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Abstract

The goal of this work is to explore the impact of clustering on the performance of

evolutionary algorithms. This work focuses on hierarchical clustering. The effect of these

modifications is tested on unimodal and multimodal functions with real representation.

The results show that clustering is very problem dependent and may be useful for some

multimodal problems where the algorithm was able to find better solution, but on the

other side its application on unimodal problems is unsuitable in light of its time consup-

tion.

Abstrakt

Ćılem této práce je prozkoumat efekt shlukováńı na výkon evolučńıch algoritmů. Tato

práce se zaměřuje na hierarchické shlukováńı. Efekt těchto modifikaćı je testován na

unimodálńıch a multimodálńıch funkćıch s reálnou reprezentaćı. Výsledky ukazuj́ı, že

shlukováńı je velmi závislé na daném problému a může být užitečné pro některé multi-

modálńı problémy, kde algoritmus byl schopen naj́ıt lepš́ı řešeńı, ale na druhou stranu jeho

použit́ı na unimodálńıch problémech je nevhodné, vzhledem k jeho časové náročnosti.
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Chapter 1

Introduction

Evolutionary algorithms are one of the well known optimalization methods inspired in

biology. They use principles that can be found in nature for finding the optimal solution

to a problem. They are highly adjustable and can be applied on almost every problem.

Although the evolutionary algorithms work fine, this work tries to improve them with

clustering methods. In classic selections, better individuals have greater probability to

become parents for next generation. This work extends Václav Havĺın’s analysis [8] and

tries to explore the impact of clustering on each type of selection. There is an effort to

consider similarities between individuals which are selected by methods, explained in that

analysis and to achieve a similar effect as in Parallel EAs [3]. Parallel EAs are supposed to

explore a problem’s search space more evenly and they may avoid population stagnation

because of better capability for maintaining overall diversity. The goal of this work is to

consider influence of clustering on the results. There is a chance that clustering will have

positive effect on multimodal problems, because of the higher diversity in population. It

is possible that this modification, due to its time consumption, may be useless on some

problems.

Chapter 2 describes basics and terminology of evolutionary algorithms. Chapter 3

explains clustering process and its variants. In chapter 4, there are listed functions used

for testing the algorithm. Chapter 5 shows the test results. The chapter 6 contains an

assessment.
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Chapter 2

Evolutionary algorithms

2.1 Introduction to evolutionary algorithms

Evolutionary algorithms (EA) are stochastic search methods inspired in biology [1]. EA

works on a population of potential solutions randomly generated at the beginning of the

search process. Each individual represents a solution in search space of possible solutions

and is evaluated by a function which is able to judge the quality of an individual [2]. This

evaluation function is called fitness function. This function must be at least capable of

differentiating between two individuals.

Those solutions, that are better, as determined by the evaluation function, are more

likely to be chosen as parents for the next generation of offspring. In each generation, a

new set of solutions is generated probabilistically in the neighborhood of old solutions by

the process of selecting individuals according to their quality of fitness function. Each

individual contains its own genotype. Genotype in biology contains a genetic information.

In EA the genotype represents a solution and is mostly formed by a string of binary or

real numbers, but also it may be any other representation. The principle of EA is still

the same but may vary in natural processes which are included. A big advantage of EAs

compared to classical methods is that complete knowledge of a problem isn’t needed.

2.2 Genetic algorithms

Genetic algorithms (GA) are part of the evolutionary algorithms. GA use techniques

inspired in biology and model natural processes, such as selection, recombination and

2



CHAPTER 2. EVOLUTIONARY ALGORITHMS 3

mutation. Each individual is typically represented as a string called genome. Individuals

are evaluated by a fitness function according to quality of genome thus solution.

Initial population is randomly generated at the beginning of search process, then it

is evaluated by the fitness function. At this time we know which solutions are worse and

which are better. This is important for using the selection. An offspring is formed with

the individuals which are stochastically selected from the current population and then

modified. This modification includes recombination and mutation.

We can describe GA this way [7]:

Step 0: (Initialization)

The initial population is randomly generated. Because it is a random process, it

is good to start GA several times and try to eliminate effect of initial conditions.

It’s possible to generate the initial population in area where optimal solution can

be found.

Step 1: (Selection)

Two parents are chosen from population according to some selection method.

