Czech Technical University in Prague

Faculty of Electrical Engineering, Department of Cybernetics

Bachelor Project

Visual design of Evolutionary Algorithms

Author
Gustav Sourek

souregus(@fel.cvut.cz

supervisor

Ing. Petr PoSik Ph.D.

Prague, May 2010

mailto:souregus@fel.cvut.cz

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

BACHELOR PROJECT ASSIGNMENT

Student: Gustav Sourek
Study programme: Software Engineering and Management
Specialisation: Intelligent Systems

Title of Bachelor Project: Evolutionary Algorithms in MATLAB/Simulink Environment

Guidelines:

1. Learn MATLAB/Simulink environment and the possibilities it offers for visual design
and experimentation with evolutionary algorithms.
2. Create a Simulink blockset containing individual functional blocks of evolutionary algorithms.
3. Test the functionality of the whole systém on several selected problems.
4. Discuss the whole system from the viewpoint of useability and educational value.

Bibliography/Sources: Will be provided by the supervisor.

Bachelor Project Supervisor: Ing. Petr Posik, Ph.D.

Valid until: the end of the winter semester of academic year 2010/2011

ng-.

prof. Ing. Vladimir Mafik, CSc.
Head of Department

Head

Prague, November 30, 2009

Ceské vysoké uéeni technické v Praze
Fakulta elektrotechnicka

Katedra kybernetiky

ZADANI BAKALARSKE PRACE

Student: Gustav Sourek
Studijni program: Softwarové technologie a management
Obor: Inteligentni systémy

Nazev tématu: Evoluéni algoritmy v prostiedi MATLAB/Simulink

Pokyny pro vypracovani:

1. Seznamte se s prostfedim MATLAB/Simulink a s moznostmi, které nabizi pro vizualni
navrh a experimentovani s evolu¢nimi algoritmy.

2. Vytvorte sadu blokl pro Simulink, které budou realizovat jednotlivé stavebni dily
evoluénich algoritmu.

3. Ovérte funkénost celého systému na nékolika vybranych Ulohach.

4. Zhodnot'te vytvoreny systém z hlediska pouzitelnosti a nazornosti.

Seznam odborné literatury: Doda vedouci prace.

Vedouci bakalarské prace: Ing. Petr Posik, Ph.D.

Platnost zadani: do konce zimniho semestru 2010/2011

I "l/f.
[V A | / . /:,: [.
| F 5 o 7
prof. Ing. Vladimir Marik, DrSc. doc.1ng. Boris Simak, CSc.
vedouci katedry dékan

V Praze dne 30. 11. 2009

Declaration

I hereby declare that this bachelor project is my own work and that [used only the
sources (literature, project, software) stated in references.

5/25/2e40 Dok

INPrage; el miiiie 0 assecsvesssses Sl oo shs Sm s i s
signature

ProhlaSeni

Prohlasuji, Ze jsem svou bakalaiskou praci vypracoval samostatné a pouzil jsem pouze
podklady (literaturu, projekty, SW atd.) uvedené v piilozeném seznamu.

V Praze, dne 25, 52040 7 .5.":".“.'3/.‘:“.

Abstract

Visual diagrams and flowcharts are utilities often used in education of iterative
algorithms, yet their scope could reach furthermore. The goal of this paper is to explore
possibilities of visual programming, concretely Matlab-Simulink language, for the
implementation of a functional interactive scheme representing evolutionary algorithms
and similar iterative optimizers. Description of the technology, development process and
final preview of the product will be provided.

Index Terms

evolutionary algorithms, visual design, Matlab, Simulink

Abstrakt

V ucitelské praxi se pro znazornéni funkce iterativnich algoritmli ¢asto pouzivaji rizna
schémata a vyvojové diagramy, nicmén¢ jejich pouziti mize byt daleko Sirsi. Cilem této
prace je prozkoumat moznosti vizualniho programovéni, konkrétné jazyka Matlab-
Simulink, pro implementaci funk¢niho interaktivniho schématu reprezentujiciho evolu¢ni
algoritmy a podobné iterativni optimalizatory. Popsany budou vybrané technologie a
vyvoj, na konci bude prezentovan vysledek implementace.

Kli¢ova slova

evoluéni algoritmy, vizualni design, Matlab, Simulink

Contents

I INEOAUCTION. ¢ttt ettt b et sttt et e bt et e saeenseenee 9
1.1 Evolutionary algorithms............ccooiiiiiiiiiiiieee e 9

1.2 GUIA@POST...euvieeiieiiieciie ettt ettt ettt ettt e et eebeeesaeesbeeesbeeeennbeeeenseaeennnees 10

2 ViSUAl PrOGIAMIMIIE. .. ceeuetetieeiitetieeiieeiee et ette et eteesateeteesaeeebeesateebeesaneeesanneeeeennseeeas 11
2.1 VPL's criteria for EA implementation............ccceecveerieeiiienieniiieeesieee e 12

3 Visual design of evolutionary algorithms...........coooueeiiiiiiiiiiiiiiiee e 13
3.1 Specification of demands............cccceeeiieiieriiieiierie et 13

3.2 Standard EA blocks definition...........cccueeeiiiieeciiieeiieeeiee e 13

3.3 Non-standard EA bIOCKS........coouiiiiiiiiirieiieeeeeee e 15

3.4 Structure 0f BIOCKSEL......c.viieiiieciiieee et e e 15

3.5 Specification 0f BlOCKS........c.ccvuiiiiiiiiiiiiiciieeceee e 16

4 SIMUlINK & Matlab.......cccviiiiiiiiiiiieee e e e e e e 17
4.1 Evolutionary Algorithm as a dynamic SYSteM............cccueerueerreerieeniereeeenneeeennne 18

5 Developing the TOOIDOX........ccccuiiiiiiiieiie ettt e e e e e e e eaaeeeae s 19
5.1 Extending functionality of SImulinK............ccccceeuverieniiiiniiiiieieeieeeeeeee e 20

5.2 Overview of the Embedded Matlab Subset............cccceeveiiiiiiieciiiecieeee e 21
5.2.1 Embedded Matlab technology...........ccccocveriieiieiiieiiciieieeieeee e 21

5.2.2 Working with Variables...........ccccoviiiiiiiiiiiiiiiee e 22

5.2.3 Working with Matrix Indexing Operations...........c.cccceeeeveerreerrurreeennnnnnn 22

5.3 Workarounds with Embedded Matlab.............ccccooovuvieiiiiiiiieieeee e 22
5.3.1 Variable sized data...........cccevieiiiriiiniiieieeee e 22

5.3.2 Persistent variables..........ccceeeiiuieiiiieeiiieeeiie ettt 23

5.3.3 EXtrinsic FUNCHONS.cctiitiiiiniieiiiieseeieee et 23

5.4 Creating custom bIOCKS........ccuiiiiiiiiiiiiiie e 24

5.5 Subsystem inputs and outputs INErMEZZO0.........c.cevveerveerreeeireeniieerieeeeiieeeeeneenes 25

5.6 MaskKing DIOCKS.......cccuiieiiiieeiiieeie ettt e et e e e e e aaaaeaa e 26

5.7 Creating @ lDIArY......ccoeoiiieiiiiie ettt et et e e s e e e aaaeeenasaeeas 27

6 LIDTaIY PIOVIEW.....eiiiuiiieeiieeciieeeiee et ee et e e et e e et e e st e e sabeeesssee e saeessseessssaesssseessseeennseens 28
7 Testing the DIOCKSELceevviiiiieiieiecieee ettt et e e e eeaeeeenes 31
7.1 Bridge-building structural optimization example...........ccoeeverieeiniieeeniieeenienn. 32

7.2 The al@OTTtRML......ccuiiiiiiiiieiecie ettt e e e nnaee s 33

7.3 CoNStruction €XAMPIES.......veecireerireeiiieeiieeeieeesieeesreeesreeesreeessaeessseesssnraeeaeens 34

8 SUIMIMATY ...ceiuiiiiiiiie ettt ettt et e e st e e ettt e e sateeeeteeensbeeensaeeensaeesnsseesnsnsneeeeens 35
8.1 USADIIILY T@POIL...cuieiiieiieeie ettt ettt et e e e e eaeeee s 35

8.2 FULUIE WOTK...ouiiiiiiiiieiee e e 35

8.3 CONCIUSIONS.....eeeiiiieiiieeeiie ettt et e e et e et e et e e e aae e ebaeesasae e s nsasaeaeeens 36

O RETCIEIICES. .. ettt ettt ettt et s e sa et eeat e bt et e saeenaeeens 37
1O AttACRIMENTS...cc.eiiiiiiiiiecieeee e sttt sb et e ettt e e eas 38
10.1 Specification of selected VPLS.......cccccooviieiiieeiieceeeeeeee e 39
10.2 Source list of selected Visual Programming Languages...........c..ccceevvverereennee. 40
10.3 VPL's descriptions apendiX........c..cecveeerieeeiiieeiieeeieieeeireeesreeesreeesveeessnsneeeeens 41
10.3.1 EICASLAB. ...ttt 42

10.3.2 Executable UML..........ccooiiiiiiiieeiieecie ettt 43

10.3.3 LabVIEW.ceutiiiiiieiieiiesieee ettt e 44

10.3.4 GAME MAKET.....ccuviieiiieeiiieeciieeetee et e e iee et e e e e e esetraaeeeeeesaasaaeeeeeennnns 45

10.3.5 MVPL.coee ettt 46

10.3.6 OPENWITE.....eeeiiiieeiiieeeieeeeteeeeieeesieeestaeeeeseeesaeesaseessaeeeessnsssseeeaeeannns 47

10.3.7 Prograph........cccueeciieiiieiieeie ettt ettt e et e e e e e e 48

10.3.8 SIMUINK.....oooiiiiiiiiieieeee e e e e 49

10.3.9 VISSIML.coiiiiiiiiiiiiiice ettt 50

1 Introduction

In educational praxis, flowcharts, showing the operations that take place inside of an
algorithm, are often used to demonstrate functionality of iterative optimizers. Although
this has proved to be a very powerful tool for teaching, taking natural human way of
perceiving and organizing information into account, its practical use ends right with the
dummy scheme at the conceptual introduction to the problem.

