
Czech Technical University in Prague

Faculty of Electrical Engineering

Department of Cybernetics

DOCTORAL THESIS

February 2012 Ing. Monika Zemenová (Žáková)

Czech Technical University in Prague

Faculty of Electrical Engineering

Department of Cybernetics

Exploiting ontologies and higher order
knowledge in relational data mining

Doctoral Thesis

Monika Zemenová (Žáková)

Prague, February 2012

Ph.D. Programme: Electrical Engineering and Informatics
Branch of study: Artificial Intelligence and Biocybernetics

Supervisor: Doc. Ing. Filip Železný, Ph.D.

I would like to thank to my supervisor Doc. Filip Železný for the opportunity to work in
the research in data mining and for his guidance.

I would also like to express my gratitude to Prof. Nada Lavrač for her invaluable advice
and encouragement and to my colleagues Petr Křemen and Vid Podpečan.

My thanks also belong to my family and friends for their love and support.

Abstract

Present day knowledge discovery tasks require mining heterogeneous and struc-
tured data and knowledge sources. The key enabling factors for performing these tasks
include efficient exploitation of knowledge about the domain of discovery and utilizing meta
knowledge about the data mining process, which facilitates the construction of complex
workflows consisting of highly specialized algorithms.

In this thesis we first propose a framework for relational data mining with taxo-
nomic domain knowledge. The proposed framework is based on inductive logic program-
ming and enables efficient handling of taxonomies on concepts and predicates by means
of a specialized refinement operator. The operator is used to generate first order features
from relational data transforming a relational learning problem into a propositional repre-
sentation on which classical data mining algorithms can be applied. Since the generated
features form a subsumption hierarchy, we have also enhanced two rule learning algorithms
to exploit this hierarchy to produce more compact rules.

Applying relational data mining to real life problems is an intricate process con-
sisting of multiple interweaving inductive, deductive and transformation algorithms. To
alleviate the complexity of this task, we have developed a methodology for automatic con-
struction of knowledge discovery workflows.

Our methodology consists of two main ingredients. The first is a formal con-
ceptualization of knowledge types and algorithms implemented in a knowledge discovery
ontology following up on state-of-the-art developments of a unified data mining theory.
The developed ontology was used to annotate our algorithms for relational data mining and
algorithms available in the Orange4WS data mining platform. The ontology also contains
means for annotating workflows, thus facilitating their execution and reuse.

Secondly, a planning algorithm was implemented and employed to assemble work-
flows for the task specified by the user’s input-output task requirements. We have developed
two variants of the algorithm. PDDLPlanner uses a standard planning formalism PDDL
and therefore requires converting descriptions available in the ontology into PDDL, whereas
HierarchyPlanner is based on directly querying the ontology and thus is capable of exploiting
the algorithms hierarchy.

We have also developed a prototype integration of the proposed methodology into
the Orange4WS data mining platform providing means for an interactive user environment
for workflow execution.

vii

Abstrakt

Při řešeńı mnoha úloh v oboru źıskáváńı znalost́ı z dat je v dnešńı době třeba
pracovat s r̊uznorodými a strukturovanými zdroji dat a znalost́ı. Kĺıčovou roli při tom
hraje předevš́ım efektivńı využit́ı znalost́ı ze zkoumaného oblasti a využ́ıt́ı meta-znalost́ı
o samotném dolováńı dat. Tyto meta-znalosti usnadňuj́ı sestavováńı specializovaných algo-
ritmů do komplexńıch proces̊u.

Tato práce se nejdř́ıve zabývá návrhem systému pro relačńı dolováńı dat s taxo-
nomickou doménovou znalost́ı. Systém je založen na induktivńım logickém programováńı
a umožňuje efektivńı zacházeńı s taxonomiemi koncept̊u a predikát̊u pomoćı nového spe-
cializačńıho operátoru. Tento operátor je použit pro generováńı rys̊u z relačńıch dat během
transformace problému relačńıho učeńı do propozičńı reprezentace. Na takto transfor-
movaná data lze pak použ́ıt klasické algoritmy dolováńı dat. Vzhledem k tomu, že rysy
vygenerované t́ımto zp̊usobem tvoř́ı subsumpčńı hierarchii, rozš́ı̌rili jsme také dva algo-
ritmy pro učeńı klasifikačńıch a deskripčńıch pravidel tak, že využ́ıvaj́ı tuto hierarchii a
d́ıky tomu vytvářej́ı kompaktněǰśı pravidla.

Použit́ı metod relačńıho učeńı na problémy v praxi vede k sestavováńı složitého
procesu, který je složen z mnohočetných transformaćı a induktivńıch i deduktivńıch algo-
ritmů. Proto jsme navrhli metodiku automatického vytvářeńı proces̊u pro źıskáváńı znalost́ı
z dat.

Naše metodika má dvě základńı součásti. Prvńı z nich je formálńı reprezentace
typ̊u znalost́ı a algoritmů implementovaná jako ontologie, která navazuje na aktuálńı vývoj
jednotné teorie dolováńı dat. Vytvořená ontologie byla použita k anotaci našich algoritmů
relačńıho učeńı a algoritmů, které jsou součást́ı platformy pro dolováńı dat Orange4WS.
Ontologie také obsahuje pojmy pro anotováńı proces̊u a t́ım usnadňuje jejich provedeńı a
opětovné použit́ı.

Druhou součást́ı metodiky je plánovaćı algoritmus, který byl implementován a
použit pro sestaveńı proces̊u řeš́ıćıch úlohu specifikovanou vstupně/výstupńımi požadavky
uživatele. Vytvořili jsme dvě varianty plánovaćıho algoritmu. PDDLPlanner využ́ıvá stan-
dardńı formalismus pro plánovaćı úlohy PDDL a je tedy nutné převést popis úlohy a al-
goritmů z jazyka ontologie do PDDL. HierarchyPlanner je založen na př́ımém dotazováńı
ontologie a je tak schopen využ́ıt hierarchie algoritmů.

Navrženou metodiku jsme integrovali do platformy pro dolováńı dat Orange4WS,
která poskytuje prostředky interaktivńıho uživatelského rozhrańı pro spouštěńı sestavených
proces̊u.

ix

Contents

1 Introduction 1

1.1 Main concepts . 1

1.1.1 Knowledge discovery . 2

1.1.2 Ontologies . 2

1.2 Problems to be solved . 3

1.2.1 Exploiting domain knowledge . 3

1.2.2 Exploiting meta knowledge . 4

1.3 Key thesis contributions . 5

1.4 Overview of the Thesis . 5

I Exploiting Domain Knowledge 7

2 Knowledge discovery and knowledge representation 9

2.1 Knowledge Discovery and Data Mining . 9

2.2 Inductive logic programming . 11

2.3 Ontologies . 13

2.3.1 What is an ontology . 13

2.3.2 Description Logics . 14

2.3.3 Ontologies as Domain Knowledge . 15

3 Knowledge discovery with higher order domain knowledge 17

3.1 State of the art . 17

3.1.1 Sorted downward refinement . 17

3.1.2 Learning in Description Logics . 18

3.1.3 Hybrid languages . 21

3.1.4 Learning in more expressive languages 24

3.1.5 Summary . 26

3.2 Feature generation with taxonomic background
knowledge . 27

3.2.1 Integration of taxonomies . 27

3.2.2 Extending θ-subsumption with Σ-substitution 28

3.3 Feature taxonomies . 29

3.4 Experimental Results . 31

xi

xii Contents

II Exploiting Meta Knowledge 33

4 Knowledge discovery task formalization and planning 35

4.1 Relevant Foundation Ontologies and Standards 35

4.2 Knowledge Discovery Task Formalization 37

4.3 Automatic workflow construction . 38

4.3.1 Planning . 38

4.3.2 Web service composition . 39

5 Knowledge discovery ontology 41

5.1 Design Methodology . 41

5.2 Specification . 43

5.3 Knowledge elicitation . 44

5.3.1 Application scenarios . 44

5.3.2 Relevant ontologies and formalizations 46

5.4 Knowledge Discovery Ontology . 51

5.4.1 Knowledge . 51

5.4.2 Algorithms . 54

5.4.3 Knowledge Discovery Task . 56

6 Knowledge discovery workflows 59

6.1 Related Work . 60

6.2 Automatic Workflows Construction . 62

6.2.1 Generating domain and problem descriptions in PDDL 62

6.2.2 Planning algorithm . 64

6.3 Integration of planning and reasoning . 65

6.4 Empirical evaluation . 66

6.4.1 Use Cases . 66

6.4.2 Results . 67

6.5 Enhancing workflow construction . 68

6.5.1 Annotating Orange Algorithms . 69

6.5.2 Exploiting algorithm hierarchy . 70

6.5.3 Enhanced Planner Evaluation . 71

III Application 73

7 Application of the developed methods 75

7.1 Relational data mining for Product Engineering 75

7.1.1 Description of the application area 75

7.1.2 Relational data mining of CAD data 76

7.1.3 Workflow creation, execution and management 82

7.2 Orange4WS knowledge discovery platform 85

7.2.1 Text mining use case . 85

7.2.2 Integrating annotations and planning into Orange4WS 87

Contents xiii

7.2.3 Discussion . 90

8 Conclusions 91

Bibliography 93

xiv Contents

Chapter 1

Introduction

Integration of heterogeneous data sources and inferring new knowledge from such
combined information is one of the key challenges in the highly knowledge intensive domains
such as present-day life sciences and engineering. Consider for example bioinformatics
where for virtually any biological entity (e.g., a gene) vast amounts of relevant background
information are available from public web resources.

A significant part of this information has rich relational structure and includes
background knowledge at different levels of abstraction e.g. in form of ontologies. There-
fore there has been a significant amount of effort to develop algorithms capable of efficiently
handling relational data and complex background knowledge. One of the promising tech-
nologies utilized in this effort is inductive logic programming (ILP). ILP has already proven
abilities for handling relational data, produces rules easily interpretable by users. The chal-
lenges for ILP in context of rich hierarchical background knowledge are the capability to
handle structures of sizes relevant for a particular task and the ability to produce compact
rules.

The data comes also in various other forms such as graphs, sequences and texts. A
principled fusion of the relevant data requires the interplay of diverse specialized algorithms
resulting in highly intricate workflows. While the mutual relations of such algorithms and
principles of their applicability may be mastered by computer scientists, their command
cannot be expected from the end user, e.g., a life scientist or a product engineer. A formal
capture of this knowledge is thus needed, e.g., in the form of ontologies of relevant ser-
vices and knowledge/data types, to serve as a basis for intelligent computational support
of knowledge discovery workflow composition. A formal representation of the knowledge
discovery task can also be used to improve repeatability of experiments, enable reasoning
on the results and facilitate reuse of workflows and results.

1.1 Main concepts

In life sciences and engineering vast amounts of knowledge and data are currently
available giving rise to the following main challenges: effective reuse of existing knowledge,
inferring new knowledge and sharing this newly discovered knowledge. There are two key
concepts that are instrumental in responding to these challenges and are in the center of

1

2 Chapter 1: Introduction

the thesis: knowledge discovery and ontologies.

1.1.1 Knowledge discovery

Knowledge discovery is the process of inferring new knowledge via induction. In
the classical formulation new knowledge is being inferred from data, which are represented
as fixed feature vectors or attribute-value pairs. In real life applications the examined
data often describes objects of more than one kind stored in multiple interlinked tables
in a relational database or in a graph. Information relevant for the knowledge discovery
task is contained both in properties of the individual objects and in the relations between
them. These tasks often cannot be handled efficiently with classical learning techniques.
An example task could be to analyze what students are likely to get a job in a research
and development company. The data would include information about students, teachers,
courses, projects etc. Real life examples of such tasks include chemical compound analysis
and website analysis [25].

Relational learning is knowledge discovery from data containing information about
several different types of objects with relations between them. The input data are usually
represented in a formalism based on first order logic. These more expressive knowledge
representation formalisms enable learning not only from data, but also from additional
knowledge about the domain in form of rules or constraints that hold in the given domain.
An example of such rule could be the student - lecturer relationship inferred from student
- course and course - lecturer relationships.

An important framework for relational learning, which contributed significantly
to its theoretical foundations, is inductive logic programming (ILP). ILP offers means for
dealing with structured data and background knowledge and produces results in form of
rules, which are easily interpretable by humans and also in formal representation and thus
can be easily added to the existing body of knowledge. Therefore ILP is a framework which
will be further examined in detail in this thesis.

There are two general approaches to ILP. The first one is searching the space of first
order logic hypotheses directly. The second one is transforming a relational representation
of a learning problem into a propositional (attribute-value) representation (this process is
known as propositionalization) and subsequently using a propositional learner. An attribute
or feature created during propositionalization is essentially a pattern frequently occurring in
the data and fulfilling some additional constraints. An example feature would be a student
participation in at least one project involving partners from the industry.

The propositionalization approach is more flexible since it separates the process
of transformation of data from relational to classical propositional representation and the
actual model induction. Thus a wide range of already available propositional algorithms
can be used.

1.1.2 Ontologies

Ontology is a term borrowed from philosophy, where to first approximation it is
a study of what is and what the most general features and relations of the entities are
[50]. In the knowledge representation realm an ontology is a set of concept definitions and

Chapter 1: Introduction 3

relations between the concepts. It can be used to define what entities exist and also what
entities may exist within a domain. In the university domain mentioned earlier concepts
will include students, advisors, courses, projects, companies, etc. and relations between
them will include participation of a company in a project, teaching a course, attending a
course, etc.

An important relation used in ontologies is expressing that one concept is more
general than another, e.g., that crystallography course is a special case of solid state physics
course. This relation allows to build concept hierarchies and reason about the domain at
different levels of generality.

1.2 Problems to be solved

Recently there has been a lot of effort to formalize knowledge available for example
in bioinformatics, using ontologies and a lot of research on ontology formalisms, which lead
to establishing standard ontologies and formalisms.

Therefore time is ripe for examining the possibilities of effective interplay of on-
tologies and knowledge discovery. There are essentially three types of this interplay:

• using ontologies as domain knowledge in knowledge discovery

• using data mining to construct/validate ontologies

• using ontologies to formalize knowledge discovery task, data and results

The work presented in this thesis started by examining the first type and the con-
ducted research lead to development of a framework, which requires application of several
specialized algorithms. The developed framework is quite complex and therefore investiga-
tion of possibilities of its deployment, extensibility and reuse naturally motivated research
of the third type of interplay.

To distinguish between knowledge about the domain of discovery, for example
biology, and knowledge about the discovery task and its ingredients, we a have decided
to follow the distinction between data and meta data. Therefore we use the term domain
knowledge for knowledge about the domain of discovery and the term meta knowledge for
knowledge about the discovery process itself.

1.2.1 Exploiting domain knowledge

Inductive logic programming has been considerably successful in various knowl-
edge discovery problems such as in bioinformatics [57] and finite element mesh design [31].
Its techniques provide means for using domain knowledge in the form of predicates. How-
ever standard ILP techniques do not utilize information about hierarchies of concepts and
predicates and other information contained in ontologies.

During propositionalization by relational features construction a large number of
features is constructed. Most often used method of feature generation is top to bottom
approach starting with the most general features and refining them into more specialized
ones. Features constructed in this way form a hierarchy. Utilizing the information about

4 Chapter 1: Introduction

feature hierarchy in propositional search is expected to increase efficiency of the search and
increase quality of propositional rules e.g. by preventing conjunction of subsumer with its
subsumee.

The main tasks related to exploiting domain knowledge can be summarized as
follows:

• Adapting ILP framework to exploit higher order domain knowledge
Propose an extension of standard ILP framework focusing especially on efficient han-
dling of concept and predicate hierarchies defined by means of ontologies.

• Propositional search using feature subsumption
Examine utilizing the feature subsumption in propositional search with respect to
efficiency of the search and increase quality of propositional rules.

1.2.2 Exploiting meta knowledge

Today’s distributed, heterogeneous, yet instantly accessible wealth of domain infor-
mation in many branches of science and engineering can only be harnessed through careful
orchestration of algorithms dedicated to such various sources of information. It is however
the diversity that makes the configuration of the optimal computational/information flow
a hard combinatorial task. Therefore, to facilitate performing of these complex knowledge
discovery tasks, methods for some level of automation of the knowledge discovery workflows
composition are required.

When workflow construction is performed manually by humans it requires insight
into types of algorithms used, their inputs and parameters and applicability to particular
types of data. For efficient support of knowledge discovery workflow composition this meta
knowledge about the algorithms needs to be formalized and used to guide the workflow
construction. Formal description of the whole knowledge discovery task including performed
experiments and their results could also improve repeatability of experiments and enable
reuse of constructed workflows or their parts and the discovered results.

Both these goals can be elegantly achieved by ontology or ontologies formalizing
important concepts of the knowledge discovery task such as learning algorithms, available
data and knowledge types including results of learning such as patterns or rules. The main
tasks related to exploiting meta knowledge can therefore be summarized as follows:

• Develop an ontology of the knowledge discovery domain
The ontology should describe data, algorithms and results of knowledge discovery
tasks, in a way that allows for intelligent retrieval of results, composition of workflows
from algorithms, storing information about experiments, reuses existing ontologies
and semantic web standards. The ontology should cover complex relational learning
with domain knowledge.

• Design an algorithm for automatic workflow generation
Design algorithm for automatic workflow composition utilizing information contained
in the knowledge discovery ontology and producing non-linear workflows with multiple
inputs and outputs.

Chapter 1: Introduction 5

1.3 Key thesis contributions

The work in Part I focuses on enhancing relational learning to exploit domain
knowledge in form of taxonomies. We adopted the approach of solving relational learning
task through propositionalization. We enhanced both steps of the propositionalization
procedure. We adapted the standard ILP framework by developing a special refinement
operator exploiting taxonomies on terms(concepts) and predicates(relations), which leads
to an order of magnitude speedup during feature generation. Since the generated features
also form a taxonomy, we have also adapted a propositional rule learning algorithm to take
this taxonomy into account achieving a significant speedup and more compact rules. This
work was originally published in [104].

The work in Part II contributes to the research topic of automatic construction of
knowledge discovery workflows. We developed a knowledge discovery ontology (KD ontol-
ogy) describing key components of the knowledge discovery task including data, algorithms
and models. In contrast to the ontologies existing at the time the KD ontology describes
also relational learning algorithms and expressive knowledge types and offers support for
workflow construction and annotation.

We investigated integration of planning and ontological reasoning for automatic
workflow construction. The baseline approach consists of converting the task and algorithms
description from ontology to standard planning formalism PDDL and subsequent use of
classical planning algorithm. This approach provides a proof-of-concept solution and enables
use of third party planning algorithms. This work was originally published in [103].

The second approach implements planning with querying the KD ontology using
SPARQL query language and Pellet reasoner. The last version of the algorithm goes one
step beyond classical planning by exploiting the taxonomy of algorithms provided by the
KD ontology. It significantly improves the scalability of the planner with respect to number
of available algorithms. Moreover the taxonomy of algorithms can also be exploited in the
presentation of the workflows to the user. This work was published in [86].

The proposed methodology for knowledge discovery workflow annotation and con-
struction was integrated into the Orange4WS1 knowledge discovery platform.

1.4 Overview of the Thesis

The thesis consists of an introduction, six chapters divided into three main parts,
and a conclusion. Part I of the thesis focuses on exploiting domain knowledge in knowledge
discovery. Part II is devoted to the development and application of meta knowledge to guide
the knowledge discovery process. Part III describes application of the techniques presented
in Part I and Part II.

Part I starts with Chapter 2, which introduces the key concepts from knowledge
discovery and knowledge management, on which the presented work is based. Chapter 3
starts with an overview of approaches to learning with higher order domain knowledge. Then
it presents a framework for relational learning extending the classical ILP framework with

1http://orange4ws.ijs.si/

6 Chapter 1: Introduction

taxonomic background knowledge. The sections describing our framework are an edited
version of [104].

Part II starts with Chapter 4, which introduces the concepts of workflow composi-
tion and using ontologies for this task. Chapter 5 provides an extensive review of previous
efforts to formalize the knowledge discovery domain and presents a knowledge discovery
ontology, which we have developed. The sections presenting our KD ontology are an edited
version of [103]. Automated workflow composition for knowledge discovery using this ontol-
ogy is discussed in Chapter 6. The sections describing the PDDLPlanner and PelletPlanner
were originally published in [103]. The sections referring to the planner utilizing the algo-
rithms hierarchy are an edited version of [86].

Part III consists of Chapter 7, which presents applications in domains of prod-
uct engineering, which were originally published in [105] and [103], and service oriented
knowledge discovery published in [86].

Finally Chapter 8 contains discussion and concluding remarks.

Part I

Exploiting Domain Knowledge

7

Chapter 2

Knowledge discovery and

knowledge representation

This chapter introduces the key concepts from knowledge discovery and knowledge
management on which the presented work is based. Then an overview of the state of the art
in each of the relevant areas is presented. However, since this work this work draws upon
research in quite diverse fields, a more detailed review of the related work is then included
in the chapters addressing the individual issues.

The core of this study is focused on knowledge discovery and data mining and is
targeted mainly at members of data mining and knowledge discovery community. Therefore
we assume that the reader is familiar with basic concepts from this field and some data
mining algorithms, therefore we define only the concepts which are central to our work and
concepts for which slightly ambiguous definitions exist. An extensive description of classical
approaches to data mining and knowledge discovery is found in [70].

We also assume the knowledge of some principal concepts of mathematical logic
and logic programming and introduce only the concepts directly relevant for this work.
Complete definitions of these terms and theoretical foundations of inductive logic program-
ming can be found in [79]. For a comprehensive discussion of inductive logic programming
approaches and tools refer to [62].

Since the concepts of ontologies and semantic technologies are relatively new in
context of data mining, we briefly define and explain notions of ontology and knowledge
representation formalisms before proceeding to aspect of this domain directly relevant to
this work. For introduction to knowledge representation and ontologies refer to [93]. An ex-
tensive description of ontologies including tools, formalisms and development methodologies
is provided in [42]. Details on theoretical aspects of knowledge representation formalisms
can be found in [5].

2.1 Knowledge Discovery and Data Mining

In the early days of machine learning research knowledge discovery and knowledge
representation were inextricably linked. Michalski defined learning as ”constructing or
modifying representations of what is being experienced” [73]. He added that: ”There are

9

10 Chapter 2: Knowledge discovery and knowledge representation

two basic forms of learning: knowledge acquisition and skill refinement” [73]. In this work
we concentrate on the first form, which he named knowledge acquisition and defined as
”learning new symbolic information coupled with the ability to apply that information in
an effective manner” [73]. The term knowledge acquisition is currently more commonly
used for the process of acquiring knowledge from a human expert for and expert system.
Therefore we shall use the term knowledge discovery instead, since this can also be viewed
as an extension of the well established concept of knowledge discovery in databases KDD,
which is defined as ”the the non-trivial process of identifying valid novel, potentially useful
and ultimately understandable patterns in data” [36] or alternatively as ”an automatic
exploratory analysis and modeling of large data repositories. ... the organized process of
identifying valid, novel useful, and understandable patterns from large and complex data
sets” [70].

The term knowledge discovery in databases is sometimes used interchangeably
with the term data mining, let us therefore explore relationship between these two terms
before proceeding to our definition of knowledge discovery. In [70] KDD is described as an
iterative and interactive process with nine stages: (1) Domain Understanding & KDD Goals,
(2) Selection & Addition, (3) Preprocessing, (4) Transformation, (5,6,7) Data Mining, (8)
Evaluation & Interpretation, (9) Discovered Knowledge (Visualization & Integration). In
this context data mining (DM) is defined as ”the core of the KDD process, involving the
inferring of algorithms that explore the data, develop the model and discover previously
unknown patterns” [70].

An alternative terminology is provided by the CRISP-DM process model [18],
which uses the term data mining for the whole process and describes its individual phases
as: Business Understanding, Data Understanding, Data Preparation, Modeling, Evaluation,
Deployment. The CRISP-DM model describes the knowledge discovery process more from
industrial point of view. Therefore it emphasizes the activities done by the data owners,
while the description of the KDD process examines in more detail the activities performed
by the data analysts. Thus CRISP-DM defines Business Understanding as a separate stage
followed by Data Understanding stage, while these two stages are combined into Domain
Understanding and KDD Goals definition in KDD process description. Also the Deployment
stage of CRISP-DM focuses on data owner activities, while the last stage of KDD process
focuses more on knowledge visualization and integration. The Modeling stage of CRISP-DM
roughly corresponds to the stages labeled as Data Mining as defined by [70].

Since one of the main objectives of this work is formalization of the knowledge
discovery task from goals formulation to integration of the discovered knowledge and the
analysis of business processes related to knowledge discovery is out of the scope of this work,
we adopt the terminology used in [70], rather than CRISP-DM.

We define knowledge discovery as the non-trivial process of constructing or modi-
fying representations of what is being experienced, so that novel, valid and potentially useful
knowledge becomes explicit and can be applied. This definition modifies the definition of
KDD mainly in the following two ways:

• It removes the limitation of input to data and views both input and output of the
KDD process as a form of knowledge representation. We want to emphasize that the
input for knowledge discovery is not limited to data, but it can consist of data and

Chapter 2: Knowledge discovery and knowledge representation 11

background knowledge. The background knowledge itself can also be a result of some
previous knowledge discovery process.

• It removes the limitation to large datasets. Based on experience of, e.g., the microarray
analysis, the main source of complexity is not necessarily the size of the dataset. On
the contrary it can be due to having a small dataset and a complex and large body
of background knowledge.

Within this work we focus on Preprocessing to Data Mining phases of KDD pro-
cess, however the presented framework is designed to contribute to better Evaluation &
Integration as well, e.g., in developing a machine understandable representation of dis-
covered knowledge to facilitate more effective integration and retrieval of the discovered
knowledge.

