

BlueNRG-1 BLE SOC

Application team EMEA

BlueNRG-1 BLE SOC

BlueNRG-1 and associated DK (& promotion) package presentation

BLE concept demystification

Enable BLE link over BlueNRG-1

BLE SOC presentation

BlueNRG-1 BLE SOC presentation

BlueNRG-1 Power consumption figures

BlueNRG-1 Development Tools

BlueNRG-1 SW API to ease your design

How to promote - Navigator tool

Bluetooth® SMART offering Roadmap Discrete

BlueNRG-MS

Cortex-M0 BLE 4.1 Master & Slave
Output power: +8dBm
Rx: 7.3mA
Tx: 8.2mA@0dBm
QFN32, WCSP34

BlueNRG-1

BLE 4.2 Cortex-M0 160KB Flash, 24kB RAM I²C, SPI, UART, ADC

Output power: +8dBm Rx: 7.3mA Tx: 8.2mA@ 0dBm QFN32 (AEC), WCSP34

BLE 4.2 : secure connection & privacy 1.2

BlueNRG-2

BLE 4.2

Cortex-M0 256KB Flash, 24kB RAM I²C, SPI, UART, ADC Output power: +8dBm Rx: 7.3mA Tx: 8.2mA@ 0dBm QFN32 (AEC), WCSP34

BLE 4.2 : data packet extension lenght

BlueNRG

Cortex-M0 BLE 4.0
Output power: +8dBm
Rx:7.3mA
Tx: 8.2mA@0dBm
QFN32, WCSP34

no more use for new design

In production

Q1 17

2018

Bluetooth® SMART offering Roadmap

Module

SPBTLE modules BLE 4.1 RF Module

FCC, CE, IC **BLE** certified

Modules designed for time to market

SPBTLE-RF0

Low cost release of SPBTLE-RF

SPBTLE-RF0 - Sub 3\$ ST Bluetooth Smart module

Bluetooth® SMART offering Roadmap Discrete

BlueNRG-1 Application Processor Highlights

BlueNRG-1 Application Processor Applications

BLE 4.2 Application Processor GPIO 10 Bit ADC **Communication Peripherals ULL RAM** Flash **M0** Core **Application and Profiles BLE Protocol stack Link Layer** 2.4 GHz Radio

BlueNRG-1 capabilities to enable low to mid end smart connected applications

Beacon
Sensor tags
Remote Control

Automotive grade

BlueNRG-1 Application Processor

Applications

Beacon

broadcasting data

Key Fob

- connected basic application
- localization

BlueNRG-1 Application Processor Applications

Sensor Tag

Collect Sensor data

Appliance Remote Control

- Control remote device
- Device Configuration
- Device Application update

BlueNRG-1 Main Figures

BLE Application Processor

BlueNRG-1

GPIO

10 Bit ADC

BLE Protocol stack

Link Layer

2.4 GHz BlueNRG Radio

Superior Battery life (DCDC)

- RX 7.3mA
- TX 8.2mA @0dBm
- Sleep 1µA

Excellent RF perfs

- Best in Class Output Power Level: +8dBm
- Receiver sensitivity -88dBm

Two Package flavors

- Extended Temperature Range: up to 105°C
- WCSP34 2.65x2.65mm
- QFN32 5x5 mm (Automotive)

BlueNRG family optimized footprint RF balun and filtering

- The **BALF-NRG-01D3** is an ultra-miniature balun integrating a matching network and harmonics filter. The matching impedance is customized for ST's **BlueNRG**, **BlueNRG-MS**, **BlueNRG-1** transceiver (both QFN and WLCSP versions). It uses ST's IPD technology on a non-conductive glass substrate which optimizes RF performance.
- PACKAGE: flip-chip package 4 bumps, 1.2 mm² footprint.

