
Czech Technical University in Prague
Faculty of Electrical Engineering

Doctoral Thesis

June 2013 Antonín Komenda

Czech Technical University in Prague

Faculty of Electrical Engineering
Department of Computer Science and Engineering

Domain-independent Multiagent
Plan Repair

Doctoral Thesis

Antonín Komenda

Prague, June 2013

Ph.D. Programme: Electrical Engineering and Information Technology
Branch of study: Artificial Intelligence and Biocybernetics

Supervisor: Prof. Dr. Michal Pěchouček, MSc.

Dedicated to my sister Alena Alisa Komendová.

Acknowledgments

This work would not be possible without the support of my supervisor Prof. Michal Pěchouček
and daily supervisor Dr. Peter Novák. They both guided me consistently and openly during the
research and coauthored most of the works which this thesis stands on. My gratitude also goes to
Dr. Jiří Vokřínek who helped me from the first moments we met at the university and skillfully
directed my early steps and to Michal Štolba who is currently my closest coworker and without
whom the latest research results could not be of the quality they are now.

Especially the final miles of the work would be impossible without a thorough and methodical
motivation from my dear wife Martina.

Abstract

Achieving joint objectives in distributed domain-independent planning problems by teams of co-
operative agents requires significant coordination and communication efforts. Provided that the
agents act in an imperfect environment, their plans can fail. The straightforward approach to re-
cover from such situations is to compute a new plan from scratch, that is to replan. An alternative
approach is to reuse the original plan and repair it. Even though, in a worst case, plan repair or
plan reuse does not yield an advantage over replanning from scratch, there is a sound evidence from
practical use that approaches trying to repair the failed original plan can outperform replanning in
selected problems.

This thesis formally introduces the multiagent plan repair problem. Building upon the formal
treatment, algorithms for multiagent plan repair are described using transformation of the problem
to specialized instances of a multiagent planning problem. The algorithms are theoretically analyzed
from the perspective of soundness and completeness properties as well as time and communication
complexity.

To demonstrate practical impacts of the plan repair techniques, after description of the imple-
mentation of the algorithms, an extensive experimental evaluation of the algorithms is presented
with discussion of the results. The experiments focus on four hypotheses: (i) multiagent plan repair
approaches producing more preserving repairs than replanning tend to generate lower communica-
tion overhead for planning problems requiring strong coordination, (ii) repair approaches minimiz-
ing the number of agents involved in the plan repair process tend to generate lower computational
and communication overheads than other strategies, (iii) repair approaches solving a problem in
the execution as soon as possible generate lower computational and communication overheads than
the other repair algorithms in domains featuring actions with long-term dependencies and (iv) re-
pair approaches overusing or underusing the original plan tend to generate higher computational
overheads than other algorithms.

Finally, the plan repair approaches are validated by adaptation and deployment to a high-fidelity
simulation by a software engineering methodology designed for guidance of such process and by
replacement of the used inner multiagent planning approach with a newly designed and implemented
experimental prototype of a multiagent forward-search planner.

Contents

1 Introduction 1
1.1 Problem Statement . 3
1.2 Contributions and Accomplishments 4
1.3 Organization . 5

2 Related Work 7
2.1 Multiagent Planning . 9
2.2 CSP-based Planning . 12
2.3 Classical Plan Repair . 13
2.4 Context for Multiagent Plan Repair 15

3 Formal Foundations for Multiagent Plan Repair 19
3.1 Multiagent Planning . 19
3.2 Multiagent Plan Repair . 24

4 Plan Repair Algorithms 29
4.1 Back-on-Track Repair . 30
4.2 Simple-Lazy Repair . 32
4.3 Repeated-Lazy Repair . 35
4.4 Generalized Repair . 37
4.5 Complexity Analysis . 41

4.5.1 Time Complexity of MA-Plan 41
4.5.2 Time Complexity of the Plan Repair Algorithms 43
4.5.3 Communication Complexity of MA-Plan 45

ix

x CONTENTS

4.5.4 Communication Complexity of the Plan Repair Algorithms . . 46
4.6 Implementation . 48

4.6.1 Multiagent Planner . 48
4.6.2 Planner Improvements . 50
4.6.3 Multiagent Plan Repair Process and Algorithms 54

5 Experimental Evaluation 57
5.1 Domains . 57
5.2 Metrics . 59
5.3 Failure Types . 61
5.4 Experimental Setup and Process . 61
5.5 Results and Discussion . 62

5.5.1 More Preserving Repairs . 62
5.5.2 Number of Repairing Agents 70
5.5.3 Repair of Long-term Dependencies 72
5.5.4 Repair Appropriately Reusing the Original Plan 75

6 Validation in Multiagent Simulation 79
6.1 Development Process . 79

6.1.1 Environment Model . 80
6.1.2 Simulation Process . 82
6.1.3 Example of a Multilevel and Multiscope Abstractions 83

6.2 Multiagent Toolkit Alite . 84
6.3 Usage of Plan Repair in a Tactical Mission 86
6.4 Deployment of Plan Repair into Tactical Simulation 87
6.5 Results and Discussion . 90

7 Validation with Forward-search Multiagent Planner 95
7.1 Design of the Planner . 95
7.2 Implementation of the Planner . 98
7.3 Plan Repair with Forward-search Multiagent Planner 101
7.4 Results and Discussion . 102

CONTENTS xi

8 Conclusion 105
8.1 Directions for Future Research . 107
8.2 Thesis Achievements . 107
8.3 Selected Related Publications . 109

Chapter 1

Introduction

Research in artificial intelligence endeavors to describe and utilize rational behavior for machines.
A crucial part of such behavior is the ability to deliberate about sequences of actions or shortly
plans. Building of plans is indisputably the most important precursor for any other form of such
deliberation. In the context of intelligent construction of plans by machines, we talk about au-
tomated planning. The story, however, often does not end with a prepared plan. Under various
circumstances, the plans have to be updated to take into account unanticipated phenomena. In
such situations we talk about replanning, plan adaptation or plan repair, as far as the process is
fixing an original plan. The deliberation can be understood as a centralized computational process
or decentralized interweaving of more processes. The latter case can be additionally restricted by a
need of the computational processes not to reveal all the information they are working with. In such
cases, we are dealing with multiagent systems or particularly in the context of the aforementioned
fixing of plans with multiagent plan repair.

Automated planning, especially the centralized form, has already succeeded in various practical
problems [46, 47]. The first presented is planning for a mission on Mars carried out by the Mars
Rovers [8, 18] and generally planning and scheduling for various space missions at NASA [9].
Another example represents software systems for planning of sheet-metal bending operations and
assembly tasks [22]. Automated planning was also successfully used in various logistic domains
such as organization of ship containers at docks1 or cargo transportation2.

The motivation for the research described in this thesis stems from practical needs for efficient
and robust approach to coordination of teams of intelligent entities solving problems across various
domains. To introduce practical intentions here, the domain to mention first is planning of coop-
eration during a disaster relief operations where various parties with heterogeneous abilities have
to cooperate to fulfill a common goal. The other example is a multi-robotic team of autonomous

1http://www.navis.com/solutions/container
2http://www.soloplan.com/

1

2 CHAPTER 1. INTRODUCTION

vehicles providing support in a military mission. Such vehicles can considerably vary in their abili-
ties and limitations, e.g., the bandwidth among a couple of robotic submarines will be much lower
than the bandwidth among a group of large-scale Unmanned Aerial Vehicles (UAVs).

In the mentioned practical problems, there are several distinctive properties which more precisely
frame the context. Firstly, it is plausible to presume that the members of the team always want to
cooperate, as there are only common goals and there are no rational reasons to act competitively,
or even adversarially. Secondly, the plan repair techniques have to be flexible enough to be usable
in various domains. Such domain-independent approaches are less prone to a bias to particular
domains and overspecialization of the planners. Furthermore, they provide universal solutions
presumably usable even in newly discovered problems and reusable in wider number of related
tasks. Domain-independent solutions are more effectively developed as they are more likely to solve
problems for a larger community. Lastly, the problems caused by a nondeterministic environment,
which are the very causes for plan repair in the first place, are realistic, e.g., wheels of a mobile
robot can slip, causing an executed drive action to fail to move the robot at all, however executing
the same drive action displacing the robot from one city to another across a country is not realistic
in real-world related problems. Additionally, as in principle, the disturbances cannot be precisely
mapped on the real environment, the failure model has to be treated as unknown. These distinctive
properties define the problem of this thesis as:

Cooperative domain-independent multiagent repair of plans with an unknown failure
model.

The repair process is carried out by a set of intelligent entities. Such entities can be any computa-
tional systems able to interact with the target environment. The computational system comprising
the intelligent entities is presumed to be divisible into a couple of processes allowed to interoperate
in form of message passing. The processes will be denoted as agents and message passing among
them will be denoted as inter-agent communication. The focus of this thesis is on the deliberative
agents working with plans, therefore the interface between an agent and the environment requires
execution of actions and perceiving of facts valid in the environment. In effect, this means the
interface can have a human behind who executes the actions by driving a real truck in the real
world or a robotic subsystem carrying out the execution of the actions by motors moving robotic
arms or a simulator of action execution in a virtual environment.

With this focus set on the computational agents and the communication among them, the
motivation can be wrapped up with the metrics of the interest both for the practical and theoretical
research of the plan repair algorithms. In classical planning, the computational complexity is the
key metrics targeted by the research, however in decentralized systems and therefore also in the
multiagent systems, the communication complexity gains in importance. This is especially true for
a possible deployment of the algorithms on systems with low communication bandwidth among the
agents like the aforementioned underwater robotic teams.

1.1. PROBLEM STATEMENT 3

1.1 Problem Statement

The previous section defined the problem of this thesis in a declarative way, however the problem
can be formulated more concretely as a question:

How to efficiently repair a multiagent plan after a divergence from ideal execution?

The question contains three distinctive parts which will be described in more details. From the
right, the divergence from ideal execution means there is a process executing a multiagent plan which
can fail and therefore the execution can diverge from a presumed ideal course. The multiagent plan
describes actions the agents has to undertake to transform the environment they are acting in
from an initial state to a common goal. The actions, initial and goal states describe the particular
problem the agents solve. And finally, the core of the question is the notion of an efficient repair of
the multiagent plan which is a process effectively modifying the plan in such way that the execution
can continue with the repaired plan even after the divergence. The question does not specify what
algorithmic approach the repair should follow, however the fundamental idea of the thesis is to
utilize parts of the repaired plan, thus save required communication and computation effort which
was already performed in the previous process of construction of the original multiagent plan.

To answer the stated question, a systematic approach was adopted. Firstly, the problem was
split into several detailed and focused subproblems:

1. To formally define multiagent plan repair.

2. To design and to formally verify multiagent plan repair algorithms.

3. To experimentally verify required properties of the designed algorithms.

4. To validate the designed algorithms.

The first subproblem is to propose an appropriate formalization of the multiagent plan repair
problems. The formalization should be based on the state of the art in multiagent planning to allow
usage of previous techniques and implementations. Based on the formalization, the main problem
is how to theoretically design approaches in form of formal definitions and practical algorithms
to solve the problem of multiagent plan repair. Since the focus here is on the principle of plan
reuse, the approaches should transform and supplement parts of the original plan resulting in a
new fixed plans. These approaches has to be both theoretically and experimentally verified to
comply the requirements of soundness, completeness and efficiency. Since the verification focuses
on correctness of the solutions, the final question is if the proposed approaches are valid with respect
to the motivation of the research, therefore the proposed algorithms have been tested in a particular
application domain and with two different multiagent planning approaches.

4 CHAPTER 1. INTRODUCTION

1.2 Contributions and Accomplishments

This thesis compiles a series of work done on multiagent plan repair which were in the initial
phases influenced by work of Jiří Vokřínek and Michal Pěchouček on task-oriented multiagent
problem solving and social commitments [65]. The first results in this direction were published
in [38, 37, 35] and in coauthored publications [63, 64, 69]. The work was from the beginning related
to the particular domain of tactical and disaster relief missions of simulated autonomous assets.
The contribution of these works was mostly in the sense of applied research and design of specialized
solutions for particular domains with various forms of dynamism (usually with a priori unknown
models). Generalization of this work led to an abstract representation of multiagent plans by means
of social commitments in [36].

The work in [30, 31, 39, 34, 32], done in cooperation with Peter Novák, was firstly focused on
definition of novel theoretical foundations for domain-independent multiagent plan repair princi-
ples. Based on work of Brafman and Domshlak [7] a formal definition of multiagent plan repair was
presented in [30] with preliminary algorithmic approaches to multiagent plan repair. The formal
framework and the algorithms were precised in [31, 33]. The final iteration presented design and
formal validation of multiagent plan repair algorithms in [34] with proofs of soundness and com-
pleteness of the algorithms. The article also extended the experimental validation of the algorithms
from the previous publication with an extensive results from various domains with an extended
and optimized version of the planner. The experimental evaluation was precised in [32] with an
additional plan repair algorithm connecting and generalizing the previous ones.

The applied part of the work focused on adaptation of plan repair for highly-detailed simulations
of the real world. In [54], the simulation was described with a particular domain of a tactical
mission. Furthermore, the publication proposed first steps towards a development process for
seamless deployment of theoretically backed algorithms into simulated environments similar to the
real world. Detailed description of the deployment process together with summary of requirements
on a suitable high-fidelity simulator were presented in [39] together with evaluation of the process.

Most recently, the work focused on design and analysis of different techniques for multiagent
planning, as the experiments revealed scalability issues with the used multiagent planning technique.
Preliminary results of this work were published in cooperation with Michal Štolba in [62].

The main contribution of this thesis is a compact and detailed presentation of the results from
the mentioned publications. The experimental parts were reformulated into an coherent form and
presented with several unpublished details. Additionally the thesis provides an interconnection of
the applied and theoretical results.

The most notable unpublished parts of this thesis are theoretical complexity analysis of the plan
repair algorithms in Section 4.5, detailed description of the modifications of the used multiagent
planner in Section 4.6, more detailed description of evaluation of the plan repair deployment in
Sections 6.3, 6.4 and 6.5 and details on the newly designed planner in Chapter 7.

1.3. ORGANIZATION 5

1.3 Organization

The thesis is organized into three main parts. The first one in Chapter 2 focuses on a summary of
works in areas of multiagent planning and centralized plan repair, defining the state of the art for
the context of the research in this dissertation. The part is concluded with definition of the context
of the multiagent plan repair problem and summarizes the presumptions and limitations for the
context of this thesis.

The second part establishes the theoretical foundations required for the latter formal definition of
the plan repair algorithms and their theoretical analysis and experimental evaluation. In Chapter 3,
the problem of multiagent plan repair is defined formally. Chapter 4 begins with statement of
the main hypotheses of the thesis and continues with definition of the plan repair algorithms
with soundness and completeness proofs. A unifying approach is presented in Section 4.4. The
complexity analysis and implementation details are presented in Sections 4.5 and 4.6 respectively.
The last chapter of the second part, Chapter 5, provides an experimental evaluation of the stated
hypotheses.

The last part in Chapter 6 and Chapter 7 presents two different validation approaches, one
by application of plan repair using a designed software engineering approach into high-fidelity
simulation of tactical missions and the other by usage of a different planner than the one used in
the core experiments of the work.

The thesis is concluded with a summary of achievements and directions for future research
stemming mostly from the theoretical analysis of the algorithms and the synthetic evaluation.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Related Work

Multiagent plan repair as defined in this thesis is a problem of synthesis of multiagent plans ideally
reusing parts of an older plan generated by a multiagent planning process. Before a precise definition
of what plan repair is, a strong preliminaries and groundwork are required. This chapter provides
a summary of the state of the art building the required background for the next chapters defining
multiagent plan repair formally and proposing the algorithmic solutions.

Multiagent plan repair builds upon two main areas of research: multiagent planning [7] and
classical plan repair [48]. Both of these areas build on classical planning with its long history of
thorough studies of plan generation for deterministic domains both in theory and practice [46].
Generalization of the planning research areas is distributed planning and generalization of classical
plan repair is coined here as distributed plan repair. Relations among the areas are outlined in
Figure 2.0.1.

The research in domain-independent multiagent planning [7] assumes a team of agents working
together to come up with a set of cooperative plans executable by the respective agents which
planned them. Additionally, the motivation of the multiagent planning is in the possibility to

Figure 2.0.1: Related work as the context of the related research for this dissertation. The focus of
this work is in the orange field. The darker the areas are the more they were already studied. The
arrows represent dependence and influence among the areas.

7

8 CHAPTER 2. RELATED WORK

factorize (partition) one large planning problem to more planning agents which can work only with
a subset of the information and therefore preserve some private knowledge about the planning
problem. In Section 2.1, the state of the art in multiagent planning is summarized.

Classical plan repair approaches arose together with the research on plan generation in classical
planning. These approaches had weakened one restriction of the classical planning—the environ-
ment was not fully deterministic. Initially, plan execution and execution monitoring were studied
in such environments. If the monitoring component detected that the current plan cannot be ex-
ecuted any more, some kind of correction mechanism had to be run to fix the problem and allow
the system to continue its execution. In Section 2.3, the classical plan correction mechanisms will
be described in more detail.

Historically, classical plan repair inherited a centralized architecture and complete information
about the planning problem from classical planning. Distributed planning and distributed plan
repair can be understood as abstractions of their respective centralized and multiagent counterparts.
Since the distributed forms do not pose any restrictions on the number of parallel computational
processes solving the planning problem, they generalize centralized single-process classical planning.
In multiagent planning, there is a restriction on the way, how the planning process is decentralized
among the particular agents. These restrictions are part of the planning problem definition, as each
action is mapped to one agent only. Each agent can use only its own actions for planning and later
for execution, therefore it is a restricted form of the distributed planning as well.

Beside the mentioned work closely related to multiagent planning and classical plan repair, there
are also several loosely related approaches solving similar problems.

Firstly, there is a wide area of research done in domain-specific planning techniques. In the
case-based planning [61] plans or repairs are generated using a library of predefined plan ele-
ments. General partial global planning [11] provides a coordination framework for agents employing
domain-dependent planners. TALPlanner [15] works with predefined domain-dependent temporal
information which helps with complex coordination of agents with various temporal constraints.
Distributed Hierarchical Task Network (HTN) [13, 17] planning uses domain-dependent receipts
how to refine particular planning operators.

The second group contains approaches based on decentralized Partially Observable Markov
Decision Processes (Dec-POMDPs) [5]. Such approaches are based on probabilistically described
uncertainty in the environment. Solutions for such problems are in a form of policies prescribing
which actions should the agents execute in particular states of the environment and the goals are
defined in form of rewards. An input to a solver of a Dec-POMDP problem has to contain all
probabilities of the possible transitions among the state describing the environment. This coerce a
model of an environment for a Dec-POMDP problem to be known a priori.

The last group of related approaches is based on game theoretical research. The main differences
are the same as for Dec-POMDPs, since the games in extensive form are generalization of Dec-

2.1. MULTIAGENT PLANNING 9

POMDPs [55]. Additionally, in game theoretic approaches, the agents can be considered not only
cooperative, but also competitive or even adversarial. As the focus of the planning in this thesis is
on strictly cooperative agents, the game theoretic approaches are overgeneralized for the scope of
this work.

2.1 Multiagent Planning

Multiagent planning is a specific form of distributed planning. Distributed problem solving and plan-
ning is an inherent part of the research field of distributed artificial intelligence. Durfee introduced
his distributed problem solving and planning [16] by a statement that it is a subfield of distributed
artificial intelligence emphasizing “the collective effort of the agents to solve the common problems”.

One of the related strategies for distributed and therefore multiagent planning from the field of
distributed problem solving is the task sharing approach and inspired coordination techniques as
presented in [67]. The principle is based on passing of tasks from a busy agent to vacant agents. The
task sharing approaches in general require a hierarchy of agents. Such hierarchy can be predefined,
as presented for instance in [16], or dynamically built during the process of problem solving as
showed in [67]. The hierarchical approaches are not effective in strongly heterogeneous multiagent
systems. In such systems, each agent has different abilities and thus a managed organizational
structure is more effective [56]. Additionally, the task-based approaches need an auxiliary synthe-
sis phase which merges plans of the particular agents into one global plan. Technically, several
agents are responsible for integration of the partial results of other members of the team. In the
hierarchical approaches the agents higher in the hierarchy merges the results of their subordinates.
The multiagent planning used for the proposed plan repair algorithms will be strictly based on
the dynamic organizational structure which is dynamically established by solving the coordination
subproblem during the planning.

In situations where deliberative agents or generally computational processes require planning,
it is quite obvious the planning problem has to be solved in a distributed manner. In [16], there is
an overview of techniques solving such distributed planning problems.

The basic elements of (distributed) planning are states and actions. States describe the planning
environment in particular configurations and actions prescribe possible ways, how the states can
be transformed into each other. States and actions together describe a state transition system of a
planning problem. One of predefined goal states is required to be the final state after execution of
a sequence of actions beginning with a predefined initial state. Such sequence of action is denoted
as a plan and it is a solution to a (distributed) planning problem.

Each distributed planning problem has to be appropriately represented. In [46], one of the
popular planning representations presented is the classical representation. It uses a concise repre-
sentation of the actions in the form of operators, such planning problems are also denoted as in the

10 CHAPTER 2. RELATED WORK

lifted form. In contrast to actions, operators can have non-zero arity and therefore can represent
exponential number of actions. The classical representation is based on predicate logic. Elements of
the environment are substituted by constant symbols, relations among the elements are described
by predicates, and a particular state is a set of grounded atoms. Actions are instances of operators
and an operator in the classical representation is a triplet

o = (name(o), pre(o), eff(o)),
name(o) = n(x1, . . . , xk),

where the name consists of an operator symbol n and its parameters in the form of variable symbols
xi. The preconditions pre(o) are set of literals which must hold in a state in order to allow usage
of the operator and the effects eff(o) are literals that become true in the transformed state after
usage of the operator.

The proposed formalization in this thesis will be based on the Strips representation [19]. The
importance of Strips does not lie only in the particular algorithm presented in [19]. From today’s
perspective, the representation used for description of the Strips planning problem is probably
more important, therefore the term Strips is commonly used for planning problems described
by a set of facts describing a state, actions with preconditions described by those facts, sets of
facts to add and delete after action execution and a set of goal states described as a set of facts
required to hold in the final state of the plan. In the original Fikes and Nilsson’s work, Strips
was described in the lifted form, that means by operators with parameters. For this thesis, the
term Strips is important in the sense of referring to the representation and formal language of
the input to a Strips-compatible planner, because the formalization of the plan repair problems
is built upon it. The formalization is based on classical representation, each action is consisting
of a label and three groups of expressions which are called: preconditions pre(o), deletions del(o)
(referring to negative effects of eff(o)), and additions add(o) (referring to positive effects of eff(o))
and a transition function which defines how an action applied in a state changes the particular
facts, formally si+1 = (si \ del(o)) ∪ add(o), where si represents a state at step i.

Regardless the particular representation, the distributed planning problems can be according to
[16] described in one of the following forms: centralized planning for distributed plans, distributed
planning for a centralized plan and distributed planning for distributed plans.

In the first case of centralized planning for distributed plans, the problem is to generate a set
of plans for particular agents in the environment. Since the agents can work simultaneously, the
plans need to be executed in parallel. This requirement is fulfilled in partially ordered plans as
the ordered sets of the actions act as a plan for the particular agents. A domain-dependent HTN
planner where decomposition can involve other agents [68] is an example of this form of distributed
planning.

The distributed planning for a centralized plan can be described as a cooperative planning of

2.1. MULTIAGENT PLANNING 11

various special planners. In strongly heterogeneous environments, it is a well-founded assumption
that one planning principle is not enough. An effective heuristic can be known for one problem
and an expressive representation for another. In such case, the problem can use different planners
for different subproblems. An example can be a Strips planner planning a high-level overall plan
and a special path planner which refines movement actions.

Distributed planning for distributed plans is a synergy of the two previous principles and it is
most suitable for the multiagent planning as it combines planning by more distinctive processes
represented by the agents, for particular elements in the environment embodied by the same agents.
The first work formally defining deterministic domain-independent multiagent planning was written
by Brafman and Domshlak [7]. According to the Durfee’s forms of distributed planning, it fits to
the last and most challenging group of distributed planning for distributed plans, however, in the
contrast to distributed planning as defined by Durfee, the Brafman and Domshlak’s approach added
several specific presumptions.

The key distinction of multiagent planning as defined by Brafman and Domshlak is precise
separation of private and public knowledge of the agents during planning. That means, actions and
facts describing the environment in the planning process can be known only by one particular agent
which makes them effectively private or known by more than one agent making them public. The
requirement for preservation of private knowledge cannot be solved otherwise than by distribution
of the planning process in such way the particular private knowledge stays with the agent which it is
private for. There cannot exist a trustworthy central authority as, by definition, private knowledge is
defined only by one agent knowing it, therefore any other authority had to be understand as another
agent and the information cannot be private if it is shared even with a trustworthy authority.

The private and public distinction as defined in [7] has another additional benefit in possible
simplification of the planning problem for loosely coupled domains. Such plan factorization ap-
proaches are not new in classical planning as a technique for simplification of several planning
problems [6]. The specificity of the multiagent planning is in the way how the factorization has to
be done. In the factorization approaches of classical planning the key variable is how the problem
is factorized, however in the multiagent problems, the factorization is naturally defined by the abil-
ities of the agents which dictates precisely how the factorization has to be done. The price for this
simplification is a decreased generality of the factorization approach.

The only implementation of a deterministic domain-independent multiagent planner available
in the time of realizing the research described in the following chapters was from Nissim, et al. [51].
The planner uses a Distributed Constraint Satisfaction Problem (DisCSP) solver for coordination
of the agents. From the perspective of Durfee’s distributed problem solving, the DisCSP algorithm
would be responsible for the task sharing and the synergy phases. The construction of the local plans
is done by a forward-chaining heuristic search based on the Strips formalization. Current state-of-
the-art forward-chaining heuristic planners from the perspective of efficiency in computation time

12 CHAPTER 2. RELATED WORK

and plan quality are based on various types of complex automatically extracted heuristics together
with relatively basic search techniques using variations on the textbook version of A∗ and Best-First
Search (BFS) algorithms. Relationships among such heuristics and their mutual differences and
similarities (incl. dominance of some heuristics against others) are presented in [23]. Comprised
heuristics in the used multiagent planner by Nissim, et al. are Fast-Forward, helpful actions and
landmarks heuristics.

As mentioned in the previous paragraph, multiagent planner used in this work utilizes DisCSP
for solving the coordination subproblem. This principle goes back to a neoclassical planning ap-
proach based on a centralized form of Constraint Satisfaction Problem (CSP) solving as a combina-
torial search. An overview of approaches for planning-as-CSP can be found in [3]. State-of-the-art
models for classical planning-as-CSP are presented in [4]. Notable models are (i) GP-CSP [14], and
(ii) CSP-PLAN[44]. In the next section, a basic CSP-based planning approach is described in more
details.

2.2 CSP-based Planning

One of the neoclassical planning techniques is based on utilization of compilation of a planning
problem into a Constrains Satisfaction Problem (CSP) [44]. Benefits of such approach are both
on theoretical and on practical basis. The theoretical results can help with complexity studies
borrowed from the research of CSP solving complexity and the practical results provide ready-to-
use implementations and tested algorithms for CSP solving usable for planning problems after the
compilation.

CSPs use variable-based representation similar to the state-variable representation in classical
planning [46]. There is a set of variables, each accompanied by a domain of possible values. The
definition of the variables is supplemented by a set of n-ary constraints restricting possible combi-
nations of the values of the variables. A solution of a CSP is an complete assignment of the values
to their respective variables not violating any of the constraints.

The compilation from planning to CSP solving is an iterative process with successively incre-
menting length of the prospective solution. The process begins with a CSP for finding a plan of
one action and if such solution cannot be found, it continues with two actions, three actions and
so on.

The resulting CSP variables form layers of two types: (i) state layers and (ii) action layers.
Firstly, there is only one CSP variable in the action layer with a domain of all actions in the
planning problem and a set of CSP variables representing facts which holds after application of
that action. In the next increment, there are two action layers of the CSP variables representing
a sequence of two actions in a particular order in the resulting plan. The two action layers are
interleaved with two variable layers representing the facts holding after application of the first and

2.3. CLASSICAL PLAN REPAIR 13

the second action respectively. There are four types of constrains representing the relations among
the layers, particularly among the actions and the facts from the neighboring layers:

• constraints describing the initial state and the related preconditions of the first used action;

• constraints describing the effects of the last action and the related required goal facts;

• constraints on the effects and preconditions of neighboring actions;

• constraints assuring the frame axiom1.

If the compiled CSP has a solution, the particular values of the variables in the action layers
straightforwardly determine a plan solving the original planning problem. If a solution cannot be
found the length of the plan is incremented by one and the search continues with a newly created
CSP for a longer plan.

The same principle described in this section for CSP-based planning can be used for DisCSP-
based planning as well. Additionally, the principle can be restricted only to a subset of actions and
facts. If such subset represents only the public information in a multiagent planning problem, the
DisCSP describes the coordination planning subproblem as described in [51].

2.3 Classical Plan Repair

One of the first papers proposing a unified and well defined framework for planning, plan execution,
monitoring and repair is from 1988 written by Ambros-Ingerson and Steel [1]. The framework was
called IPEM (Integrated Planning, Execution and Monitoring) and it was based on IPE framework
integrating only planning and execution. The framework was based on the TWEAK partial plan
representation (similar to nowaday HTNs [17] or Universal Classical Planning (UCP) [27]).

Phases of the planning process included synthesis, inspection, modification, and execution. The
first phase described building of the plan. The inspection phase provided validation and verification
of the plan considering the requested requirements. In cases, the plan become inconsistent with the
environment, it had to be fixed w.r.t the unanticipated state of the environment by plan adaptation.
Finally, the plan directed behavior of the system in the environment during the execution phase.

An important highlight for the context of this work is that the framework inherently included
an early form of a plan repair algorithm within the adaptation phase. The algorithm was used to
adapt to both dynamism of the environment and to execution failures. The plan repair process
was based on five operations: (i) reduction prior, (ii) reduction parallel, (iii) reduction new, (iv)
linearize and v) expand. These operations were used according to the type of the unexpected
event during the execution. The reductions represented three ways of adding new actions into the

1A successor fact layer preserves all values of the variables not affected by any executed action(s) in the previous
layer.

14 CHAPTER 2. RELATED WORK

plan if an action has unsupported preconditions, linearization represented reordering of actions and
expansion replaced actions with another action segments.

An intensively cited paper [48] by Nebel and Koehler from 1995 proposed a first theoretical
analysis formally investigating the complexity of planners reusing parts of the old plans. The result
of the paper stated:

“It is not possible to achieve a provable efficiency gain of [plan] reuse over [plan]
generation.”