Since the knowledge discovery tasks motivating this work require learning from
data and background knowledge and since in our definition of knowledge discovery we
propose to view data and discovered patterns as forms of knowledge representation induc-
tive logic programming (ILP), which uses uniform representation for examples, background
knowledge and hypotheses, is a suitable technology for the learning component.

2.2 Inductive logic programming

Inductive logic programming aims at learning a general theory in a subset of first-
order logic from given examples, possibly taking background knowledge into account. The
subset of first-order logic most commonly used for ILP is Horn logic [79]. The problem of
learning in the framework of ILP can be formally described as follows [54]:

Definition 1 (ILP Learning Problem) Given:

• a correct provability relation ⊢ for a first-order language L, i.e. for all A,B ∈ L :
ifA ⊢ B then A |= B,

• background knowledge B in language LB, B ∈ LB ⊆ L

• positive and negative examples E = E+ ∪E− in language LE ⊆ L consistent with B,
(B,E 0 �) and not a consequence of B (∀e ∈ E : B 0 e) and

• hypothesis language LH ⊆ L.

Find a hypothesis H ∈ LH such that:

1. (B,H,E 0 �), i.e. H is consistent with B and E,

2. (B,H ⊢ E+), i.e. H ∧B explain E+ and

3. (∀e ∈ E− : B,H 0 e), i.e. H ∧B does not explain E−.

The tuple (⊢, LB,LE,LH) is called the ILP-learning problem with B,E+, E− defining
the problem instance. Deciding whether there exists such an H ∈ LH is called the ILP-
consistency problem.

12 Chapter 2: Knowledge discovery and knowledge representation

The set of examples (E) usually consists of ground unit clauses of a single target
predicate. Positive examples (E+), are then ground unit definite clauses and negative
examples (E-), ground unit headless Horn clauses. Other information about the examples
under investigation is included in the background knowledge.

The subset of first-order logic used by most ILP algorithm is the language of Horn
clauses, which are defined as follows [79]:

Definition 2 A definite program clause is a clause containing exactly one positive and zero
or more negative literals. A definite goal is a clause containing only negative literals. A
Horn clause is either a definite program clause or a definite goal.

Solving ILP problem is usually formulated as search in the space of possible hy-
potheses [62]. This search space can be structured by the subsumption relation. In the
traditional ILP setting θ-subsumption based on the following definition of elementary sub-
stitution is used [79]:

Definition 3 (Elementary substitution θ) An elementary θ-substitution for atom A is:

1. X/f(X1, ..., Xn) where f is a functor of arity n and Xi are variables not occurring in
A

2. X/c where c is a constant

3. X/Y where X and Y are variables occurring in A

The θ-subsumption is then defined using θ-substitution on clauses, which is a
composition of elementary theta-substitutions on atoms [79]:

Definition 4 θ-subsumption Let c1 and c2 be two clauses, then c1 θ-subsumes c2 if and
only if ∃ substitution θ: c1θ ⊆ c2

In [62] θ-subsumption is used to define syntactic notions of generality and refine-
ment. Clause c1 is at least as general as clause c2 (c1 ≤ c2) if c1 θ − subsumes c2. Clause
c1 is more general than clause c2 (c1 ≤ c2) if c1 ≤ c2 and c2 ≤ c1 does not hold. In this
case we say that c1 is a generalization of c2 and c2 is a specialization of c1.

A downward refinement operator is used to generate specializations of a formula,
an upward refinement operator generates a set of generalizations of a formula. More formally
[79]:

Definition 5 (Downward refinement operator) Let 〈G,≥〉 be a quasi-ordered set. A
downward refinement operator for 〈G,≥〉 is a function rho, such that ρ(C) ⊆ {D|C ≥ D}
for every C ∈ G.

Analogously an upward refinement operator δ can be defined. A refinement op-
erator induces a refinement graph [79]. This is a directed graph, where nodes are unique
members of G and (C,D) is an edge just in case D ∈ ρ(C).

Most ILP approaches search the hypothesis space top-down, proceeding from the
most general hypothesis to a hypothesis special enough to fulfill the required properties with
regard to coverage of positive and negative examples, using downward refinement operator.

Chapter 2: Knowledge discovery and knowledge representation 13

The branching factor of the refinement graph is very large, therefore it is important
to investigate further means of structuring and pruning the graph. One common approach
is to reduce the branching factor by making the refinement operator take into account
the types of predicate arguments, as well as input/output mode declarations [62]. Other
approach is extending the notion of generality beyond θ-subsumption. A combination of
these two approaches is investigated in Chapter 3, since the θ-subsumption is not sufficient
for efficient representation of subsumption hierarchies on terms and predicates.

In the ILP framework ontological information can be viewed as meta information
or higher order information, which could either be built into ILP algorithms e.g. in form of
some special refinement operator or could lead to learning in a language more expressive or
higher order than Horn logic.

2.3 Ontologies

With the development of semantic web and knowledge management technologies,
more and more expert knowledge about particular highly knowledge intensive domains such
as biomedicine is becoming available in form of formal representation of concepts and objects
of the domain and relationships that hold among them. This formal representation is called
an ontology. One of the most famous examples is the Gene Ontology [23].

2.3.1 What is an ontology

The most widely accepted definition proposed in [45] states that an ontology is “a
formal, explicit specification of a shared conceptualization.” Let us discuss the constituents
of the definition one by one.

A conceptualization is essentially a description of some domain in terms of concepts
and relations, which enables us to reason about the domain. A concept is not a mere word
or label of an entity. It provides a definition of the entity, which enables us to recognize
whether an object or event is an instance of the given entity. It also defines the relationships
of the entity with other entities in the environment and the rules that are valid for all the
instances of a given entity. An often cited example is the geometrical concept of a circle.
The definition of a circle can be expressed in natural language (circle is a set of points with
the same distance from the center) or in mathematical notation (x2+y2 = r2). A definition
of the concept also includes valid theorems on the circle such as the Thales’ theorem.

The definition of concept should enable us to recognize instance of the given entity,
however for different purposes different characteristics of the instance are important, there-
fore even though the ontologies should minimize bias resulting from a specific application
scenario, it is not feasible to aim at developing one ultimate ontology of a domain. Rather
different ontologies are developed representing different points of view on the domain.

Explicit specification means that the concepts are defined using a set of statements
that are readable by humans and machines. An ontology thus has a meaning and can be
used on its own without the system for which it was created.

Formal in practice means that the specification is encoded in a logic-based lan-
guage, which enables automatic querying and deriving of new information. The core of

14 Chapter 2: Knowledge discovery and knowledge representation

C,D → A| (atomic concept)
⊤| top concept
⊥ | bottom concept
¬C| complement
C ⊓D| intersection
C ⊔D| union
∀R.C| value restriction
∃R.C| existential quantification
(≥ nR) | (≤ nR) | number restriction

R → P1 ⊓ ... ⊓ Pm role conjunction

Table 2.1: The grammar for ALCNR language.

a formal ontology is formed by a hierarchy of concepts. Some parts of the hierarchy are
defined explicitly using is-a relation, other can be inferred from axioms valid about the con-
cept. Therefore we argue that efficient exploitation of taxonomies is the first step towards
using ontologies as background knowledge in learning.

Shared indicates that the main motivation for defining ontologies is to facilitate
knowledge sharing and reuse. Since one of the main motivations for creating ontologies is
sharing of conceptualization the W3C consortium aims to create standards for the represen-
tation language for modeling ontologies. Currently the RDF(S) [15] and OWL [84] languages
are the most popular for knowledge modeling for the semantic web. These formalisms are
based on description logics, which have good properties with regard to complexity and
decidability of reasoning. [5].

2.3.2 Description Logics

As we have said above, the core part of the ontology is formed by a hierarchy of
concepts. Description logics is a family of representation languages that have been designed
to represent hierarchies of concepts and their properties. DLs are subsets of first-order
logic. The description logic ALC, which form a basis of the DLs most commonly used
for ontology modeling and knowledge representation, is a fragment of first-order logic with
equality containing formulas with at most 2 variables. It contains only unary relations
corresponding to the sets of objects in the domain (concepts) and binary relations (roles).
A concept is defined by the necessary and sufficient conditions satisfied by objects in a set.
A description logic contains a set of constructors that determine the grammar, in which the
conditions can be represented. The grammar for ALCNR language is in Table 2.1.

A concept is interpreted as a set of individuals and a role is interpreted as a set of
pairs of individuals. The domain of interpretation can be infinite. Moreover DLs are based
on the open world assumption unlike most representation languages used for databases and
learning.

Interpretation I consists of a non-empty set ∆I (the domain of the interpretation)
and an interpretation function, which assigns to every atomic concept A a set AI ⊆ ∆I

Chapter 2: Knowledge discovery and knowledge representation 15

and to every atomic role R a binary relation RI ⊆ ∆I ×∆I . The interpretation function
is extended to concept descriptions by the inductive definitions [5].

In addition to concept definitions there are terminological axioms, which relate
concepts or roles to each other. The two most generally used terminological axioms are
inclusion statement and concept definition

C ⊑ D(R ⊑ S) and C ≡ D(R ≡ S),

where C, D are concepts and R, S are roles. An equality with atomic concept as
left-hand side is a definition. Definitions are used to introduce symbolic names for complex
descriptions. E.g. by the axiom

Mother ≡Woman ⊓ ∃hasChild.Person

A finite set of definitions T is called a terminology or TBox if no symbolic name is
defined more than once. Atomic concepts in T occurring on the left-hand side of the axioms
are called name symbols or defined concepts and concepts occurring only on the right hand
side of axioms are base symbols or primitive concepts.

In addition to TBox, there is the second component of knowledge base - the world
description or ABox containing assertions about individuals. In the ABox individuals are
introduced by giving them names and asserting properties of these individuals.

Reasoning in description logics is usually implemented using tableau algorithms.
These algorithms use negation to reduce subsumption to (un)satisfiability of concept de-
scriptions. A tableau algorithm is defined by a set of transformation rules. The details and
examples of tableau algorithms are described in [5]. There are currently several highly opti-
mized reasoning engines available, therefore we have decided to investigate the approach of
integrating the existing reasoners into our learning framework rather than developing our
own reasoner.

2.3.3 Ontologies as Domain Knowledge

In this section we will focus on ontologies, which can be used as domain knowledge
in a knowledge discovery task. In Part II we will discuss using ontologies to describe the
knowledge discovery task. Other popular uses of ontologies, e.g., in text mining and multi
agent systems are out of scope of this work.

In recent years, there has been a lot of effort in some domains to organize and
formalize the knowledge available in the domain, to remove ambiguities and arrive to a
standardized representation of core concepts of the domain mainly for the purpose of effi-
cient information integration and intelligent access. This results in development of domain
reference ontologies. The most notable of these is the Gene Ontology project in bioinformat-
ics with the aim of ”standardizing the representation of gene and gene product attributes
across species and databases”. Since the development the three major bioinformatic ter-
minology bases, SNOMED-CT, Galen, and GO, started before the definition of semantic
representation languages reached maturity and also since the main focus was on standard-
ization of terms, the ontologies are lightweight and are expressible in EL description logic.

16 Chapter 2: Knowledge discovery and knowledge representation

Semantic representation is becoming popular even in industrial use 1 for sharing
and efficient searching of information in companies. The developed reference ontologies are
also relatively light weight, since efficiency of reasoning is considered more important than
expressivity.

In the bioinformatics domain the potential of using ontologies as additional sources
of information for knowledge discovery has been recognized2, but mostly in statistical anal-
ysis or rule learning [102]. The rule learning algorithms either worked at some level of
granularity or on all levels without preserving the links, thus producing a large number of
redundant rules.

In other domains the use of ontologies as background knowledge for learning has
been relatively rare. In Chapter 3 we therefore examine how to efficiently exploit ontolo-
gies as background knowledge in knowledge discovery focusing on the lightweight reference
domain ontologies.

1REPCON technological platform developed by Semantic Systems, http://www.repcon.es/

2GO web page lists over 100 papers on GO in data or text mining

Chapter 3

Knowledge discovery with higher

order domain knowledge

Classical relational learning frameworks are able to learn not only from structured
data expressed in a subset of first order logic, but also from some domain knowledge about
the field under investigation expressed in the same formalism. This domain knowledge is
incorporated into the background knowledge used by relational data mining algorithm.

The term background knowledge is used in the logical and relational learning
realm to designate both structured information about the individual examples and any
other domain knowledge available. The problem of knowledge discovery with higher order
domain knowledge can be in this context viewed as a problem of integration of ontological
background knowledge into relational data mining.

3.1 State of the art

The approaches to utilization of ontological background knowledge in learning can
be split into 3 categories: introducing learning into an extension of description logics, using
a hybrid language integrating description logics and Horn logic and learning in a more
expressive formalism such as F logic. Work on sorted refinement presented in [39] also
contributes to integration of hierarchical background knowledge into learning.

3.1.1 Sorted downward refinement

The background knowledge built into this refinement is based on sorted logic,
which encodes the taxonomies. Sorted logic contains in addition to predicate and function
symbols also a disjoint set of sort symbols. A sort symbol denotes a subset of the domain
called a sort [39]. A sorted variable is a pair, x : τ , where x is a variable name and τ is
a sort symbol. Semantically, a sorted variable ranges over only the subset of the domain
denoted by its sort symbol. The semantics of universally-quantified sorted sentences can be
defined in terms of their equivalence to ordinary sentences: ∀x : τφ is logically equivalent to
∀x : ¬τ(x) ∨ φ

′

where φ
′

is the result of substituting x for all free occurrences of x : τ ∈ φ.

17

18 Chapter 3: Knowledge discovery with higher order domain knowledge

The background knowledge that is to be built into the instantiation, subsumption
and refinement of sorted clauses is known as a sort theory. A sort theory is a finite set of
sentences that express relationships among the sorts and the sortal behavior of the functions.
Sentences of the sort theory are constructed like ordinary sentences of first-order predicate
calculus except that they contain no ordinary predicate symbols; in their place are sort
symbols acting as monadic predicate symbols. In [39] the form of the sort theory is restricted
to two types of sentences: function sentences and subsort sentences.

Function sentence

∀x1, . . . , xnτ1(x1) ∧ · · · ∧ τn(xn)→ τ(f(x1, . . . , xn))

Subsort sentence

∀xτ1(x)→ τ2(x).

Graph of the sort theory has to be acyclic and singly rooted. For the sort theory
special substitution is defined:

Definition 6 Sorted substitution θ is a Σ-substitution if for every variable
x : τ , it holds that Σ |= ∀̄τ(t) where t is (x : τ)θ.

Using sorted substitution, a sorted downward refinement is defined as follows:

Definition 7 (Sorted Downward Refinement). If C is a sorted clause, its downward
Σ-refinement, written ρΣ(C), is the smallest set such that:

1. For each θ that is an elementary Σ-substitution for C, ρΣ(C) contains Cθ.

2. For each n-ary predicate symbol P , let x1 : UNIV, ..., xn : UNIV be distinct variables not
appearing in C. Then ρΣ(C) contains C ∨P (x1 : UNIV, ..., xn : UNIV) and C ∨¬P (x1 :
UNIV, ..., xn : UNIV).

In [39] it was proved there that the sorted downward refinement is finite for finite
set of predicate symbols and that it is correct and complete.

3.1.2 Learning in Description Logics

Learning in a description logics has been investigated first in [21] and then thor-
oughly in [6] and [53].

Refinement for description logics

[6] addresses learning in DLs using downward (and upward) refinement operators.
A complete and proper refinement operator for the ALER description logic is constructed.
To avoid overfitting, disjunctions are not allowed in the target DL. The learning problem
in DLs can be stated as follows.

Chapter 3: Knowledge discovery with higher order domain knowledge 19

Definition 8 Let K = 〈T ,A〉 be a DL knowledge base. A subset A
′

⊆ A of the assertions
A can be viewed as (ground) examples of the target concept A:
A

′

= {A(a1), A(a2), ...,¬A(b1),¬A(b2), ...}. The DL learning problem consists in inducing
a set of concept definitions for A:

T
′′

= {A← C1, A← C2, ...}

that covers the examples A
′

, i.e.
〈

T ∪ T
′′

,A A
′

〉

|= A
′

.

Note that the learning problem formulated above is very similar to the ILP-problem
defined in section 2.2. There are two main differences though. The first one consists in the
different expressivities of the hypothesis language. The second one is that DLs are based
on the Open World Assumption (OWA), whereas in ILP the Closed World Assumption is
usually made.

While ILP systems learn logic programs from examples, a DL-learning system
should learn DL descriptions from Abox instances. Both types of learning systems traverse
large spaces of hypotheses in an attempt to come up with an optimal consistent hypothesis
as fast as possible. Various heuristics can be used to guide this search, for instance based
on information gain, MDL [78], etc.

Refinement operators allow us to decouple the heuristic from the search algorithm.
Downward (upward) refinement operators construct specializations (generalizations) of hy-
potheses and are usable in a top-down (respectively bottom-up) search of the space of
hypotheses.

Definition 9 A downward (upward) refinement operator is a mapping ρ from hypotheses to
sets of hypotheses (called refinements), which produces only specializations (generalizations),
i.e. H

′

∈ ρ(H) implies H |= H
′

(respectivelyH
′

|= H).

Definition 10 A downward refinement operator ρ on a set of concepts ordered by the sub-
sumption relationship ⊑ is called

• locally finite iff ρ(C) is finite for every hypothesis C.

• complete iff for all C and D, if D is strictly subsumed by C, then ∃E ∈ ρ ∗ (C) such
that E ≡ D.

• weakly complete iff ρ ∗ (⊤) = the entire set of hypotheses.

• redundant iff there exists a refinement chain from C1 to D not going through C2 and
a refinement chain from C2 to D not going through C1.

• minimal iff for all C, ρ(C) contains only downward covers and all its elements are
incomparable.

• proper iff for all C and D, D ∈ ρ(C) entails D ⊐ C.

Refinement operator for ALNER is defined by the refinement rules shown above:

20 Chapter 3: Knowledge discovery with higher order domain knowledge

[∃⊤]C ⊓ ∃R.⊤; C ⊓ ∃R.L with L a DL-literal

[∃C]C ⊓ ∃R.C1 ; C ⊓ ∃R.C2 if C1 ;
ρ
′

C2

[∃∃]C ⊓ ∃R1.C1 ⊓ ∃R2.C2 ; C ⊓ ∃(R1 ⊓R2).(C1 ⊓ C2)

[∀C]C ⊓ ∀R.C1 ; C ⊓ ∀R.C2 if C1 ;
ρ
′

C2 or C2 =⊥
[∀R]C ⊓ ∀R1.D ; C ⊓ ∀R2.D if R2 ; R1

[PR]R; R ⊓ P with P a primitive role.
[Lit]C ; C ⊓ L with L a DL-literal such that C ⊓ L is consistent.

Proposition 1 There exist no minimal and complete ALER refinement operators.

There cannot exist a minimal refinement step C ; ∀P. ⊥, since there exists a
sufficiently large n (for example, larger than the size of C) such that C ⊐ C ⊓∀P...∀P.

︸ ︷︷ ︸

n

A ⊐

∀P. ⊥ .

A significant difference in expressiveness between DL and HL is that DL definitions
like A ← ∀R.C and A → ∃R.C involve existentially quantified variables and thus cannot
be expressed in pure LP. Using the meta-predicate forall, we could approximate A← ∀R.C
as A(X) ← forall(R(X,Y), C(Y)). But while the former definition is interpreted w.r.t.
the OWA, the latter is interpreted w.r.t. the CWA, which makes it closer to A← ∀KR.C,
where K is an epistemic operator as in [33]. Also, while DLs provide inference services
(like subsumption checking) to reason about such descriptions, LP systems with the meta-
predicate forall can only answer queries, but not reason about such descriptions.

Although the OWA is sometimes preferable to the CWA [65], the OWA is a problem
when testing that a definition, for example A← ∀R.C, covers a given example, for instance
A(ai). Examples are unavoidably incomplete. Even if all the known R-fillers of ai from the
Abox verify C:
A = {R(ai, bi1), C(bi1), ..., R(ai, bin), C(bin)} this does not mean that ai verifies ∀R.C [64],
so the antecedent ∀R.C of A ← ∀R.C will never be satisfied by an example ai (unless
explicitly stated in the KB). However, ai will verify ∀KR.C because all the known R-fillers
of ai verify C, so the definition A← ∀KR.C covers the example A(ai), as expected. Thus,
when checking example coverage. we need to close the roles (for example, by replacing R
with KR, or, equivalently, assuming that the known fillers are all the fillers).

Definition 11 In the case of a DL knowledge base 〈T ,A〉, for which
A

′

= A(a1), ...A(ap),¬A(ap+1), ...¬A(ap+n) ⊆ A are considered examples, we say that the
sufficient definition A ← C covers the example ai iff

cl
〈

T ∪A← C,AA
′

〉

|= A(ai), which is equivalent with the inconsistency of

cl
〈

T ∪A← C,A\A
′

∪ ¬A(ai)
〉

, where cl 〈T ,A〉 denotes the role-closure of the knowledge

base 〈T ,A〉 (which amounts to replacing roles R with KR).

Definition 12 The necessary definition A→ C is verified in 〈T ,A〉
iff ∀A(ai) ∈ A

′

, cl 〈T ,A ∪ ¬C(ai)〉 is inconsistent.

Chapter 3: Knowledge discovery with higher order domain knowledge 21

A top-down DL learning algorithm would simply refine a very general definition
of the target concept, like A← T , using a downward refinement operator until it covers no
negative examples.

Learning of ALN concept descriptions by ILP methods

In [53] a different approach to learning of DL concepts is introduced. The paper
proposes an encoding of ALN terms into Horn clauses. It can be proved that the predicates
created by this encoding are always used in such a way that semantic constraints on the
interpretation that would formalize the semantic of the encoded DL-terms are respected, i.e.
that this encoding function is a polynomial reduction of IDLP to ILP. Before the encoding
function is applied, ALN terms have to be normalized. The encoding function is defined
below.

Definition 13 ALN encoding into constraint Horn logic
Φ(C) = h(X)← Φ(norm(C),X).
Φ(⊥,X) =⊥ (X)
Φ(P⊓C,X) = cpP (X),Φ(C,X)
Φ(¬P⊓C,X) = cnP (X),Φ(C,X)
Φ(≥ nR⊓ = mR ⊓ ∀R.CR⊓C,X) = rrR(X, [n..m], Y),Φ(CR, Y),Φ(C,X)
Φ(≤ mR ⊓ ∀R.CR⊓C,X) = rrR(X, [0..m], Y),Φ(CR, Y),Φ(C,X)
Φ(≥ nR ⊓ ∀R.CR⊓C,X) = rrR(X, [n..∗], Y),Φ(CR, Y),Φ(C,X)
Φ(≥ nR⊓ = mR⊓C,X) = rrR(X, [n..m], Y),⊥ (Y)iΦm = 0,Φ(C,X)
Φ(∀R.CR⊓C,X) = rrR(X, [0..∗], Y),Φ(CR,Y),Φ(C,X)
Φ(≤ mR⊓C,X) = rrR(X, [0..m], Y),⊥ (Y)iΦm = 0,Φ(C,X)
Φ(≥ nR⊓C,X) = rrR(X, [n..∗], Y),Φ(C,X)
where Y is always a new variable not used so far and ⊓C means, if there are conjuncts left,
recursion on them ,Φ(C,X) has to continue. For any normalized concept term only the
first matching one has to be applied.

The paper then proposes simulation of subsumption and lcs in the following the-
orem.

Theorem 1 (Simulation of subsumption and lcs). A concept description C subsumes
a concept description D (C ⊑ D), iff the encoding of C θI⊥-subsumes the encoding of D
and lcs(C,D) ≡ Φ−1(lggI⊥(Φ(C),Φ(D))).

3.1.3 Hybrid languages

The language for learning most often used in ILP is the language of Horn clauses.
It is suitable for learning, because it is a tractable subset of first-order logic and several
efficient systems for learning Horn clauses have been developed [94],[78]. However Horn
clauses are not expressive enough to model rich hierarchical structure. Description logics
on the other hand were designed specially to model hierarchies of concepts and relations.
They are based on open world assumption and may have infinite domain of interpretation.

22 Chapter 3: Knowledge discovery with higher order domain knowledge

Therefore Horn clauses and description logics are incomparable subsets of the first-order
logic i.e. they cannot be reduced one to the other.

The first system that combined frames with statements in first-order logic was
KRYPTON [13]. KRYPTON allowed statements that were more expressive than Horn
rules, but used very limited description logic. The reasoning engine of KRYPTON was
based on modifying a resolution engine to account for terminological inferences and was
not complete. Combination of Horn rules and description logics was then considered in
the CLASP system based on LOOM [69] . Since LOOM is undecidable language, CLASP
algorithms are also not complete.

There are approaches to combining function free Horn clauses with some descrip-
tion logic to form a decidable system: AL-log [67] and CARIN [65]. We will examine each
of them in more detail in the following sections.

AL-log

AL-log combines DATALOG [17] and ALC description logic. Concept assertions
are used essentially as type constraints on variables. For constrained DATALOG clauses B-
subsumption based on ground substitution is introduced. The background knowledge is rep-
resented as an AL-log i.e. DL knowledge base. Hypotheses are represented as constrained
DATALOG clauses that are called O-queries and are essentially linked and connected (or
range-restricted) constrained DATALOG clauses [67].

Definition 14 A constrained DATALOG clause is an implication of the form
α0 ← α1, ...αm&γ1, ...γnwherem ≥ 0, n ≥ 0, αi are DATALOG atoms and γi are constraints.
A constrained DATALOG program Π is a set of constrained DATALOG clauses.

Reasoning in AL-log is based on constrained SLD resolution.

Definition 15 Let Q(0) be a query ← β1, ...βm&γ1, ...γn to a AL-log knowledge base B. A
constrained SLD-refutation for Q(0) in B such that:

1. for each derivation di, 1 ≤ i ≤ s, the last query Q(ni) of di is a constrained empty
clause;

2. for every model I of B, there exists at least one derivation di, 1 ≤ i ≤ s, such that
I |= Q(ni).