The subject of this work, rising up from this limitation, is to make it possible to hold with
the scheme as much as possible and profit from the educational value it provides; so that
users could use a library to create a scheme not only for drawing out the algorithm, but
also to set up the configuration, parameters and finally to launch it on and experiment
with the optimizer, while still operating on the scheme.

1.1 Evolutionary algorithms

Evolutionary algorithms [4] (EA) are nature inspired technologies used in modern
informatics as methods for robust optimization. It's basic idea comes from the evolution
of species, where the units of higher quality are given higher probability to survive and
reproduce. Using appropriate representation of genome, these methods can solve very
complex problems from various fields of application.

Candidate solutions to the optimization problem play the role of individuals in a
population and fitness function determines the environment within which the solutions
operate; and as in biological evolution, these candidates are put to mechanisms like
selection, reproduction, mutation and replacement. Evolution itself is then performed by
repeated application of these operators. There are many architectures of evolutionary
algorithms, probably the most basic and widely known has the following form:

[sekcton] ==> [crossover |
[initatization | ﬁ ﬁ ﬂ

[ﬁtness evaluation] <:| [mutation j

Fig. 1 - basic evolutionary algorithm scheme

As introduced above, this is example that most of students will typically face when
learning about evolutionary algorithms. The structure may differ depending on the
source, however the purpose remains. In the rest of the paper, attention will be paid on
how to take this scheme and bring it to life, using the concepts from visual programing,
and how to deliver all the benefits it can provide.

1.2 Guidepost

The techniques of creating functional schemes arise under the visual programing
paradigm and several technologies are provided today to handle these tasks. You can find
a brief introduction to the fields of visual programing in the next chapter (2) and you can
see the overview of its technologies attached at the end of the paper (10). By comparison
of these technologies, Matlab-Simulink language (4) has been chosen as the most suitable
for the implementation of the evolutionary algorithm library, on which the information is
provided in the specification of demands chapter (3). Description of the development
process is then covered in the chapter on developing the toolbox (5). At the end of the
paper there is a preview of the library (6), examples (7) and final review (8).

2 Visual programming

Expressing thoughts in a visual way has always been an important part of
communication. As one of the most common senses, people got used to perceive and
express problems by picturing and drawing them out. Visual representation of an issue,
such as models and graphs, can often be very helpful for the listener to imagine the
structure of the problem and relations between its substructures. During recent years this
visual paradigm has also made its way to those types of computer-based communication,
that were originally machine-application focused, to try to bring it closer to human
understanding and make it more objective and user friendly.

The needs of sharing and understanding problems give rise to visual programming
languages (VPL) which are becoming popular in several engineering and programming
related fields such as designing, modeling, data processing and many others. VPL is any
programming language that lets users create programs by manipulating program elements
graphically rather than by specifying them textually. VPL allows programming with
visual expressions, spatial arrangements of text and graphic symbols used either as
elements of syntax or secondary notation. Many VPLs are based on the idea of "boxes
and arrows", where boxes or other screen objects are treated as entities, connected by
arrow lines which represent relations.|[1]

VPLs may be further classified, according to the type and extent of visual expression
used, into icon-based languages, form-based languages, and diagram languages. Visual
programming environments provide graphical or iconic elements which can be
manipulated by users in an interactive way according to some specific spatial grammar
for program construction. [1]

Current developments try to integrate the visual programming approach with dataflow
programming languages to either have immediate access to the program state resulting in
online debugging or automatic program generation and documentation (i.e. visual
paradigm). Dataflow languages also allow automatic parallelization, which is likely to
become one of the greatest programming challenges of the future.

There are dozens (maybe hundreds) of VPL based on many different technologies,
existing textual languages and dedicated to different fields of application e.g. multimedia,
software modeling, physical system modeling, managing operating systems etc.
Overview of VPL technologies figuring at these fields can be found in appendix (10).

As the nature of visual programming has now been introduced, we should take a look on
the features it can provide us for our task — the implementation of a library that will
provide users with functionality to draw out, set up and perform the evolutionary
algorithm routine.

2.1 VPL's criteria for EA implementation

Although the Evolutionary Algorithm in its basic form is quite a simple structure as for
the implementation in standard programming languages, for our purposes it would be
good to explicitly mention several factors and dependencies that the language should
meet to satisfy an easygoing development and use of an EA based application. Rankings
of selected languages, derived from these criteria, can be found in attachment (10).

a) Data types & structures:
- It is desired that the language supports all the standard data types, e.g. integer and
real, to represent the structure of the problem.
- The data array structure or any related is most required to represent the character
of the genetic information. For several purposes it would be also nice to have
some strong and effective background of working with arrays.

b) Numeric & statistic operations and related support
« This is needed to perform a number of tasks from the initialization to the final
interpretation. It would be really nice to have it already included in the
environment in some effective and scalable form.
- It's an essential when we try to look objectively on the results of the evolutionary
algorithm run.

c) High level programming

« As a basic construct of programming it should support declaration of own
functions to effectively reuse the code during the run.

« It would be also nice to have a support of some stronger abstraction such as
classes, objects and interfaces to represent the unit in population, its structure,
belongings and possibilities.

« On the other hand purely abstract languages are not desired for the need of an easy
and quick implementation to a real problem/system.

d) Visual side

« As a specific requirement, the final use of the application should be able to go in a
visual way, which affects demands to the language also.

« A flowchart representing the algorithm should be transparent, divisible and easily
reconfigurable, thus visual object paradigm is welcome.

« It would be nice to be able to control the run and data flow of the program
completely from the visual environment

It should be easy to read, divided into logical segments, and user friendly

e) Scalability and flexibility
- The implementation should offer several possibilities to choose and configure the
algorithm, thus some support to read user's visual input would be nice.
« Some powerful background or joint with some commonly used interface or C-like
support would be appreciated.
- For the prospective use, no close-set or contracted software is eligible.

3 Visual design of evolutionary algorithms

The visual interpretation of an issue has proved to be advantageous in pedagogical praxis.
Besides the definition of the evolutionary algorithms and other iterative optimization
techniques, visual schemes are often used, showing which operations are performed
within an iteration of the algorithm. The motivation of this project is to gain a possibility
to “draw” these techniques, set up the parameters and launch them on.

3.1 Specification of demands

It should be easy to create a simple optimization loop from the blocks provided by the
blockset. At first we will focus on the EA in a standard form:

Algorithm Standard evolutionary Algorithm
begin
X = Initialize()
£ = Evaluate (X'?)
g=20

while not TerminationCondition () do
Xpar = Select (X9, £9)
Xoes = Crossover (Xpar)
Xoer = Mutate (Xegs)
fore = Evaluate (Xoeg)
[X(gﬂ); f(g+l)1 = Replace(x(g)l Xoffl f(g)l foff)
g=g+1

end

end

Fig. 2 - Evolutionary algorithm

The system should be as simple as possible and it should be also pretty quick to create
well-arranged basic iterative optimizers.

3.2 Standard EA blocks definition

The blocks could be divided into several groups, independently on the representation they
work with. Particular blocks then differ in the structure of inputs and outputs. In general,
they can produce two kinds of outputs:

1. Population of units (further signed as X)
2. Evaluated population of units (further signed as a double (X; f))

From the dataflow programming point of view, functions which differ in data input or
output should also be treated as blocks of different kind. This is a perspective that is
necessary to consider when we want to keep up with standards for the visual
programming.

The following table shows the block types, their inputs / outputs, functionality and
differences between the blocks from this point of view:

Function

To initialize population of N units, usually
randomly, also an option for other types of
initialization should be provided.

Type of block In
Out
Initialization
Population X
Population X

Fitness function
Evaluated pop. (X; f)

To evaluate a quality of units. Option to
define user functions must be provided
here, and also few benchmark fitness
functions should be included.

Evaluated pop. (X;)

To simulate higher probability to survive
and reproduce for units of higher quality.

Selection It should be possible to produce more
Population X units than the input size by copying the
good ones.

Recombination Population X To create offspring from the input
(crossover/mutation) : population. Various operators can be used

Population X to change the genome.
) To simulate the “stronger survives”
Replacement :J;l'sflgﬁggg%("% principle. In diffe?rence with Selection it
strategy ' ’ does not copy units and filter them only.

eval. new pop. (X)

The size of output is thus always less than
the sum of both inputs sizes.

Table 1 — specification of block types

Now we can observe the following facts:

« State of the algorithm is defined by the current evaluated population. It can be
thus obtained from fitness or replacement-strategy block.

- Fitness function proceeds with an unevaluated population, thus its inputs can
come from initialization, crossover or mutation blocks.

« Selection requires evaluated population as an input.

+ Recombination operators work with unevaluated population. The way they are or-
dered in the schema is unlimited; they could be also used right on the initial popu-

lation output.

« Replacement strategy requires two inputs, evaluated population both. The pre-
sumption is that the first will be the old state of algorithm and the second will be
an output from a fitness function evaluating offspring.