Additionally, the paper provided proofs that plan reuse can be strictly more complex than plan
generation from scratch, assuming conservative plan modification. These results do not imply there
cannot exist a plan reusing or repair algorithm with an increased efficiency, it rather shows there
are caveats of using such techniques in general.

As a formal instrument to build the proofs, the paper used a principle similar to regular ex-
pressions describing possible modifications of the original plan. The model is called moddelins
after the three possible changes in the plan: (i) action sequence modification, (ii) action sequence
deletion and (iii) insertion of a new action sequence. The proposed plan repair algorithms in this
dissertation builds upon these principles.

The paper from Nebel and Koehler somehow decreased interest of the planning community in
study of the plan repair techniques, since it showed that a general plan repair algorithm cannot be
more efficient than plan generation. However, the need for planning techniques usable in real-world
conditions stayed and stay to the present day. The main difference between the classical planning
problems and the real-world planning problems can be summarized as (i) uncertain action effects,
(ii) dynamic environment and (iii) incomplete information. A paper [12] summarizing these needs
was written by des Jardins et al. Distributed, Continual Planning (DCP) defined in this paper
describes a set of techniques tackling such problem. Since the conditions defined for DCP differ
from the classical planning, the paper [12] stated that:

“Plan-repair methods in current systems are typically at either the reactive level or
the generative level; methods for smoothly integrating plan-repair techniques at multiple
levels of abstraction and varying time scales are needed.”

Without a bigger reception by the planning community, Au et al. published a paper [2] in 2002
opposing, in a sense, the paper from Nebel and Koehler [48]. The principle of plan adaptation
(usable also as a plan repair technique) described in the paper used a principle called derivational
analogy. The derivational analogy takes into account not only the goal of the process, but also the
history of the problem solution. In the plan adaptation context, it means that the construction
process of a plan is used later in the process of plan adaptation. An important statement of
the paper was that plan adaptation (repair) by derivational analogy is more efficient then planning
from scratch (in special cases, plan repair by analogy has logarithmic complexity and planning from

2.4. CONTEXT FOR MULTIAGENT PLAN REPAIR 15

planning fundamentals classical planning states, actions, operators, init and goals
planning representation classical with multiagent extension of Strips
action ordering in plans partial ordered plans with restrains on simultaneous actions

distribution form distributed planning and plan repair for distributed plans
problem factorization multiagent based on separation of private and public knowledge

Table 2.1: Summary of planning-related approaches backing multiagent plan repair as defined in
this thesis.

scratch is PSPACE-complete). This statement does not disprove the conclusions of the paper [48],
because those were restricted only on conservative plan changes. The plan adaptation by the
analogy is not based on the conservative plan changes, although for a long time, the conservative
changes were considered as the most efficient.

A long track of publications [40, 42, 41] pushing forward the plan repair research in the context
of the DCP was produced by van der Krogt and his colleagues in the years from 2004 to 2006. The
papers particularly address the statement from the paper by des Jardins et al. calling for smooth
integration of plan repair techniques, planning, plan execution and monitoring.

Most of the mentioned works in the previous paragraphs were based on the UCP techniques,
particularly HTN planning. Serina with colleagues published in [21] an extension of their graph
planner moving the research towards domain-independent plan repair. The extension of the Local
search for Planning Graphs planner (LPG) by plan adaptation (LPG-adapt) directly uses repairs
of the planning graph, in contrast to the other approaches which repairs the resulting plans.

2.4 Context for Multiagent Plan Repair

The previous sections stake a boundary of the research this thesis builds upon. Proposed multiagent
plan repair utilizes research done in this areas in various forms (see a summary in Table 2.1).

Classical planning is domain-independent but centralized, however even so, it plays a crucial
role in the planning research as a whole and provides the fundamental basics. Furthermore, the
multiagent plan repair uses extension of the classical planning representations in form of the Strips
formalization and problem definitions. Used plans prescribing behavior of the agents are in a
restrained form of plans with a simultaneous actions in time steps of the execution and of the
same lengths for all participating agents. The plans are fully instantiated, therefore both the used
planner and repair algorithms have to produce sequences of grounded operators, i.e., the (primitive)
actions. All this is accordingly to the definition of multiagent planning by Brafman and Domshlak.
Motivation is to preserve distinction between the private and public actions, since the uniqueness
of the private knowledge argument holds for multiagent plan repair as well. According to Durfee’s
typology of distributed planning, motivation behind the proposed approaches is distributed plan

16 CHAPTER 2. RELATED WORK

Planner

MA-plan

repaired MA-planfailure

correct

Monitoring Execution

Repairer

communication

communication

...

...

Figure 2.4.1: The plan execution and monitoring architecture—each layer is for each agent. After
the initial planning, the multiagent plan (MA-plan) is passed on to the monitoring components
which check if the current state concur with the plan and if so the plan is passed on to execution
of the first actions in the plan. After execution, the plan is passed on again to the monitoring
component and the process is repeated. If an failure is detected, the plan is repaired and after the
repair the execution continues.

repair of distributed plans. Such approach preserves private knowledge during plan repair and
allows agents in the team execute their specific actions leading them towards the common goals.

As the agents are in a dynamic and uncertain environment, actions and plans may not always
lead to desired consequences or can turn out to be not executable. To account for such cases, a cau-
tious agent must be able not only to execute its actions, but also monitor its own progress and detect
failures during execution of its actions. Generally speaking, besides a planning component, imple-
mentation of an agent should also include monitoring and a plan repair component. Figure 2.4.1
depicts a generic multiagent plan-execute-monitor architecture. More concretely, considering a
multiagent plan produced by a suitable multiagent planner, the abstract execution-monitoring al-
gorithm checks in every state the soundness of the next step before advancing. If necessary, it
invokes a plan repair procedure.

Creating an effective plan repair procedure has its limitations and caveats as Nebel and Koehler
showed. To minimize such risks in this thesis, the plan repair algorithms were created independently
on a particular multiagent planner and possibly utilizing its benefits for multiagent repair as well
as for multiagent planning. The planner used in the rest of the thesis (with the exception of
Chapter 7) is based on a compilation of the coordination part of a multiagent planning problem to
a DisCSP problem and a forward-chaining planning for the individual plans of the agents. Primal
authors of the planner are Nissim and his colleagues [51], however the experimental work described
in Chaper 5 required nonnegligible amount of additional work, namely bugfixing and efficiency
optimizations as presented in Section 4.6. This planner was used both as the initial planner and as
the planning component in the repair algorithms. The proposed plan repair algorithms are based
on the principles of the moddelins modifications [48] and bring them to the multiagent setting.

2.4. CONTEXT FOR MULTIAGENT PLAN REPAIR 17

In the context of the classical plan repair research, this dissertation tries to answer:

What are the particular caveats of the plan reuse techniques based on moddelins
from [48] extended into multiagent setting?

In other words, when it is beneficial to use plan repair techniques based on conservative plan
changes. The derivational analogy approach can be understood as a similar approach eligible for
domain-dependent planning techniques as HTN planning.

Finally, to frame the context of the multiagent plan repair problem precisely, a summary of
presumptions and limitations considered in this dissertation follows:

• The planning domain and the planning problem are static for one execution run. That means
that no new actions and agents can appear or disappear during the execution.

• The environment is fully observable, i.e., monitoring of changes in the environment is for all
agents granted and instantaneous. The planning processes of the particular agents are not
considered as part of the environment.

• Communication is immeasurably faster than execution of any action. In effect, there cannot
be any interferences between duration of action execution and message passing duration.

• Communication is perfect. All sent messages are delivered and without any change of their
contents.

• All plan repair algorithms use a multiagent planner as an inseparable component.

18 CHAPTER 2. RELATED WORK

Chapter 3

Formal Foundations for Multiagent
Plan Repair

One of the first requirements preceding the research presented in this work was a formalism allowing
to describe all the theorized plan repair algorithms and helping to precisely formulate several
properties of the solutions in general. This chapter describes its last form with all the necessaries
for the latter description of the particular algorithms.

3.1 Multiagent Planning

A first step towards repair of plans for agent teams leads to description of such plans and techniques
for their building. For the context of this work, the problem of multiagent planning is treated as an
extension of the classical singleagent planning in the manner adapted from MA-Strips planning
in [7] with a planner utilizing a DisCSP solver and singleagent forward-search planner.

The definition begins with a team of cooperative and coordinated agents featuring distinct sets
of capabilities (actions), which concurrently plan and subsequently execute their local plans so as to
achieve a joint goal. An instance of a multiagent planning problem is defined by (i) an environment
characterized by a state space, (ii) a finite set of agents, each characterized by a set of primitive
actions (or capabilities) it can execute in the environment, (iii) an initial state the agents start their
activities in and (iv) a characterization of the desired goal states. The following formal restatement
of the MA-Strips problem and adaptations thereof constitute the preliminaries enabling to state
the core hypotheses, as well as provide the necessary background for the algorithms and their proofs
introduced later in Chapter 4.

A state s ⊆ L is a set of atoms from a finite set of propositions L = {p1, . . . , pm}. p holds in
s, given p ∈ s, otherwise p does not hold in s. In that sense, states are complete. That means, it

19

20 CHAPTER 3. FORMAL FOUNDATIONS FOR MULTIAGENT PLAN REPAIR

cannot happen that there is a p ∈ L, such that p’s validity in s is unknown. S = 2L ∪ {χ} denotes
the set of all states together with a distinguished state χ ∈ S denoting an undefined state.

A primitive action (or simply an action) an agent can perform in an environment is a triplet
a = 〈pre(a), add(a), del(a)〉, where a is a unique action label and pre(a), add(a), del(a) denote the
respective sets of preconditions, add effects and delete effects of a taken from some L = {p1, . . . , pm}.
Act denotes the set of all actions and furthermore, it is assumed there is a distinguished empty
action ε = 〈∅, ∅, ∅〉 ∈ Act with no preconditions and no effects. Whenever pre(a), add(a), del(a) ⊆ L,
a is defined over L.

An action a is applicable in a state s iff pre(a) ⊆ s. An application of a is defined by the state
transformation operator ⊕ : S × Act → S so that s ⊕ a = (s ∪ add(a)) \ del(a) iff a is applicable
in s. In the case a is not applicable in s, s ⊕ a results in a distinguished undefined state χ. Note
that add(a) ∩ del(a) = ∅ is not required, as it is assumed that the effects negate each other strictly
according to the definition of ⊕. Furthermore, ⊕ is left-associative, hence s⊕ a1 ⊕ · · · ⊕ ak can be
written.

Similarly to the transformation operator ⊕, it is defined a reverse-transformation operator
	 : S ×Act→ S for a single action as s	 a = (s∪ del(a)) \ add(a). The operator is left-associative
as well, therefore s	 a1 	 · · · 	 ak can be written.

An agent α = {a1, . . . , an} is characterized precisely by its capabilities, a finite repertoire of
actions ai ∈ Act it can preform in the environment.

Definition 1 (MA-Strips). A multiagent planning problem is a quadruplet Π = (L,A, s0, Sg),
where

1. L is a finite set of atoms;

2. A is a set of agents α1, . . . , αn with actions defined over L, featuring, besides the empty action
ε, otherwise mutually disjoint sets of actions. That is, αi ∩ αj = {ε}, whenever i 6= j;

3. s0 ∈ S is an initial state; and finally

4. Sg ⊆ S is a set of goal states.

From now on, given a set of agents A as defined above, Act =
⋃n
i=1 αi denotes the set of all actions

which can be performed among the agents of the team A, the team capabilities.
Before formally defining the notion of a solution to a multiagent planning problem, a sequel of

auxiliary notions has to be introduced.
Given an agent α, a singleagent plan P is a sequence of actions a1, . . . , ak, s.t., ai ∈ α for every

i. P [i] denotes the i-th action in P , or P [i] = ε in the case i is larger than the length of P , which
in turn will be denoted |P |.

A team of agents A = α1, . . . , αn can act in the environment concurrently. A joint action a =
〈pre(a), add(a), del(a)〉 of the team is specified by a = (a1, . . . , an) a tuple of actions corresponding

3.1. MULTIAGENT PLANNING 21

to the individual agents ai ∈ αi for each i, its preconditions pre(a) =
⋃n
i=1 pre(ai) and its effects

add(a) =
⋃n
i=1 add(ai) and del(a) =

⋃n
i=1 del(ai). a[k] denotes the k-th action of a. The notions

of action applicability in a state s, as well as application of a to s straightforwardly extend from
the definitions for primitive actions, hence s⊕ a can be used. At this point, the definitions do not
specifically handle joint actions in which the effects of individual agents’ actions cancel out each
other. In general, however, such considerations need to be tackled. Later on in this section, such
joint actions will be commented on in more detail.

Definition 2 (multiagent plan). Let Π = (L,A, s0, Sg) be a multiagent planning problem with
A = α1, . . . , αn. A synchronous multiagent plan P = {P1, . . . , Pn}, consisting of single agent plans
P1, . . . , Pn respectively constructed from actions of the agents α1, . . . , αn is a solution to Π if the
plan P satisfies the following:

1. P is well-formed, i.e., |Pk| = |Pl| for all 1 ≤ k, l ≤ n. Additionally, |P| = |Pi| for every
1 ≤ i ≤ n, denotes the length of the multiagent plan P,

2. P is feasible, i.e., there exists a sequel of states s1, . . . , sm, s.t. m = |P| and sk+1 = sk ⊕ ak
with ak = (P1[k], . . . , Pn[k]) for all 1 ≤ k < m and finally

3. P reaches the goal Sg, i.e., sm ∈ Sg.

The statement will be also used in an alternative form: P solves the problem Π. Finally, Plans(Π)
denotes the set of plans which are solutions to a given multiagent planning problem Π. Additionally,
P[k] denotes the joint action of the team in the step k and P[k, i] denotes the primitive action of
the agent i in the step k.

This notation allows to introduce the following plan-matrix notation for a multiagent plan P,
with aij = P[i, j], providing a more visual understanding of the defined multiagent plans used in
the rest of the dissertation:

P =

a11 a21 · · · am1

a12 a22 am2
...

. . .
...

a1n a2n · · · amn

 .

Using the definition of a multiagent plan, operations on such plans can be defined. Two multi-
agent plans P1, P2 are equal P1 = P2 iff they have the same length |P1| = |P2| and for all i and j
holds P1[i, j] = P2[i, j].

A concatenation of two multiagent plans P1 and P2 over the same agents α1, . . . , αn is defined as
a plan P = P1·P2, where for each i and j holds P[i, j] = P1[i, j] if i ≤ |P1| and P[i, j] = P2[i−|P1|, j]
for i > |P1|. Concatenation of multiagent plans is left-, as well as right- associative operation, so
P = P1 · P2 · · · · · Pn can be written.

22 CHAPTER 3. FORMAL FOUNDATIONS FOR MULTIAGENT PLAN REPAIR

Given a multiagent plan P, P[i..j] denotes a fragment of P from the step i to the step j.
More precisely, P[i..j] is a fragment of P iff there exist multiagent plans Pprefix and Psuffix , such
that Pprefix · P[i..j] · Psuffix = P. Finally, P[i..∞] denotes the i-th suffix of the plan P, that is,
P[i..∞] = P[i..|P|]. P1 · P2 is said to be a decomposition of a multiagent plan P iff P = P1 · P2.

Using the notion of a multiagent plan, two directions of proposition propagation can be defined.
Since the process extends the transformation operators, the same symbols will be used in extended
forms ⊕ : S × (Act×Act× · · ·)→ S and 	 : S × (Act×Act× · · ·)→ S as follows:

Definition 3. (proposition propagation) Let S′ be a set of propositions propagated from a set of
propositions S using a multiagent plan P denoted as S′ = S⊕P iff S′ = S⊕P[1]⊕P[2]⊕· · ·⊕P[m],
where m = |P|.

Definition 4. (proposition back-propagation) Let S′ be a set of propositions back-propagated from
a set of propositions S using a multiagent plan P denoted as S′ = S	P iff S′ = S	P[m]	P[m−
1]	 · · · 	 P[1], where m = |P|.

Given two multiagent plans P1 and P2, diff (P1,P2) will denote the difference between P1 and P2,
that is the overall number of primitive actions in P1, which do not correlate with the corresponding
primitive actions in P2 and vice versa. diff (P1,P2) corresponds to Levensthein distance [43], in
literature also referred to as the edit-distance, between two strings corresponding to the sequences
of actions of the individual plans. Adaptation of the notion of Levensthein distance between two
multiagent plans corresponds to the number of atomic edits, that is insertion of an empty joint
action, empty joint action deletion and individual action replacement, needed to transform one plan
into the other. The cost of the atomic edits is assumed to be equal. This model of plan difference is
also closely related to the moddelins modification problem for singleagent plans described in [48].

To introduce the MA-Plan algorithm for solving MA-Strips problems as formulated in [7],
finally a distinction between the public and private actions of individual agents has to be defined.
An action is public whenever its preconditions or effects involve atoms occurring in preconditions
or effects of an action belonging to another agent of the team. The private actions are those, which
are not affected by actions of the other agents.

Let atoms(a) = pre(a) ∪ add(a) ∪ del(a) and similarly atoms(α) be the sets of atoms required
or affected by an action a or an agent α respectively. Given a multiagent team A = α1, . . . , αn

with actions defined over the set of atoms L, the set of public actions is defined as Actpub
α = {a |

a ∈ α and atoms(a) ⊆ L \ atoms(α)} and denoted also as Actpub if the agent context is clear.
Consequently, the set of private actions is defined as Actpriv = Act \Actpub.

The distinction of actions to private and public turns out to be an important one effectively
defining the multiagent factorization of the problem. Since private actions do not depend, nor are
dependencies of other actions performable by the team, planning of sequences of private actions
can be implemented strictly locally by the agent the actions belongs to. In effect, the public actions

3.1. MULTIAGENT PLANNING 23

become points of coordination among the multiagent team members. The algorithm MA-Plan for
solving a planning problem Π can be thought of in two interleaving stages until a suitable multiagent
plan is found: (i) computation of a plan consisting exclusively of suitable coordination points of
the agent team and subsequently (ii) computation of sequences of private actions filling the gaps
between the public actions of each individual agent. While the second stage can be computed in
a local manner by each individual agent without interactions with its peers, a truly decentralized
multiagent algorithm for the first stage requires a non-trivial amount of interaction between the
agents.

One of the main contributions of the Brafman and Domshlak’s paper [7] lies in the observation
that the MA-Plan algorithm can be implemented by reduction of the first stage to a constraint
satisfaction problem (CSP). In the CSP, each agent is represented by a single variable ranging over
possible plans of the individual agent and two types of constraints:

coordination constraint: a sequence of joint actions P (candidate multiagent plan) correspond-
ing to a multiagent planning problem Π = (L,A, s0, Sg) satisfies the coordination constraint
iff for every action a = P[k, i] performed by the agent αi in the step k holds that, if a is a
public action, then

• for every p ∈ pre(a), there must exist ap = P[kp, ip], such that p ∈ add(ap) and 1 ≤ kp < k

(there is some previous action which causes p to hold), or p ∈ s0 in which case kp = 1 is
set; and

• for no k′, s.t., kp ≤ k′ ≤ k there exists a′ = P[k′, i′], such that p ∈ del(a′) (p won’t be
invalidated between causing it in the step kp and execution of a in the step k).

The constraint ensures that the dependencies of all the public actions occurring in the over-
all multiagent plan are satisfied, possibly by actions performed in advance by other team
members.

internal planning constraint: a sequence of joint actions P corresponding to a multiagent plan-
ning problem Π = (L,A, s0, Sg) satisfies the internal planning constraint iff for every agent,
the corresponding singleagent planning problem with landmarks {a | a = P[k, i] ∈ Actpub}
is solvable, meaning a singleagent planning algorithm is able to fill in the gaps between the
public actions in the candidate multiagent plan. The constraints ensure that each individual
plan is locally executable by the particular agent.

Note, the formulation of the coordination constraint renders joint actions with add(a) ∩ del(a) 6= ∅
invalid. It is the non-strict inequalities kp ≤ k′ ≤ k in the second condition of the coordination
constraint, together with the definition of public actions, which ensure the local consistency of joint
actions.

24 CHAPTER 3. FORMAL FOUNDATIONS FOR MULTIAGENT PLAN REPAIR

Algorithm 3.1 MA-Plan(Π):
Input: A multiagent planning problem Π = (L,A, s0, Sg).
Output: A multiagent plan P solving Π if such exists.

1: δ = 1
2: loop
3: construct CSPΠ;A
4: if solve-csp(CSPΠ;δ) then
5: reconstruct a plan P from a solution for CSPΠ;δ
6: return P
7: else
8: δ = δ + 1
9: end if
10: end loop

Algorithm 3.1 lists the original multiagent planning algorithm MA-Plan by Brafman and Domsh-
lak in [7]. The algorithm iterates through CSP formulations of the planning problem according to
δ, informally the number of coordination points between the agents in the multiagent team. That
means, δ determines the number of joint actions in a candidate multiagent plan containing public
actions. Filling the gaps between the individual singleagent public actions, if possible, then gives
rise to the overall multiagent plan. In the case such a plan completion does not exist, the process
continues by testing longer candidate plans (as restated in Section 2.2), possibly not terminating
in the case where no solution to the given multiagent planning problem exists.

The original multiagent planning algorithm assumes a centralized planning architecture. It
is a centralized planning algorithm computing multiagent plans for a team of agents which are
supposed to be subsequently executed in a decentralized fashion. Motivation of this work is however
a decentralized planning followed by a decentralized plan execution and prospective decentralized
plan repair.

In [51], Nissim et al. adapted the original blueprint algorithm from [7] to a distributed setting.
The adaptation rests on formulating the multiagent planning problem as a Distributed Constraint
Satisfaction Problem instance (DisCSP) and subsequently utilizing a state-of-the-art DisCSP solver
for solving it, plus managing the overhead involved in the resulting distributed algorithm. From now
on, the implementation of the multiagent planning algorithm MA-Plan will refer to its decentralized
version as described in [51].

3.2 Multiagent Plan Repair

Based on the required formalization of multiagent planning, the formal definitions of multiagent
plan repair can be proposed.

Consider a multiagent planning problem Π = (L,A, s0, Sg) and a plan P solving Π. Further-

3.2. MULTIAGENT PLAN REPAIR 25

more, consider an environment in which, apart from the actions performed by the agents of the
team A, no other exogenous events occur. Such an environment is ideal, or non-dynamic. The
execution of P in such an environment is failure-free and is uniquely determined by the set of states
s0, . . . , sm, such that sk+1 = sk ⊕ P[k] (see Definition 2).

In dynamic environments, however, it can occur that in the course of execution of P, the
environment interferes and the execution of some action P[k] from the plan P does not result
in precisely the state sk+1 as defined above. That is at step k an unexpected event occurred in
the environment. For simplicity, only unexpected events happening exclusively in the course of
execution of some action are considered (as if it took a non-zero time), not such which could occur
while the agent is deliberating the execution (as if the deliberation was instantaneous). These
presumptions were specified in Section 2.4.

Note that not all unexpected events in dynamic environments necessarily lead to problems with
execution of the plan P. However, there are at least two cases of such events which can be considered
a plan execution failure.

A weak failure of execution of the plan P at step i w.r.t. the multiagent planning problem Π is
such, when the state sf resulting from an attempt to perform the action a = P[k] does not satisfy
some of the positive effects of a, that is, add(a) 6⊆ sf .

A strong failure of execution of the plan P at step k w.r.t. the planning problem Π occurs
whenever the k-th action of P cannot be executed due to its inapplicability. It means, the execution
of the plan up to the step k resulted in states s0, s1 . . . , sk, possibly with some weak failures occurring
in the course of execution of the plan fragment and P[k] is not applicable in sk.

The weak and the strong plan execution failures are, however, just two examples of a plan
failure. There certainly are application domains in which weak failures can be tolerated as far as
the goal state is reached after execution of the multiagent plan. In practice, it makes the most
sense to monitor for strong failures in system’s evolution. Most weak failures either lead to a strong
failure later on in the plan execution, or were irrelevant. Of course, except for the case when a weak
failure leads to a future failure to reach a goal state, which happens, when some atom supposed
to be included in a goal state fails to be effected by an action in the plan. There also might be
domains in which other types of plan execution failures can occur, e.g., any change of the state
not caused by the involved agents can be considered a failure as well. Thus, monitoring for weak,
strong, or even other types of plan execution failures can strongly depend on the target application.
To account for the range of various types failures, from now on, a plan execution monitoring process
has to determine some plan execution failure at a step k which results in some failed state sf .

Definition 5 (multiagent plan repair). Let Π = (L,A, s0, Sg) be a multiagent planning problem.
A multiagent plan repair problem is a quadruple Σ = (Π,P, sf , k), where P is a multiagent plan
solving the planning problem Π, k is the step of P in which its execution failed and sf ∈ S is the
corresponding failed state.

26 CHAPTER 3. FORMAL FOUNDATIONS FOR MULTIAGENT PLAN REPAIR

Figure 3.2.1: A visual representation of the replanning principle. The gray nodes represent planned
states of evolution of the environment, s0 is the initial state and SG is a set of possible goal
states. The dashed arcs represent planned but not yet executed actions, the solid ones were already
executed. Only the joint action a1 was executed without a failure. The execution of a2 failed and
the environment ended in a distinctive state sf . The orange nodes represent planned states of the
replanned plan (ar1, . . . ,ark).

A solution to the plan repair problem Σ is a multiagent plan P ′, such that P ′ is a solution to
the planning problem Π′ = (L,A, sf , Sg), that is P ′ repairs P in sf . In the case Plans(Π′) = ∅, the
plan is irreparable given the failure occurring at the state sf .

Given two multiagent plans P1 and P2 both repair a multiagent plan P for a problem Π in a
state sf , P1 is preserving P more than P2 iff diff (P1,P) ≤ diff (P2,P) and denote the relation by
P1 � P2. The minimal repair of the multiagent plan P is such a plan Pmin ∈ Plans(Π′), which is
minimal w.r.t. the mutual differences between the plans solving Π′. That is,

Pmin ∈ arg min
P′∈Plans(Π′)

diff (P,P ′)

Note that there might be several distinct minimal repairs of a given multiagent plan.
In general, the multiagent plan repair problem can be reduced to solving a modified multiagent

planning problem and thus gives rise to a straightforward plan repair algorithm based on replanning
(see Figure 3.2.1) in two steps: (i) construct the multiagent replanning problem Π′ as prescribed
in Definition 5, and subsequently (ii) utilize the MA-Plan algorithm to solve the problem Π′.

While the notion of minimal repair of multiagent plans is based on the number of changes the
repaired plan contains w.r.t. the original plan, also other metrics selecting distinguished plan repairs
could be considered. The additional metrics will be discussed in Sections 4.5 and 5.2.

Since the dissertation focus on multiagent plan repairing problems, which in a sense enforce
coordination among the members of a multiagent team, a definition of an appropriate property is
needed to indicate which planning problems tend to benefit from the plan repair approach. The
following notion of coordination frequency formalizes the idea.

Definition 6 (coordination frequency). Let Π = (L,A, s0, Sg) be a multiagent planning problem
with a solution P. P is δ-coordinated iff it contains at least δ coordination points, that are, joint

3.2. MULTIAGENT PLAN REPAIR 27

actions including at least one public actions of some individual agents. In the case δ = 0, that is P
does not contain any public action, thenP is uncoordinated.

Relative coordination frequency cf (P) of a δ-coordinated plan P denotes the frequency of coor-
dination point occurrence per single step in the plan and is defined as

cf (P) = δ

|P|

Relative coordination frequency cf (Π) of a multiagent planning problem Π denotes the minimal
coordination frequency required to solve Π and is defined as

cf (Π) = min
P∈Plans(Π)

cf (P)

The notion of relative coordination frequency of plans relates to the fractional amount of coordi-
nation corresponding to a single step in a plan execution. It straightforwardly extends to planning
problems viewed as sets of plans solving them. It is simply a solution requiring minimal relative
amount of coordination required to solve the problem. The notion of relative coordination frequency
allows for comparison and ordering of multiagent planning problems according to the amount of co-
ordination they minimally require for solving them. Informally, problems with relatively low cf (Π)
will be called loosely coordinated and those with cf (Π) closer to 1 tightly coordinated. Note that a
problem with cf (Π) = 0.5 is still tightly coordinated, as for each coordination step, there is only one
uncoordinated step. Multiagent planning problems with cf (Π) = 0 will be called uncoordinated.

Note, it still might be the case that even though a multiagent planning problem can be solved
without any coordination cf (Π) = 0, there still can exist coordinated plans in Plans(Π), which are
more efficient, e.g., shorter than the uncoordinated ones. For instance, consider a domain where
the objective is that an agent A reaches a destination d. The agent A could move from its starting
position to d on its own, albeit slowly and resulting in a relatively long plan. Alternatively, A
could be transported quickly to d by another agent B. The latter plan would be shorter in terms
of overall number of steps, but would require coordination. In result, repair of such a plan would
be costlier in terms of communication overhead it incurs than the uncoordinated one.

As shown in [7], δ turns out to play an important role in time complexity analysis of the
MA-Strips problem. Hypothetically based on the previous paragraphs the relative frequency of
coordination points along the plans, seems to play a role in the communication complexity of plan
repair as well. Plan repair for problems which require some coordination quite often along the plans
should lead to reuse of fragments including relatively large number of coordination points, which
do not have to be planned for again and thus should lead to reduction of required communication
in the repair process.

28 CHAPTER 3. FORMAL FOUNDATIONS FOR MULTIAGENT PLAN REPAIR

Chapter 4

Plan Repair Algorithms

Before describing the plan repair algorithms the hypotheses will be stated more formally, based on
the formalization from the previous chapter.

The idea behind the first hypothesis is based on an intuition that plan repair algorithms pre-
serving larger parts of the original plan has to solve simpler problem and therefore will need less
communication.

Hypothesis 1. Multiagent plan repair approaches producing more preserving repairs than replan-
ning tend to generate lower communication overhead for tightly coordinated multiagent problems.

The second idea would be to select only a minimal relevant subset of agents which should
participate in the plan repair process, thereby constraining the inter-agent communication only to
a subset of the agent team involved. In result, further reduction of communication needed for the
planning could be achieved.

Hypothesis 2. Repair approaches minimizing the number of agents involved in the plan repair
process tend to generate lower computational and communication overheads than other strategies.

The third hypothesis is related to chains of interdependent actions. A long-term dependency
can be visualized as a tree of consecutively dependent actions. If an action in the root of such tree
has to be repaired, intuitively, it is a better idea to try to fix it as soon as possible, because not
doing so can cause a snowball effect of rapidly increasing numbers of further failing actions.

Hypothesis 3. Repair approaches reusing a suffix of the original plan generate lower computational
and communication overheads than the repair algorithms reusing prefix of the original plan in
domains featuring actions with long-term dependencies.