Constrained SLD-refutation is a complete and sound method for answering ground
queries. DATALOG clauses are also compliant with the bias of Object Identity (OI). This
bias can be considered as an extension of the unique names assumption from the semantic
level to the syntactic one.

[67] presents an ideal refinement operator for AL-log. Learning in AL-log was
implemented in AL-QuIn system. This system solves a variant of the frequent pattern dis-
covery problem, which takes concept hierarchies into account during the discovery process.
AL-QuIn solves the problem of frequent patterns discovery at l levels of description gran-
ularity using the level-wise method i.e. uses breadth-first search and alternates candidate
generation and candidate evaluation phases.

Chapter 3: Knowledge discovery with higher order domain knowledge 23

CARIN-ALNCR

CARIN knowledge bases contain both function-free Horn rules and ALNCR ter-
minology. The two formalisms are combined by allowing the concepts and roles, defined
in the DL terminology, to appear as predicates in the antecedents of Horn rules. It as-
sumes that the terminological component completely describes the hierarchical structure
in the domain and therefore the rules should not allow to make new inferences about the
structure.

The semantics of CARIN are derived fro the semantics of its component languages.
An interpretation I is a model of a knowledge baseK if it is a model of each of its components
[64]. An interpretation I is a mode of a rule r if, whenever α is a mapping from the variables
of r to the domain ∆I , such that α

(
X̄i

)
∈ pIi for every atom of the antecedent of r, then

α
(
Ȳ
)
∈ qI , where q

(
Ȳ
)
is the consequent of r. Finally I is a model of a ground fact p (ā)

if āI ∈ pI . We make the unique names assumption, i.e. if a and b are constants in K, then
aI 6= bI .

Reasoning in CARIN is provided by means of existential entailment. In [65] there is
provided a sound, complete and terminating algorithm for existential entailment knowledge
bases that satisfies one of the following restrictions: (1) the description logic does not contain
the constructors (∀R.C) and (≤ nR) and the terminology contains only concept definitions
that are acyclic, (2) Horn rules are role-safe, i.e. in every role atom at least one variable
that appears in the atom also appears in an atom of a base predicate (a predicate that does
not appear in the consequent of a Horn rule and is not a concept or role predicate). It can
be proved that each of the above constructions causes undecidability. The proof can be
obtained by encoding the execution of a Turing machine in a knowledge base and obtaining
a reduction from the halting problem [64].

The language resulting form removing the constructors ∀R.C and (≤ nR) and
terminological cycles the reasoning problem is decidable. This language is called CARIN-
MARC (Maximal ALCNR Recursive CARIN). The inference algorithm proceeds in two
steps. In the first step we apply a set of propagation rules to the ground facts in the
knowledge base, thereby constructing a finite number of completions. The propagation
phase is based on the general method of constraint systems that was used in [16] and [32] for
deciding of satisfiability of ALCNR knowledge bases. Each completion describes a subset
of possible modes of the ground facts and terminology of the knowledge base. Together
the union of the completions describes all the possible models of the ground facts and the
terminology. In the second step, the algorithm applies a Horn-rule reasoning procedure in
each of the completions.

Description Logic Programs

Apart from hybrid languages attempting to combine subsets of Horn rules and
description logics, [44] propose a method for interoperation between the leading Semantic
Web approaches to rules (RuleML Logic Programs) and ontologies (OWL/DAML+OIL i.e.
SHOIQ(D) Description Logic) via analyzing their expressive intersection. They define a
new intermediate knowledge representation (KR) contained within this intersection: De-
scription Logic Programs (DLP), and the closely related Description Horn Logic (DHL).

24 Chapter 3: Knowledge discovery with higher order domain knowledge

The DLP-fusion is performed via the bidirectional translation of premises and inferences
(including typical kinds of queries) from the DLP fragment of DL to LP, and vice versa.
The mapping and inferences have been implemented in the system Bubo, but the original
results have been discouraging [44].

3.1.4 Learning in more expressive languages

F-logic

Frame Logic (or F-logic) provides a logical foundation for frame-based and object-
oriented languages for data and knowledge representation. It accounts in a declarative
fashion for structural aspects of object-oriented and frame-based languages. It is a rep-
resentation language with higher order syntax e.g. it contains set-valued functions. Also
classes in the IS-A hierarchy can be seen as sets ordered by the subset relation. Further-
more, attributes and methods are also viewed as objects. However the semantics of F-logic
is first-order.

Definition 16 The alphabet of an F-logic language, (L), consists of:

• a set of object constructors, (F)

• an infinite set of variables, V

• auxiliary symbols, such as, (,),[,],→,։,⇒ etc.

• usual logic connectives and quantifiers, ∨,∧,¬,←,∀,∃

Definition 17 (Molecular Formulas) A molecule in F-logic is one of the following state-
ments:

1. An is-a assertion of the form C::D or of the form O:C, where C,D and O are id-terms.

2. An object molecule of the form O[a ’;’-separated list of method expressions]. A method
expression can be either a non-inheritable data expression an, inheritable data expres-
sion or a signature expression.

• Non-inheritable data expression take one of the following two forms:

– a non-inheritable scalar expression (k ≥ 0):
ScalarMethod @ Q1, ..., Qk → T

– a non-inheritable set-valued expression (l,m ≥ 0):
SetMethod @ R1, ...Rl ։ S1, ..., Sm

• Inheritable scalar and set-valued data expression are like the non-inheritable ex-
pression except that → is replaced with ֌ and similarly for ։.

• Signature expressions also take two forms:

– A scalar signature expression (n, r ≥ 0):
ScalarMethod @ V1, ...Vn ⇒ (A1, ..., Ar)

Chapter 3: Knowledge discovery with higher order domain knowledge 25

– A set-valued signature expression (s, t ≥ 0):
SetMethod @ W1, ...Ws ⇒> (B1, ...Bt)

Complex F-formulae are built out of simpler F-formulae by means of logical connectives and
quantifiers. F-logic database includes database facts, general class information, deductive
rules and queries. To incorporate predicates directly, F-language can be extended with a
new set P of predicate symbols. If p ∈ P is an n-ary predicate symbol and T1, ..., Tn are
id-terms, then p(T1, ..., Tn) is a predicate molecule.

In [56] a proof theory for monotonic part of F-logic is provided together with
proofs of its soundness and completeness. The non-monotonic elements of F-logic include
non-monotonic inheritance, semantics of well-typing and semantics of F-logic programs.

To avoid unnecessary complexity, a subset of F-logic suitable for our task would
have to be defined. Also a transformation of semantic annotations from description logics,
which are relation-centered into object-oriented language, would have to be defined.

HiLog

HiLog [19] is an object-centered language with higher-order syntax and first-order
semantics. The concept of equality is not defined extensionally in HiLog. HiLog was origi-
nally developed to provide a clean declarative semantics to higher-order logic programming
represented e.g. by meta-predicates in Prolog e.g. Prolog meta-predicate call.

Definition 18 The alphabet of a language L of HiLog, consists of:

• a set countably infinite set of variables, V

• a countable set of parameter symbols, S (assuming V and S are disjoint)

• usual logic connectives and quantifiers

• auxiliary symbols, such parentheses etc.

The set T of HiLog terms of L is a minimal set of strings over the alphabet satisfying the
following conditions:

• V ∪ S ⊆ T

• If t, t1, ..., tn are in T , then t(t1, ..., tn) ∈ T , where n ≥ 1.

HiLog supports multiple roles for parameter symbols. Parameters are arityless
and there is no distinction between predicate, function and constant symbols. HiLog allows
complex terms to be viewed as functions, predicates and atomic formulae. E.g. a generic
transitive closure predicate can be defined as follows:

closure(R)(X,Y)← R(X,Y).
closure(R)(X,Y)← R(X,Z), closure(R), (Z, Y).

A semantic structure for HiLog is defined as follows:

Definition 19 A semantic structure for HiLog, M, is a quadruple 〈U,Utrue, I,F〉, where

26 Chapter 3: Knowledge discovery with higher order domain knowledge

• U is a nonempty set of intensions for the domain of M

• Utrue is a subset of U that specifies which of the elements in U are intensions of true
propositions

• I : S 7−→ U is a function that associates an intension with each logical symbol

• F : U 7−→
∏inf

k=1

[
Uk 7−→ U

]
is a function, such that for every u ∈ U and k ≥ 1, the

k-th projection of F(u), is a function in
[
Uk 7−→ U

]
. Here Π denotes the Cartesian

product of sets and
[
Uk 7−→ U

]
is the set of all functions that map Uk to U .

It can be shown that every HiLog formula can be encoded in predicate calculus.

3.1.5 Summary

Two approaches to learning in DLs have been described: refinement in DL and
transformation of learning in DL to standard ILP framework. Both approaches deal with
the open world assumption of DL in a similar way using the epistemic operator defined for
DL [5]. This technique can be utilized in transformation of information encoded in DL to
any representation based on the closed world assumption. However, the expressivity of DLs
is too limited for our purposes, since no rules with a free variable can be expressed in DLs.

To overcome this basic limitation of DLs and still preserve decidability, the hybrid
languages attempt to combine the description of concept hierarchy in a DL with a rule
component expressed in DATALOG. The coupling of description logics and DATALOG in
AL-log is relatively loose. Use of description logics is limited to concept definitions, which
are evaluated in DL framework and then form only constraints for DATALOG queries. The
description logic used is not sufficiently expressive to represent hierarchies on properties.
In CARIN, the description logics component is more closely coupled with the rule compo-
nent. The DL used in CARIN is also expressive enough to support hierarchy on predicates.
However DATALOG does not allow to express constraints on predicates, e.g., a predicate
is symmetric, in a declarative way. Therefore more expressive languages were investigated.

Two expressive languages were introduced: F-logic and HiLog. F-logic was de-
signed to account in a declarative fashion for most of the structural aspects of object-oriented
and frame-based languages. It contains constructs specific to object-oriented programming,
which have no use in our application. The higher order information such as constrains on
predicates cannot be expressed directly. It can only be encoded using objects. Therefore
transformation would have to be designed not only for description of concept hierarchy
described in DLs but also for constraints on predicates. HiLog enables us to express con-
straint in a declarative way and is also expressive enough to describe hierarchies of concepts
usually represented in DLs. HiLog is also considered as language suitable for describing
more complex aspects of the semantic web, which cannot be modeled in the standard DLs
[110], [77].

While learning in HiLog covers all our requirements developing a framework based
on HiLog would include defining a suitable subset of HiLog and designing transformations
of knowledge expressed in ontology modeling formalisms into HiLog. Moreover a special
engine for HiLog programs execution is required. To avoid the complexity of development

Chapter 3: Knowledge discovery with higher order domain knowledge 27

based on HiLog, which would exceed the scope of this thesis, we decided to investigate
integration of higher order background knowledge by proposing a specialized refinement
operator exploiting taxonomic background knowledge. This solution also meets our core
requirements and is more tractable in the initial stage of development.

3.2 Feature generation with taxonomic background

knowledge

The presented approach is based on extending the classical ILP task using a special
refinement operator. The proposed operator focuses on two core relations present in the
ontologies: subsumption relation on concepts and on predicates.

3.2.1 Integration of taxonomies

The simple ontology written in RDF formalism can be represented by acyclic
directed graph (DAG). Concepts are defined only by means of declaring class and its place
in the class hierarchy. No set operators or restrictions commonly used in OWL are present
in the background knowledge and dataset. Only domain and range are defined for the
properties and a hierarchy on properties is induced by means of the subpropertyOf relation.
The definition of rdfs:subPropertyOf relation in [15] originally states: If a property P is a
subproperty of property P’, then all pairs of resources which are related by P are also related
by P’. For our purposes the definition of subPropertyOf relation is restricted to cases where
domain and range of P and P’ are defined by some class or set of classes. Then it must
hold that domain of P is equivalent to or subclass of the domain of P’ and the same holds
for range. Therefore we have to deal essentially with taxonomies on terms and predicates.

Our approach to propositionalization is based on RSD system [106]. In RSD, a
predicate declaration assigns a type symbol to each argument, from a finite set of type
symbols. The presented approach replaces the notion of type with that of sort borrowed
from the formalism of sorted logic, which is suitable for encoding term taxonomies. Sorted
logic was introduced in Section 3.1.1. We shall introduce its use by an example. The Gene
Function Ontology declares a concept binding and its subconcept protein binding. Such
concepts are reflected by terms in ILP. It is possible to declare in background knowledge
e.g.

subclass(binding, protein binding).

geneFunction(G, F1) :- geneFunction(G, F2), subclassTC(F1, F2).

(where subclassTC/2 is defined as the transitive closure of subclass/2). Unfortunately,
in such an approach, for the following two exemplary clauses (hypotheses)

C = activeGene(G):- geneFuction(G, binding).

D = activeGene(G):- geneFuction(G, protein binding).

it does not hold Cθ ⊆ D, so clause D is not obtained by applying a specialization refinement
operator onto clause C. Similar reasoning applies to taxonomies on relations (predicates).

28 Chapter 3: Knowledge discovery with higher order domain knowledge

Figure 3.1: An overview of the RDM system consisting of feature genearation using extended
sorted refinement and subsequent propositional learning.

In the present propositionalization approach, terms in features are constants or
sorted variables. Background knowledge consists of an ordinary first-order theory and a
sort theory Σ. A declaration for a predicate of symbol π and arity n has the form

π(m1τ1, . . . ,mnτn)

where mi ∈ {+,−} denotes whether i-th argument is an input (+) or an output (-). Be-
sides the constraints imposed on features in RSD, correct features must respect the sort
relationships. Formally, a literal Lit may appear in a feature only if there is a declaration
π(m1τ1, . . . ,mnτn) and a Σ-sorted substitution θ such that π(τ1, . . . , τn)θ = Lit. Next we
turn attention to the refinement operator through which features are constructed.

3.2.2 Extending θ-subsumption with Σ-substitution

We have adapted the sorted downward refinement from [39], which accounts for
term taxonomies, to further account for the earlier defined feature constraints and predicate
declarations used in propositionalization, and for a further kind of taxonomy – the predicate
taxonomy – often available in ontology data. This taxonomy is encoded through meta-
predicates in the form

subrelation(pred1/n, pred2/n).

providing the explicit meta-information that goal pred1(Arg1, . . . , Argn) succeeds whenever
goal pred2(Arg1, . . . , Argn) succeeds, i.e. pred1 is more general. The directed graph corre-
sponding to the entire set of the subrelation/2 statements (where direction is such that
edges start in the more general goal) is assumed to be a forest. The set of its roots is
exactly the set of predicates declared through the predicate declarations defined in the pre-
vious section. It is assumed that the non-root predicates inherit the argument declarations
from their respective roots.

Chapter 3: Knowledge discovery with higher order domain knowledge 29

As feature heads are fixed in our propositionalization framework, we are concerned
with refinement of their bodies, i.e. conjunctions. We will use the notion of an elementary Σ-
substitution. Its general definition can be found in [39], however, adapted to our framework,
the definition simplifies.

An elementary Σ-substitution for a sorted conjunction C is {x : τ1} → {x : τ2}
where {x : τ1} occurs in C and Σ contains the subsort formula ∀ψτ2(ψ) → τ1(ψ) for some
variable ψ. If {x : τ2} already occurs in C, then x is deterministically renamed1 to a
variable not occurring in C. Unlike in [39], we can disregard the case of substituting a
sorted variable by a function (as we work with function-free features) and, similarly to RSD
[106], we neither allow to unify two distinct variables (an equality theory can be defined
instead in background knowledge).

Let C be a conjunction of non-negated atoms where any term is either a constant
or a sorted variable, Σ be a sort theory, and ∆ a set of predicate declarations. We define
the downward ∆,Σ-refinement, written ρ∆,Σ(C), as the smallest set such that:

1. For each θ that is an elementary Σ-substitution for C, ρ∆,Σ(C) contains Cθ.

2. Let π(m1τ1, . . . ,mnτn) be a declaration in ∆ such that for each i for which mi = +,
C contains a variable (denote it xi) of sort τ

′

i which equals or is a subsort of τi. Let
further {xi|mi = −} be a set of distinct variables not appearing in C. Then ρ∆,Σ(C)
contains C ∧ π(x1 : υ1, ..., xn : υn), where υi = τ ′i if mi = + and υi = τi otherwise.

3. Let C contain a literal pred1(x1τ1, . . . , xnτn) and let pred2 be a direct subrelation of
pred1. Then ρ∆,Σ(C) contains C ′, which is acquired by replacing pred1(x1τ1, . . . , xnτn)
with pred2(x1τ1, . . . , xnτn) in C.

Under very general assumptions on ∆, the defined refinement operator is (i) finite,
(ii) complete, in that all correct features (as defined in [106] and Section 3.1.1) up to variable
renaming are enumerated by its recursive closure, whenever the initial C in the recursive
application of ρ∆,Σ(C) is true, and also (iii) non-redundant, in that ρ∆,Σ(C1)∩ρ∆,Σ(C2) = {}
if C1 6= C2. However, the operator is not necessarily correct, in that all its products
would be correct feature bodies. In particular, it may produce a conjunction violating the
undecomposability condition defined in [106].

3.3 Feature taxonomies

During the recursive application of the refinement operator, a feature generality
taxonomy becomes explicit. For purposes of enhancing the performance of the propositional
learning algorithm applied subsequently on the propositionalized data, we pass the feature
taxonomy information to the learner through two Boolean matrices.2 Assume that features

1That is, we do not allow several elementary substitutions differing only in the chosen renaming.

2While alternative data structures are of course possible for this sake, the elected binary matrix form
requires modest space for encoding (our implementation uses one byte for each 8 matrix elements) and also
is conveniently processed in the propositional algorithm implementation.

30 Chapter 3: Knowledge discovery with higher order domain knowledge

Propositionalize(∆, B,Σ, E, l) : Given, a set ∆ of predicate declarations, a first-order theory
(background knowledge) B, a sort theory Σ, a set of unary ground facts (examples) E =
{e1, . . . , em} and a natural number l; returns a set {f1, . . . , fn} of constructed features,
each with at most l atoms in the body, an elementary subsumption matrix E, an exclusion
matrix X, and an attribute-value matrix A where Ai,j = 1 whenever fi is true for ej and
Ai,j = 0 otherwise.

1. n = 0; Agenda = a single element list [(C, 0)], where C = true;

2. If Agenda = []: go to 10

3. (Curr, Parent) := Head(Agenda); Tail := Tail(Agenda)

4. If Nonempty(Curr) and Undecomposable(Curr):

5. n := n+ 1; fn = AddFeatureHead(Curr);

6. En,Parent = 1; Parent = n;

7. An,1...l =Coverage(Curr,E,B,Σ,AParent,1...l)

8. Rfs := ρ∆,Σ(Curr); Rfs := {(Cnj, Parent)|Cnj ∈ Rfs, |Cnj| ≤ l}

9. Agenda := Append(Rfs, Tail); go to 2

10. X = Closure(E)

11. Return f1, . . . , fn, E, X, A

Figure 3.2: A skeleton of the algorithm for propositionalization through relational feature
construction using the sorted refinement operator ρ∆,Σ.

f1, . . . fn have been generated with corresponding conjunctive bodies b1, . . . bn. The elemen-
tary subsumption matrix E of n rows and n columns is defined such that Ei,j = 1 whenever
bi ∈ ρ∆,Σ(bj) and Ei,j = 0 otherwise. The exclusion matrix X of n rows and n columns is
defined such that Xi,j = 1 whenever i = j or bi ∈ ρ∆,Σ(ρ∆,Σ(. . . ρ∆,Σ(bj) . . .)) and Xi,j = 0
otherwise.

A skeleton of the propositionalization algorithm is shown in Fig. 3.2. The al-
gorithm is a depth-first search generally similar to the feature constructor of RSD [106].
The main difference lies in using the novel sorted refinement operator ρ∆,Σ and also in
creating the matrices E and X storing the generality taxonomy of constructed features.
The Undecomposable procedure checks whether a feature is not a conjunction of already
generated features, through a method used in RSD and detailed in [106]. The AddFea-

tureHead forms a feature clause by formally attaching a head to the body, which consists
of the constructed conjunction Curr. The Coverage procedure verifies the truth value of
a conjunction for all examples in E returning a vector of Boolean values. The verification
is done by a transformation of the sorted conjunction Curr to an ordinary first-order con-
junction as explained in Sec. 3.1.1 and then using a standard resolution procedure against
a Prolog database consisting of B and Σ. For efficiency, the procedure obtains the coverage
AParent,1...l of the closest ancestor (subsuming) conjunction whose coverage was tested: any
example i such that AParent,i is false can be left out of testing as it makes the current con-
junction necessarily false as well. The Closure procedure computes the transitive closure
of the elementary subsumption relation captured in E in the manner described above, and

Chapter 3: Knowledge discovery with higher order domain knowledge 31

represents the closed relation analogically in matrix X, in which it further sets Xi,i = 1 for
all 1 ≤ i ≤ n.

We have adapted two rule learning algorithms to account for the feature taxonomy
information provided by the propositionalization algorithm. The first algorithm stems from
the rule inducer of RSD [106]. It is based on a heuristic general-to-specific deterministic
beam search for the induction of a single propositional conjunctive rule for a given target
class, and a cover-set wrapper for the induction of the entire rule set for the class. Given a
set of features F = {f1, . . . fn}, the standard algorithm refines a conjunction C of features
into the set {C∧fi|fi ∈ F, fi /∈ C}. In our enhanced version, the algorithm is provided with
the elementary subsumption matrix E and the exclusion matrix X. Using these matrices it
can prevent the useless combination of a feature and its subsumee within the conjunction,
and specialize a conjunction by replacing a feature with its elementary (direct) subsumee.
Furthermore, we have similarly enhanced the stochastic local DNF search algorithm intro-
duced in [88] and later transferred into the propositionalization framework by [81]. This
algorithm conducts search in the space of DNF formulas, i.e. it refines entire propositional
rule sets. Refinement is done by local, non-deterministic DNF term changes detailed in
[88]. In our version, the X matrix is used to prevent the combination of a feature and its
subsumee within a DNF term.

3.4 Experimental Results

We designed experiments to assess the runtime impact of (i) the novel taxonomy-
aware refinement operator in propositionalization, and (ii) the exploitation of the feature-
taxonomy in subsequent propositional learning. We conducted tests in two domains. The
first concerns genomics, where we used data and language declarations from [101]. The
second is concerned with learning from product design data. Here the examples are seman-
tically annotated CAD documents. We used the same learning setting and ontology data
as in [105].

Figures 3.3 and 3.4 illustrate on log scale the number of conjunctions searched
(Fig. 3.3) and the time spent on search (Fig. 3.4) to enumerate all conjunctions true for at
least 80% examples, for increasing maximum conjunction size l. Here, we distinguish the
sorted refinement operator using a special sort theory Σ encoding the taxonomy information,
against the standard refinement operator, which treats the taxonomy information only as
part of background knowledge. While in both cases exactly the same set of conjunctions
is produced, an order-of-magnitude runtime improvement is observed for the ‘taxonomy-
aware’ operator.

Results of experiments for propositional rule learning exploiting feature taxonomy
are summarized Table 3.1. It shows the runtime spent of inducing a rule set by two al-
gorithms (top-down and stochastic) through 10-fold cross validation in two scenarios: in
the first, no feature taxonomy information is used by the algorithms, in the second, feature
taxonomy is exploited. A significant speedup is observed when feature taxonomy is used
without compromising the predictive accuracy.

32 Chapter 3: Knowledge discovery with higher order domain knowledge

Figure 3.3: Sorted refinement vs. standard refinement on CAD and Genomic data: number
of nodes explored

Figure 3.4: Sorted refinement vs. standard refinement on CAD and Genomic data: time
taken. (Experiments exceeding 1000s were discarded)

Table 3.1: Propositional rule learning from CAD and Genomic data

Domain CAD data Genomic data
Algorithm Time taken Predict. acc. Time taken Predict. acc.

Top-down 0.22 ± 0.08 0.66 ± 0.21 0.99 ± 0.65 0.79 ± 0.13
Top-down, FT 0.06 ± 0.02 0.66 ± 0.22 0.34 ± 0.19 0.76 ± 0.07
SLS 0.63 ± 1.45 0.62 ± 0.18 3.00 ± 2.59 0.79 ± 0.13
SLS, FT 0.28 ± 0.83 0.61 ± 0.19 1.90 ± 1.69 0.76 ± 0.07

Part II

Exploiting Meta Knowledge

33

Chapter 4

Knowledge discovery task

formalization and planning

Testing and deployment of algorithms presented in Chapter 3 lead to identification
of the following challenges: adding results to the existing body of knowledge for reasoning
and retrieval, efficient reuse of specialized third party algorithms, flexible modifications of
the framework for different data and result types. This motivated investigation of the possi-
bilities to formalize the main ingredients of the knowledge discovery task: task formulation,
input data and knowledge, algorithms and procedures and the results.

The presented system for relational data mining is in line with the trend that
efficient use of domain knowledge requires a combination of diverse specialized algorithms
in complex workflows, which are difficult to assemble manually for someone not expert
in data mining. However once all the important components of the workflows have been
formalized using the knowledge discovery ontology, planning and reasoning can be used for
automatic workflow construction.

In this part of the thesis we propose a framework for automated knowledge dis-
covery workflow construction based on a combination of planning guided by the knowledge
discovery ontology. We start with introducing the key ingredients of this framework. In this
chapter we present an overview of existing ontologies and standards relevant for knowledge
discovery task formalization and describe the general problem of workflow construction and
the main approaches to solving this problem.

