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Abstract

The presented report describes a method of text preprocessing improving the performance of se-

quential data mining applied in the task of gene interaction extraction from biomedical texts. The

need of text preprocessing rises primarily from the fact, that the language encoded by any general

word sequence is mostly not sequential. The method involves a number of heuristic language

transformations, all together converting sentences into forms with higher degree of sequentiality.

The core idea of enhancing sentence sequentiality results from the observation that the compo-

nents constituting the semantical and grammatical content of sentences are not equally relevant

for extracting a highly specific type of information. The experiments employing a simple sequen-

tial algorithm confirmed the usability of the proposed text preprocessing in the gene interaction

extraction task. Furthermore, limitations identified during the result analysis may be regarded

as guidelines for further work exploring the capabilities of the sequential data mining applied on

linguistically preprocessed texts.

Abstrakt

Předkládaná práce popisuje metodu textového předzpracováńı, jež zlepšuje výkon sekvenčńıho

data miningu v úloze extrakce genových interakćı z biomedićınských text̊u. Potřeba textového

předzpracováńı vycháźı předevš́ım ze skutečnosti, že jazyk zakódovaný obecnou slovńı sekvenćı

nemá ve většině př́ıpad̊u sekvenčńı charakter. Metoda sestává z několika heuristicky̌ch jazykových

transformaćı, jež společně převád́ı věty na formy s větš́ı mı́rou sekvenčnosti. Hlavńı myšlenka

zvyšováńı větné sekvenčnosti je založena na pozorováńı, že jednotlivé komponenty, jež společně

tvoř́ı sémantický a gramatický obsah vět, nejsou stejně relevantńı pro extrakci úzce specifického

typu informace. Provedené experimenty využ́ıvaj́ıćı jednoduchého sekvenčńıho algoritmu potvrdily

použitelnost navrženého předzpracováńı v úloze extrakce genových interakćı. Omezeńı, jež vyvstala

z analýzy výsledk̊u, lze nav́ıc považovat za vod́ıtka pro daľśı studium aplikace sekvenčńıho data

miningu na lingvisticky předzpracované texty.
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(literaturu, projekty, SW atd.) uvedené v přiloženém seznamu.
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Chapter 1

Introduction

Gene interaction extraction from textual language representation can succeed only if language

is understood correctly. In general, language comprehension proceeds through interpretation of

grammar, semantics and pragmatics; omission of any of these components may cause the com-

munication to fail. Individual language variants may differ in complexity of these components;

biomedical language proves to be complex in all of them. Being the complexity extremely hard,

any engineering approach has to omit some aspects by making assumptions, permitting relaxations

etc. In case of sequential approach, which is focused in this project, this is expressed by assump-

tion that language is of sequential nature. To diminish the negative effect of such a simplification

while keeping the full potential power and flexibility of the sequential approach unchanged, a

kind of text preprocessing may be employed. The presented report describes a method of text

preprocessing which aims at enhancing the results of any sequential approach in the task of gene

interactions extraction from biomedical texts.

The outline of the report is as follows: (1) A bibliographical overview of methods commonly

used in named entity recognition and gene interaction extraction is presented (chapter 2, page 6);

(2) language components disproving the assumption of language sequentiality are identified and a

method of biomedical text preprocessing dealing with these obstacles is derived based on various

linguistic observations (chapter 3, page 17); (3) the impact of the designed text preprocessing

method is evaluated from various points of view using a simple sequential approach, limitations

of the derived method are analyzed in detail (chapter 4, page 37).
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Chapter 2

Methodological Overview

2.1 Introductory Remarks

In the gene interaction extraction task, relations between specific word entities are of primary

interest. Concentrating exclusively on the relation extraction task implies the operational space

defined in a very specific way: being given a biomedical text, the starting point is (1) zero knowl-

edge of the given text, except for (2) a detailed information of what word tokens are gene entities.

Such disparity in knowledge level suggests a simplification being made, namely that the gene

named entity recognition has been accomplished. However, tasks assigned by the real world do

not naturally provide any kind of such exclusive and highly specific knowledge, i.e. named entities

(gene names) are not known. What word tokens are the ordinary words, can be to high degree

of accuracy determined using existing thesauri, i.e. large word banks covering the great part of

English lexicon; in contrast, it proves to be extraordinarily difficult to determine, what words rep-

resent the entity words. Therefore, before introducing methods employed in the gene interaction

extraction task, an overview of gene named entity recognition is presented.