The last research question treated in this dissertation is how do different combinations of the
prefix and suffix preservation parameters influence the efficiency of the plan repair process. On

29

30 CHAPTER 4. PLAN REPAIR ALGORITHMS

one hand, there can be a gap between the prefix and suffix reused parts of the original plan, which
has to be filled by a result of the inner planning process, in other words the original plan was
underused. Reversely, there can as well be an overlap, which has to be reverted, i.e., the original
plan was overused. These cases are in a sense pathological. In a consequence, the final hypothesis
is proposed as:

Hypothesis 4. Repair approaches overusing or underusing the original plan tend to generate higher
computational overheads than other algorithms.

In the following sections, four proposed plan repair algorithms based on the presented formal-
ization will be presented.

4.1 Back-on-Track Repair

Unexpected event occurring in an environment can cause a failure in execution of a plan performed
by a multiagent team in that environment. The result would be that the overall state of the system
will not be the one expected by an undisturbed plan execution at the particular time step. A
straightforward idea to fix the problem is to utilize a multiagent planner to produce a plan from
the failed state to the originally expected state and subsequently follow the rest of the original
multiagent plan from the step in which the failure occurred. The following multiagent plan repair
approach, coined Back-on-Track (BoT) repair (see Figure 4.1.1), is inspired by this idea, in fact a
slight generalization of it.

Definition 7 (Back-on-Track repair). Let Σ = (Π,P, sf , k) be a multiagent plan repair problem
and Π′ = (L,A, sf , Sg) being the corresponding modified multiagent replanning problem.

A plan P ′ ∈ Plans(Π′) is a Back-on-Track repair of P iff there is a decomposition of P ′, such
that P ′ = Pback · P[i..∞] for some i ≤ |P|.
P ′ = Pback · P[i..∞] is said to be a proper Back-on-Track repair iff |P[i..∞]| > 0, i.e., P ′

preserves some non-empty suffix of P.

Informally, the Back-on-Track approach tries to preserve a suffix of the original plan, prefix it
with a newly computed plan Pback starting in sf and leading to some state along the execution
of P in the ideal environment. Note that all plans from Plans(Π′) are Back-on-Track repairs of
the original plan. The length of the preserved suffix of the original plan provides indication for
ordering of the plans according to the quality of repair. The longer the preserved suffix, the more
preserving the plan is. On the other hand, even when the plan repair problem Σ is indeed solvable,
there might not be any valid proper Back-on-Track repair of the original planning problem.

Algorithm 4.1 realizes a multiagent plan repair procedure according to the Back-on-Track plan
repair principle. Since the MA-Plan algorithm searches for the simplest plan from the initial state

4.1. BACK-ON-TRACK REPAIR 31

Figure 4.1.1: A visual interpretation of the Back-on-Track (BoT) plan repair approach. The nodes
and arcs has the same meaning as in Figure 3.2.1. The translucent orange states with their re-
spective actions represent various possibilities of the BoT repair plans. The cyan nodes represent
a solution by replanning.

Algorithm 4.1 Back-on-Track-Repair(Σ)
Input: A multiagent plan repair problem Σ = (Π,P, sf , k), with

Π = (L,A, s0, Sg) and a sequence of states s0, . . . , sm, a failure-free execution of P would
generate.

Output: A multiagent plan P ′ solving Σ, if a solution exists.

1: construct Πback = (L,A, sf , {s0, . . . , sm} ∪ Sg)
2: if MA-Plan(Πback) returns a solution Pback then
3: retrieve the state sj of P to which Pback returns
4: return P ′ = Pback · P[j..∞]
5: else
6: return P ′ = χ
7: end if

to a goal state, the Back-on-Track-Repair computes plans which return back to the original one in
the simplest possible way. The length of the overall repaired plan, however, depends also on the
selection of a particular goal state sg ∈ {s0, . . . , sm} ∪ Sg of the planning problem Πback . If the
planning algorithm selects sg according to an ordering from sm to s0 and later on the remaining
states from Sg for the same lengths of possible Pback plans, the overall repaired resulting plan would
also be the shortest, under a condition the result is a proper Back-on-Track repair.

The algorithm depends on invocation of the underlying multiagent planner, hence its correctness
relies on the correctness of the underlying planner. The following lemma states the soundness of
Algorithm 4.1.

Lemma 8 (Back-on-Track-Repair soundness). Let Π = (L,A, s0, Sg) be a multiagent planning
problem with agents situated in a dynamic environment in which the environment can interfere with
the plan execution and let P be a solution to Π. Let also sf be a state resulting from an interference
of the environment, a plan failure, at a step k of execution of the plan P. Σ = (Π,P, sf , k) denotes

32 CHAPTER 4. PLAN REPAIR ALGORITHMS

the corresponding multiagent plan repair problem.
Unless the execution of Back-on-Track-Repair(Σ) finishes with the undefined plan χ, a failure-

free execution of the resulting plan P ′ leads to some goal state of the original multiagent planning
problem Π.

Proof. Follows straightforwardly from the construction of Πback and that P is a solution to Π.
Either Pback leads to some state along the ideal execution trace of the original plan P and then
the remainder of P leading to the final state sm ∈ Sg is reused, or a failure-free execution of Pback

would lead directly to some final state send ∈ Sg without reusing a part of P.

Furthermore, upon a failure of a plan execution, if there exists a plan from the failed state to a
final state of the original multiagent planning problem, the Back-on-Track-Repair is able to find a
solution to the corresponding multiagent plan repair problem.

Lemma 9 (Back-on-Track-Repair completeness). Let Π = (L,A, s0, Sg), P, sf , k and consequently
Σ be as assumed in Lemma 8.

If there exists a solution to the modified multiagent planning problem Π′ = (L,A, sf , Sg), then
the execution of Back-on-Track-Repair(Σ) algorithm finishes and finds P ′ 6= χ, a solution repair
of P.

Proof. Again, follows straightforwardly from construction of Πback in the algorithm. Observe that
if there is a solution plan to the problem Π = (L,A, sf , Sg), then there also must exist at least the
same solution to the modified planning problem Πback = (L,A, sf , {s0, . . . , sm} ∪ Sg). That is, in
the worst case, the Back-on-Track approach resorts to replanning from scratch.

The lemmas 8 and 9 establish how the Back-on-Track plan repair approach inherit its correctness
from the underlying multiagent planner. Note however, the algorithm is only partially complete,
because in cases when there is no solution to a given multiagent planning problem, it is not ensured
that the algorithm MA-Plan terminates. Provided a totally complete multiagent planning algorithm,
directly replacing MA-Plan, total completeness of the Back-on-Track-Repair algorithm could be
straightforwardly established by the lemmas above.

4.2 Simple-Lazy Repair

The Back-on-Track multiagent plan repair approach tries to compute a new prefix to some suffix
of the original plan and repair the failure by their concatenation. An alternative approach, coined
Lazy repair, attempts to preserve the remainder of the original multiagent plan and close the gap
between the state resulting from the failed plan execution and a goal state of the original planning
problem (see Figure 4.2.1).

4.2. SIMPLE-LAZY REPAIR 33

Figure 4.2.1: The Lazy multiagent plan repair approach. The nodes and arcs has the same meaning
as in Figure 3.2.1. Note that both the original plan and the plan used form the state sf use the
same actions a2, . . . ,am.

Algorithm 4.2 Lazy-Repair(Σ)
Input: A multiagent plan repair problem Σ = (Π,P, sf , k), with Π = (L,A, s0, Sg).
Output: A multiagent plan P ′ solving the problem Σ, if a solution exists.

1: construct P[k..∞], the executable remainder of P[k..∞] from the state sf
2: simulate execution of P[k..∞] from sf on, resulting in a final state slazy
3: construct Πlazy = (L,A, slazy, Sg)
4: Plazy = MA-Plan(Πlazy)
5: return P[k..∞] · Plazy, unless Plazy = χ in which case return χ

Let sf be the state resulting from a failure in execution of a multiagent plan P in a step k.
Then a sequence of joint actions P ′ is an executable remainder of P from the step k and the state
sf iff there exists a sequence of states sk, . . . , s|P|, such that sk = sf , si+1 = si ⊕ P ′[i− k + 1] and
for every step i and every agent j, P ′[i− k + 1, j] = P[i, j] holds in the case P[i, j] is applicable in
the state si and P ′[i− k+ 1, j] = ε otherwise. The following definition provides a formal definition
of the Lazy approach.

Definition 10 (Simple-Lazy repair). Let Σ = (Π,P, sf , k) be a multiagent plan repair problem
and Π′ = (L,A, sf , Sg) be the corresponding modified multiagent replanning problem.

A plan P ′ ∈ Plans(Π′) is a Lazy repair of P iff there is a decomposition of P ′, such that
P ′ = P[k..∞] · Plazy, where P[k..∞] is the executable remainder of P from the step k, execution of
which, starting from sf , results in the state slazy, and Plazy is a solution to the multiagent planning
problem Πlazy = (L,A, slazy, Sg).

Algorithm 4.2 realizes multiagent plan repair based on the Lazy approach described above.
Similarly to the Back-on-Track algorithm, Algorithm 4.2 inherits its correctness from the un-

derlying multiagent planner invoked internally.

Lemma 11 (Lazy-Repair soundness). Let Π = (L,A, s0, Sg), P, sf , k and Σ be as assumed in the
Lemma 8.

34 CHAPTER 4. PLAN REPAIR ALGORITHMS

Unless the execution of Lazy-Repair(Σ) finishes with the undefined plan χ, a failure-free execution
of the resulting plan P ′ leads to some goal state of the original multiagent planning problem Π.

Proof. In whichever state slazy a failure-free execution of the executable remainder of P ends up, if
existing, the solution plan to the problem Πlazy will take the system from there to some final state
corresponding to the original multiagent planning problem Π. The executable remainder of P from
the state in which the failure occurred will get reused in the resulting plan.

Unlike the Back-on-Track algorithm, the Lazy approach is in general incomplete, as it might
happen that the execution of the executable remainder of the original plan diverges to a state from
which no plan to a goal state exists. The notion of the algorithm completeness has to be weakened
to domains in which the agent team is at least capable to revert its own actions.

Definition 12 (connected multiagent planning domain). Let Π = (L,A, s0, Sg) be a multiagent
planning problem. Let also Act = α1 × · · · × αn, with α1, . . . , αn ∈ A, and S = 2L. The planning
problem induces a connected planning domain iff for every state s ∈ S and a joint action a ∈ Act,
there exists a solution to the multiagent planning problem Π′ = (L,A, s ⊕ a, s), i.e, a plan P =
a1, . . . ,ak, such that s = s⊕ a ⊕ a1 ⊕ · · · ⊕ ak.

In essence, the definition of connected multiagent planning domain states that it is in the scope of
capabilities of the multiagent team A to revert effects of any of its own actions. Note, a singleagent
version of the definition (with an omnipotent agent α =

⋃
αi∈A αi) would also suffice, since ε ∈ α

was required for every α ∈ A and in a consequence any joint action of the team can be transformed
into a corresponding multiagent plan of length n with only a single agent acting in any given step
of the plan.

The following lemma states that the Lazy-Repair algorithm is complete in connected planning
domains.

Lemma 13 (Lazy-Repair completeness). Let Π = (L,A, s0, Sg) be inducing a connected multiagent
planning domain and let P, sf , k, as well as Σ are as in the Lemma 8. Let also slazy correspond
to the state to which a failure-free execution of an executable remainder P[k..∞] of P[k..∞] would
lead.

If there exists a solution plan P ′ to the multiagent planning problem Π′ = (L,A, sf , Sg), then
the execution of Lazy-Repair(Σ) algorithm finishes and finds a plan P∗ 6= χ , a solution repair of
P.

Proof. Let P[k..∞] = ak+1, . . . ,am be the executable remainder of P[k..∞] and let sk+1, . . . , sm be
the states resulting from a failure-free execution of P[k..∞], i.e., sj+1 = sj ⊕ aj for k + 1 ≤ j < m.
Since the agent team acts in a connected planning domain, any of its actions is reversible, that
is, its effects can be undone. Therefore for execution of each action aj above, there must exist a
sequence of plans P←aj

, each being a solution to the planning problem Π←aj
= (L,A, sj+1, sj). Since

4.3. REPEATED-LAZY REPAIR 35

it is assumed that there exists a plan P ′ solution to the problem Π′ = (L,A, sf , Sg), the plan
P∗ = P[k..∞] ·P←am−1

· · · · ·P←ak+1
·P ′ is a solution for the plan repair problem Σ = (Π,P, sf , k). That

is, the solution plan first executes P[k..∞], the executable remainder of the original plan P from
the point of failure (as defined by the algorithm), then reverts effects of all the performed actions
in P[k..∞] and thus returns to the state sf , and finally executes the plan P ′, existence of which is
assumed.

The corollary of the line of reasoning leading to the proof of completeness of the Lazy repair
approach is that despite non-existence of irreversible environment interferences in some domains,
it is the agent team whose actions can break the system evolution beyond repair. For illustration,
even though it is not in the ability of the physical environment to push a robot over a cliff, it is
indeed in its own powers to jump from it during execution of an executable remainder of some,
otherwise harmless plan, which failed shortly before. In such domains, the lazy approach has to be
employed with caution.

To conclude, similarly to the Back-on-Track approach, Lemma 13 states only partial complete-
ness of the Lazy-Repair algorithm the underlying multiagent planner does not ensure termination.

4.3 Repeated-Lazy Repair

In a dynamic environment, plan failures occur repeatedly. Even after a repair of a failed plan, it
is possible for the repaired plan to fail again. In this situation both the Back-on-Track, as well
as the Lazy multiagent plan repair algorithms lead to prolonging of the executed plan. For the
case of the Back-on-Track approach, this is inevitable, since upon the repair, the subsequent plan
execution process immediately processes the newly added plan fragment. In the case of the Lazy
repair, however, upon occurrence of another failure during execution of an already repaired plan, it
is not always necessary to prolong the overall multiagent plan. In the case a second failure occurs
while still executing the plan fragment from the original plan preserved by the first repair, the suffix
appended by the first repair can be discarded and replaced by a new plan suffix repair the second
failure, should it be necessary.

The following definition formally introduces Repeated-Lazy (RLazy) plan repair (see Figure 4.3.1),
an extension of the Lazy multiagent plan repair approach introduced in Definition 10. For clarity,
from now on, the Lazy multiagent plan repair introduced in the previous subsection will be referred
as Simple-Lazy repair.

Definition 14 (repeated lazy repair). Let Σ = (Π,P, sf , k) be a multiagent plan repair problem.
Let also Π = (L,A, s0, Sg) be the corresponding multiagent planning problem with a solution of
the form P = P ′ · Pfix . In the case this is the first failure encountered during execution of P, holds
|Pfix | = 0 and thus P = P ′. Otherwise, P is a Simple-Lazy repair solution of some (previously

36 CHAPTER 4. PLAN REPAIR ALGORITHMS

Figure 4.3.1: The Repeated-Lazy plan repair approach. The nodes and arcs has the same meaning
as in Figure 3.2.1. The translucent parts are the saved planning problems by the repeating principle.

solved) plain repair problem Σp = (Π,Pp, sfp
, kp) composed of an executable remainder of Pp

(represented as P ′) and a repair suffix Pfix .
P ′′ is a Repeated-Lazy repair of P iff

1. P ′′ is a Simple-Lazy repair solution to Σ′ = (Π,P ′, sfp , k) in the case k ≤ |P ′[kp..∞]| (the
failure occurred still within the executable remainder of Pp[kp..∞]); or otherwise

2. P ′′ is a Simple-Lazy repair solution to Σ′ = (Π,P, sfp
, k).

The Repeated-Lazy repair leads to a straightforward extension of the Simple-Lazy plan repair
algorithm listed in Algorithm 4.2. The intuitive benefit of the straightforward application of the
Repeated-Lazy repair approach is that it should lead to shorter executed plans than would result
from usage of the Simple-Lazy repair. Consider a plan execution failure at step k1 of a plan P.
Simple-Lazy repair approach would fix it by appending a suffix P1 resulting in the plan P[k1..∞] ·P1.
Simple-Lazy repair of a second failure at a step k2 occurring still somewhere in the fragment P[k1..∞]

would result in a solution P[k2..∞] · P1 · P2 with a suffix P2, the solution to the second plan repair
problem. Unlike that, upon occurrence of the second failure the repeated lazy repair discards the
previously computed suffix P1 and replaces it with a new suffix P ′2, resulting in a repair solution
P[k2..∞] ·P ′2. The idea is that in many domains P ′2 should be shorter than the length of the combined
suffix P1 · P2. This could be especially beneficial in domains in which subsequent failures can even
revert, or otherwise fix the ones occurring previously.

As with the previous two plan repair approaches, proofs of correctness of the Repeated-Lazy
repair algorithm concludes this section.

4.4. GENERALIZED REPAIR 37

Algorithm 4.3 Repeated-Lazy-Repair(Σ)
Input: A multiagent plan repair problem Σ = (Π,P, sf , k) with Π = (L,A, s0, Sg) and its solution
P. In the case P is a lazy repair solution of a (previously solved) plain repair problem Σp =
(Π,Pp, sfp , kp), it takes the form P = P ′ · Pfix . Otherwise, in the case this is the first failure
encountered, |Pfix | = 0.

Output: A multiagent plan solving Σ = (Π,P, sf , k).

1: if k ≤ |P ′[kp..∞]| then
2: return Lazy-Repair((Π,P ′, sf , k))
3: else
4: return Lazy-Repair((Π,P, sf , k))
5: end if

Lemma 15 (Repeated-Lazy-Repair soundness). Let Π = (L,A, s0, Sg), P, sf , k and Σ be as as-
sumed in the Lemma 8.

Unless the execution of Repeated-Lazy-Repair(Σ) finishes with the undefined plan χ, a failure-
free execution of the resulting plan P ′ leads to some goal state of the original multiagent planning
problem Π.

Proof. Follows immediately from the soundness of the Simple-Lazy repair in Lemma 11.

Lemma 16 (Repeated-Lazy-Repair completeness). Let Π = (L,A, s0, Sg) inducing a connected
multiagent planning domain and P, sf , k, as well as Σ are as in the Lemma 8.

If there exists a solution plan to the multiagent planning problem Π′ = (L,A, sf , Sg), then the
execution of Repeated-Lazy-Repair(Σ) algorithm finishes and finds a plan P ′ 6= χ , a solution repair
of P.

Proof. Follows straightforwardly from the proof of completeness of the Simple-Lazy repair. Note,
the proof of Lemma 13 is independent of how exactly does the final state to which the executable
remainder of the original plan leads to looks like, it can be arbitrary. Therefore, when the executable
remainder of the original plan, as in Algorithm 4.3, is arbitrarily modified, the proof still holds.
That is if there exists a plan P ′′ from sf to some state in Sg, then in connected domains, there must
exist at least the plan firstly executing the executable remainder of the original plan, subsequently
a plan reverting its effects back to sf and than finally performing the steps of P ′′.

4.4 Generalized Repair

The first two presented algorithms, namely the Simple-Lazy and Back-on-Track, are orthogonal to
each other in the way how they reuse the original plans. The Simple-Lazy approach reuses prefix
of the original plan as an executable remainder and the Back-on-Track approach reuses suffix as a
plan fragment. These two approaches can be combined into one algorithm using the original plan

38 CHAPTER 4. PLAN REPAIR ALGORITHMS

both as a prefix and a suffix together. Such approach generalizes the first two approaches and
combines the original plan by both fashions as shown in Figure 4.4.1.

Definition 17 (generalized repair). Let Σ = (Π,P, sf , k) be a multiagent plan repair problem and
let Π′ = (L,A, sf , Sg) be the corresponding modified multiagent replanning problem.

A plan P ′ ∈ Plans(Π′) is a Generalized repair of P parametrized by index vectors F and G iff
there is a decomposition of P ′, such that P ′ = P[k..(k+f)] · Pfix · P[(|P|− g)..∞], where P[k..(k+f)] is
the executable remainder of P from k to k + f for some f ∈ F and P[(|P| − g)..∞] is fragment of
the original plan from |P| − g to |P|. The elements of F and G has to be from interval 〈0, |P| − k〉
to meet the requirements of the decomposition parts P[k..k+f] and P[|P| − g..∞]. It holds that
|F | = |G| and for ∀i s.t. 1 ≤ i ≤ |P|, there is no 1 ≤ j ≤ |P|, j 6= i such that (fi, gi) = (fj , gj).

To illustrate the generalized notion of this repair, based on the definition, it can be shown
that for F = (|P| − k), G = (0) the approach will end as the Simple-Lazy approach and for
F = (0), G = (|P| − k, . . . , 0) as the Back-on-Track approach. In the first case, the original plan
is reused in the form of the executable remainder of length |P| − k equally to the definition in
Section 4.2. In the second case, the definition of the index vector G implies trying to reuse as long
as possible part starting with length |P|−k and ending with length 0, equally to the Back-on-Track
approach in Section 7. Finally, F = (0), G = (0) describes replanning.

It could be argued that generalization reusing the original plan only as prefix and suffix parts
is in fact not general, e.g., by means of a moddelins scheme presented in [48]. According to
moddelins, the reuse scheme describing the presented generalized repair approach would be

(a1, a2, . . . , af , ∗, a|P|−g, a|P|−g+1, . . . , a|P|),

however a scheme
(a1, . . . , af , ∗, af+1, . . . , af+g, ∗, a|P|−h, . . . , a|P|)

would be also possible, but Generalized repair cannot directly represent it.
The motivation of the approach in this section is not to be general in the sense of reuse pattern

of the original plan, but be general from perspective of reuse of the original plan as executable
remainder together with a plan fragment. For such case, the generalized repair scheme is the only
one making sense, since breaking the P[k..(k+f)] or the P[(|P| − g)..∞] parts into smaller chunks
could only diverge from a efficient repair plan. Breaking the fixing part Pfix into smaller parts
could be straightforwardly replaced by extension of the P[k..(k+f)] and P[(|P| − g)..∞] parts and
therefore it is not needed to explicitly consider it. Finally, the generalization does not consider the
repeating notion of the Repeated-Lazy repair as it is about the way of running the repair process
than about the plan preserving approach per se.

The algorithm for the Generalized plan repair approach is outlined in Algorithm 4.4. In the

4.4. GENERALIZED REPAIR 39

Figure 4.4.1: The Generalized plan repair approach. The nodes and arcs has the same meaning as
in Figure 3.2.1. The repair plan (ar1, ..., ark) is used to connect the prefix and suffix of the original
plan. The parameters f and g prescribed how many action are used in the prefix way or the suffix
way.

case, a failure is detected by the agent team, the current state after the failure is retrieved and the
plan repair algorithm for the plan repair problem Σ = (Π,P, s, k) is invoked. In each plan repair
attempt a modified multiagent planning problem is formulated according to the current values of f
and g prescribing the length of the reused prefix and suffix of the original plan. These parameters
are took as elements of two vectors of indices F and G additionally parametrizing the approach in
contrast to the previous algorithms, which were fixed from perspective of the lengths of the original
plan reuse. In effects, the current parametrization prescribes the successive repair attempts.

If a repair plan is found, the repair process finishes, otherwise another attempt with a different
combination of f and g is made (selection of F has priority over G in the combination of indices).
The resulting repairing plan consists of three components: the preserved prefix of the original plan
Ppre, a newly computed infix P∗ and suffix part Psuf , again preserving a part of the original plan P.

The preserved prefix part of the original plan corresponds to an executable remainder (see
Section 4.2) fragment of P, ExecRemainder(P, sf). The actions with unmet preconditions are in
the remainder simply omitted. Additionally, the prefix Ppre is based only on a part of the original
plan effectively reusing f actions beginning after the k-th action of the original plan P. The suffix
part Psuf is obtained as the last g actions of the original plan P.

Finally, the infix part of the plan is computed by invocation of the underlying multiagent
planner algorithm MA-Plan. The initial state of the modified planning problem is the state in
which a failure-free execution of the repair prefix Ppre would result in starting from the state sf ,
that is propagation sf ⊕ Ppre. The set of goal states Sg 	 Psuf corresponds to a back-propagation

40 CHAPTER 4. PLAN REPAIR ALGORITHMS

Algorithm 4.4 Generalized-Repair(Σ, F,G)
Input: A multiagent plan repair problem Σ = (Π,P, sf , k).
Input: Parameters F and G prescribing the lengths for reusing of the original plan as prefix and

suffix respectively.

1: f, g =initial pair of f ∈ F and g ∈ G
2: repeat
3: Ppre = ExecRemainder(P[k..(k + f)], sf)
4: Psuf = P[(|P| − g)..∞]
5: P∗ = MA-Plan((L,A, sf ⊕ Ppre, Sg 	 Psuf))
6: if P∗ 6= ∅ then
7: P = Ppre · P∗ · Psuf
8: break
9: end if
10: until tested all pairs of f ∈ F and g ∈ G
11: if P = ∅ then return fail

of effects of the preserved suffix component Psuf from the set of original goals Sg.
If the multiagent planner finds a plan for the modified planning problem, the repair plan takes

the form Ppre · P∗ · Psuf and gets executed from that point on. In the case no repair plan can be
found, the algorithm attempts the repair for a different combination of f and g until either a repair
plan is found, or it turns out that no repair for the failure exists.

As in the previous three plan repair approaches, the approach description will be concluded
with proofs of soundness and completeness of Algorithm 4.4. The algorithm rests on invocation of
the underlying multiagent planner, hence its correctness relies on the correctness of the underlying
planner.

Lemma 18 (Generalized-Repair soundness). Let Π = (L,A, s0, Sg), P, sf , k and Σ be as assumed
in the Lemma 8.

Unless the execution of Generalized-Repair(Σ,F ,G) finishes with the undefined plan χ, a failure-
free execution of the resulting plan P ′ leads to some goal state of the original multiagent planning
problem Π.

Proof. Regardless what particular state sf ⊕ Ppre the failure-free execution of the executable re-
mainder of P ends up in, the solution plan, if exists, for the problem Π∗ = (L,A, sf⊕Ppre, Sg	Psuf)
will take the system from sf ⊕ Ppre to a state Sg 	 Psuf corresponding to the original multiagent
planning problem Π. Either Psuf leads to some state along the ideal execution trace of the original
plan P and then the remainder of P leading to the final state sm ∈ Sg is reused, or a failure-free
execution of P∗ would lead directly to some final state send ∈ Sg without reusing a part of P as
suffix.

The first half of the proof resembles the soundness proof of Lazy repair described in Algo-

4.5. COMPLEXITY ANALYSIS 41

rithm 4.2. The other part equals to the Back-on-Track Algorithm 4.1 soundness proof. As men-
tioned before, in Generalized repair these two approaches merge, therefore the proofs are based on
the same argumentation.

The completeness of the generalized repair will be proven for a case, where the planning problem
has no dead-ends, 0 ∈ F and 0 ∈ G.

Lemma 19 (Generalized-Repair completeness). Let Π = (L,A, s0, Sg) be a multiagent planning
problem and let P, sf , k, as well as Σ are as in the Lemma 8. Let F and G be integer vectors with
an interval domain for the elements 〈0, |P| − k〉 (see Definition 17). And finally, let 0 ∈ F and
0 ∈ G.

If there exists a solution plan to the multiagent planning problem Π′ = (L,A, sf , Sg), then the
execution of Generalized-Repair(Σ,F ,G) algorithm finishes and finds a plan P ′ 6= χ , a solution
repair of P.

Proof. The algorithm tests all combinations of F and G values. It eventually tests the required
combination f = 0 and g = 0. Based on the definition of the algorithm, in such case, P = Ppre ·P∗ ·
Psuf degenerates to P = P∗ since ExecRemainder(P[k..(k+f)], sf) = ExecRemainder(P[k..k], sf) = ∅
and P[(|P| − g)..∞] = P[|P|..|P|] = ∅. The P∗ is result from MA-Plan, therefore the completeness
depends on the completeness of the planner.

4.5 Complexity Analysis

In this section, the presented plan repair algorithms will be theoretically studied from perspective
of a classical complexity metrics and one additional metrics suitable for distributed algorithms.
The classically studied metrics is time complexity. Additionally, in multiagent systems, one can
use a metrics based on an asymptotic ratio of communication volume required for an algorithm to
finish to size of the input, as in the case of the time complexity.

4.5.1 Time Complexity of MA-Plan

All plan repair algorithms presented in the previous sections use the multiagent planner as a com-
ponent, therefore its complexity is an key part of the further analysis. The time complexity of
the multiagent planning based on solving of coordination CSP and internal heuristic search (and
therefore the MA-Plan implementation of the planner) was studied in [7], therefore the analysis of
the time complexity from [7] will be recalled in the following paragraphs.

Informally, it is “the number of times [needed] to verify that a certain choice of coordination-
sequence length forms a basis for a solution × the complexity of the verification process”. To formally
describe the time complexity of the MA-Plan approach, firstly the authors of [7] define size of the
CSP domains for each agents’ CSP variable (see Section 3.1). Each value of each domain represents

42 CHAPTER 4. PLAN REPAIR ALGORITHMS

one possible coordination sequence for one agent. Such sequences consist of at most δ coordination
points defined as pairs (a, t) with a public action a and 1 ≤ t ≤ nδ for n agents.

The idea of the nδ limit for the virtual time points t can be demonstrated on an example with
n = 2 agents and δ = 3 with precisely three used coordination points for both agents:

α :
β :

(
aα1 ∗ aα2 ∗ aα3 ∗
∗ aβ1 ∗ aβ2 ∗ aβ3

)
.

The example shows the longest possible coordination pattern for that particular instance as both
the agents use all coordination points possible and the actions depends on each other such that no
prolonging of the pattern is possible. In that case, the first coordination point is (aα1 , 1) and the
last one (aβ3 , nδ), where ,nδ = 6.

The size of the CSP domain as defined in [7] is for an agent α

|Dα| =
δ∑
d=1

(
nδ

d

)
· |Actpub

α |d = O((nδ|Actpub
α |)δ+1).

The term
(
nδ

d

)
represents all possible combinations of d virtual time points for the public actions

(e.g., for d = 2, nδ = 6 there are 15 of them {(1, 2), (1, 3), . . . , (1, 6), (2, 3), (2, 4), . . . , (5, 6)}) and
the term |Actpub

α |d represents all possible public action sequences of length d (e.g., for d = 2 and
|Actpub

α | = 2 the sequences are {a1a1, a1a2, a2a1, a2a2}), therefore for each d, the complete term in
the sum counts the number of possible coordination sequences for d coordination points. Finally,
the summed up result represent the number of all possible coordination sequences for one agent.