Step 2: (Recombination)

Also called crossover, is the next step of generating new population. An offspring

is produced as a combination of two chosen parents. It’s obvious that the offspring

has some similar characteristics as his parents.

Step 0: (Mutation)

The offspring is mutated with constant probability. It means that his genome is

amended somehow.

2.3 Designing evolutionary algorithms

The essential idea of evolutionary problem solving is quite simple. A population of can-

didate solutions to the problem is evolved over successive iterations of variation and

selection. Variation provides the mechanism for discovering new solutions. Selection de-

termines which solutions to maintain for further exploration. The goal of the exploration

is to find a solution. The time in which any solution can be discovered depends on the

representation of solution, the evaluation function, the variation and selection operators,
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the size of population and on other options. The key to designing successful evolutionary

algorithms lies in making the appropriate choices in light of the problem [2].

Evolutionary algorithm used in this work can be captured by the equation:

x[t+ 1] = v(s(x[t])) (2.1)

Where x[t] is the population under a representation x at time t, v is the variation operator

and s is the selection operator described in 2.3.4.

2.3.1 Representation

A representation is a mapping from the state space of possible solutions to the state

space of encoded solutions in any data structure. The most used data represenation is a

fixed-length vector of symbols. A typical representation is a list of bits 0,1 called binary

string.

2.3.2 Evaluation function

The evaluation function is an instrument for judging the quality of individuals. This

function itself may represent the solution, or simply compare two candidate solutions.

An accuracy of the evaluation function has wide effect on quality of discovered solution

and obviously on the duration of the search process.

2.3.3 Variation operators

In general, the choice of operators depends on the representation. These operators serve

to create a new population from the old one in a recombination process. There exist

operators that work with one or two or more parents. By this process, new possible

solutions which contain genetic information from their parents, are created.

2.3.4 Selection

It would be appropriate to distinguish two different contexts of this term. Firstly, the

process of selecting parents (selection) and secondly the process of selecting individuals

for replacement (replacement strategy). The selection methods are more desribed in 2.4.
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2.3.5 Initialization

The difference equation 2.1 indicates the evolution over each generation. Therefore the

initial population is needed to be defined before starting. It’s possible to generate popula-

tion randomly or it’s useful to focus the generation process where the solution is situated.

For benchmarking evolutionary algorithms it is useful to generate population at random

form.

2.4 Selection methods

As selections of parents for next generation this work uses Fitness-based and Fitness-

independent selections, described in work of Václav Havĺın [8].

2.4.1 Fitness-based selection

In Fitness-based selection, both parents are selected by value of fitness and no matter

which individuals was chosen. This is classic selection method and may have different

selection pressure which affects the convergence. An example is Tournament selection,

Ranking selection, Proportionate selection (Roulette-wheel) etc.

2.4.2 Fitness-independent selection

V. Havĺın implemented genetic algorithms [8] with fitness-independent selection of the

second parent. First parent is always selected by the best fitness function from a tour-

nament, formed by individuals randomly selected from the population. Second parent

selection depends on one of these selection methods: Closest, Farthest, Random. In

Closest selection, the second parent is selected from the tournament to be the closest

to the first parent. It is measured by the Euclidian distance. In Farthest selection the

farthest parent is chosen. In Random selection, the second parent is selected without the

tournament, straight from the whole population.



Chapter 3

Selection with Clustering

3.1 Clustering

Clustering [5] is a common method used in many fields, including marketing, data and

image analysis, data mining, pattern recognition and many others. It is the process of

organizing objects into groups whose members are similar in some way. In this case the

similarity means the distance between objects.

3.2 Distance Measure

An important part of a clustering is a way how to measure the distance between objects.

An easy way is to use the euclidean distnace metric which is defined as:

d(x, y) =

(

D
∑

k=1

|xk − yk|p
)1/p

(3.1)

For the euclidean distance p = 2. D is number of dimensions.

3.3 Hierarchical clustering

Hierarchical clustering doesn’t create clusters in a single step, but the clusters are created

successively by a process based on some linkage method. It maintains a distance matrix

N*N, where distances between clusters are stored. This is quite time consuming, but

6



CHAPTER 3. SELECTION WITH CLUSTERING 7

without this, it would be necessary to compute all distances at each step. The hierar-

chical clustering is often represented as a dendrogram. There are two major methods of

hierarchical clustering - agglomerative and divisive.

