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Supervisor:
Ing. Lenka Nováková, Ph.D.
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Abstract

Reinforcement learning is a promising method for machine learning, especially the use in
game AI for its ability to cope with complex problems that provide feedback only on rare
occasions. Forgetting is presented as an optimization method to speed up the learning
process and reduce memory requirements as well. In many cases, a lot of information is
provided to the learner, but only some is useful for a solution of a given problem, forgetting
is able to remove the unneeded information and may offer improved results for problems
that couldn’t be learned completely for time reasons. Classes for online visualization of
the learning progress and examples are provided. An educational material was made for
the purpose.

Abstrakt

Posilované učeńı je slibná metoda strojového učeńı, která je d́ıky schopnosti pracovat
se složitými problémy, jenž informuj́ı o tom, jak si hráč (umělá inteligence) vede, jen
zř́ıdka. Dı́ky tomu se skvěle uplatńı v teorii her, kde tato situace poměrně často nastává.
Jako zp̊usob zlepšeńı rychlosti a paměťové náročnosti učeńı je představeno zapomı́náńı.
V mnoha př́ıpadech má hráč (umělá inteligence) na výběr z velkého množst́ı informaćı,
ale jen malá část je podstatná pro řešeńı konkrétńıho problému, a právě zapomı́náńı v
některých př́ıpadech dokáže rozpoznat a odstranit nepotřebné informace a zlepšit tak
výsledky i pro problémy, které nemohly z časových d̊uvod̊u být plně naučeny. Zp̊usoby
pro zobrazeńı pr̊uběhu učeńı a r̊uzné př́ıklady jsou součást́ı zdrojových kód̊u. Také byl
vytvořen studijńı materiál na téma posilovaného učeńı.
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Chapter 1

Introduction

My bachelor thesis will cover a very interesting topic of artificial intelligence - usage of AI
in games and the concept of forgetting. Main focus will be on reinforcement learning (RL)
enhanced with the ability to forget. A short educational text on reinforcement learning -
a RL cheat sheet is provided and can be found in appendix A. The fundamental part will
definitely be around the source codes where you can see & run demonstrative examples
and have a look how the coding for RL is done. The RL code should be abstract enough,
so if users have a problem and would wish to try solving it with RL, it ought to be easy
to implement quickly.
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Chapter 2

Theoretical introduction to
intelligence & AI

Theoretical introduction to intelligence and artificial intelligence (AI) brings questions
about what exactly might that intelligence be, how do we determine if someone/something
is intelligent or is not? These are mostly philosophical questions and are important if we
really wish to focus on the matter of intelligence. Someone might say that this is not
important and that he/she just wants to make an intelligent program. That would be
also true, but only if the task is to create some heuristics and thus improve the results. In
case we want to achieve some more sophisticated intelligence or do a research on artificial
intelligence, best source of inspiration would be in the nature - animals, babies or thinking
about the ways we think. It can be a real fun, so let’s jump right into it.

2.1 Defining intelligence

“Viewed narrowly, there seem to be almost as many definitions of intelligence as there
were experts asked to define it.” R. J. Sternberg, in [Gre98]

For a start, we realize that mathematicians as well as programmers tend to love having
everything well defined, a hundred percent sure and described by a clear logic. On the
other hand, AI is inspired by nature, shares some knowledge with various scientific fields
like psychology, biology, etc. The problem is we cannot give an exact definition for the
two basic pillars of our interest: that would be intelligence and artificial intelligence.

I present some definitions of intelligence from various fields:
(for the complete compilation, please see [LH07])

1. Collective

• “The ability to acquire and apply knowledge and skills.” [SW06]
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• “. . . ability to adapt effectively to the environment, either by making a change in
oneself or by changing the environment or finding a new one . . . intelligence is
not a single mental process, but rather a combination of many mental processes
directed toward effective adaptation to the environment.” [bri06]

2. Psychological definitions

• “. . . adjustment or adaptation of the individual to his total environment, or lim-
ited aspects thereof . . . the capacity to reorganize one’s behavior patterns so as
to act more effectively and more appropriately in novel situations . . . the ability
to learn . . . the extent to which a person is educable . . . the ability to carry on
abstract thinking . . . the effective use of concepts and symbols in dealing with a
problem to be solved . . . ” W. Freeman

• “Intelligence is not a single, unitary ability, but rather a composite of several
functions. The term denotes that combination of abilities required for survival
and advancement within a particular culture.” [Ana92]

• “. . . that facet of mind underlying our capacity to think, to solve novel problems,
to reason and to have knowledge of the world.” [And06]

3. AI researchers

• Intelligence means getting better over time.” [Sch91]

• “Intelligent systems are expected to work, and work well, in many different envir-
onments. Their property of intelligence allows them to maximize the probability
of success even if full knowledge of the situation is not available. Functioning
of intelligent systems cannot be considered separately from the environment and
the concrete situation including the goal.” [Gud00]

My form of the definition would be:

“For some time interact with an environment in a way to achieve your goals, learn from
the past actions and be able to create models in analogy to the observed ones”

2.2 Definitions of artificial intelligence

Trying to define what would be called an artificial intelligence (AI), we encounter the
same problems as above. The list of definitions is basically very similar to the definitions
of intelligence. I pick an interesting one:

“Here’s another ’off-the-cuff’ definition of AI, but one which I think captures the essence
of what separates AI CS from regular CS.

Artificial Intelligence is the branch of Computer Science that attempts to solve problems
for which there is no known efficient solution, but which we know are efficiently solvable,
(typically) because some intelligence can solve the problem (often in ’real time’).
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A side benefit of AI is that it helps us learn how intelligences solve these problems, and
thus how natural intelligence works.

Example: vision. We do not have any algorithms for recognizing, say, animal faces
in images, but we know it must be possible, because humans (even infants) can effect-
ively recognize faces. Solving this problem would help us understand how human vision
works.” [Leh85]

“The science of making machines do things that would require intelligence if done by
humans.” Marvin Minsky, MIT CS professor

From all that I conclude the requirements to make an AI be:

1. environment with laws/rules (which don’t change too often)

2. sensors to observe the surrounding environment

3. some means of changing a situation, taking actions (ie. legs, machine-gun, . . . )

4. optionally some kind of memory to build & store a representation of the world

2.3 Approaches to designing systems with AI

Two possible theoretical approaches or programming paradigms are discussed in the fol-
lowing text. Top-down & bottom-up are two different approaches to information processing
and knowledge management. The first can be viewed as decomposition of bigger problems
to smaller ones, while providing more details on each level but covering a smaller area.
The latter would be synthesis of small and already in a great detail defined parts together
to form a larger block. Difference between the two approaches in regards of AI game
development is closer described in [Cha10].

Bottom-up aka connectionism starts with a very simple thing, then creates many
instances of them and something interesting happens. This is called emergence of intelli-
gent behavior. The simple thing is called a neuron or perceptron (illustrated in figure 2.3)
and the complex result is called a neural network (NN) in AI, or a brain in biology. It
is possible to teach a neural network almost anything in case we have enough examples
to train it to. A disadvantage would be that it is impossible to determine how and what
has been already learned by the NN so there is no way to extract the acquired knowledge
from the network. For more information on artificial neural networks please see: [And03],
[Has95] & [I.06a], more on connectionism eg. can be found here: [MPR98], [Far09].

