.2.2. In the tables presented
in this section, the following notion is used:

χ(o) denotes the maximal cost of the particular reasoner operation, as specified in Table
2.5,

χs(ou), (resp. χs(ob)) denotes the cost of evaluating a unary (resp. binary) ground
atom,

χm1 (ob) (resp. χm2 (ob)) denotes the cost of evaluating a binary atom in which exactly
the first (resp. second) argument is a variable,

ω(ou) (resp. ω(ob)) denotes the number of classes/instances/properties, depending on
the type of a unary (resp. binary) query atom,

ε1(ou) (resp. ε1(ob), resp. ε2(ob)) denotes the estimate of the number of bindings for
the first argument of ou (resp. first argument of ob, resp. second argument of ob).
As an example, ε1(Ty) is the estimated number of instances for an arbitrary, but
fixed, concept. A cheap and rough estimate of this number is an average number of
instances of computed accross all named concepts, obtained from precompletion.

ε1(o, x2) (resp. ε1(o, x2, x3), resp. ε2(o, x1) estimates the number of bindings for an atom
o, given that its second argument (resp. second and third argument, resp. first
argument) is known. As an example, consider ε2(SCO,A) that denotes the estimated
number of concepts that subsume A. Cheap estimate of this number is the number
of different axioms of the form A v • that appear in the ontology. Another example
would be ε1(PV, R, a) that estimates number of individuals that are connected
through role R with a. This estimate can be get by counting the respective edges
in the precompletion graph.

119

oper. ou χs(ou)
Fun, IFun χ(isSubC)
Trans χ(isSubC)
Ref, IRef χ(isSubC)
Sym χ(isEqP)
ASym χ(isSubC)

oper. ob χs(ob) χm1 (ob) χm2 (ob) ω(ob)
Ty χ(IC) χ(IR) χ(CR) CN

SA,DF χ(IC) χ(IR) χ(IR) IN

SCO,DW χ(isSubC) χ(subC) χ(supC) CN

EC,CO χ(isEqC) χ(eqC) χ(eqC) CN

SPO χ(isSubP) χ(subP) χ(supP) CN

EP, IO χ(isEqP) χ(eqP) χ(eqP) RN

query atom q estC(q, B) estB(q, B)
ou (x̂) χs(ou) 1
ou (?v) |RN | · χs(ou) ε1(ou)
ob (x̂1, x̂2) χs(ob) 1
ob (?v1, x2) χm1 (ob) ε1(ob, x2)
ob (?v1, ?v2), ?v2 ∈ B χm1 (ob) ε1(ob)
ob (x1, ?v2) χm2 (ob) ε2(ob, x1)
ob (?v1, ?v2), ?v1 ∈ B χm2 (ob) ε2(ob)
ob (?v1, ?v2) |ω(ob)| · χm1 (ob) |ω(ob)| · ε1(ob)
PV

(
â1, R̂, â3

)
χ(IC) 1

PV (?v1, R, a3) χ(IR) ε1(PV, R, a3)
PV (?v1, R, ?v3), ?v3 ∈ B χ(IR) ε1(PV, R)
PV (?v1, ?v2, ?v3), {?v2, ?v3} ⊆ B χ(IR) ε1(PV)
PV (a1, R, ?v3) χ(IR) ε1(PV, R−, a1)
PV (?v1, R, ?v3), ?v1 ∈ B χ(IR) ε1(PV, R−)
PV (?v1, ?v2, ?v3), {?v2, ?v1} ⊆ B χ(IR) ε1(PV)
PV (â1, ?v2, â3) |RN | · χ(IC) ε2(PV)
PV (?v1, R, ?v3) |IN | · χ(IR) |IN | · ε1(PV, R)
PV (?v1, ?v2, ?v3), ?v2 ∈ B |IN | · χ(IR) |IN | · ε1(PV)
PV (?v1, ?v2, â3), or PV (â1, ?v2, ?v3) |RN | · χ(IR) |RN | · ε2(PV)
PV (?v1, ?v2, ?v3) |RN | · |IN | · χ(IR) |RN | · |IN | · ε1(PV)
COREγ

∣∣∣ ˆV (γ)
∣∣∣χ(IR) + |IN ||

ˆV (γ)| χ(IC) ε2(Ty)| ˆV (γ)|

Table B.1.: Rough estimates of SPARQL-DLNOT atom evaluation costs. Notation:
ˆV (Q) = V (Q) \ B is a set of all unbound (i.e. not in B) distinguished

variables in Q. Additionally, terms with circumflex denote either a named
individual/concept/role, or a variable from B. E.g. x̂ means either x (individ-
ual) or x ∈ B (variable bound with unknown individual). Handling of NOT
atoms, as well as detailed description of the notation and rationale behind
these estimates are presented in Section 4.2.2.