Footprint and Cost optimization

- From 9 to 1 SMD
- PCB real-estate savings: from 32mm² to 1.2mm²
- Optimized RF tuning antenna matching
- Simplified PCB layout and lower manufacturing costs

BlueNRG-1 Peripherals

GPIO

- •15 pin (QFN package)
- •14 pin (CSP package)
- •Wake up function

Communication Peripherals

- •SPI: Master and Slave support
- •I2C: Baud rate supported up to 400 kb/s
- •UART: Programmable Baud Rate, support of HW flow control
- •PDM streaming (audio MEMS interface)

Core

M0 Core

- •32 Bit architecture, 32 MHz speed
- •ultra-low leakage retention state
- SWD debug port

TIMER

•MFTX: Two multi function timers

DMA

•Data transfer without CPU intervention

BlueNRG-1 Application Flash

BlueNRG-1 BLE stack

Q1 2017

BLE 4.2 - Improved privacy and security

Advantages	Features	End User Examples
Industry-leading Privacy Keeps Bluetooth Smart devices from being tracked	LE Privacy 1.2	A Bluetooth Smart location tracker can only be followed by the owner or trusted group all while consuming less power
More Power Efficient		
Introduces refinements that help Bluetooth Smart devices save even more energy		
Highly Secure Features FIPS-compliant encryption ensuring confidential data stays that way	LE Secure Connections	A Bluetooth Smart lock or other smart home device provides industry standard security for added user confidence during device pairing

ECC EncryptionElliptic-Curve-Cryptography

BLE SOC presentation

BlueNRG-1 BLE SOC presentation

BlueNRG-1 Power consumption figures

BlueNRG-1 Development Tools

BlueNRG-1 SW API to ease your design

How to promote - Navigator tool

Optimized for ultra-low-power

"Engineered to Advertise"

Ultra-low-power consumption in advertisement mode

16uA @ 1.28s

Low Power average power consumption

Beyond DS specs:

how to benchmark for real-case scenarios

From PEAK to AVERAGE power consumption

- RX 7.7mA
- TX 8.3mA @0dBm
- Sleep 0.9µA
- Shut Down 2.5nA

Ultra-fast **SLEEP** to **ACTIVE** transition time

Ultra-low average power consumption

Advertisement Scenario (with 15 byte payload)				
Advertising Interval	Average C SMPS ON	Consumption SMPS OFF	Antonia -	
1.28s	16µA	26µA	b-rg A 3, K B, A 3	
500ms	37μΑ	64μΑ		

Measurement conditions: Vin=3.0V, Slave Mode, 32KHz XOSC - High Power Mode - Pout 2dBm

Power consumption Tool

- ST provides a Current Consumption Estimation Tool
- It enables the user to estimate the average current consumption and the battery lifetime in the applicative cases
- The user can select:
 - General:
 - Supply voltage
 - TX output power
 - Master/Slave sleep clock accuracy
 - Retention RAM
 - Connection Advertising or Scanning Interval
 - Data length
 - DC-DC converter active or not

STSW-BNRG001

BlueNRG current consumption estimation tool

http://www.st.com/web/en/catalog/tools/PF260405

BLE SOC presentation

BlueNRG-1 BLE SOC presentation

BlueNRG-1 Power consumption figures

BlueNRG-1 Development Tools

BlueNRG-1 SW API to ease your design

How to promote - Navigator tool

BlueNRG-1 Development Tools Full-featured DK

DK Resources

- High-level abstraction layer APIs
- Firmware documentation
- Pre-compiled HEX files (for rapid evaluation)
- Examples and templates, in source code
- Drivers for sensors (motion and environmental)
- Beacon Application for iOS / Android (source code)
- Multiple tool-chains supported (IAR, Keil, Atollic, GCC)
- Real-time debugging capabilities