3.3.1 Linkage types

Linkage defines the way how the clusters will be constructed. In this work there are used

three types of linkage. Single, average and complete linkage. Each type has wide effect

on size and position of clusters.

3.3.1.1 Single linkage

Single linkage is also called nearest neighbour. The distance between two clusters is equal

to the shortest distance from any member of the first cluster to any member of the second

cluster. This method often leads to the creation of one big and few smaller clusters. The

distance between clusters X and Y is defined as:

D(X, Y ) = min(d(x, y)) (3.2)

Where d(x,y) is distance between elements from clusters.

3.3.1.2 Average linkage

The distance is computed as an average pairwise distance between clusters. This type of

linkage makes the clusters most balanced.

3.3.1.3 Complete linkage

The distance between two clusters is equal to the greatest distance from any member of

the first cluster to any member of the second cluster. It works like single linkage but

looks for the maximal distance between elements.

3.3.2 Dendogram

A dendogram is a tree that illustrates order of merging the clusters with hierarchical

clustering. Each cluster is represented as a node, connected with other cluster. The

edge, connecting clusters, shows the distance computed between clusters. By dendogram

analyzing the number of clusters can be determined.
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3.3.3 Agglomerative clustering

Agglomerative clustering (bottom-up) transforms each individual to a single cluster, and

then successively merges clusters until all of them are merged into a single remaining

cluster. The important step is defining optimal number of clusters. In this work there

is used method based on measure distance between two merging clusters. The algorithm

stops when the distance is higher than the previous one. The algoritm is described as

follows [5]:

1) Make N clusters, each with one individual.

2) Find nearest two similar clusters and merge them together.

3) Compute distance between the new cluster and the others.

4) Repeat steps 2 and 3 till only one cluster remains.

3.3.4 Divisive clustering

Divisive (top-down) clustering works like agglomerative one but there is a difference.

Divisive algorithm starts with one cluster which contains the whole population. Then

the cluster is divided into several smaller clusters which are also being divided until it is

appropriate.

3.4 Partitional clustering

Partitional clustering creates all clusters at once. Generally it is necessary to set the

number of clusters at the beginning. These algorithms are fast and dependent on initial

set. Because of this fact the K-means algorithm in this work isn’t used for testing but

it’s only mentioned or somewhere it can be shown for comparison.

3.4.1 K-means clustering

K-means is fast algorithm and it can converge to different cluster arrangement everytime

it’s started on the same population. At the beginning k centroids are chosen and each

individual is assigned to the nearest centroid. After assignement of all individuals, new
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centroids are computed. K-means minimizes mean deviation between population and

centroids. The algorithm may look like this [4]:

1) Choose k centroids in current population.

2) Assign individuals to the nearest centroids.

3) Compute new position of centroids as an average of cluster members.

4) If the position of the centroids changes, go to step 2.

3.5 Application of clustering

The application of clustering in EA is trying to find similarities between individuals and

to group them. These similarities can be based on many observations. The goal is to use

the selections desribed in 2.4 not on the whole population, but on the separated parts

(clusters) independently.

There are two possible cases. The first one is to generate as many individuals as the

size of the actual cluster. The second one is to balance the offspring’s number. Each

cluster will produce the same ammount of new individuals while it doesn’t matter on its

size. There can be assigned numbers to the both cases that will represent them. Suppose

that 0 stands for balancing and 1 means the same size. It looks like that the optimal case

lies somewhere between these two extreme cases. So there are these possibilities: First

one is that offspring size of each cluster is proportional to its size:

n′

i =
ni

N
NOffs (3.3)

Second one is that each cluster has the same offspring size:

n′

i =
1

Nc

NOffs (3.4)

By using parameter α, there will be a combination described as:

n′

i = α
ni

N
NOffs + (1− α)

1

Nc

NOffs (3.5)

Where N is population size, NOffs is offspring size, Nc is total number of clusters and ni

is cluster size. Minimum number of clusters is limited to prevent the creation of one big

cluster, but it has side effect, that there must always be the minimum number of clusters,

even if they contain only one individual.