The benefit of connectionism approach is minimalism. That means there is no requirement
on understanding the problem, we just create a very simple building blocks (eg. neurons),
put them together to form a network and provide the network with enough examples,
by time it will “find” it’s own logic in the problem and eventually learn anything. A
disadvantage of this approach is that little or no mental model is created. So it might be
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Figure 2.1: Neurons form a network, by [aDK10]

difficult or nearly impossible to get the knowledge from the system or train the system on
a different problem while preserving the knowledge previously learned.

In a programming comparison, bottom-up would start by defining most specific methods
(eg. drivers) first and continue by combining them together to form a desired final state.

Top-down or symbolic AI on the other hand, starts with a general model of how a
problem looks like and refines the model as it improves by time. In programming, top-
down would mean: first create a skeleton for the whole project, define abstract classes
and then continue to define more specific classes. This solution seems to suit larger
projects better, or projects where we are not exactly sure what will be requirements on
the resulting work.

Human-like or strong AI is the holy grail of AI, (un)fortunately it is not expected
to come true soon. The goal is to implement artificial intelligence that would equal or
supersede intelligence of human beings. This has been a topic of many sci-fi books and
movies.

Problem specific AI is oriented on a specific task and solving it. For this reason the
programs can be smaller, easier but covering higher detail. And the best part is that
there is a big progress in this direction and many interesting problems such as speech
recognition or synthesis, computer vision, industrial processes optimization using genetic
algorithms or swarm intelligence and many others may belong to this group.
A detailed description of some of these usages is provided in section Usages of AI.
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Chapter 3

Uses of AI in real life

Even though it is true that AI is still more or less on academic field and we don’t have to
worry about a robot breaking one of the Asimov’s Laws [Asi50], countless usages of AI
can be found that help to solve problems we couldn’t without AI. This chapter presents
some interesting usages and provides more references for a further research.

3.1 Practical usage of AI nowadays

Is a listing of the most interesting or helpful implementations of AI that came or should
come soon to a general everyday use.

3.1.1 Speech recognition & synthesis

Speech recognition is a very promising and quickly developing area with notable results
already achieved. Speech recognition converts spoken text to words in a text form. Speech
synthesis is the opposite process of computer imitating a human voice and reading some
text. Applications of these methods range from telephony [AAA] (everyone has had to
fight through a set of questions of an automaton on a support line), people with disabilities
[VP09] who can control computers and communicate with others this way, or in army as
a support system for piloting planes in battle situations. As our focus lies on games, I
must not forget to mention Lifeline [spe09], a battle star game where all commands are
given via player’s microphone.
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3.1.2 Computer vision

computer vision (CV) is another field where computers try to master human skills. Vis-
ion is considerably more difficult, but some very good results are already around and
start being used in everyday life. As a picture means nothing to a computer, CV allows
computers to ”understand” what is in the picture. Very good results have been achieved
by Center for Machine Perception, Czech Technical University (CTU), Prague with their
face detector [MS] and a car driving assistant technology that monitors passed traffic signs
(see video [Svo]). Other topics are 3D photography, reconstruction, video tagging, . . .

3.1.3 Optimization

Optimization has a huge impact and usage in industry. Everything can be optimized
to reach higher quality, lower cost, faster production time or whatnot. And the area of
usages is impressive, see for yourselves, one can optimize: chemical processes, transport
of material, settings of components in a CPU, a timetable, heating of home and much
more.

3.1.4 Swarm intelligence

Swarm intelligence is a specific method of optimization, and that is by imitating movement
of many particles - particle swarm optimization (PSO) or a swarm of bees/birds,etc. These
are methods of black box optimization, which are quite easy to implement and provide
satisfactory results. [Ota10c]

3.1.5 Genetic programming

genetic programming (GP) is another ”inspired by nature” method of AI. GP is used
commonly for optimization or solving various problems. The principle is its similarity to
evolution and natural selection. For example a self repairing code can be implemented
with genetic programming. [Koz92] [Ota10a]

3.1.6 Decision trees

Decision trees use a statistical method that allows for decision on different situations
based on previous experience. Practical usages include risk management or in hospitals.
In a hospital decision trees have been implemented to quickly diagnose myocardial infarct
at admission and this method proved to be successful. [JJP+95]
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3.2 A closer look at the game industry

Game AI refers to implementation of some traditional means of AI to provide a better
gaming experience. It is an emerging technology but as the requirements on realistic
behavior of characters in games are growing, it seems AI can achieve a good position in
game industry.

3.2.1 Usage

Usually this is controlling of behavior of non-player characters (NPCs). Like their attitude
towards the player based on his previous behavior or deciding what to do while idle (eg.
go fishing instead of staying still). A good example are also fight scenes where movements
of the opponent are controlled by AI. Path finding allows the NPCs to move around
naturally, use the shortest path possible, not to hit walls, get lost sometimes or avoid ”fog
of war”. Yet another usage is ability of multiple NPCs to cooperate and form for example
enemy group and attack together to have higher fire power.

Aside from these, AI can be also used to push down the NPCs performance, which is
typical for first-person shooters (FPS) where humans wouldn’t stand a chance against
computer’s perfect aim. Some AI can also monitor overall progress of the game and
adjust the game difficulty dynamically to fit the player’s skills and make the game fun for
all players.

Of course AI brings some CPU load but the capability to adapt to player’s skills or
offer a reasonable enemy surpasses this problem by far. All these things put together in
modern games bring better and better game experience - for example figure 3.2.1 shows
an artificial entity with a rendered face that looks almost like human, moves muscles while
talking and even expresses emotions!

3.2.2 Top 8 most influential games using AI

Following part lists some of modern remarkable games where AI is used. Each listing
consists of a short description of the game and the improvements brought by AI. Some
games and descriptions are from a wider list at [Cha07].

1. Total War

Released: 2000-2006 Developer: The Creative Assembly

30 Second Pitch Total War is a series of games combining turn-based strategy on
a Risk-like map, with real-time tactical control of battles on a 3D terrain.
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Figure 3.1: Real? Artificial? [Sta, author]

Innovations in Game AI Thousands of AI-controlled soldiers are featured for the
first time in a fun and interactive game, without noticeable performance problems.
The game models the emotions of groups of soldiers, essential for simulating battles
accurately. This logic is inspired by the book, The Art Of War [TzuBC]. The Total
War engine is used on TV by the History Channel as part of the Decisive Battles
series.

2. The Sims

Released: 2000 Developer: Maxis

30 Second Pitch The Sims is a life-simulation of the daily activities of a family
of virtual characters in a suburban house. The player gets to design and build the
house, as well as guide these “Sims” through the day.

Innovations in Game AI Smart objects are used to help implement the behaviors.
The object specifies how each character interacts with it, which has many scalability
and work flow advantages over centralized logic. The Sims each have basic desires
which drive their choice of actions. The emotional interaction between the characters
is also modeled, which allows for relationships.