2.2 Overview of Named Entity Recognition

2.2.1 Gene Named Entity Recognition

Named entity recognition includes three subtasks [37,40]: (1) term recognition, (2) term classifica-

tion and (3) term mapping. The term recognition is a task of finding adjacent tokens representing

a concept of the given domain, i. e. genes entity names in biomedical domain. The term classifica-

tion or term categorization classifies extracted terms into predefined classes (e.g. genes, mRNAs

etc.) [37]. The term mapping stands for a task of selecting a preferred term to represent the

recognized concept in case that synonyms exist (they typically exist) [37,40]. The recognized term

is not actually identified until the mapping has been done [37].

The performance of the NER (and in general all text mining tasks) is measured in terms

of precision and recall. Assuming A stands for the set of positive units not extracted by the

tested system (∼ false negative), B for the set of extracted positive units (∼ true positive) and

6
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C for the set of units falsely extracted as positive (∼ false positive), the precision and recall are

defined [37,66] as

Precision =
B

B + C
, Recall =

B

A+B
. (2.1)

The overall performance is often expressed by the F-measure defined [66] as

Fβ =
(1 + β2) · Precision ·Recall
β2 · Precision+Recall

, (2.2)

where β is typically set to 1.

Methodological approaches applied in domain of the named entity recognition are often devided

in rule-based (i. e. grammar-based and respective rule-based approaches) and approaches based on

machine learning and statistics [11,51]. In the following overview, the finer classification presented

by Zhou and He is followed [66]: approaches are devided into computational linguistics-based

approaches, rule-based approaches and machine learning and statistical approaches. Note that

sometimes one more category is distinguished, namely dictionary-based approaches [37]. However,

this category is not considered here, since the use of dictionaries appears to be a common feature

of all other listed approaches. Furthermore, one more note is to be made: existing solutions for

named entity recognition tasks often combine several approaches, e.g. (i) machine learning engine

and rule-based pre- and postprocessing, (ii) the use of machine learning and statistical methods

in computational linguistics-based approaches etc.

2.2.2 Obstacles

The main obstacles in named entity recognition tasks can be summarized in two terms: ambiguity

and variability of gene names [37]. Both difficulties, in principle, arise from the same aspect of the

rapidly growing (and changing) biomedical nomenclature, namely the insufficient standardization

of the biomedical terms [40].

Term ambiguity results from term homonymy or homology, i. e. one name expression is used for

multiple different genes [64]. Chen et al. [8] distinguish four ambiguity types: (1) intra-species

ambiguity, (2) ambiguity with general English words, (3) ambiguity with general medical terms

and (4) across-species ambiguity. The across-species ambiguity occurs by far most frequently,

however, only the intra-species ambiguity might by labeled negligible [8]. Moreover, it has been

observed, that the complexity of the ambiguity problem varies among different organisms [64].

Abbreviations and acronyms appear to be frequent source of ambiguity [37].

Term variability, on the other hand, results from spelling (∼ formal) differences [37] and term

synonymy [8, 40, 64]. The formal variability was widely discussed by Cohen et al. [10]. They

speek about non-contrastive variability and design four heuristics that cover typical problems

concerning variability: (1) equivalence of vowel sequences, (2) optionality of hyphens, (3) op-

tionality of parenthesized material and (4) case insensitivity. The term synonymy means that

multiple name expressions (full names, official symbols and their synonyms) are associated with

one gene [8,40,64]. Chen at al. find out that synonyms are mostly preferred to official symbols

and full names [8].
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2.2.3 Computational Linguistics-based Approaches

Methods discussed in this section construct grammars describing the internal structure of proper

noun phrases, in both morphological [2, 26,27,34] and/or syntactical [54] manner.

The fundamentals of the term identidication using grammars were summarized by Anani-

adou [2]. In the proposed morphology model, a four-level ordered approach is applied, each

level (∼ stage) employing a different term formation principle {latinate/native compounding, lati-

nate/native affixation}. Moreover, three boundness levels of word roots are assumed. Distinguish-

ing between term and word (∼ non-term) wordtype or affix values (∼ semantic categories) and

being provided a lexicon of specific roots, affixes and Greek/Latin combining words, the resulting

morphological unification grammar operates as follows:

term → word + term suffix word → word + word suffix

term → term + term suffix term → term + word suffix

Note that in the example rules new forms are generated using the suffixation principle; the pre-

fixation and compounding principles behave in similar manner. For deeper view refer to [2].

Gaizauskas et al. [26, 27, 34] applied terminological context-free grammar in systems EM-

PATHIE [34] and PASTA [26, 34]. The architecture of these systems splits in several modules:

After preliminary text processing, the systems proceeds with terminological processing applying

firstly morphological analysis to find out biochemical affixes (e.g. -ase, -in) and following with

lexical lookup in terminological lexicons (compiled from biological recourses) to determine compo-

nent categories. The core of the system is the terminology parsing [26,27,34]: being given e.g. [26]

casein kinase 1, the components categories are recognized as protein modifier, protein head and

numeral, the corresponding grammar rule is

protein → protein modifier, protein head, numeral.