Chapter 4

Test functions

For benchmarking the algorithm modificated by clustering, functions, which cover typical

dificulties which can occur in continuous domain search, are selected. All the functions

are scalable with the dimension. Some functions have no specific value of their optimal

solution. Complete description of the functions can be found in [6]

4.1 Unimodal functions

4.1.1 Sphere function

The easiest continuous domain search problem. It’s unimodal and symetric function.

fSphere(x) =
D
∑

i=1

x2
i (4.1)

x∗ = 0, f(x∗) = 0 for x ∈ [−5.12; 5.12]D

10



CHAPTER 4. TEST FUNCTIONS 11

Figure 4.1: Sphere function

4.1.2 Ellipsoidal function

Globally quadratic unimodal function with smooth local irregularities.

fEllipsoidal(x) =
D
∑

i=1

106
i−1

D−1 x2
i (4.2)

x∗ = 0, f(x∗) = 0 for x ∈ [−5; 5]D

Figure 4.2: Ellipsoidal function
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4.1.3 Sharp ridge function

In this function, the gradient remains constant, when the ridge is approached from a

given point. Approaching the ridge is initially effective, but becomes ineffective close to

the ridge where the rigde needs to be followed in z -direction to its optimum.

fSharpRidge(x) = x2
1 + 100

√

√

√

√

D
∑

i=2

x2
i (4.3)

x∗ = 0, f(x∗) = 0 for x ∈ [−5.12; 5.12]D

Figure 4.3: Ellipsoidal function

4.1.4 Linear function

Purely linear function.

fLinear(x) =
D
∑

i=1

−xi (4.4)

x∗ = 10, f(x∗) = −10 ·D for x ∈ [−10; 10]d
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Figure 4.4: Linear function

4.2 Multimodal functions

4.2.1 Double funnel function

Double funnel function is a minimum from two sphere functions. Both create their own

optimum. It is possible to change size of the barrier between them and simulate different

relative size and depth by parameters h,s. Global optimum is placed in µ1 = 2.5 and

local optimum is moved to µ2 = −
√

µ2

1
−h

s
. This work will focus on the case where s =

0.2 and h = 1.

fDoubleFunnel(x) = min

(

D
∑

i=1

(xi − µ1)
2, h ·D + s

D
∑

i=1

(xi − µ2)
2

)

(4.5)

x∗ = 2.5, f(x∗) = 0 for x ∈ [−5; 5]D
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Figure 4.5: Double funnel function

4.2.2 Rastrigin function

Multiomodal function with a regular structure, many local optima and one global optima

of zero at the origin. The function is highly multimodal. Rastrigin’s function is often

used to test the genetic algorithm.

fRastrigin(x) = 10

(

D −
D
∑

i=1

cos(2πxi)

)

+
D
∑

i=1

x2
i (4.6)

x∗ = 0, f(x∗) = 0 for x ∈ [−5.12; 5.12]D



CHAPTER 4. TEST FUNCTIONS 15

Figure 4.6: Rastrigin function

4.2.3 Rosenbrock function

So-called banana function. Global optimum lies in long narrow valley. It’s easy to find

the valley but it’s hard to reach global optimum.

fRosenbrock(x) =
D−1
∑

i=1

(

100(x2
i − xi+1)

2 + (xi − 1)2
)

(4.7)

x∗ = 1, f(x∗) = 0 for x ∈ [−2.048; 2.048]D

Figure 4.7: Rosenbrock function
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4.2.4 Weierstrass function

Highly rugged and moderately repetitive landscape, where the global optimum is not

unique.

fWeierstrass(x) = 10

(

1

D

D
∑

i=1

11
∑

k=0

1

2k
cos(2π3k(xi + 0.5))− f0

)3

(4.8)

Where f0 =
∑11

k=0

1

2k
cos(2π3k1/2)

x∗ = not unique, f(x∗) = 0 for x ∈ [−5; 5]D

Figure 4.8: Weierstrass function

4.2.5 Schaffers F7 function

A highly multimodal function where frequency and amplitude of the modulation vary.

fSchaffersF7(x) =
D−1
∑

i=1

(x2
i + x2

i+1)
0.25(sin2(50(x2

i + x2
i+1)

0.1) + 1) (4.9)

x∗ = 0, f(x∗) = 0 for x ∈ [−5; 5]D
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Figure 4.9: Schaffers F7 function

4.2.6 Katsuura function

Highly rugged and highly repetitive function with weak global structure.

fKatsuura(x) =
10

D2

D
∏

i=1

(

1 + i

32
∑

j=1

|2jxi − [2jxi]|
2j

)
10

D1.2

− 10

D2
(4.10)

x∗ = not unique, f(x∗) = 0 for x ∈ [−5; 5]D
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Figure 4.10: Katsuura function

4.2.7 Michalewicz function

Multimodal function with D! local optima. Larger exponent leads to more difficult search.