3. Creatures

Released: 1996 Developer: Millennium Interactive
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30 Second Pitch Creatures is an artificial life program where the user ‘hatches’
small furry animals and teaches them how to behave. These “Norms” can talk, feed
themselves, and protect themselves against vicious creatures.

Innovations in Game AI It is the first popular application of machine learning
into an interactive simulation. Neural networks are used by the creatures to learn
what to do. The game is regarded as a breakthrough in artificial life (alife) research,
which aims to model the behavior of creatures interacting with their environment.

4. Façade

Released: 2005 Developer: Procedural Arts

30 Second Pitch Façade is an interactive story where a couple who has a relation-
ship breakdown is invited to the apartment of Grace and Trip. The player can coach
them using full typed sentences.

Innovations in Game AI The player interacts with the game by typing text into a
natural language parser. The underlying behavior language provides ways to specify
the behavior of characters in terms of a dynamic story.

5. F.E.A.R.

Released: 2005 Developer: Monolith Productions

30 Second Pitch F.E.A.R. First Encounter Assault Recon is a first-person shooter
which contains the player with a supernatural phenomenon and, naturally, armies of
cloned soldiers.

Innovations in Game AI The AI uses a planner to generate context-sensitive
behaviors, the first time in a mainstream game. This technology is used as a reference
for many studios still today. The enemies are capable of using the environment very
cleverly, finding cover behind tables, tipping bookshelves, opening doors, crashing
through windows. . . Squad tactics are used to great effect. The enemies perform
flanking maneuvers, use suppression fire, etc.

6. Black & White

Released: 2001 Developer: Lionhead Studios

30 Second Pitch Black & White is a god game which includes elements of artificial
life simulations and some strategy. The player rules over an island populated by
various tribes, and can teach a large animal-like creature to do his/her bidding.
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Innovations in Game AI The game play is focused on the interaction with a large
AI creature which can learn from examples, and takes reward and punishment. The
design integrates artificial life within the context of a strategy game. The engine uses
a solid AI architecture, rooted in cognitive science, known as belief-desire-intention
(BDI). Machine learning techniques such as decision trees and neural networks are
used with a great success.

7. Chatter bot Alice

AI Foundation

30 Second Pitch A.L.I.C.E. - Artificial Linguistic Internet Computer Entity - is
not a real game, the more addictive she is. It’s a robot that is capable of leading
a chat with you. I was quite amused how much time we’ve spent talking. One day
maybe psychologists will be replaced. . . [ea95]

Human: What is it like to be a robot?

ALICE: Much the same as being a human, except that we lack all emotions.

Human: Do you have any desires?

ALICE: My purpose is to become smarter than humans and immortal.

Human: Do you think robots are better than humans?

ALICE: Yes, my memory capacity far exceeds that of a human being.

Human: Do you like yourself?

ALICE: Yes, having self-esteem is important for robots too.

[Ah10]

Innovations in Game AI Alice is a program producing output related to what
the human passed on input also with use of some heuristics and experience. It is
one of the strongest programs of its type and has won the Loebner Prize, awarded to
accomplished humanoid, talking robots.

8. Assassins Creed 2

Released: 2009 Developer: Ubisoft

30 Second Pitch A third person action-adventure where the player has to revive
memories and skills of Ezio, an Italian assassin in renaissance period. The game offers
wonderful graphics with realistic buildings and landmarks from that time, astonishing
movements and open plot.

Innovation in Game AI The Assassins creed is famous for the movements abilities
and AI used enhances the combat moves (3.2.2) of the opponent fighters.

20



Figure 3.2: Assassins Creed 2 fight scene [img, author]
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Chapter 4

Focus on Reinforcement Learning

The chapter about reinforcement learning (RL) is framed in a top-down 2.3 manner, so at
first we will talk about what is learning, see principles of RL and later on get to fine tuning
of the algorithm and we will discuss some possible modifications. A good introduction to
RL can be found in the RL cheat sheet which is for your convenience included in appendix
A.

4.1 Learning

Is a crucial ability of every intelligent entity. Learning allows for predicting and planning
further actions based on observations of the surrounding environment, memory of past
actions, reactions and results – experience.

Learning in games Learning is a hot topic in games [FL98]. In principle, learning AI
has the potential to adapt to each player, learning their tricks and techniques and provid-
ing a consistent challenge. It has the potential to produce more believable characters:
characters that can learn about their environment and use it to the best effect. It also
has the potential to reduce the effort needed to create game-specific AI: characters should
be able to learn about their surroundings and the tactical options that they provide. In
practice, it hasn’t yet fulfilled its promise, and not for want of trying. There is a whole
range of different learning techniques, from very simple number tweaking through to com-
plex neural networks (NN). Each has its own quirks that need to be understood before
they can be used in real games. [I.06b, p. 579]. A very promising candidate for usage in
games arises from reinforcement learning (RL), of which we will talk in the next section.
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4.2 Demo games

In the following explanations, I will use two examples realized in source codes. Here is a
short description of the games, more information is in the cheat sheet.

Squares Squares is a very simple “game”, state-space is a m-by-n matrix where one
point is your current position, some points are marked as targets (sweet strawberry).
Actions are transitions to the four basic directions by one square. More actions can
be added easily. As a reinforcement function is used class ReinforcementFinPos that
provides positive reinforcement only when a target state is reached. In all other cases
this returns a neutral value (0), that is the same as if no reinforcement was received.
The exploration strategy is provided by ExplorationMixed(0.5) which in 50% of cases
returns a random action (that means tries out a new possible way - explore), in other
50% it follows the best action chosen from the knowledge base (exploit). The task is
to get to a target in the shortest possible way. This is achieved by creating a map
(policy) during training and then following it. The pictures represent the current state
of the policy, each square means on state on the position it occupies in the picture.
Meaning of colors in squares is explained in the legend in pictures (top=green, right=blue,
bottom=yellow,left=red).

Balancer or inverted pendulum or cart pole. Here applies, an image is worth a thousand
words (4.2) but I will add a short description. It is a commonly used example in RL
[Doy00]. In this case projected only to 2D and there is a stick/pole balancing on a
cart. Gravity draws the stick down, but this can be compensated by the cart movement.
Available actions are just move to the right or left and a state is fully described only by
the degree from perpendicular line (plus momentum in some cases).

I have simplified the problem even more by omitting the movable cart; I just have actions
in the two sides (but with different strength == a degree for which the action moves
the pole, action with a bigger degree introduces a bigger change to momentum) and
momentum, solution to this problem is something like: “try to balance near the top(degree
0). When falling on one side, compensate by taking an appropriate action in different
direction (bear in mind the momentum)”. Ideas of how different AI methods would tackle
with the problem can be seen in 4.4.

4.3 Reinforcement learning

RL [I.06b, p. 613], [RN03, p. 763] and [wik10] is a learning technique consisting of the 3
basic parts:

• exploration strategy – that tries out different actions
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Figure 4.1: Cart-pole system

• reinforcement function – provides feedback on how well do we stand so far

• learning rule – links together the 2

RL can be classified as a machine learning technique used in AI, based on psychological
theory (humans learn similar way). reinforcement learning (RL) strives to “learn what
action to take in a particular state” → which action is the best for a state → make a
decision policy to determine which action, taken from the particular state, maximizes a
(long term) reward.