Furthermore, Pyysalo et al. employ the link grammar formalism [54]. This grammar builds

on notions of links (e.g. adjective to noun, preposition to opbject) and linkages: ”A linkage consists

of a set of links connecting the words of a sentence so that links do not cross, no two links connect

the same two words, and thew types of the links satisfy the linking requirements given to each

word in the lexicon” [54]. Detailed description and examples are available in [54].

2.2.4 Rule-based Approaches

Approaches referred in this section define a set of rules describing relationships between (1) struc-

tural and textual elements of the given proper noun phrases or (2) more general categories of

these elements (similarly in [66]). These relationships are called patterns [66], abstractions that

can be successfully applied on unknown text. The patterns may be expressed by means of regular

expressions [11].

One of the earliest rule-based systems was proposed by Fukuda et al. [23]. The PROPER

system defines a rule set for each of its three stages. First, core-terms, the most determinative

words of compound terms (e.g. SH3, p54, SAP), and feature-terms, words describing a function

or characters of compound terms (e.g. receptor, gene) are annotated, second, core-blocks are built
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from adjacent core-terms, feature-terms or nouns/adjectives between them using concatenation

rules, and finally relations between core-blocks are determined mainly according to the connective

words (e.g. and, of).

Narayanaswamy et al. [48] take up the approach proposed by Fukuda et al. and extend

it especially by classifying the feature-terms (here referred to as function-terms) into six semantic

classes: gene, gene parts, chemicals, chemical parts, source terms and general terms. Furthermore,

they apply post-processing rules including the use of adjoining context for term disambiguation: h-

terms (h ∼ help, e.g. expression of) considered not to be a part of the named entity are introduced

to determine the right class where feature-terms are missing.

Another rule-based system was presented within the BioCreAtIvE I [65] evaluation by

Tamames [60]. Here sentences are tagged by {central ∼ core-terms, chemical, type, location,

bioword, other} and set of rules is applied to identify gene full names. Moreover, special attention

is paid to correct symbol identification: Words from the training set are scored for probability of

constituting a gene name and the decision of whether the symbol is a gene name is derived from

the scores of the symbol and surrounding words, taking into consideration statistically determined

risk-factor. Furthermore, an additional matching against a dictionary of gene name is made.

Nakov and Divoli [18], also participating in the BioCreAtIvE II competition, apply a set

of normalization and expansion rules to a list (∼ dictionary) of EntrezGene gene names: strong

rules allowing for minor alterations only and weak rules conceding more serious alterations of the

dictionary names are distinguished.

An innovative submission to the BioCreAtIvE II was made by Neves [18]. The system uses

the case-based reasoning: Cases are automatically extracted from the training data and stored in

two case bases, namely in the known case base and the unknown case base. The former is built of

all words found using various features (word itself, gene/not, frequency, the same about preceding

word). The unknown case base is composed of the formats of all words found using similar features

(but not the word itself; format ∼ guideline for unseen word sequences). The cases are used to

identify new cases: the case assignment is accomplished by measuring the similarity to cases

contained in the both case bases.

Another approach was proposed by Hobbs [32]. Here sequential patterns of interest are rep-

resented as a kind of finite state automata (here referred to as transducers). To examine multiple

patterns of interest, the corresponding automata are cascaded. When reaching the acceptance

state of the applied automat, the given pattern is recognized. The system called FASTUS works

on five levels: (1) complex words, (2) basic phrases, (3) complex phrases, (4) domain patterns, (5)

merging structures.

Plantevit et al. [51] identify the limitations of both sequential patterns and sequential rules

applied as single methods on gene mentions extractrion: the former suffer from low precision, the

latter, in contrast, from poor recall. They overcome these limitations by introducing the LSR

pattern defined as a triple (l ∼ left neighborhood, s ∼ sequential pattern, r ∼ right neighborhood),

in which both methodological principles are combined. Furthermore, relaxed order constraints and

support/confidence measures are applied to balance the good trade-off between recall and precision

of the fully automated extraction process. Precise description is given in [51].
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A widely discussed rule-based solution for the gene name normalization task was the system

proposed by Hanish at al. [31] within of the BioCreAtIvE I [12] competition. The ProMiner

system consists of three subsequent stages: (1) Dictionaries are built from several databases,

various curation steps using regular expressions are applied, synonyms are gathered and assigned

a synonym class: (i) frequent one-word synonyms (used for disambiguation, therefore augmented

with specific context words), (ii) case-sensitive and (iii) case-insensitive synonyms. (2) Gene

occurence detection is accomplished by matching the text against the dictionaries using boundary

and acceptance measures. (3) A disambiguation filter is applied.