4.1 Relevant Foundation Ontologies and Standards

Ontologies and their use as domain knowledge in knowledge discovery tasks were
already introduced in Part I. In this section we examine the existing foundation ontologies
and standards, which are relevant for constructing the knowledge discovery ontology. The
relevant ontologies and standards can be divided into three categories:

• well-founded reference ontologies, such as BFO and DOLCE [72]

• standards and light-weight ontologies for web services, such as OWL-S [35] andWSDL-
S [1]

35

36 Chapter 4: Knowledge discovery task formalization and planning

• extending activities in bioinformatics to more general domains

There exist several generic toplevel ontologies, based on different philosophical
orientations such as SUMO1, Cyc2, DOLCE3, BFO4 and COSMO5. We do not want to enter
into philosophical discussions regarding the toplevel structure of these ontologies, therefore
we shall examine only those ontologies, which were created to support domain ontologies
for scientific research or for which some domain ontologies for scientific research have been
developed - namely BFO, which explicitly declares to focus on the task of providing a
genuine upper ontology which can be used in support of domain ontologies developed for
scientific research, and DOLCE, for which extensions for information objects and plans
already exist. Moreover, we shall not go into a systematic comparison of philosophical
orientation of BFO and DOLCE, which can be found, e.g., in [43], but only examine examine
the differences between BFO and DOLCE from the point of view of representation of the
knowledge discovery domain.

Web services are a technology, which is available on the web and is growing rapidly,
however to achieve real interoperability semantics is required. Most of the characteristics
of web services are applicable to software components implementing algorithms, therefore
we could reuse the formalisms and techniques of web services, even though we do not want
to restrict our KD ontology to algorithms available as web services. Moreover using a
standard ontology for representing the algorithms would significantly lower the barrier of
adding annotations of new algorithm implementations to our ontology and allow us to utilize
already available tools.

There is currently no standard ontology for web services, however there are three
W3C Member submissions proposing ontologies describing the domain of web services:
OWL-S [35], SWSF-SWSL [7] and WSMO [61]. The principal aim of these approaches is
not to define a rich reference ontology, but rather to enable the users and software agents
to discover, invoke, compose, and monitor web services.

An alternative way of adding semantics to web services was proposed in WSDL-
S[1] and SAWSDL [71]. Rather than trying to develop an ontology of web services, WSDL-S
provides a methodology for annotating WSDL descriptions of web services using ontologies.
SAWSDL, which has the status of W3C Recommendation for adding semantics to web
services, is based on ideas of WSDL-S. SAWSDL provides mechanisms by which concepts
from the semantic models can be referenced from within WSDL. It does not rely on any
particular semantic modeling language, only requires concepts identified by URI. It allows
for multiple annotations and provides no way to dereference the model. It also does not
provide a mechanism for propagating model references when an interface is created by
extending other interface(s). Despite these open issues SAWSDL indicates that W3C chose

1http://www.ontologyportal.org/

2http://opencyc.org/

3http://www.loa-cnr.it/DOLCE.html

4http://www.ifomis.org/bfo

5http://www.micra.com/COSMO/COSMO.owl

Chapter 4: Knowledge discovery task formalization and planning 37

not to commit to any particular ontology for web services.

There is also an initiative of an industrial consortium based on BPEL language
for business processes [4]. However WS-BPEL lacks semantics and therefore is not suitable
as a core representation language for our framework. Defining semantics for WS-BPEL is
a research topic in itself, therefore we take WS-BPEL into account only by introducing the
criteria of existence of a mapping between an ontology of web services and WS-BPEL into
evaluation of the proposed W3C ontologies.

The Ontology for Biomedical Investigations (OBI) [24] is being developed to rep-
resent design of an investigation, protocols and instrumentation used, material used, data
generated and type of analysis performed on it. Its core concepts are mapped to the BFO.
The domain described by OBI overlaps with knowledge discovery and one branch of OBI
ontology is devoted to data transformation. Also the applications of our knowledge discov-
ery algorithms are often in bioinformatics. Therefore, in Chapter 5 we discuss possibilities
of reuse of concepts and relations from OBI.

4.2 Knowledge Discovery Task Formalization

There has been some effort to formalize the knowledge discovery task and provide
categorization of data mining algorithms. The data mining and knowledge discovery on-
tologies developed and used within systems for automatic workflow construction are most
relevant for our work. These include the work described in [9], [14], [107], [98] and recent
ongoing work described in [55] and [29]. Most of these ontologies are limited to classical
propositional data mining and do not provide sufficient means for describing complex and
expressive background knowledge and the results of knowledge discovery.

Other efforts to provide a systematic formalization of the DM tasks include projects
MiningMart [76], DataMiningGrid [96], Knowledge Grid [22] and Universal Knowledge Grid
[66]. The systems MiningMart and DataMiningGrid focus on mining propositional patterns
from data stored in a relational database. All four systems contain a meta-model for
representing and structuring information about data and algorithms, however, only in case
of Universal Knowledge Grid is the meta-models expressed in an ontology language.

In parallel to our work, the OntoDM [83] ontology is being developed on the basis of
[34]. A principled top-down approach was adopted in the development of OntoDM aiming
for its maximum generality. Given the complexity of the domain, the ontology was not
sufficiently refined for purposes of workflow construction at the time when we considering
using it [82]. Other ongoing effort include KDDOnto [29] and DMOnto [47], which is being
developed to support meta-learning for algorithm selection. Both these ontologies focus
on the propositional data mining. DMOnto concentrates in particular on the classification
task.

Since none of the above mentioned approaches to knowledge discovery task formal-
ization could be directly reused for our purposes, we decided to develop a new knowledge
discovery ontology. We discuss the related work in more detail in Chapter 5, while describing
the design choices for our knowledge discovery ontology.

38 Chapter 4: Knowledge discovery task formalization and planning

4.3 Automatic workflow construction

The term knowledge discovery workflow allows a wide scope of interpretations. In
this work we define it as a progression of steps (inductive, deductive, format-conversion
procedures etc.) involved in generalizing specific data (e.g., measurements) into patterns,
which (under appropriate interpretation) may represent novel knowledge about the domain
under investigation. Therefore is can be viewed as a special form of scientific workflow [100],
currently covering the data preprocessing to data mining stages of the KDD process.

Intelligent management of knowledge discovery workflows has attracted a lot of
interest in recent years. The development builds upon technologies provided by several
information science fields, the two most notable of them being the semantic web and grid
computing. The former provides the building blocks through which workflows can be an-
notated, facilitates automatic service discovery, efficient management of workflows or even
their automated composition. The latter technology allows to execute workflows in a dis-
tributed computing environment while optimizing factors such as total runtime, security,
etc. Both technologies actively overlap, such that, e.g., annotations extend also to physical
constituents of the computing environment enabling an intelligent translation of an abstract
(resource independent) workflow to a concrete one, where tasks are mapped onto particular
computing resources.

Our work is mainly concerned with automatic composition of data mining and
knowledge discovery workflows and we view this problem in the context of planning. In
this thesis we focus on generating abstract workflows rather than on providing a workflow
editing environment focused on the integration of computational resources and middleware
and efficient execution, such as Triana [99], the system for scientific workflows developed
in Kepler6, WCT developed within the K-WF grid7, and the tools developed within the
DiscoveryNet project [87] and project ADMIRE [52].

4.3.1 Planning

Automatic workflow construction can be formulated as a classical planning task
with algorithms as operators/actions. We adhere to notations of STRIPS planning tasks
introduced in [49]. The notation is as follows.

Definition 20 (State) A state S is a finite set of logical atoms.

Definition 21 (Strips Action) A STRIPS action o is a triple o = (pre(o), add(o), del(o)),
where pre(o) are the preconditions of o, add(o) is the add list of o and del(o) is the delete
list of the action, each being a set of atoms. For an atom f ∈ add(o), we say that o achieves
f. The result of applying a single STRIPS action to a state is defined as follows:

Result(S, 〈o〉) = (S
⋃
add(o))\del(o) if pre(o) ⊆ S, otherwise undefined

6http://kepler-project.org

7http://www.kwfgrid.eu/

Chapter 4: Knowledge discovery task formalization and planning 39

Definition 22 (Planning Task) A planning task P = (O,I,G) is a triple where O is the
set of actions, and I (the initial state) and G (the goals) are sets of atoms.

Several previous works have explored planning for knowledge discovery workflows.
In this section we present only a brief overview of the notable projects and we discuss the
work most relevant for our research in more detail in Chapter 6.

Within the Pegasus project [26] a planner was used to construct a concrete work-
flow given an abstract workflow. In our research we tackle a related yet different problem;
given an ontology and a task description, we use a planner to construct an abstract workflow.
A similar aim was followed by [14], [9] and [8], however this work is limited to proposing
simple, non-splitting workflows, unless specific splitting templates are provided. The sys-
tems CITRUS [107] and CAMLET [98] allowed for more complex workflows, however they
only made a limited use of planning for process decomposition starting from a manually
defined structure.

There are two ongoing efforts to develop a framework for automatic workflow con-
struction through planning within projects e-Lico and Virtual Mart, which are described in
[55] and [30], respectively. [30] uses STRIPS planning formalization and backward chaining
algorithm. [55] uses the Hierarchical Task Network (HTN) planning [89], which relies on
an explicitly defined task decomposition hierarchy.

4.3.2 Web service composition

Recently workflow construction has been used for web service composition. Since
we are reusing WS technologies for representation, some of the work addressing the problem
of web service composition in the framework of planning is also relevant.

There exists also previous work dealing with domain descriptions encoded in an
ontology and using a planning algorithm for service composition [91], [58] and [68]. This
approach is most suitable for our work, since we use the KD ontology for formalization of
the knowledge discovery task and the available algorithms. It also allows us to build upon
the existing planning algorithms and standards. Therefore we focus on this approach in
developing an algorithm for automatic composition of knowledge discovery workflows.

An interesting approach presented in [63] relies on computing a causal link matrix
for all available services. Informally, this matrix captures semantic input/output compat-
ibility among pairs of services. Services can be then viewed as nodes in a graph with the
link matrix defining the edge labels. Finding a suitable sequence of services can then be
elegantly reduced to finding a path in this graph. In our framework, however, we work
with a more general, non-linear notion of a plan, where the inputs of an algorithm (action)
combine the outputs of multiple other algorithms. Thus, pairwise semantic compatibility
does not carry sufficient information to construct a plan in our framework and we have to
rely on general planning strategies.

Other work in web service composition is less relevant for our task, since often the
planning techniques focus on addressing the problems of nondeterminism, partial observ-
ability and extended goals (constraints on the behavior of a process), e.g., [85]. While the
first two are important characteristics of web services composition for practical applications,
they are not directly relevant for generating abstract knowledge discovery workflows.

40 Chapter 4: Knowledge discovery task formalization and planning

Chapter 5

Knowledge discovery ontology

A formal conceptualization of the knowledge discovery domain by means of the
Knowledge Discovery Ontology (KD ontology, for short) is the central point of our frame-
work. The primary purpose of the ontology is to enable the workflow planner to reason
about which algorithms can be used for a particular knowledge discovery task specified by
the input knowledge and data and the required type of results. We are not attempting
to develop a generic reference ontology of the knowledge discovery domain, but rather we
would like to contribute to the effort to devise a set of ontologies for this domain, which
could be mapped to each other. We propose an ontology describing relational descriptive
data mining with background knowledge, which has not been covered by any of the existing
ontologies.

5.1 Design Methodology

In order to facilitate ontology evaluation and compatibility with other existing
ontologies for this domain, it is necessary to adhere to some set of design criteria and an
ontology design methodology. A set of basic design criteria, which is cited by most ontology
design methodologies, was proposed by [45]. The following 5 criteria were defined:

• clarity: Definitions should be objective, i.e. independent on social/computational
context, and complete. When a definition can be stated in logical axioms, it should be.
All definitions should be documented with natural language. The condition of objec-
tivity is difficult to attain, because of a trade-off between efficiency for the primary
objective of the ontology and context independence. Therefore this condition is usu-
ally reduced to trying to provide unambiguous definitions, avoid partition errors etc.
The conditions of completeness and formalization also in practice lead to a trade-off
between expressive power and efficiency of reasoning required for a particular task.

• coherence: This condition essentially states that no contradiction can be inferred.
This condition is easy to validate by using a reasoner.

• extendibility: One should be able to define new terms for special uses without re-
quiring revision of the existing definitions.. Fulfilling this condition can be aided by
adopting a top-level ontology.

41

42 Chapter 5: Knowledge discovery ontology

• minimal encoding bias: Representation choices should not be made purely for the
convenience of notation or implementation.

• minimal ontological commitment: Defining only those terms that are essential to
the communication of knowledge consistent with that theory.

These criteria are good guiding principles, however no procedure for design was
specified in [45] and currently there is still no standard ontology design methodology. In
a survey of ontology methodologies [41] the following two methodologies come out as the
most complete and well-defined: METHONTOLOGY [37] and On-To-Knowledge [95].

On-To-Knowledge methodology covers the complete ontology lifecycle from ontology
kickoff to maintenance. It defines four main stages of ontology development:
1. Ontology Kickoff. This phase consists of the following steps: requirement specification,
e.g., using competency questions, analysis of input sources and development of baseline
taxonomy.
2. Refinement. Refine the baseline taxonomy using concept elicitation with domain experts,
conceptualization and formalization and adding relations and axioms.
3. Evaluation. Revise and expand the ontology based on feedback, analysis of usage pat-
terns, analysis of competency questions.
4. Maintenance It is important to clarify who is responsible for the maintenance and how
this should be carried out.

METHONTOLOGY has the same scope and provides more details for some of the
phases. It is divided into the following 7 steps:
1. Plan. The schedule activity that identifies the tasks to be performed, their arrangement,
and the time and resources needed for their completion.
2. Specification. Identify the primary objective of the ontology, its purpose, granularity
level and scope.
3. Knowledge elicitation. Find and evaluate candidate ontologies and other knowledge
sources to be reused.
4. Conceptualization. It consists of a sequence of tasks creating the following: glossary of
terms, concept taxonomy, binary relations diagram, concept dictionary (including concept
name, synonyms, instances, relations, class-attributes, instance attributes), binary relations
table, instance attributes table, class attributes table, constants table, instances table, for-
mula table and axioms table.
5. Formalization. Encode the objects created during conceptualization in a logical language
6. Integration. Integrate the ontology with existing top-level ontologies by using their leaf
terms as top level concepts and possibly other domain ontologies by defining a mapping
7. Implementation. Implement the ontology in some knowledge modeling formalism, e.g.,
OWL DL using some ontology editor, for example Protégé1

8. Evaluation. Evaluate the ontology with respect to the specification, ontology design
criteria and the system in which it was used

1The Protégé Ontology Editor and Knowledge Acquisition System, http://protege.stanford.edu/

Chapter 5: Knowledge discovery ontology 43

9. Documentation. No standard guidelines exist, all concepts and relations should have
also definitions in natural language.

10. Maintenance. Provide guidelines for ontology maintenance.

Our methodology is based on METHONTOLOGY and takes some inspiration from
On-To-Knowledge. It consists of the following steps:

1. Specification. Identify primary objective, purpose, granularity level and scope of the
ontology. Use competency questions as means for determining scope and granularity level.

2. Knowledge elicitation. Analyze knowledge sources, consider reusing existing ontologies
and identify upper ontologies, which could provide top level structure of the ontology.

3. Conceptualization. Create a glossary of terms, concept taxonomy, relations and axioms.

4. Formalization + implementation. Encode the objects created during conceptualization
in a logical language and implement the ontology in some knowledge modeling formalism
using some ontology editor.

5. Evaluation. Evaluate whether the ontology is consistent. Evaluate the ontology with
respect to the competency questions and the system in which it was used.

6. Documentation. Each concept will be defined in natural language.

7. Maintenance. Provide guidelines for ontology maintenance.

In the following sections we describe the specification phase of KD ontology de-
velopment, in which the scope of the ontology is specified, and the knowledge elicitation
phase, in which we also review existing relevant ontologies. After that the developed KD
ontology is presented in detail.

5.2 Specification

Our KD ontology should enable the planner to reason about which algorithms
can be used to produce intermediary or final results required by a specified knowledge
discovery task. It should also provide support for retrieval of results of knowledge discovery
tasks and reasoning about the results. Furthermore it is expected that the ontology will
facilitate the management of available algorithms including their required I/O parameters
and the management of essential information about performed experiments including the
information about runtime for different algorithms and workflows. Therefore, besides being
used by the automated workflow planner, the ontology will also be used for annotation of
manually created workflows for reuse and possibly meta learning. The ontology should focus
on descriptive data mining and rule learning from relational data with complex background
knowledge. Thus the ontology should also formalize the types of background knowledge.

The scope and granularity of the ontology is determined by the set of compe-
tency questions that were created on the basis of three application scenarios: SEVENPRO
project2, knowledge discovery from gene expression data [102] and Orange toolkit [27].
Some examples of the competency questions are shown in Figure 5.1. These competency
questions were used to identify the key concepts and to analyze existing domain ontologies.

2SEVENPRO, Semantic Virtual Engineering Environment for Product Design, was the project IST-
027473 (2006-2008) funded under the 6th Framework Programme of the European Commission.

44 Chapter 5: Knowledge discovery ontology

Retrieve all decision trees for dataset D.
Retrieve all rules for a dataset derived from dataset D with support > Y.
Retrieve all rules for class M.
Which algorithms were used to classify dataset D? What were their runtimes and accuracy?
Given dataset D and background knowledge B, which algorithms can be used to get a deci-
sion tree model?
Retrieve all workflows using algorithm A.
Retrieve all available discretization algorithms.
What is the influence of language bias on number of rules and efficiency?
What is the influence influence of kernel function on classification accuracy?
Compare different discretization methods for a particular dataset.
Can algorithm A be used on dataset D directly? If not, which preprocessing steps are nec-
essary?
Which DM tasks have been performed on dataset D?
Retrieve all rules containing attribute F.
Retrieve all rules, which are not in background knowledge B.
What is the strength of interaction between attributes F and G?

Figure 5.1: Examples of the competency questions for the KD ontology

Furthermore the competency questions were translated from natural language to SPARQL
queries to be used for ontology evaluation.

5.3 Knowledge elicitation

Since the primary purpose of our KD ontology is to support semi-automatic plan-
ning of knowledge discovery workflows, we focus on describing a collection of knowledge
discovery tools necessary for our application scenarios: relational data mining algorithms
based on inductive logic programming used in SEVENPRO project and in bioinformatics
and algorithms available in data mining toolkits Orange and Weka [108].

To gain a broader view of the domain, we examine the existing domain ontolo-
gies, formalizations, and other attempts to construct a hierarchy of algorithms and data
developed within other projects or found in data mining literature. We also examine the
foundation ontologies DOLCE and BFO as candidates for providing the top level structure
of our KD ontology.

5.3.1 Application scenarios

The main application scenario, which originally motivated our work, is discovering
descriptive rules in relational data utilizing complex background knowledge from various
sources. Solving this task requires a complex knowledge discovery workflow of interweaving
inductive, deductive and format-conversion procedures. It is very difficult to construct
this workflow manually without deep knowledge of the individual algorithms. The task
is further complicated by the fact that the individual algorithms are often developed by

Chapter 5: Knowledge discovery ontology 45

SEVENPRO Scenario 1: Relational descriptive rules

Task Generate descriptive rules from annotations of CAD drawings of different products.
The descriptive rules characterizing class ABLiner are of particular interest. The input
data consists of a list of identifiers of CAD drawings, CAD ontology expressed in RDFS
and the annotations of the individual CAD drawings stored in RDF/XML format. The
rules with support ≥ 0.3 and confidence ≥ 0.7 should be stored for querying parametrized
by support, confidence, rule length and attribute values present. The information about
individual applications of the algorithm including runtimes and discovered rules should be
stored for querying.

Our solution We approached this task through propositionalization by generating rela-

tional features and subsequent propositional rule learning. The relational features were

generated using an ILP algorithm based on sorted refinement. The algorithm was im-

plemented in Prolog and requires as input mode declarations, sort theory and a set of

examples described using Prolog facts. The mode declarations and sort theory were ex-

tracted by two simple procedures from the CAD ontology. The design annotations were

converted into Prolog facts and used as background knowledge by the ILP algorithm. The

generated features were evaluated with respect to their presence in each example of the

training set. This information forms attribute vectors for subsequent propositional rule

learning algorithm.

Figure 5.2: SEVENPRO Scenario 1: The scenario of generating relational descriptive rules.
The key concepts identified in the scenario description are in italics.

different people or even at different institutions. A concrete example of a scenario solved
within the SEVENPRO project is described in Figure 5.2. We used scenario descriptions
created in SEVENPRO to identify key concepts and relations for our ontology.

Apart from such specialized complex task we wanted our approach to be appli-
cable also for classical data mining scenarios, which can be realized within data mining
toolkits. Therefore it was necessary to select some of these toolkits and examine how algo-
rithms and data mining workflows are described and organized there. We chose Weka data
mining toolkit, because it is the most commonly used toolkit and some of the algorithm
implementations in Weka are considered as standard. As the second toolkit we chose Or-
ange data mining toolkit. It contains workflow creation and execution functionalities and
workflow description in XML. Moreover its extension Orange4WS enables using external
algorithms available as web services within the workflow environment. These functionalities
make Orange and Orange4WS a suitable testbed for our ontology.

In Weka each example in the dataset has to be represented by a vector of attribute
values. In the workflows, which can be created manually in the Knowledge Flow environ-
ment, any linear part can consist of several preprocessing steps, one model building step,
one evaluation step and one visualization step. The available preprocessing algorithms are
further divided into supervised and unsupervised and each of these categories is divided
into methods for attributes and instances. The algorithms for building models are divided
into three types: classifiers, clusterers and associations. The classifiers are subdivided into
bayesian, functions, lazy, meta, multi instance, trees, rules and miscellaneous. No criteria
are specified for categorization of algorithms. We took a sample of about 20 algorithms

46 Chapter 5: Knowledge discovery ontology

covering all the above mentioned categories and used their descriptions for identification of
key concepts required for characterizing the algorithms.

The core part of the Orange toolkit has similar restrictions on input data and work-
flows as Weka. We decided that the group of widgets for text mining integrated into Orange
is out of scope of our ontology. The core algorithms are classified on two levels. On the first
level the algorithms are divided into Association, Classification, Visualization, Regression,
Data [transformation], Unsupervised and Evaluation. The second level of classification is
provided, e.g., several discretization algorithms are grouped in the widget Discretize etc.
Descriptions of over 60 algorithms available in Orange were used.

Some of the algorithms, e.g., C4.5 are implemented in both tools. This helped us
to analyze the differences between algorithm specifications and implementation.

5.3.2 Relevant ontologies and formalizations

Examining the existing foundation and domain ontologies is important for ontol-
ogy sharing and reuse. We start by discussing foundation ontologies and mid-level ontolo-
gies for domains related to knowledge discovery, such as ontology of plans, software and
bioinformatics investigations. Then the existing ontologies and formalizations of knowledge
discovery and the standards for web services are described. Finally we devote a separate
section to the ongoing domain ontology development efforts.

Foundation and mid-level ontologies

Foundation ontologies most widely used as top-level ontologies for modeling in
domains of computer science and bioinformatics are the Descriptive Ontology for Linguistic
and Cognitive Engineering (DOLCE) [72] and Basic Formal Ontology (BFO) [43].

DOLCE is a top-level ontology originally developed with a bias towards the do-
main of linguistic and cognitive engineering. It contains detailed and well-defined top level
structure defining classes such as Endurant, Perdurant, Quality, Fact, etc. trying essen-
tially to formalize descriptions of these terms used in philosophy. Similarly it defines core
relations such as parthood, dependence, participation. The relations are defined using a
large number of axioms, making DOLCE a rather heavyweight ontology.

Three extensions of DOLCE have been developed: the ontology of Description
and Situation, Ontology of Information Objects, Core Ontology of Services formalizing the
domain of web services and Ontology of Plans for the planning domain. The ontologies
have a rich and complex structure, well defined and philosophically grounded concepts and
relations. Their original version is independent on representation formalism, however OWL
version of all ontologies is currently available. The ontology of plans is presented in [40].
However its objectives are explicitly stated as being an ontology for specification of social
or cognitive plans and not characterizing the planning task and computationally executable
plans and its reusability for our work is limited.

DOLCE and its extensions were reused in an effort to provide a well-founded ref-
erence ontology inspired by the domain of large software systems described in [80]. The
paper presents a framework of ontologies containing Core Software Ontology, which forms
the basis for Core Ontology of Software Components and Core Ontology of Web Services.

Chapter 5: Knowledge discovery ontology 47

The Core Software Ontology defines concepts Data, Software, ComputationalObject, Com-
putationalActvitity and ComputationalTask as subclasses of concepts defined in DOLCE
extensions and formalizes API description, workflow information and access rights and poli-
cies. Software is essentially defined as code of a program in some programming language
and is a subclass of Data. Data is a subclass of InformationObject.

BFO was designed with the objective of providing a top-level ontology for do-
main ontologies developed for scientific research, such as the Ontology for Biomedical In-
vestigations (OBI)3. It contains no concepts that would interfere with domain ontologies.
Philosophical foundation of BFO is perspectivist realism, which essentially states that an
ontology is a view of reality. Thus concepts which do not have instantiations in reality are
not admitted. The core concepts are continuant (∼ substance) and occurrent (∼ process).
Continuants are further divided into independent and dependent continuants. Only inde-
pendent continuants can have qualities. Plans, algorithms and data are considered to be
dependent continuants, since in BFO information entities exist in a way which makes them
dependent on provenance and on processors.

As a spin off of the OBI development the Information artifacts ontology (IAO)4

was developed using BFO as its top level ontology. IAO aims to be a mid-level on-
tology focusing on information content entities and processes that consume or produce
them. IAO defines the concept of information content entity. Two of the subclasses
of this concept are data item, which has the concept dataset among its subclasses, and
directive information entity, which subsumes the concept of plan specification.
software, algorithm and programming language are subclasses of plan specification.
For algorithm two of its constituents are described using has part relation: objective

specification and action specification. At the time of our KD ontology develop-
ment several issues connected to modeling different types of knowledge such as hypotheses,
propositions and patterns and how they should be linked to algorithms were still open.