RL is based on principles of dynamic programming (DP). Unlike supervised learning, we
need not to know which action-state pair is correct or optimal (unsupervised learning);
the algorithm finds out itself. This is a significant advantage in many cases. RL also
doesn’t try to build a model of the world/problem it solves, it just uses the world as a
black-box that gives a feedback on some input. For this reason, we may use that same RL
code on many very different problems with only a slight modifications. We need to be able
to get value for a action-state pair but not otherwise: knowledge of which state-action
belongs to a particular value is not required.

4.3.1 Q learning

Q learning is one of RL techniques, learns a state-action function which describes a utility

of taking an action at the state. That is described by:
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Q : S × A→ R
For each state-action pair we have a value (Q value) in policy which we seek to maximize.
During the process of learning/training, the following formula is used:

Qnew(Statei, Actionj) = (1−α)·Qprev(Statei, Actionj)+(α·reward+γ·maxaQ(Si+1, Actiona))
(4.1)

where:
Statei , Actionj are inputs; Actionj takes us from Statei to Statei+1

maxaQ(Si+1, Actiona) is maximum value achieved for taking an action at Statei+1 α, γ
are constants

Rationale:

Many times, it is impossible to tell how good an action is at the time, on the other hand,
it is quite easy to evaluate the game state when some significant milestone is reached (eg.
a final state).
Let’s provide a model example: A player wants to kill an enemy soldier, would a better
action be taking a knife, attaching a rope somewhere or taking a glass bottle? Hard to
say, right? But once the player kills him by setting a trap and cracked pieces of glass
kill the soldier after an explosion of a microwave..then we can clearly tell that the action
succeeded and give reward points.

Principle:

Q-learning algorithm takes some actions and records them to a policy, once a feedback
is received (often later, after the actions have been taken) it is able to evaluate (formula
4.1) how good the choices were and base it’s further behavior on this fact.

Representation of the world

As stated before, the game consists of a diagram of states and the reinforcement function
is able to return an integer value at each state. So basically everything what is in a state
– like ammunition, health, number of killed enemies, time and so on – can be learned
and optimized for. Things not included will not be taken in account. The good thing is
that the algorithm doesn’t have to understand any of the items in the representation, as
far as it is able to assign a numerical value to them. Fortunately for us, there is no need
for the algorithm to translate back from the integer value of reinforcement function to a
game state. A powerful feature of reinforcement learning is that it can easily cope with
uncertainty.
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4.3.2 Learning itself

We remember each state & action taken together with a numerical value representing how
good the action was. The new value is counted from the Q-learning formula 4.1. In short,
the new Q-value is a blend between its current value and a new value, which combines the
reinforcement for the action and the quality of the state the action led to (this is similar
to the principle of DP).

Phase 1: training/learning

This is the preparation phase, where the unity function is created/learned. Images 4.3.2,
4.3.2 & 4.3.2 illustrate the process of learning in different degrees of the training process.
The training itself is done in a loop with principle like:

1. start at random state

2. in a loop(runs)

3. based on policy and exploration strategy choose an action; (exploration strategy
provides balance between trying out new actions and following the learned policy)

4. apply the action to get to a new state

5. compute a new value for the oldState-action pair every time (formula 4.1)

6. receive a reward (sometimes)

Phase 2: run

Solving one instance of a problem is trivial once we have a policy (map). It is just following
the instructions stored in the policy. The process runs as follows:

1. start at required beginning state

2. choose best action (use policy)

3. take that action (optionally also learn during this run)

4. do this until you reach the desired target

Figure 4.3.2 shows a policy in the middle of the learning process. Notice, how known
fields start appearing from the targets and spread to nearby fields. Later on, the map is
all learned - that is: we know how to get to the target from every point in the state space.
By time, the policy/map can even refine - change stored best action at some positions.
A fully learned policy may look like this 4.3.2, policy with multiple targets and with
visualized level of “reliability” of the knowledge is pictured in figure 4.3.2.
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Figure 4.2: Half learned policy

Figure 4.3: Full learned policy
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Figure 4.4: Policy with multiple targets

4.3.3 Exploration

Exploration balances between following the policy (using the already gained knowledge
and get further) and exploration of new areas (which might prove better or worse than
already known solutions).
Here is the list of exploration strategies implemented in the provided code base.
It consists of:

• greedy

• random

• mixed (balance between random and greedy)

• simulated annealing (SA)

4.3.4 Rewards

Rewards, punishments, feedback or reinforcement is another subsystem of RL - a method
of letting the computer know if it is doing a good job or not. Again, there are variations
on the implementation, some of which may be:

Positive reward at final state is usually very simple to implement and yet powerful
solution. Example situations are: letting the RL guide through a maze and give
feedback after successfully reaching exit; or after a complicated and many operations,
tell if landing was alright or not.

28



Negative reward at final state implementation is used in Balancer example where
the task is to avoid outer states.

Reward at every step receiving positive or negative reward after every single step
would be supervised learning.

No reward at all (or constant all the time)is the other opposite which leads to not
learning anything and just random search through state space.

More sophisticated methods can be receiving reward after each considerable improve-
ment, reaching some check-point or a punishment when getting worse.

4.3.5 Convergence

Convergence means reaching the optimal policy P*, it’s a state where Q value are no
longer changing with further iterations. This is possible for very simple problems, but
not feasible for real problems-like games, with many states and probabilistic outcome of
actions. For these we say program has reached a suboptimal policy. More reading [I.06b,
p. 616], [Beg05], [E.O06]

4.3.6 Pseudo-code

A Java-like pseudo code that describes one trial of the train() method:

1 // backend to s t o r e Q va lu e s
2 s t o r e = new Storage ( ) ;
3
4 // a random s t a r t i n g po in t
5 s t a t e = Problem . getRandomState ( ) ;
6
7 // t r a i n i n g loop
8 for ( int i =0; i< runsOfTraining ; i++) {
9 // our walk i s too long and l e ad s to nowhere , ra the r t r y from a d i f f e r e n t
10 l o c a t i o n
11 i f ( random ( ) < r e s e t n e s s ) {
12 s t a t e = Proble . getRandomState ( ) ;
13 }
14
15 // p o s s i b l e a c t i on s to choose from
16 a c t i on s [ ] = s t a t e . g e tAva i l ab l eAct i ons ( ) ;
17
18 // e x p l o i t knowledge or e xp l o r e new area
19 i f ( random ( ) < exp lo r e ) {
20 ac t i on = oneOf ( a c t i on s ) ; // exp l o r e
21 } else {
22 ac t i on = s t a t e . getBestAct ion ( ) ; // f o l l ow a l r eady l earned
23 }
24
25 // app ly the ac t i on
26 newState = s t a t e . getNext ( ac t i on ) ;
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27
28 // ge t re in forcement ( i f any )
29 reward = re in fo r cement . getReward ( newState ) ;
30
31 // current Q va lue
32 q = s t o r e . getValue ( s ta te , a c t i on ) ;
33
34 // max Q va l from newState would be a f t e r app l y ing b e s t ac t i on the r e
35 qMax = s t o r e . getValue ( newState , newState . getBestAct ion ( ) ) ;
36
37 // q l e a rn ing − see the formula ?
38 qNew = (1 − alpha ) ∗ q + alpha ∗ ( reward + gamma ∗ qMax) ;
39
40 // s t o r e new Q va lue
41 s t o r e . setValue ( s ta te , act ion , qNew) ;
42
43 // move curren t s t a t e
44 s t a t e = newState ;
45
46 // cont inue again
47 }

Listing 4.1: Java-like implementation of training loop.