120

C. Comparing Ontologies using
OWLDiff

During the development of StruFail, the ontology evolved dynamically, as already men-
tioned in Section 6.1. Thus, upon refinements of the ontology, conflicts between subsequent
ontology versions occurred and had to be handled. Without proper tool support, detec-
tion of differences, inconsistencies, or redundancies between different ontology versions is
time-consuming or even practically impossible for large ontologies. To tackle this issue,
I designed and lead the development team of OWLDiff1 [33], an open-source practical
and easy-to-use award-winning tool for ontology comparison and merging. OWLDiff is
widely recognized by the community (more than 3500 downloads of the tool since its
early release in 2008) due to its comparison options, visualization options and Subversion
integration. The tool is available in three versions: as (i) a standalone application that
is suitable for comparing two ontologies without requiring any other tools, (ii) a NeON
toolkit plug-in2, and as (iii) a Protégé plug-in. Main development currently focuses on
the Protégé plug-in.

Here, I only shortly sketch relevant features of OWLDiff designed by myself, i.e.
syntactic comparison, redundancy-based comparison and the merge option. Another, fully
semantic, comparison option CEX for rather restricted subset of OWL was implemented
by Marek Šmı́d. Details on all comparison options, together with OWLDiff tutorial can
be found in [33].

C.1. OWLDiff Comparison Options

OWLDiff compares two OWL 2 ontologies, an original one Ko = {αo1, . . . , αoO} with its
updated version Ku = {αu1 , . . . , αuU}, where each α

o|u
i is either an OWL 2 axiom or an

import declaration or an ontology annotation.
In the following examples, I consider an original ontology Ko1 = {αo11 , α

o1
2 , α

o1
3 }, and

1see http://krizik.felk.cvut.cz/km/owldiff, cit. 12/10/2011
2I won the second prize at the NeON Plug-in Developer’s Contest in 2008 with the NeON toolkit

plug-in, see http://www.neon-toolkit.org/wiki/Winners Announced, cit. 12/1/2012.

121

http://krizik.felk.cvut.cz/km/owldiff
http://www.neon-toolkit.org/wiki/Winners_Announced

its two updated versions Ku2 = Ko1 ∪ {αu2
1 , α

u2
2 }, and Ku3 = {αo11 , α

o1
2 , α

u3
1 }, where:

αo11 : ObjectWithFailures ≡ Structure u ∃hasFailure · >,
αo12 : Structure v Object,
αo13 : TownHouse v Object,
αu2

1 : Repair v ∃isRepairOf · >,
αu2

2 : > v ∀isRepairOf · Structure,
αu3

1 : TownHouse v Structure.

This simple example is used to demonstrate the comparison options mentioned in the
next sections.

C.1.1. Syntactic Diff
The simplest way to compare two ontologies, is the syntactic comparison, i.e. comparison
of two sets of axioms, import declarations and ontology annotations. i.e. Diff(Ko,Ku) =
{α ∈ Ko|α /∈ Ku}, or Diff(Ku,Ko) = {α ∈ Ku|α /∈ Ko}

For cases when the updated ontology augments the original one with new definitions,
syntactic comparison is often sufficient to decide which axiom should be included in the
merged ontology without compromising its consistency nor change in semantics of the
original ontology. The reason is that whenever no named terms (classes/properties/indi-
viduals) are reused from Ko for the newly added axioms to Ku, the newly added axioms
typically do not have any semantic impact on named terms from Ko (although they
might have, e.g. in presence of nominals). The set Diff(Ko,Ku) is cheap to compute, as
no OWL 2 reasoning is needed.

Example 27 Having ontology Ko1 and Ku2, it is easy to see that Diff(Ko1,Ku2) = ∅
and Diff(Ku2,Ko1) = {αu2

1 , α
u2
2 }.

C.1.2. Redundancies
A more sophisticated comparison option that reflects the semantic impact of the newly
added axioms is the computation of semantically redundant axioms, i.e. axioms that can
be inferred from the other ontology. Information about semantic redundancies is suitable
for cases when Ku contains new (or lacks existing) axioms about classes and properties
already present in Ko.