Neither of the mid level ontologies describing algorithms and data mentioned above
were fitting at their current state to our requirements and their parts relevant for our
purposes were still under development. Bypassing the existing mid level ontologies and
aligning the KD ontology directly to one of the foundation ontologies would require in
depth analysis of design principles of the ontologies and their implications on complexity of
reasoning required by the competency questions of the KD ontology. Such a task is beyond
the scope of the current work. Therefore, while design patterns of DOLCE and BFO are
taken into account in the development of the KD ontology, aligning of the KD ontology to
one of these foundation ontologies will be the subject of future work.

Ontologies of Knowledge Discovery

There has been quite a lot of efforts to provide a taxonomy or ontology of the
knowledge discovery domain, however to the best of our knowledge none of the existing
ontologies cover relational data and background knowledge and support creation of complex

3The OBI Consortium http://purl.obolibrary.org/obo/obi

4http : //obofoundry.org/cgi − bin/detail.cgi?id = informationartifact

48 Chapter 5: Knowledge discovery ontology

workflows at the same time. For a systematic comparison of the existing approaches, we have
defined the following set of criteria: purpose, key concepts, formal definition, executable
language, use of top-level ontology, support of relational learning, support of workflows.

The ontologies of the knowledge discovery domain developed to support workflow
creation are most closely related to our work, therefore we start with examining the systems
using ontologies for this purpose.

The most relevant for our work is the IDEA system described in [9]. The system
uses an ontology of DM operators for automatic workflow composition and ranking. The
ontology provides a relatively detailed structure of the propositional DM algorithms and
contains also heuristics for the ranking by various criteria (speed, accuracy, etc.). Workflow
construction focuses on classical DM processes, which contain three subsequent steps: pre-
processing, model induction and post-processing. In contrast, we address more complex,
relational DM workflows with possibly multiple interleaved occurrences of steps pertaining
to the three categories. The NExT system [8] is an extension of IDEA using OWL-S [35]
ontology to describe the DM operators.

CAMLET [98] uses an ontology of algorithms and data structures. The CAMLET
system defines a top-level control structure consisting of the following five steps: generating
training and validation sets, generating a rule set, estimate data and rule sets, modifying
a training data set and modifying a rule set. The individual steps form the top level com-
ponents of the ontology of processes. The leaves are particular algorithm implementations.
The ontology is limited to classification task. The inputs and outputs of the inductive
learning processes are assumed to be data sets or rule sets. No ontology language used is
mentioned.

The CITRUS system [107] is based on an extension of SPSS Clementine, which
provides a visual interface for manual workflow construction. CITRUS uses an object
oriented schema to model relationships between the algorithms.

Other efforts to provide a systematic formalization of the DM tasks include projects
MiningMart [76], DataMiningGrid [96] and Universal Knowledge Grid [66]. Both Mining-
Mart and DataMiningGrid contain a meta-model for representing and structuring infor-
mation about data and algorithms, however, none of the meta-models is expressed in an
ontology language.

MiningMart [76] is a KDD preprocessing tool specialized in data mining on large
data stored in relational databases. The meta-model M4 is used to store data on two levels:
the logic level describes the database schema and allows consistent access to information and
the conceptual (ontology) level uses concepts with features and relationships to model data.
The ontology captures all the data preprocessing therefore gives a better understanding
and reuse of the data. However this meta-model is expressed in UML/XML and not in an
ontology language.

The objective of DataMiningGrid[96] is to provide tools and services, which facil-
itate making data mining applications available in the grid environment. An Application
Description Schema (ADS) was developed withing the project. ADS is centered on data
mining application and contains information about CRISP-DM phase the application is
used for and the data mining task to which the application applies. It also describes the
data mining method that the application employs, the data mining algorithm and its par-

Chapter 5: Knowledge discovery ontology 49

ticular implementation. An application must be described using ADS to be registered in
the grid. ADS description is then used for search, dynamic configuration of GUIs, resource
brokering, etc.

Universal Knowledge Grid [66] aims at developing an ontology-based grid archi-
tecture. The key concepts include: Data mining, Function, Type of data, Algorithm,
Application domain, Sub domain, Application task, Solution and Predictive model.
The proposed ontology only contains one level of algorithm class hierarchy. The paper states
that data can be structured, but provides no details on modeling the data. Definition of
concepts appear to be overly tailored to a particular use case of the ontology, for exam-
ple an Application task, e.g., “to characterize unusual access sequences” is a subclass
of Application domain, e.g., fraud detection. The ontology is not used for planning or
automated workflow composition, but rather for annotation of algorithms available within
the knowledge grid and tasks for which the algorithms have been or can be applied. The
intelligent composer does not produce workflows but transforms natural language queries
into semantic queries.

Ontologies for web services and workflows

Since many of the knowledge discovery algorithms are becoming available as web
services, we examine the existing frameworks for semantic markup of web services. There
is currently no universally accepted framework. The most visible ongoing development is
on Web Service Modeling Ontology (WSMO) and OWL-S.

WSMO [61] contains four top level components: ontologies, goals, web services,
mediators. Focus of WSMO is on integration and mediation between agents with different
concept models. Thus its central topic is out of scope of our requirements for workflows
ontology. WSMO is implemented in Web Service Modeling Language (WSML), which is
based on F-logic. However, a mapping to OWL exists. The goals capture only results and
no pre- or post-conditions. On the other hand WSMO supports goal combination, while in
OWL-S combination of goals is possible only using subclassing. WSMO does not provide
any specification of control flow and data flow, which is specified by OWL-S composite
process. WSDL grounding in OWL-S is more detailed than in WSMO.

The principal aim of OWL-S [35] is not to define a rich reference ontology, but
rather to enable the users and software agents to to discover, invoke, compose, and monitor
web services. The ontology has three main parts: the service profile, the process model and
the grounding. Profile model duplicates the descriptions embodied in the rest of WSDL
(namely inputs and outputs). OWL-S does not separate what the user wants from what the
service provides. The Profile ontology is used both as an advertisement for the service and
as a request to find a service and it is assumed that there is only one way to interact with
the service. Thus mediators are not handled as special components. The process model
gives a detailed description of a service’s operation and the grounding provides details on
how to interoperate with a service. This scope and approach better matches requirements
on workflows subontology, therefore, despite some design shortcomings of OWL-S [75], it is
a more suitable ontology to serve as a basis for our workflow ontology. Also exists work on
mapping OWL-S to/from WS-BPEL [3], [12], thus workflows described in OWL-S can be
executed on workflow engines operating on WS-BPEL.

50 Chapter 5: Knowledge discovery ontology

Ongoing domain ontology development efforts

There are currently two ongoing projects, which aim to provide a framework for
semi-automatic composition of DM/KD workflows using an ontology of the DM/KD ingre-
dients: e-Lico5 and KDDVM6.

KDDVM project aims to construct a service-oriented knowledge discovery support
system. It proposes a service-based architecture containing three levels of services [28]: the
algorithms involved in the KDD process, support services, e.g. wrapping, workflow manager
and service broker, and advanced services including a database for storing the information
about KD processes and a service for workflow composition relying on an ontology of KD
algorithms. The representation of information about the KD processes was still an open
issue at the time when we started developing our ontology. An ontology of algorithms
developed within this project and its use for automatic workflow composition are described
in [30] and [29]. KDDOnto is a light weight ontology focused on classical propositional
DM models. The explicitly defined taxonomy of algorithms starts with categorizing the
algorithms according to phases of the KDD process. Description of data is limited to and
ends on the level of dataset.

The within the e-Lico project two ontologies of DM ingredients are being devel-
oped: DMOnto focused on use in algorithm selection and meta-mining [47] and an ontology
for automatic workflow construction using planning [55]. The ontology proposed in [55] is
strongly biased towards the planning task and more specifically towards checking of validity
of the workflows using preconditions and effects of the algorithms. Its core part is imple-
mented in OWL, however the preconditions and effects are described using SWRL with
some extensions. The planning thus relies on a special reasoner. The ontology does not
provide means for operator nesting an annotation of workflows and information about their
execution and results. The representation of data is limited to datasets consisting of data
tables.

DMOnto aims to provide a more detailed description of the datasets, models and
methods, which could be exploited in algorithm selection. It describes the algorithms from
two points of view: representation bias given by the model structure and preference bias
given by cost function and representation strategy. However the version of DMOnto de-
scribed in [47] has quite strong representation bias towards classification and views learning
as optimization of some model parameters. This approach would be difficult to extend to
descriptive data mining and rule induction, which form one of the important areas resulting
from the competency questions.

In parallel to our work, the OntoDM [83] ontology is being developed on the basis
of [34] and attempts to capture minimum information required for describing data mining
investigations. A principled top-down approach was adopted to the development of On-
toDM aiming at its maximum generality. OntoDM uses BFO as top-level ontology and
OBO Relational Ontology to define relations and is fully aligned with top level structure of
OBI. It uses concepts from draft version of IAO (Information Artifact Ontology) for dealing

5www.e-lico.eu

6http://boole.diiga.univpm.it/

Chapter 5: Knowledge discovery ontology 51

with information. Numerous relations between information artifacts are described using a
single property hasInformation. The concept of an algorithm is modeled on three levels:
information content entity, process, and realizable entity, thus separating specification, im-
plementation and application. For modeling workflows the process aspect of an algorithm
could be used. However information about inputs and outputs is given only for application,
while for workflow construction we need to reason with types of inputs/outputs at specifi-
cation level. Also OntoDM is not compatible with OWL-S or other existing workflows or
web services formalizations. Examining the possibilities of mapping between OntoDM and
our KD ontology will be subject to future work, however, as has already been stated, at
the time when we were developing the KD ontology, OntoDM was not sufficiently refined
for purposes of workflow construction [82].

5.4 Knowledge Discovery Ontology

Since none of the available domain ontologies discussed above cover our require-
ments, we have decided to develop our own KD ontology. We follow up on the presently
emerging research attempting to establish a unifying theory of data mining [109, 34]. This
research did not reach the form of a formal representation, yet it helped us to design the core
parts of the ontology, namely the concepts of knowledge, representation language, pattern,
dataset, evaluation, and further specialized concepts.

The top level structure of the ontology is inspired by the framework for data
mining proposed in [34]. In this framework three basic concepts of data mining are identi-
fied: ‘data’, ‘patterns and models’ and ‘data mining task’. Following this view, our three
core concepts are: knowledge, capturing the declarative elements in knowledge discovery,
algorithms, which serve to transform knowledge into (another form of) knowledge, and
knowledge discovery task, which we have extended to involve workflows.

The ontology is implemented in the description logic variant of the semantic web
language OWL-DL [84]. Our primary reasons for this choice were OWL’s sufficient expres-
siveness, modularity, availability of ontology authoring tools and optimized reasoners.

An illustrative part of the top level structure of the KD ontology is shown in Fig.
5.3. The whole ontology contains more than 150 concepts and 500 instances. The three
core concepts are marked in yellow and we shall discuss them in the following sections.

5.4.1 Knowledge

Any declarative ingredient of the knowledge discovery process such as datasets,
constraints, background knowledge, rules, etc. are instances of the Knowledge class. Fig.
5.4 shows an illustrative part of the class hierarchy of knowledge types.

In data mining, many knowledge types can be regarded as sets of more elementary
pieces of knowledge [34]. For example, first-order logic theories consist of formulas. Simi-
larly, the common notion of a dataset corresponds either to a set of attribute-value n-tuples
or to a set of relational structures, each of which describes an individual object. This lead
us to formalizing the notion of complex types of knowledge and their composition from
atomic knowledge types. This structure is accounted for through the property contains,

52 Chapter 5: Knowledge discovery ontology

Figure 5.3: An illustrative part of the top level structure of the KD ontology (the whole
ontology contains more than 150 concepts and 500 instances). Subclass relations are shown
through solid arrows.

e.g. a first order theory contains first order formulas, a dendrogram contains clusters.

Moreover, some knowledge types may be categorized according to the expressivity
of the language in which they are encoded. For this purpose we have designed a hierarchy
of language expressivity, of which Fig. 5.5 shows a fraction. The hierarchy is an acyclic
directed graph, however, for better readability only a tree structure is shown in Fig. 5.5.
In designing the ontology we were aiming to avoid multiple inheritance as far as possible,
however the currently used definitions of knowledge representation languages do not follow
a single inheritance hierarchy, e.g., OWL-DL is a subset of first order logic, but it is also a
subset of OWL-FULL.

In literature and most of the existing ontologies the knowledge types are mainly
defined by the role they play in the knowledge discovery process. Therefore we also distin-
guish certain knowledge types, which play special roles in knowledge discovery, such dataset,
example, pattern, model, etc.

These guiding principles lead us to define the following three key subclasses of the
Knowledge class: Dataset, LogicalKnowledge and NonLogicalKnowledge.

Most general definition of dataset is that it is a collection of data. Therefore, the
Dataset class is defined as Knowledge, which contains Examples, or more formally:

Dataset ≡ Knowledge⊓ ∃ example · Example

The concept of logical knowledge was introduced to describe knowledge types,
which are encoded in a particular expressive language, such as first order logic or OWL-
FULL. Thus expressivity is a defining feature of the LogicalKnowledge:

LogicalKnowledge≡ Knowledge⊓ ∃ hasExpressivity · Expressivity

Chapter 5: Knowledge discovery ontology 53

Figure 5.4: Part of the top level structure of the knowledge type part of the ontology with
subclass relations shown through arrows.

The hasExpressivity property can be also applied to datasets to distinguish
between propositional datasets and relational datasets. A classified relational dataset
ClassifiedRelationalDataset can be defined as:

ClassifiedRelationalDataset ⊑ Dataset

⊓ ∃ classAttribute · CategoricalAttribute

⊓ ∀ example · ClassifiedExample

⊓ ∀ hasExpressivity · RelationalStructure

All the other types of knowledge such as pattern sets, models and constraints (e.g.,
language bias) are clustered under the class NonLogicalKnowledge. It contains the essen-
tial concept of a Generalization. A generalization is a knowledge class with the special
property that it defines a mapping from one or more knowledge classes to another knowl-
edge class. Intuitively, this class serves to hold the results of inductive mining algorithms;
such results generally can be viewed in a unified fashion as mappings [34]. Of course, the
generalization’s mapping, i.e. its semantics, is ultimately assigned to it by an algorithm
used to interpret it. No information about the algorithm is build into the Generalization
class.

The Generalization class currently contains two subclasses, which can be dis-
tinguished by the property of decomposability and also by the type of algorithms used to
produce it. Model is a result of a predictive algorithm and it cannot be decomposed into
independent parts, e.g. a decision tree. Patternset on the other hand can be decom-
posed into independent parts and is usually produced by a descriptive algorithm, such as
an association rules learner.

We shall describe the association rules example in more detail, since it illustrates

54 Chapter 5: Knowledge discovery ontology

Figure 5.5: A part of the expressivity hierarchy shown in the Protégóntology editor. Ex-
pressivity is an essential part of definition of the LogicalKnowledge class.

both the decomposability and modeling of results of data mining. Association rule set is
defined as a patternset consisting of association rules:

AssociationRules ⊑ Patternset

⊓ ∀ contains · AssociationRule

A single association rule is defined as atomic knowledge composed of an antecedent
and a consequent:

AssociationRule ≡ AtomicKnowledge

⊓ ∃ antecedent · And

⊓ ∃ consequent · And

⊓ ∃ quantifier · Quantifier

where And is a conjunction of boolean atoms and Quantifier is an evaluation
measure, e.g. support, confidence.

5.4.2 Algorithms

The notion of an algorithm involves all executable routines that can be used in
a knowledge discovery process, like inductive algorithms and knowledge format transfor-
mations. Any algorithm turns a knowledge instance into another knowledge instance. For
example, inductive algorithms will typically produce a Patternset or Model instance out of
a Dataset instance. Of importance are also auxiliary representation changers, transforming
datasets to other datasets. These may be simple format converters (e.g. only changing the
separator character in a textual data file), or more complex transformations characterized

Chapter 5: Knowledge discovery ontology 55

Figure 5.6: A part of the algorithms hierarchy shown in the Protégóntology editor.

by information loss. This may be incurred either due to a conversion into a language class
with lower expressiveness (e.g. for ‘propositionalization’ algorithms [106]) or even without
expressiveness change (e.g. for principal component representation of real vectors).

The Algorithm class is a base class for all algorithms, like Apriori or JRip (algo-
rithm for decision rule induction implemented in Weka data mining platform), in the exam-
ple below. The of algorithms hierarchy contains some fully defined classes, like Frequent-

PatternsAlgorithm or PredictiveRuleAlgorithm for a fine-grained categorization of data
mining algorithms according to their functionality. An illustrative part of this hierarchy is
shown in Fig. 5.6. This explicit hierarchy allows for the formulation of additional user
constraints on the workflows. For example, constraints can refer to some particular cate-
gory of data mining algorithms, e.g. DiscretizationAlgorithm, FormatChangingAlgorithm,
ClusteringAlgorithm, etc.

Each algorithm configuration is defined by its input and output knowledge spec-
ifications and by its parameters. In order to maintain the compatibility with OWL-S, the
Algorithm class is defined as an equivalent of the OWL-S class Process and the algorithm
configuration is an instance of its subclass NamedAlgorithm. Both the input knowledge and
the parameters are instances of AlgorithmParameter and defined using the input property.
The output knowledge specifications are instances of AlgorithmParameter and defined us-
ing the output property. The parameter instances are then mapped to the appropriate
Knowledge subclasses using the isRangeOf property.

In the current version the ontology contains only a limited reference to the actual
algorithm implementation within some toolkit or as a web service. Each named algorithm
can be linked to its implementation using the stringRepresentation property, which is
aimed at automatically running the generated workflows within a knowledge-discovery en-
gine in a uniform way. The value of stringRepresentation can contain a reference to an
algorithm executable or to a service location.

As an example of annotation of an algorithm we present the definition of the JRip

56 Chapter 5: Knowledge discovery ontology

algorithm in the description logic notation using the extended ABox syntax [5]:

{JRip} ⊑ NamedAlgorithm

⊓ ∃ output · {JRip-O-PredictiveRules}

⊓ ∃ input · {JRip-I-Dataset}

⊓ ∃ input · {JRip-I-Pruning}

⊓ ∃ input · {JRip-I-MinNo}

JRip-I-Dataset-Range

≡ ∃ isRangeOf · {JRip-I-Dataset}

≡ ClassifiedDataset

⊓ ∀ hasExpressivity ·

SingleRelationStructure

⊓ ∀ hasFormat · {ARFF,CSV}

The JRip algorithm is defined as an algorithm that has two parameters: one
stipulating whether to use pruning and one determining the minimum number of examples
covered by each single rule. It can be applied to a single relation classified dataset in the
CSV or ARFF format and produces a result in the form of predictive rules (patterns defining
a mapping to a distinguished set of classes).

A particular execution of a given algorithm configuration on a given dataset is an
instance of AlgorithmExecution. It contains information about algorithm configuration
with instantiated input and output data. Information about time taken for the execution
is stored using cpuTimeSeconds.

5.4.3 Knowledge Discovery Task

In order to formalize the knowledge discovery task description and for storing the
created workflows in a knowledge-based representation, we have created a small ontology
for workflows, which extends the KD ontology. The workflows subontology has two central
notions: KnowledgeDiscoveryTask and Workflow.

Each KnowledgeDiscoveryTask is defined by its init and goal specifications. As
an example we present the definition of the problem of generating predictive rules from
relational data (RRules) in the description logic notation:

RRulesTask ⊑ KnowledgeDiscoveryTask

⊓ ∃ goal · PredictiveRules

⊓ ∃ init · (ClassifiedDataset⊓

∀ hasExpressivity · RelationalStructure⊓

∀ hasFormat · {RDFXML})

⊓ ∃ init · (LogicalKnowledge⊓

∀ hasExpressivity · OWL-DL⊓

∃ hasFormat · {RDFXML})

Chapter 5: Knowledge discovery ontology 57

RRules problem is defined as a problem of generating relational predictive rules
from a relational classified dataset and an ontology in OWL-DL as background knowledge,
both expressed in the RDFXML format. Currently the ontology describes a few problem
types, which were developed for our use cases and which should serve as a template for
users to specify problem types relevant for their knowledge discovery tasks.

An abstract workflow is represented by the Workflow class, which is a subclass of
the Algorithm class in the KD ontology. This allows us to encapsulate the often repeated
workflows and construct hierarchical workflows. Workflow is defined as a set of Actions
specified using hasAction property. An action is defined by the hasAlgorithm property,
specifying the algorithm configuration used by this action, and by startTime specifying the
step within the plan in which the action should be carried out. The dependencies between
actions are represented using the predecessor property. The formal representation of
abstract workflows is used for workflow instantiation and execution within the knowledge
discovery engine and also for storing and reuse of the generated workflows.

To utilize the worflow description capabilities of OWL-S, a bridge between KD
ontology and OWL-S was designed:

kd:Algorithm ≡ Process

kd:NamedAlgorithm ≡ AtomicProcess

kd:Workflow ≡ CompositeProcess

kd:AlgorithmInput ≡ Input

kd:AlgorithmOutput ≡ Output

For annotation of links between the algorithms and annotation of workflow in-
puts and outputs OWL-S is used directly. CompositeProcess, which is equivalent to
kd:Workflow, consists of instances of Perform arranged using an instance of some sub-
class of ControlConstruct, e.g. Sequence. Perform is a kind of a wrapper for algorithm,
which enables us to reference the algorithms within the workflow and thus define links be-
tween inputs and outputs of algorithms. The link between output of one algorithm and
input of another algorithm is implemented using Binding. Currently only Sequence con-
trol construct is used, i.e. possible parallelization is not explicitly declared using OWL-S
constructs, it is only indicated by bindings between algorithms.

Having introduced our KD ontology and its extension covering knowledge discovery
tasks and workflows, we can proceed to discussion of the KD workflows themselves and their
automatic construction.

58 Chapter 5: Knowledge discovery ontology

Chapter 6

Knowledge discovery workflows

Using the KD ontology, specific classes of algorithms can be annotated according to
their functionality. For example, inductive algorithms (given a particular pattern evaluation
function) will produce patterns out of datasets, format conversion algorithms will produce
datasets out of datasets etc. The ontology implicitly delimits the variability of possible
workflows for a given task. For example, if the user desires to mine patterns in the language
L of propositional formulas, any algorithm may be employed that is annotated as to produce
patterns in L or in any language subsumed by L (e.g. propositional conjunctions).

In this chapter we investigate how algorithms can be assembled into complex
knowledge discovery workflows automatically with the use of a knowledge discovery ontol-
ogy and a planning algorithm accepting task descriptions automatically formed using the
vocabulary of the ontology.

Our original work was motivated mainly by complex relational data mining tasks
such as discovery of rules to distinguish between two types of leukemia based on gene
expression and gene annotations using terms of the Gene Ontology1. In previous studies
in bioinformatics conducted by some members of our group [101], knowledge discovery
workflow of interweaving inductive, deductive and format-conversion procedures had to be
constructed manually. We use the mentioned bioinformatics study as a use case throughout
this chapter. To demonstrate the generality of the proposed approach, we also test our
methodology in the domain of engineering2, where knowledge discovery workflows exhibit
features similar to scientific workflows [105], namely their complexity and their inductive
character. Since specialized algorithms are needed for these tasks, the number of alternative
workflows, which can be produced, is quite small. Therefore for more extensive evaluation
tasks including classical propositional data mining algorithms available within the Orange
toolkit are included as well.

Our methodology focuses on automatic construction of abstract workflows consist-
ing of data mining algorithms. The mapping to concrete computational resources, particular
data sets and algorithm parameters are not taken into account during workflow construc-

1www.geneontology.org

2Specifically within the project SEVENPRO, Semantic Virtual Engineering Environment for Product
Design, IST-027473 (2006-2008), 6th Framework Programme of the European Commission.

59

60 Chapter 6: Knowledge discovery workflows

tion. Each generated workflow is stored as an instance of the Workflow class and can be
instantiated with a specific algorithm configuration either manually or using a predefined
default configuration. We treat the automatic workflow construction as a planning task, in
which algorithms represent operators and their input and output knowledge types represent
preconditions and effects.

As a baseline approach we have decided to develop a planner based on the Planning
Domain Definition Language (PDDL) [92] standard for planning problem description and a
procedure for converting task and algorithm descriptions available in the KD ontology into
PDDL. Then we investigated a tighter integration of ontological reasoning and planning.
We implemented a planning algorithm capable of directly querying the KD ontology using
a reasoner, which we called PelletPlanner.

When we extended the KD ontology with annotations of algorithms available in
the Orange toolkit, we encountered the problem of having sets of algorithms, which on the
basis of their inputs and outputs subsume each other or are even equivalent. For tasks
such as inducing association rules from a propositional dataset, this led to producing a
large number of workflows, a lot of which were very similar. In this work we alleviate
this problem by developing an enhanced version of PelletPlanner capable of exploiting the
algorithm subsumption hierarchy.

6.1 Related Work

The existing knowledge discovery platforms, which use a formal representation of
the knowledge discovery task and offer some means of automated workflow composition,
were introduced in Chapter 5. Therefore in this section we only examine their workflow
composition techniques.

IDEA [9] and NExT [8] create workflows for classical data mining processes con-
taining three subsequent steps: pre-processing, model induction, and post-processing. Both
systems provide the user with a ranked list of alternative workflows, however the proposed
workflows are linear, whereas our workflows are directed acyclic graphs. IDEA does not
use any planning technique, but simply enumerates all workflows valid for a particular task.
The NExT system uses the planning system XPlan [58].

The CAMLET [98] system defines a top level control structure consisting of the
following steps: generating training and validation sets, generating a rule set, estimate
data and rule sets, modifying a training data set and modifying a rule set. The individual
steps form the top level components of the ontology of processes. The leaves are particular
algorithm implementations. The ontology is limited to the classification task. Genetic
programming is used to create workflows, which are instantiations of some sub-structure
of the defined top level control structure with particular algorithms. The workflows are
evaluated with respect to accuracy on a given dataset and thus execution of the generated
workflows is an integral part of the workflow construction process. The inputs and outputs
of the inductive learning processes are assumed to be data sets or rule sets. I/O type
compatibility is checked during the compilation phase.