The domain size is then used in the final time complexity formula for the internal planning
constraints (ipc) in the CSP (see Section 3.1) in the following form

O(f(I) · n ·max
α∈A
|Dα|) = O(f(I) · n(nδ|Actpub|)δ+1) = Oipc,

where the term f(I) represents maximal complexity of individual planning I with a function f

describing the cost of switching from regular planning.
The complexity induced by the coordination constrains (cc) is in [7] derived from time complexity

of Adaptive-Tree-Consistency algorithm (ATC) for solving CSP problems. The complexity is based
on a tree-width ω of the CSP constraint graph [10] which is

O(n ·max
α∈A
|Dα|ω+1) = O(n(nδ|Actpub|)δω+ε) = Occ,

where ε = δ + ω + 1 is dominated by δω. According to [7], the constraint graph is isomorphic to
the moral graph of agent interaction graph, therefore ω can be treated as a tree-width of the agent

4.5. COMPLEXITY ANALYSIS 43

interaction graph. An agent interaction graph describes dependencies of the agents on each other
defined by public actions.

The final complexity is sum for the complexities for the particular constraints

Oipc +Occ = O(f(I) · n(nδ|Actpub|)δ+1 + n(nδ|Actpub|)δω+ε) = OMAP .

Note that the complexity has no direct exponential dependence on the number of agents n, has no
direct exponential dependence on the length of the individual plans of the agents and has no direct
exponential dependence on the size of the original planning problem |Π|. However, the complexity
of the individual planning f(I) is in general still exponential in the size of the individual planning
problems.

4.5.2 Time Complexity of the Plan Repair Algorithms

Let Π = (L,A, s0, Sg) be the original multiagent planning problem and Π′ = (L,A, sf , Sg) be
a related multiagent replanning problem. The time complexity of the planning problem Π is
complexity of the MA-Plan algorithm as showed in the previous section

O(f(I) · n(nδq)δ+1 + n(nδq)δω+ε),

where for brevity q = |Actpub|. Straightforwardly, the replanning complexity is in general the same
as of planning, since the only difference is another initial state sf . That means n, q and ω are the
same1. δ depends on the particular initial state, however there is no guarantee that δ for sf will
be generally higher or lower then δ for s0.

From [48], it is known that plan reuse cannot be generally less complex than replanning from
scratch. For the Back-on-Track-Repair (see Section 4.1), the inner planning is defined as Πback =
(L,A, sf , {s0, . . . , sm} ∪ Sg), therefore the time complexity is

O(|P|) ·OMAP +Oback = O(|P| · f(I) · n(nδq)δ+1 + |P| · n(nδq)δω+ε + 2|P|) = OBoT .

The complexity of retrieving the returning state is |P| (at worst a linear walk over the original
plan) and the concatenation with the suffix of the original plan is represented by another linear
operation of maximally |P| operations, therefore there is an additive term Oc = 2|P|. Planning for
a set of disjunctive goals, which are {s0, . . . , sm} can be described as m plannings for the single
goals, therefore the complexity of MA-Plan OMAP is multiplied by length of P which equals to m.

In the Simple-Lazy-Repair (see Section 4.2), firstly, the executable remainder is constructed
by a simulation of time complexity Orem which in the worst case require |P| testings of all ac-

1The difference in sizes of different states cannot be larger then |L|, which bounds it by a constant.

44 CHAPTER 4. PLAN REPAIR ALGORITHMS

tions’ |Act| possible preconditions |L|. After construction of the inner planning problem Πlazy =
(L,A, slazy, Sg), the result is concatenated with the original plan, formally

OMAP +Orem +Olazy = O(f(I) · n(nδq)δ+1 + n(nδq)δω+ε + |P| · |Act| · |L|+ |Plazy|) = OSLazy.

Since the length of the resulting plan part |Plazy| is polynomial w.r.t. δ, no additional exponential
dependence is added here.

The Repeated-Lazy-Repair (see Section 4.3) uses the Simple-Lazy-Repair as an inner repair tech-
nique and in worst case it degenerated to it, therefore the asymptotic time complexity is the same

OSLazy = ORLazy.

Note that in cases better then the worst case, the Simple-Lazy-Repair algorithm decreases the number
of usages of Simple-Lazy, therefore its practical complexity (in contrast to the worst case) would
be rather near to OSLazy · ρ−1, where ρ represent the frequency of the failures.

The last proposed plan repair algorithm—the Generalized-Repair (see Section 4.4)—is parametrized
by two index vectors F and G which are used in a repeated search for a solution of the multia-
gent plan repair problem. The time complexity is informally how many times the algorithm needs
generate and check a repair strategy × what is the complexity of the generate and check procedure.
The generate and check procedure consists of two proposition propagation procedures (by Defini-
tions 3 and 4) each in worst case using the same principle as the executable remainder2 and one
inner planning, hence

O(f(I) · n(nδq)δ+1 + n(nδq)δω+ε + 2|P| · |Act| · |L|) = OG1.

The procedure with complexity OG1 is in the Generalized-Repair used maximally |F |·|G| times. If
a solution is found, two additional concatenations are needed to finally build the solution, therefore

O(|F | · |G|) ·OG1 +O(|Ppre|) +O(|Psuf |) =

O(|P|2 · f(I) · n(nδq)δ+1 + |P|2 · n(nδq)δω+ε + 2|P|3 · |Act| · |L|+ |Ppre|+ |Psuf |) = OGEN ,

where |F | · |G| = O(|P|2), as the index vectors can parametrize at most all combinations of the
indices to the original plan P by Definition 17. Similarly to the Simple-Lazy-Repair, the lengths of
the resulting plan parts |Ppre| and |Psuf | are polynomial w.r.t. δ, thus no additional exponential
dependence is added here.

All the resulting time complexities of the algorithms do not comprise any extra exponential

2Technically, in this case, the extraction of the executable remainder is part of the proposition propagation process,
therefore there is one |P| · |Act| · |L|. The other |P| · |Act| · |L| is for the proposition back-propagation similarly related
to extraction of the subplan Psuf .

4.5. COMPLEXITY ANALYSIS 45

dependency on any of the parameters. The additional terms are always polynomial. Consistently
with [48], the asymptotic worst-case complexity is also never reduced, which is anticipated result
of the analysis. The idea of the presented plan repair techniques in general is of lowering δ by
simplifying the inner planning process with help of reuse of parts of the original plan. Since δ is in
OMAP in two exponent terms, such idea is positively supported by the analysis as well.

The results of the time complexity analysis of the repair algorithms are not in conflict with the
stated hypotheses. Hypothesis 2 targets taking only a subset of A which can in effect lower the
tree-width ω if the remaining agents are less coupled. In Hypothesis 3, the length δ of the inner
repair plan is targeted, as in the cases of problems with actions having long dependency trees,
it is theorized that fixing the problem sooner will require smaller δ than solving it later possibly
with longer reverting plan of a bigger δ. In the last Hypothesis 4, smaller δ should be achieved
by possibly short repair plans, where no reverting is caused by overusing of the original plans
f ∈ F, g ∈ G, f+g > m and no unnecessarily long repair plans are needed provided that f+g < m.

4.5.3 Communication Complexity of MA-Plan

For the study of communication complexity of presented multiagent plan repair algorithms, firstly,
the communication complexity of the inner planning process has to be known. Unfortunately, the
work of Brafman and Domshlak [7] formally tackle only time complexity.

The communication complexity of the ATC algorithm can be derived from space complexity
which was studied in [10]. The analysis will use the Big-O notation similarly to the previous
section. To distinguish time and communication complexity, the Big-O will use superscript c for
communication complexity Oc.

Size of each message in ATC is max
α∈A
|Dα|sep, where sep is size of a maximal separator size in

tree decomposition of the CSP. The size of the separator is in bucket-trees [10] the tree-width ω,
therefore a worst case size of one message is max

α∈A
|Dα|ω. Maximal number of messages communicated

Occc in a bucket-tree CSP solver is double the number of arcs (two messages for each arc in tree of n
vertex graph), therefore 2(n− 1), where n is the number of the buckets. The buckets represent the
CSP variables (with constraints in them resembling the principle of tree-decomposition), therefore
the number of the buckets is the number of agents in the coordination constraint (cc). Since the
internal planning constraints (ipc) are represented as unary constraints, they do not require any
communication. All together, it gives the communication complexity of the planner as

Occc = 2(n− 1) ·max
α∈A
|Dα|ω = Oc(εn(nδq)δω+ε + ε′) = Oc(n(nδq)δω+ε) = OcMAP ,

where ε = ω is dominated by δω in the exponent, ε = 2 is a polynomial coefficient and ε′ is
dominated by the first polynomial term. The communication complexity of planning using DisCSP
for coordination is therefore not exponentially dependent on number of agents, it is not dependent

46 CHAPTER 4. PLAN REPAIR ALGORITHMS

on the complexity of the individual planning I and it has no direct exponential dependence on the
size of the original planning problem |Π|, similarly to the time complexity. The communication
complexity is bounded by one exponential term in the number of the coordination points and
tree-width of the agent interaction graph

exp(δω).

4.5.4 Communication Complexity of the Plan Repair Algorithms

The communication complexity of the plan repair algorithms will be derived by an equal process
as in the case of the time complexity. It builds on the derived complexity of the inner planning of
MA-Plan which is in the case of communication Oc(n(nδq)δω+ε) = OcMAP .

Equally to the time complexity, replanning is in general the same as planning from the perspec-
tive of communication complexity. The only difference is in the initial state. That means n, q and
ω are the same and δ depends on the particular initial state without any general guarantees on its
change during replanning.

All proposed plan repair algorithms need a synchronization broadcast as the agents has to be
aware of new plan repair process in case of failure in a private fact. Such broadcast is an additive
factor Ocsync = O(n) as the messages are sent to all agents.

The Back-on-Track-Repair needs the synchronization broadcast and an inner planning process
with disjunctive set of goals {s0, . . . , sm} ∪ Sg. The retrieval of a state sj (see Algorithm 4.1) and
concatenation with the suffix is done individually by each agent. Therefore the communication
complexity is

Ocsync +OcMAP = Oc(n+ n(nδq)δω+ε) = OcBoT .

The Simple-Lazy-Repair needs a distributed simulation of execution together with extraction of
the executable remainder of P[k..∞]. In a worst case, such process requires application and broadcast
of each public action in the plan. There can be maximally |P| of those actions and the effects of
each action can be maximally of size of the language |L|, therefore the communication complexity
of the remainder extraction is Ocrem = Oc(n · |L| · |P|). With help of Ocrem, the communication
complexity of Simple-Lazy-Repair can be derived as

Ocsync +OcMAP +Ocrem = Oc(n+ n(nδq)δω+ε + n · |L| · |P|) = OcSLazy.

The final state slazy after the simulated execution of the executable remainder do not have to be
explicitly communicated as each agent knows its part of the state slazy and can start the consecutive
planning process with its part of slazy.

Equally to the time complexity, the communication complexity of the Repeated-Lazy-Repair is in

4.5. COMPLEXITY ANALYSIS 47

worst case the same as the complexity of the Simple-Lazy-Repair, since in worst case Repeated-Lazy
uses Simple-Lazy. That gives

OcSLazy = OcRLazy.

In the Generalized-Repair, the process is separable to repeated sub-processes of generating and
checking of a repair strategy. The communication complexity will be firstly derived for one such
sub-process. The two proposition propagation procedures, each in the worst case use the same
principle as the simulation of executable remainder and are used with one inner planning, therefore

Oc(n(nδq)δω+ε + 2n · |L| · |P|) = OcG1.

Equally to the time complexity, the sub-process with the complexity OcG1 can be used in worst
case |F | · |G| times. If a sound solution is found the agents has to inform each other, therefore
there is beside the initial synchronization a termination synchronization of Oc(n2), although the
local plans has not to be communicated as they are later executed by the particular agents. The
communication complexity of the Generalized-Repair is

Ocsync +Oc(|F | · |G|) ·OcG1 +Oc(n2) =

Oc(n+ |P|2 · n(nδq)δω+ε + 2n · |L| · |P|3 + n2) = OcGEN ,

where |F | · |G| = O(|P|2), as the index vectors can parametrize at most all combinations of indices
to the original plan P by Definition 17.

The analyzed communication complexities OcBoT , OcSLazy, OcRLazy and OcGEN do not bring any
new terms exponentially dependent on any of the parameters. Therefore the communication com-
plexity of all the proposed plan repair algorithms remains exponential only in the factor of number
of coordination points δ in the inner repair plan and tree-width ω of the agent interaction graph,
i.e., exp(δω). This result is anticipated as the communication complexity is usually proportional
to the time complexity as sending messages requires a computational time.

The resulting communication complexities of the plan repair algorithms concur with the pro-
posed hypotheses, similarly as in the case of the time complexity. Hypothesis 1 states that the
communication overhead is lowered by plan repair producing more preserving repairs in compari-
son to replanning. Since the communication complexity of replanning is exponentially dependent
on δ this hypothesis is supported by the analysis as far as at least one coordination point is spared,
because decreasing the exponential factor by one exp((δ − 1)ω) dominates any additional polyno-
mial factors added by the plan repair techniques. This is true only, if the problems are tightly
coordinated ω � 0. If it be to the contrary, the exponential factor is negligible even if δ is not

48 CHAPTER 4. PLAN REPAIR ALGORITHMS

decreased by the preservation of the repair, formally exp(δω)→ 1 iff δ → 0 or ω → 0.
The arguments used for the last three hypothesis copies those in the time complexity analysis.

Hypothesis 2 targets taking only a subset of A, which can in effect lower the tree-width ω if
the remaining agents are less coupled, and therefore lower the communication complexity. In
Hypothesis 3, the length δ of the inner repair plan should be minimized if failures of actions with
long dependency trees are fixed as soon as possible. In Hypothesis 4, smaller δ should be achieved
by possibly short repair plans by appropriate reusing of the original plan.

4.6 Implementation

The plan repair algorithms were implemented for further experimental evaluation, verification and
validation in high-fidelity simulation. All proposed algorithms stand on MA-Plan which makes the
implementation of the planner key part of the repair algorithms. The following sections summarize
implementation details of the used multiagent planner, new fixes and optimizations done in the
planner required for successful verification of the repair algorithms and implementation of the
particular plan repair algorithms as described and analyzed theoretically in the previous sections.

4.6.1 Multiagent Planner

Implementation of the multiagent planner used in this thesis denoted as MA-Plan was proposed by
Nissim et al. in [51]. The implementation was publicly available, therefore it was used and the
repair algorithms were built on it. Both the planner and the repair algorithms were written in the
Java language3. As mentioned in the previous sections, the coordination subproblem in the planner
is defined as a Distributed Constraint Satisfaction Problem (DisCSP) and it is solved by a DisCSP
solver. The inner planning subproblem is defined as a classical planning problem with landmarks
and it is solved by a heuristic search planner.

The algorithm used as the DisCSP solver is a customized Asynchronous-Backtracking (ABT) [57]
with Forward-Checking (FC) [70] heuristics. Since the efficiency of the DisCSP solver implementa-
tion is in the planner crucial, it was implemented and adapted in the original codes from scratch
not using any available DisCSP solvers. To improve its efficiency, it uses a specific process of local
selection of a value for a variable representing the agent’s individual plan. The process is based on
a heuristic called Least-Action-Landmarks-Added (LALA) [51]. The heuristic prefers CSP values
with lower number of landmarks for the inner planning process. The idea behind this is to make
the search easier for the inner planner and for further coordination as prospectively less public pre-
conditions has to be fulfilled by other agents. The drawbacks of the heuristics manifest in problems
with local plans, where no affecting of facts both in initial state and goal states leads to no solution.

3http://java.com/en/

4.6. IMPLEMENTATION 49

If the number of such values in the domain is large, it can significantly decrease the efficiency of
the planner.

After selection of a value by the LALA heuristics, it is added into the Current Partial Assignment
(CPA) of running ABT. Consecutively, the CPA is passed to a next agent as ABT prescribes. A
heuristics used to select the next agent prefers unassigned agents achieving most goals leveraging
the most constrained principle.

The process preparing the CSP values in the domain is based on an approach using generate-
and-test principle for all possible time positions of the actions got from the inner planner and
testing this timed actions together with their precondition requirements against the current CPA.
The requirement combinations (each requirement for each action) are added only based on previous
(already added) requirements, which means that combinations with invalid previous requirements
are not generated and tested.

As the inner planner, a Best-First Search algorithm is used with the Fast-Forward relaxation
heuristic, helpful actions heuristic and adapted landmark heuristic. Particularly, the implemen-
tation is an adapted JavaFF planner4. One of the adaptations is that the planner uses internal
projection of the public actions. It means, the actions are strip of public facts (in all their pre(a),
add(a) and del(a) sets). That is why an agent’s inner planner is able to create a plan even if some
of the public actions will be applicable only after applying other agent’s action effects. If the inner
planner returns a valid plan, it is used in the generate-and-test process of the timed action sequences
effectively prescribing part of the CSP domain of one agent. When it is not possible to generate
from such plan a CSP value, because the actions of the plan cannot be matched to any combination
of the time points, the inner planner is run again with all such forbidden action sequences from
previous runs. Another adaptation of the planner is that it operates with public actions required
by preconditions from the preceding requirements in form of landmarks. This principle forces the
inner planner to always include required public actions, as the landmarks are by definition required
in every sound plan [59].

From the perspective of the flow of the algorithm, the planning process passes four distinguish-
able phases, (i) centralized preparation of a DisCSP instance, (ii) initialization of solving process
for the DisCSP solver in a Goal-Agent, (iii) decentralized solving of the DisCSP problem and
(iv) decentralized finalization of the DisCSP solving process.

In the first centralized phase, operators and facts are parsed from a domain file and a problem
instance file respectively (both are described in PDDL [45]). The problem definition is enriched by
a clause describing what objects are agents in the planning problem. Subsequently, all operators are
grounded to actions (unfeasible action are ignored) according to facts form the problem definition.
Actions are distributed among the agents according to one of its parameters containing name of
one of the agents. Similarly to the actions, related atoms p ∈ L are assigned to particular agents

4http://www.inf.kcl.ac.uk/staff/andrew/JavaFF/

50 CHAPTER 4. PLAN REPAIR ALGORITHMS

as well. The atoms are assigned by the actions they are used in. After the process of action
and atom assignment, the public and private atoms are marked. All internal atoms are initially
treated as private, a public atom is an atom, which is in an internal set of atoms of more then one
agent (i.e., it can be affected or required by two different agents, see Section 3.1). Similarly, all
actions are initially treated as private, a public action contains at least one public atom (whether in
preconditions or in effects). After this initialization the agents are prepared to receive first messages
in the DisCSP solving process.

In the second phase, a special Goal-Agent is created and initialized. The agent contains only
one goal-action containing atoms of the goal term as preconditions. The agent is selected as a
first current agent for the DisCSP solving process. As the agent contains all goal atoms (even such,
which would be without the Goal-Agent private) it generates requirements for all regular agents
supplying a part of the goal term. The CSP domain for the goal agent has size l = δn, where n is
number of the agent. Each goal atom is public, because the preconditions of the goal-action are
goal atoms. Therefore the CSP domain generator creates all possible time positions of each public
proposition. That means the domain size of the goal agent is l|SG| = (δn)|SG|. This exponential
dependency on the number of goals was not considered in the theoretical analysis of [7] and caused
significant efficiency downgrade of the algorithm implementation.

The next phase is the decentralized process of DisCSP solving which follows the ABT algorithm.
There are several specifics of the solver. A fundamental one is that the DisCSP domains are gener-
ated during the solving process based on the results of the local planner (the process corresponds to
the internal planning constraint mentioned in previous section). Current agent working on the CPA
generates a local plan using the heuristic search with internal projection of the used actions. A local
plan consists of actions fixed in time points and has to satisfy current atom requirements (precondi-
tions of actions of previous agents) form the CPA. For such a plan, a new atom requirements ensue
from public actions in the plan and these new requirements are added into the CPA. Afterward,
the CPA is send to the next agent. If the last agent can satisfy all the requirements a solution is
found, otherwise the partial solution is backtracked and the previous agent tries to generate new
alternative local plan, generates new precondition requirements and the process continues. If the
backtracking process returns to the Goal-Agent and there are no other possible requirements, no
solution can be found.

In the final decentralized phase the agents know their local plans (if the multiagent plan exists)
and they can execute them in a distributed manner.

4.6.2 Planner Improvements

Since the DisCSP-based planner was used as the inner planner in the plan repair algorithms, its
reliability and stability was intensively tested on a wide spectrum of variations of the planning
problems generated by the randomized failures. This set was much larger, than the number of the

4.6. IMPLEMENTATION 51

original planning problems the planner was tested on by its authors. Such stress-testing revealed
several problems in the planner which required fixing and additional optimizations during the work
on the experiments and thereby for this dissertation. Three essential fixed parts were:

Public/private factorization overlap In specific cases, the routines for factorization of the
planning problem generated facts, which were both private and public. Practically, such
facts ended both in a public fact set and private fact set of one agent. According to the
MA-Strips definition in [7] (see Section 3.1), each fact should be either public or private.
Unfortunately, fixing this issue caused several other problems in other parts of the planner
which depended on the bug. Practically if an fact was both public and private, it was treated
by both the cooperative parts of the algorithm and by the inner planning part. In a sense,
making a fact both private and public is more robust as the fact is treated by both the
parts, however it have a negative impact on efficiency in worst case increasing the exponential
complexity term by increasing length of the coordination points δ.

The only supplier of a public fact In the original implementation, the method for obtaining
an internal projection of a public action was removing the precondition facts even if the
planing agent was the only supplier of such fact. This made the planner incomplete, since if
an agent is the only supplier of a fact in precondition, its inner planner has to plan for it and
therefore it must not be removed during the projection. Additionally, this fix increased the
computational efficiency of the planner 2×.

New and complete landmark generator The generator of the landmark sequences from the
fact requirements induced by other agents’ public actions was incomplete in a sense it did not
return all combinations of possible supplying actions. In a case of two or more concurrent
requirements by different agents at one time point, the generator did not return all possible
supplying actions of the planning agent. In the original implementation all the tested plan-
ning problems did not contain such situations, and therefore this problem did not appear. By
extending the set of testing domains by a tightly coordinated combinatorially intense prob-
lems (the cooperative pathfinding domain, see Section 5.1) this problem exhibited, as
the planner was not able to solve such problems. The landmark generator was redesigned
and implemented from scratch. Currently it is based on a principle of a generative vector
containing an ordered set of action lists with all possible actions at the time points. Such
vector is used for successive generation of possible sequences of the actions, i.e., defining the
possible landmark sequences. The initial implementation of the algorithm was done in Clo-
jure5 for more straightforward and flexible testing and followingly rewritten to Java because
of computational efficiency.

5Clojure is a dynamic programming language strongly influenced by Lisp that runs on the Java Virtual Machine
(http://clojure.org).

52 CHAPTER 4. PLAN REPAIR ALGORITHMS

Several parts of the planner were optimized, increasing the scalability of the planner both by means
of the number of agents and the length of the resulting plans:

Output plan length optimization The output of the original implementation of the planner
was in form of the pairs of public actions at time points and the inner plans related to the
particular DisCSP values representing the plans. As the plan repair algorithms required
the plans in the matrix form, an extraction process was implemented. The problem with
the resulting plan was that it did not considered empty actions bounded by the nδ limit
which is correct from the perspective of the complexity bounds, but it is wasting in a sense
of the plan repair. Therefore the extraction process was supplemented by a polynomial
shortening algorithm which moves all actions to as soon as possible time points and preserves
the dependencies among them. Such process does not jeopardy the soundness and complexity
bounds of the planner and spared considerable number of empty steps in the plan (which was
empirically verified).

DisCSP domain reordering The DisCSP domains were originally generated from the sooner
time points to the later time points, i.e., in a chronological order, however the goal-agent’s
requirements restrained the last possible time point in the possible public action sequences.
That caused the DisCSP domain generator generated large amounts of values (the public
action sequences based on the inner planning process) which were later unusable. Turning
the process around, i.e., staring the generative process from the last time points, increased
efficiency of the planner about 10× in tightly coordinated problems with higher numbers of
agents.

Inner planning depth optimization The original implementation of the adapted Best-First
Search (BFS) algorithm from JavaFF searched for a plan with any number of public ac-
tions. The search was limited only by visiting all reachable states. However the search can
be effectively limited by δ, as it represents the maximal number of coordination points (see
Section 3.1). Limiting the BFS by pruning plans with more public actions than δ increased
efficiency of the planer about 30× in tightly coordinated problems with higher numbers of
agents.

Inner planning cache As the inner planning process is often called with the same parameters in
case of backtracking in the ABT algorithm, the process was wrapped into a caching procedure.
The cache was implemented as an associative map with keys defined by the parameters of the
inner planner and with a value of the resulting plan. Addition of the local plan cache increased
efficiency of the planner about 4× in tightly coordinated problems with higher numbers of
agents.

Fixed fact optimization A lot of checking of the fact requirements in the generate-and-test pro-

4.6. IMPLEMENTATION 53

cess for the CSP domains was omitted by pruning of checks of all actions in the inner plans
only if they were not trying to delete a fixed fact. A fixed fact does not change any action.
This optimization increased efficiency of the planner about 2× in highly tightly coordinated
problems.

Removing NOOP actions The planner originally worked with action sets of the agents each
containing a NOOP action ε, however as the public action pairs (a, t) define implicitly not
only position of the actions, but also positions of ε actions, they could be removed. Removing
NOOPs from the action sets improved efficiency of the planner about 5× in tightly coordinated
domains.

In a result the fixes and optimizations increased computational efficiency of the planner in a best
case about 24000× in tightly coordinated domains. The increase diminish with simpler problems,
lower coupling and lower numbers of agents and increase with more complex problems. From an
empirical observation, the efficiency increase was exponential in case of the Inner planning cache.
In the other cases the exponential dependency was not confirmed, therefore the dependency was
rather only polynomial.

Two extensive optimizations remained for a future work. The first one comprise rewriting of
the process preparing the CSP values. In the original implementation the process is based on the
generate-and-test principle which forces the planner to generate large amounts of unused domain
values ahead. This optimization was already implemented, but needs more testing. The process
was completely rewritten to lazy routines preparing each CSP value just when it is required by
the ABT algorithm and implemented as a functional version of a generative structure for possible
plans based on a grammar-like structure. The idea of the underlying principle was described in [29].
Currently, the implementation needs an exhaustive testing and debugging as the changes affected
most of the planner codes especially of the DisCSP solver implementation.

The other future-work optimization is in the internal projection routines. Generally, the prob-
lem is that the internal projection removes all information about preconditions and effects of public
facts from the public actions, since the facts can be achieved by other agents. This means the inner
planner has to almost blindly generate all possible orderings of public actions in the plan. Private
facts of such actions (and prospectively private actions) are the only constraining information for
the planner and the CSP domain generator, if such even exist. To improve on this, the internal
projection has to be altered to preserve as most complete as possible public information and it-
eratively decrease amount of this information. This principle could be described as a multiagent
heuristics presuming that solving a problem locally by lower number of agents is always better than
rely blindly on help from all other agents.

54 CHAPTER 4. PLAN REPAIR ALGORITHMS

4.6.3 Multiagent Plan Repair Process and Algorithms

The multiagent planning, executing, monitoring and repair process has two phases. In the first
phase, for a given domain a multiagent plan is constructed using the MA-Plan algorithm. In the
second phase, the plan is executed by the agents acting in a shared environment. In the course
of the execution, the dynamics of the environment can interfere, possibly resulting in a failure of
the executed plan. Since the plan execution is monitored by the multiagent team, or a centralized
observer, upon a failure detection a plan repair algorithm is invoked. In turn, to find particular
repair plans, the MA-Plan algorithm is invoked as specified by the plan repair algorithms introduced
in the previous sections. The plan repair algorithms are technically wrappers around the planner
and invoke it if the fixing part of the plan is required.

A scheme listed in Algorithm 4.5 shows the pseudo-code of the process. Since complete informa-
tion is assumed, there is no difference between a decentralized and a centralized monitoring, hence
for clarity, the algorithm instantiates the centralized version of monitoring. As a consequence of
the information completeness assumption, also the execution of the centralized initialization of the
MA-Plan algorithm does not negatively affect the amount of communication in the system.

Before execution of each plan step, the algorithm checks whether a failure occurred and if so,
invokes a plan repair algorithm. Technically, the simulator of the execution is a Clojure program
with a multiagent plan as the input and a sequence of states as an output. Since this process
is straightforwardly describable as a functional process and the computational efficiency of the
execution is not an issue, Clojure was a fine fit.

At this point, it is not explicitly articulated what a failure amounts to, since this can be ap-
plication specific. Moreover, the implementation of the failures is designed as a modular element,
which enabled testing of various types of failures not only because of the conducted experiments,
but also because of easier debugging of the plan repair algorithms. From the theoretical point of
view, plausible options include checking for weak or strong failures, i.e., validity of effects of the
previously executed action or validity of preconditions of the action to be executed next. Alter-
natively, in some applications it might be useful to check for any exogenous change of the current
state not caused by the involved agents.

Finally, the algorithm accounts for the possibility that the plan repair process can result in
finding no solution to the failure. If that is the case, the algorithm finishes with the final plan
equal to the undefined plan χ. Note however, that Algorithm 4.5 does not necessarily terminate.
Termination of of the scheme relies on two factors. Firstly, it is the termination property of the
underlying multiagent planner invoked by the plan repair algorithms. Secondly, unless no repair
to the occurred failure can be found, the algorithm terminates when it is capable to fully execute
the computed plan. In environments where failures can occur relatively frequently, it can however
happen that the plan execution, monitoring and repair process would continually repair recurring

4.6. IMPLEMENTATION 55

Algorithm 4.5 Plan execution and monitoring scheme.
Input: An initial multiagent planning problem Π = (L,A, s0, Sg) and vectors F and G of indices

provided that the Generalized Repair algorithm is used.

1: P = MA-Plan(Π)
2: if P = χ then return fail
3: k = 1
4:
5: repeat
6: agents perform P[k]
7: if failure detected then
8: retrieve the current state s from the environment
9: P = Repair((Π,P, s, k), [F,G])
10: k = 1
11: else
12: k = k + 1
13: end if
14: until P = χ or k > |P|

failures sooner than the previous repair was fully executed. In a consequence, this would lead to
a gradual prolongation of the executed plan so that it will never reach the end of its execution.
Informally, for such domains, the Algorithm 4.5 terminates when the plan repair process generates
sharply shorter repaired plans than is the time horizon in which the failures in the environment
tend to occur. Results in [53] discuss steps towards a formal analysis of such a planning horizon
and classification of various planning domains with respect to the frequency of failures occurring
in an environment and the likelihood that an agent completes its plans without an interruption.