3.3 Non-standard EA blocks

There are several other configurations of EA. Some of them can be constructed using
standard blocks, for instance:

+ Generational model of EA
+ Units live just for the time of one generation. None of them survives to
the further one. This can be simply realized by not using the replace-
ment strategy block.

- Evolutionary strategy
- Using various generation or steady-state models. It uses “Selection” at
the end of evolutionary period, which could be rather classified as a re-

placement strategy and so implemented within the frame of standard
blocks.

However, some architectures of EA (or other iterative optimization algorithms) cannot be
implemented in the scope of the standard blockset. For example algorithms from the
Estimation of Distribution [5] (EDA) group use probabilistic model learning and
sampling to produce new generation instead of using recombination operators. For this
type of EA there will be a need to implement new blocks, representing the model
learning and sampling and to find the right representation for them.

Parameter adaptation is also a possibility that needs to be implemented outside the scope
of the standard blocks. For example we would like to dynamically tune the recombination
ratio, based on the current population state. In this case, new recombination blocks
having the ratio as an input instead of parameter and a general function block to
determine the value of parameter will be needed.

Another example of optimizer is Particle Swarm Optimization [6] (PSO). This algorithm
has no selection and uses generational model, thus no unit goes to the next generation
unchanged. That was already stated; however it also works with unique recombination
operators using information about actual best found positions of particles and global best
position. This information forms a model with memory that is a state of the algorithm.

3.4 Structure of blockset

Hierarchical structure of the blockset should:

- make it easy to find the often used blocks
- offer a guideline where to find the non-standard ones

Every operator could have a separate directory that could be further divided according
e.g. to used representation. The folder of non-standard algorithm can have the same
structure as the root folder and it should contain only those operators, which
implementation differs from default.

3.5 Specification of blocks

According to the block type fable 1 above, the following blocks should be implemented:

Block type Specific block Parameters
Initialization |Binary Dimension (length of chromosome)
Count (size o population)
Probability of generating zero
Real uniform Dimension (length of chromosome)
Count (size o population)
Box constraints
Real Gauss Dimension (length of chromosome)
Count (size o population)
Vector of means (for each dimension)
Vector of standard deviations(for each dim)
Selection Tournament Selection Tournament size
Output size
Roulette-wheel selection |Output size
Truncation Selection Portion of winners
Output size
Crossover | Single point crossover Probability of crossover (default 1)
Double point crossover | Probability of crossover (default 1)
Uniform crossover Probability of crossover (default 1)
Probability of taking gen from first parent
Real arithmetic crossover | Probability of crossover (default 1)
Distance parameter
Mutation Binary bit flip mutation | Probability of mutation (default 1/dim)
Real Gauss mutation Probability of mutation (default 1/dim)
Replacement | Truncation replacement |None
strategy

Tournament replacement

Tournament size

Table 2 — specification of blocks

4 Simulink & Matlab

Simulink is an environment for multi-domain simulation and Model-Based Design for
dynamic and embedded systems. It provides an interactive graphical environment and a
customizable set of block libraries that let you design, simulate, implement, and test a
variety of time-varying systems, including communications, controls, signal processing,
video processing, and image processing [2] extended to use of evolutionary algorithms as
well, using the Matlab interface to define your own functions and extend its capabilities.
Let us see some of Simulink’s features: [2]

- Extensive and expandable libraries of predefined blocks

 Interactive graphical editor for assembling and managing intuitive block diagrams

- Ability to manage complex designs by segmenting models into hierarchies of
design components

- Model Explorer to navigate, create, configure, and search all signals, parameters,
properties, and generated code associated with your model

« Application programming interfaces (APIs) that let you connect with other
simulation programs and incorporate hand-written code

- Embedded Matlab Function blocks for bringing Matlab algorithms into Simulink
and embedded system implementations

« Simulation modes (Normal, Accelerator, and Rapid Accelerator) for running
simulations interpretively or at compiled C-code speeds using fixed- or variable-
step solvers

« Graphical debugger and profiler to examine simulation results and then diagnose
performance and unexpected behavior in your design

« Full access to Matlab for analyzing and visualizing results, customizing the
modeling environment, and defining signal, parameter, and test data

« Model analysis and diagnostics tools to ensure model consistency and identify
modeling errors

There have been several reasons for choosing Simulink as the final environment for our
implementation. As you can see from the rating table (10.1) attached, it comes a winner
as for the number of total points, but for a very doubtful and subjective character of these
ratings, any of the leading group of languages could be also selected. The reason to give
Simulink those extra points to raise it from the others, for example LabView that is pretty
similar to Simulink, is the Matlab background base behind it, which is an independent
and very powerful programming environment extending its functionality rapidly.

When you incorporate Matlab code in Simulink, you can call Matlab functions for data
analysis and visualization. Additionally, Simulink lets you use Embedded Matlab code to
design embedded algorithms that can then be deployed through code generation with the
rest of your model [2].

Considering all these features you can see that Simulink meets all the requirements we
have drafted and last but not least Matlab-Simulink is widely used at author’s home
faculty - CTU FEE as well as in the academic sphere all over the world, which meets the
last requirement of effective use and application.

4.1 Evolutionary Algorithm as a dynamic system

As stated, Simulink is fully capable of our implementation of EA, however we have to
consider a specific point of view that it brings to the problem, which is that Simulink is
an environment based to design and model dynamic systems. This principally means that
to implement the EA effectively, we have to think about it that way.

Considering evolutionary algorithm a dynamic system should not cause any confusion;
when we look at the principle of each evolutionary algorithm, it does basically few things
- selection, crossover and mutation of the current population which is afterward replaced
with the new one; that is what every feedback dynamic system does - creating new states
of a system by handling the old ones (through the state matrix for the linear systems).
This consideration gives us an idea of the EA-look as a nonlinear dynamic system of the
first order and by these terms also its possible view in Simulink.

In1

In1 Out! 1] In 1 Out?1=—fpfin1 Out! e 2

Cutt

- - replacement
selection crossover mutation strategy

— 1 Out! f———p|]

we can imagine, that the state variable lives here:)
+— Outt f——1pp|

old population 1

4
-

z
Unit Delay

new population

initial value = initial population

Fig. 3 — a void draft of the EA design in Simulink

Please notice the unit delay block at the bottom of the loop, telling us that we are working
with the first order dynamic system. As you can also see in the design of EA, we are
about to use a bunch of self-defined functions in connected blocks (crossover, mutation,
selection) to handle EA specific operations. The following pages will provide
information on how to develop such a block-set and bring this visual-designed EA system
to life.

This has been the starting point of the blockset development. You will be able to see how
it evolved during the implementation and how it affected the design. At the end, the final
look of this functional EA loop will be provided for comparison.

5 Developing the Toolbox

The process of developing a custom library followed given specifications, which shaped
its design. The concept of the block-set has risen from the draft design above, showing
how the basic iteration loop should look like. Giving information on its development is to
describe architecture of the block-set and primarily to provide user a guideline on how to
extend its functionality further in a way to satisfy custom needs.

As we can see at the very beginning, the primary goal is to develop functional blocks,
representing the operations running upon the population. The idea will be then to take EA
from the perspective of functional programming and thus taking units within population
as a whole matrix, not as single objects, which also provides us with some features, when
taking Matlab matrix operations into account. As Simulink is nowadays able to handle
matrix signals, there should be no problem about that.

From this point we will consider the current population matrix a state of the algorithm
and the border between last and current state will be the “unit delay” block; like in a
dynamic system. The purpose of this block inside the system is crucial. By dividing the
iteration loop, we tell Simulink not to try to solve the system as an “algebraic loop”,
which purpose is to calculate the balance of the inputs and outputs and to find
mathematical equilibrium of the system, but instead we want it to really iterate the system
with the explicitly given functionality. This block will also stand a gate to the loop for the
initial population and will be covered by subsystem like others, not to confuse the user.

Having the functional blocks correctly set up and connected in the iteration loop,
Simulink engine will handle the rest of calculations and put the system to work.

Generally, the paper will not concern about the involved evolutionary algorithm
operations as various types of initialization, selection, crossover, mutation, replacement
and all other non-standard EA operations required in the specifications, as they are
widely known, their implementation is standard, and it is not a subject of this work.

Concrete implementation solutions and code will also not be discussed as it generally
comes under standard Matlab routines and user can freely check it out in the attached
library, where also documentation on each block is provided in the block mask and in the
code. Attention will be paid only to specific issues that come with certain types of blocks
and solutions requiring some workaround from standard Matlab.

The following chapter will describe the process of developing in Simulink; from creating
own functions and solving associated issues to incorporating the functions into blocks
and covering them with a user interface mask and finally to group the blocks into library
in the desired structure.

5.1 Extending functionality of Simulink

Now that we have design and the environment, we are about to build the real working
model of the EA system consisting of self-defined blocks. There are several ways to
bring custom functionality into Simulink. Either you built it up from already existing
blocks default to Simulink, which is a nice way to quickly solve the easy ones, or, if this
doesn’t meet your requirements for expressivity, you put some code into the system. To
put some code into the system, you can basically consider one of these ways:

Fen block applies the specified mathematical expression to its input. The
expression differs from a Matlab expression in that the expression cannot perform
matrix computations and does not support the colon operator (:). Its expressivity is very
similar to a standard calculator that handles logical operators.

fiu)

watLes | Matlab Fen block applies the specified expression, as the previous one, or
Funetion [additionally a Matlab function to the input. This block is also able to handle
matrix and complex input signals in a way like atan2(u(1),u(2)) or
u (1) ~u(2); on the other hand it is slower than the Fcn block, because it calls the Matlab
parser during each step.