In the BioCreAtIvE I and II challenges multiple solutions for gene normalization were pro-

posed [12, 17], the majority of them relying on rule based technics similar to those presented

by Hanish, moreover, most of them even preserving the scheme (1) dictionary construction and

curation, synonyms processing, (2) string matching and (3) disambiguation [17].

2.2.5 Machine Learning and Statistical Approaches

General Remarks

The machine learning approaches can be summarized in the following manner: given a training

dataset in which each entity is classified either as positive, i. e. representing the concept of

interest, or negative, i. e. representing counter-examples of the concept of interest, the system

learns to recognize the positive examples from the negative ones. The ability of discriminating

between positive and negative examples is proven on unknown data or testing dataset [18].

As the natural language as the domain of all tasks related to named entity recognition proves

to be an extremely complex system, the problem arises of how to capture the linguistic entities. A

general approach is to represent the linguistic entities (mostly words, phrases, sentences) as sets

or vectors of features (feature vectors). Following this approach, two crucial aspects have to be

taken into consideration: the feature selection, as the features are not equally informative, and

the feature representation, as a numerical value is needed to express the rate of adherence of the

given lexical element to that particular feature [18]. In general the following feature classes are

commonly employed in the natural language domain:

• Lexical features. Words itself are often used as features [46,57], Settles points out the need

of generalization from the concrete word forms appearing in the text [57].

• Orthographic features. This feature class focuses on the graphical representation of the lexical

elements (tokens), or as summarized by Zhou et al. it is concerned with capitalization,

digitalization and word formation [67]. Settles abstracts from the current graphical repre-

sentation of the words by classifying each letter into one of three classes: capitals, lowercase

letters and digits [57]. Orthographic features are commonly expressed using various reg-

ular expressions, e.g. expressions defined in [67]: Parenthesis, RomanDigit, GreekLetter,

DigitCommaDigit, AllCaps etc.

• Morphological features. Biomedical terms are often derived using very specific affixes. Zhou

et al. mention examples of typical suffixes: -ase, zyme, -ome, -gen etc. [67], Mitsumori
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makes systematically use of both prefixes and suffixes in form of letter uni-, bi- and trigrams

[46]. Moreover, McDonald employs letter bi-, tri- and tetragrams wherever in the word [44].

• Contextual features. The context often helps to reveal the right identity of the give token. As

contextual features may be considered the trigger words of the second type (TW2) introduced

in [67] and defined as the heads of the noun phrases, though not part of the gene name, e.g.

activation, stimulation etc. Settles employs as contextual features simply the neighboring

words [57].

• Semantic features. Settles provides the semantic knowledge in the form of manually formed

lexicons, each representing a semantic class such as amino acids, known viruses etc. If the

current word is found in one of these lexicons, it is marked as holding the corresponding

feature, e.g. amino acid. Furthermore, clearly semantic features are the trigger words of the

first type introduced in [67] and referred to as heads of noun phrases and at the same time

parts of the gene names represented by the given phrase.

• Dictionary features. In [46] the information on whether token uni-, bi- and -trigrams were

found in the available gene dictionary is used as feature.

• Parts of speech. The parts of speech embody the morphologic, semantic/syntactic/contextual

properties of the given token, they are widely applied in many kinds of NER systems. In the

biomedical domain, they appear often in adjusted form: the corpus used in the BioCre-

AtIvE competition only two tags were used to distinguish genes (or parts of genes) from

the other tokens [18], frequent tagging approach is the B-I-O tagging, where B stands for

the beginning, I for continuing and O for the outside of the gene entity [18,46].

• Preceding class. Class (e.g. B, I, or O) of the token/tokens preceding the current token [46].

The machine learning and statistical approaches include support vector machines, conditional

random fields, hidden Markov models, maximum entropy and naive Bayes.

Support Vector Machines

Given a set training examples (xi, yi), where x ∈ Rn is a feature vector and y ∈ {+1;−1} stands

for positive or negative class, the support vector machine (SVM) separates the examples with

hyperplyne maximizing the margin, i. e. the distance of the hyperplane to the nearest example

vectors called support vectors. The hyperplane is defined by the equation

(w · x) + b = 0, (2.3)

where w ∈ Rn is a vector of weights and b ∈ R, both calculated from the support vectors found.

Being provided a set of testing examples xj , the classification follows the equation

sign(w · x) + b = ±1. (2.4)

Note that in case that the example units are not linearly separable, which is almost always the

case, the scalar product in equations 2.3 and 2.4 is replaced by a kernel function K moving the
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examples into higher-dimensional space, in which they are linear [7, 67]. Detailed description of

the SVM can be found in [7]. SVM-based solution of NER problems have been presented e.g. by

Mitsomuri at al. [46].