@ STSW-BLUENRG1-DK

BlueNRG-1 Development Tools HW material

DK HW Resources

STEVAL IDB007V1M

STEVAL IDB007V1

1 SW development kit

@ STSW-BLUENRG1-DK

BlueNRG-1 Development Tools SW material

SW DK - BLE examples

```
void main (void)
 uint8_t ret;
  /* System Init */
 SystemInit();
  /* Identify BlueNRG-1 platform */
 SdkEvalIdentification();
  /* Init the UART peripheral */
 SdkEvalComUartInit(UART BAUDRATE);
 /* BlueNRG-1 stack init */
 ret = BlueNRG_Stack_Initialization(&BlueNRG_Stack_Init_params);
 if (ret != BLE_STATUS_SUCCESS) {
   printf("Error in BlueNRG Stack Initialization() 0x%02x\r\n", ret);
  /* Init the BlueNRG-1 device */
 Device Init();
  /* Start Beacon Non Connectable Mode*/
 Start_Beaconing();
 printf("BlueNRG-1 BLE Beacon Application (version: %s)\r\n", BLE_BEACON_VERSION_STRING);
  while (1)
   /* BlueNRG-1 stack tick */
   BTLE StackTick();
   /* Enable Power Save according the Advertising Interval */
   BlueNRG Sleep (SLEEPMODE WAKETIMER, 0, 0, 0);
```


BlueNRG-1 Development Tools SW material

SW DK - Peripherals examples

```
void main (void)
 uint8_t ret;
  /* System Init */
 SystemInit();
  /* Identify BlueNRG-1 platform */
 SdkEvalIdentification();
  /* Init the UART peripheral */
 SdkEvalComUartInit(UART BAUDRATE);
 /* BlueNRG-1 stack init */
 ret = BlueNRG_Stack_Initialization(&BlueNRG_Stack_Init_params);
 if (ret != BLE STATUS SUCCESS) {
   printf("Error in BlueNRG Stack Initialization() 0x%02x\r\n", ret);
  /* Init the BlueNRG-1 device */
 Device Init();
  /* Start Beacon Non Connectable Mode*/
 Start_Beaconing();
 printf("BlueNRG-1 BLE Beacon Application (version: %s)\r\n", BLE_BEACON_VERSION_STRING);
  while (1)
   /* BlueNRG-1 stack tick */
   BTLE StackTick();
   /* Enable Power Save according the Advertising Interval */
   BlueNRG Sleep (SLEEPMODE WAKETIMER, 0, 0, 0);
```


BlueNRG-1 Development Tools SW material- Documentation

SW DK - Documentation

PM0257 programming guide : BLE concepts & associated ST API

Doxygen documentation : BlueNRG-1 BLE and peripherals API

BlueNRG-1 Development Tools SW material- Documentation

SW DK - Documentation

AN4820: BlueNRG-1 Low Power modes

2.3 OTA Service manager framework

A simpler approach coming from the BLE OTA service architecture described in Figure 3
BlueNRG-1 Lower and Higher applications with OTA service, consists of using a basic OTA
service manager application which only includes the BLE OTA service & characteristics
and the OTA Reset Manager capabilities.

AN4869 : BlueNRG-1 Firmware Upgrade Over the Air

BlueNRG-1 Development Tools Tool material

ST BLE GUI

@ STSW-BNRGUI

Comprehensive GUI to understand BLE concept and associated ST APIs

BlueNRG-1 BLE SOC presentation

BlueNRG-1 BLE SOC presentation

BlueNRG-1 Power consumption figures

BlueNRG-1 Development Tools

BlueNRG-1 SW API to ease your design

How to promote - Navigator tool

BlueNRG-1 Development Tools SOC solution = SW leverage (1/3)

BlueNRG-1 User Flash – 160KB

BlueNRG-1 Development Tools SOC solution = SW leverage (2/3)

- Provided by ST
- Provided by third party

BlueNRG-1 Development Tools SOC solution = SW leverage (3/3)