Instantiation of the execution, monitoring and repair scheme with the Repeated-Lazy-Repair
algorithm allows for an alternative plan execution model. The planning process invocation in the
repair algorithm could be delayed until the execution of the preserved fragment of the original plan
finishes. Such an approach could preserve significantly longer fragments of the original plan than
instantiation of the original scheme in Algorithm 4.5 with the Repeated-Lazy-Repair algorithm. That
is, upon a failure, instead of trying to repair the failed plan right away, as both the Back-on-Track,
Simple-Lazy and Generalized plan repair approaches invoked from the listed plan execution scheme
would do, the system can simply proceed with execution of the remainder of the original plan
and only after it finishes, the lazy plan repair is triggered. The approach simply ignores the plan
failures during execution and postpones the repair the very end of the process, hence the lazy label
for the two algorithms. In some domains, such an approach could significantly decrease the number
of multiagent planner invocations and in a consequence save a large amount of communication
overhead.

56 CHAPTER 4. PLAN REPAIR ALGORITHMS

Chapter 5

Experimental Evaluation

The algorithms were evaluated in various experiments designed to verify the stated hypotheses.
Since the techniques were designed as domain-independent, the particular domains were chosen to
cover various types of planning challenges, especially the domains spread from fully coordinated
to uncoordinated problems. This chapter describes the experimental setup and the results of the
experiments together with discussion and conclusions.

5.1 Domains

The experiments were conducted on four planning domains. Three of the domains originate in the
standard singleagent IPC planning benchmarks [25]. Similarly to the evaluation of the MA-Plan
implementation in [51], the experiments were mostly based on domains straightforwardly modifiable
to the multiagent setting: logistics, rovers, and satellites. Additionally, the set of IPC-
based domains was extended by a well-known coordination domain cooperative pathfinding.
The domain is hard from the perspective of combinatorial complexity of required coordination,
therefore only small instances were used which the MA-Plan was able to plan in reasonable time.

Instances of the logistics problems are about transporting packages among locations by a fleet
of heterogeneous transport vehicles. A representative example of a logistics problem Πlog3—used
as one of the experiments—contains three agents controlling two trucks T1 and T2 and one airplane
A. There are two cities, each with one storage depot (d1 and d2) and one airport (a1 and a2). The
trucks can move m(from, to) only within their cities, between one depot and one airport. The
airplane can fly f(from, to) among all airports in the environment, but cannot land at the depots.
All vehicles can load l(package, location) and unload u(package, location) a package at a location.
Initially, there is one package p at one of the depots and the goal is to transport it to the other
depot in the other city. The trucks start at the depots and the airplane starts at one of the airports.

57

58 CHAPTER 5. EXPERIMENTAL EVALUATION

A multiagent plan solving this particular instance is P log3 =

A :
T1 :
T2 :

 ε ε ε l(p, a1) f(a1, a2) u(p, a2) ε ε ε

l(p, d1) m(d1, a1) u(p, a1) ε ε ε ε ε ε

m(d2, a2) ε ε ε ε ε l(p, a2) m(a2, d2) u(p, d2)

 .

The coordination frequency for such problem is cf (Πlog3) = 4
9 = 0.4̄, as δ = 4, the length of the plan

|P log3| = 9 and the presented plan P log3 is minimal from the perspective of the coordination points.
For the context of the experiments, the logistics domain is understand as tightly coordinated,
since it requires relatively frequent coordination among the involved agents: airplanes and trucks
need to wait for each other to load or unload the transported packages. The parallel version of the
logistics domain, denoted in the experiments as logistics par, for 5 and 6 agents involves two
parallel logistics subproblems. The separation of the classical and parallel logistics was necessary,
because larger logistics problems with more agents were more combinatorially complex and the
planner was not able to solve them.

Problems of the rovers domain describe space exploration missions carried out by autonomous
rovers equipped for three types of tasks: soil analysis s, rock analysis r and imaging i. The resulting
data from the tasks has to be communicated c(s, r, i) back to the Earth in one data package over a
communication channel available only for one of the rovers at a time. The data can be communicated
only if they are prepared p(s/r/i). The rock and soil analysis can be executed provided that the
rover is at the appropriate position and has empty analytical store. The store can be emptied, if
required. The rovers can move among predefined waypoints with a known information about the
samples. Images can be taken only from appropriate positions and with a camera calibrated and in
a correct mode. An example problem Πrov3 used as one of the experiments has three fully equipped
rovers R1, R2 and R3. A solution Prov3 =

R1 :
R2 :
R3 :

 · · · p(r1) · · · p(i1) · · · p(s1) ε c(s1, r1, i1) ε

· · · p(r2) · · · p(i2) · · · p(s2) ε ε c(s2, r2, i2)
· · · p(r3) · · · p(i3) · · · p(s3) c(s3, r3, i3) ε ε

︸ ︷︷ ︸

10 private actions

has coordination frequency cf (Πrov3) = 3
13

.= 0.23, following the same procedure as presented in
the previous paragraph with logistics. Therefore, the rovers domain is loosely coordinated in
that it requires coordination only at the end of plans.

The satellites domain describe planning for a set of independent satellites providing various
types of deep space imagery i from the orbit. Each imaging instrument on board of a satellite has
to be firstly turned to one of predefined target directions. Secondly, each imaging instrument has
to be powered, switched on and calibrated before it can take an image t(i) in one of predefined
modes. A solution of one of the experimental instance Πsat3 using three satellites S1, S2 and S3 is

5.2. METRICS 59

Psat3 =

S1 :
S2 :
S3 :

 · · · t(i1)
· · · t(i2)
· · · t(i3)

 .

︸ ︷︷ ︸
3 private actions

In this case, the coordination frequency is cf (Πsat3) = 0
3 = 0, as there is no public action in an

optimal plan. Therefore the domain is uncoordinated in that it does not need any coordination
between the satellites acquiring images individually.

Finally, in the cooperative pathfinding domain, a team of robots move on a 3×3 grid (po-
sitions x1y1 to x3y3), where only a single robot can occupy one cell. The domain is not a standard
benchmark from IPC, therefore the particular problems used in the experiments are depicted in
Figure 5.1.1 . The goal for the robots is to move m(from, to) to other positions usually occupied
by the other robots. A representative problem Πcp3 contains three robots R1, R2 and R3 and a
solution plan Pcp3 is

R1 :
R2 :
R3 :

 m(x1y2, x1y1) m(x1y1, x2y1)
m(x2y1, x3y1) m(x3y1, x3y2)
m(x3y2, x2y2) m(x2y2, x1y2)

 ,

consequently the coordination frequency cf (Πcp3) = 2
2 = 1 as each action in an optimal plan is

public and therefore the domain represent fully coordinated problems.

Figure 5.1.1: Instances of cooperative pathfinding problems with 2 to 7 agents (problems with
5–7 agents are used only in Chapter 7). Depicted robot positions are in the initial states and the
arrows points at cells they have to move to.

5.2 Metrics

Four metrics were used to evaluate the measurements:

execution length is the overall number of joint actions the experimental setup executed,

planning time is the measured cumulative time consumed by the underlying MA-Plan planner

60 CHAPTER 5. EXPERIMENTAL EVALUATION

102

103

104

105

106

107

108

109

101 102 103 104 105 106 107 108 109 1010

C
om

m
un

ic
at

io
n

[B
]

Time [ms]

Relation of time and communication complexity

Coop. pathfinding
Logistics

Rovers
Satellites

Figure 5.2.1: Relation between communicated bytes and computation time required for solving the
plan repair problems.

used for generating initial and repair plans,

repair time is the overall time spent in MA-Plan invocations minus the first planning process of
the initial plan; and finally,

communication corresponds to the number of messages and communication volume in bytes
passed between the agents during the planning and plan repair processes. That is messages
generated by the DisCSP solver in the MA-Plan planner.

To account for differences in essential computational and communication complexity of the
domains, a relationship experiment between these two measures was conducted. Figure 5.2.1 depicts
the results and demonstrates that there is no essential discrepancy between the computational and
communication complexity of the plan repair solutions. That means, the following presented results
are not biased by problems extremely hard in time and simple in communication or vice versa.

5.3. FAILURE TYPES 61

5.3 Failure Types

Two types of plan failures were considered: action failures and state perturbations. Both failure
types are parametrized by an uniformly distributed probability P which determines whether a
simulation step fails or not. A failure is generated only if there exists a plan to a goal state, which
obviates problems with irreversible actions. Both failure types are weak failures. That is, they are
not handled immediately, but can preclude the plan execution and later result in a strong failure.
Upon detection, a strong failure is handled immediately by one of the plan repair algorithms.

An action failure is simulated by not-execution of some of the individual agent’s actions from
the actual plan step. The individual action is chosen according to a uniform probability distribution
over the positions within a joint action. The individual failed action is then removed from the joint
action and the current state is updated by the modified joint action. Since the agents do not know
which action failed, a simple solution to only locally find the right actions is not possible.

The other simulated failure type, state perturbation, is parametrized by a positive non-zero
integer c which determines the number of facts removed from the current state, as well as the
number of facts which are added to it. The facts to be added or removed are selected also randomly
from the domain language according to a uniform distribution.

5.4 Experimental Setup and Process

The implementation of the experimental setup is based on a centralized simulator of the environ-
ment integrating the multiagent domain-independent planner MA-Plan. The individual agents are
initialized, together with a given planning problem instance. Each agent runs in its own thread and
they deliberate asynchronously. The agents send peer-to-peer messages between themselves via a
centralized simulator as well. The messages are sent by the integrated MA-Plan planner exclusively
in the DisCSP phase.

The experiments were performed on FX-8150 8-core processor at 3.6GHz with Java Virtual
Machine limited to 2.5GB of RAM. The plan repair process together with the algorithms was
implemented as described in Section 4.6.3 in Java and Clojure languages. The detection if a
generated failure is repairable was done by the Fast-Forward planner [24]. It was used the original
implementation FF-v2.3 of the planner in C which is publicly available from its webpage1. The
planner was run from Java as an additional process. To parametrize the planner, a temporary
PDDL file with the particular replanning problem was created. After planner finished, the textual
results were parsed back in the Java process. Each plan repair experimental run was parametrized
by:

• identifier of the plan repair algorithm,
1http://fai.cs.uni-saarland.de/hoffmann/ff.html

62 CHAPTER 5. EXPERIMENTAL EVALUATION

– the additional parametrization of the Generalized-Repair was represented in the code
under different identifiers,

• the planning domain in PDDL,

• the original planning problem in PDDL,

• the failure generator parameters (the failure probability P and the perturbation amountc in
form of number of fact for addition c+ and for removal c−),

– the definition which of the failure generators to use was in the code,

• a seed number for the random generator (for reproducible debugging).

An output from one experiment was added as one row into a resulting file, incrementally creating a
matrix of the results. The experimental runs were iteratively run from a Bash2 shell script for easy
and flexible configuration of each experimental batch and for independent crash testing outside of
the Java Virtual Machine.

The finalized matrix after all experimental runs formed an input for an Octave3 script. The
script statistically processed the data and either generated a data-set for Gnuplot4 graph renderer
or directly generated the resulting graphs or data tables.

5.5 Results and Discussion

To validate the presented hypotheses four sets of experiments were prepared. The first set validated
generally how much beneficial is preserving plan repair in contrast to replanning from scratch and
additionally validated what are boundaries of the hypothesis. The other three experiments built
on the results of the first one and deepens the study on how particular multiagent plan repair
techniques and particular parametrization perform in different planning domains.

The following sections are organized using one pattern which firstly describes what plan repair
algorithms or their parametrization were used in the experiments and consecutively what are the
results with discussion how the results concur with the stated hypotheses.

5.5.1 More Preserving Repairs

The first hypothesis targets the fundamental question of the research in this dissertation whether
preserving multiagent plan repair can gain substantial computational and communication efficiency
in contrast to replanning from scratch and ideally with what limitations.

2http://www.gnu.org/software/bash/
3GNU Octave is an open source interpreted language, primarily intended for numerical computations, compatible

with Matlab, http://www.gnu.org/software/octave/.
4http://www.gnuplot.info/

5.5. RESULTS AND DISCUSSION 63

Used Algorithms

To evaluate validity of Hypothesis 1, the multiagent planning problems were tested against a plan
repair algorithm implementing replanning from scratch and two of the repair algorithms Back-
on-Track-Repair (BoT, see Algorithm 4.1) and Repeated-Lazy-Repair (RLazy, see Algorithm 4.3)
introduced in the previous chapter.

Individual experimental measurements were parametrized by the plan failure probability P and
each problem instance was executed 5–10 times with various random seeds. The resulting data are,
in the figures, presented with the natural distribution. The box-plot charts depict the differences
between the minimal and the maximal measurements, together with the standard deviation. The
accompanying charts represent the percentage ratio between the measured variable for the particular
repair method and replanning from scratch (normalized at the 100% level). Since the MA-Plan
planner was used as a black-box algorithm, the relative proportion to the replanning approach bear
a higher significance than the particular absolute numbers. The values presented in the result table
are average values from the measurements of the same parametrization.

Efficiency problems of the original MA-Plan implementation (in [51]) limited the experiments
to plans with maximally six coordination points per agent. Additionally, the Back-on-Track-Repair
algorithm could not leverage disjunctive goal form (see construction of Πback in Algorithm 4.1)
and this was emulated by an iterative process testing all term conjunctions in a sequence and thus
resulting in multiple runs of MA-Plan instead of a single run with disjunctive goal.

Results and Discussion

The first batch of experiments directly targeted validation of Hypothesis 1:

Multiagent plan repair is expected to generate lower communication overhead in
tightly coordinated domains.

logistics and cooperative pathfinding, as coordinated domains with dynamics of the simu-
lated environment modeled as action failures, were suitable to provide required insights. Table 5.1
shows results for a fixed failure probability P = 0.3 and Figures 5.5.1, 5.5.2 and 5.5.3 depict the
results of the experiment for 3 agents logistics with variable probability P .

The highlighted results for 4-agent logistics in the table shows that the communication over-
head generated by the Repeated-Lazy-Repair (RLazy) algorithm is at 25% of that generated by the
replanning approach. For 4-agent cooperative pathfinding, the communication overhead gener-
ated by the Back-on-Track-Repair (BoT) is at 18% of that generated by the replanning. Additionally,
the communication overhead decreases with the increasing number of agents in the problems. That

64 CHAPTER 5. EXPERIMENTAL EVALUATION

D
om

ain
A
gents

R
epair

tim
e
[m

s]
N
o.

ofm
essages

[-]
C
om

m
unication

[kB
]

E
xec.

length
[-]

B
oT

R
Lazy

R
eplan

B
oT

R
Lazy

R
eplan

B
oT

R
Lazy

R
eplan

B
oT

R
Lazy

R
eplan

logistics
2

115.3
116.1

145.6
13.9

8.2
10.9

2.0
1.7

2.3
8.8

14.3
10.7

3
178.0

149.6
257.2

33.7
18.0

59.5
5.0

3.6
6.2

13.2
18.7

15.9
4

266.2
162.1

479.3
89.5

29.1
114.7

13.3
6.6

26.5
15.5

21.5
18.1

logistics
(par)

5
73.7

74.0
81.3

23.2
21.8

22.5
4.4

4.4
5.0

13.5
14.6

14.9
6

126.0
84.1

110.7
49.6

32.5
60.9

9.3
6.8

9.6
11.4

12.4
12.0

coop.
pathfinding

2
23.9

115.6
93.2

2.4
2.2

2.2
0.6

0.6
0.6

2.8
3.2

2.6
3

28.1
261.5

374.6
12.9

20.0
12.7

0.7
4.5

3.4
2.4

3.1
3.4

4
29.4

19568.6
6529.8

20.0
14k

19.1
0.9

3002.0
5.1

2.3
4.0

3.3

rovers
2

381.3
179.8

249.8
13.0

7.4
10.0

2.7
1.9

2.7
14.7

20.3
14.5

3
374.5

300.6
489.9

15
13.6

22.4
3.3

3.6
6.3

12.5
19.5

14.5
4

798.3
634.4

650.5
42.5

30.0
29.1

7.6
8.3

8.9
15.3

22.1
13.6

satellites

2
80.3

67.5
67.5

6.2
4.9

3.8
1.3

1.1
0.9

5.8
7.5

5.1
3

126.9
81.9

139.9
15.8

7.6
15.3

2.9
1.8

3.7
6.9

7.0
6.5

4
139.2

144.4
176.5

21.8
14.5

18.2
3.8

3.6
4.7

6.7
6.9

5.6
5

154.5
232.9

222.3
30.0

17.7
25.9

5.6
4.8

7.3
5.7

6.7
5.5

6
1452.8

48093.9
23027.7

57.3
32.5

38.2
11.6

9.4
11.7

6.9
7.1

5.7

Table
5.1:

R
esults

of
experim

ents
for

alldom
ains

w
ith

probability
P

=
0.3

and
action

failures.
T
he

highlighted
cells

are
the

best
results

for
a
particular

dom
ain

and
a
particular

m
etrics.

T
he

bolded
results

distinctively
support

the
core

hypothesis
ofthe

paper.

5.5. RESULTS AND DISCUSSION 65

Figure 5.5.1: Experimental results of the communication metrics for logistics domain with 3
agents and action failures.

means, the plan repair algorithms scale better than replanning from scratch. The trends in Fig-
ures 5.5.1, 5.5.2 and 5.5.3 for logistics domain show that the results are also valid for higher values
of P . Furthermore the overhead decreases with increasing failure probabilities. The communica-
tion overhead generated in the experiment for various probabilities P by the Back-on-Track-Repair
algorithm is, over all the measured probabilities, on an average at 59% (36% at best) of that gen-
erated by the replanning approach. The Repeated-Lazy-Repair algorithm performed even better
and on average produced only 43% (11% at best) of the communication overhead generated by the
replanning algorithm. In a consequence, the experiments strongly support the first hypothesis.

The overall time spent in the planning phase (used by the MA-Plan algorithm) by the plan repair
algorithms echoes the results for the communication overhead. Plan repair scales better with higher

66 CHAPTER 5. EXPERIMENTAL EVALUATION

Figure 5.5.2: Experimental results of the planning time metrics for logistics domain with 3 agents
and action failures.

numbers of agents in both logistics and cooperative pathfinding. On average, over all the
measured probabilities P in 3-agent logistics, the computational efficiency was at 54% (34% at
best) and at 51% (12% at best) for Back-on-Track-Repair and Repeated-Lazy-Repair respectively in
comparison to replanning. Figure 5.5.1 depicts these results.

The second batch of experiments focused on boundaries of validity of the positive result pre-
sented above. In particular, the condition on the coordination tightness and feasibility of failures
were validated. The auxiliary hypothesis states:

With decreasing coordination frequency of the planning domain, the communication
efficiency gains of repair techniques should decrease. For loosely coordinated domains

5.5. RESULTS AND DISCUSSION 67

Figure 5.5.3: Experimental results of the execution length metrics for logistics domain with 3
agents and action failures.

the communication efficiency of plan repair should be on-par with that of the replanning
approach.

To validate the auxiliary hypothesis the experiments were run with rovers as a loosely coordinated
and satellites as an uncoordinated planning problem. The results in Table 5.1 shows that the plan
repair algorithms are only slightly better (maximally 10%) in terms of the generated communication
overhead than replanning, regardless of the number of agents. The trend in Figure 5.5.4 shows
similar results for various failure probabilities P . The presented results support the auxiliary
hypothesis.

The third batch of experiments targeted the perturbation magnitude of the plan failures. The
second auxiliary hypothesis states:

68 CHAPTER 5. EXPERIMENTAL EVALUATION

Figure 5.5.4: Experimental results for rovers domain with 3 agents and action failures.

Communication efficiency gain of plan repair in contrast to replanning should de-
crease as the difference between the nominal and the corresponding failed states in-
creases.

The underlying intuition is that, in the case the dynamic environment generates only relatively
small state perturbations and the failed states are “not far” from the actual state, the plan repair
should perform relatively well. On the other hand, if the state essentially “teleports” the agents to
completely different states, replanning tends to generate more efficient solutions than plan repair.

To tackle this hypothesis, the logistics experiment was modified to simulate state perturba-
tions as the model of the environment dynamics. Figure 5.5.5 depicts results of the experiment for
c = 1. The perturbed state for c = 1 is produced by removing one term from the actual state and

5.5. RESULTS AND DISCUSSION 69

Figure 5.5.5: Experimental results for logistics domain with 3 agents and state perturbations
with c = 1.

adding another one. As the chart shows, under random perturbations the plan repair technique
lost its improvement against replanning. For stronger perturbations with c = 2, 3, 4 (not shown in
the figure), the ratio between plan repair and replanning remained on average the same. The trend
of the absolute numbers of messages, planning time and execution length was slightly decreasing,
as the probability of opportunistic effects increased.

Beside supporting the presented hypotheses the results also show the differences between the two
plan repair algorithms. Table 5.1 highlights the best results for communication volume and planning
time. In most cases the Repeated-Lazy-Repair algorithm is more efficient in communication than the
Back-on-Track-Repair algorithm. The exceptions are the cooperative pathfinding and rovers

70 CHAPTER 5. EXPERIMENTAL EVALUATION

domains with higher numbers of agents. These problems share high combinatorial complexity
(cooperative pathfinding in coordination and rovers in local planning) and therefore more
plan preserving techniques, as Back-on-Track-Repair, benefit.

5.5.2 Number of Repairing Agents

Regardless of the theoretical results presented in [7] showing that the computational complexity of
DisCSP-based multiagent planning is not exponentially dependent on the number of the agents, in
practical experiments, there is a substantial dependence of this number on required communication
and computational effort. This set of experiments analyzes this relation.

Used Algorithms

To validate Hypothesis 2, an extensive set of plan repair algorithms based on the Generalized-Repair
algorithm was used. The algorithms used parametrization to act as fully suffix (Back-on-Track-
Repair like) and fully prefix (Simple-Lazy-Repair like) approaches respectively and formed three
main groups: one without agent count minimization, and two with agent count minimization. First
of the minimization groups reuse the original plan as a suffix and the other one as a prefix.

The difference among the algorithm instances within one of the groups lies in a preference
between agent minimization, size of preservation of the original plan and bound on the maximal
length of the newly generated repair plan component P∗. This approach restrain bias prospectively
caused by unbalanced influences of the agent minimization on various types of plan repair.

The approach used to minimize the number of involved agents was based on the notion of a
set of supporting agents. The iterative process from Algorithm 4.4 was extended with an iteration
starting only with a set of agents providing at least one action, which can contribute to the repair
plan by a required proposition(s), i.e., support part of Sg 	 Psuf . If such team of agents was not
able to solve the plan repair problem, the team was extended by additional agents supporting any
of the current agents in the team by means of contributing to prepositions in their preconditions.
If such additional agent did not exist and the team was still not containing all the agent from A,
a random agent was added into the team and the process continues.

Results and Discussion

The experiments were conducted in all presented experimental domains and for all achievable
combinations of agent counts. That gave twelve domain and problem instances. Each of the group
contained six variances of the algorithms giving 216 experiments with the problem instances. Each
of the experiments was averaged over 5 measurements with different random seeds.

Figure 5.5.6 shows results of the first batch of experiments. The first group of repair algo-
rithms not minimizing the number of involved agents (red color) is in most measurements in both

5.5. RESULTS AND DISCUSSION 71

10
-3

10
-2

10
-1

10
0

10
1

10
2

1
19

37
54

Comp. time, vs. replanning [-]

A
lg

or
ith

m
 in

st
an

ce
 [-

]

C
oo

pe
ra

tiv
e

pa
th

fin
di

ng

10
-1

10
0

10
1

10
2

10
3

1
19

37
54

Comp. time, vs. replanning [-]

A
lg

or
ith

m
 in

st
an

ce
 [-

]

Lo
gi

st
ic

s

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

1
19

37
54

Comp. time, vs. replanning [-]

A
lg

or
ith

m
 in

st
an

ce
 [-

]

R
ov

er
s

10
-1

10
0

10
1

10
2

10
3

1
19

37
54

Comp. time, vs. replanning [-]

A
lg

or
ith

m
 in

st
an

ce
 [-

]

S
at

el
lit

es

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

1
19

37
54

Communication, vs. replanning [-]

A
lg

or
ith

m
 in

st
an

ce
 [-

]

C
oo

pe
ra

tiv
e

pa
th

fin
di

ng

10
-1

10
0

10
1

10
2

10
3

1
19

37
54

Communication, vs. replanning [-]

A
lg

or
ith

m
 in

st
an

ce
 [-

]

Lo
gi

st
ic

s

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

1
19

37
54

Communication, vs. replanning [-]

A
lg

or
ith

m
 in

st
an

ce
 [-

]

R
ov

er
s

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

1
19

37
54

Communication, vs. replanning [-]

A
lg

or
ith

m
 in

st
an

ce
 [-

]

S
at

el
lit

es

Fi
gu

re
5.
5.
6:

C
om

pa
ris

on
of

va
rio

us
pl
an

re
pa

ir
al
go
rit

hm
si
n
pr
op

or
tio

n
to

re
pl
an

ni
ng

(b
la
ck

lin
ea

ty
=

1)
w
ith

fa
ilu

re
pr
ob

ab
ili
ty

P
=

0.
3.

Ea
ch

po
in
t
re
pr
es
en
t
a
m
ea
n
of

se
ve
ra
lr

un
s
of

on
e
of

th
e
pa

rt
ic
ul
ar

re
pa

ir
al
go
rit

hm
s.

T
he

re
d
gr
ou

p
co
nt
ai
ns

pl
an

re
pa

ir
al
go
rit

hm
s
us
in
g
on

ly
th
e
fu
ll
se
t
of

ag
en
ts

in
vo

lv
ed

in
th
e
or
ig
in
al

pl
an

ni
ng

pr
ob

le
m
,t
he

gr
ee
n
gr
ou

p
co
nt
ai
ns

al
go
rit

hm
s

us
in
g
va
rio

us
te
ch
ni
qu

es
to

m
in
im

iz
e
nu

m
be

r
of

ag
en
ts

in
vo
lv
ed

an
d
pr
es
er
vi
ng

su
ffi
x
of

th
e
or
ig
in
al

pl
an

an
d
th
e
bl
ue

gr
ou

p
co
nt
ai
ns

al
go
rit

hm
s
al
so

m
in
im

iz
in
g
nu

m
be

r
of

ag
en
ts

an
d
pr
es
er
vi
ng

pr
efi

x
of

th
e
or
ig
in
al

pl
an

.

72 CHAPTER 5. EXPERIMENTAL EVALUATION

A :
T1 :
T2 :

 ε ε ε l(p, a1) f(a1, a2) u(p, a2) ε ε ε

l(p, d1) m(d1, a1) u(p, a1) ε ε ε ε ε ε

m(d2, a2) ε ε ε ε ε l(p, a2) m(a2, d2) u(p, d2)

8 7 6 5 4 3 2 1

Figure 5.5.7: A multiagent plan solving the initial logistics problem used in the experiments.
Empty actions are denoted as ε. The overlines mark public actions. The numbers in the last row
represent particular counts of steps, i.e., number of actions m, to the end of the plan.

computational and communication metrics worse than the baseline replanning algorithm (such
measurements are over the black line representing replanning). The suffix preserving algorithms
minimizing numbers of agents (green color) is on the other hand nearly in all measurements bet-
ter in both metrics than the baseline algorithm with an exception in the simplest cooperative
pathfinding problems.

The group of plan repair algorithms minimizing the number of involved agents and preserving
prefix part of the original plan (blue color) is on tie or better with the replanning in rather loosely
coordinated domains decreasing the communication and computational overheads with decreas-
ing coordination of the domains. However in tighter coordinated domains the agent minimizing
prefix-based algorithms fall behind the replanning baseline. In logistics domain, only 33% of the
algorithms were better by means of communication overheads and only 18% by means of computa-
tional overheads. With increasing coordination the approach lose more. These results support the
second hypothesis.

Additionally, the results revealed that the prefix-based approaches, as not the best in all agent
minimizing approaches, in most of the experiments has one of the best approaches outperforming
the best suffix-based repair. In the logistics domain the separation between the best prefix-based
and the best suffix-based plan repair algorithm is about a half an order of magnitude in favor of the
prefix-preserving approach. On the other hand, in cooperative pathfinding, suffix approaches
gain an order and more.

5.5.3 Repair of Long-term Dependencies

The intuition behind the third hypothesis can be rephrased as follows: If an action fails and it has
potentially a lot of future dependencies, possibly of other agents or even the in the goal, trying
to fix it as soon as possible is rather better idea, than ignore it and try to repair it later. The
experiments described in this section were conducted to validate this concept.

5.5. RESULTS AND DISCUSSION 73

Used Algorithms

The most straightforward approach here is to compare the two plan repair algorithms reusing the
whole original plan either as a prefix or as a suffix. These algorithms are again modification of the
plan repair part of Algorithm 4.4 such that there is no iteration over various f ∈ F and g ∈ G, but
only two fixed values. The pure prefix algorithm (Lazy like) uses fixation f = {m}, G = {0} and
the pure suffix algorithm (BoT like) uses fixation F = {0}, G = {m}.

Furthermore, to be able to demonstrate the behavior and to explain the results, recall details
on the logistics domain. The problem used in the experiments was described in Section 5.1 as
the representative problem Πlog3. It contains two trucks T1 and T2 and an airplane A, two storage
depots d1 and d2 and airports a1 and a2. The trucks move m(from, to) only within their cities
and the airplane flies f(from, to) only among airports. All vehicles can load l(package, location) and
unload u(package, location) one package p at any of the locations. The trucks start at their depots
and the airplane at a1. The goal is to transport the package from d1 to d2. An optimal multiagent
plan solving this particular instance is depicted with time steps in the matrix form in Figure 5.5.7.

Results and Discussion

To validate Hypothesis 3, the pure prefix-preserving and pure suffix-preserving repair algorithms
were run in all testing domains. Ratio of successful repairs of these two repair algorithms against
replanning was measured by means of computation time. In Figure 5.5.8, the results of these
experiments are summarized.

In the rovers and satellite domains the plans solving the problem do not contain any
significant actions by means of number of future dependencies to the overall count of actions in
the plan. In satellites, all actions are private and therefore actions of one agent depend only on
other actions of the same agent. Additionally, the individual plans of the agents are relatively short
(three to four actions) and therefore the private dependencies are never longer than four actions.

Multiagent plans for the rover problems contain several public actions at the end of the
plan, representing always only one rover communicating at one time point. Although the plans
solving the rovers problems contain public actions, there are again no long dependencies among
the actions. The dependencies in the private part of the plan contain three components, each
containing three to four private actions. Consequently, the private dependencies are, similarly to
the satellite problems, maximally four actions long. The dependencies among the public actions
are even shorter, as there is the same number of public actions as agents, which means maximally
three-action public dependencies for three agents. The dependency link between one public action
and one dependent private component increases the maximal dependent length to maximally seven
actions (four private actions of the component bound to three public actions successively dependent
on each other).