Conditional Random Fields

Conditional random fields (CRF) handle the NER problem as a tagging task: Given the input token

sequence o = (o1, o2, . . . , on), the conditional random fields estimate the conditional probability

of the candidate tag sequence t = (t1, t2, . . . , tn):

P (t|o) =
1

Z(o)
exp

n∑
j=1

m∑
i=1

λifi(sj(t), oj). (2.5)

where sj(t) = (tj−k+1, . . . , tj) represents the state as k-gram at position j; fi encodes the i-th

feature function from the set of m feature functions available; the feature weight λi refers to the

weight of the corresponding feature function favoring the tags correlated with the value of the

current feature; Z(o) is the normalization factor [44, 57]. As a result, the selected tag sequence

maximizes P (t|o). For more detailed description check [38]. A solution based on CRF has been

proposed e.g. by Settles [57].

Maximum Entropy

Being C a set of classes (labels), x a vector of features (input data), c− a vector of previous

classifications, fj a feature function of the j-th feature (i. e. that we assume the j-th feature

for now) and λj the weight of this feature, the maximum entropy approach (ME) determines the

probability of the class c ∈ C as

P (c|x, c) =
exp

∑
j λjfj(x, c−, c)∑

c∈C exp(
∑
j λjfj(x, c−, c))

. (2.6)

Thus, the maximum entropy principle operates with the probability distribution over the set of

classes C, e.g. C ∈ {gene, nongene} [20,21]. The approach is also referred to as maximum entropy

Markov models [43]. A system based on the ME approach has been reported e.g. by Chieu et

al. [9].

Hidden Markov Models

Assuming the token sequence Tn = (t1, t2, . . . , tn), the traditional hidden Markov model (HMM)

finds the state (∼ tag) sequence Sn = (s1, s2, . . . , sn) that maximizes the probability

logP (Sn|Tn) = logP (Tn|Sn) + log(Sn), (2.7)

P (Tn|Sn) =
n∏
i=1

p(ti|si) and P (Sn) =
n∏
i=1

p(si|si−1), (2.8)

where the Bayes rule was applied [41]. In addition to this traditional HMM, several extensions

have been proposed: mutual information HMM [41], consese HMM [41], discriminative HMM [67]

and dictionary HMM [36]. HMM-based system has been described e.g. by Zhou et al [67].
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Naive Bayes

The naive Bayes assigns to a token occurance the class c ∈ C that maximizes the probability

P (c|f1, f2, . . . , fk), where fi are features. Following the Bayes rule, P (c|f1, f2, . . . , fk) can be

rewritten as

P (f1, f2, . . . , fk|c) ·
P (c)

P (f1, f2, . . . , fk)
, (2.9)

where P (c) and P (f1, f2, . . . , fk) are prior probabilities of c ∈ C and feature configuration, re-

spectivelly. Though, P (f1, f2, . . . , fk) for large k is typically impossible to estimate, therefore we

assume fi independent (naive Bayes) [63]. In the NER domain, the naive Bayes approach was

applied by Nobata and Tsujii [49].

2.3 Overview of Gene Interaction Extraction

2.3.1 Task Overview

Gene interaction extraction may be seen as a complete set of tasks. In the BioCreAtIvE II

competition four subtasks were distinguished by the organizers [19]:

1. interaction article subtask: ranking the PubMed abstracts, based on whether they are

relevant for protein interaction annotation;

2. interaction pair subtask: extraction of binary protein-protein interaction pairs from the

full-text articles;

3. interaction method subtask: extraction of the interaction extraction method used to char-

acterize the extracted interactions;

4. interaction sentence subtask: retrieving the textual evidence passage describing the interac-

tion.

2.3.2 Computational Linguistics-Based Approaches

Shallow Parsing Approaches

Shallow or partial parsing provides only partial decomposition of the sentence structure [66].

Hammerton et al. summarize the shallow parsing procedure in three subsequent steps [30]:

1. part-of-speech tagging: each word is assigned a morphosyntactic class referred to as tag (e.g.

verb, noun, etc.);

2. chunking: tagged words are grouped into non-overlapping chunks (e.g. verb phrase, noun

phrase, etc.);

3. relation finding: relations of chunks to the main verb are found (e.g. subject, object).

To extract gene interactions, a set of relation patterns of interest are often defined and applied [39].

The finite state automata appear to be a useful modelling tool for these relation patterns [66]:
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the nodes of the underlying graph represent states, one of which is the accept state, and the

directed edges specify transit into another state according to the next encountered element class.