Embedded Matlab Function allows you to fully describe functionality in a
code, including all algorithmic routines and matrix operations as in a

Embeadea Standard custom Matlab function; however this block works with only a
MATLAE Functian — gibset of the Matlab language, for more information about its restrictions
please follow the next Embedded Matlab subset overview.

u fen rE

S-functions or system-functions provide a powerful mechanism for
extending the capabilities of the Simulink environment. An S-function is
a computer language description of a Simulink block that is compiled
using external tools. This block basically gives also a full expressivity stated in a code
and moreover it provides tools to describe/override standard behavior of a block.

q system

The Fcn and Matlab fen block don’t meet the required expressivity, they are just too
simple. Embedded Matlab keeps most of its expressivity, is easily integrated with the rest
of Matlab/Simulink environment and is the most efficient way to deliver highly
optimized code, which can get useful alongside intensive EA fitness computations.

S-functions deliver required expressivity and they could be used as well; on the other
hand they require additional settings and even though their capabilities are very complex,
their reach out of the scope of Simulink, which makes them more difficult to integrate
with the rest and thus break the demand of scalable and easy to use system.

5.2 Overview of the Embedded Matlab Subset

Using Embedded Matlab extends possibilities of Simulink to scheme out algorithms
including calculations with N-dimensional arrays, matrix operations, work with complex
numbers, fixed point arithmetic and many other functions from the Matlab language. The
algorithm is afterwards compiled to C language using Real time Workshop, which is
another feature of Matlab. This is more effective than programming right in C, because
Matlab and Simulink offer already implemented and very complex functionality. The
algorithms stated in Embedded Matlab and figuring in a Simulink model are also easier
to read and debug.

5.2.1 Embedded Matlab technology

Embedded Matlab is a subset of the Matlab language that supports efficient code
generation for deployment in embedded systems and acceleration of fixed-point
algorithms. Embedded Matlab technology can generate efficient embeddable code thanks
to a powerful inference engine. The inference engine analyzes your Matlab code and
determines the size, class, and complexity of every expression. The information derived
by the inference engine allows Real-Time Workshop to produce code that is efficient and
tailored to your specific application, rather than produce generic code that can handle
every possible set of Matlab inputs [2].

On the other hand, to generate this efficient code there are some things you have to give
over. The Embedded Matlab subset does not support the following Matlab features: [2]

e Cell arrays*

e Command/function duality
e Matrix deletion

* Nested functions™

* Objects*

* Sparse matrices™

e try/catch statements

* Recursion

*signed features could be found useful in the implementation of EA

Also the functions used by Embedded Matlab differ in implementation a bit. Those
included in subset have the same name, arguments, and functionality as in Matlab;
however, Embedded Matlab functions come with limitations to allow generation of
efficient code.

In the following pages I will try to point out the main difficulties with embedded Matlab
and differences from standard, which crossed my way and that a typical Matlab user will
have to face when coming to embedded. At the end of each section I will briefly
demonstrate where and how it affected the EA blockset implementation.

5.2.2 Working with Variables

In the Matlab language, variables change their properties dynamically so you can use the
same variable to hold a value of any class, size, or complexity. In Embedded Matlab
functions, you must assign variables explicitly to have a specific class, size, and
complexity before using them in operations or returning them as outputs. This restriction
helps Embedded Matlab generate efficient code for embedded languages, like C and
VHDL that typically have a similar restriction. [2]

5.2.3 Working with Matrix Indexing Operations

The Embedded Matlab subset matrix indexing operations are limited and every matrix
must be initialized explicitly before indexed. The thing is that Embedded Matlab never
dynamically allocates memory so, for the size of the expressions that change as the
program executes, use for loops instead. This issue however can be overcome by
variable size data feature mentioned bellow.

» Example 1 - variable matrix 'mutants’ must be initialized to have specific
precision and size before entering the loop.

A new genomes offsprings pr

mutants=zeros (size (ingenomes)) ;

differential mutation 2-diff

%add a weighted difference of two vectors to the third one
for i=l:count

mutants (i, :)= child(1l,:) + F*(child(2,:)-child(3,:));
end

5.3 Workarounds with Embedded Matlab

Finally, there will be few modifications or workarounds to the embedded Matlab coding
style, which I’ve found crucial during the implementation of EA blocks. Solutions I’ve
found for the issues, I’ve been dealing with, I grouped to following:

5.3.1 Variable sized data

It’s a feature from the new Matlab 2009b and I consider it the biggest contribution along
with matrix signals routing within the Simulink interface. Not only it allows you to
change the size of own expressions, but it allows you to use the indexing functions as
'find' in its full expressivity, which is a substitute for logical indexing missing in
embedded Matlab. Without this feature, 'find' issues error when standardly called.

Variable-size data is data whose size may change at run time. By contrast, fixed-size data
is data whose size is known and locked at compile time, and therefore cannot change at
run time. You can define variable-size arrays and matrices as inputs, outputs, and local
data in Embedded Matlab Function blocks. However, the block must be able to determine
the upper bounds of variable-size data at compile time [2].

> Example 2 — The variable data size feature is not declared in code here as it can
be also setup in the block configuration. Here, the 'find' uses it inside to allocate
vector of variable size (up to 'cm' size), depending on the condition satisfaction.

sel = zeros(sizes,1l); .

A population winners
%$find the right pocket for every throw roulette-wheel
for i=l:sizes selection

sel (i)=find(cm>f(i),1, "first");
end

5.3.2 Persistent variables

This feature can be found very useful for the “blocks with memory” as various statistics,
algorithm state updates and any block that keeps some information between iterations to
the further generation. Persistent variables are local to the function in which they are
declared, but they retain their values in memory between function calls.

> Example 3 — persistent variable is used in a fitness statistics function to count
and keep the global minimum.

persistent mini

%$set up mini in a first iteration -

if isempty (mini) fitness best+min+avg
mini = min(fitness);
end

5.3.3 Extrinsic Functions

This is an ultimate feature, again available from the new Matlab 2009b. This is the last
one to use when no other solution is coming your way, or when you really need to use
some outsourcing, like in user-defined fitness evaluation.

An extrinsic function is a function on the Matlab path that Embedded Matlab
dispatches to Matlab software for execution. Embedded Matlab does not generate code
for extrinsic functions, thus no embedded Matlab coding style restrictions are needed to
follow. On the other hand, if these are included in a model, it cannot be compiled. There
are two ways to declare a function to be extrinsic; either you dispatch the function using
the directive:

» eml.extrinsic('function');

Or you call the extrinsic function using a function call:

» vy = feval ('function', parameters);

However, you have to be aware of the right extrinsic function calling to avoid errors. One
of the typical is that every extrinsic function, whatever output you declare it, returns an
mxArray also called a Matlab array. This one cannot be used within embedded Matlab
and thus the compiler throws an error in this case:

! function output ’y’ cannot be of Matlab type !

To avoid this issue, all you have to do is to let Embedded Matlab convert mxArray back
to the type of the declared variable assigned to it. However, if the data in the mxaArray is
not consistent with the type of the variable, Embedded Matlab generates an error.

[

= zeros(N,D); % y is a matrix of (N,D) size of double precision

>
> feval ('function', parameters); %convert the output to match

y
y
it

Extrinsic function should be used wisely for including them in a model bounds the sys-

tem with Matlab as it is send to it for execution. Therefore, you can run the simulation
only on platforms where you install Matlab software.

> Example 4 — extrinsic user defined fitness function, set by name in parameter of
block, is called here using 'feval’ function call.

%initialize fitness to right size

fitness = zeros(size(ingenomes,1),1); user-defined fitness
%call user defined fitness from param gg
fitness=feval (char (gg), ingenomes) ;

5.4 Creating custom blocks

Now that we have explored Embedded Matlab functions we would like to package them
into custom blocks and add them to the library. This is a simple routine that we mange by
a subsystem block. A subsystem is a keystone for creating custom blocks, custom
libraries and sub-libraries and it provides functionality like masking (5.6) to deliver
customized final look of blocks.

When you have your custom functionality defined and prepared either in a form of
embedded function or modeled by another Simulink blocks, you can simply cover them
with subsystem by:

1. Copy the Subsystem block from the Ports & Subsystems library into your model.
. Open the Subsystem block by double-clicking it.
3. In the empty Subsystem window, create/copy the subsystem. Use Inport blocks to
represent input from outside the subsystem and Outport blocks to represent exter-
nal output.[2]

5.5 Subsystem inputs and outputs intermezzo

We use subsystem blocks to systematically divide and group functionality to provide user
with maximal readability and transparency. The same way you can deal with signal
busses and handle them using bus creator - to bundle a group of parallel lines carrying
different signals to one and bus selector - when you want to extract them back. For
instance when we want to handle population, consisting of genomes and fitness:

ingenomes

fcn genomes

infitness winners

<gENOmes>

population

Selection

Fig. 4 — subsystem (Selection) expanding structured input signal

population

genomes schwefel fitness

h 4

ad

genomes

Schwefel

Fig. 5 — subsystem (Fitness function) creating structured output signal

Using bus blocks, default to Simulink, is more scalable than using structured signals right
within the functions that need to be registered in Simulink workspace. By contrast to
these, no other actions are required for bus creator/selector and user can freely expand or
cover the structured signal wherever needed. All you need to be aware of is to keep the
name conventions of the signals.

As Simulink is able to handle signals from bus blocks, e.g. propagate their name and de-
termine their size, using them in a library complicates changing the library blocks and in-
creases the likelihood of errors. It is recommended so, to be careful of the name conven-
tions and structure of signals transferred between blocks, when bus blocks are covered
from a user by subsystem as in our case. However once you build up the model, Simulink
signalize nicely the use of structured signals by using the bold lines for them, no matter
the level of system view, to keep you aware of their use.