The syntactic diff Diff(Ku,Ko) is divided to

• Inf(Ku,Ko) = {α ∈ Diff(Ku,Ko)|Ko |= α}, i.e. axioms that can be inferred from
Ku, and to

• Rest(Ku,Ko) = Diff(Ku,Ko) \ Inf(Ku,Ko), i.e. remaining axioms.

122

When computing the set Inf(Ku,Ko) of semantically redundant axioms w.r.t. Ko,
entailment by Ko of each axiom from Diff(Ku,Ko) has to be checked. Thus, in the worst
case when Diff(Ku,Ko) = Ku, computing Inf(Ku,Ko) requires the number of OWL
entailment checks equal to the number of axioms in Ku.

To decide, whether an axiom α ∈ Inf(Ku,Ko) is redundant and thus needs to be
deleted from the merged version of Ku and Ko, a set E(α) = {e1, . . . , eA} of justifications
(a.k.a explanations) is provided to the user. Each justification ei ∈ E(α) for entailment
of α from Ko is a minimal set ei = {γi,1, . . . , γi,B} ⊆ Ko, such that ei |= α and there is no
strict subset fi of ei for which fi |= α. Although computing all possible justifications for a
redundancy of a single axiom might be expensive (up to exponential in the number of OWL
entailment checks needed), on demand computation of a single explanation described
in [127] requires only linear number of entailment checks in the number of axioms of
Ku. OWLDiff is equipped with an two OWL entailment justifications algorithms, that I
proposed in [128];however, their description is out of the scope of this thesis. For more
information about OWL entailment justifications see [127].

Example 28 Syntactic comparison of Ku3 and Ko1, results in Diff(Ko1,Ku3) = {αo13 }.
Thus, computing redundancies requires a single entailment check: Ku3 |= αo13 . In our
case, this entailment holds and thus Inf(Ko1,Ku3) = {αo13 }. This means that αo13 can be
inferred from the updated ontology Ku3 and thus the ontology designer might not need
to include it to the merged ontology. Justification of the entailment Ku3 |= αo13 provides
the ontology designer with the information why the redundancy occurs. This situation is
shown in Figure C.2.

Figure C.1.: Protégé Syntactic comparison example. Axioms in one ontology, which do
not appear in the other ontology, have green font color in its tree.

123

Figure C.2.: Redundancies comparison example. Axioms that can be inferred from the
other ontology by an OWL reasoner, and thus might be redundant, are
marked red. Upon selecting such an axiom, a justification of the inferrence
appears in a box at the bottom of the tree.

124

	Introduction
	Ontologies in Information Systems
	Thesis Contributions
	Thesis Outline

	Description Logic Reasoning in Semantic Web
	RDF and RDFS
	OWL and OWL 2
	SPARQL
	Description Logic SROIQ
	Consistency Checking in Description Logics
	Tableau algorithm for ALC

	Basic Reasoning Services for Description Logics
	Expressive Description Logic Queries
	SPARQL-DL Language
	Conjunctive ABox Queries
	Evaluating Conjunctive ABox Queries
	Distinguished Conjunctive Queries with Negation

	Integrity Constraints in OWL

	Ontologies in Information Systems
	Ontology-Based Information System Architecture
	Systems with Generic Architecture
	Systems with Domain-Specific Architecture

	Accessing OWL Ontologies Programmatically
	Type 1 APIs
	Type 2 APIs

	Relationship of this Thesis to Related Work
	Ensuring Proper Application-Ontology Contract
	Providing Expressive Query Language with Efficient Implementation

	Proposed Methodology and Framework
	Ontology Persistence Layer
	Ontology-Object Model Contract
	Ontology Access Layer

	SPARQL-DL NOT Language
	Optimizing Conjunctive ABox Queries with Undistinguished Variables
	Evaluating SPARQL-DL NOT

	Software Implementation
	Java OWL Persistence API
	Object-Ontology Mapping in Java
	Transactional Processing in Java

	SPARQL-DL engine in Pellet and OWL2Query
	Evaluation of the Query Engine
	Performance of Different Engine Implementations
	Performance of the Dynamic Reordering Method
	Performance of the Undistinguished Variables Optimizations

	Use Cases
	StruFail System
	System Design
	System Usage

	Conclusions
	Bibliography
	Acronyms
	SPARQL-DL Atom Abbreviations
	SPARQL-DL NOT Atom Cost Estimates
	Comparing Ontologies using OWLDiff
	OWLDiff Comparison Options
	Syntactic Diff
	Redundancies