Reaching the accept state means that the relation (∼ interaction) captured by the automat has

been identified in the given sentence [39, 66]. Relations are typically indicated by prepositional

and conjunctional expressions, special attention is paid to verb nominalizations (e.g. regulate sth.

→ regulation of sth). Two examples of such approach will be given.

Pustejovsky et al. [52] construct a parse tree from each sentence, using five separate finite

state automata, each of them operating on different level in the relational hierarchy. Starting

from ground up, these levels involve (1) noun chunking, (2) non-prepositional noun chunks and

relation chunks, (3) coordinated chunks, (4) of-prepositional phrases, and (5) subordinated clauses.

Relation of interest are sought both on nominal and sentence level; the relation extraction proceeds

as identification of arguments and relation elements.

The approach described by Leroy et al. [39] uses closed class English words (namely prepo-

sitions, negation elements, conjunctions) to determine the structure of biomedical texts. Due

to semantic stability and essential role in controlling relations between individual entities, these

words are used as the core of abstract relation templates represented by finite state automata.

Four automata, one for capturing basic sentence structures and three for detecting structures

built around three English prepositions, are employed (separately or chained) to extract interac-

tions from preprocessed text. Moreover, they are combined with heuristic principles for handling

negation and word coordinations.

Deep Parsing Approaches

In contrast to the shallow parsing, the deep or full parsing considers the entire structure of the

sentence [66]. Depending on whether the underlying grammar is extracted manually or automat-

ically, deep parsing approaches can be divided into (1) rationalist methods and (2) empiricist

methods [66].

Rationalist methods. The rationalist methods employ various grammar formalisms, including

combinatory categorial grammars, context-free grammars or link grammars [66]. Two distinct

example systems will be briefly introduced.

Ahmed et al. combine a full parse with linguistically sound rules. First, sentence is split into

simple clauses, which are assigned a typed syntactic structure, i.e. a characteristic set of labelled

links connecting word pair; these links (∼ syntactic roles) are obtained from a link parser. The

interaction extraction complies with the following procedure: starting gradually by subject, verb

and object/modifier, the algorithm follows the role links until all predefined, linguistically relevant

structures expressed by the link grammar syntactic roles are detected.

Friedman et al. [22] define a large set of semantic classes associated with actions, processes

and other relations and extract relations in the form of frames (∼ semantic patterns) consisting

of type, value, possibly followed by another frame; e.g. the result from sentence Raf-1 activates

Mek-1 is [action,activate,[protein,Raf-1],[protein,Mek-1]]. In the interaction extraction task, this

semantic/syntactic grammar is combined with a grammar parser.
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Empiricist methods. Many systems based on empiricist approaches make use of some kind of

hidden Markov models (see section 2.2.5, page 12) [66]. Skounakis et al. [58] use parse trees

generated by a shallow parser to construct the input representation for the hidden Markov models

(HMMs). The concept of the HMMs had to be adjusted to this specific representation, which

requires HMMs to accept grammatical information at multiple scales.

Another approach builds on dependency parse trees. In the RelEx system proposed by Fun-

del et al. [25], first dependency parse tree is generated from the given sentence, then sim-

plified noun-phrase chunk dependency tree is constructed. Finally three rules are applied for

the respective identification: effector-relation-effectee, relation-effectee-by-effector and relation-

between-effector-and-effectee.

2.3.3 Rule-Based Approaches

Rule-Based Approaches

Rule-based systems for extracting gene interactions employ manually or automatically generated

textual rules or patterns encoding relationships between entities [66]. According to [66] rule-based

approaches suffer from insufficient portability to other domains and inability to successfully process

more complicated statements.

In the system proposed by Blaschke and Valencia [4], separate sentences are matched

against a list of predefined frames representing templates for gene interactions, reliability scores for

both frames and detected interactions are computed based on distance and frequency measures.

Proux et al. [55] combine shallow parsing with a knowledge processing approach: syntactic

dependencies detected by a shallow parser are used to construct a dependency graph, which are

searched for predefined generic request scenarios, such as gene interacts with gene, gene acts as

modifier of gene, gene induces the expression of gene product etc.

Systems capable of defining rules automatically have been proposed e.g. by Huang et al. [33]

or Phuong et al. [50]. Huang et al. [33] use dynamic programming to extract frequent patterns

which meet specific structural requirements. The system operates on part-of-speech level; parts-of-

speech representing modifiers (adjectives, adverbs etc.) and determiners are removed from tagged

sentences, since they lower the generalization power of candidate rules; three filtering rules are

defined to control the structure of resulting rules. Phuong et al. [50] work with link-parsed

sentences. Starting from each keyword of any annotated interaction, the shortest link paths to all

annotated gene words are found; thus the link paths represent the rules describing the interaction

structure. The set of specific rules is then passed to a generalization algorithm producing more

generic rules. Hakenberg et al. [29] generate patterns by sentence clustering and multiple

sentence alignment.