Once you have a Simulink subsystem that models the desired behavior, you can convert it
into a custom block by:

1. Masking the block to hide the block's contents and provide a custom block dialog.
2. Placing the block in a library to prohibit modifications and allow for easily updat-
ing copies of the block.

5.6 Masking blocks

After creating a block, providing desired functionality, we will setup the interface that
shows up to the user. This is necessary for the users parametric input to the function
inside as well as it offers various visual and other tunings to make blocks more user-
friendly. For the complex capabilities of masking, please see masking in Simulink[2] as I
will highlight just very few of it. To create a mask, right-click on your subsystem and
choose mask a subsystem; then the mask editor comes up to provide you with:

Mask Editor 1O x|
Icon & Ports I Parameters | Initialization | Documentation |
Options Icon Drawing commands
Block Frame
I Visible - I
Icon Transparency
I Opague - I
Icon Units
I Autoscals - l
Icon Rokation
I Fixed - I
Port Rotation
I Default - I
Examples of drawing commands
Command I port_label (label specific ports) hd I
ET
Synkax port_label{'output’, 1, ey
Unmask I Cancel I Help | Apply

Fig. 6 - Simulink block mask editor window

Icon and ports - You can set up the look of the block by plot drawing commands and
change the labels of the block input and output ports. You can also go further and set up a
bitmap image mask or define a shape of the block; however these setting can slow down
the upload of a library in the browser.

Parameters - You are able to let user define values of input parameters through the mask
of a block, containing the function to use them. Just declare the name of the variable to be
used inside and the name to be appeared to user. You can also check a box to make
parameters “tunable”, which means to let user alter them during the simulation. This can
be very useful for example to tune mutation on the run, but be aware that this behavior
can somewhere cause variable size data problems as described in Embedded Matlab part.

Initialization - This is a place to write commands for the block to be progressed on the
startup. I found this useful just for the preparation of parameters and interaction with
them, e.g. for processing a string parameter in user defined external functions.

Documentation - Describe functionality of the block in plain text that shows up to a user
in the library browser as well as help on the block.

5.7 Creating a library

After having all the blocks in their final look, we group them to a library. Creating a new
library in Simulink consists of two steps:

« Create a new library as a model containing all the elements you wish to use in the
library in desired structure.

« At this step it is good to regroup the blocks using void subsystems to the
structure given by specifications of the library. All the subsystems’ names
and masks shall be visible in the library browser.

« Add the library to the library browser. This one is a bit more complicated. In the
directory including your model file, you have to include a siblocks.m file. That is a
specific .m file configuring the settings and behavior of the library e.g. names,
appearance, reactions and so on. The approach you use to create the s1blocks.m file
depends on the requirements for describing the library:

If just a minimal s1blocks.m file meets your needs, then a sample file is
available on mathworks site

« If you want to describe the library more fully, consider copying an existing
slblocks.m file to use as a template, editing the copy to describe your
library.

For our purposes we need to alter the slblocks.m, change some settings and most
importantly to register the library permanently. That can be done manually by adding the
library directory to the Matlab path, or automatically by including following lines at the
end:

» % Add the toolbox to the path
addpath (genpath (fullfile (Matlabroot, '/toolbox/EA')))
savepath
% End of slblocks

Move the folder with the library and slblock.m files to the place, or change the path
accordingly, but it is good to have them all together in the Matlab root toolboxes.

When everything is set, you restart Simulink and should be able to see the toolbox in
your library browser. You are still free to alter the library in almost any way including
using parts of other toolboxes, changing the masks, creating subfolders, labels etc., just
right-click on the library in the browser and “open the library” as a standard model.

* please see the library folder on the CD attached to this paper. You might add it to your
library browser by adding a path to it as described above. Then you will be able to see
and check out the library and models shown bellow for yourself.

6 Library preview

As the process of development of the blockset is now clear, we can have a look on the
EA library. When you open your library browser, you should be able to see the ‘EA’ item
in there (after setting the path to it — see attached files and previous chapter).

i ™
W simulink Library Browser - - = - . E@g
File Edit View Help
O = »»| : Enter search term - 4
Libraries Library: EA | Search Results: (none) I Most Frequend 4 || »
- 3OUrces i
- User-Defined Functions
+|- Additienal Math & Discrete
+ E Agrospace Blockset iR - EDA - Initialization
+ E Communications Blockset
E Control System Toolox £ E Mutstion E Poo
E Data Acqguisition Toolbox
_"E EA — FParametr Recl "
- Crossover tunning Eplacemen
- EDA - Selection - Statistics
- Initialization
- Mutation L ’
- P50
+|- Parametr tunning
- Replacement - iterator
- Selection -
Block Description x
~
EAliterator: thiz is the central element of EA terative optimizer and it iz critical for |—|
function of each discrete iterative(non-algebraic) loop. —
to contruct the loop just connect the (evaluated) initial population to init pop’ input
and the new recombined/undated and evaluated ooculation to the 'in oo’ inout. "
Showing: EA

Fig. 7— EA in Simulink library browser

As for the look, you can see there are colors used to distinguish operator types according
to the folder tree and these colors are inherited by particular blocks; the crucial iterator
block is red and green color is used for all the fitness related blocks.

You can now use it in the same way as any other library in your browser and even
combine with any other signal-compatible library blocks. The structure of the library is
hierarchically divided as demanded in specifications; on the top level the keystone of
each iterative system stands — the red ‘iterator’ block. Together with it, there are
directories for all the EA operators and some additional statistics tools, which are either
further divided or include the particular blocks.

So to create an EA optimization system model, you just open a plain new one and drag &
drop desired blocks from the library into your model to connect them. We will look on
example of how a basic EA system using the blockset looks like.

e e l.';-_

two point Crossover real Gauss mutation counter

truncation replacement
iterator

winners new genomes

Y

truncation selection

Display number

user-defined fitness1

Scope

user-defined fitness real constrained fitness best+min+avg

Fig. 8 — EA model

Please notice the structure and compare it with the conceptual design on fig. 1, drafted by
demands on the system before the real implementation of the blockset. You can see the
structure has been kept but for the need of well-arranged system, few features have risen.
It’s the initialization of population connected right within the ‘iterator’ block which
stands for the ‘unit delay’ block; that makes it more transparent to manage the population
signal. Also additional control of the loop was added, not to bother the user, but provide
tools to monitor the optimization and option to affect it manually.

Also some non-standard architectures of EA have been implemented. Let us have a short
look on how to build them up too:

velocity = P = velocity
population wview personal best . new population
view global best _Lb simout LAl ITIEaT
PS0O model update PSO population update
pd To Workspace

Rosenbrock

Rosenbrock real Gauss

initialization

Fig. 9 — PSO model

roulette-wheel
selection

EDA model update
REAL

EDA population sample
REAL

. truncation replacement
iterator

Rosenbrock

Fig. 10 — EDA model

Before you finally run the system, check all the blocks

Rosenbrockl

real Gauss
initialization

for their parameters. You should

make them consistent in the whole system, especially from the population size point of
view. This is the likeliest source of issues that the user will be dealing with. Let us
concisely look at few masks to see parameters to set up for the standard EA system loop:

B/ Source Block Parameters: real constrained

(S |

real initialization (mask)

contraints.

Constraints are expected to be a vector of size

constraint.

Parameters

population size

generates random real initialized population of specified
count a size of genomes using uniform distribution in given

where first row is a start and second is an end point of

[2,dim],

20}
genom length

5

constraints {2,dim})
[11111;5555 5]

[OK

] (J [

Cancel

Help]

Fig. 11 - initialization mask

B Function Block Parameters: Tournament selecti... @1
- -

selection {mask)

Implements standard tournament selection of given
individuals can be replicated within the population.
Parameters

output winners count

tournament size and output population size. High quality

tournament size

4

] [] [

Cancel Help]

Apply

Fig. 12 - selection mask

7 Testing the blockset

Now according to the models above, the time has come to show some outputs. At first,
using just the library itself, you can find several benchmark fitness functions in there. Just
build up the model as described and choose one to put in. To monitor the optimization
run and characteristics you can inspect the actual best, global best and average fitness in
the output from fitness best+min+avg block and watch number of fitness evaluations in
the ouput of counter block. To view these values you can use the scope or display block
as shown above. You can also save their progression to a variable in workspace or to a
file, using 'to Workspace' or 'to File' block, for further processing. We will look at few
examples of what the scope gives:

B Scope = El uScopel o |
[

%10

x10

Fig. 13 - EA on Rosenbrock fcn

uScopel E@éjw
SR PLrL ARE B AR »
4

»10

et O

Fig. 15 - EDA on on Rosenb}ock fen Fig. 16 - Characteristics closeup

If you look closer, you can see discrete steps progression of blue, yellow and violet line
standing for global best, actual best and average fitness. If you use some kind of elitism
strategy (e.g. Truncation), global and actual best bend with each other. Thus blue line sets
the lower bound for yellow line which sets it for the violet one. Distances of these bounds
can tell you about actual diversity of population and you can use it to step into the
simulation and tune recombination rate.

u Scope = | E |-

SgBEPLPe ARBEB B2 A

Al

Fig. 17 - external manual tuning of mutation

As you can see here, average fitness progression is not as smooth as before and is rather
kind of fluctuating instead; this is caused by external manual tuning of recombination.
That can become handy when average fitness is too low, which is mostly caused by low
diversity of population and progression can get stuck at local optima. You can then
increase the mutation and crossover rate or distance parameters to try to get out of it.