High-level abstraction layer APIs

BlueNRG-1 DK to ease your SW design

SW architecture takeaways

```
void main (void)
 uint8 t ret;
 /* System Init */
 SystemInit();
 /* Identify BlueNRG-1 platform */
 SdkEvalIdentification();
 /* Init the UART peripheral */
 SdkEvalComUartInit(UART BAUDRATE);
 /* BlueNRG-1 stack init */
 ret = BlueNRG_Stack_Initialization(&BlueNRG_Stack_Init_params);
 if (ret != BLE_STATUS_SUCCESS) {
   printf("Error in BlueNRG Stack Initialization() 0x%02x\r\n", ret);
   while(1);
 /* Init the BlueNRG-1 device */
 Device Init();
 /* Start Beacon Non Connectable Mode*/
 Start Beaconing();
 printf("BlueNRG-1 BLE Beacon Application (version: %s)\r\n", BLE BEACON VERSION STRING);
 while (1)
   /* BlueNRG-1 stack tick */
   BTLE StackTick();
   /* Enable Power Save according the Advertising Interval */
   BlueNRG Sleep (SLEEPMODE WAKETIMER, 0, 0, 0);
```

peripheral and stack on same core

=
simply application design

peripherals interface = "STM32 like"

stack and application over same flash

4 simplify FW upgrade procedure & Forget IFR process (if you know...)

BlueNRG-1 BLE SOC presentation

BlueNRG-1 BLE SOC presentation

BlueNRG-1 Power consumption figures

BlueNRG-1 Development Tools

BlueNRG-1 SW API to ease your design

How to promote - Navigator tool

BlueNRG-1 Navigator (1/3)

BlueNRG-1 Navigator (2/3)

download and run the selected application prebuilt binary image into the BlueNRG-1 platform

access to the demo description, board configuration and to the source code

BlueNRG-1 Navigator (3/3) Sensor Demo

Discoverable as BlueNRG

BlueNRG App

≠

Blue MS (BlueMicrosystem over Nucleo)

BlueNRG-1 Navigator (3/3)

BlueNRG-1 Navigator v.2.2.0

Free debug App on google and apple store

From smartphone write 0x04, 0x05 ..to change **LED** status

Discoverable as **Node**

BlueNRG-1 Takeways

Optimized for ultra-low-power

Beacon mode: 16uA@ 1.28s

BlueNRG-1 Powerful Development Kit

Navigator: Promotion Tool

ST GUI: Comprehensive BLE concepts

BlueNRG-1 various code examples

BlueNRG-1 on the web

Dedicated and specific documentation on demand

@ rf-support-emea@st.com

BlueNRG-1 BLE SOC

BlueNRG-1 and associated development (& promotion) package presentation

BLE concept demystification

Enable BLE link over BlueNRG-1

BLE Concepts Definitions

- 2 entities in a BLE communication
 - 1. The server : exposing data (temperature, position, raw data, what you want !)
 - 2. The client: connecting to server and looking for data
- A BLE application is based on an application profile
 - standard: glucose meter, Heart Rate Monitor, Find me
 - Proprietary: sensor profile, chat profile, my custom profile!
- A profile is a basic collection of data exposed by the device
 - service : a basic UUID (0x1808 = Glucose meter Service)
 - characteristic : <u>basic UUID</u> and associated data exposed (MEMS,ect...)

BLE Concepts

- A profile is a basic collection of data exposed by the device
 - service : a basic UUID (0x1808 = Glucose meter Service)
 - characteristic : basic UUID and associated data you are willing to expose (MEMS)

BLE Concepts Profile Definition

- Standard services & characteristics specification & UUID assignation available:
 - https://developer.bluetooth.org/gatt/services/Pages/ServicesHome.aspx
 - https://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicsHome.aspx

BLE Concepts Attribut Table

Sensor demo Application Profile

service = Sensor Service characteristic = Sensor characterisic

BlueNRG-1 Attribut Table

BLE Concepts Attribut Table

BlueNRG-1 BLE SOC

BlueNRG-1 and associated development (& promotion) package presentation

BLE concept demystification

Enable BLE link over BlueNRG-1

Enable BLE link over BlueNRG-1

BlueNRG-1 – GUI Hands On Prerequisites (1/2)