2.3.4 Machine Learning and Statistical Approaches

This class of methods includes statistical term co-occurrence analysis [66], bayesian classifiers,

support vector machines and hidden Markov models (section 2.2.5, page 10).
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Kraven and Kumlien [13] use Naive Bayes to classify sentences according to whether they

contain gene interaction or not. Documents are represented as bags of words, i.e. the word po-

sitions are considered not to be important. Stapley and Benoit [59] start from the premise,

that two genes co-occur more frequently in biomedical literature, if they have a related biological

function. Assuming a fixed set of gene entities, every gene pair is investigated for co-occurrence,

both joint and individual occurrence statistics are used to compute a (dis)similarity distance be-

tween the involved genes. Donaldson et al. [15] employ support vector machines to distinguish

those biomedical abstracts describing gene interactions. The feature set is constructed from single

words and two-word sequences with the highest positive information gain.

Bunescu and Mooney [6] designed a general text mining method consisting in construction

of a specific kernel which is passed to SVM classifier. The approach as built around a hypothesis

that the relation between two entities can be estimated from the shortest path between them

in the dependency graph. Using both words and various automatically generated metalingual

generalizatios as features, the value of kernel function is computed as a number of common features

between two relations. Airola et al. [1] adopt this approach specifically for the gene interaction

extraction task: the kernel (graph kernel) is constructed by employing the word sequence order

and syntactic information from the sentence parse.



Chapter 3

Method Description

3.1 Instrumentarium

Before introducing the ideas of the designed text preprocessing, we provide definitions of several

key terms used throughout the remaining text. Terms specific to individual components will be

explained at corresponding places.

Word. Tag. Tag class. We define word as a character sequence delimited by space or any

delimiter. Grammar tag is a code of metalingual class assigned to the word according to its mor-

phological, syntactical and semantical properties. The tags used in this project originate from

the Penn Treebank Tagset [62], which has been extended by new tags. Similar tags consti-

tute tag classes: noun={NN, NNS, NNP, NNPS, GENE}, verb={V[BHV], V[BHV]Z, V[BHV]P,

V[BHV]D, V[BHV]N, V[BHV]G, MD} etc.

Gene entity word. Ordinary word. We define gene entity word as a gene name which needs

to be invariant to all transformations applied to the word sequence. Ordinary word, in opposite,

is a word which is not a gene entity word.

Verbal noun. Adjectival noun. Verbal nouns are nouns derived from verbs, in context of

this project only those expressing action: -tion, -sion, -ment, -age, -al, -ence, -ance, -ery, -ry

(e.g. activation, expression). Adjectival nouns are nouns derived from adjectives by adding -ment,

-ness, -ity, -ance, -ence, -ency, -ship or -hood (e.g. capability, efficiency).

Interaction kernel. Interaction operands. We define interaction kernel as a word which

binds together two gene entity words as interaction operands. The interaction operand can be

either agent operand (agent ∼ affecting) or patient operand (patient ∼ affected). Semantically,

the interaction kernel is the predicate of the interaction: it expresses, how the agent operand

affects the patient operand (transitive relation) or how two agents operands change their common

state (intransitive relation). The interaction kernel appears most commonly in the form of verb,

verbal noun or adjective; these types will be referred to as verb kernel, noun kernel and adjective

17
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kernel; noun and adjective kernels are both nominal kernels. Note that interaction kernel (∼
predicate) may require prepositions to bind interaction operands (∼ arguments). Nominal verb

forms without auxiliary verb (ex. 5) are treated as nominal rather than verb kernels, since they

appear within nominal phrases.

(1) G1@GENE[agent] activates@VVZ[verb kernel] G2@GENE[patient]

(2) G1@GENE[patient] activated@VVN[verb kernel] by@IN G2@GENE[agent]

(3) G1@GENE[agent] activation@NN[noun kernel] of@IN G2@GENE[patient]

(4) G1@GENE[patient] activation@NN[noun kernel] by@IN G2@GENE[agent]

(5) G1@GENE[agent] -activated@JJ[adjective kernel] G2@GENE[patient]

3.2 Reducing Cluster Complexity

3.2.1 Problem Specification

(1)

G

the G gene

the G gene expression

the G gene expression in the cell

the activation of the G gene expression in the cell

the activation of the G gene expression in the eucaryotic cell

The above example demostrates that altering a simple phrase by adequate language components

causes the phrase to grow both to the left and to the right. Even though there are limitations

of such growth given by the demand of understandability, i.e. the communicational dimension

of the language prevents phrases by stylistic rules from growing throughout arbitrarily, the space

of all possible forms of phrases remains infinite. We name this problem arbitrary phrase space

complexity. To address another problem assume the following example sentences:

(6) G1@GENE activates@VVZ G2@GENE

(7) the@DT expression@NN of@IN G1@GENE activates@VVZ G2@GENE

In sentence 6 G1 binds to predicate activates (i.e. to the right), whereas in sentence 7 G1 binds

to verbal noun expression (i.e. to the left). As a result, the distance between G1 and activates in

sentence 6 is not equal to the distance between the same elements in sentence 7. We name this

problem arbitrary element directionality.