7.1 Bridge-building structural optimization example

The goal of this example was to create and solve very complex problem using the
blockset connected with the Matlab interface and so to demonstrate potential of joining
these two technologies together.

The subject of this example is optimization algorithm trying to find the best possible
construction of a railway bridge consisting of the least possible number of girders with
given maximum tension limits. The structure is working upon a given triangle grid
represented by 2D graph. The issue was given this simplified form to quicken the
calculations by avoiding non-linear equations describing the bridge stability.

The optimization of structures or so-called multi-disciplinary design optimization is quite
a popular field of application of evolutionary algorithms; however, by using the linear
form of the issue we can incorporate also a linear programming optimization routine to
save a lot of work from EA and make it more effective; and this is where Matlab
environment features become beneficial, for we will use its implemented /linprog
function, that could be hardly achieved in pure Simulink.

7.2 The algorithm

This is just a basic introduction of a problem, for the closer description and related work
please follow the link [3].

The representation of genome is a real N-dimensional vector, where N is a number of
girders/variables respectively. The values inside the vector set the bounds for a maximal
stress inflicting each girder. This is the structure upon which the EA operates and in this
form it is also handed over to the linear programming routine. The /inprog then searches
within these bounds for a solution of a huge linear equation system describing the bridge
physical stability.

The basic principle of the system is the equilibrium of every joint figuring inside the
construction. The vector of tension force inflicted by the girder is of the same counter-
wise oriented value on both endpoints for each particular girder. The external load
pressure of the bridge is involved on the right side of equations as a constant.

In the initialization the borders are set to be relaxed in order to make it able to find at
least some solution in the equation system. When some feasible units are found, the
evolution may begin; for the unfeasible ones (those which genomes cause the bridge to
fall) the fitness is penalized.

The shape of the fitness function, minimizing the use of girders, forces the tension values
to go down around zero, which means the girder is off. Bellow is an example of how the
fitness function looks like for each of girders (notice the non-convex shape which makes
the issue unable to be solved just by using linear programming):

016

stress

Fig. 18 - fitness function used in this example

7.3 Construction examples

Here is an example of what can be achieved by evolutionary optimization to reduce the
number of girders, used material and costs of the construction.

=0 T T T T T

— fitness (20535 3522 —» zpotreba nosniku (95 3356 %

50 - =

40 \ —
N\

=0+ =

20 - i —_— -

D 1 1 1 1 1
o 20 40 B0 a0 100 120

Fig. 19 - initial state of bridge construction

B0 T T T T T

— fitne=ss (994 5246 — =zpotreba nosniku (45 21935 %

40 -

0+ s — .

10 B

D 1 1 1 1 1
o 20 40 B0 (=] 100 120

Fig. 20 - optimized bridge construction

*a road itself, which is not a part of the weighting support design of the bridge, is
supposed to go on the second level from above (at the level of y=40).

8 Summary

8.1 Usability report

The process time to construct a new model of EA in a custom structure of operators used
is taking just a few minutes at maximum. For instance the model of EA in the basic form
took me less than 2 minutes to build up including the time to set up the parameters.
Speaking nothing of the transparency and user-friendliness this is surely much more
efficient way than programming it from scratch, or even copy fragments of a code trying
to paste them together.

The system model is also easy to debug, when the whole optimization algorithm is
separated from the instance of problem that is either covered in fitness function block or
extrinsically called. Thus when the optimization problem structure is stated, it can stay
completely and safely untouched, while the user is tuning the optimization and
experimenting with EA. Simulink also uses a very transparent inference system to warn
you about the issues in your code and reference you directly to the weak points of your
model, even inside the embedded functions.

Experimenting with EA just couldn’t be easier; you choose the operators you consider
right and see how they fare. You run the whole optimization in a “click to play” way and
watch the progress online. If the fitness is not having a good run or the number of
evaluations is growing too much, you break the simulation and change the operators by
just drag & drop manipulation. If you are satisfied with operators but would like to boost
it up even more, you can tune the parameters of mutation and crossover and see how it
affects diversity of population at the same time.

The educational value of the working model is clear and was stated on the very
beginning; people just like schemes. The possibility to see all the functional parts of the
algorithm on the same plane at the same time gives much better understanding of the
problem. Relations between these parts, represented by the lines and arrows, make it so
much more transparent than some hardly findable references hidden in the code.

8.2 Future work

The library was oriented to user friendliness as a quick and easy practice to construct an
optimization algorithm model; however users might want to go behind and use it for
advanced experimentation and testing of algorithm performance. This may include a need
to repeatedly launch the model and cumulate the statistics results, which may be further
processed in various ways. To perform any non-standard operations upon the population,
user can use prepared block ‘general pop function’ to call self-defined function from
Matlab, however when intending to proceed to the advanced level of testing, users have
to reach outside the scope of blockset library.

For the advanced control of the algorithm model as a whole, which means to handle not
just the population but to control the flow of optimization model itself, users are enabled
to use Simulink connection with Matlab. Controlling Simulink models from Matlab is a
very complex option; quick and easy - any action you could possibly make in Simulink
model can also be achieved from Matlab environment - from building, connecting and
setting parameters of blocks to loading, launching and stopping the model. Thus any
work routine performed upon the model can be treated as a Matlab code in a script with
equal options and functionality. For the set of functions realizing these routines (Simulink
functions) see Simulink reference again [2].

Advanced users familiar with Simulink could use as well the conditional, triggered and
enabled subsystems [2] combined with iterative blocks to simulate the behavior of
restarting and modified control flow. As this behavior is a bit of advance, it requires
additional attention, for example from the data size point of view. Models using these
techniques then restrain from the original idea of transparency and easy to use systems,
thus such external control of algorithm flow was not included in the library. However this
could be a subject of future library enrichment.

8.3 Conclusions

The work was oriented for implementation of the library that you can see attached, this
paper was only to describe its development and use.

On the beginning it was not clear that this task will be possible to implement, but the
technology of Matlab Simulink, selected for the implementation, proved to be a good
choice as it provided all the functionality necessary. The Simulink library set has been
extended and final models constructed from the EA blockset meet all the requirements
stated at the beginning.

Educational value and usability of these models have been proved in the structural
optimization example as the library was successfully used and presented in an
independent seminary work and saved a lot of effort when it came to optimization by
evolutionary algorithms.

Although there have been some obstacles and restrictions with Simulink visual
programing technology, it is now clear that the visual paradigm idea that raised at
premeditation of this work was appropriate. Simulating algorithms and treating them as
models is beneficial as it gives user better control over the algorithm, even during its run.

The library is ready to provide evolutionary algorithms functionality for either
educational or basic practical use. As Simulink library is quite a scalable format, it can be
easily extended by another custom optimizer or other routine, which is possible to be
transformed to a block structure as described above.

[1]

[2]

[3]

[4]

[5]

[6]

9 References

Visual programing languages on Wikipedia, free encyklopedia:
http://en.wikipedia.org/wiki/Visual programming_ language

Documentation on Simulink technology on Mathworks, vendor sites:
http://www.mathworks.com/access/helpdesk/help/toolbox/simulink

Sourek, G., Bridge-building structural optimization, Y330IS seminary
work, available in Czech language on the CD attached.

Goldberg, David E., Genetic Algorithms in Search, Optimization, and
Machine Learning, Addison- Wesley, 1989.

Larranaga, Pedro and Lozano, Jose A., Estimation of Distribution
Algorithms, Kluwer Academic Publishers, 2002.

Kennedy, James and Eberhart, Russel C. Particle swarm optimization,
IEEE Service Center, 1995.

http://www.mathworks.com/access/helpdesk/help/toolbox/simulink
http://en.wikipedia.org/wiki/Visual_programming_language

10 Attachments

10.1 Specification of selected VPLs

Let me introduce some of the VPLs to outline the similarities and differences in
character of each. I will try to mark out in common their capabilities and advantages to
our task of visual programming of the evolutionary algorithms and its application. Few
selected in a table bellow are introduced behind the link with a short general description
and print-screen which is in my opinion a quick and nice way to make a picture of it.

The following table shows the qualities of each language according to our purpose. The
criteria mentioned (2.1) have been grouped to logical fields, to make it easy to rate the
individual aspects of selected VPLs. The total value should say something about the final
usability of the VPL to implement, use and control the Evolutionary Algorithm.

Application | popular | scalable Math Types smart
-/- & & & & & Total
attribute visual | flexible | support | structures | usable

Simulink 8 8 10 9 9 44
Labview 8 8 10 8 8 42
OpenWire 7 8 7 8 9 39
EicasLab 7 7 8 7 7 36
MVPL 8 8 4 7 8 35
VisSim 6 7 7 7 8 35
Fx engine 5 8 5 8 8 34
SCADE 6 6 9 6 6 33
Limnor 6 6 6 7 7 32
Prograph 6 7 5 7 6 31
GameMaker 8 5 3 5 8 29
OpenDX 7 5 7 5 5 29
MSTworkshop 6 6 5 5 6 28
XUML 9 7 2 3 4 25
CODE 6 7 3 2 4 22
Quest 3D 7 4 3 3 3 20
Virtools 7 3 4 3 3 20
Authorware 6 3 3 4 4 20
Ladder logic 3 4 5 4 4 20
Functionblock 2 3 6 5 3 19
OpenMusic 6 5 2 1 4 18
Alice 7 3 2 2 3 17
ThingLab 6 4 2 2 3 17
DRAKON 3 3 6 3 2 17
Appware 3 5 2 4 3 17
Baltik 6 2 3 2 2 15

Table 3 — rankings of VPLs

*The rankings above do not tell anything about general quality of software. They are
highly subjective and for specific use only.