KDDVM project uses the KDDOnto for automatic workflow composition [30, 29].
The workflows are constructed by a backward chaining planning based only on the algorithm

Chapter 6: Knowledge discovery workflows 61

inputs and outputs, not utilizing the algorithms hierarchy. The system provides means for
approximate matching of inputs and outputs based on ontological distance. The user can
impose further constraints, which are external to the ontology, such as not-with, not-before
and also maximal number of steps. Some inputs can be specified as optional - precondition
relaxation. The workflow ranking is based on exactness of matching, precondition relax-
ation and performance evaluation. For performance evaluation only complexity class of the
algorithm is used. The workflows are limited to classical data mining with clearly delimited
phases of the data mining process.

Within the e-Lico project a planning algorithm based on Hierarchical Task Network
(HTN) planning [89] is used for workflow construction for classical data mining tasks [55].
The planning algorithm uses a specialized reasoner for checking preconditions and effects of
algorithms, which are described using SWRL with some extensions. HTN planning relies on
an explicitly defined task decomposition hierarchy. Since the complex relational data mining
tasks motivating this work do not have a clear tree-based task decomposition hierarchy, we
have decided not to use HTN planning at this stage.

Another system for automatic workflow construction using a knowledge discovery
ontology is described in [14], however this work is focused only on automatic formation of
linear sequences of tasks.

Workflow composition is used in some distributed data mining frameworks to fa-
cilitate parallelization, data integration and demonstrate feasibility of service-oriented data
mining [2, 20, 46, 60]. WS composition for DDM [2] is based on a design pattern library. The
created workflow is exported in XML and then executed within Triana. Service-Oriented
DDM [20] uses the principle of learning from abstractions. It is based on BPEL4WS and
one of its main contributions is to handle datasets partitioned and physically distributed on
different data sources. Anteater [46] also deals with DM algorithms distributed on different
servers. Its main objectives are to harness parallel implementation of DM algorithms to
handle large volumes of data and decrease computational costs. It uses an XML metadata
model to describe algorithms and data. DDM Framework [60] focuses on integration of in-
termediate results and service-oriented implementation of algorithms. However algorithms
are described in natural language only, not formally using an ontology.

Also closely relevant to our work are the existing approaches to web service com-
position, which use a planning algorithm and an ontology for domain description. Similarly
to our approach, [91], [58] and [68] translate an OWL description to a planning formalism
based on PDDL. While approaches presented in [58] and [68] use classical STRIPS [38]
planning, in [91], HTN planning is employed.

Planning directly in description logics is addressed in [48]. Currently the algorithm
can only deal with DL-Lite descriptions with reasonable efficiency.

We make a step beyond the work presented in [68] and [58], where a reasoner is used
in the pre-processing phase, by investigating the possibility of integrating a reasoning engine
directly with the planner. Moreover, our procedure for converting the task descriptions to
PDDL does not rely on OWL-S, therefore we do not require the involved algorithms to be
implemented as web services.

62 Chapter 6: Knowledge discovery workflows

6.2 Automatic Workflows Construction

We propose to treat the automatic workflow construction as a classical planning
task, in which algorithms represent operators and their required input and output knowl-
edge types represent preconditions and effects. Both the information about the available
algorithms and knowledge types as well as the specification of the knowledge discovery task
is encoded through an ontology. At the same time we want to be compatible with estab-
lished planning standards. For these reasons we have decided to explore the approach of
generating a description of the domain and the problem description in the PDDL language
[92] using elements of the KD ontology and implementing a planning algorithm, which uses
PDDL descriptions.

6.2.1 Generating domain and problem descriptions in PDDL

We use PDDL 2.0 with type hierarchy and domain axioms. Planning algorithms
require two main inputs. The first one is the description of the domain specifying the
available types of objects and actions. The second one is the problem description specifying
the initial state, goal state and the available objects. We have implemented a procedure for
generating the domain description from the KD ontology.

The domain description is generated by converting NamedAlgorithms into PDDL
actions, with inputs specifying the preconditions and outputs specifying the effects. Both
inputs and outputs are restricted to conjunctions of OWL classes. We consider only those
inputs that are specified by instances of classes disjoint with SimpleDataKnowledge, which
is used to represent algorithm parameters. Since PDDL can handle only named types and
their hierarchies, it is necessary to pre-process classes defined using owl:Restriction.

A skeleton of the conversion procedure is presented in Fig. 6.1. Both the list of
instances of NamedAlgorithm and the list of input and output specifications are obtained
by a SPARQL-DL query. Procedure transformIO converts an i/o specification defined by
an instance of AlgorithmParameter into a class equivalent to its range, which consists of
an intersection of the Knowledge subclasses and restrictions defined in the KD ontology.
The equivalent class is again obtained by a SPARQL-DL query. The procedure returns null
for subclasses of SimpleDataKnowledge representing algorithm parameters.

The procedure convertIO2pddl converts an i/o specification defined by a named
class or an owl:intersectionOf class into PDDL predicates. The individual operands of the
owl:intersectionOf class specified by named classes and universal restrictions on properties
contains and hasExpressivity are converted into named classes. The named classes
are added to the uknow list and their hierarchy is later inferred by an OWL reasoner.
The named class is converted to a unary predicate available and also added to action
parameters. Operands specified by restrictions on other properties are converted using the
procedure rest2preds to binary predicates with the first argument being the previously
defined named class and the second argument is given by the restriction value. All the
generated predicates and parameters are then added to action preconditions or effects using
addIO.

As an example of how algorithm is represented represented using an action in
PDDL, we present the definition of the action generated from the JRip, the algorithm for

Chapter 6: Knowledge discovery workflows 63

uknow = []; used subclasses of Knowledge
actions = []; created PDDL actions
types = []; hierarchy PDDL types
onto2pddl():

classify KD ontology;

algs := {instances of NamedAlgorithm};

for (al : algs)

act := new Action(al.name);

iospecs := {input and output specifications};

for (ios : iospecs)

eqios = transformIO(ios);

if (eqios == null) continue;

act.addIO(convertIO2pddl(equios, uknow,

act.varnames));

actions.add(act);

add uknow classes to KD ontology and classify;

types := classes2types(uknow);

return createDomainPDDL(actions,types);

preds = []; a list of predicates describing the io specification
params = []; a list of variables used in the io specification
convertIO2pddl(ios,uknow,varnames):

if (ios.isNamedClass())

return {{available(vi)}, {vi - ios.name}};

else if (ios.isIntersectionClass())

rest4cls = {operands of ios represented by

named classes or restrictions

on hasExpressivity and contains};

rest4pred = {operands of ios represented by

restrictions on other properties};

comp = createCompositeClass(rest4cls);

uknow.add(comp);

params.add(vj - comp.name);

preds.add(available(vj));

rest2preds(rest4pred,vj ,preds,params);

return preds, params;

Figure 6.1: A skeleton of the procedure for converting descriptions of algorithms from the
KD ontology into PDDL.

64 Chapter 6: Knowledge discovery workflows

the predictive rule learning described in Section 5.4 :

(:action JRip

:parameters (

?v0 - Dataset_hasExpressivity

_SingleRelationKnowledge

?v1 - CSV

?v2 - PredictiveRules)

:precondition (and (available ?v0)

(format ?v0 ?v1))

:effect (and (available ?v2)))

The information about the output of JRip algorithm is expressed using the class
PredictiveRules. Therefore the effects of the action using the JRip algorithm are repre-
sented using the unary predicate available applied on the class PredictiveRules.

Finally, procedure createDomainPDDL takes the list of actions and hierarchy
of PDDL types and fits them into a domain file template in PDDL.

Problem description in PDDL is generated in a very similar way, except we are
dealing with objects instead of variables. The objects appearing in init and goal conditions
are generated from an individual of type KnowledgeDiscoveryTask in the KD ontology,
which represents a particular problem e.g. producing a set of predictive rules from a dataset
stored in a relational database.

6.2.2 Planning algorithm

We implemented a planning algorithm based on the Fast-Forward (FF) planning
system [49] to generate abstract workflows automatically. The Fast-Forward planning sys-
tem uses a modified version of a hill climbing algorithm called enforced hill climbing to
perform forward state space search. Enforced hill climbing is based on the commonly used
hill-climbing algorithm for local search, however in case there is no strictly heuristically
better successor in the immediate neighborhood of the current state, breadth-first search
is used to find a sequence of actions leading to a heuristically better successor. The basic
architecture of the FF system is shown in Fig. 6.2.

The heuristics used by the enforced hill-climbing algorithm is defined as the num-
ber of operators in the plan constructed using relaxed GRAPHPLAN [11]. The relaxed
planning task essentially ignores delete lists of actions, i.e. effects of the actions, which
make some previously valid preconditions no longer valid. In [49] a proof is presented, that
GRAPHPLAN solves the relaxed task in polynomial time.

In [49] the search space is pruned using two heuristics: a helpful actions heuristic,
which considers only actions that add at least one goal at the first time step, and added
goal deletion heuristics, which exploits goal ordering. If the enforced hill-climbing algorithm
fails, the problem is solved using a complete search algorithm.

We implemented the basic architecture of the Fast-Forward planning system con-
sisting of the enforced hill climbing algorithm and the relaxed GRAPHPLAN in our al-
gorithm, which we call PDDLPlanner. Since our current formulation of the knowledge

Chapter 6: Knowledge discovery workflows 65

Figure 6.2: Base system architecture of the Fast-Forward (FF) planning system as it is
characterized in [49]

discovery workflow construction contains no goal ordering, no mechanisms for exploiting
goal ordering are implemented. In order to produce several relevant workflows in a reason-
able time frame, the algorithm is run repeatedly, randomly permuting the order in which
immediate neighbors of one state are added to the open-set during the breadth-first search.

The PDDLPlanner works with description of planning task and all available actions
in a standard PDDL file. Our current implementation is capable of handling PDDL only
with STRIPS [38] expressivity and using types. The description of planning task and the
available algorithms using KD ontology is converted to PDDL in pre-processing stage. The
KD ontology is then not used throughout the planning time.

6.3 Integration of planning and reasoning

Naturally, since the knowledge discovery task, the available algorithms and also the
generated workflows are modeled using the KD ontology, the next step in the investigation
is exploring the possibilities of tighter integration of planning and ontological reasoning
to avoid transforming the complete knowledge discovery task description from the OWL
formalism of KD ontology into PDDL. A planner directly working with the KD ontology
would facilitate exploiting the expressivity of the ontology representation formalism and
imposing further constraints on the required workflows.

To address these issues we developed an algorithm called PelletPlanner, which
utilizes ontological reasoning capabilities implemented in the Pellet reasoner [90] during
planning time. PelletPlanner has the same basic structure as the PDDLPlanner described
in the previous section consisting of the enforced hill climbing algorithm and the relaxed
GRAPHPLAN. However PelletPlanner directly accepts task descriptions defined in OWL
using the KD ontology.

The main modification of the planner is that it obtains neighboring states dur-
ing enforced hill-climbing by matching preconditions of available algorithms with currently
satisfied conditions. Each matching is conducted in the planning time via posing an ap-
propriate SPARQL-DL query to the KD ontology. The KD ontology is classified by the

66 Chapter 6: Knowledge discovery workflows

reasoner upon the initialization of the reasoner, therefore no time-consuming inferences are
performed during the actual planning time.

6.4 Empirical evaluation

As explained in the previous sections, our system solves a task not addressed by
existing algorithms. Empirical tests should thus primarily serve as a proof of concept,
showing that the approach scales, with acceptable computational demands, to reasonably
large real-life problem instances. We have conducted workflow construction experiments
in two domains: genomics and product engineering. The workflows pertaining to both of
the use cases are required to merge data with non-trivial relational structure, including
ontology background knowledge. Again, this setting precludes the application of previous
workflow construction systems, limiting the scope for comparative evaluation. However,
we do run comparative experiments to evaluate the effects of employing either of the two
earlier described planning strategies.

Also, to trace the dependence of runtime on the size of the KD ontology and the
number of available algorithms annotated using the ontology, we perform experiments with
two versions of the KD ontology and with growing set of algorithms for the first version.
The second version of the KD ontology is a strict extension of our original KD ontology
with added classes required for annotating algorithms from the Orange [27] system.

6.4.1 Use Cases

Genomics

In analyzing gene expression data we are dealing with the following sources of
information: gene expression microarray data sets, Gene Ontology (GO) [23] and gene
annotations. Annotations of genes using GO terms can be extracted from a public database.

Task The task was to apply relational machine learning algorithms to produce a set
of descriptive rules for groups of genes differentially expressed in specific conditions, more
specifically for the acute lymphoblastic leukemia and acute myeloid leukemia. The data
sources available were a gene expression microarray data set, GO and gene annotations from
the Entrez database3. The operators are algorithms for preparing inputs for the relational
data mining (RDM) described in [101] and components of the framework for RDM with
taxonomic background knowledge described in [104].

Engineering

Product engineering deals with very specific knowledge types such as CAD, doc-
umentation, ERP/database, etc. The SEVENPRO project addressed the problem of the
effective reuse of heterogeneous knowledge and past designs by providing a unified view of
the available knowledge through commonly agreed ontologies. Engineering designs captur-
ing implicit expert knowledge have relational nature, specifying various numbers of primitive

3Maintained by US National Center for Biotechnology Information, ftp://ftp.ncbi.nlm.nih.gov/gene/.

Chapter 6: Knowledge discovery workflows 67

Task Ontology
No. of PDDLPlanner PelletPlanner

algorithms Prep. Plan Prep. Plan

GEN KD-RDM 18 27 0.641 13 0.766
GEN KD-RDM 43 75 0.828 38 2.703
GEN KD-RDM 60 480 0.906 133 3.891

GEN KD-Orange 43 402 0.984 205 3.688

ENG KD-RDM 18 28 0.407 15 0.782
ENG KD-RDM 43 68 0.906 33 2.438
ENG KD-RDM 60 387 0.922 134 3.250

ENG KD-Orange 43 349 0.625 218 3.062

Table 6.1: Planner performance results, with respect to the domain and ontology used and
the number of algorithms available. The time for preprocessing (Prep.) and planning (Plan)
is shown in seconds.

objects and relations between them. In the SEVENPRO environment data are encoded in
a subset of the RDFS formalism.

Task One of the tasks solved within the SEVENPRO project was to generate
descriptive and predictive rules from annotations of CAD drawings of different products.
We were particularly interested in descriptive rules characterizing a particular class. The
classification task was carried out as well in order to verify that we can distinguish between
the product classes based on the provided information. The input data consisted of a
list of identifiers of CAD drawings, CAD ontology and the annotations of individual CAD
drawings.

6.4.2 Results

Experiments were carried out on a 1.8GHz Intel Centrino PC with 1GB memory.
We used each planner for the two tasks described above and we used two versions of the KD
ontology. The first version contains classes necessary for annotation of algorithms available
in the RDM Manager tool (KD-RDM) [103], whereas the second version (KD-Orange)
contains also classes necessary for annotations of algorithms available in the Orange data
mining platform. KD-RDM contains 179 classes, 58 properties and 112 individuals. KD-
Orange contains 266 classes, 59 properties and 198 individuals. The ontology KD-RDM
was used to annotate 18 algorithms, which are part of the RDM Engine. The ontology KD-
Orange was used to annotate also algorithms available in Orange [27], in total 43 algorithms.
Other algorithm annotations for KD-RDM were created artificially.

For PDDLPlanner, the preprocessing stage includes conversion into PDDL. The
results are summarized in Table 6.1. None of the Orange algorithms were employed in the
produced workflows, they only served to make the search task harder.

The results primarily show that successful workflows (exemplified below) can be
automatically achieved in small absolute run times. Further, we observe rather small sen-
sitivity of the run times to the size of the KD ontology (more specifically, the number of
algorithms it contains). This suggests that expected further extensions to this ontology will

68 Chapter 6: Knowledge discovery workflows

Figure 6.3: Abstract workflow generated for obtaining descriptive rules for groups of dif-
ferentially expressed genes for AML vs. ALL. Rectangles represent algorithms and paral-
lelograms represent data passed between them. Properties are abbreviated as follows: E: -
hasExpressivity, C: - contains and F: hasFormat.

likely not deteriorate the system’s performance significantly.
Interestingly, the results also show the superiority of the innovative PelletPlanner

strategy of ‘online querying for actions’ over the baseline PDDLPlanner strategy in case of
formulating new and diverse tasks, which is a typical scenario in both investigated domains.
The single factor contributing to this superiority is the preprocessing time, smaller for
PelletPlanner. This is mainly because ontology classification, the most time consuming
operation within preprocessing, has to be performed twice by the reasoner when converting
to PDDL. On the other hand, in preprocessing for PelletPlanner, this operation is performed
only once. The described headstart of PelletPlanner is then reduced in the actual planning
phase but still remains significant due to the relatively small proportion of planning time
within the combined run time. In case of a set of planning tasks using the same domain
description, the PDDLPlanner is however a better choice, since in this case the preprocessing
phase can be run only once for the whole set of tasks.

An example of an abstract workflow generated for the genomics task described
in 6.4.1 is shown in Fig. 6.3. The generated workflow utilizes algorithms developed by
several different researchers and some of the tasks (e.g. discriminative gene set extraction)
are independent of the rest. Using an automatically generated and semantically described
workflow makes it far easier to conduct a series of experiments focusing influence of varia-
tions in one particular step of the process on the result of the whole data mining process
without having to understand some other steps.

An example of an abstract workflow generated for the engineering task described
in 6.4.1 is shown in Fig. 6.4. The same workflow had been produced manually within the
SEVEPRO project and it was successfully rediscovered by the planner and executed using
the RDM Manager tool developed within the SEVENPRO project.

6.5 Enhancing workflow construction

To evaluate the generality of the methodology presented in the previous sections
and to identify additional challenges, we investigated automatic generation of workflows

Chapter 6: Knowledge discovery workflows 69

Figure 6.4: Abstract workflow generated for obtaining predictive and descriptive rules from
annotations of CAD design drawings.

of data processing and data mining algorithms available within a single selected toolkit.
Algorithms available in the Orange [27] data mining toolkit were annotated using the KD
ontology. Two challenges were identified. Firstly, there are collections of algorithms, which
are equivalent from the point of view of input/output description (e.g. set of ranking algo-
rithms resulting in redundant search and a large number of generated workflows). Secondly,
indefinitely long graphs can be constructed from the algorithms (e.g. using a sequence of
preprocessing steps). We propose to address these two problems by imposing additional
constraints during the planning phase.

6.5.1 Annotating Orange Algorithms

The KD ontology was used to annotate most of the algorithms available in the
Orange toolkit. More than 60 algorithms have been annotated so far. As an example we
present a definition of the Apriori algorithm in the description logic notation using the
extended ABox syntax [5]:

{Apriori} ⊑ NamedAlgorithm

⊓ ∃ output · {Apriori-O-Rules}

⊓ ∃ input · {Apriori-I-Dataset}

⊓ ∃ input · {Apriori-I-MinSupport}

⊓ ∃ input · {Apriori-I-MinConfidence}

{Apriori-I-Dataset-Range} ≡ isRangeOf · {Apriori-I-Dataset}

≡ Dataset⊓ ∀ hasFormat · {TAB}

⊓∀ hasExpressivity · SingleRelationStructure

⊓∀ hasAttributesType · {dDiscrete}

{Apriori-O-Rules-Range} ≡ isRangeOf · {Apriori-O-Rules}

≡ Patternset⊓ ∀ contains · AssociationRule

70 Chapter 6: Knowledge discovery workflows

task - instance of KnowledgeDiscoveryTask, maxSteps - max length of the workflow, constr -
additional constraints on the workflows
generateWorkflows(task, maxSteps, constr):
classify KD ontology;

algs := {instances of NamedAlgorithm};

algforest := inferAlgorithmHierarchy(algs);

workflows := runPlanner(task, algforest, maxSteps);

atomicW := expandWorkflows(workflows, algforest);

filteredW := filterWorkflows(atomicW , constr);

Figure 6.5: A skeleton of the procedure for workflow composition using the KD ontology.

The Apriori algorithm is defined as an algorithm that can be applied to a single
relation dataset in the TAB format containing only discrete attributes and produces a
result in the form of a set of association rules. It has two parameters: minimal support and
minimal confidence of the rule. All three parameters are specified by integer values. The
other input parameters were omitted from this example.

The algorithms were annotated manually, since no systematic description of these
algorithms e.g. in PMML4 or WSDL5 was available. The annotated algorithms also served
as case studies to validate and extend the KD ontology, therefore developing a procedure
for semi-automatic annotation is a subject for future work.

6.5.2 Exploiting algorithm hierarchy

In this section we present an enhanced version of the algorithm described in 6.3.
In the original version of the PelletPlanner , there are no mechanisms for exploiting the
algorithms hierarchy. We have enhanced the algorithm in two ways: a hierarchy of algo-
rithms based on defined classes and input/output specifications computed and in searching
for neighboring states the planner exploits the algorithm hierarchy.

A hierarchy of algorithms is inferred before the actual planning. It needs to be
recomputed only when a new algorithm is added to the ontology. The hierarchy of algo-
rithms is based on the inputs and outputs of the algorithms and on the defined algorithm
classes such as PreprocessingAlgorithm. An algorithm Aj ⊑ Ai, if for every input of Iik
Ai there is an input Ijl of algorithm Aj such that range of Iik ⊑ Ijl. An algorithm Ai ≡ Aj ,
if Aj ⊑ Ai and Ai ⊑ Aj. The subsumption relation on algorithms is used to construct a
forest of algorithms with roots given by the explicitly defined top-level algorithm classes
e.g. DataPreprocessingAlgorithm.

The planning algorithm was adapted so that in the search for the next possible
algorithm it traverses the forest structure instead of only a list of algorithms and consid-
ers a set of equivalent algorithms as a single algorithm. Currently, only constraints on

4http://www.dmg.org/pmml-v4-0.html

5www.w3.org/TR/wsdl

Chapter 6: Knowledge discovery workflows 71

Figure 6.6: An example of workflows for discovering association rules in Orange.

Task No. of Planner HierarchyPlanner
algorithms Prep. Plan Prep. Plan

GEN 71 72 0.854 115 0.560
GEN 99 104 1.123 155 0.568

ASSOC 71 94 27.291 125 25.154
ASSOC 99 98 107.549 153 24.354

Table 6.2: Planner performance results, with respect to the task, the number of algorithms
available. The time for preprocessing (Prep.) and planning (Plan) is shown in seconds.

repetition of some kind of algorithms in a linear part of the workflow are built into the
planner. The additional constraints on workflows are used only in filtering of workflows
during post-processing (procedure filterWorkflows). Workflows for all the members of
an equivalence set are generated using the procedure expandWorfklows. The information
about algorithms subsumption is also used in workflow presentation. An overview of the
whole procedure for workflow generation is shown in Figure 6.5.

The generated workflows are presented to the user using an interactive visualiza-
tion, which enables the user to browse the workflows from the most abstract level to specific
combination of algorithm instances. The workflows with the smallest number of steps are
presented first. An example of a set of workflows generated for discovering association rules
in Orange is in Figure 6.6.

6.5.3 Enhanced Planner Evaluation

We carried out experiments comparing the enhanced planner exploiting the algo-
rithm hierarchy with the original classical planner. We used each planner for two tasks. The
first task was the complex and specialized task of discovering descriptive rules in the ge-
nomics domain. The second task was a simple task of discovering association rules. The KD
ontology including the subontologies for annotation of the individual algorithms contains
about 500 classes and 500 individuals.

The results summarized in Table 6.2 indicate that the HierarchyPlanner exploiting
the algorithm hierarchy needs shorter time for planning for all the tested settings. With

72 Chapter 6: Knowledge discovery workflows

increasing number of equivalent algorithms the time taken for planning rises less rapidly for
the HierarchyPlanner. The preprocessing stage lasts longer for the HierarchyPlanner due
to the construction of algorithms hierarchy, however this task can be performed offline and
repeated only when the ontology changes.

The example of a set of generated workflows shown in Figure 6.6 illustrates the
use of algorithm hierarchy for workflow presentation. Since there are 4 discretization, 4
sampling, 5 ranking and 6 continuization algorithms, it would be infeasible to present all
the generated workflows without using the algorithm hierarchy. The automatic selection of
some relevant subset of workflows is non-trivial and will be a subject of future work.

The primary objective of this study was to investigate challenges of data mining
workflow construction resulting mainly from sets of similar or equivalent algorithms, which
are typically available in a data mining toolkit and to develop a methodology for integrating
our approach to automatic workflow composition to a data mining toolkit, which contains
means for manual workflow creation and execution.

We have developed a planner, which exploits the hierarchy of algorithms annotated
using the KD ontology, and shown that during the planning stage, this planner is faster and
more scalable than the classical planner. The construction of algorithm hierarchy is time
consuming, however it needs to be recomputed only when a new algorithm is added to the
ontology. Moreover the hierarchy can also be exploited in the presentation of the workflows
to the user. In future work we plan to include additional constraints and user preferences
into the planner.

Part III

Application

73

Chapter 7

Application of the developed

methods

This chapter presents more details on applications of methods developed in Part
I and Part II of the thesis. The complete application showcase of automatic construction
of workflows for complex relational data mining task in the domain of product engineering
is described and a more extensive evaluation of sorted refinement proposed in Chapter 3
on tasks from this domain is provided. In the second part of this chapter a prototype
of integration of the workflow construction methodology into the Orange4WS knowledge
discovery platform is discussed.