BlueNRG-1 SW development Kit: STSW-BLUENRG1 DK

http://www.st.com/content/st_com/en/products/embedded-software/evaluation-tool-software/stsw-bluenrg1-dk.html

BlueNRG-1 BLE GUI: STSW-BNRGUI

http://www.st.com/content/st_com/en/products/embedded-software/wireless-connectivity-software/wireless-connectivity-software/stsw-bnrgui.html

BlueNRG-1 – GUI Hands On Prerequisites (2/2)

Free BLE debug application

Required to perform GUI basic hands on to enable connection

Android

Sensor debug application

Required to execute and perform the sensor demo part of BlueNRG-1 DK binaries

Keyword: BlueNRG Apple Store & Google store

ST BLE GUI - Hands On

1 from Navigator load DTM
16Mhz UART
application on BlueNRG-1
@ STSW-BLUENRG1-DK

open ST BlueNRG-1 GUI

@ STSW-BNRGUI

		BluetRG-HS FW v7. Hecherboard FW v1.
ta		
		Send
Value	Literal	Info
	Value	Value Literal

Send

ST BLE GUI - Hands On

GUI now controlling BlueNRG-1 SOC

ST BLE GUI - Hands On

@ BlueNRG-1 Hands On IDB007V1 V3.0.pdf

Enable BLE link over BlueNRG-1

Application structure

```
/* System configuration */
SystemInit();
/* BlueNRG-1 stack init*/
BlueNRG Stack Initialization (&BlueNRG Stack Init params
);
while(1) {
/* BLE state machine */
BTLE StackTick();
/* Application state machine */
APP Tick();
/* Power Save management */
BlueNRG Sleep(SLEEPMODE WAKETIMER, 0, 0, 0);
}/* while (1) */
```

Classical embedded system structure

 Two state machines for BLE stack and Application

 Advanced power management controlled by BLE stack and Applications

BlueNRG-1 Application structure

```
/* System configuration */
SystemInit();
/* BlueNRG-1 stack init*/
BlueNRG Stack Initialization (&BlueNRG Stack Init params
);
while(1) {
/* BLE state machine */
BTLE StackTick();
/* Application state machine */
APP Tick();
/* Power Save management */
BlueNRG Sleep (SLEEPMODE WAKETIMER, 0, 0, 0);
}/* while (1) */
```


System Init

/* System configuration */
SystemInit();

BlueNRG-1 device configuration parameters: Project <u>Preprocessor options</u>

HS SPEED XTAL

- HS_SPEED_XTAL_16MHZ /* High Speed crystal 16 MHz (Default) */
- HS_SPEED_XTAL_32MHZ /* High Speed crystal 32 MHz */
- HS_SPEED_XTAL_INTERNAL_RO /* High Speed Internal RO. Not useful when radio operations are needed or in any case when accurate ref clock is needed */

LS_SOURCE

- •LS SOURCE INTERNAL RO /* Low Speed Internal RO */
- •LS_SOURCE_EXTERNAL_32KHZ /* Low Speed External 32 KHz (Default) */

SMPS_INDUCTOR

- •SMPS INDUCTOR 10uH /* SMPS Inductor 10 uH(Default) */
- •SMPS_INDUCTOR_4_7uH /* SMPS Inductor 4.7 uH*/
- •SMPS INDUCTOR NONE /* SMPS Inductor None */

BlueNRG-1 Application structure

```
/* System configuration */
SystemInit();
/* BlueNRG-1 stack init*/
BlueNRG Stack Initialization (&BlueNRG Stack Init params
);
while(1) {
/* BLE state machine */
BTLE StackTick();
/* Application state machine */
APP Tick();
/* Power Save management */
BlueNRG Sleep (SLEEPMODE WAKETIMER, 0, 0, 0);
}/* while (1) */
```