74 CHAPTER 5. EXPERIMENTAL EVALUATION

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3

R
at

io
 o

f s
uc

ce
ss

fu
l r

ep
ai

rs
 [-

]

Length m of repaired segment, m [-]

Cooperative Pathfinding

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8

R
at

io
 o

f s
uc

ce
ss

fu
l r

ep
ai

rs
 [-

]

Length m of repaired segment, m [-]

Logistics

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 1011

R
at

io
 o

f s
uc

ce
ss

fu
l r

ep
ai

rs
 [-

]

Length m of repaired segment, m [-]

Rovers

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3

R
at

io
 o

f s
uc

ce
ss

fu
l r

ep
ai

rs
 [-

]

Length m of repaired segment, m [-]

Satellites

Figure 5.5.8: Comparison of success ratio against replanning between prefix-preserving (blue, Lazy)
and suffix-preserving (green, Back-on-Track) plan repair algorithms.

In such repair problem, even if one of the leading actions in a private component fail, lazy
approach solves nearly the complete problem only by reusing the original plan. More precisely,
it reuses the original solution for the rest of the private components and all the public actions
except one of the failed agent. As the results show, the prefix-based repair is always better then
the suffix-based and the ratio between these two is rather stable over different points in the plan.

The situation changes in the logistics domain. In logistic with three agents and one package,
there is a chain of dependent actions. Particularly, u(p, d2) depends on l(p, a2), which depends on
u(p, a2) and so on to the first action of the plan l(p, d1). The dependency chain has six actions in
the example plan and occupy the complete length of it. As the results show in Figure 5.5.8, there
are two distinctive peaks where the suffix repair outperforms the prefix repair, additionally with a
increasing trend. The first one is for repair plans of length m = 3 and the other one is for m = 6.

5.5. RESULTS AND DISCUSSION 75

As presented in Figure 5.5.7, these lengths correspond to the package handover points in the plan,
more precisely, to repair of failing unloads u(p, a1) and u(p, a2). Ignoring a failure of unloading by
the pure lazy approach (similarly to the Lazy approaches) causes the package is left in the last
vehicle and the rest of the team finishes the executable remainder of the plan, which in principle
means the vehicles are moving, but they are not transporting the package. On the other hand, in
the same circumstances, the suffix-preserving repair only repeats the unload action and successfully
continues with the rest of the original plan ending in a goal state.

One can argue that the complement load actions should be repaired more efficiently using this
same argumentation as well. This is very true, however this phenomenon is not captured in the
results, because of a particular implementation of the MA-Plan planner. The explanation is based
on the fact the used planner efficiency is more dependent on small differences in number of involved
agents, than the number of planned actions. In the case of m = 3 (the u(p, a2) action), 2 agents
are needed to do lazy repair, because firstly the executable remainder of the original plan is reused
to the last state without the package and than the planner has to be used to generate repair plan
P∗reverting all the moves and planning to one of the goal states again. Such plan has to firstly
unload the package from the airplane A and then transport it successfully by the truck T2 to the goal
destination d2. On the other hand, the pure suffix approach (similarly to Back-on-Track) generates
only a plan repeating the unload action u(p, a2) and afterward continues with the original plan as
a suffix. This planning problem involves only one agent, in particular, the airplane A carrying out
unload of the package. The same principle can be applied to m = 6, but with all three agents for
pure lazy repair, but only 2 agents for pure suffix repair.

In the last problem of cooperative pathfinding, the length of a sequence of dependent
actions correspond to the length of the plan, as all the actions in such plan are public and inter-
dependent. Nevertheless, this is quite different “order of dependency”, than in satellites for
example. In sattelites, all the actions are dependent as well, but only within one agent, whereas
here, the actions are dependent across the agents. In the experimental results of the cooperative
pathfinding a trend arises. In such dense types of inter-dependent problems, the longer are the
repaired plans, the more the suffix repair algorithm gains against the prefix one.

The results of these experiments, namely of logistics and cooperative pathfinding, mod-
erately support the third hypothesis. In Chapter 7, the conclusions on this hypothesis are extended
with usage of distributed forward-search planner.

5.5.4 Repair Appropriately Reusing the Original Plan

A fundamental principle behind the presented plan repair algorithms can be described as action
ordering preservation or, in other words, reuse of parts of former plans. It is not intuitively clear
what is a good strategy how to reuse the original plan, moreover in relation to a particular planning
domain. The experiments conducted in this sections provides insights into this issue.

76 CHAPTER 5. EXPERIMENTAL EVALUATION

Figure 5.5.9: Scheme of a two-dimensional space representing plan repair algorithms preserving
different parts of the original plan and reusing it in different ways. The blue segments represent
prefix-based reuse and the green ones the suffix-based reuse. The notable states are: initial state
s0, last achieved state sk induced by the original plan, exceptional state sf after a failure and the
last anticipated state sm ∈ SG, provided that the original plan would be executed without a failure.
For the sake of brevity, other states are not present in the diagrams.

Used Algorithms

A battery of plan repair algorithms was prepared to validate Hypothesis 4. In these experiments,
the algorithms were modified in a sense how and how much they reuse the original plan. Such
modifications led to a two-dimensional discrete space of different plan repair algorithms, as depicted
in Figure 5.5.9, representing a structure of the repaired plan.

Each of the nine diagrams in the figure describes a variation on a resulting plan repaired by
one particular modification of the algorithm in a context of execution of the original plan. The
diagrams start with an environment in the initial state s0 and it is anticipated to continue with
help of the original plan to the last state sm which is one of the goal states sm ∈ SG. However,
during execution of an action following a state sk, an action execution failed and the state of the
world ends up not in the state sk+1, but in a state sf , out of the anticipated sequence of states and
actions. To fulfill the goal (more precisely one of the defined goals), the agents use one of the plan
repair algorithms, which under the condition of perfect execution, would transform the world from
sf to a sm ∈ SG.

In Figure 5.5.9, there are two dimensions depicted. One of the dimensions represent the number
of actions which has to be reused from beginning of the original plan as a prefix corresponding to
fixation of the iteration parameter F = {m}. The other dimension represent number of actions
reused as suffix of the final repair plan, that is fixing the iteration parameter G = {m}. In the
presented scheme, Ppre from the Algorithm 4.4 is denoted as a blue line, Psuf as a green line and
P∗as a black thick arrow. Since both the dimensions reuse the same original plan, the space is
always a square with a side of the length m.

5.5. RESULTS AND DISCUSSION 77

Le
ng

th
 o

f p
re

fix
, f

 [-
]

Length of suffix, g [-]

Cooperative pathfinding

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3

Le
ng

th
 o

f p
re

fix
, f

 [-
]

Length of suffix, g [-]

Logistics

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

Le
ng

th
 o

f p
re

fix
, f

 [-
]

Length of suffix, g [-]

Rovers

0

2

4

6

8

10

12

0 2 4 6 8 10 12

Le
ng

th
 o

f p
re

fix
, f

 [-
]

Length of suffix, g [-]

Satellites

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3

Figure 5.5.10: The maps present prefix (f on y-axis) vs. suffix (g on x-axis) preserving repair
algorithms by a success rate against replanning in the repair time for all domains with three agents
and P = 0.3. Red color represent algorithms, which were more often faster then replanning. The
top-left to bottom right diagonal represent algorithms neither overusing or underusing the original
plan.

There are four extremes in the algorithm space. The algorithm at position (0, 0) effectively
degenerates from Ppre ·P∗ ·Psuf to P∗. Such process correspond to replanning from the scratch. The
algorithms at positions (m, 0) and (0,m) represent pure repairs Ppre · P∗ and P · Psuf respectively.
The last extreme at (m,m) represent an algorithm, which firstly uses the executable remainder
of the original plan, then using a newly generated plan P∗ returns to the anticipated state after
execution of the failed action and than reuses the original plan again to get to the goal state.
Therefore it generates a full overlap of the prefix and suffix reuses.

Beside the extremes, the (0,m), (1,m−1), ..., (m−1, 1), (m, 0) diagonal in the space is important

78 CHAPTER 5. EXPERIMENTAL EVALUATION

from perspective of the ongoing discussion as well. All the algorithms lying on this diagonal reuse
each of the actions of the original plan exactly once in the original order. Meaning, the original
plan is neither overused nor underused. Formally:

Definition 20. (m-normal plan repair) Let Σ = (Π,P, sf , k) be a multiagent plan repair problem,
then an algorithm R is a m-normal plan repair, iff R solves the problem Σ by a multiagent plan P
with decomposition Ppre · P∗ · Psuf and at the same time (|Ppre|, |Psuf |) ∈(0,m), (1,m− 1), ..., (m−
1, 1), (m, 0).

Results and Discussion

To validate the fourth and last hypothesis, a randomized sampling of the algorithm space was used
to search for more successful algorithms lying on the m-normal repair diagonal by the hypothesis.
The results are present in Figure 5.5.10.

Firstly, the sampling experimental process measured for each encountered repair problem the
computation time of a corresponding replanning algorithm. After this base-line measurement, a
tested repair algorithm was run with a bound on the computation time based on the replanning
run-time. If the algorithm performed better, a cell in the result map was incremented by one. In
effect, this process rendered the presented results. During the experimental execution and plan
repair, different lengths of the original plan were used, that is the repair was done for various m.
Therefore, the resulting maps depict a continuous space, as the results with higher and lower m
values were merged into the most representative m value corresponding to length of the initial
multiagent plan generated.

As the resulting maps show, the hypothesis clearly holds for rather coordinated domains with
longer plans (logistics, and rovers). In the fully coordinated domain of cooperative pathfind-
ing, the diagonal is also present, but because of considerably short repaired plans, it degenerated.
In the experiment with satellites, the diagonal is not present. In the results before the merge
(not presented in the figure), there was no apparent pattern, i.e., the particular maps for different
m contained shapes without any obvious relation.

These results support Hypothesis 4 with an auxiliary observation, that the effect is decreasing
as the coupling of the domain decreases.

Chapter 6

Validation in Multiagent
Simulation

In the previous chapters, the formal and experimental evaluation of the plan repair techniques
was presented. The evaluation provided a strong evidence that plan repair benefits in lowering
both computation and communication overheads under the expressed conditions and improves
efficiency in continuous process of execution and repairing in dynamic environments in contrast to
replanning from scratch. In this chapter, a demonstration of usage of plan repair in high-fidelity
simulated world is provided. Such demonstration validates proposed techniques in the sense of the
introductory motivation for plan repair in environments close to real-world.

A key challenge in deployment of such algorithms with initially theoretical design and synthetic
evaluation is a software process allowing deployment and integration with the target system. A
development process for such task was designed and tailored for tactical missions. The term tactical
mission will denote a class of problems where a multi-robotic team carry out various tasks of
information gathering, supporting disaster relief operations or assist in humanitarian missions [60,
38].

In the rest of the chapter, the development process will be described and explained, a software
toolkit engineered with respect to the proposed process will be introduced and finally a deployment
of a plan repair technique will conclude the chapter.

6.1 Development Process

The proposed development process is based on the Simulation-aided Design of Multiagent Systems
(SADMAS) methodology [58, 26]. The core principle of the SADMAS methodology is an iterative
development process supported by approximated validation using testbeds of increasing fidelity.

79

80 CHAPTER 6. VALIDATION IN MULTIAGENT SIMULATION

The goal of the process is a successful, cost-efficient deployment of the application on the target
system, typically a hardware platform. The iterative process of the application development is
based on the feedback from approximated testing. The extent of approximation can be described
in two dimensions: level of abstraction (how much is the target system simplified) and scope of
abstraction (which parts of the target system are simplified). In result, the initial system consisting
of highly abstract algorithms is iteratively transformed, with increasing level of detail in each step,
into a system deployable on the target hardware platform.

At the beginning, the algorithms are theoretically designed and evaluated in synthetic environ-
ments, described using general mathematical structures such as graphs as the plan repair algorithms
in the previous chapters were. However, right from the start, the experiments are performed on the
algorithms within the framework of the target simulation system. This means that the interfaces
between the control algorithm and the simulated environment must be flexible enough to allow
easy redeployment of the algorithm to higher-fidelity simulation environments. After validating
and verifying the algorithm in a synthetic environment, parts of the simulation can be extend or
replaced and the algorithm is re-validated in a simulation containing more aspects of the target
environment, i.e., having a lower level of abstraction.

Occasionally, after the abstraction of the simulation environment has been decreased, the tested
algorithm has to be conservatively adapted. A conservative adaptation of an algorithm is an
adaptation that preserves all the desired mathematical properties (e.g., soundness, completeness)
for the price of possibly newly added domain-specific constraints on the validity of these properties.
The final sum of such adaptations results in a theoretically-backed algorithm applicable in highly
detailed simulated environments. The mathematical properties of the algorithm stay valid under
the constraints introduced by the applied conservative adaptations.

6.1.1 Environment Model

Such development process requires a simulator that offers high flexibility in terms of scenario sto-
ryboards that can be constructed. In particular, one should be able to freely choose the simulation
entities that form a simulation instance (this requirement is related mainly to the scope of abstrac-
tion in SADMAS) and the levels of detail on which are the entities simulated (this requirement is
closely related to the level of abstraction in SADMAS) to enable successive adaptation of the tested
algorithms.

A fundamental part of the simulation platform is a model of the virtual environment. To satisfy
the above-stated requirements, the platform distinguishes between the description of the simulated
state and the state controllers which animate the simulated world.

The state of the environment is represented by sets of state variable containers called state
storages (see Figure 6.1.1). Each state storage is responsible for holding a specific part of the

6.1. DEVELOPMENT PROCESS 81

State Controller State Controller

Sensor

Sensor Actuator Actuator

Actuator

State Storage State Storage

State v1,v2, ...,vk vk+1,vk+2, ...,vn

Environment

Interface

Figure 6.1.1: An example of a simulated environment, described by state variables v1, ..., vn divided
into two state storages. The state controllers (e.g., agents) perceive and act in the environment
through a set of sensors and actuators respectively. The top-level sensor and the top-level actuator
act as a high-level abstraction for the low-level sensors and actuators (e.g., autopilot actuator on
top; yoke and pedals actuators in the bottom).

current state, i.e., all the state storages together constitute the full description of the current state
of the simulated environment.

State controllers can be both (a) the control algorithms tested in the simulated environment,
specifically for context of this work plan repair algorithms and (b) program logic describing the
mechanics of the simulated environment. The state controllers interact with the state of the envi-
ronment indirectly through a set of interfaces called sensors and actuators. A sensor is an interface
through which a particular part of the environment state can be read. Analogically, an actuator
is an interface used to change a part of the environment state. Sensors and actuators are the only
components that can directly access the state storages.

There are no a priori restrictions on what can a state controller model be, a controller can be a
mechanism simulating physical laws of the environment (e.g., application of the gravity force to all
simulated entities having mass), a simple reactive algorithm (e.g., simulation of swarm systems),
or a complex deliberative algorithm (e.g., cognitive cooperating agents). The elements of the
environment having no associated controllers remain fixed in their initial state. These can be the
shape of the landscape, buildings, bridges, etc.

Furthermore, the sensors and actuators are not strictly limited to have a state controller on
one side and a state storage on the other. A sensor or an actuator can be connected to other
sensors or actuators, effectively forming an interface network. Such approach to the design of
simulated environments leads to a significant cost reduction on implementation and debugging of

82 CHAPTER 6. VALIDATION IN MULTIAGENT SIMULATION

the individual experimental scenarios, as the interface network can be flexibly reconfigured and the
implementations of the individual sensors and actuators can be reused.

6.1.2 Simulation Process

The environment model has to be accompanied by a functional part, describing the behavior of the
simulation. In general, an experimental validation requires statistical results from a large number
of simulation runs. To ensure properties of the tested algorithms during the adaptation process,
the simulation platform has to facilitate construction of experiment suites allowing execution of
reproducible experiments.

While most of the abstract mathematical algorithms are well analyzed and strongly experimen-
tally evaluated, it is much more challenging to design, run (and debug) replicable experiments in
complex, high-fidelity robotic simulations involving dynamic entity behaviors and emergent behav-
ioral phenomena. Large-scale simulations involve various aspects of nondeterminism, which can
lead to non-reproducible simulation runs. Such factors include parallel and random processes, as
well as the limitations of the underlying hardware, such as CPU scheduling or memory swapping,
etc. To ensure reproducibility of experimental runs, the simulator has to follow the concept of in
vitro simulation. That is a simulation that controls all the aspects of the modeled system. Besides
controlling the evolution of the simulated world, the simulator must also have an ability to control
the execution (i.e., suspend and later resume) of the validated control algorithms. Further, the
simulator has to be immune to the race conditions and different results of process scheduling on the
underlying computational infrastructure. Finally, any random processes involved in the simulation
must be also under the control of the simulator, so that the same sequences of random events are
generated in any two runs of the same experiment.

The need to execute large numbers of reproducible simulation runs turned out to hinge on
the speed of simulation execution and the ability to make the runs deterministic on demand. To
tackle this issue, departure from the classical exclusive model of centralized discrete time ticks and
adoption of the event-based simulation mechanism is required. This allows the system to disrespect
real-time constraints of the wall-clock ticking mechanism and run the simulation as fast as possible
given the available computational hardware resources (memory and CPU). The main advantage
of this approach is that the time periods containing no simulation events can be skipped and
thus the simulation runs significantly faster. However, at the same time the resulting simulator
still features the ability to run at real-time simulation speed (for demonstration purposes or for
hardware-in-the-loop experiment).

6.1. DEVELOPMENT PROCESS 83

InterpolatedUGVStorage

State Controller

Environment

PhysicalUGVStorage

DiscreteUGVStorageGoToNodeActuator

MoveInDirectionActuator

SteerAndAccelActuator

Interface

UGV(s) VTOL UAV(s) Troop(s)

EnvironmentInterface EnvironmentInterface

Multi-scope abstractions

M
ul

ti
-l

ev
el

 a
bs

tr
ac

ti
on

s

InterpolatedUGVStorage

State Controller

Environment

PhysicalUGVStorage

DiscreteUGVStorageGoToNodeActuator

MoveInDirectionActuator

SteerAndAccelActuator

Interface

Sca
le

Figure 6.1.2: State storages and related actuators for description of three levels of abstraction for
UGVs, three levels of abstraction for VTOL UAVs and two levels for simulated troops. The scope of
abstraction is demonstrated using three different types of simulation entities, which can be variably
used together. There is one Interface block and one Environment block divided into three views
from perspectives of the particular simulated entities.

6.1.3 Example of a Multilevel and Multiscope Abstractions

The model based on state storages, sensors, actuators, and loosely coupled controllers offers high
flexibility. In result, a programmer can add and remove new types of simulated entities easily (scope
of abstraction) and easily switch between different types of simulation modes (level of abstraction)
for individual entities. Moreover, as expected from a multiagent simulation, the model also offers
scalability in terms of numbers of simulated entities.

For instance (see Figure 6.1.2), three types of abstractions can be defined for unmanned ground
vehicles (UGVs) used in the simulation and represent them by three separate state storages Discrete-

UGVStorage, InterpolatedUGVStorage, and PhysicalUGVStorage. The first one describes the
current state of a UGV by a node on a street graph. The second one enriches the by-node de-
scription by a position vector (x, y) representing the position of a UGV on a 3D mesh of the
ground surface. The last abstraction extends the state further with a description of a fully dynamic
state comprising position (x, y, z), velocity (ẋ, ẏ, ż), acceleration (ẍ, ÿ, z̈) and rotational compo-
nents (ϕ, θ, ψ), (ϕ̇, θ̇, ψ̇), (ϕ̈, θ̈, ψ̈). To control the state stored in these storages, three actuators Go-

ToNodeActuator, MoveInDirectionActuator, and SteerAndAccelerateActuator are used. One
can implement an actuator to control the respective state storage directly, but it is also possible
to implement an actuator to control storages indirectly through other actuators. In practice, such
coupling will result in an algorithm that recursively translates the higher-level control to lower-level
control. For example, if a UGV state controller based on the node-to-node mode of navigation is
required to drive a physically simulated UGV, it uses the following actuator sequence: GoToNode-

Actuator → MoveInDirectionActuator → SteerAndAccelerateActuator. It is obvious now
that any of the presented state storages can be used as long as the controlling algorithm uses only
the top-most actuator, i.e., GoToNodeActuator. In effect, a high-level algorithm controlling a UGV

84 CHAPTER 6. VALIDATION IN MULTIAGENT SIMULATION

can be designed only on node-to-node basis using GoToNodeActuator, but it can be immediately
tested in all prepared levels of abstraction (discrete, interpolated, physical).

To extend the scope of the simulation, simulated vertical take-off and landing unmanned aerial
vehicles (VTOL UAVs) are added. Similarly to the simulated UGVs, VTOLs have three levels of
abstraction represented by three state storages and three related actuators. The actuator sequence
follows the same pattern as in UGVs.

The last example enriches the simulated environment with entities representing troops. Here,
only two levels of abstraction are created. They are represented by two state storages Discrete-

TroopStorage and DirectedTroopStorage. The first level of abstraction is similar to Discrete-

CarStorage (representing the position of a trooper in terms of street graph nodes), the latter
describes the ground position and the heading angle (x, y, ϕ) of a trooper. To control the troops new
WalkToNodeActuator and MoveAndTurnActuator has to be created, as GoToNodeActuator cannot
be reused in place of WalkToNodeActuator, since the UGV actuator uses a different control logic
to simulate the movement (although the input parameters and the results are identical for both
the actuators—both the UGVs and the troops move from one node to another—for the UGV, the
duration of the movement can be computed from the engine power, for the trooper the duration of
the movement can be, for instance, a function of the weight of the personal gear carried).

From this point, there are separate components for a UGV, a VTOL and a trooper in the
model of environment. In a simulation run, these components can be used separately (only UGVs
or only troops) or can be mixed together (e.g., troops following a car). Moreover, different levels
of abstraction of various components can be mixed together (for instance, a transportation UGV
using trajectory interpolation representing a convoy is followed by physically simulated vehicles
representing UGVs accompanied by troops having position and direction representing the support
squad protecting the convoy against adversaries moving on node-to-node basis blocking junctions
on the street map).

6.2 Multiagent Toolkit Alite

The development process together with the requirements on the simulator led to the architecture
described in the previous section. The strong emphasis on the flexibility of the interfaces between
the controllers and the simulated environment requires equally flexible software tools able to to
help with the implementation of such a simulation system. Alite is a software toolkit that provides
such support out of the box.

Alite1 [’eIlaIt] is a software toolkit simplifying implementation and construction of (not only)
multiagent simulations and multiagent systems. It stands on technologies related to the ecosystem
around the Java Virtual Machine and it is mostly written in Java. The objectives of the toolkit are

1http://alite.agents.cz/

6.2. MULTIAGENT TOOLKIT ALITE 85

to provide a highly modular, flexible and open set of functionalities supporting rapid prototyping
and fast implementation of multiagent applications, mainly focusing on highly scalable and complex
simulated environments. The guiding principles underlying the Alite design are (i) modularity, so
that the system does not commit a developer to a specific definition of concepts such as agent,
environment and (ii) composability, so that the various components of the toolkit can be put
together in a rapid and flexible manner. In result, Alite can be seen as a collection of highly
refined functional elements providing clear and simple APIs, allowing a programmer to put together
relatively complex multiagent simulation scenarios rapidly.

Alite addresses the problem of multiagent platform resilience in the face of the need to incor-
porate various a priori unknown future requirements by variability in composition of functional
elements. The number of possible combinations allows for construction of a wide spectrum of
structurally different multiagent applications. This feature distinguishes Alite from the pre-designed
frameworks such as Jade2, Cougaar3 and Aglobe4 multiagent platforms. As multiagent application’s
requirements evolve, the requirements on the agent platform itself are changing. Alite does not
provide a single platform for all, but rather offers an efficient way to build a platform that fits the
specific needs of the multiagent application under development. The application can make use of
one or more functional elements available in Alite toolkit.

Among others, Alite provides an implementation of building blocks introduced in Section 6.1.1.
An application developer can put together different parts from Alite toolkit to implement a mul-
tiagent simulation platform that targets specific requirements of the application in question. In
particular, it is designed to facilitate implementation of simulations that adopt the in vitro prin-
ciple and the event-based simulation mechanism as described in Section 6.1.2. Furthermore, Alite
contains functional blocks supporting (i) inter-agent communication, (ii) configuration and initial-
ization, and (iii) visualization. The communication package provides an easy-to-use interface that
can be integrated with a number of message passing channels. For the tactical mission simula-
tor, a message passing mechanism implemented using the event-based simulation is used. The
configuration and initialization uses the dynamic programming language Groovy5 to configure the
parameters and initialize the initial state of the simulation in a concise and flexible manner. Such
a flexibility allows a programmer to experiment with structurally different simulation scenarios, a
must-have for a successful adoption of the presented development and deployment process. Finally,
the state of the simulated world can be displayed using the 2D/3D visualization component. This
component is designed as fully separable from the simulation core, therefore if the visualization
component is turned off, there is no efficiency burden or negative influence caused. The tactical
mission simulator was released as a standalone package under an open source license6.

2http://jade.tilab.com/
3http://www.cougaar.org/
4http://agents.felk.cvut.cz/aglobe/
5http://http://groovy.codehaus.org/
6http://jones.felk.cvut.cz/redmine/projects/tacticalenvironment/wiki

86 CHAPTER 6. VALIDATION IN MULTIAGENT SIMULATION

The power of Alite’s loosely coupled design has shown its benefits during the construction of
a multiagent simulator of distributed tactical missions described in this chapter. Beside the main
focus on the plan repair algorithms is this thesis, a number of tailor-made domain-specific compo-
nents integrated with the Alite infrastructure enabled to transparently combine and validate other
AI algorithms and control programs written in agent-oriented programming language Jazzyk [52]
in a complex environment simulation comprising realistic physical simulation of rigid-body models
based on JBullet simulator7. Another Alite-backed multiagent application of physically simulated
UGVs for the domain of multi-gent cooperation and coordination in complex urban environments
has been presented in [66].

6.3 Usage of Plan Repair in a Tactical Mission

Multiagent plan repair should be one of possible approaches needed to plan activities for a team
of agents in the dynamic environment. Such activities can be described as multiagent planning as
there is a group of simulated robotic assets in the environment which are cooperative by definition
of the mission and require coordinated plans to perform their parts in the mission. The plans
can be influenced by a dynamism caused by other entities in the simulation which are not in the
robotic team. Such dynamism requires techniques which can handle them. Plan repair is one of
such techniques.

In the particular tactical mission used in the validation experiment, a goal is to extract a VIP in
a hostile urban area (village) by a allied forces. The topology of the village is known a priori from a
satellite recon. There are troops supported by a heterogeneous team of autonomous robotic assets
(two micro VTOLs, two small VTOLs and one UGV), see Figure 6.3.1. The environment dynamism
represented by a unknown movement of hostile forces and unknown reactions of the allied forces
involved cause failures in plan execution (particularly action failures as defined in Section 5.3). The
autonomous units has to adapt (repair their plans) accordingly to be consistent with the behavior of
the allied forces. The adaptation should take into account the high-level goals given to the robotic
team which is are presumed to be compatible with goals of the rest of the unit (particularly, the
robotic team has to provide surveillance of the extraction area). The robotic assets are controlled
by a multiagent planner and plan repair algorithm based on the Back-on-Track technique presented
in Section 4.1. The positions and numbers of the hostile forces are not known a priori.

7for more information on the physics simulation see JBullet (http://jbullet.advel.cz/) – a Java port of Bullet
Physics Library (http://bulletphysics.org)

6.4. DEPLOYMENT OF PLAN REPAIR INTO TACTICAL SIMULATION 87

Figure 6.3.1: The ground forces (green) supported by the robotic team (2 small VTOLs – orange
view prisms, 2 small VTOLs – red view cones, 1 UGV – brown four-wheeled car) in the simulated
urban environment.

6.4 Deployment of Plan Repair into Tactical Simulation

According to Section 6.1, the deployment process iteratively adapts an plan repair algorithm towards
the full high-fidelity simulator of a tactical environment. Three adaptation steps are depicted
in Figure 6.4.1. The adaptation steps respected the decreasing level of abstraction and incremental
adding of the three types of assets respect the scope of abstraction.

A first adaptation step begun with a theoretical design of a plan repair algorithm general enough
to cover the dynamism of the presented tactical mission. The initial design used the Back-on-Track
principles, although the implementation started from scratch to precisely follow the presented
development process.

First tests and experiments were carried out in a synthetic grid-based environment based on
the logistics planning domain (see Section 5.1). The used domain, coined as crates-cranes,
contained mobile cranes which could move in a grid environment and packages each with a goal
target position. Each of the grid positions could be accessed only by one crane with an exception
of several handover points. Each crane could carry only one package at a time. The cranes had the
same three actions move, load, and unload as vehicles in logistics.

In the second adaptation step, the verified algorithm from the previous paragraph was used in
a multiagent planning domain representing the heterogeneous team of robotic assets. The assets
had to permanently cover the allied troops and not collide with each other. The initial plan of each
asset was to move to the extraction point of the VIP and than then provide an area surveillance
there. The problem was formalized with a set of tactical-level actions.

88 CHAPTER 6. VALIDATION IN MULTIAGENT SIMULATION

(a) (b) (c)

Figure 6.4.1: Levels of abstraction used for design, verification and validation of the algorithm
providing plan repair ability for robotic assets: (a) synthetic environment used for the theoretical
design, verification and validation of the plan repair algorithm, (b) adaptation of the algorithm to a
simplified dynamic model of small VTOLs providing support for the ground team, and (c) example
of reconnaissance actions carried out by the VTOLs in the integrated mission.

Figure 6.4.2: Two micro VTOLs (with orange view prisms) providing street recon actions in front
of the allied team.

6.4. DEPLOYMENT OF PLAN REPAIR INTO TACTICAL SIMULATION 89

The used actions for the planning problem were:

noop The action represents doing nothing, i.e., wait. The action has no preconditions and it is
contained in action sets of all planning agents.

move-to The asset is moved from a current position to a new position. The action has no precon-
ditions and it is contained in action sets of all planning agents.

personal-cover The action moves the asset above a designated position of a allied troop and orients
it oppositely to provide backward visibility for the covered troop. The action is present only
in action sets of the micro VTOLs.

street-recon The action moves and orients the asset as it can look through a requested street (see
Figure 6.4.2). The action is present only in action sets of the micro VTOLs.

street-surveillance The action moves the asset along a requested street.

crossing-surveillance The action positions the asset above a crossing and makes it to observe the
area around. The action is present only in action sets of the small VTOLs and UGVs.

There are three used conditions:

colliding The condition holds if an action is spatio-temporally colliding with action(s) of other
assets.

covering The condition holds if an action causes an allied troop is covered (the asset is in a prox-
imity).

allAlliedCovered The condition holds if all allied troops are covered (in the proximity of all troops
is at least one supporting robotic asset).