7.1 Relational data mining for Product Engineering

7.1.1 Description of the application area

Engineering is one of the most knowledge-intensive activities that exist. More
specifically, product engineering has been a key to the development of a strong and special-
ized manufacturing industry in Europe, organized in RTD departments and technical offices.
Product engineering involves dealing with very specific knowledge types, like product struc-
tures, CAD designs, technical specifications, standards, and homologations. Moreover, spe-
cific electrical, mechanical, thermodynamic and chemical knowledge may include empirical
data, simulation models and Computer-aided engineering analysis(CAE) tools that serve to
optimize relevant features of the design. The result is rich and complex knowledge stored in
many heterogeneous formats, of which probably CAD, documentation and ERP/database
are the most frequently found, and which constitute the focus of the SEVENPRO project.
The project addresses the most important problem encountered by engineering teams: the
effective reuse of knowledge and past designs.

Most engineering teams currently have to access heterogeneous information sources
from different tools which, in most cases, do not interoperate. The development of a new
product, or a product order with high level of customization, requires a new engineering
approach. During the development process, engineering staff works out new product item
designs by means of CAD tools. CAD designs contain vast amounts of implicit knowledge

75

76 Chapter 7: Application of the developed methods

Figure 7.1: Engineering heterogeneous information sources before and after SEVENPRO.

about the way experienced engineers design very specialized parts. Efficient reuse of knowl-
edge depends on appropriate organization of information and the capability of retrieving
it for later use. Engineering teams still have to spend lots of time trying to find existing
designs from a vast CAD repository; in many occasions, they design again and again items
very similar to others already existing. Moreover, the different types of knowledge described
are supported by different systems, which are used separately and have no communication
with each other, like CAD tools, ERP systems, documents and spreadsheets, etc. This
situation is illustrated in Fig. 7.1(left).

To efficiently retrieve information, it is necessary to be able to carry out com-
plex searches, combining geometrical, technical and managerial aspects. This would allow
the engineer, for example, to query about “parts of type clamp [itemFamily], with more
than 6 holes [Geometry], set in order later than November/2004 [Management], compliant
with ISO-23013 [Documentation]”. This is not possible with current information systems,
unless an expensive and complex Product Lifecycle Management (PLM) system is set up,
whose maintenance in terms of information updates is burdensome for every company and
simply unaffordable in terms of cost for SMEs. The only feasible approach to this is by
using semantic-knowledge technologies and a well automated semantic-annotation system
from the different information sources, able to extract from them all the knowledge that is
useful for the engineering activity. In order to achieve this, an integrated architecture is
required, able to extract and maintain a layer of semantic annotations from the different
information sources targeted, namely ERP, CAD and Document repositories. As shown
in Fig. 7.1(right), a novel semantic virtual engineering product design scenario, aims at a
better integration and reuse of design knowledge.

7.1.2 Relational data mining of CAD data

The SEVENPRO ontologies and the corresponding annotations cover a large spec-
trum of engineering concepts (items, orders, norms, problems, versioning, among many

Chapter 7: Application of the developed methods 77

Figure 7.2: Example of a CAD design including commands history.

others). As mentioned, this allows for complex queries across the available knowledge. An
important facet of this knowledge is the CAD design information. Engineering departments
generate a large amount of CAD files. Such files can be 3D part-definition files, 3D assembly
definition files or 2D drafting files. In addition, relevant information ranges from textual
data (like block, operation or part names) and generic document structure (like assembly
structure), to detailed design information in the case of 3D parts. In the later case, the
shape of a 3D part is the result of sequence of operations specified by the designer. This
sequence of design operations (design features) is where most of the designer’s knowledge
resides, as it is a reflection of the designer’s experience.

Fig. 7.2 represents a simple mechanical part, a two bolt flange. Notice the com-
mand history (at the left-hand side of the figure) leading to the particular virtually designed
object. In command histories the basic operations are “creating” matter (e.g., a pad, a stiff-
ener) and “removing” matter (e.g., a chamfer, an edgeFillet).

This design history conveys the higher level information on how the object was
designed as well as high level dimensional information, as the commands have parameters
associated to them (like the height of an extrusion or the radius of a fillet). This information
would be more difficult to determine using only the final shape of the part, however, having
it associated to the operation not only makes it easily accessible but also keeps its real
meaning. The design history, presented at the left-hand side of Fig. 7.2, is depicted in the
annotation layer as a design sequence in terms of ontology classes and instances, as shown
in Fig. 7.3.

This kind of highly relational data exists for all the annotated files, and is the
input to a RDM algorithm. The generated instance schema is simplified with respect to the

78 Chapter 7: Application of the developed methods

Figure 7.3: Part of a semantic annotation of the design shown in fig. 7.2

internal CAD representation. For example, if a sketch does not belong to any predefined
category, it is identified as a complexSketch and it is not further elaborated. The schema also
contains some properties derived from other properties, e.g. property hasDepth of extrude
is derived from the two limits. In SEVENPRO, this representation has been converted into
Prolog facts, more suitable as input for the RDM algorithms. An example of Prolog facts
describing part of CAD design is in Table 7.1.2.

Experimental setting

Experiments were performed on a dataset containing 160 examples of CAD design
drawings provided by a metal casting company that participates in the project: Fundiciones
del Estanda. Two main types of experiments were run:

• searching for relational patterns present in all examples of a given class, to compare
efficiency of the sorted refinement enriched RDM to a baseline ILP system

• classification based on constructing propositional features to evaluate predictive ac-
curacy of the propositionalisation approach to classification.

Comparison of sorted refinement with Aleph

We conducted experiments to compare the efficiency of RDM including sorted
refinement (SR) on one hand and a standard ILP system on the other hand. The baseline
ILP system chosen for comparison was Aleph. The specific goal of the experiment was to
determine the volumes of search space traversed by the respective systems in order to find
patterns covering all of the provided positive examples.

Chapter 7: Application of the developed methods 79

Table 7.1: Prolog facts describing a part of CAD design.

hasCADEntity(’eItemT BA1341’,part 183260395 10554).
typeOf(’eItemT BA1341’, eItemT).
typeOf(part 183260395 10554, cADPart).
hasBody(part 183260395 10554,body 183260395 10555).
typeOf(body 183260395 10555, body).
hasFeature(body 183260395 10555,extrude 183260395 10556).
typeOf(extrude 183260395 10556, extrude).
hasSketch(extrude 183260395 10556,complexSketch 183260395 10557).
typeOf(complexSketch 183260395 10557, complexSketch).
hasGeomElem(complexSketch 183260395 10557,circle 183260395 10558).
typeOf(circle 183260395 10558, circle).
hasDepth(extrude 183260395 10556,0).
hasFeature(body 183260395 10555,pocket 183260395 10580).
typeOf(pocket 183260395 10580, pocket).
hasSketch(pocket 183260395 10580,complexSketch 183260395 10581).
typeOf(complexSketch 183260395 10581, complexSketch).

The majority class of examples is considered as positive. For the sake of this
experiment, no negative examples are needed. There were 57 examples, where each examples
contained a description of one CAD design drawing. Around 100 predicates were used to
describe each example.

The tests were performed for pattern length from 1 to 8. For pattern length
greater than 5, pattern generation was no longer tractable for Aleph. In the first set of
experiments only term subsumption was used in our system. It can be seen that the number
of expanded nodes is decreased very significantly. In the second set of experiments, predicate
subsumption was used in our system as well. Results of these experiments can be seen in
Figures 7.4 and 7.5. Fig. 7.4 shows results of using sorted refinement with and without
predicate subsumption. Fig. 7.5 shows results of both our approaches compared to Aleph.
The time taken for evaluation roughly doubles w.r.t. experiments using term subsumption
only. The number of explored nodes decreases, however the decrease is not very significant.
This is due to the fact that the subproperty relation hierarchy that was used has only two
levels and includes around 10 predicates. Our system can be used for pattern sizes, which
are intractable in Aleph. This is important, because it has been discovered that patterns
with length less than 7 do not provide information sufficient for classification.

Classification based on propositional features

For the data set containing 160 design drawings their classification was provided.
Examples were classified into 4 proper classes describing families of designs and 57 examples
that did not belong to any of the 4 classes were classified as ’other’. By consultation with the
users it was found out that the first feature used is important and also relative order of the
features is important. Therefore properties describing the order of CAD features were added
to background knowledge and to annotations e.g. next(+cADFeature,-cADFeature),

80 Chapter 7: Application of the developed methods

Figure 7.4: Comparison of sorted refinement with and without using taxonomy on predi-
cates. Left: Number of nodes explored Right: Time taken.

Figure 7.5: Comparison of sorted refinement and Aleph. Left: Nodes explored Right: Time
taken.

sequenceStart and firstFeature(+body,-cADFeature). The following relations were
also added to the background knowledge:
subpropertyOf(firstFeature,hasFeature),
subpropertyOf(hasFeature,sequenceStart). Special treatment of relations that are sub-
properties of next and sequenceStart. Subproperties of sequenceStart can occur only
once in a pattern and for subproperties of next order on the level of arguments is not
checked.

Our system was used to generate a set of features of length 7. The generated
features set was pruned by excluding features covering all examples. Also in case a feature
covered the same examples as some of its children, the feature was excluded. Propositional
algorithm J48 implemented in WEKA [108] was then used for classification using gener-
ated features as attributes. For testing 10 fold cross validation was used. Results of the
classification are summarized in Table 7.1.2.

The prevailing error type indicated in the confusion matrix in Table 7.1.2 is that
some items of class itemFamilyStdPlate were incorrectly classified as itemFamilySlotted-
Plate. These two classes are both subclasses of class itemFamilyPlate and they are more
similar to each other than any other pair of classes. More detailed information or longer
features would be necessary to distinguish between these two classes more accurately. Other

Chapter 7: Application of the developed methods 81

Table 7.2: Results of classification using the J48 algorithm.

Class TP Rate FP Rate Precision Recall F-Measure ROC Area

itemFamilyTT 0.826 0.036 0.792 0.826 0.809 0.9

itemFamilyLiner 0.895 0.068 0.879 0.895 0.887 0.927

itemFamilyStdPlate 0.5 0.02 0.571 0.5 0.533 0.834

itemFamilySlottedPlate 0.8 0.02 0.727 0.8 0.762 0.883

other 0.855 0.071 0.883 0.855 0.869 0.897

Table 7.3: Confusion matrix of classification using J48 algorithm.

a b c d e ←− classified as
53 2 5 1 1 a = other
2 19 2 0 0 b = itemFamilyTT
2 3 51 1 0 c = itemFamilyLine
2 0 0 4 2 d = itemFamilyStdPlate
1 0 0 1 8 e = itemFamilySlottedPlate

errors were mostly confusions between one of the proper classes and class ’other’.

Discussion of experiments

In this section we have described semantic virtual engineering for product design
in engineering environments, which integrates information from heterogeneous sources by
means of a semantic layer, and identified the role of relational data mining in this applica-
tion. As a case study, semantic annotation and RDM on CAD designs was chosen, since
CAD designs are challenging from the ILP point of view due to the various length and struc-
ture of the description of each example combined with taxonomical background knowledge.
We have proposed a baseline approach for integrating taxonomical background knowledge
into an ILP system by implementing sorted refinement operator and extending it to include
taxonomies on predicates.

The efficiency of our approach was demonstrated by comparing it to the stan-
dard ILP system Aleph without any support for integration of hierarchical background
knowledge. The results were strongly convincing in favor of the former. In terms of the
volume of search spaced traversed to find a set of frequent patterns, the ‘hierarchy-blind’
search conducted by Aleph maintains a roughly exponential overhead with respect to the
ontology-aware refinement, as the maximum pattern size is being increased. This has a
strong consequence in this application domain: working in spaces of patterns of length
greater than 7 literals becomes intractable for Aleph, while such and longer patterns are
important for capturing common design sequences as exemplified earlier in the text.

Features generated by our system were also used for classification of CAD designs.
Generally speaking, the accuracies obtained through cross-validation were surprisingly high,
which can be ascribed both to the noise-free character of the data and to the sufficient ex-
pressivity of the features our system constructed. Analyzing the prevailing classification

82 Chapter 7: Application of the developed methods

Figure 7.6: An overview of the RDM Manager architecture.

error type, it was discovered that the order of CAD design features was important for clas-
sification, and thus predicates and rules describing the order of predicates were established.

Conclusions

The conducted experiments demonstrated that the chosen approach to integration
of hierarchies of concepts and predicates into a refinement operator leads to a significant
increase of efficiency of relational rule learning and feature generation, enabling use of
larger patterns. These results motivate further exploration of refinement operators for
more expressive languages.

7.1.3 Workflow creation, execution and management

Relational knowledge discovery tasks described in the previous sections required
a combination of transformation, inductive and visualization algorithms. These can be
assembled manually by a computer scientist familiar with these types of algorithms and their
incorporability into a workflow suitable for a particular knowledge discovery task. However
it cannot be expected from the end users, in case of SEVENPRO project product engineers.
Therefore in order to make relational knowledge discovery techniques accessible to these
users, the workflows should be assembled automatically based on the input and output
specifications of the particular knowledge discovery task and the results of the knowledge
discovery task should be stored in a form that can be easily queried by the user.

Chapter 7: Application of the developed methods 83

Our automatic workflow construction methodology presented in Chapter 6 was
implemented in the RDM Manager (shown in Fig. 7.6), which was developed as a part of
the SEVENPRO software infrastructure [97]. The RDM Manager provides functionalities
for workflow management and execution. The central component of the RDM Manager
is the RDM Engine responsible for designing, storing, retrieving and executing workflows.
For this sake, the RDM Engine has access to the KD ontology, and can launch the planner,
the ontology based constructor of PDDL files (Onto2PDDL box in Fig. 7.6) as well as all
the various algorithms appearing in workflows. The RDM Engine is equipped with a web
service interface allowing a standardized access. A graphical user interface (RDM GUI)
has been developed enabling an intuitive specification of the knowledge discovery task and
passing on the specification to the RDM Engine web services. The Semantic Repository
box also shown in Fig. 7.6 is a central storage point of the SEVENPRO software platform.
The RDM Manager Tools stores all results of knowledge discovery processes, including the
constructed workflows into the Semantic Repository for later retrieval by itself or by other
software components of the SEVENPRO platform. Conversely, the Semantic Repository
also holds all data onto which knowledge discovery workflows are applied.

The general workflow maintenance scenario is shown in Fig. 7.7. The user formu-
lates a knowledge discovery task using the RDM GUI, which formalizes the task specification
into a SPARQL query, passed to the RDM Engine. The RDM Engine queries the Semantic
Repository for an existing workflow (possibly a single algorithm) solving the task. If such
a workflow is found, it is presented to the user who can set or update its parameters. Oth-
erwise, the RDM Engine calls the Planner. If the PDDLPlanner is used, the Onto2PDDL
component is called first to produce the suitable PDDL file.

A plan generated by the Planner is a directed acyclic graph with nodes representing
Algorithm instances, which do not contain any values of algorithm parameters specified
by simple datatypes (e.g. MinNo - the minimal number examples covered by one rule).
Therefore in the next stage it is necessary to convert the plan actions into a sequence of
instances of AlgorithmExecution.

A SPARQL-DL query is used to search for the instances of AlgorithmExecution
used by the actions in the plan. In the current version of our system the user has three
options: to use default configurations for all the algorithms, to choose from among previously
used configurations or to set all parameters manually.

When all the actions of the plan have been instantiated, they are combined into
an abstract workflow represented by an instance of the Workflow class, which is stored in
the Semantic Repository. Since the current version of the RDM Engine does not provide
any means for parallelization, the actions of the workflow are converted to a sequence. The
RDM Engine then generates a query for execution of each algorithm configuration in the
sequence.

The data are then retrieved from the Semantic Repository using a SPARQL query.
Then, for each algorithm in the sequence, the RDM Engine extracts the algorithm’s class
from its AlgorithmExecution. Knowing the class, it then launches the algorithm’s wrapper
passing the retrieved the data and parameters to it. When the algorithm terminates, the
RDM Engine passes its results to the wrapper of the next algorithm in the sequence.

The algorithms available in the RDM Engine include specialized algorithms for

84 Chapter 7: Application of the developed methods

Figure 7.7: Sequence diagram showing a typical scenario for PDDLPlanner.

Chapter 7: Application of the developed methods 85

relational learning through propositionalization [59] and subsequent propositional search
described in [104], a collection of algorithms fromWeka data mining platform [108] including
the JRip rule learner, the J48 decision tree induction algorithm and Apriori algorithm. In
addition, algorithms for data preprocessing and format conversions are also available within
the RDM Engine. New algorithms can be easily added to the RDM Engine by developing
a wrapper for the particular algorithm and possibly also an API for accessing the results in
case the particular result type is not yet included in the RDM Engine.

7.2 Orange4WS knowledge discovery platform

Fast-growing volumes of complex and geographically dispersed information and
knowledge sources publicly available on the web present new opportunities and challenges
for knowledge discovery systems. Principled fusion and mining of distributed, highly het-
erogeneous data and knowledge sources requires the interplay of diverse data processing and
mining algorithms, resulting in elaborate data mining workflows. If such data mining work-
flows were built on top of a service-oriented architecture, the processing of workflow com-
ponents (e.g. data mining algorithms) can be distributed between the users computer and
remote computer systems. Therefore, as the use of data mining algorithms (implemented
as services) is no longer limited to any particular data mining environment, platform or
scenario, this can greatly expand the domains where data mining and knowledge discovery
algorithms can be employed.

Orange4WS (Orange for Web Services) knowledge discovery platform , has been
conceived as an extension of the existing data mining platform Orange [27]. In comparison
with the current publicly available data mining platforms (best known examples being Weka
[108], KNIME [10], RapidMiner [74] and Orange [27]), the Orange4WS platform provides
the following new functionalities: (a) userfriendly composition of data mining workflows
from local and distributed data processing/mining algorithms applied to a combination of
local and distributed data/knowledge sources, (b) simplified creation of new web services
from existing data processing/mining algorithms, (c) a knowledge discovery ontology of
knowledge types, data mining algorithms and tasks and (d) automated construction of data
mining workflows based on the specification of data mining tasks, using the data mining
ontology through an algorithm that combines planning and ontological reasoning.

7.2.1 Text mining use case

This section presents a motivating use case for developing and using a service-
oriented knowledge discovery platform, including a user-friendly workflow editor. The use
case is built upon text mining web services, available from LATINO 1 text mining library,
which provides a range of data mining and machine learning algorithms, with the emphasis
on text mining, link analysis and data visualization.

The goal of this use case is to produce a compact and understandable graph of
terms, which could potentially give insights into relations between biological, medical and

1http://sourceforge.net/projects/latino

86 Chapter 7: Application of the developed methods

Figure 7.8: An Orange4WS workflow of text mining services in the Orange workflow ex-
ecution environment. Components numbered 3, 4, 5, 6, 7, 8 and 10 are web services;
components 1, 2 and 9 are Orange4WS supporting widgets; components 11 and 12 are
instances of the native Orange graph visualizer.

chemical terms, relevant to the subject of a user-defined query.A manually constructed
Orange4WSworkflowof processing components is shown in Fig. 7.8.

The use case demonstrates the need for a service oriented platform able to com-
bine publicly available data repositories (PubMed) with third-party data analysis tools
(LATINO), specialized algorithms (Pathfinder) and powerful local visualization components
(Orange graph visualizer).

PubMed search web services is queried with a user-defined query string and a
parameter defining the maximal number of documents returned (components 1, 2 and 3).
It returns a collection of IDs of relevant documents. Then, the obtained IDs are used to
collect titles, abstracts and keyword of these documents (component 4). Next, bag-of-words
(BoW) sparse vectors are created from the collection of words (component 6). To simplify
the setting of parameters for unexperienced users, there is a service providing a suitable
set of default values that can be used as an input to the web service that constructs BoW
vectors (component 5). BoW vectors are then transposed (component 7) and a network
of words/terms is created (component 8) in the .net format of the well-known Pajek social
network analysis tool 2. The resulting graph of terms in the .net format is then transformed
into Oranges native data structure for representing graphs (component 9), and simplified
using a sparse variant of the Pathfinder algorithm that is implemented as a web service

2User manual of the Pajek software tool for the analysis and visualization of large social networks is
available at http://pajek.imfm.si/doku.php.

Chapter 7: Application of the developed methods 87

Figure 7.9: An overview of the framework for integration annotations and planning into
Orange.

(component 10). Finally, the original and pruned graph are visualized using the Oranges
native Network explorer (components 11 and 12).

This Orange4WS workflow, implementing a complex text mining scenario, was
designed and constructed manually in the Oranges user-friendly workflow editor. In Section
7.2.2, we will demonstrate how this workflow can be constructed automatically using our
workflow planner and KD ontology.

7.2.2 Integrating annotations and planning into Orange4WS

We have developed a framework for integrating our methodology into the Or-
ange4WS data mining platform, so that workflows, which were constructed manually using
the Orange4WS GUI, can be automatically annotated using the KD ontology. The anno-
tated workflows can then be used for querying and reasoning. All the information required
for the Orange4WS representation is preserved in the annotation; therefore Orange4WS
workflows can be recreated from the annotations and executed again in the Orange4WS
toolkit. On the other hand, workflows generated by the planner using KD annotations of
Orange4WS algorithms can be converted to the Orange4WS representation and executed in
Orange4WS. An overview of the framework is shown in Fig. 7.9. The module Orange2Onto,
which acts as an interface between Orange4WS and ontology representation does not work
directly with internal representation of Orange4WS, but it works with the OWS format
used in the standard Orange distribution to store workflows in XML format.

88 Chapter 7: Application of the developed methods

In order to capture formally the mapping between the internal Orange4WS rep-
resentation and the representation of algorithms using the KD ontology, the Orange-Map
(OM) ontology was developed defining templates for mapping of algorithms, data and pa-
rameters. The template for a parameter represented using a set of radio buttons in Orange
is shown below:

OrangeRadioParamMapping ⊑ ∃ parameter · {kd:AlgorithmParameter}

⊓ ∃ radioValue · OrangeRadioValue

⊓ ∃ orangeAlias · string

OrangeRadioValue ⊑ ∃ paramURI · {anyURI}

⊓ ∃ rbNumber · int

Currently in the Orange format for storing the workflows, a parameter value is
represented only by the number of the selected radio button. It is specified in the mapping
using the property rbNumber. In the KD ontology it is mapped into an instance with URI
specified using paramURI.

The OM ontology is then used for converting the automatically generated work-
flows into the Orange4WS representation. In order to facilitate the creation of the mapping
for new algorithms, the mapping can be specified using an XML file. The corresponding
instances in the ontology are then generated automatically.

Annotation of a new algorithm available in Orange4WS thus requires the following
steps:

1. create instances of AlgorithmParameter for all inputs and outputs

2. create an instance of NamedAlgorithm

3. for each instance of AlgorithmParameter create a class defining its range (if not yet
defined, add the necessary subclasses of Knowledge - this should be required only
when a new type of algorithm is added)

4. create an XML file defining a mapping between the algorithm representation in Orange
and in the KD ontology

5. run a script for generating a mapping using the OM ontology

Annotations of Orange4WS workflows containing algorithms not annotated using
the KD ontology can also be created automatically. The missing information about in-
put/output types of the algorithms is then either deduced from the links with annotated
algorithms or considered to be some Knowledge expressed as string. The annotations of such
workflows can therefore be used for some querying and repeating of experiments, however
the generated annotation of the unknown algorithm is not suitable for planning.

The procedures for converting Orange4WS representation to OWL and vice versa
are implemented in Python using JPype3 to call the Jena4 ontology API implemented in
Java.

3http://jpype.sourceforge.net/

4http://jena.sourceforge.net/

Chapter 7: Application of the developed methods 89

Task No. of Planner HierarchyPlanner
algs Prep. Plan Prep. Plan

LATINO 85 144 0.38 225 0.08
LATINO 113 211 0.55 363 0.08

ASSOC 71 64 47.3 116 44.8
ASSOC 99 183 84.4 261 46.1

Table 7.4: Planner performance results, with respect to the task, the number of algorithms
available. The time for preprocessing (Prep.) and planning (Plan) is shown in seconds.

Text mining use case annotation and workflow construction

The KD ontology was used to annotate the components of LATINO using the
mapping described in guidelines for mapping Java classes to OWL classes [51]. The anno-
tation was done manually and was based on LATINO WDSL specification. As an example
we present a definition of the GenerateBows algorithm. GenerateBows is defined as an
algorithm that can be applied to a collection of documents and produces a bag of words
representation of these documents. The settings are quite complex, therefore in the current
version they are provided as a single input object. The annotation serves rather as a proof
of concept for including algorithms available as web services. Developing a branch of the
KD ontology describing the algorithms and types of data used for text mining is out of
scope of this work. The definition of the GenerateBows algorithm in the description logic
notation using the extended ABox syntax [5] is shown below:

{GenerateBows} ⊑ NamedAlgorithm

⊓ ∃ output · {GenerateBows-O-Bows}

⊓ ∃ input · {GenerateBows-I-Docs}

⊓ ∃ input · {GenerateBows-I-Settings}

{GenerateBows-I-Docs-Range} ≡ isRangeOf ·

{GenerateBows-I-Docs}

≡ DocumentCollection

{GenerateBows-O-Bows-Range} ≡ isRangeOf ·

{GenerateBows-O-Bows}

≡ BowSpace

The text mining use case described in Section 7.2.1 and our planner algorithms
were used to automatically generate suitable workflow, which was then loaded into the
Orange4WS platform. A schema of the generated workflow and its executable instantiation
in the Orange4WS environment is shown in Fig. 7.10.

We also performed experiments comparing the enhanced planner exploiting the
algorithm hierarchy with the original classical planner for the text mining use case. The

90 Chapter 7: Application of the developed methods

Figure 7.10: A schema of automatically generated abstract workflow and its executable
instantiation in the Orange4WS environment. The underlying knowledge discovery task is
a text-mining scenario of Section 7.2.1 for the analysis of a graphs of terms, obtained by
querying the PubMed database using a publicly accessible web service.

results are shown in Table 7.4. The results show the same trends as the previous experiments
presented in Chapter 6.