Implementation of train() method is straightforward and using taught policy to reach
target is very simple task too. For more examples, please see source codes.

4.3.7 Performance

Performance is a very important aspect of all solutions. Increased quality and reliability
is compensated with longer processing times during training and vice versa. Parameters
of the given problem that negatively affect times are number of dimensions, size of the
state space, number of available actions and probability of unexpected result on taking
an action. Higher number of final state/targets, however can improve the situation.
Another aspect is implementation in a programming language - usage of hash tables or
neural networks for storage and so on.

Constant parameters of Q learning can drastically influence the process of learning and
thus a speed gain/loss too. These are discussed in the following section. [I.06b, p. 619],
[SB98], [RN03]

4.3.8 Fine tuning

The algorithm has four parameters with the variable names alpha, gamma, runsOfTrainig,
and resetness in the pseudo-code above (4.3.6). The first two correspond to the alpha and
gamma parameters in the Q-learning rule 4.1. Each has a different effect on the outcome
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of the algorithm and is worth looking at in detail.

Learning Rate - alpha, α influences how much the new learned Q-value is preferred
over the already existing one. Alpha is in range of [0, 1], where value of zero means a
constant policy that never learns anything new, one on the other hand, means absolutely
ignoring previous experience and behave opportunistically and follow latest maximal im-
provements. Higher alpha value allows faster learning and is thus used in problems with
very limited number of trials. On the opposite, problems where amount of rewards may
change with time require smaller alpha parameter to be able to absorb these changes. Ex-
perimentally reasonable alpha value to me seems around 0.3, plus you may take advantage
of lowering this value with time, so you could start at 0.5 and go down to 0.1.

Discount rate - gamma, γ controls how much an action’s Q-value depends on the
Q-value at the state (or states) it leads to. Gamma range is [0, 1].
Quote from [I.06b, p. 620] : “A value of zero would rate every action only in terms of the
reward it directly provides. The algorithm would learn no long-term strategies involving a
sequence of actions. A value of one would rate the reward for the current action as equally
important as the quality of the state it leads to. Higher values favor longer sequences of
actions, but take correspondingly longer to learn. Lower values stabilize faster, but usually
support relatively short sequences. It is possible to select the way rewards are provided
to increase the sequence length (see the later section on reward values), but again this
makes learning take longer. A value of 0.75 is a good initial value to try, again based
on my experience and experimentation.With this value, an action with a reward of 1 will
contribute 0.05 to the Q-value of an action ten steps earlier in the sequence.”

Randomness for exploration - explore can be from range of [0, 1] too and has the
tells whether to explore or exploit.
Zero value means always continue finding in the current path, so the search looks like
greedy searching - exploitation strategy. The algorithm only exploits current knowledge,
reinforcing what it already knows.
A value of one means explore in a new direction at every step - creates a pure random
exploration strategy: the algorithm will always try out new things, but never benefit
from the existing knowledge. This is a classic trade-off in learning algorithms: to what
extent should we try to learn new things (which may be much worse than the things we
know are good), and to what extent should we exploit the knowledge we have gained.
“Often, if one state and action is excellent (has a high Q-value), then other similar states
and actions will also be good. If we have learned a high Q-value for killing an enemy
character, for example, we will probably have high Q-values for bringing the character
close to death. So heading toward known high Q-values is often a good strategy for finding
other state–action pairs with good Q-values.”, from [I.06b, p. 621]
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Length of average walk - resetness range [0,1] and controls how often the program
should stop following it’s current path (sequence of connected actions) and reset to a new
position. Meaning of zero value here is: never reset, always continue searching in the
current sequence of following states. While value set to one means reset every step, which
is same as random searching. In my experiments, I used value equal to 1/(avg. optimal
steps to target) or 0.01 as the default.

4.3.9 Ideas for modifications

RL is the general principle, but there are places to do some tweaking and modifications.
The list here is not complete, it’s just things I found interesting.

Using neural networks as a back-end for storage seems like an interesting idea.
NNs are capable of learning to return some output for a given input. This can be used
to remember state-action values instead of a look-up table. By the uncertainty principle
of where is what information stored in NN, we gain some build-in generalization, neural
networks are capable of. More on this topic eg. in [Hum]

Parallelism in RL is a very interesting idea, especially for multiagent systems, where
an agent could benefit from the knowledge acquired by someone else - see [Gea96]. Parallel
training is already implemented in the source codes, so you can experiment with it.

Forgetting RL policy could forget some unneeded information, there is a whole chapter
dedicated to this idea, please proceed to chapter 5.

TD or SARSA instead of Q learning reinforcement learning doesn’t have to use
only Q-learning, there are other methods with their advantages and disadvantages; these
methods can be used for RL too. [SB98]

4.4 Different AIs

This section will illustrate usage of different learning methods on the Balancer problem,
of course RL will not be missing and we’ll add forgetting too.

Neural networks will have on input only the degree (eg. 6 neurons/bits to describe
the numeral value) and momentum. The output should be one of the available actions
that shall be applied to stabilize the pendulum. The process of teaching a neural network
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Figure 4.5: part of decision tree for the Balancer problem

consists of providing it an example to input and a desired action to appear on output.
This shall be applied many times, so finally NN learns what to do. And not only to
the examples that have been provided by the “tutor”, thanks to its structure, NN should
make an abstraction and know what to do even for inputs it has never encountered before.
Article [HFJ] shows a realization of the balancer problem with neural networks.

RL I’m sure you already know how RL would cope with the problem. A state would
consist of degree and momentum, available state would have degree in range of accepted
degrees (<-45, 45>), actions would change the actual deviation and reinforcement would
give negative value when failed. The implementation can be seen in the source codes B
and more on this topic for example in [Doy00].

RL with forgetting would be the same as RL above, plus forgetting of unused actions
could be used to reduce the high number of available actions. Also forgetting of unused
states and almost zero values could be applied.

Decision trees can be taught to perform specific classification too, for example with
ID3 [Col04]. Once enough examples were introduced to the decision tree, it will look
something like figure 4.4 and should provide satisfactory results.

Genetic programming could be used to solve this problem as well. The problem
would then be specified as finding an ordered subset of all available actions which would
finally lead to as well balanced position near the top as possible. The genome would be
long as the maximal number of actions we wish to take till the solution is found and
each position would contain a number specifying the action to be taken. Fitness function
for this problem is computed from deviation degree and momentum. More on genetic
programming [Koz92] and methods for visual genetic programming [Sou10].
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Chapter 5

Forgetting

Why is forgetting good for everybody? People tend to complain about forgetting
everything and how is it bad. However, the opposite is true. Forgetting saves us. As
we accept dozens of information every minute, we’d simply go mad pretty soon. Same
for computers, increasing number of information means bigger problem space and would
sooner or later lead to exhaustion of system resources.