The plan-repair mechanism is solving the problems caused by the unpredictable movement of the
troops. The first move-to action directing the assets to the extraction point in the initial plan
has the precondition covering which implies the action cannot be executed as the movement would
violate the covering precondition by flying away from the team. Therefore, the precondition causes
a failure of the plan. To solve the failure, the adapted Back-on-Track algorithm plans an action
solving the problem by execution the personal-cover action for one of the allied troops. Usage of the
action solves the failure and makes allAlliedCovered holding and thus the other assets can use other
possible actions (surveillance and reconnaissance). The basic conflict avoidance among the assets is
caused by the colliding precondition, because of which the assets are always planning repair actions
at distinct positions.

Adaptation of the plan repair algorithm to the VTOLs in the domain of tactical support led
to an introduction of a restricting condition on the algorithm. During the process of environment

90 CHAPTER 6. VALIDATION IN MULTIAGENT SIMULATION

Figure 6.4.3: An individual plan of one of the micro VTOLs. The white lines represent the initial
mission plan (move to the extraction point and move the final point). The yellow lines depict a
spatial representation of the repaired plan of the asset.

abstraction, a problem with computational tractability arise and thus the maximum depth of the
algorithm’s search tree had to be limited. Such a change conditioned the soundness and complete-
ness of the algorithm to limited time horizons (equivalent to the coordination length of the resulting
plans δ), as the conservative adaptation of the development process dictates.

Finally, in the third adaptation step, the constrained version of the algorithm was used in the
integrated mission to provide visual support for the troops in the field.

6.5 Results and Discussion

The initial mission plan and the iteratively repaired result of one of the small VTOLs is depicted
in Figure 6.4.3.

The plan preserving multiagent technique based on Back-on-Track approach was successfully
used in a dynamic high-fidelity environment using the presented development process and was able
to direct a team of simulated robotic assets providing a support tactical mission in real-time. The

6.5. RESULTS AND DISCUSSION 91

(a) (b)

Figure 6.5.1: Experimental comparison of a plan repair technique based on the Back-on-Track
approach and replanning from scratch in the high-fidelity simulation of a tactical mission. The
results are for one autonomous micro VTOL providing cover for the ground team. The figures
show (a) growth of cumulative computation time required for fixing of the original plan during the
simulation and (b) dependency of required computation time for fixes from start to 500 simulated
seconds w.r.t. number of the goals in the planning problem which relates to the size of the planning
problem. The dashed curves are second order polynomial interpolation functions based on the
least-squares-error method. Both are nearly linear.

adaptation of the algorithm for the domain of tactical support led to an introduction of a restricting
condition on the depth of the search tree to limit the computational complexity of the search. The
plan repair mechanism also addressed the problems caused by the uncertain movement of the
supported troops and demonstrated its usability in continual planning scenarios. In this particular
usage, the plan repair technique resembles techniques of reactive planning, but with an advantage
of a permanently sound plan to the goal, which is usually impossible in reactive techniques.

Experimental results focusing on complexity comparison of the deployed plan repair algorithm
in high-fidelity simulation are summarized in Figure 6.5.1. The results are shown for one support
micro VTOL. Since in this case the communication complexity is the same for both plan repair
and replanning, as both the algorithms solve only short horizon coordination problems, the results
focus only on computation complexity.

The first experimental results (a) show a cumulative time which grow during the simulation as
the plan repair or replanning algorithms has to fix action failures because of the moving ground
team. The replanning from scratch (red curve) gets simpler during the execution, since the re-
planning problem successively requires shorter plans from the failed state sf to the final goal in
SG. Hence the computation time grows more at the beginning, than near to the end. The com-

92 CHAPTER 6. VALIDATION IN MULTIAGENT SIMULATION

Figure 6.5.2: Distribution of time durations required for one fixing of a failure. The experimental
setting is the same as in Figure 6.5.1

putation time required by the repair algorithm is significantly lower and the slope is similar to the
simplest replanning problems near the end of the simulation. In this particular domain, the plan
repair approach required approximately 2× less computation time than replanning from scratch.
This difference would grow with grow of the planning problem size. To confirm this hypothesis
experimentally, the other results show relation between number of goals in the planning problem,
which corresponds to the size of the planning problem and computation time required by plan
repair and replanning from beginning of the simulation to arbitrarily picked point in the simulation
of 500 simulated seconds. The chart shows more steeper growth for the replanning than for plan
repair. Particularly, the interpolated dashed lines are second-order polynomials derived by the
least-squares-error method. For replanning, it is

+0.00017x2 + 0.84x+ 9.3,

and for plan repair

−0.0073x2 + 0.36x+ 5.2.

Both the relations are therefore nearly linear as the x2 coefficients are in both cases negligible.
The linear coefficients substantiate that plan repair is less dependent on the size of the planning
problem than the replanning from scratch. Since the planning problem in this case is a variation

6.5. RESULTS AND DISCUSSION 93

on path-finding, the growth of replanning is also polynomial and not exponential, as it would be in
case of more complex domains.

To conclude the experimental part of the validation, in Figure 6.5.2, it is presented a distribution
of all particular plan repairs and replans during the simulation sorted according to their durations.
The results show that the fastest plan repair is in order of magnitude faster than the fastest
replanning. The plan repair processes requires typically 100 ∼ 300µs and the slowest repairs took
∼ 900µs. The duration of the replanning process is typically 1000 ∼ 1800µs and there is about
5% of replanning fixes that took 1800 ∼ 55000µs, the slowest replanning took ∼ 60ms. Since these
results correspond to successful fixings of the plan, in this particular scenario, it gives an answer to
a question how would be covered the ground team by the robotic VTOL, if the available time for its
decision making would decrease. The results can be understand as a relative measure which means
that the team would begin to be uncovered with an order of magnitude shorter allowed decision
time by plan repair the than by replanning from scratch.

94 CHAPTER 6. VALIDATION IN MULTIAGENT SIMULATION

Chapter 7

Validation with Forward-search
Multiagent Planner

In Chapter 5, several experiments were impossible to carry out because of the limitations of the
DisCSP-based planner. The particular issues with the planner were also identified by the authors of
the planner recently. Improvements of scalability were proposed in [50, 49] by leaving the DisCSP-
based approach and moving to a successful principle in classical planning—A∗ or a variation on
Best-First Search (BFS) with highly informed automatically derived heuristics.

To validate the properties of the proposed plan repair algorithms with another multiagent
planning approach, a domain-independent multiagent planner, based on the principles presented
in [50], was designed and implemented. The key properties of the planner summarized in adjectives
are Multiagent Distributed Lazily Asynchronous (MADLA), therefore the MADLA Planner.

This chapter describes the planner both w.r.t. the algorithmic design and key implementation
details. Afterward, a selected set of the experiments from the previous sections were replicated
using the new planner. The results are discussed and concluded.

7.1 Design of the Planner

The DisCSP-based domain-independent deterministic multiagent planner from [51] proposed a first
step in the research field of planning algorithms solving problems based on the MA-strips for-
malization. This approach precisely followed the ideas in [7], however exposed a couple of issues
making the approach incomparable in efficiency with current state-of-the-art implementations of
classical planners. One of the issues was bad scalability with growing length of the coordination
part of the resulting plans δ. That is one of the reasons why the MADLA Planner was from the
beginning designed with state-of-the-art principles from singleagent planning in mind and did not

95

96 CHAPTER 7. VALIDATION WITH FORWARD-SEARCH MULTIAGENT PLANNER

used the DCSP-based planning approach. Particularly, it uses a forward-search using Best-First
Search with an domain-independent heuristics both extended to the distributed multiagent setting.

The formal definitions from Section 4.6.3 has to be slightly extended for further explanation of
the MADLA Planner. An α-internal (that is private for agent α) and public subset of all facts L
will be denoted as Lα−int and Lpub respectively where Lα−int = atoms(α) \

⋃
β∈A\α atoms(β) and

Lpub = atoms(α) \ Lα−int. Facts relevant only to one agent α are denoted as Lα = Lα−int ∪ Lpub

and a projection of a state sα to an agent α is a subset of a global state s containing only public
facts and α-internal facts, formally sα = s ∩ Lα. The set of public actions of an agent α is defined
as αpub = {a | a ∈ α, atoms(a)∩Lpub 6= ∅} and internal actions as αint = α \αpub. The symbol aα

will denote a projection of action a ∈ β, β 6= α for agent α, i.e., action stripped of all other agents’
propositions, formally atoms(aα) = atoms(a) ∩ Lα.

Multiagent Best-First Search

Similarly to the proposed solution in [50], in the approach behind the MADLA Planner, each agent
comprise its own OPEN and CLOSED lists and runs its own search in the state space using only
the agent’s atoms Lα. Since the search is based on expansion of states by applicable actions, the
only usable actions are a ∈ α of the particular searching agent α and projections of the public
actions from the other agents aα ∈

⋃
β∈A\α β.

Let Π = (L,A, s0, Sg) be a multiagent planning problem with A = α1, . . . , αn (see Definition 2).
All agents begin with their projections of the initial state sα0 as the first state in their OPEN lists.
In parallel, the agents expand states from their OPEN lists ordered by evaluations of the states
f = g + h where one part is its cost g from the initial state sα0 (i.e., number of preceding actions,
as each action’s cost is fixed to c = 1) and a heuristic estimate h which will be explained in
further paragraphs. If the examined state is not a goal and therefore neither the solution, the
process of expansion firstly moves the expanded state from the OPEN list to the CLOSED list and
subsequently searches for all actions of the expanding agent applicable in that state. Such actions
are applied to the state and the resulting states are heuristically evaluated and added to the OPEN
list (states already in the CLOSED list are ignored).

The principle described in the previous paragraph precisely corresponds to a couple of classical
BFSes run by more agents in parallel. To extend the algorithm to the Multiagent Best-First Search
(MA BFS), a message has to be sent to all agents, in a case a state was expanded by a public
action. On receiving of such message, it has to be added to the OPEN list of the receiving agent.
This straightforward principle causes the search passes to other agents if an action prospectively
influencing atoms they consider was reached by one of their team members. In effect, the search
process is distributed among the agents and in one agent’s pass both the internal plans and the
coordination public actions are searched for. Algorithm 7.1 presents the principle in a pseudo-code.

7.1. DESIGN OF THE PLANNER 97

Algorithm 7.1 Multiagent Best-First Search.
1: O ← OPEN list (of state ordered by their values f)
2: C ← CLOSED list (of states)

3: O ←initial state
4: repeat
5: if O 6= ∅ then
6: s←poll(O)
7: if s /∈ C then
8: if s is goal then
9: return solution(s)
10: end if
11: C ← C ∪ s
12: compute heuristic h for s
13: compute value f = g + h for s
14: if s was reached by public action then
15: broadcast s to other agents
16: end if
17: O ← O∪expand(s)
18: end if
19: end if
20: until false

Multiagent Heuristics

The key part of the MA BFS algorithm is computation of heuristic estimate for the expanded
states. The idea of a heuristic is to provide as precise as possible estimation of distance from the
current state to a goal state. The tradeoff of a heuristic is the more precise the estimate is the more
demanding it is on computation and communication. Since the cost of actions is fixed to c = 1, the
estimated distance is counted in a number of actions.

In contrast to the planning process, the heuristic estimation has not to be complete in the sense
that if there exists a plan the heuristic has to return a value (it can return h = ∞ meaning the
distance is unknown). This allows to design heuristics completely unaware of the fact there are
other agents and atoms as well as actions other than that of the estimating agent. Such heuristics
were proposed and used in [50]. Since the heuristics are based on actions owned only by one agent
the public actions has to be projections, they are denoted as projected heuristics hα.

More challenging heuristic estimates do not ignore the other agents and in extreme tries to
come up with the same result as a heuristic would compute in centralized version of the planning
problem. Such approach was designed during the research work behind this thesis and proposed
in [62]. In multiagent planning, such heuristics have to be, however, computed distributively using
communication among the agents. Such heuristics will be denoted as global multiagent heuristics h.

The MADLA Planner was designed with various heuristics both projected and multiagent.

98 CHAPTER 7. VALIDATION WITH FORWARD-SEARCH MULTIAGENT PLANNER

Currently, all the heuristics in the planner are based on the relaxation principle. Relaxation is a
way of simplifying a planning problem by removing some constraints. In planning, a relaxation is
typically obtained by removing delete effect of actions. Solution of such relaxed planning problem
is a relaxed plan, which can be used to estimate the cost of a plan in the original problem, e.g.,
the Fast-Forward (FF) heuristic estimation is based on the length of the relaxed plan. A classical
technique for finding the relaxed plan is to build a Relaxed Planning Graph (RPG). RPG is a graph
representing reachability of facts and applicability of actions in the relaxed problem. Such RPG can
be used to find a relaxed plan by backward search through the graph by effects of actions providing
support for preconditions of later ones.

Currently, these particular heuristics are used in the MADLA planner:

Projected Fast-Forward (FF) heuristics hαFF is the approach proposed in [50] applied on the
FF heuristic. In this heuristic, no communication is required.

Multiagent Fast-Forward (MAFF) heuristics hMAFF was designed for the MADLA Planner
and recently published in [62]. It was proven to be equal to the centralized FF heuristic in
terms of the resulting heuristic estimate.

Multiagent Set-additive (MASET+) heuristics hMASET+, instead of building a relaxed plan
and computing the FF heuristic, this heuristic sums the number of actions in each layer of
the relaxed planning graph, therefore providing computing a variation of the Set-additive
heuristic [28].

The presented heuristics both in theory and practice influence the efficiency of the planning process
as a whole. The zero communication requirements are the big benefit of the projected FF heuristics
hαFF, as the heuristic is computed strictly locally by one agent. The caveat of the heuristic is that
it is uninformed w.r.t. inter-agent coordination and provides no hints for the search beyond the
boundary of the state space of one agent. The MAFF heuristics hMAFF is highly informed and
therefore directs the search quickly towards the goals. The drawback of this heuristic is that in
practice the distributed implementation can be hardly done efficiently and therefore computation of
one estimation slows down the planning agents. The last presented MASET+ heuristic hMASET+ is
reasonably informed and can be implemented efficiently utilizing only agents required in the build
of the relaxed plan. In the next sections, the particular implementation decisions and experimental
results will demonstrate these properties empirically.

7.2 Implementation of the Planner

As mentioned before, the current status of the planner can be denoted as an experimental prototype.
The implementation is done in Java and although the planner is targeting a fully distributed model

7.2. IMPLEMENTATION OF THE PLANNER 99

running on more dedicated computers, currently the distribution is only emulated by each agent
running on its thread in one Java Virtual Machine. The communication among the agents is
mediated by an additional thread running over a message queue which is shared among the agents
and controls delivery of sent messages. Each of the agents has an additional queue dedicated to
message receiving which allows the agents to simultaneously receive messages and run their planning
processes.

The prototype uses data structures based on state-of-the-art singleagent planners, however
in most cases not thoroughly optimized yet. The state description is based on Finite Domain
Representation (FDR) [46] currently only with binary domains, using the true and false values
of the variables represented as a linked hash-map. An optimized form of FDR should replace the
variables and their respective values with integer arrays in future.

The heuristic estimator is designed as a modular component enabling flexible experimentation
with different heuristics. Since all used heuristics are relaxation-based, the structure representing
Relaxed Planning Graphs (RPGs) is reused in all implemented estimators. The structure uses an
extended form of description of a state using hash map with values as lists enabling description
of more simultaneously holding atoms, as required by the relaxation principle. The RPGs are
built iteratively from initial state to a goal-satisfying state or to a fixed-point (no additional atoms
are added by further application of all applicable actions). The relaxed plan (either based on
Fast-Forward principle or Sat-additive principle) is extracted by back-search through the RPG.

In the projected Fast-Forward heuristic hαFF, each agent prepares its own RPG using only its
actions. The public ones are projections, effectively stripping prospective private atoms of other
agents. This building process is asynchronous by definition, as each agent builds RPG on its own.
Similarly to the construction phase, the extraction phase of the relaxed plan is implemented as an
asynchronous process as well.

The Multiagent Fast-Forward heuristics hMAFF is implemented as a distributed synchronous
algorithm. When an agent needs an heuristic estimate, it informs all other agents about the
estimated state. All agents build its parts of the global RPG called Agent Relaxed Planning Graphs
(ARPGs). The ARPGs use actions of their respective building agents (similarly to the projection
heuristics) additionally with projections of other agents’ public actions which they used in their
ARPGs. Note that this parallel building of a global RPG in form of more complement ARPGs
requires an synchronized termination detection process. The resulting relaxed plan is then extracted
in a parallel way with a final merging process started by the agent initiating the state heuristic
evaluation.

Since such synchronous process congests the complete multiagent system, as all agents has to
participate on heuristic estimation of all other agents, recently a lazy asynchronous approach was
designed and implemented. The lazy asynchronous implementation is based on the good parts of the
previous ones. Firstly, the algorithm starts only with the estimation requesting agent which builds

100 CHAPTER 7. VALIDATION WITH FORWARD-SEARCH MULTIAGENT PLANNER

orig. BFS + hα
FF BFS + hMAFF BFS + lazy async. hMASET+

|A| t[s] v cs t[s] v cs cr ch t[s] v cs cr ch

cp
3 – 0.4 99 97 6.3 168 166 6.6k 39 0.5 61 59 72 30
5 – 88 25k 25k – – – – – 10 1.1k 1.1k 120 736
7 – – – – – – – – – 38 6.2k 6.2k 169 248

log
4 0.6 0.6 1.5k 847 2.5 505 272 10k 50 0.3 276 159 32 51
6 38.5 6.2 17k 7.4k – – – – – 1.1 461 217 52 100

rov
2 1.4 – – – 88 378 4 25k 4 18 461 3 72 3
3 7.9 – – – – – – – – 182 1.4k 9 108 10

sat
4 1.2 32 32k 369 16 941 27 9.8k 22 0.8 441 24 3 21
6 4.4 – – – – – – – – 5.4 1.4k 57 6 55
8 – – – – – – – – – 31 3.4k 115 8 109

Table 7.1: Results for the originally used DCSP-based planner (column orig.) used in the previous
chapters and three relaxation heuristics in the MADLA Planner. |A| is a number of agents in the
problem, t is duration of the search in seconds, v is a number of visited states, cs is a number of
search messages (each of size of a state), cr is a number of messages building (A)RPGs (each of
size of a projected public action) and ch is a number of messages for the heuristic estimate (each
of size of a partial relaxed plan for hMAFF or partial cost estimation for hSET+). The domains are
cooperative pathfinding (cp), logistics (log), rovers (rov) and satellites (sat). Runs
denoted as – did not finish in the 10 minutes limit.

its projected ARPG and incorporates the external public actions based on a cached ARPG from
before of the planning process (such ARPG can be build by the synchronized building algorithm).
With such ARPG the initiating agent starts the relaxed plan extraction routine. The routine
can, however, require a heuristic estimation for one of the supplied external public actions. Such
estimation is out of reach of the current agent, therefore the supplying agent is requested for its
estimate by a message. Such process can recursively pass to other agents. Technically, the algorithm
is a distributed recursion with branching as described in [20].

The Multiagent Set-additive heuristics hMASET+ uses this asynchronous and lazy approach
and as Table 7.1 shows, it provides most efficient multiagent planning in MADLA planner in
comparison to the two previous heuristics and also the originally used DCSP-based planner (the
better results are only in rovers, where the DCSP-based planner gains because of highly-optimized
Fast-Forward planner used internally for the private plans). Furthermore, the results support the
informal hypotheses on the heuristics properties summarized in the previous section. The projected
hαFF is less informed as the numbers of visited states v are mostly the highest. The hMAFF heuristic
is more informed (lower v), but the computation is rather computationally heavy (worse t and
cs + cr + ch). The lazy asynchronous hMASET+ heuristic’s results are the best in general.

The complete implementation of the MADLA Planner can be wrapped up in a sequence of steps
beginning with the input of the planner and ending with a resulting plan as (the description is only

7.3. PLAN REPAIR WITH FORWARD-SEARCH MULTIAGENT PLANNER 101

schematic and does not contain particular loops):

1. Reading of the input PDDL file and an additional file describing which objects in planning
the problem definition are represented by agents.

2. Basic grounding and filtering process of the facts and actions.

3. Initialization of the agents with factorized planning problem.

4. In the case of hMASET+, preparation of the initial ARPGs used later in the lazy heuristic
estimates.

5. Synchronized start of the search.

• Running processes of the Best-First Search by the agents.

• Possibly parallel computation of the heuristic estimates directing the distributed search.

6. After detection of a found goal, state distributed termination of the search and writing the
resulting plan to the output.

The planner was supplemented by a couple of helper routines and classes to provide flexible and
easy to use experimental suite, which in turn showed its strengths also in using the planner for the
final experimental validation of the plan repair algorithms.

7.3 Plan Repair with Forward-search Multiagent Planner

The MADLA planner was used as the core planning component in the plan repair techniques
presented in Chapter 4 to provide validation of the plan repair principles with different planning
approach than the originally used DCSP-based planner from [51].

Since the plan repair algorithms were from the first steps designed with a modularity of the
planner in mind, replacing the planner did not require to change the design of the repair approaches
and no big changes in the implementation. Since both implementations of the planner and the repair
algorithms use data structures for describing states, actions, facts and other planning concepts, the
operations on these structures used by the repair algorithms had to be reimplemented around the
data structures used by the MADLA planner. The biggest part was a de-linerization algorithm used
to parallelize the sequential outputs from the MADLA planner. The actions are during the process
partitioned into queues for each agent and a graph of partial orderings among dependent actions
of the plan is generated. Afterward, the actions are iteratively taken from the queues only if there
are no other dependent actions. If an agent cannot add its action because of some dependencies, it
uses the empty action ε.

102 CHAPTER 7. VALIDATION WITH FORWARD-SEARCH MULTIAGENT PLANNER

Figure 7.4.1: Comparison of success ratio between prefix-preserving (blue, Lazy) and suffix-
preserving (green, Back-on-Track) plan repair algorithms against replanning. The results extend
the comparison in Figure 5.5.8.

All four designed plan repair algorithms were used on the same domains and in a subset of
experiments presented in Chapter 5 with the same experimental setting. The experiments were
selected with two respects: (a) to provide enough evidence that different planner does not disapprove
the results w.r.t. the presented hypotheses and (b) if possible, to extend the results because of the
better efficiency of the planner. Next section reports on the results and discusses the differences in
the conclusions of the plan repair techniques with a distributed forward-search planner.

7.4 Results and Discussion

The first batch of experiments targeted extended validation of Hypothesis 1:

Multiagent plan repair is expected to generate lower communication overhead in
tightly coordinated domains.

The results with the originally used DisCSP-based planner from Section 5.5.1 strongly supported
the hypothesis. The results with the MADLA planner are presented in Table 7.2. The form of the
results copies Table 5.1. The results show both the same planning problems which were used with
the original planner and additionally several new results which were impossible to measure with
the DisCSP-based planner MA-Plan.

In all presented results, the plan repair techniques using the MADLA planner outperform re-
planning from scratch in the communication metrics. Additionally, less planning time was always
required for the plan repair than for the replanning. Similarly to the results with the DisCSP-
based planner, more efficient plan repair in environments with failing actions and P = 0.3 is the

7.4. RESULTS AND DISCUSSION 103

D
om

ai
n

|A
|

R
ep
ai
r
ti
m
e
[m

s]
N
o.

of
m
es
sa
ge
s
[-]

C
om

m
un

ic
at
io
n
[k
B
]

E
xe
c.

le
ng

th
[-]

B
oT

R
La

zy
R
ep
la
n

B
oT

R
La

zy
R
ep
la
n

B
oT

R
La

zy
R
ep
la
n

B
oT

R
La

zy
R
ep
la
n

lo
gi

st
ic

s
2

38
.7

34
.7

56
.8

26
.9

18
.4

28
.9

1.
9

1.
7

2.
5

7.
5

10
.2

9.
3

3
93

.3
14

9.
6

12
8.
2

10
8.
5

14
9.
6

11
3.
5

11
.7

20
.1

15
.7

11
.7

30
.3

13
.8

4
19

4.
9

15
0.
7

18
4.
3

19
4.
9

15
0.
7

18
4.
3

35
.2

50
.1

63
.7

11
15
.5

11
.8

lo
g.

(p
ar

)
5

22
95

.0
11

4.
8

24
7.
5

64
23
.2

17
9.
3

33
8.
8

2.
8M

B
51
.7

12
5.
1

11
.7

12
.8

10
.8

6
35

70
.0

66
7.
5

11
09

.4
51
34
.4

80
5.
5

11
34
.5

3.
3M

B
43
9.
5

76
1.
3

11
.4

29
.8

15
.9

lo
g.

(l
in

)
5

43
4.
9

35
1.
2

58
6.
3

10
41

.2
35

4.
0

61
1.
1

40
1.
4

16
0.
9

27
1.
1

21
.3

49
.2

28
.0

7
61

91
.8

17
99

.8
27

05
.6

13
15

8
98

8.
8

15
17

.9
3.
6M

B
42

3.
3

66
8.
8

29
.7

99
.5

37
.2

9
94

41
8

90
25

.0
96

80
.8

10
9k

27
40

.1
28

62
.7

11
M
B

89
3.
3

1.
4M

B
37

.1
20

6.
5

48
.7

co
op

.
pf

.

2
60

.9
12

7.
6

65
.0

46
.0

11
0.
3

51
.1

8.
5

33
.4

16
.5

4.
8

6.
7

4.
7

3
61

.0
78

.9
12

0.
0

36
.5

43
.3

82
.2

8.
2

20
.6

58
.4

2.
6

2.
8

3.
3

4
55

9.
9

14
13

3
16

51
.7

27
7.
0

48
31
.3

82
6.
1

11
1.
4

89
2.
9

1.
3M

B
9.
4

9.
4

7.
7

5
41

67
.6

22
31

6
>
30

0k
13

16
.0

74
27

.6
–

2M
B

3.
5M

B
–

18
.0

29
.8

–
ro

ve
rs

2
50

01
.0

25
18

.1
50

44
.9

68
0.
9

24
7.
5

21
9.
5

37
8.
9

90
.3

14
0.
5

16
.8

24
.1

15
.8

sa
te

ll
it

es

2
53

.6
22

.6
24

.3
48
.5

4.
9

5.
8

3.
0

0.
7

1.
0

4.
8

5.
5

4.
5

4
25

24
.1

11
1.
0

10
0.
3

22
13
.0

20
.2

23
.6

1.
3M

B
8.
9

14
.1

5.
2

7.
0

5.
3

6
29

08
2

49
3.
2

83
6.
3

54
67
.3

24
.1

88
.1

7.
1M

B
20
.1

12
2.
0

4.
7

6.
1

4.
7

8
>
30

0k
20

57
.0

81
42

.8
–

27
.8

27
2.
6

–
45

.5
66

1.
0

–
5.
9

5.
0

Ta
bl
e
7.
2:

R
es
ul
ts

of
ex
pe

rim
en
ts

fo
r
al
ld

om
ai
ns

w
ith

pr
ob

ab
ili
ty
P

=
0.

3
an

d
ac
tio

n
fa
ilu

re
s
us
in
g
th
e
M
A
D
LA

pl
an

ne
r.

T
he

hi
gh

lig
ht
ed

ce
lls

ar
e
th
e
be

st
re
su
lts

fo
ra

pa
rt
ic
ul
ar

do
m
ai
n
an

d
a
pa

rt
ic
ul
ar

m
et
ric

s.
T
he

bo
ld
ed

re
su
lts

ar
e
ex
te
nd

ed
ex
pe

rim
en
ts

po
ss
ib
le

to
m
ea
su
re

be
ca
us
e
of

th
e
M
A
D
LA

pl
an

ne
r.

T
he

lo
g.

(l
in

)
pr
ob

le
m
s
ar
e
ba

se
d
on

a
lin

ea
r
ch
ai
n
of

ha
nd

ov
er
s
by

th
e

lo
gi
st
ic
s
fle

et
(in

co
nt
ra
st

to
th
e
pa

ra
lle

ll
og
ist

ic
s

lo
g.

(p
ar

),
w
he

re
th
e
ha

nd
ov
er
s
ar
e
pa

ra
lle

l).
T
he

pr
ob

le
m
s
w
ith

th
e
da

sh
w
er
e

w
er
e
un

so
lv
ab

e
in

a
lim

it
of

5
m
in
ut
es
.

104 CHAPTER 7. VALIDATION WITH FORWARD-SEARCH MULTIAGENT PLANNER

Repeated-Lazy approach. It is outperformed by the Back-on-Track only in the fully coordinated
cooperative pathfinding. In a consequence, the experiments validate that the proposed plan re-
pair algorithms are able to work with another multiagent planning approach and reaffirmed validity
of the first hypothesis.

Validity of Hypotheses 2 and 4 was successfully confirmed in the core experiments of the work,
however because of scalability problems with the DisCSP-based planner, Hypothesis 3 could not
be conclusively verified. The idea of the third hypothesis is:

If an action fails and it has potentially a lot of future dependencies, trying to fix it
as soon as possible is rather better idea, than ignore it and try to repair it later.

To conclude on the last not yet fully supported Hypothesis 3, the MADLA planner was used in an
extended version of the experiment presented in Section 5.5.3. Recall that the pure prefix-preserving
and pure suffix-preserving repair algorithms were run in the testing domains. Ratio of successful
repairs of these two repair algorithms against replanning was measured by means of computation
time.

The results are depicted in Figure 7.4.1. The situation in the logistics domain copies the
previous results in Figure 5.5.8, the first two peaks related to the handover points in the plan are
for repair lengths 3 and 6 equal to the results using the MA-Plan planner. The rising trend and
the peaks continue even for lengths 9 to 17. With the increasing length of the repaired part of the
plan, the peaks are slightly decreasing in contrast to the step 9, still in the longer repaired parts
the suffix-preserving repair (Back-on-Track) outperforms the prefix-preserving one (Lazy).

The experiment in the cooperative pathfinding resemble the previous results in the first
three lengths of the repaired segments. The same trend is apparent, but the absolute values differ.
Since the MADLA planner is not so much sensitive to the number of goal facts, the positive effect
of the Back-on-Track repair exhibits in the domains with long action dependencies event for small
m. For the longer repaired segments the suffix-preserving approach keeps its lead.

The results update the previous conclusions of the third hypothesis such that it is substantially
supported by the experimental results.

Chapter 8

Conclusion

The problem of multiagent plan repair brought a variety of research challenges comprising appro-
priate formalism design, algorithm design, theoretical analysis, implementation work, experimental
evaluations, verifications and validations.

The first part of the thesis proposes a formalization for multiagent plan repair problems based on
state-of-the-art multiagent planning formalization. An important newly defined property of a mul-
tiagent plan is its coordination frequency which determines the amount of coordination required for
an optimal solution of a multiagent planning problem. Leveraging this concept, planning problems
can be categorized as uncoordinated, loosely coordinated, tightly coordinated or fully coordinated,
or the coordination can be precisely expressed as a numeric value.