BlueNRG_Stack_Init_params (1/4)

```
/* BlueNRG-1 stack init*/
BlueNRG_Stack_Initialization(&BlueNRG_Stack_Init_params);
```

```
On file SensorDemo config.h:
•const BlueNRG Stack Initialization tBlueNRG Stack Init params= {
(uint8 t*) stacklib flash data,
FLASH SEC DB SIZE
FLASH SERVER DB SIZE
(uint8 t*) stacklib stored device id data,
(uint8 t*) dyn alloc a,
NUM GATT ATTRIBUTES,
NUM GATT SERVICES,
ATT VALUE ARRAY SIZE
NUM LINKS,
CONFIG TABLE } ;
```


/* BlueNRG-1 stack init*/

BlueNRG-1

BlueNRG_Stack_Init_params (2/4)

```
BlueNRG Stack Initialization(&BlueNRG Stack Init params);
FLASH SEC DB SIZE, // Flash Security DB Size: 1024bytes (FLASH SEC DB SIZE)
FLASH SERVER DB SIZE, // Flash Server DB Size: 1024bytes (FLASH_SERVER_DB_SIZE)
(uint8 t*) stacklib stored device id data,
(uint8 t*)dyn alloc a,
NUM GATT ATTRIBUTES,
NUM GATT SERVICES,
ATT VALUE ARRAY SIZE, // ATT_VALUE_ARRAY_SIZE (1344)
NUM LINKS,
```


CONFIG TABLE };

BlueNRG_Stack_Init_params (3/4)

```
/* BlueNRG-1 stack init*/
BlueNRG_Stack_Initialization(&BlueNRG_Stack_Init_params);
```

NUM GATT ATTRIBUTES

Number of attributes = 9 + 15 (NUM GATT ATTRIBUTES)

- •The BlueNRG-1 stack uses 9 default attributes
- •The sensor demo application needs of attributes:
- •Free fall characteristic = 3 attributes (declaration, value, client characteristic configuration descriptor)
- •Accelerometer characteristic = 3 attributes (declaration, value, client characteristic configuration descriptor)
- •Temperature characteristic = 3 attributes (declaration, value, characteristic format descriptor)
- •Pressure characteristic = 3 attributes (declaration, value, characteristic format descriptor)
- •Humidity characteristic = 3 attributes (declaration, value, characteristic crmat descriptor)

BlueNRG_Stack_Init_params (4/4)

```
/* BlueNRG-1 stack init*/
BlueNRG_Stack_Initialization(&BlueNRG_Stack_Init_params);
```

NUM_GATT_SERVICES

Number of services = 2 + 2 (NUM GATT SERVICES)

- •The BlueNRG-1 stack uses two default services GATT and GAP
- •The sensor demo application needs of two services: accelerometer and environmental sensor

BlueNRG-1 Application structure

```
/* System configuration */
SystemInit();
/* BlueNRG-1 stack init*/
BlueNRG Stack Initialization (&BlueNRG Stack Init params
);
while(1) {
/* BLE state machine */
BTLE StackTick();
/* Application state machine */
APP Tick();
/* Power Save management */
BlueNRG Sleep (SLEEPMODE WAKETIMER, 0, 0, 0);
}/* while (1) */
```



```
/* BLE state machine */
BTLE_StackTick();
```

If there are BLE stack activities ongoing, user application is requested to call it:

- Timers state machine
- Link layer TX/RX state machine
- GAP procedures state machine
- GATT procedures state machine
- Security manager state machine
- Perform crystal calibration of low speed clock (internal or external).