The function values for points in the space outside the narrow peaks give very little

information on the location of the global optimum.

fMichalewicz(x) = −
D
∑

i=1

sin(xi)

(

sin

(

i.x2
i

π

))20

(4.11)

x∗ = not specified, f(x∗) = -4.687 for 5D and -9.66 for 10D for x ∈ [0; π]D
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Figure 4.11: Michalewicz function

4.2.8 Griewangk function

Griewangk’s function is similar to Rastrigin’s function. It has many widespread local

minima. However, the location of the minima are regularly distributed. We are using

this function in a two versions differing by a size of search space.

fGriewangk(x) = −
D
∑

i=1

x2
i

4000
−

D
∏

i=1

cos

(

xi√
i

)

+ 1 (4.12)

Version 1: x∗ = 0, f(x∗) = 0 for x ∈ [−512; 512]D

Version 2: x∗ = 0, f(x∗) = 0 for x ∈ [−5.12; 5.12]D
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Figure 4.12: Griewangk function 1

Figure 4.13: Griewangk function 2
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4.2.9 EggHolder function

EggHolder is quite complicated function similar to an egg holder. Global optimum isn’t

defined.

fEggHolder(x) =
D−1
∑

i=1

−(xi+1 + 47) sin(

√

|xi+1 +
xi

2
+ 47|) +

+ sin(
√

|xi − (xi+1 + 47)|)(−xi) (4.13)

x∗ = unknown, f(x∗) = unknown for x ∈ [−512; 512]D

Figure 4.14: EggHolder function

4.2.10 TwoValleys function

x fitness

0 10

0.1 0

0.2 10

0.6 1

1 10

Table 4.1: TwoValleys
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x∗ = 0.1, f(x∗) = 0 for x ∈ [0; 1]D

In one dimension this W-shaped function is defined by the points in the table 4.1. In more

dimensions it consists of a sum of particular dimensions. In the one-dimensional function

there are two valleys, the first one is very narrow and contains the global optimum and the

second one is wide and contains only local optimum. In more dimensions the structure

is more complicated.



Chapter 5

Experiments

Objective of this chapter is to test, whether hierarchical clustering with single, average

and complete linkage may improve the selections described in 2.4. For this purpose, we

have selected some unimodal and multimodal functions described in chapter 4. Section 5.1

tries to answer the question, how many offspring should produce each cluster. Section 5.3

shows the results of experiments for each test function, selection method and linkage.

5.1 Offspring analysis

This analysis is trying to find out the optimal number of offspring according to the cluster

size. So the goal is to find out the number between 0 and 1, thus parameter called α.

Parameter α can be determined by the tests made on each function and then consider

which value of α is best for each problem. It’s needed to choose the value of α in which the

algorithm returns sufficient solutions for each problem. This is a compromise, although

the value is the best possible, there are still problems where it has negative effect.

For this task three functions with different structure and modality were selected:

Sphere, Rastrigin and Weierstrass. These three functions are selected as representatives

of our test functions. The parameter α was chosen on the basis of results of tests made

on these functions. There is a convention, that fitness selection has blue, random cyan

and farthest green color. The results are in fig. 5.1. Many values of α parameter was

tested, but these two values seems to be the best ones. For better view, graphs contain

only these two values for comparison. The graphs 5.1 show, that the best value of α is

0.9 and this value will be used for experiments.

23
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Figure 5.1: Parameter alpha exploration.
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5.2 Settings

The main pointer of the algorithm’s performance is the fitness function of the best indi-

vidual in the actual generation. To avoid the effect of setting the initial conditions, each

test is started 10 times and for each selection the same set of seeds for a random number

generator is used. In graphs there is shown a median of these runs. The population size

= 100, dimension = 5, number of generations = 1000. On the basis of 5.1, the parameter

α is equal to 0.9 for each problem.