10.2 Source list of selected Visual Programming Languages

The information used for ranking the selected VPLs have been gathered from the vendor
sites and Wikipedia [1]. For the quotations and further description of VPLs please check
the links assigned in the following table:

Alice http://www.alice.org/

Appware http://en.wikipedia.org/wiki/AppWare
Authorware http://www.authorware.com/

Baltik http://en.wikipedia.org/wiki/Baltie

CODE http://www.cs.utexas.edu/users/code/
DRAKON http://sage.com.ua/en.shtml?e610

EicasLab http://ids.fzi.de/acoduasis/
Functionblock http://en.wikipedia.org/wiki/Function _block diagram
Fx engine http://www.smprocess.com/
GameMaker http://www.yoyogames.com/gamemaker/
Labview http://www.ni.com/labview/

Ladder logic http://en.wikipedia.org/wiki/Ladder logic
Limnor http://www.limnor.com/
MSTworkshop http://en.wikipedia.org/wiki/MST_ Workshop
MVPL http://msdn.microsoft.com/en-us/robotics/aa731536.aspx
OpenDX http://www.opendx.org/

OpenMusic http://recherche.ircam.fr/equipes/repmus/OpenMusic/
OpenWire http://www.mitov.com/html/openwire.html
Prograph http://en.wikipedia.org/wiki/Prograph

Quest 3D http://quest3d.com/

SCADE http://en.wikipedia.org/wiki/SCADE
Simulink http://www.mathworks.com/products/simulink/
Thinglab http://en.wikipedia.org/wiki/ThingLab
Virtools http://a2.media.3ds.com/products/3dvia/3dvia-virtools/
VisSim http://www.vissim.com/

XUML http://www.executableumlbook.com/

Table 4 — information sources of VPLs

http://www.executableumlbook.com/

10.3 VPL's descriptions apendix

10.3.1 EICASLAB

The professional software suite for automatic control design and forecasting — represents
an innovative approach to the design of automatic controls.

EICASLAB has been conceived and developed as a highly professional software suite
supporting designers of automatic control system architectures.

EICASLAB supports the automation of industrial processes through powerful tools for
modelling plants, designing and testing embedded control systems.

EICASLAB assists all phases of the design process of the control strategy: from system
concept to finalised control structure.

GRS CCIES R Ein

10.3.2 Executable UML

Executable UML is used to model the domains in a system. Each domain is defined at the
level of abstraction of its subject matter independent of implementation concerns. The
resulting system view is composed of a set of models represented by at least the
following:
+ The domain chart provides a view of the domains in the system, and the
dependencies between the domains.
« The class diagram defines the classes and class associations for a domain.
- The statechart diagram defines the states, events, and state transitions for a class
or class instance.
+ The action language defines the actions or operations that perform processing on
model elements.

BN Tew el Mopnh feicdl B @dew Hoo

S | | s NE N R
1 | B Pochoge s er 15 =a [- I FF = O
=Y (SR L -
L Ty = =] [p—— B [b J
a0 | 4 (=} & L £k oruriooen i
= e ::; L * e cheni e DarveeriorSverifrorvher ay- Bl 2 . . oo e 3 02 o svrhypers e
= T — = UF B0 Mg m T e b 4 3 02 o
e by e - e 4 © rusalooe i
) LS O Ao - B U £23: 2aring w Wi T J0ent bpped o) 200 e el 0 e] e sy T
T J i
___um_ﬂm.rmbd-dﬂ = ¥ ExhSrming = RET JFaoken] i 3 e D] b =] -]
o LMD SO A ey g g -
":'::‘ = e 7 B g = T bl @ 1% med P! wlicn i3 % =1 Dacoreacind
o) Cprrerind
"'m;:: i Tl =
g [a—
ﬁw" ? @ i!mmf
: v L e 0l 1 oo koL) vy -
=i i - _argur.sams e St e [rran el b Commeting
[+ buskf progesmes A P Stng = 0T Fard bufzn oo ar @ 1k et e e e ";;:"nw %
5| butd i A Kz g = e o bunoe a7 W % ol | R iy b chae T KR
B rodre, et U E200: b 0 [iendom oy & 2% ot fopata st b L S D
o ¥ il fLytate o Lk b Firnl
]
Y Fx o e
8 02 crurvre e
= B Lo i iy
a1 2 CerosreLnimad | [P e T S
£k Lol e
al - 5
& oot badan [ol sl
T P ien "
E H -
o T T I
Ve AL ol

hl.mmu:- 5

(s Probderw [E
1 e, 1 waming, O el

| Bmpace | Meaate S e
R TP ETRPRSTE PR T s S P S

dd
1

S g IR o' s LS

10.3.3 Labview

Labview is a graphical programming environment used by millions of engineers and
scientists to develop sophisticated measurement, test, and control systems using intuitive
graphical icons and wires that resemble a flowchart. LabVIEW offers unrivaled
integration with thousands of hardware devices and provides hundreds of built-in
libraries for advanced analysis and data visualization. The LabVIEW platform is scalable
across multiple targets and operating systems, and since its introduction in 1986 has
become an industry leader.

¥ Scb 30 Graph {eng) i Block Digrom X =
Fle Edt Vew Project Operate Tools Wndow Help M Fle Edbt Preferences Control Edtor Applcations
—— =d |2
(S]] @[] [2]] [sal ot ot tomtonront |~ 2] e (€071 (2] | O || o] A [&5 21
= P .
= scilab-
il [Script Scilab] X
ig ispace(xmin, xmax, Copyright (c)
iy=lnspace(ymin, Consortium scilab
0 ymax, 50); for i=1:50, for [Seth—
[0} 50,2(ir
magsin) 0+ | L &
—] i A dx 1 =] .
EH& = magsin(y(i -dy,,end,endl:‘ — B Startup execution:)
E L> — loading initial environment
-->exec('5CI/demos/alldems . dem'’
[— | / tichoose =loix
: =k
i Click to choose a demo
— 5 'LI {see also in SCIDIR/demost...)
1 3 S —
Ld = 7 to SCILAB
P. Scilab 3D Graph (eng).vi Front Panel i -0l || |Graphics

Fie Edit View Project Operate Tools Window Help Simulation

[
IE [18pt Application Font |~‘|=.;._'i 7|1:'I ﬁ'] |SliM ;;:‘;?‘Pmcessmg

LT Optimization
X Speed ~ YSpeed I Graph & Networks
O — SEE—— A— EES
R L e e] Random
ST T 05 1 EEBEE A 0.5 1 ITKITCL demos

Communications with PV

Cancel

4 search || 27 view~
| »Programming

-

Measurement 1/0
Instrument I/0
Vision and Motian

Mathematics

resolved by Sciab

Linear dynamic system ‘

Signal Processing

Data Communication
Connectivity

Control Design & Simulation
SignalExpress
Express

i (I~

Input signal Analysis output

Signal Manipu... Exec Control Arith & Compar

dwlwvvwvwvwwv~w

-

Addons
Favorites

Scilab <--> LabVIEW Gateway|'

-

-

User Libraries

L« | vz | Selectav...

10.3.4 Game maker

This program is designed to allow its users to easily develop computer games without
having to learn a complex programming language such as C++ or Java, while at the same
time teaching the user basic syntax and OOP. For experienced users, Game Maker
contains a built-in scripting programming language called the Game Maker Language
(GML), allowing the user to further customize their game and expand features. Games
can be distributed under any license subject to the terms of Game Maker's EULA, in non-
editable executable .exe files or as .gmk (Version 7.x), .gm6 (Version 6.x), .gmd (Version
5x and 4.x), and .gmf (Version 3) source files. Users of Game Maker are allowed to
distribute and even sell their creations as long as they comply with the terms of the Game
Maker EULA, which prohibits a number of illicit programs such as those which involve
unauthorized use of copyrighted material or those which are unlawful in general.

ﬂ-m&mmmmwm
DAL 29 P) EORELTI@D 0E+ ©

0 Sprite Praparties

5 Path Properties. w=0
W 9 BB e bt Swxs ST
Hawve pathl)

144,360 sp: 100
164,80) #pi 100

1286,0200 sp: 100 I
272,381 spr 100 — I

L' Sound Prope... = O X

oy le Area: {0024 12, 555)

5 E'#lig i

peE F 0

goe 1| iy

- ?' ill;tl.',

| x4le 1 208 %‘@ ﬁ. l L > 'l 'R

(i GICHE] Y

I ImHi

(o] (e

« »

45

10.3.5 MVPL

Microsoft Visual Programming Language, or MVPL, is a visual programming and
dataflow programming language developed by Microsoft for the Microsoft Robotics
Studio. The Microsoft Visual Programming Language is distinguished from other
Microsoft programming languages such as Visual Basic and C#, as it is the only
Microsoft language that is a true visual programming language. Microsoft has utilized the
term "Visual" in its previous programming products to reflect that a large degree of
development in these languages can be performed by "dragging and dropping" in a

traditional wysiwyg fashion.

'@ RoboticsTutorial3 - Microsoft Visual Programming Language

File Edit

NEE 9

Build Run
B X r W

View Help

Basic Activities > X GenericContactSensors X |

GenericDifferential Drive X

| Project v X

T Activity = Diagram X |

RandomDrive X

4) Diagrams

8 Vol GenericContactsensors
12! Caleulate
%42 Data
S} Join

== Merge

=

®-Update

4

Variable RandomDrive
t " Backup® # = Result
2 Switch 4

[tE1List

Services - X
Find service ...