The core of the thesis proposes four plan repair algorithms transforming a multiagent repair
problem to a problem of multiagent planning. Such usage of a multiagent planner in the algorithms
has both advantages and disadvantages (similarly to compilations of special planning problems
into classical planning). The key advantage is that there is no need for repetition of work on
the combinatorial and search algorithms which can be reused from other solutions of planning
problems. Another advantage is the planner can be replaced by a better one to improve efficiency
of the outer algorithm, e.g., a plan repair algorithm. The disadvantages are a possible bias of the
implementation details of the used planner inappropriate for the particular plan repair algorithms
or other outer algorithms and an impossibility to tailor the planner for such algorithms as plan
repair.

The last proposed plan repair algorithm was designed as a generalization of previous two and
revealed relations between them w.r.t. the set of proposed hypotheses. The soundness and com-
pleteness of the algorithms were proven. Additionally, time and communication complexity of the
algorithms were analyzed. The results comply with conclusions from the literature and the stated
hypotheses of the thesis. Large portion of work was dedicated to implementation both of the used

105

106 CHAPTER 8. CONCLUSION

multiagent planner and the plan repair process with the proposed algorithms. Overview of the
implementation details reports especially on successes w.r.t. to the computational efficiency.

The algorithms were evaluated in various types of experiments targeting the stated hypotheses.
In all cases, the hypotheses were supported, in several cases with additional limitations and speci-
fications. Based on the experimental results, a summary of heuristic approaches can be sated in a
form of simply usable advices decreasing computation or communication overheads during repair
of multiagent plans by plan reuse. These advices can be used for various plan repair approaches
targeting systems with planning agents. The advices are:

• Prefer preserving plan repair over replanning from scratch if the domains are tightly coordi-
nated and the divergence of the failed states stays close to the ideal execution.

• Prefer smaller numbers of involved agents in the plan repair process.

• Prefer suffix-preserving repair techniques (Back-on-Track) when repairing failures with long
dependencies especially among different agents.

• Prefer m-normal plan repair algorithms, that means try to reuse each of the actions from the
original plan precisely once.

To validate the fundamental principle of the proposed plan repair algorithms, one of them was after
an adaptation deployed into a high-fidelity simulated environment of a support tactical mission.
The results showed that this can be done if the targeted planning problem can be appropriately
formalized. The deployment experiment showed that plan repair based on preservation of parts of
the original plan is thriving in a short-repair loop and acts similarly as reactive planning, but with
permanently sound plan to the goal of the planning problem or particularly to the objective of the
tactical mission. The proposed software engineering methodology aiming at deployment of various
complex algorithms into a high-fidelity environments was verified on an adapted Back-on-Track
algorithm and showed its usability to transpose initially theoretical algorithms to environments
close to the real world.

Finally, description of a newly designed multiagent planner based on a distributed forward-
search principle was presented. The planner was used to validate the plan repair algorithms with
another planning technique and verified the proposed hypotheses with a different planning approach
than the used in the core experiments of the thesis.

Majority of the thesis was covered by five publications. Formalization, plan repair algorithms
and first experiments were initially published in [31, 33]. The theoretical extension with deeper
experimental study was presented in [34]. Generalization of the suffix-based and prefix-based plan
repair approaches with experimental evaluation was published in [32]. The deployment scheme was
proposed in [39].

8.1. DIRECTIONS FOR FUTURE RESEARCH 107

8.1 Directions for Future Research

During the work on the thesis several problems appeared as interesting directions for future research.
The key directions are summarized in this section.

Firm multiagent planner The second validation chapter described a new prototypical multia-
gent planner. The results of the planner especially w.r.t. its time efficiency are promising,
but a lot of work is still required to be done. The most notable extensions are to distribute
heuristics as landmarks, helpful actions, and similar. Probably more challenging, but also
more interesting in the sense of future research would be to design special multiagent heuris-
tics.

Robust multiagent planning As this thesis was focused on an unknown failure model, the state-
of-the-art approaches to planning with uncertainty was not comparable with the approaches
proposed here. An interesting question is, however, how to modify planning based on Markov
Decision Processes (MDPs) to be able to describe probabilities parametrized by previous
plans. Such approach could bring the area of multiagent plan repair presented in this disser-
tation closer to research in the field of (distributed) MDPs.

Extended application of plan repair In Chapter 6, one of the proposed plan repair techniques
was deployed and tested in a simulated environment of a multi-robotic team. The last and
probably most interesting future direction from perspective of practical applications is to
experiment with plan repair on real robots and search for efficient multiagent plan repair
techniques for real-world robotic deployment.

8.2 Thesis Achievements

This section summarizes the contribution of the thesis to the state-of-the-art. Achieved improve-
ments are the following:

1. Novel formalization of problems of multiagent domain-independent plan repair.
The dissertation proposes a novel formalization based on a state-of-the-art MA-strips frame-
work for formal description of multiagent problems. Besides the core formalism, measures for
plan difference and coordination tightness of multiagent planning problems were defined.

2. Formal and algorithmic definition of four novel multiagent plan repair algorithms.
Four novel plan repair algorithms for domain-independent multiagent planning were proposed
both formally and algorithmically. The algorithms are based on reuse of parts of the original
plan in form of a prefix or suffix or both. The last algorithm is generalization of the previous
two and provides insights into possible interconnection of those principles.

108 CHAPTER 8. CONCLUSION

3. Proofs of soundness and completeness of the proposed algorithms.
The proposed plan repair algorithms were theoretically studied and the results of the study
were presented as proofs of their completeness and soundness. The proofs used the proposed
formalization and algorithm description and were provided with auxiliary conditions under
which they are valid.

4. Time and communication complexity analysis of the proposed algorithms.
Besides the soundness and completeness analysis, the algorithms were theoretically analyzed
from the perspective of computational and communication complexity. The analysis used the
description of the algorithms and resulted in a complexity formulas in the Big-O notation for
all four proposed algorithms both for computational and communication complexity.

5. Experimental evaluation of the proposed plan repair algorithms.
The plan repair algorithms were thoroughly verified in an exhaustive set of experiments
targeting various aspects of multiagent plan repair. The key ones compared plan repair
with replanning from scratch in a wide spectrum of planning domains bounded by a domain
requiring complete coordination of the agents and on the other hand by a domain requiring
no coordination at all.

6. Novel methodology for deployment of algorithms to high-fidelity simulations.
To allow deployment of the plan repair approaches to environments close to real-world, a
software engineering development process was designed and proposed in the thesis. This
process was tailored to tactical missions which were also used for the first validation of one
of the proposed multiagent plan repair approaches.

7. Validation of plan repair in high-fidelity simulation of a tactical mission.
One of the proposed plan repair techniques was tested with the proposed deployment process
into a high-fidelity simulation to show the core principle of plan repair reusing parts of the
original plan is vital for real-world usage and even for reactive planning.

8. Design and implementation of a novel distributed forward-search multiagent planner.
Since the thorough experimental results were done with one specific state-of-the-art planning
technique based on Distributed Constraint Satisfaction Problem solving the other validation
of the repair approach was done with a novel design and implementation of a distributed mul-
tiagent forward-search planner. The newly designed planner was more efficient and therefore
was used to extend the results of the previous experiments.

9. Additional validation of plan repair with the proposed multiagent forward search planner.
The new planner was used to validate the results from the thorough experiments and extended
the conclusions with additional insights, which were not possible to find out with the original
planner.

8.3. SELECTED RELATED PUBLICATIONS 109

8.3 Selected Related Publications

This section summarizes author’s selected publications related to the content of the thesis.

Articles in journals and book chapters (5):

A. Komenda, P. Novák, and M. Pěchouček. Domain-independent multi-agent plan repair.
Journal of Network and Computer Applications. 2013. ISSN 1084-8045 (to appear).

A. Komenda, J. Vokřínek, M. Čáp, M. Pěchouček. Developing Multiagent Algorithms for Tacti-
cal Missions Using Simulation. IEEE Intelligent Systems. Volume 28(1), pages 42–49. 2013. ISSN
1541-1672.

P. Novák, A. Komenda, M. Čáp, J. Vokřínek, M. Pěchouček. Simulated Multi-robot Tactical
Missions in Urban Warfare. In Multiagent Systems and Applications Volume 1: Practice and
Experience, pages 147–183, Berlin: Springer, 2013. ISBN 978-3-642-33322-4.

A. Komenda, J. Vokřínek, and M. Pěchouček. Plan representation and execution in multi actor
scenarios by means of social commitments. Web Intelligence and Agent Systems. Volume 9(2),
pages 123–133, 2011. ISSN 1570-1263.

J. Vokřínek, A. Komenda, and M. Pěchouček. Abstract architecture for task-oriented multi-
agent problem solving. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications
and Reviews, Volume 41(1), pages 31–40, 2011. ISSN 1094-6977.

In proceedings (15):

A. Komenda, P. Novák, and M. Pěchouček. How to Repair Multi-agent Plans: Experimen-
tal Approach. In Distributed and Multi-agent Planning (DMAP) Workshop of 23rd International
Conference on Automated Planning and Scheduling (ICAPS’13). 2013.

M. Štolba, and A. Komenda. Fast-Forward Heuristic for Multiagent Planning. In Distributed
and Multi-agent Planning (DMAP) Workshop of 23rd International Conference on Automated Plan-
ning and Scheduling (ICAPS’13). 2013.

K. Durkota, and A. Komenda. Deterministic Multiagent Planning Techniques: Experimental
Comparison (Short paper). In Distributed and Multi-agent Planning (DMAP) Workshop of 23rd
International Conference on Automated Planning and Scheduling (ICAPS’13). 2013.

A. Komenda, R. N. Lass, P. Novák, W. C. Regli, and M. Pěchouček: Scalable and robust
multi-agent planning with approximated DCOP. In Proceedints of 6th International Workshop on

110 CHAPTER 8. CONCLUSION

Optimisation in Multi-Agent Systems, OPTMAS 2013, workshop affiliated with AAMAS 2013. May
6-7 2013.

A. Komenda, P. Novák, and M. Pěchouček. Decentralized Multi-agent Plan Repair in Dy-
namic Environments (Extended Abstract). In Proceedings of the 11th International Conference on
Autonomous Agents and Multiagent Systems. County of Richland: IFAAMAS, pages 1239–1240.
2012.

P. Novák, A. Komenda, V. Lisý, B. Bošanský, M. Čáp, M. Pěchouček. Tactical Operations of
Multi-Robot Teams in Urban Warfare (Demonstration). In Proceedings of the 11th International
Conference on Autonomous Agents and Multiagent Systems. County of Richland: IFAAMAS,
Volume 3, pages 1473–1474. 2012.

A. Komenda, and P. Novák. Multi-agent Plan Repair. In Proceedings Decision Making in Par-
tially Observable, Uncertain Worlds: Exploring Insights from Multiple Communities, Proceedings
of IJCAI 2011 Workshop., pages 1-6., Menlo Park, California: AAAI Press, 2011.

J. Vokřínek, A. Komenda, and M. Pěchouček. Agents towards vehicle routing problems. In
Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems:
volume 1 - Volume 1, AAMAS ’10, pages 773–780, Richland, SC, 2010. International Foundation
for Autonomous Agents and Multiagent Systems.

J. Vokřínek, A. Komenda, and M. Pěchouček. Cooperative agent navigation in partially un-
known urban environments. In PCAR ’10: The Third International Symposium on Practical Cog-
nitive Agents and Robots. Proceedings of the AAMAS-10 Workshops., 2010.

J. Vokřínek, A. Komenda, and M. Pěchouček. Decommitting in multi-agent execution in non-
deterministic environment: Experimental approach. In C. Sierra, C. Castelfranchi, K. S. Decker,
and J. S. Sichman, editors, 8th International Joint Conference on Autonomous Agents and Multi-
agent Systems (AAMAS 2009), Budapest, Hungary, May 10-15, 2009, Volume 2, pages 977–984.
IFAAMAS, 2009.

J. Vokřínek, A. Komenda, and M. Pěchouček. Relaxation of social commitments in multi-agent
dynamic environment. In ICAART 2009 - Proceedings of the International Conference on Agents
and Artificial Intelligence, pages 520–525. INSTICC Press, 19-21 January 2009.

A. Komenda, J. Vokřínek, M. Pěchouček, G. Wickler, J. Dalton, and A. Tate. I-globe: Dis-
tributed planning and coordination of mixed-initiative activities. In KSCO ’09: Knowledge Systems
for Coalition Operations 2009, Chilworth Manor, Southampton, UK, Mar-Apr 2009.

G. Wickler, A. Komenda, M. Pěchouček, A. Tate, and J. Vokřínek. Multi-agent planning

8.3. SELECTED RELATED PUBLICATIONS 111

with decommitment. In KSCO ’09: Knowledge Systems for Coalition Operations 2009, Chilworth
Manor, Southampton, UK, Mar-Apr 2009.

A. Komenda, J. Vokřínek, M. Pechoucek, G. Wickler, J. Dalton, and A. Tate. Distributed plan-
ning and coordination in non-deterministic environments (demo). In Proceedings of 8th Interna-
tional Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2009), Budapest,
Hungary, May 10-15, 2009, Volume 2, pages 1401–1402. IFAAMAS, 2009.

A. Komenda, M. Pěchouček, J. Bíba, and J. Vokřínek. Planning and re-planning in multi-actors
scenarios by means of social commitments. In Proceedings of the International Multiconference on
Computer Science and Information Technology (IMCSIT/ABC 2008), Volume 3, pages 39–45.
IEEE, October 2008.

112 CHAPTER 8. CONCLUSION

Bibliography

[1] Ambros-Ingerson, J., and Steel, S. Integrating planning, execution and
monitoring. AAAI (1988), 83–88.

[2] Au, T. C., and Munoz-Avila, H. On the complexity of plan adaptation by
derivational analogy in a universal classical planning framework. Advances in
Case-Based Reasoning (2002), 13–27.

[3] Barták, R., Salido, M. A., and Rossi, F. Constraint satisfaction tech-
niques in planning and scheduling. Journal of Intelligent Manufacturing 21, 1
(2010), 5–15.

[4] Barták, R., and Toropila, D. Solving sequential planning problems via
constraint satisfaction. Fundam. Inf. 99, 2 (Apr. 2010), 125–145.

[5] Bernstein, D. S., Givan, R., Immerman, N., and Zilberstein, S. The
complexity of decentralized control of markov decision processes. Math. Oper.
Res. 27, 4 (Nov. 2002), 819–840.

[6] Brafman, R. I., and Domshlak, C. Factored planning: How, when, and
when not. In AAAI (2006), AAAI Press, pp. 809–814.

[7] Brafman, R. I., and Domshlak, C. From one to many: Planning for loosely
coupled multi-agent systems. In Proceedings of ICAPS (2008), pp. 28–35.

[8] Bresina, J. L., and Morris, P. H. Mixed-initiative planning in space
mission operations. AI Magazine 28, 2 (2007), 75–88.

[9] Chien, S., Rabideau, G., Knight, R., Sherwood, R., Engelhardt, B.,
Mutz, D., Estlin, T. andSmith, B., Fisher, F., Barrett, T., Steb-

113

114 BIBLIOGRAPHY

bins, G., and D., T. ASPEN - automating space mission operations using
automated planning and scheduling. In Proceedings of International Conference
on Space Operations (SpaceOps 2000).

[10] Dechter, R. Constraint processing. Elsevier Morgan Kaufmann, 2003.

[11] Decker, K., and Lesser, V. Generalizing the Partial Global Planning Al-
gorithm. International Journal on Intelligent Cooperative Information Systems
1, 2 (June 1992), 319–346.

[12] des Jardins, M., Durfee, E. H., Ortiz, C. L. J., and Wolverton,
M. A survey of research in distributed, continual planning. AI Magazine 20, 4
(1999), 13–22.

[13] des Jardins, M., and Wolverton, M. Coordinating a distributed planning
system. AI Magazine 20, 4 (1999), 45–53.

[14] Do, M. B., and Kambhampati, S. Planning as constraint satisfaction: solv-
ing the planning graph by compiling it into csp. Artif. Intell. 132, 2 (Nov. 2001),
151–182.

[15] Doherty, P., and Kvarnström, J. Talplanner: A temporal logic-based
planner. AI Magazine 22, 3 (2001), 95–102.

[16] Durfee, E. H. Distributed problem solving and planning. In A Modern
Approach to Distributed Artificial Intelligence, G. Weiß, Ed. The MIT Press,
San Francisco, CA, 1999, ch. 3.

[17] Erol, K., Hendler, J., and Nau, D. S. Htn planning: complexity and
expressivity. In Proceedings of the twelfth national conference on Artificial intel-
ligence (vol. 2) (Menlo Park, CA, USA, 1994), AAAI’94, American Association
for Artificial Intelligence, pp. 1123–1128.

[18] Estlin, T., Castano, R., Anderson, R., Gaines, D., Fisher, F., and
Judd, M. Learning and planning for mars rover science. In In Proc. of IJCAI
Workshop on Issues in Designing Physical Agents for Dynamic Real-Time En-
vironments: World Modeling, Planning, Learning, and Communicating (2003),
Morgan Kaufmann Publishers.

BIBLIOGRAPHY 115

[19] Fikes, R., and Nilsson, N. STRIPS: A new approach to the application
of theorem proving to problem solving. In Proceedings of the 2nd International
Joint Conference on Artificial Intelligence (1971), pp. 608–620.

[20] Gafni, E., and Rajsbaum, S. Recursion in distributed computing. In Pro-
ceedings of the 12th international conference on Stabilization, safety, and secu-
rity of distributed systems (Berlin, Heidelberg, 2010), SSS’10, Springer-Verlag,
pp. 362–376.

[21] Gerevini, A., and Serina, I. Fast plan adaptation through planning graphs:
Local and systematic search techniques. In AIPS (2000), S. Chien, S. Kamb-
hampati, and C. A. Knoblock, Eds., AAAI, pp. 112–121.

[22] Gupta, S., Bourne, D., Kim, K., and Krishnan, S. Automated process
planning for sheet metal bending operations. Journal of Manufacturing Systems
17(5) (1998), 338–360.

[23] Helmert, M., and Domshlak, C. Landmarks, critical paths and abstrac-
tions: What’s the difference anyway? In Proceedings of ICAPS’09 (2009),
A. Gerevini, A. E. Howe, A. Cesta, and I. Refanidis, Eds., AAAI.

[24] Hoffmann, J., and Nebel, B. The FF planning system: Fast plan generation
through heuristic search. Journal of Artificial Intelligence Research 14 (2001),
253–302.

[25] IPC. The international planning competition, ICAPS. http://ipc.
informatik.uni-freiburg.de/.

[26] Jakob, M., Pěchouček, M., Novák, P., Čáp, M., and Vaněk, O. To-
wards incremental development of human-agent-robot applications using mixed-
reality testbeds. IEEE Intelligent Systems, Special Issue on HART: Human-
Agent-Robot Teamwork (2011).

[27] Kambhampati, S., and Srivastava, B. Universal classical planner: An
algorithm for unifying state-space and plan-space planning. New Directions in
AI Planning (1995), 261–271.

http://ipc.informatik.uni-freiburg.de/
http://ipc.informatik.uni-freiburg.de/

116 BIBLIOGRAPHY

[28] Keyder, E., and Geffner, H. Set-Additive and TSP heuristics for plan-
ning with action costs and soft goals. In Proceedings of ICAPS Workshop on
Heuristics for Domain-Independent Planning (2007).

[29] Komenda, A., Lass, R. N., Novák, P., Regli, W. C., and Pěchouček,
M. Scalable and robust multi-agent planning with approximated DCOP. In
Proceedints of 6th International Workshop on Optimisation in Multi-Agent Sys-
tems, OPTMAS 2013, workshop affiliated with AAMAS 2013 (May 6-7 2013).

[30] Komenda, A., and Novák, P. Multi-agent plan repairing. In Proceedings of
Decision Making in Partially Observable, Uncertain Worlds: Exploring Insights
from Multiple Communities IJCAI-DMPOUW Workshop (2011), pp. 1–6.

[31] Komenda, A., Novák, P., and Pěchouček, M. Decentralized multi-agent
plan repair in dynamic environments (Extended Abstract). In Proceedings of
AAMAS (2012), pp. 1239–1240.

[32] Komenda, A., Novák, P., and Pěchouček, M. How to repair multi-agent
plans: Experimental approach. In Proceedings of Distributed and Multi-agent
Planning (DMAP) Workshop of 23rd International Conference on Automated
Planning and Scheduling (ICAPS’13) (2013).

[33] Komenda, A., Novák, P., and Pěchouček, M. Decentralized multi-agent
plan repair in dynamic environments. CoRR abs/1202.2773 (2012).

[34] Komenda, A., Novák, P., and Pěchouček, M. Domain-independent
multi-agent plan repair. Journal of Network and Computer Applications (2013).

[35] Komenda, A., Pěchouček, M., Bíba, J., and Vokřínek, J. Planning and
re-planning in multi-actors scenarios by means of social commitments. In Pro-
ceedings of the International Multiconference on Computer Science and Informa-
tion Technology (IMCSIT/ABC 2008) (october 2008), vol. 3, IEEE, pp. 39–45.

[36] Komenda, A., Vokřínek, J., and Pěchouček, M. Plan representation
and execution in multi actor scenarios by means of social commitments. Web
Intelligence and Agent Systems 9, 2 (2011), 123–133.

BIBLIOGRAPHY 117

[37] Komenda, A., Vokřínek, J., Pěchouček, M., Wickler, G., Dalton,
J., and Tate, A. Distributed planning and coordination in non-deterministic
environments. In Proceedings of The 8th International Conference on Au-
tonomous Agents and Multiagent Systems - Volume 2 (Richland, SC, 2009),
AAMAS ’09, International Foundation for Autonomous Agents and Multiagent
Systems, pp. 1401–1402.

[38] Komenda, A., Vokřínek, J., Pěchouček, M., Wickler, G., Dalton,
J., and Tate, A. I-Globe: Distributed planning and coordination of mixed-
initiative activities. In Proceedings of Knowledge Systems for Coalition Opera-
tions (KSCO 2009) (2009).

[39] Komenda, A., Vokřínek, J., Čáp, M., and Pěchouček, M. Developing
multiagent algorithms for tactical missions using simulation. Intelligent Systems,
IEEE 28, 1 (2013), 42–49.

[40] Krogt, R. V. D., and Weerdt, M. D. Plan repair as an extension of
planning. . of the Int. Conf. on Automated Planning (2005).

[41] Krogt, R. V. D., and Weerdt, M. D. Plan repair using a plan library.
Proceedings of the Belgium-Dutch Conference on (2005).

[42] Krogt, R. v. d., and Weerdt, M. d. Self-interested planning agents using
plan repair. In Proceedings of the ICAPS 2005 Workshop on Multiagent Planning
and Scheduling (2005), pp. 36–44.

[43] Levenshtein, V. I. Binary Codes Capable of Correcting Deletions, Insertions
and Reversals. Soviet Physics Doklady 10 (Feb. 1966), 707.

[44] Lopez, A., and Bacchus, F. Generalizing graphplan by formulating plan-
ning as a csp. In Proceedings of the 18th international joint conference on Artifi-
cial intelligence (San Francisco, CA, USA, 2003), IJCAI’03, Morgan Kaufmann
Publishers Inc., pp. 954–960.

[45] McDermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A.,
Veloso, M., Weld, D., and Wilkins, D. PDDL – the planning domain def-

118 BIBLIOGRAPHY

inition language – Version 1.2. Technical Report CVC TR-98-003, Yale Center
for Computational Vision and Control (1998).

[46] Nau, D., Ghallab, M., and Traverso, P. Automated Planning: Theory
& Practice. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2004.

[47] Nau, D. S. Current trends in automated planning. AI Magazine 28, 4 (2007),
43–58.

[48] Nebel, B., and Koehler, J. Plan reuse versus plan generation: a theoretical
and empirical analysis. Artificial Intelligence 76, 1-2 (July 1995), 427–454.

[49] Nissim, R., Apsel, U., and Brafman, R. I. Tunneling and decomposition-
based state reduction for optimal planning. In ECAI (2012), L. D. Raedt,
C. Bessière, D. Dubois, P. Doherty, P. Frasconi, F. Heintz, and P. J. F. Lucas,
Eds., vol. 242 of Frontiers in Artificial Intelligence and Applications, IOS Press,
pp. 624–629.

[50] Nissim, R., and Brafman, R. I. Multi-agent a* for parallel and distributed
systems. In Proceedings of the 11th International Conference on Autonomous
Agents and Multiagent Systems - Volume 3 (Richland, SC, 2012), AAMAS
’12, International Foundation for Autonomous Agents and Multiagent Systems,
pp. 1265–1266.

[51] Nissim, R., Brafman, R. I., and Domshlak, C. A general, fully distributed
multi-agent planning algorithm. In Proceedings of AAMAS (2010), pp. 1323–
1330.

[52] Novák, P. Jazzyk: A Programming Language for Hybrid Agents with Hetero-
geneous Knowledge Representations. Springer-Verlag, Berlin, Heidelberg, 2009,
pp. 72–87.

[53] Novák, P., and Jamroga, W. Agents, Actions and Goals in Dynamic En-
vironments. In IJCAI 2011, Proceedings of the 22nd International Joint Con-
ference on Artificial Intelligence, Barcelona, Catalonia, Spain, July 16-22, 2011
(2011), T. Walsh, Ed., IJCAI/AAAI, pp. 313–318.

BIBLIOGRAPHY 119

[54] Novák, P., Komenda, A., Čáp, M., Vokřínek, J., and Pěchouček, M.
Simulated multi-robot tactical missions in urban warfare. In Multiagent Systems
and Applications. Springer, 2012, pp. 147–183.

[55] Oliehoek, F., and Vlassis, N. Dec-POMDPs and extensive form games:
equivalence of models and algorithms. IAS technical report IAS-UVA-06-02, In-
telligent Systems Lab, University of Amsterdam, Amsterdam, The Netherlands,
Apr. 2006.

[56] pa So, Y., and Durfee, E. H. Designing tree-structured organizations for
computational agents. Computational and Mathematical Organization Theory 2
(1996), 219–246.

[57] Prosser, P. Hybrid algorithms for the constraint satisfaction problem. Com-
putational Intelligence 12, 3 (1993), 268–299.

[58] Pěchouček, M., Jakob, M., and Novák, P. Towards simulation-aided
design of multi-agent systems. In Post-proceedings of the eighth international
workshop on programming multi-agent systems, ProMAS 2010, LNAI, Vol. 6599
(2010), Springer-Verlag.

[59] Richter, S., Helmert, M., and Westphal, M. Landmarks revisited. In
AAAI (2008), D. Fox and C. P. Gomes, Eds., AAAI Press, pp. 975–982.

[60] Siebra, C., and Tate, A. I-Rescue: A Coalition Based System to Support
Disaster Relief Operations. In Proceedings of The Third International Asso-
ciation of Science and Technology for Development (IASTED) International
Conference on Artificial Intelligence and Applications (AIA-2003) (September
2003).

[61] Spalzzi, L. A survey on case-based planning. Artif. Intell. Rev. 16, 1 (Sept.
2001), 3–36.

[62] Štolba, M., and Komenda, A. Fast-forward heuristic for multiagent plan-
ning. In Proceedings of Distributed and Multi-agent Planning (DMAP) Work-
shop of 23rd International Conference on Automated Planning and Scheduling
(ICAPS’13) (2013).

120 BIBLIOGRAPHY

[63] Vokřínek, J., Komenda, A., and Pěchouček, M. Decommitting in multi-
agent execution in non-deterministic environment: Experimental approach. In
AAMAS ’09: Proceedings of the eight international joint conference on Au-
tonomous agents and multiagent systems (2009).

[64] Vokřínek, J., Komenda, A., and Pěchouček, M. Relaxation of social
commitments in multi-agent dynamic environment. In Proceedings of Inter-
national Conference on Agents and Artificial Intelligence (ICAART09) (19-21
January 2009), Springer.

[65] Vokřínek, J., Komenda, A., and Pěchouček, M. Agents towards ve-
hicle routing problems. In Proceedings of the 9th International Conference on
Autonomous Agents and Multiagent Systems: volume 1 - Volume 1 (Richland,
SC, 2010), AAMAS ’10, International Foundation for Autonomous Agents and
Multiagent Systems, pp. 773–780.

[66] Vokřínek, J., Komenda, A., and Pěchouček, M. Cooperative agent
navigation in partially unknown urban environments. In PCAR ’10. Proceedings
of the AAMAS-10 Workshops. (May 2010), pp. 46–53.

[67] Vokřínek, J., Komenda, A., and Pěchouček, M. Abstract architecture
for task-oriented multi-agent problem solving. IEEE Transactions on Systems,
Man, and Cybernetics, Part C 41, 1 (2011), 31–40.

[68] Wickler, G., Potter, S., and Tate, A. Using I-X process panels as intel-
ligent To-Do lists for agent coordination in emergency response. International
Journal of Intelligent Control and Systems (IJICS), Special Issue on Emergency
Management Systems (2006).

[69] Wickler, G., Pěchouček, M., Komenda, A., Vokřínek, J., and Tate,
A. Multi-agent planning with decommitment. In Proceesings of Knowledge
Systems for Coalition Operations (KSCO 2009) (2009).

[70] Zivan, R., and Meisels, A. Asynchronous forward-checking for DisCSPs.
Constraints 12 (2007), 131–150.

	Introduction
	Problem Statement
	Contributions and Accomplishments
	Organization

	Related Work
	Multiagent Planning
	CSP-based Planning
	Classical Plan Repair
	Context for Multiagent Plan Repair

	Formal Foundations for Multiagent Plan Repair
	Multiagent Planning
	Multiagent Plan Repair

	Plan Repair Algorithms
	Back-on-Track Repair
	Simple-Lazy Repair
	Repeated-Lazy Repair
	Generalized Repair
	Complexity Analysis
	Time Complexity of MA-Plan
	Time Complexity of the Plan Repair Algorithms
	Communication Complexity of MA-Plan
	Communication Complexity of the Plan Repair Algorithms

	Implementation
	Multiagent Planner
	Planner Improvements
	Multiagent Plan Repair Process and Algorithms

	Experimental Evaluation
	Domains
	Metrics
	Failure Types
	Experimental Setup and Process
	Results and Discussion
	More Preserving Repairs
	Number of Repairing Agents
	Repair of Long-term Dependencies
	Repair Appropriately Reusing the Original Plan

	Validation in Multiagent Simulation
	Development Process
	Environment Model
	Simulation Process
	Example of a Multilevel and Multiscope Abstractions

	Multiagent Toolkit Alite
	Usage of Plan Repair in a Tactical Mission
	Deployment of Plan Repair into Tactical Simulation
	Results and Discussion

	Validation with Forward-search Multiagent Planner
	Design of the Planner
	Implementation of the Planner
	Plan Repair with Forward-search Multiagent Planner
	Results and Discussion

	Conclusion
	Directions for Future Research
	Thesis Achievements
	Selected Related Publications