5.3 Results

The closest selection was omitted from the tests because the clustering can’t have positive

effect on this selection. Otherwise on farthest selection and on the others may occur any

improvements. In the graphs below, there are shown statistics of the algorithm with

applied clustering for some functions compared with the normal algorithm. In the title,

there is written the name of the function and which selection is the algorithm using.
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5.3.1 Unsuccessful results
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Figure 5.2: The effect of clustering for each linkage type on the Sphere

function.
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Figure 5.3: The effect of clustering for each linkage type on the Sphere

function.
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Figure 5.4: The effect of clustering for each linkage type on the Sphere

function.

On the unimodal functions like Sphere, Ellipsoidal and Sharp ridge the situation is the

same. So it’s possible to review the effect collectively, while in graphs, there is shown

only the Sphere function. These functions are unimodal and clustering has negative effect

here. The creation of clusters out of the function optimum, which is unique, causes that

individuals are creating offspring in an area where the solution does not lie. In fact,

this means that the algorithm is focusing on the wrong areas. It slows down the search

process and prevents the full convergence.
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Figure 5.5: The effect of clustering for each linkage type on the Rosenbrock

function.
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Figure 5.6: The effect of clustering for each linkage type on the Rosenbrock

function.
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Figure 5.7: The effect of clustering for each linkage type on the Rosenbrock

function.

Rosenbrock, SchaffersF7 and Griewangk functions indicate similar behavior. It’s prob-

ablly caused by their global structure. The results aren’t totally bad, in many cases the

clustering copies the original GA. But on fitness selection, the algorithm gets stuck early.
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5.3.2 Neutral results
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Figure 5.8: The effect of clustering for each linkage type on the Linear

function.
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Figure 5.9: The effect of clustering for each linkage type on the Linear

function.
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Figure 5.10: The effect of clustering for each linkage type on the Linear

function.

Linear function is very simple and everywhere in the function’s domain, there is the

information about location of the global optima. In the initialization part are probablly

generated candidate solutions near the optimum and the convergence is fast even with

the clustering. It leads to creation of one big cluster in a short time. So the effect is

neutral to random and fitness selections and a little improvement can be seen on farthest

selection. In general on the unimodal functions, the effect on farthest selection should be

better that on the others. This indicates also farthest selection on the Sphere function

in fig. 5.3.
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Figure 5.11: The effect of clustering for each linkage type on the Rastrigin

function.
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Figure 5.12: The effect of clustering for each linkage type on the Rastrigin

function.
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Figure 5.13: The effect of clustering for each linkage type on the Rastrigin

function.

On the Rastrigin function, clustering has different effect on each selection. While on

the fitness selection it doesn’t help and on the farthest selection it rather deteriorates, it

helps on the random selection fig. 5.13 especially average linkage allow the algorithm to

converge.
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5.3.3 Successful results
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Figure 5.14: The effect of clustering for each linkage type on the Two

valleys function.
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Figure 5.15: The effect of clustering for each linkage type on the Two

valleys function.
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Figure 5.16: The effect of clustering for each linkage type on the Two

valleys function.
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Figure 5.17: The effect of clustering for each linkage type on the Katsuura

function.
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Figure 5.18: The effect of clustering for each linkage type on the Katsuura

function.
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Figure 5.19: The effect of clustering for each linkage type on the Katsuura

function.
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Figure 5.20: The effect of clustering for each linkage type on the Weier-

strass function.
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Figure 5.21: The effect of clustering for each linkage type on the Weier-

strass function.
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Figure 5.22: The effect of clustering for each linkage type on the Weier-

strass function.

On these funtions: TwoValleys, Katsuura, Weierstrass and EggHolder the clustering

succeeded. On TwoValleys function, the clustering works great and all the selections are

improved. The shape of these functions tells on which functions the clustering may be

useful.

5.4 Final comparison

To show all the results and to make any decision, it was necessary to evaluate them by

some criterion. As the criterion, it was taken: Successful, Neutral, Unsuccessful. The

comparison was made at the end of search process for different types of linkage and

the runs was evaluated due to the clustering effect. So, if the run with clustering was

better than the run without clustering, it was marked as 1, if the same or simiilar, it was

assigned 0 or -1 where it did not work. Somewhere it is hard to decide, in which group

it belongs. Although this assignement isn’t precise, it summarizes the results. Three

dimensional table was created for functions, linkage types and selection methods. In

tables below, there are listed the scores for each dimension separately and for combination

of all dimensions. It may tell, whether some combination is in general better choice.
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Functions Total score

Ellipsoidal -9

SharpRidge -9

Sphere -7

Rosenbrock -6

Michalewicz -6

SchaffersF7 -5

DoubleFunnel -4

Griewangk -3

Griewangk2 -1

Rastrigin -1

Linear 0

Weierstrass 0

EggHolder 1

Katsuura 5

TwoValleys 9

Table 5.1: Total score for test functions in range from -9 to 9.