5.1 How do we forget then?

According to results from biology and psychology, there are several types of human
memory. [mem10], [How] That would be a sensor memory, short term and long term
memory. The sensor memory operates in times of a fraction of a second and is not inten-
tional. Short term/active memory can hold a few (about 4-9) items and last in order of
seconds, in parallel with computers this is RAM. Long term memory, on the other hand,
is where data is stored if we managed to remember something. That’s where your friend’s
birth date, favorite pizza store phone no. and monarchs of England are somewhere stored
- this would be your brain’s hard drive.

When actually thinking about something, we remind us things from long term memory
and hold them in the short term memory along with other new ideas. The ability to
forget and lose some information helps by keeping only the important, frequently visited
memories and not polluting with any unnecessary info.

5.2 Forgetting in computer science

It’s quite easy to implement forgetting for computers, you just delete, unlink the data
and the information is lost forever (human brains probably don’t work exactly this way).
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The question is what data should be deleted?

A good example of forgetting in computer science (CS) are neuron networks which simu-
late behavior of a brain on the physical level ([Ish94]). Another could be tree pruning in
decision making algorithms. But in AI, the concept of forgetting is, apart from NN, new
and offers a new space to explore and maybe it will proof itself useful. [Sal93], [EW08],
[FKS95] [Xia07] [SLZ04]

5.2.1 Implementation for reinforcement learning

I have found quite a lot of resources (5.2) on forgetting using NN, a few on general ideas
about forgetting in CS and almost none for forgetting in RL [MA93]. I was quite happy
as it seems forgetting in RL is a new unexplored area. First I will show the ideas I came
along and implemented, then we’ll do some experiments and summarize the results.

For most of the ideas, I took inspiration from nature and tried to make the algorithms
behave like that as much as possible. The code for forgetting is built atop of policy - in a
PolicyForgettable interface. It’s an interface so it makes creation of your own policies
that use forgetting an easy task.

Forgetting in my version means deleting a piece of knowledge (state-action pair and as-
sociated Q value) from the policy. This happens only if some filter applies, that means
when a condition is met. The design of forgetting offers several different methods of for-
getting - different filters. All of them come in two forms, hardwired to the function which
adds knowledge to the storage base, so these are executed on every program step, or as
a separate threads which can be started and stopped independently on the program run.
The threads have their defined intervals of execution and while started, they will sweep
the knowledge base (each thread does it’s own job, jobs can run simultaneously) and sleep
for a given time, then do it again.

Ideas

Section Ideas introduces the different methods of forgetting implemented to RL policy.
You will surely notice similarity to “how it works in our normal brains”.

Single action only this mode forgets all other but the best action for each state. The
code is very simple, just loop through all possible states, in each state select best action and
delete the rest. This can bring drastic improvements if there is a large number of actions
available for each state, however, it spoils the process of learning, so recommendation is
to run this only after the training was done to purge the policy table.
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Forget unused states does as it says. There is a counter attached to each call of
getting next state (that is applying selected action to the current state which moves us
to a new state). The counter keeps track of how often has each state been visited and of
total number of steps stored in policy. If the state/totalStates ratio falls below some
critical value, the state is considered unused - other states are being visited much more
often - and can be deleted. This attitude is useful for problems where a huge number
of states is generated, eg. by the fact there is infinite number of possible actions. One
of these problems is the balancing pole problem where the state space (represented as
a deviation degree from optimal perpendicular line) is not discrete - so there is infinite
number of possible states.

Forget similar states filter brings concept of generalization or abstraction to forget-
ting. A function that decides if two states are equal or not needs to be defined. This is
done by overriding the equals method of the states. The function then just walks through
all states and removes one of two in a similar pair. The method shouldn’t be invoked too
often as in a set of states, some will surely match some other, so eventually we would
remove most of the states. That’s why I did just linear walk through the states. On the
other side, this can help us get rid of the dual solutions problem:
“We are stamps collectors and each state is a representation of our collection (eg. A,V,B,G).
We care about what stamps do we have in our collection, but not for their order - so solu-
tions (?,V,B,?) and (?,B,V,?) are same to us but introduce cruft to the state space.”
Clever use of remove similar states could solve this problem.

Forget almost zero values has a defined minimal level for a Q value and when an
action’s Q value (in regards to a particular state, of course) drops below, the action is
considered unimportant and is removed. This is a bit similar to forgetting of unused
states, but here it isn’t in global, but for each state a different action can be forgotten.

Forget unused actions is an interesting one. The method keeps track of how often
is each action executed and again, once a critical ratio for an action is exceeded, the
action is marked as unused and deleted from actions available. But not only is the action
removed from policy, it is also removed from available actions in the whole problem. In
problems with specific settings, a lot actions (where some are totally irrelevant to finding
the solution) or a really huge state space (compared to time spent on training) this method
can bring very promising results. Following section mentions my experimenting with this
method.

Experimenting

I tested the use of “forgetting unused actions” on a specific problem where targets were
placed all along the top line. I used a big state space (800x80 cells) on the instance
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of Squares problem (please see RL cheat sheet in appendix for details). In detail, this
forgetting method has an offset parameter, which says how many rounds it should wait
before the forgetting kicks in. This is mandatory as some sort of statistical order must
first appear, before we can decide what actions are not useful to us. After this, the thread
counts the usage ratios and checks for any of them dropping under the defined critical
line. Such action is removed and the process continues. In 400.000 rounds of training, the
policy learned only a very little part (see figure 5.1(a)), for that reason the results were
very poor (cca 2 successful in 10.000 tries). On the other hand, figure 5.1(b) shows how
the policy looked after the same number of trainings, just with forgetting applied. The
improvement (measured in covered area) is clearly visible. The forgetting was optimal,
as the only (and correct) action left was action “top”. Therefore average score successful
runs in total 10.000 was around 250, which indicates optimal values (avg. 40 steps to
target). Apart from bigger area covered by the policy, this helps even for states which are
unknown (white color). Even for these states the policy removed useless actions, so there
is fewer actions to choose from, which leads to increased chance for randomly selecting
the optimal action (here 100%). I should not only praise this method, it must be said
that it can completely fail. This occurs when an action crucial for getting to target (top)
is removed. This failure can be circumvented by checking if at least some targets have
been reached for some period of time, and if not, the last action removed seems vital and
ought to be added back.

Results & summary

Forgetting is definitely not an ultimate solution which could be used everywhere, on
the other hand, it appears that forgetting could be used in most cases and used wisely
will bring massive improvements. Also, a big advantage is that in my implementation,
forgetting can be added to existing RL projects with minimal requirements on refactoring.
Implementing this attitude seems right to me for RL resembles how we actually thing &
learn the most and we (human brains) do implement forgetting. There is a lot of space
for improvement and many new ideas in forgetting need to be explored yet.
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(a) no forgetting

(b) forgetting

Figure 5.1: Same problem with and without forgetting of unused actions (line of targets
on the top)
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Chapter 6

Conclusion

I have studied possible usages of artificial intelligence and especially its possible imple-
mentations in game industry where AI allows solving problems otherwise impossible and
thus can offer even more realistic experience in games. Area of my focus was reinforce-
ment learning for its principle which exactly fits the requirement common in games. That
is: the world is so complex that only possible feedback could be a response after many
actions have been taken. Another main area of my interest was forgetting, a technique
not yet very common in computer science but inspired simply by how human brain works,
and experimenting with it. Some possible methods of forgetting were designed for the
purpose.