7.2.3 Discussion

We have developed a proof of concept integration of our methodology for automatic
workflow construction in the Orange4WS knowledge discovery platform. We demonstrated
its applicability for a text mining, which required using a combination of algorithms avail-
able locally and algorithms available as web services. In future work, we will explore adding
means of semi-automatic annotation of web services. The planner will also be a subject
of future improvements as we aim to incorporate the ability of satisfying user-defined con-
straints and preferences.

Chapter 8

Conclusions

Knowledge discovery tasks in science and engineering require mining heterogeneous
and structured data and knowledge sources. It has been recognized for some years that an
important factor in successfully addressing the challenges of these tasks is the ability to
efficiently utilize the knowledge mastered by experts in the domain of discovery. There
has been a lot of effort to formalize the current domain knowledge by creating domain
ontologies. One of the key challenges for data mining is therefore to enable the data mining
algorithms to efficiently incorporate this domain knowledge.

The first part of this work is therefore devoted to developing a framework for
relational data mining with background knowledge including domain knowledge available
in form of ontologies. Standard inductive logic programming offers means for dealing with
structured data and background knowledge and produces results in form of rules, which
are easily interpretable by humans and also in a formal representation and thus be easily
added to the existing body of knowledge. Therefore ILP framework is a suitable platform
for learning with ontologies.

There exists a wide range of algorithms for learning from propositional (attribute-
value) representation. To be able to reuse the these algorithms, we adopted the approach
of relational data mining through propositionalization and method of relational features
construction. We enhanced both steps of the propositionalization procedure. We have
developed a special refinement operator exploiting taxonomies on terms (concepts) and
predicates (relations), which leads to an order of magnitude speedup during feature gener-
ation. Since the generated features also form a taxonomy, we have adapted a propositional
rule learning algorithm to take this taxonomy into account achieving a significant speedup
and more compact rules.

Testing and deployment of the developed algorithms lead to identification of the
following challenges: adding results to the existing body of knowledge for reasoning and
retrieval, efficient reuse of specialized third party algorithms, flexible modifications of the
framework for different data and result types. This motivated an investigation of the possi-
bilities to formalize the main ingredients of the knowledge discovery task: task formulation,
input data and knowledge, algorithms and procedures and results.

Since none of the ontologies available at the time fulfilled the requirements of en-
compassing learning from diverse highly structured data and provided support for planning

91

92 Chapter 8: Conclusions

and reuse of workflows, we developed the Knowledge Discovery ontology (KD ontology).
The developed KD ontology was used to annotate algorithms for relational data mining
available within the RDM Manager tool and algorithms available in the Orange4WS data
mining platform. We proposed a subontology for representing data mining workflows in
such a way that they can be considered as algorithms and thus allow encapsulating often
occurring workflows and constructing hierarchical workflows. The workflows subontology is
compatible with OWL-S standard for annotation of web services.

As has been already stated, the present day knowledge discovery tasks require
a combination of diverse specialized algorithms in complex workflows, which are difficult
to assemble manually for someone not expert in data mining. Once all the important
components of the workflows have been formalized using the knowledge discovery ontology,
planning and reasoning can be used for automatic workflow construction.

We have developed a methodology for automatic composition of abstract workflows
based on task formulation using the KD ontology, which are proposed to the user and can
be instantiated interactively. Our methodology focuses on workflows for complex knowledge
discovery tasks dealing with structured data and background knowledge, while the previous
studies deal only with classical propositional data mining tasks or are specialized for one
domain only.

Automatic workflow composition was addressed as a planning task. Three ver-
sions of the planning algorithm were developed examining the possibilities of integration of
planning and ontological reasoning. The baseline approach consists of converting the task
and algorithms description from ontology to standard planning formalism PDDL and subse-
quent use of classical planning algorithm. The second approach implements planning with
obtaining suitable next step by querying the KD ontology using SPARQL query language
and Pellet reasoner. The last version goes one step beyond classical planning by exploiting
the taxonomy of algorithms provided by the KD ontology. It significantly improves the
scalability of the planner with respect to number of available algorithms. Moreover, the
taxonomy of algorithms can also be exploited in the presentation of the workflows to the
user.

The proposed methodology for constructing workflows was successfully applied in
two domains (bioinformatics and product engineering). The workflows generated by our
algorithm were complex, but reasonable in that there was no apparent way of simplifying
them while maintaining the desired functionality. The developed methodology was also
integrated into the Orange4WS knowledge discovery platform.

In future work we plan to extend the ontology by descriptions of available com-
putational resources. This will enable us to produce workflows optimized for execution in
a given computing environment as a step towards future automated generation of work-
flows of data mining services available on the web. We also want to extend the modeling
of constraints on the algorithms and workflows and to align the ontology to a top-level
ontology. Furthermore, we want to introduce more complex heuristics for evaluating the
workflows and metrics for workflow similarity and focus on planners more tightly integrating
the planner with a reasoner.

Bibliography

[1] R. Akkiraju, J. Farrell, J. Miller, M. Nagarajan, M.-T. Schmidt, A. Sheth, and
K. Verma. Web service semantics - WSDL-S. W3C Member Submission 7 November
2005, 2005.

[2] A. S. Ali, O. Rana, and I. Taylor. Web services composition for distributed data
mining. In Proc. of the 2005 IEEE International Conference on Parallel Processing
Workshops, ICPPW’05, 2005.

[3] M. A. Alsam, S. Auer, and J. Shen. From BPEL4WS process model to full OWL-S
ontology. In Demos and Posters of the 3rd European Semantic Web Conf., 2006.

[4] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu,
D. Roller, D. Smith, I. Trickovic, and S. Weerawarana. Business process execution
language for web services version 1.1. Specification, 2003.

[5] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, editors.
The Description Logic Handbook, Theory, Implementation and Applications. Cam-
bridge University Press, 2003.

[6] L. Badea and S.-W. Neinhuys-Cheng. A refinement operator for descriptionn logics.
In Inductive Logic Programming, LNAI 1866, pages 40–59, 2000.

[7] S. Battle, A. Bernstein, H. Boley, B. Grosof, M. Gruninger, R. Hull, M. Kifer, D. Mar-
tin, S. McIlraith, D. McGuinness, J. Su, and S. Tabet. Semantic web services language
(SWSL). W3C Member Submission 9 September 2005, 2005.

[8] A. Bernstein and M. Deanzer. The NExT system: Towards true dynamic adaptions
of semantic web service compositions (system description). In Proc. of the 4th Euro-
pean Semantic Web Conference (ESWC’07)), volume 4519 of LNCS, pages 739–748.
Springer, 2007.

[9] A. Bernstein, F. Provost, and S. Hill. Towards intelligent assistance for a data mining
process: An ontology-based approach for cost-sensitive classification. IEEE Transac-
tions on Knowledge and Data Engineering, 17(4):503–518, 2005.

[10] M. R. Berthold, N. Cebron, F. Dill, T. R. Gabriel, T. Kotter, T. Meinl, P. Ohl,
C. Sieb, K. Thiel, and B. Wiswedel. KNIME: The Konstanz Information Miner. In
Studies in Classification, Data Analysis, and Knowledge Organization, pages 319–326.
Springer, 2007.

93

94 Bibliography

[11] A. Blum and M. Furst. Fast planning through planning graph analysis. Artificial
intelligence, 90:281–300, 1997.

[12] B. Bordbar, G. Howells, M. Evans, and A. Staikopoulos. Model transformation from
OWL-S to BPEL via SiTra. In Proc. of ECMDA 07, 2007.

[13] R. J. Brachman, V. P. Gilbert, and H. J. Levesque. An essential hybrid reasoning
system: Knowledge and symbol level accounts of KRYPTON. In Proceedings of
IJCAI-85, 1985.

[14] P. Brezany, I. Janciak, and A. M. Tjoa. Ontology-based construction of grid data
mining workflows. In Data Mining with Ontologies: Implementations, Findings and
Frameworks. IGI Global, 2007.

[15] D. Brickley and R. V. Guha (Eds.). RDF vocabulary description language 1.0: RDF
schema. W3C Recommendation, 2004.

[16] M. Buchheit, F. M. Donini, and A. Schaerf. Decidable reasoning in terminological
knowledge representation systems. Journal of Artificial Intelligence Research, 1:109–
138, 1993.

[17] S. Ceri, G. Gottlob, and L. Tanca. Logic Programming and Databases. Springer, 1990.

[18] P. Chapman, J. Clinton, R. Kerber, T. Khabaza, T. Reinartz, C. Shearer, and
R. Wirth. CRISP-DM 1.0 step-by-step data mining guide, 2000.

[19] W. Chen, M. Kifer, and D. S. Warren. Hilog: A foundation for higher-order logic
programming. Journal of Logic Programming, 15(3):187–230, 1993.

[20] W. Cheung, X.-F. Zhang, Z.-W. Luo, and F. Tong. Service-oriented distributed data
mining. IEEE Internet Computing, 10(4):4454, 2006.

[21] W. Cohen and H. Hirsh. Learning the classic description logic: Theoretical and
experimental results. In Proceedings of teh 4th International Conference on Principles
of Knowledge Representation and Reasoning, pages 121–133, 1994.

[22] A. Congiusta, D. Talia, and P. Trunfio. Distributed data mining services leveraging
WSRF. Future Generation Computer Systems, 23(1):34–41, 2007.

[23] The Gene Ontology Consortium. Gene ontology: tool for the unification of biology.
Nature Genetics, 25:25–29, 2000.

[24] The OBI Consortium. The ontology for biomedical investigations, 2009.

[25] L. de Raedt, editor. Logical and Relational Learning. Cognitive Technologies. Springer,
2008.

[26] E. Deelman, J. Blythe, G. Yolanda, C. Kesselman, S. Koranda, A. Lazzarini,
G. Mehta, M. A. Papa, and K. Vahi. Pegasus and the pulsar search: From meta-
data to execution on the grid. In Parallel Processing and Applied Mathematics, 2004.

Bibliography 95

[27] J. Demsar, B. Zupan, and G. Leban. Orange: From experimental machine learning
to interactive data mining. White Paper, 2004.

[28] C. Diamantini, D. Potena, and M. Panti. Developing and open knowledge discovery
support system for a networked environment. In Proc. of the 2005 Int. Symp. on
Collaborative Technologies and Systems, pages 274–281, 2005.

[29] C. Diamantini, D. Potena, and E. Storti. KDDONTO: An ontology for discovery and
composition of kdd algorithms. In In SoKD: ECML/PKDD 2009 Workshop on Third
Generation Data Mining: Towards Service-oriented Knowledge Discovery, pages 13–
24, 2009.

[30] C. Diamantini, D. Potena, and E. Storti. Ontology-driven KDD process composition.
In IDA 2009, volume 5772 of LNCS, pages 285–296, 2009.

[31] B. Doľsak, I. Bratko, and A. Jezernik. Finite element mesh design: An engineering
domain for ILP application. In Proc. of ILP 1994, GMD-Studien 237, pages 305–320,
1994.

[32] F. M. Donini, M. Lenzerini, D. Nardi, and W. Nutt. The complexity of concept
languages. In Proceedings of KR-91, 1991.

[33] F. M. Donini, M. Lenzerini, D. Nardi, A. Schaerf, and W. Nutt. An epistemic operator
for description logics. Artificial Intelligence, 100 (1-2):1998, 225-274.

[34] S. Džeroski. Towards a general framework for data mining. In Knowledge Discovery
in Inductive Databases - 5th Int. Workshop, KDID’06, volume 4747 of LNCS, pages
259–300. Springer, 2007.

[35] D. Martin (ed.). OWL-S: Semantic markup for web services. W3C Member Submis-
sion, 2004.

[36] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. Knowledge discovery and data min-
ing: Towards a unifying framework. In Proc. of KDD-96, pages 82–88, 1996.

[37] M. Fernandez, A. Perez, and N. Juristo. METHONTOLOGY: from ontological art
towards ontological engineering. In Proc. of the AAAI97 Spring Symposium Series
on Ontological Engineering, pages 33–40, 1997.

[38] R. Fikes and N. Nilsson. STRIPS: a new approach to the application of theorem
proving to problem solving. Artificial Intelligence, 2:189–208, 1971.

[39] A. Frisch. Sorted downward refinement: Building background knowledge into a re-
finement operator for ILP. In Proc. of ILP 1999, LNAI 1634, page 104115, 1999.

[40] A. Gangemi, S. Borgo, C. Catenacci, and J. Lehmann. Task taxonomies for knowledge
content. METOKIS Deliverable D07, 2005.

96 Bibliography

[41] A. Gomez-Perez, M. Fernandez-Lopez, and O. Corcho. Methodologies and meth-
ods for building ontologies. In Ontological Engineering: with examples from the ar-
eas of Knowledge Management, e-Commerce and the Semantic Web, pages 107–197.
Springer, 2004.

[42] A. Gomez-Perez, M. Fernandez-Lopez, and O. Corcho. Ontological Engineering: with
examples from the areas of Knowledge Management, e-Commerce and the Semantic
Web. Springer, 2004.

[43] P. Grenon. BFO in a nutshell: A bi-categorial axiomatization of BFO and comparison
with DOLCE. IFOMIS reports, June 2003.

[44] B. N. Grosof, I. Horrocks, R. Volz, and S. Decker. Description logic programs: com-
bining logic programs with description logic. In Proc. of the 12th Int. Conf. on World
Wide Web, pages 48–57. ACM Press New York, NY, USA, 2003.

[45] T. R. Gruber. Towards principles for the design of ontologies used for knowledge
sharing. International Journal of Human-Computer Studies, 43(4-5):907–928, 1995.

[46] D. Guedes, W. J. Meira, and R. Ferreira. Anteater: A service-oriented architecture
for high-performance data mining. IEEE Internet Computing, 10(4):36–43, 2006.

[47] M. Hilario, A. Kalousis, P. Nguyen, and A. Woznica. A data mining ontology for
algorithm selection and meta-mining. In In SoKD: ECML/PKDD 2009 Workshop
on Third Generation Data Mining: Towards Service-oriented Knowledge Discovery,
pages 76–87, 2009.

[48] J. Hoffmann. Towards efficient belief update for planning-based web service compo-
sition. In Proc.of ECAI 2008, pages 558–562, 2008.

[49] J. Hoffmann and B. Nebel. The FF planning system: Fast plan generation through
heuristic search. Journal of Artificial Intelligence research, 14:2001, 253-302.

[50] T. Hofweber. Logic and ontology. In E. N. Zalta, editor, The Stanford Encyclopedia
of Philosophy (Fall 2011 Edition). 2011.
http://plato.stanford.edu/archives/fall2011/entries/logic-ontology/.

[51] A. Kalyanpur, D. Jiménez Pastor, S. Battle, and J. A. Padget. Automatic mapping
of OWL ontologies into Java. In Proc. of SEKE 2004, pages 98–103, 2004.

[52] N. L. Khac, M. T. Kechadi, and J. Carthy. Admire framework: Distributed data
mining on data grid platforms. In Procs. of First Int. Conf. on Software and Data
Technologies, volume 2, pages 67–72, 2006.

[53] J.-U. Kietz. Learnability of description logic programs. In Inductive Logic Program-
ming: 12th International Conference, LNCS Volume 2583, 2002.

[54] J.-U. Kietz and S. Džeroski. Inductive logic programming and learnability. SIGART
Bulletin, 5(1):22–32, 1994.

Bibliography 97

[55] J.-U. Kietz, F. Serban, A. Bernstein, and S. Fischer. Towards cooperative planning
of data mining workflows. In In SoKD: ECML/PKDD 2009 Workshop on Third
Generation Data Mining: Towards Service-oriented Knowledge Discovery, pages 1–
12, 2009.

[56] M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-oriented and frame-
based languages. Journal of ACM, 42:741–843, 1995.

[57] R. D. King, K. E. Whelan, F. M. Jones, P. K. G. Reiser, C. H. Bryant, S. H. Mug-
gleton, D. B. Kell, and S. G. Oliver. Functional genomic hypothesis generation and
experimentation by a robot scientist. Nature, 427:247–252, 2004.

[58] M. Klusch, A. Gerber, and M. Schmidt. Semantic web service composition planning
with OWLS-Xplan. In Procs of 1st Intl. AAAI Fall Symposium on Agents and the
Semantic Web, 2005.

[59] M.-A. Krogel, S. Rawles, P. A. Flach, N. Lavrač, and S. Wrobel. Comparative eval-
uation of approaches to propositionalization. In Inductive Logic Programming: 13th
International Conference, ILP 2003, volume 2835 of LNAI, pages 197–214, 2003.

[60] A. Kumar, M. Kantardzic, P. Ramaswamy, and P. Sadeghian. An extensible service
oriented distributed data mining framework. In Proc. IEEE/ACM Intl. Conf. on
Machine Learning and Applications, 2004.

[61] H. Lausen, A. Polleres, and D. Roman (eds.). Web service modeling ontology
(WSMO). W3C Member Submission 3 June 2005, 2005.

[62] N. Lavrač and S. Džeroski. Inductive Logic Programming: Techniques and Applica-
tions. Ellis Horwood, 1994.

[63] F. Lécué, A. Delteil, and A. Léger. Applying abduction in semantic web service
composition. In Procs of the IEEE International Conference on Web Services (ICWS
2007), pages 94–101, 2007.

[64] A. Levy and M.-C. Rousset. The limits on combining recursive horn rules with de-
scription logics. In Proc. of the 13th Nat. Conf. on AI and 8th Innovative Applications
of AI Conf., AAAI 96, IAAI 96, pages 577–584, 1996.

[65] A. Levy and M.-C. Rousset. Combining Horn rules and description logics in CARIN.
Artificial Intelligence, 104:165209, 1998.

[66] Y. Li and Z. Lu. Ontology-based universal knowledge grid: Enabling knowledge
discovery and integration on the grid. In Procs of the 2004 IEEE International Con-
ference on Services Computing (SCC’04), 2004.

[67] F. A. Lisi and D. Malerba. Ideal refinement of descriptions in AL-Log. In Proc. of
ILP 2003, LNCS 2835, pages 215–232, 2003.

98 Bibliography

[68] Z. Liu, A. Ranganathan, and A. Riabov. A planning approach for message-oriented
semantic web service composition. In Proc of the Nat. Conf. on AI, volume 5(2),
pages 1389–1394, 2007.

[69] R. M. MacGregor. A description classifier for predicate calculus. In Proceedings of
AAAI-94, 1994.

[70] O. Maimon and L. Rokach. The Data Mining and Knowledge Discovery Handbook.
Springer, 2005.

[71] D. Martin, M. Paolucci, and M. Wagner. Toward semantic annotations of web ser-
vices: OWL-S from the SAWSDL perspective. In Proc. of OWL-S: Experiences and
Directions - a workshop at ESWC 2007, 2007.

[72] C. Masolo, S. Borgo, A. Gangemi, N. Guarino, and A. Oltramari. Ontology library.
WonderWeb Deliverable D18, 2003.

[73] R. S. Michalski. Understanding the nature of learning: Issues and research direc-
tions. In Machine Learning: An Artificial Intelligence Approach, pages 3–25. Morgan
Kaufmann, Los Altos, CA, 1986.

[74] I. Mierswa, M. Scholz, R. Klinkenberg, M. Wurst, and T. Euler. Yale: Rapid proto-
typing for complex data mining tasks. In KDD, pages 935–940. ACM Press, 2006.

[75] P. Mika, D. Oberle, A. Gangemi, and M. Sabou. Foundations for service ontologies:
Aligning OWL-S to DOLCE. In The 13th International World Wide Web Conference
Proceedings, pages 563–572, 2004.

[76] K. Morik and M. Scholz. The MiningMart approach to knowledge discovery in
databases. In Intelligent Technologies for Information Analysis, pages 47–65, 2004.

[77] B. Motik. On the properties of metamodeling in OWL. In Proc. of International
Semantic Web Conference 2005, pages 548–562, 2005.

[78] S. Muggleton. Inverse entailment and Progol. New Generation Computing Journal,
13:245–286, 1995.

[79] S-H. Nienhuys-Cheng and R. de Wolf. Foundations of Inductive Logic Programming.
LNAI 1228. Springer, 1997.

[80] A. Oberle. Semantic Management of Middleware. Semantic Web and Beyond.
Springer, 2006.

[81] A. Paes, F. Železný, G. Zaverucha, D. Page, and A. Srinivasan. ILP through propo-
sitionalization and k-term DNF learning. In Proc. of the 16th Conference on ILP.
Springer, 2007.

[82] P. Panov and S. Džeroski, 2009. Personal communication.

Bibliography 99

[83] P. Panov, S. Džeroski, and L. N. Soldatova. Ontodm: An ontology of data mining.
In IEEE ICDM Workshops 2008, pages 752–760, 2008.

[84] P. Patel-Schneider, P. Hayes, and I. Horrocks. OWL web ontology language semantics
and abstract syntax. W3C Recommendation, 2004.

[85] M. Pistore, F. Barbon, P. Bertoli, D. Shaparau, and P. Traverso. Planning and
monitoring web service composition. In Proc. of AIMSA 2004, pages 106–115, 2004.

[86] V. Podpečan, M. Zemenová, and N. Lavrač. Orange4WS environment for service-
oriented data mining. The Computer Journal, 55(1):82–98, 2012.

[87] A. Rowe, D. Kalaitzopoulos, M. Osmond, M. Ghanem, and Y. Guo. The Discovery
Net system for high throughput bioinformatics. Bioinformatics, 19:225–231, 2003.

[88] U. Ruckert and S. Kramer. Stochastic local search in k-term DNF learning. In Proc.
of the 20th ICML, pages 648–655, 2003.

[89] E. D. Sacerdoti. Planning in a hierarchy of abstraction spaces. Artif. Intell., 5(2):115–
135, 1974.

[90] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz. Pellet: A practical
OWL-DL reasoner. Journal of Web Semantics, 5(2):2007, 51-53.

[91] E. Sirin, B. Parsia, D. Wu, J. Hendler, and D. Nau. HTN planning for web service
composition using SHOP2. Journal of Web Semantics, 1(4):377–396, 2004.

[92] D. Smith and D. Weld. Temporal planning with mutual exclusion reasoning. In Proc.
of the 1999 International Joint Conference on Artificial Intelligence (IJCAI-1999),
pages 326–333, 1999.

[93] J. F. Sowa. Knowledge representation: logical, philosophical and computational foun-
dations. Brooks/Cole Publishing Co., 2000.

[94] A. Srinivasan. The Aleph manual version 4, 2003.

[95] S. Staab, R. Studer, H. Schnurr, and Y. Sure. Knowledge processes and ontologies.
IEEE Intelligent Systems, 16(1):26–34, 2001.

[96] V. Stankovski, M. Swain, V. Kravtsov, T. Niessen, D. Wegener, J. Kindermann,
and W. Dubitzky. Grid-enabling data mining applications with DataMiningGrid: An
architectural perspective. Future Generation Computer Systems, 24(4):259–279, 2008.

[97] M. Strauchmann, T. Haase, E. Jamin, H. Cherfi, M. Renteria, and C. Masia-Tissot.
Coaction of semantic technology and virtual reality in an integrated engineering en-
vironment. In KCAP Workshop on Knowledge Management and Semantic Web for
Engineering Design, 2007.

[98] A. Suyama, N. Negishi, and T. Yamagchi. Composing inductive applications using
ontologies for machine learning. In Proc. of the First International Conference on
Discovery Science, pages 429–431, 1998.

100 Bibliography

[99] I. Taylor, M. Shields, I. Wang, and A. Harrison. The Triana workflow environ-
ment: Architecture and applications. In I. J. Taylor, E. Deelman, D. B. Gannon,
and M. Shields, editors, Workflows for e-Science, pages 320–339. Springer, 2007.

[100] I.J. Taylor, E. Deelman, D.B. Gannon, and M. Shields, editors. Workflows for e-
Science, Scientific Workflows for Grids. Springer, 2007.

[101] I. Trajkovski, F. Železný, N. Lavrač, and J. Tolar. Learning relational descriptions of
differentially expressed gene groups. IEEE Trans. Sys Man Cyb C, 38(1):16–25, 2008.

[102] I. Trajkovski, F. Železný, J. Tolar, and N. Lavrač. Relational subgroup discovery for
descriptive analysis of microarray data. In Proc. of CompLife 06. Springer, 2006.

[103] M. Žáková, P. Křemen, F. Železný, and N. Lavrač. Automating knowledge discovery
workflow composition through ontology-based planning. IEEE T. Automation Science
and Engineering, 8(2):253–264, 2011.

[104] M. Žáková and F. Železný. Exploiting term, predicate, and feature taxonomies in
propositionalization and propositional rule learning. In ECML 2007: 18th European
Conference on Machine Learning, 2007.

[105] M. Žáková, F. Železný, J. A. Garcia-Sedano, C. Massia-Tissot, N. Lavrač, P. Křemen,
and J. Molina. Relational data mining applied to virtual engineering of product
designs. In Proc. of the 16th Int. Conference on Inductive Logic Programming, pages
439–453, 2006.

[106] F. Železný and N. Lavrač. Propositionalization-based relational subgroup discovery
with RSD. Machine Learning, 62(1-2):33–63, 2006.

[107] R. Wirth, C. Shearer, U. Grimmer, T. P. Reinartz, J. Schloesser, C. Breitner, R. En-
gels, and G. Lindner. Towards process-oriented tool support for knowledge discovery
in databases. In Proc. of the First European Symposium on Prin- ciples of Data
Mining and Knowledge Discovery, volume 1263, pages 243–253, 1997.

[108] I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and
Techniques. Morgan Kaufmann, San Francisco, 2005.

[109] Q. Yang and X. Wu. 10 challenging problems in data mining research. Intl. Jrnl. of
Inf. Technology & Decision Making, 5(4):597–604, 2006.

[110] Y. Zou, T. Finin, and H. Chen. F-OWL: An inference engine for the semantic web.
In Formal Approaches to Agent-Based Systems, LNCS 3228, pages 238–248, 2004.