BlueNRG-1 BLE Stack events callbacks

BlueNRG-1 Application structure

```
/* System configuration */
SystemInit();
/* BlueNRG-1 stack init*/
BlueNRG Stack Initialization (&BlueNRG Stack Init params
);
while(1) {
/* BLE state machine */
BTLE StackTick();
/* Application state machine */
APP Tick();
/* Power Save management */
BlueNRG Sleep (SLEEPMODE WAKETIMER, 0, 0, 0);
}/* while (1) */
```


BlueNRG-1 Application structure

```
/* System configuration */
SystemInit();
/* BlueNRG-1 stack init*/
BlueNRG Stack Initialization (&BlueNRG Stack Init params
);
while(1) {
/* BLE state machine */
BTLE StackTick();
/* Application state machine */
APP Tick();
/* Power Save management */
BlueNRG Sleep (SLEEPMODE WAKETIMER, 0, 0, 0);
}/* while (1) */
```


Sleep Mode management

@ Please refer to AN4820

CPU_HALT

- In this mode <u>only</u> the CPU is stopped.
- All peripherals continue to operate and can wake up the CPU.
- The wakeup criteria are external interrupts or events (timers, RF timers).
- This is the lowest power save mode

950nA + peripheral

Sleep Mode

- In this mode the <u>CPU is stopped and all the peripherals are disabled</u>.
- Only the low speed oscillator block and the external wakeup sources block are running.
- The wakeup source will be:
 - Wakeup timer
 - IO9, IO10, IO11, IO12 and IO13

RF timer (Adv or Con events)
+ 4 Virtual Timers (application)
managed by stack

 When a wakeup is triggered by a previous listed source, the system reverts to the run mode with all the peripherals on.

Standby Mode

- In this mode the CPU is stopped and all the peripherals are disabled.
- The only wakeup sources are:
 - IO9, IO10, IO11, IO12 and IO13
- This mode is the highest power save mode.

Sleep Mode management vs. debug constraints

SOC enabling RF and application brings real time constraints and so debug capabilities are limited

To ease debug we recommend to disable sleep // BlueNRG_Sleep(SLEEPMODE_WAKETIMER, 0, 0, 0);

Enable SPP like connection- Chat Demo

The Chat demo described in BlueNRG-1 User Manual section 7 UM2071

1 Open Chat application from code example

Select Server workspace.
The server is the device exposing service and characteristic (TX and RX)

Enable SPP like connection- Chat Demo

2

modify device name and BLE MAC @

In file chat.c

```
uint8_t CHAT_DeviceInit(void)
 uint8_t ret;
 uint16_t service_handle;
 uint16_t dev_name_char_handle;
 uint16 tappearance char handle;
 uint8_t name[] = {'B', 'l', 'u', 'e', 'N', 'R', 'G', '0 '}; // from 0 to 10 //
#if SERVER
 uint8 t role = GAP PERIPHERAL ROLE;
 uint8 t bdaddr[] = \{0xaa, 0x00, 0x00, 0xE1, 0x80, 0x00\}; // from 0 to 10 //
#else
ret = aci_gap_init(role, 0x00, 0x08, &service_handle, &dev_name_char_handle, &appearance_char_handle);
// change device name lenght from 0x07 to 0x08 //
```


Enable SPP like connection- Chat Demo

3

modify local name

In file chat.c

Enable SPP like connection- Chat Demo

Build and download

Enable SPP like connection- Chat Demo

Server image

F

AccessPort
115 000

+

Reset the
board

Client

Enable SPP like connection- Chat Demo

Connect and enable Listen for notification

Server image

Client

∀∦ ∎⊃

Enable SPP like connection

The Chat demo described in BlueNRG-1 User Manual section 7 UM2071

Write data from smartphone to BlueNRG-1

●●○○ Bouygues 4G

Attribute Modified CB Event pushed to Application

Server image

Client

BlueNRG-1 Takeways

Optimized for ultra-low-power

Beacon mode: 16uA @ 1.28s

BlueNRG-1 Powerful Development Kit

Navigator: Promotion Tool

ST GUI: Comprehensive BLE concepts

BlueNRG-1 various code examples

BlueNRG-1 on the web

Dedicated and specific documentation on demand

@ rf-support-emea@st.com

