Detail of the student project

List
Topic:Odhadování entropie pro vysocedimenzionální data s konečnou přesností
Department:Katedra kybernetiky
Supervisor:Prof. Dr. Ing. Jan Kybic
Announce as:DP,BP
Description: Jednou z možností odhadování entropie mnohorozměrných dat (která
nalézá aplikace například při registraci obrazů) je
Kozačenko-Leoněnkovův (KL) odhad na základě vzdálenosti nejbližších
sousedů [1]. Ten ovšem selhává u kvantizovaných dat, která obsahují
několik identických položek. Analyzujte existující možnosti
rozšíření KL odhadu pro kvantizovaná data [1,2], vyzkoušejte metodu
založenou na integraci v původní (nekvantované) oblasti, případně na
základě teoretické analýzy navrhněte metodu vlastní. Pokuste se
zlepšit numerickou stability metody [2]. Všechny metody
implementujte a důkladně otestujte.

Výsledkem má být dobře dokumentovaná a funkční
implementace několika variant KL odhadu vhodných pro kvantovaná
data, jakož i dobře dokumentované a statisticky
vyhodnocené výsledky experimentálního porovnání. V případě úspěšné
realizace možnost publikace na některé mezinárodní konferenci,
eventuelně i v odborném časopise. Možnost pokračování ve formě
doktorského studia.
Bibliography: 1. Jan Kybic. High-dimensional mutual information estimation for
image registration. In ICIP'04: Proceedings of the 2004 IEEE
International Conference on Image Processing.

2. Jan Kybic. High-dimensional entropy estimation for finite accuracy
data: R-NN entropy estimator. In Nico Karssemeijer and Boudewijn
Lelieveldt, editors, IPMI2007: Information Processing in Medical
Imaging, 20th International Conference, pages 569-580, Berlin,
Heidelberg, Germany, July 2007. Springer.
Date:13.05.2019
Responsible person: Petr Pošík