= All Found E
& Announce

RandomDrive
Turn-® “ ® Resuft
3 Join

AfterTurn

AferBackup

Polarity

m

Arcos Bumper
#8 Arcos Core
8 Arcos Drive
& BlobTracker
% BoeBot BASIC Stamp 2

&% BoeBot Generic Contac

Calculate

{ -Polariyy §

Polarity

&% BoeBot Generic Encode

% BoeBot Generic Mator
% Common DSS Test Imp
+2» Direction Dialog

¥ Direction Dialog (VB)

& Explorer

B fischertechnik® -~

u'f Diagram
I* g Configurations

| Properties * X

RandomDrive

Drive-® # L]

[his element has no propertie

P m b | < m

Saved
W

10.3.6 Openwire

OpenWire is an open source Dataflow programming VCL library that extends the
functionality of Delphi and Lazarus by providing pin type component properties. The
properties can be connected to each other. The connections can be used to deliver data or
state information between the pins, simulating the functionality of LabVIEW.

j “Drelphi 7 = Projectl i T ! — [
lFlla Edit Search Wiew Project Run Component R Opanra Todls Window Help H > - |%§,I
|50 -8 | @ | & 5| @ || Stendad| RTLSb [SCComos | Addiional] Win32] Sustem| Data soses || Data Coritcls | dbEiovess | DataSinas| BOE 1Y

SeniE]e-uls el %@!@@@@@@!!99@@@@!8)

B Unitl.pas Lo ,-J,QJ,L‘J

> Unitl | 1RavPtager | -
Exploring Urit s l IPCowmonFilter, IPGrayScale, IPFixedFilter, IPBoxF_iI
=S l_ [T = |

ECCheckBox, Button=, SCButton, SCFileDialogs, SCPr

1511

pedet —I
-a*
-2
-E

iilaiig type
. TForwl = olase([TForm)
AThataPwopl: TRTDataPwnp:
IPLwagebisplayl: TIPDeagsbisplay:
IPAVIPlayerl: TIPAVIPlayer:
RTScopesl: TRTScope:
IPHistograml s TEPHLISTOQESm:
IPEmageDisplayz: TIPImageDisplay:
IPGrayScalel: TIFGravScale:
s IPLmagelisplayd: TIPImageDisplay:
7 IPFRmedFiker] - I IPFixedFilterl: TIPFixedFilter;
ek ::- SCCheckBoxi: T3CCheckBox:
edb - SCButtonl: TICButton:
TIPlmageDsS? ” TiRFisedFite : sCopenDialogl: TSCOpenDimlog:
SCProperty¥witchl: THCPropertySwitch;
private T
- ER T { Private declarations }
| TSCPiopeitySwitch PRELL ; : public
o ! { Public declaretions)
eni;

rar
Formil: TForml:

implementation

{ER T.dZm}

R | flay uff
I I [T [inzet [} Code fDiagram] v

10.3.7 Prograph

Prograph is a visual, object-oriented, dataflow, multiparadigm programming language
that uses iconic symbols to represent actions to be taken on data. Commercial Prograph
software development environments such as Prograph Classic and Prograph CPX were
available for the Apple Macintosh and Windows platforms for many years but were
eventually withdrawn from the market in the late 1990s. Support for the Prograph
language on Mac OS X has recently reappeared with the release of the Marten software
development environment.

SI=—— &2 concurrent sort 1:1 =——RE=EE=1T
4 Database Object

i

These sarts could be
executed concurrently
but updating the databasze
iz dependent on the sorts
camnpleting execution.

pdat daahaeﬁ

E =A

<

10.3.8 Simulink

Simulink, developed by The MathWorks, is a commercial tool for modeling, simulating
and analyzing multidomain dynamic systems. Its primary interface is a graphical block
diagramming tool and a customizable set of block libraries. It offers tight integration with
the rest of the Matlab environment and can either drive Matlab or be scripted from it.
Simulink is widely used in control theory and digital signal processing for multidomain
simulation and design.

0s « | B | % uwent Drectoey | CProgr1MsniSTwonk
[= = T
Hame Eize Bytes Class
fificvann 1 8| double aEEay
Htuindow ixl 8| double aceay
i 1=l 8| double arzay
[inace 1l 8|double array
Hirvar1 1 B| double arxay
B ruindor =l | double aczay
Efirea 1l 0| double arzay
e arer xL B| double arzay
Eimintc 1 8| deuble aEEay
B ixl | double arzay
B o=t =L 8| double array
[denoniz xl 8| double array
ﬂlm =l B|devible sEEay
Einesouse 1l 0| double array
fincvindous 1x1 B| double aEzay
| % thermo
f[Fle Em view Seuston Fomat Took Heb
foews # Pl S M@ RE W
k
i e
i hon i
i 0D Go S
5 ain
| o= o
o ™ e CIF
[. St Pl g iahat e e
B Calsiag = Bl b b
B Fabsarn et
E] oy ol P26 e
T
1 g Datidaor Fahrankait K
] Tamp 12 Cabiiu
| Braily Tamp
1 Warstiea
H
1
i Hiute Thimsdpsanice B Daubte
1 eubbe ol an Ba =7 far more inds) bare for
Sirmulisn Halp
i To siact and sitp tha simalation, ure the *Siart
1 EIUT ELEER LRI U TIE EE o L
Eherso

&EH ,LLPL HEERE BA R

Inoer 3. Db Tairgs

2]
1L A
)|

L]
Huat Cost (8)

Start |

10.3.9 VisSim

VisSim is a visual block diagram language for simulation of dynamical systems and
Model-based embedded system development. It is developed by Visual Solutions of
Westford, Massachusetts. VisSim is widely used in control system design and digital
signal processing for multidomain simulation and design. It includes blocks for
arithmetic, Boolean, and transcendental functions, as well as digital filters, transfer
functions, numerical integration and interactive plotting. The free VisSim Viewer lets
anyone run VisSim diagrams. Coupled with VisSim/C-Code, an add-on product, VisSim
performs code generation for real-time implementation of embedded systems. It can
target small 16-bit fixed point systems like the Texas Instruments MSP430 (using only
340 bytes flash and 64 bytes of RAM for a small closed loop PWM actuated system) as
well as larger 32-bit floating point processors like Texas Instruments C6713. This
technique of simulating system performance off-line, and then generating code
automatically from the simulated diagram to run on the embedded system is known as
"model based development". Model based development is becoming widely adopted for
production systems because it shortens development cycles. VisSim Version 7 has
introduced 3D plotting and interactive 3D VRML animation.

E Bt ke Eds Deeh Wow Wember Gom Uerbbds He
| DizEg wErl o=l 2z zlzobsosoazs| w2 ol (o)
_Clolojoelelolole) ololllplE] lololmlsls| ju]|

B CAVisSimdl - e ey p——

i Mathc R .
two different transfosms of an input signal:
o wavel L s

- Mathe

s Input Time Domain Data passed to MathCad _ O x

a) Fourier Transform
) Wavelet Transform

Waveform Plat

2 L L L L L L L L L L
0 a5 30 75 100 123 150 173 ano0 5 250
Time (sec)

¥ YT vV V¥

L ‘HE ' + Fourier Transform [Magnitude] O] x
VisSimiomm | I 100
M athcad MRES
FFT I ’
Transform E 30
o | T ,JL_L
2 L . L
0 10 13 20 5 0 35 40 45 a0
Use matrix transpose to > Frequency (Hz)

convert row vector into a
column vector suitable
fot IMathead use

Mathcad

Wavelet
Transfoum

k

»
>

t=2.56

WVisSim/Comm

"Trigger" pulse causes the Mathcad
tlocks to execute just once after 2.56 sec
have elapsed.

4 I L L L L L L I L I L

L
0 20 40 g0 80 100 120 140 160 130 200 220 240 260
Bin Numher

¥V VV VY

of

R &Y

Bks |23 FRng|0:3 Step [0.01 T[3 |Euller

	1 Introduction
	 1.1 Evolutionary algorithms
	 1.2 Guidepost

	2 Visual programming
	 2.1 VPL's criteria for EA implementation

	3 Visual design of evolutionary algorithms
	 3.1 Specification of demands
	 3.2 Standard EA blocks definition
	 3.3 Non-standard EA blocks
	 3.4 Structure of blockset
	 3.5 Specification of blocks

	4 Simulink & Matlab
	 4.1 Evolutionary Algorithm as a dynamic system

	5 Developing the Toolbox
	 5.1 Extending functionality of Simulink
	 5.2 Overview of the Embedded Matlab Subset
	 5.2.1 Embedded Matlab technology
	 5.2.2 Working with Variables
	 5.2.3 Working with Matrix Indexing Operations

	 5.3 Workarounds with Embedded Matlab
	 5.3.1 Variable sized data
	 5.3.2 Persistent variables
	 5.3.3 Extrinsic Functions

	 5.4 Creating custom blocks
	 5.5 Subsystem inputs and outputs intermezzo
	 5.6 Masking blocks
	 5.7 Creating a library

	6 Library preview
	7 Testing the blockset
	 7.1 Bridge-building structural optimization example
	 7.2 The algorithm
	 7.3 Construction examples

	8 Summary
	 8.1 Usability report
	 8.2 Future work
	 8.3 Conclusions

	9 References
	10 Attachments
	 10.1 Specification of selected VPLs
	 10.2 Source list of selected Visual Programming Languages
	 10.3 VPL's descriptions apendix
	 10.3.1 EICASLAB
	 10.3.2 Executable UML
	 10.3.3 Labview
	 10.3.4 Game maker
	 10.3.5 MVPL
	 10.3.6 Openwire
	 10.3.7 Prograph
	 10.3.8 Simulink
	 10.3.9 VisSim