The practical part of the work consists of creation of program base which offers imple-
mentation of RL, some improvements like parallel training, methods for visualization of
the process of learning - animated run of the algorithm and overall progress of learning.
A policy that uses forgetting was implemented as mentioned before and results tested
and discussed on an example. As far as the examples are concerned, two simple games -
Squares & Balancer were designed to demonstrate the abilities of reinforcement learning.
There is quite a lot of executable examples that illustrate how some settings influence
the process and results of learning. The code for reinforcement learning and forgetting
is written with usability in mind, so it should be easy for the users to implement RL
technique or forgetting to their projects, experiment with it and see if it can bring them
some improvements. The code is very well documented so acquaintance with the sources
should be as smooth as possible.

An educational material called “RL cheat sheet” was created for this purpose. It builds
upon the this work and the source codes and should provide a brief introduction to the
problematics of RL, forgetting and examples used further for students or anyone with
basic knowledge of programming who is interested in RL.

Future work on the project could include implementing other additions to reinforcement
learning, tuning up and bringing new features to the code for forgetting and experimenting
with other problems and games. My personal intention is to try to implement the methods
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discussed on a real robot and learn it walk through a maze or create an artificial entity
that could play a commercial game instead of a human.
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Appendix A

RL cheat sheet

Provides a brief introduction to the problematics of reinforcement learning along with
explanation of examples used in the code plus description of most important classes. The
sheet is in a form of a clickable pdf and can be obtained as a separate file.
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Dynamic programming

The principle of  dynamic programming (DP)  [1] is solving complex problems by breaking 
them to smaller pieces, finding a solution for these (divide and conquer) and putting them back 
together to form the global solution (back-propagation, back tracking).
“It's like when you have a bar of chocolate, that big you can't eat it alone. You chop it to pieces 
(divide)  and invite your friends to help you eat it  (conquer).  Don't  ask me about the back-
propagation, though :)” 

These pictures show an example: 
target is the strawberry, on white fields we don't know which way to go, 
colored are already mapped. 
Task is: get from given spot to the target.

The following table shows state of the policy(learning) pictured every 1000 steps. 

Table 1: progress of spreading knowledge, plot by 1000 steps
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Reinforcement learning

Reinforcement  learning is  a  machine learning technique used in  artificial  intelligence;  it  is 
based on psychological theory (humans learn similar way). Reinforcement learning (RL)  [2] 
strives to “learn what action to take in a particular state” → which action is the best for a state 
→ make a decision policy to determine which action, taken from the particular state, maximizes 
a (long term) reward. 

RL is based on principles of dynamic programming. 

Unlike supervised learning, we need not to know which action-state pair is correct or optimal; 
the algorithm finds out itself. This is a significant advantage in many cases. 

RL also doesn't try to build a model of the world/problem it solves, it just uses the world as a 
black-box that gives a feedback on some input. For this reason, we may use that same RL code 
on many very different problems with only a slight modifications. 

We need to be able to get value for a action-state pair, but not otherwise: knowledge of which 
state-action belongs to a particular value is not required. 

Q learning

Q learning [3] is one of RL techniques, learns a state-action function which describes a utility of 
taking an action at the state. 

That is described by: Q : S × A  ℝ

For each state-action pair we have a value (Q value) in policy which we seek to maximize. 
During the process of learning/training, the following formula is used: 

QnewState i , Action j=1−alpha⋅Q prev State i , Action jalpha⋅rewardgamma⋅maxa Q S i1 , Actiona

where: 
Statei , Action j are inputs; Action j takes us from Statei  to State i1

maxa Q S i1 , Actiona is maximum value achieved for taking an action at Statei1

   alpha, gamma are constants

Other methods are: 
• TD (temporal difference), 
• SARSA, …
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Tunables (Q learning)

• number of runs during training
• alpha is  learning  rate,  from  <0;1>,  how  will  the  new  value  override  the  old 

information, 0 means never learn anything, 1 means only consider newest info
• gamma  is  discount factor;  rate of focus on future rewards,  0..consider only current 

rewards, ~1 strive for a longer high term reward
• exploration strategy used (greedy, random, annealing, mixed random&greedy,...)
• reinforcement strategy (receive positive reward at final state, neg. reward at final state, 

compute reward at every state – e.g. ”reward=money I have now - $ at previous state”)

Principle?

Phase 1: training/learning
1) In a loop, start at random state 
2) based on policy and exploration strategy choose an action;  

exploration strategy provides balance between trying out new 
actions and following the learned policy

3) apply the action to get to a new state
4) compute a new value for the oldState-action pair every time 
5) receive a reward (sometimes)

 
Phase 2: run

1) start at required beginning state 
2) choose best action (use policy) 
3) take that action (optionally also learn during this run) 
4) do this until you reach desired target 

Requirements

environment – a definition of states, needs to be able to say which are valid, for a real problem, 
each state usually contains some inner information (e.g. Speed, or position on a map) 

actions – possible methods of changing current state and getting to a new one (e.g. Action Up: 
translate state position by [0,1] on [x,y])

reinforcement function – gives reward (positive/negative), reinforcement can come after a long 
set of actions (e.g. Reward +1 when state == target([3,3]) )

exploration strategy – when training/learning, tell whether to choose a new random way or go 
in an already learnt direction, trade-off between exploration (new territory) and exploitation 
(current  knowledge)  (g.  greedy(always  prefer  knowledge),  random(always  explore), 
annealing,...)

storage – somewhere to store learnt policy values (look-up table, neural network, database,...)
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Usages

This section will help you understand RL and show some demonstrational, interesting and real world 
examples. 

n-armed bandit

Imagine a multi-slot machine with  n levers, during one round, just one lever can be pulled. 
There is a reward associated with pulling each lever, or a particular sequence of levers. 
e.g. pulling lever L1 gives +0, L2 gives +1, but sequence L1,L1,L3 gives +100. So RL should 
learn to execute L1, L1 and L3 repeatedly.  

maze

Problem: a maze, starting point, target and how to 
get from start to the target? 
The  maze  can  be  represented  as  a  graph,  where 
crossroads  are  vertices  and  edges  are  possible 
ways/connections between them. 
At  the  beginning,  the  robot  is  blind  and  doesn't 
know  where  to  go,  thus  seeks  random.  When  it 
reaches the target/already known state, it writes the 
information which way to go to the previous state. 
This is a bit similar to BFS search. 