Fitness selection Random selection Farthest selection

-23 -9 -4

Table 5.2: Total score for selections in range from -45 to 45.

Single linkage Average linkage Complete linkage

-15 -12 -9

Table 5.3: Total score for linkages in range from -45 to 45.
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Fitness selection Random selection Farthest selection

Single linkage -10 -5 0

Average linkage -6 -6 -3

Complete linkage -7 -1 -1

Table 5.4: Score for combination of linkages and selections in range from

-15 to 15.

Fitness selection Random selection Farthest selection

Ellipsoidal -3 -3 -3

SharpRidge -3 -3 -3

Sphere -3 -3 -1

Rosenbrock -3 -3 0

Michalewicz -1 -2 -3

SchaffersF7 -3 -2 0

DoubleFunnel -1 0 -3

Griewangk -3 0 0

Griewangk2 1 -2 0

Rastrigin 0 2 -3

Linear -1 -2 3

Weierstrass -3 2 1

EggHolder -3 1 3

Katsuura 0 3 2

TwoValleys 3 3 3

Table 5.5: Score for combination of functions and selections in range from

-3 to 3.
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Single linkage Average linkage Complete linkage

Ellipsoidal -3 -3 -3

SharpRidge -3 -3 -3

Sphere -2 -3 -2

Rosenbrock -2 -2 -2

Michalewicz -3 -2 -1

SchaffersF7 -2 -2 -1

DoubleFunnel -2 -1 -1

Griewangk -1 -1 -1

Griewangk2 1 -1 -1

Rastrigin -1 0 0

Linear 0 0 0

Weierstrass 0 0 0

EggHolder -1 1 1

Katsuura 1 1 3

TwoValleys 3 3 3

Table 5.6: Score for combination of functions and linkages in range from

-3 to 3.

Results in the tables confirm the assumptions. It appears that Complete linkage has

balanced performance which may be related to fact that it creates balanced clusters.

behind it there is placed Average linkage which is similar. As it was expected Single

linkage improves Farthest selection, but it doesn’t work on multimodal problems because

this selection leads to creation of a one big cluster. As the best choice it seems to be

combination of Complete linkage and Random selection which works great on multimodal

problems.



Chapter 6

Conclusion

In general, the results show that clustering depend on given problem. There exist a lot

of options which should be taken into account like linkge type, value of alpha, selection

method, tournament size and so on. There must be done some simplifications and review

the results in compact form. Clustering has better impact on random selection because

when a size of a cluster is small, thus the cluster has small number of individuals, the

random selection allows next generation to be generated by more than only two parents.

Because if the cluster size is the same as a tournament size, in other selections the pop-

ulation is generated only by two parents. This causes the decrease of diversity in the

population. Results in the tables are mostly negative. It is because there are used many

similar functions, where the clustering doesn’t work. There is no one optimal config-

uration which could be applied on every problem. Clustering had in many cases good

performance in the first few iterations, so it could be the subject of further experiments

for example stop the clustering after a predefined number of iterations.

On multimodal functions the clustering is quite effective. Somewhere the algorithm

finds the solution faster or is able to find better solution. Genetic algorithm with cluster-

ing maintains a diversity in population what is essential in solving multimodal problems.

For multimodal problems, the clustering may improve a performance and its usage is

suitable. Otherwise if there isn’t a knowledge about problem, it is better to use classic

genetic algorithm. Weak point of clustering is its time consumption so it is important

to consider a possible profit. Clustering may be very useful under certain conditions and

provides additional space for improvement.
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Appendix A

Content of attached CD

Attached CD contains these files:

• TomasJuchelka-BP-2010.pdf: Text of bachelor project.

• BP-LaTeX-source: Text of bachelor project in source format.

• Clustering: Java project for NetBeans IDE.

• Matlab-graphs: Scripts for generating graphs in MATLAB.

• Readme.txt: Operating instructions.

• Clustering-source: Project source codes.

• Original bachelor project assignment and Declaration.
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