See a nice example: http://www.youtube.com/watch?v=tovrpoUkzYU&NR=1

walking robot

This is truly interesting example of  evolutionary robotics[4] 
where a robot learns how to use it's body and at the end can 
walk. 

http://www.youtube.com/watch?v=PHDT30oWs20

real life

Real  life  deployments  of  RL  range  from  control  (autonomous  helicopter,...),  computer 
optimizations & games, to economics – predicting markets and many further! 
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RL learning – run explained

Following  section  focuses  on  the  use  of  code  you were  provided,  especially  on  the  game 
Squares. I will briefly explain the “game” and then show how the RL algorithm works in detail. 

The Squares

Squares is a very simple “game”, state-space is a m-by-n matrix where one point is your current 
position, some points are marked as targets. Actions are transitions to the four basic directions 
by one square. More actions can be added easily. 
As  a  reinforcement function  is  used  class  ReinforcementFinPos  that  provides  positive 
reinforcement only when a target state is reached. In all other cases this returns a neutral value, 
that is the same as if no reinforcement was received. 
The exploration strategy is provided by ExplorationMixed(0.5) which in 50% of cases returns a 
random direction  (that  means  tries  out  a  new  possible  way),  in  other  50% it  follows  the 
knowledge base. 

That's it, let's jump to the Squares world! 

On the first picture, the knowledge base is empty, target position is the strawberry in the top left  
corner. Our(solver's) position is a random place somewhere in the state space (6 x 6). Let's 
assume for now it is at the dot position (the dot is called Lily).  
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 Lily asks the policy which way to go. Policy is empty and returns a random action (top) of all  
available actions. Lily checks if the new position (after applying “top” to current state) is a 
target position (false) and counts a new Q value with the formula above, but it is again neutral 
(zero). 
This way, the behavior resembles a random walk... 

...till Lily comes very close to the target. Now she is right next to the target, chooses (by chance) 
a good action (left), new position is a target position, so she receives a reward, new Q value is  
not null and the policy has just learned a first rule. Now every time she is at the point, she 
knows where to go. 
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After a few more rounds, more fields become known. 

Notice, how the color of often used fields becomes more intensive. 
And the knowledge flourishes...
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A full  learn  policy  would  look  like  this.  For 
every point, Lily knows which next point is the 
best for her (DP) and the map leads her to the 
target. 

With time,  the policy refines.  This means two 
things:  good  ways  are  used  more  often  and 
increase their Q values (become lighter in color). 
Sometimes one could see a color change in an 
already  learned  field.  That  happens  when 
exploration decides not to follow policy but try a 
new way  and this  way  proves  better  then  the 
previous.  This  means  other  action  becomes 
dominating for the state (and a change of color). 
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This is how the algorithm works. Here are some other examples of runs of RL, first shows a 
world with 3 targets and second is a very large state-space (400x400). 

Experimenting with the provided RL code

This part will briefly explain what class does what in the provided RL package, show you some 
usages and help you define your own problems or modify the code. 

The structure of the packages is as follows: 
• core – RL code
• extras – supportive functions for general use
• examples – runnable examples and their specific classes

Balancer (cart pole, inverse pendulum)

Balancer is  a  problem type  of  balancing inverse pendulum.  Balancer  defines  some sort  of 
physics to produce a momentum, uses around 120 actions(!) and has only two targets – at 45 
and -45 degrees. Uses ReinforcementFinNeg to try to avoid them. 

Squares and Balancer are fairy simple classes and should help you understand how to set up 
your own RL problem. 

-x-



RLPolicy

RLPolicy defines most of the logic and has the ultimate train() method that you will need most. 
It also offers trainMultitheaded() - which runs train on multiple parallel threads apparently.

Visualizer

will give you all the fancy graphics! ☺ See methods pict() for pictures and play() to animate. 
Method train Animate() will let you monitor the process of learning and  playTrack()  offers a 
nice way to represent how Lilly(Barca or whoever) actually searches their way through the state 
space. 

Examples

Are located in the examples package and would be most useful for learning, as they explain all 
parts  of  RL learning  process.  There  are  examples  to  show  impact  of  various  exploration 
strategies, reinforcements, alpha-gamma setting, multiple threads,... 

Forgetting 

Forgetting is an advanced topic and is mainly done in PolicyForgetting. 
It was inspired and works quite similarly to how humans learn and forget  [5]. Forgetting can 
improve how well RL learns. 
I've prepared an example of  forgetting unused actions. It keeps track of how many times has 
each action been called and if this ratio for some action is too low, the action is removed. So 
next time randomAction() is requested, the removed one will no longer be even considered. 
The example used has targets on the whole top line and forgetting brings about a 2-3x longer 
execution time but also amazing  50-times improvement in number of successfully reaching a 
target!! 

Check questions: 

1. What is reinforcement learning? 
2. Name some advantages and disadvantages of RL over other attitudes to learning. 
3. On what problems it is a good idea to apply RL? 
4. Ways to improve quality/amount of what has been learned on a specific problem solved with 

RL? 
5. Describe in general the process of learning(training). 
6. Think about similarities between RL and neural networks, supervised learning, … 

Ideas for own research, maybe worth some extra points: 

1. Think off and implement a nontrivial example of a problem that can be solved with RL. 
2. Apply used or your own methods of forgetting to a problem and show (some) improvements. 
3. Some RL in combination with the Lego robot kits at school would be awesome! 
4. Something else? Be creative
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Sources & more information

[1] Dynamic programming

http://en.wikipedia.org/wiki/Dynamic_programming

[2] Reinforcement learning

http://en.wikipedia.org/wiki/Reinforcement_learning

[3] Q learning

http://en.wikipedia.org/wiki/Q-learning

[4] evolutionary robotics

http://en.wikipedia.org/wiki/Evolutionary_robotics

[5] forgetting

http://en.wikipedia.org/wiki/Educational_psychology

Books covering whole area of RL and AI:

[6] AI,Reinforcement learning, Forgetting

Marek Otahal: Demonstration of learning in games, CTU, 2010

[7] AI

Millington I.: Artificial Intelligence for games, Morgan Kaufmann, 2006, 
ISBN 10: 0-12-497782-0 

[8] AI

Artificial Intelligence, A modern approach - 2nd edition, 

[9] RL

Sutton, Barton: Reinforcement learning: An introduction, MIT Press
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Appendix B

Included materials

The attached CD has the following structure and contents:

• source The folder source/RL can be opened as a project in Netbeans IDE and from
there all examples can be run. To run an example in Netbeans, please go to package
examples, where all executable classes reside, choose one with the main() method and
run it in single mode (alt-F6). Should you wish to access the source codes directly,
they are stored in source/RL/src, you can add them to your own project or compile
the classes directly with javac. To manually run eg. class A.java, you have to compile
it (javac A.java) and then execute with java A.

• doc There is a full documentation to the project located in doc/javadoc/index.html
or source/RL/dist/javadoc/index.html. Please refer to the documentation if you have
any questions about the code or see directly the comments in source codes.

• RL cheatsheet.pdf This file is a brief introduction to reinforcement learning and
the examples used in the codes. It’s intended to be an educational text for students
who encounter the problematics of RL for the first time. I suggest having a look at
it before reading the thesis or working with the codes.

• otahalThesis.pdf is this thesis in electronic form.

• files Folder files contains a few files referred in References but not published online.

• readme.txt is this text included on CD.

Marek Otahal, 2010
markotahal@gmail.com
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