Thus, being given a task to investigate the semantic relation between two lexical elements of

such a sequence, we have to face two difficulties as a result of the problems discussed above: (1)

the distance between the assumed elements may be arbitrarily long; (2) this distance is hard to

estimate.
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3.2.2 Linguistic Observations

Consider the following simple noun phrase:

(8) gene@NN G@GENE in@IN cells@NNS

In this phrase, G is the head of the phrase, i.e. the word holding the core meaning, gene stands

for the attribute, i.e. word preceding the head word, and in cells is the appositional adjunct, i.e.

word sequence following the head word. The importance of the head of the phrase comes from its

ability to represent the whole phrase without fatal change in the meaning. Thus the word G can

replace the whole phrase in the given sentence and simplify its structure. Now assume another

noun phrases:

(9) mouse@NN cell@NN gene@NN G@GENE

(10) mouse@NN cell@NN gene@NN G@GENE investigated@JJ in@IN our@PP$ experiments@NNS

Similarly to the phrase 8, G stands for the head of the phrase in examples 9 and 10. Notice

that the head word of English noun phrases is always the last noun before the appositional adjunct

or the last word of the phrase, if no appositional adjuncts are present. By gradually removing

the attributes and appositional adjuncts all three phrases presented above can be reduced to the

single-word form G. As we are primarily interested in gene names, this result is highly valuable:

instead of the gene name nested in a complicated word structure we now operate with an almost

equivalent single word element without paying anything for such a reduction.

However, not all noun phrases containing a gene name can be replaced by this gene name

without non-zero cost. Assume the following two noun phrases:

(11) G@GENE expression@NN in@IN cells@NNS

(12) expression@NN of@IN G@GENE in@IN cells@NNS

In contrast to phrases 8 through 10, the gene name G does not stand for the head in phrases

11 and 12, thus the simple removal of attributes and appositional adjuncts would result in losing

the gene name, element of our interest. To avoid such a loss, we need to propagate the gene

name into the head of the phrase. In the phrase 11, we propagate G to the right by removing

expression, whereas in the phrase 12 we propagate G to the left by replacing expression of G by

G. I is obvious, that such changes cause a shift in the semantic structure of the phrase. However,

these shifts are linguistically measurable, and therefore controllable.

Similar transformations can be applied to verb sequences (not verb phrases); the example 13

demonstrates the growing complexity of verb sequences. It can be shown that despite the arbitrary

length and complexity of the verb sequences, the core meaning is always held by the last verb of

such sequences.

(13) activates@VVZ; has@VHZ been@VBN activated@VVN; has@VHZ been@VBN said@VVN to@TO acti-

vate@VV
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Finally, notice that words may show strong affinity to the preceding word (ex. 14) or to the

following word (ex. 15).

(14) of@IN G@GENE (G shows affinity to the left)

(15) G@GENE activation@NN (G shows affinity to the right)

3.2.3 Main Principles

The methodological approach of resolving the problems identified in section 3.2.1 complies with

the following general principles.

Sentence structure reduction. The language sentence may be considered as a projection of a

multidimensional, non-sequential language structure into a sequence of lexical elements. As shown

in section 3.2.1, the backward mapping (i.e. word sequence interpretation) may be extremely

difficult without fully qualified language knowledge. The objective is to modify the language

structure behind the original lexical sequence so, that it is more reliably mirrored by the new

lexical sequence resulting from a projection of the modified structure into a sequence of lexical

elements. The presented linguistic observations suggest that such a modified sentence structure

may be retrieved by ruled sentence simplification. The resulting structure is called sentence

skeleton, since it is supposed to hold the core meaning of the original sentence. Accordingly, the

process of deriving sentence skeleton is called sentence skeletonization.

Operation atomicity. To achieve the sentence structure reduction, we do not work with the

sentence as a whole, since we would need to face the potential complexity of a general sentence.

Instead of that, we concentrate on low-level, elementary transformations with the simplifying effect,

i.e. we rely on what we almost certainly know about the language components contained in the

word sentence and their relations. By applying repeatedly a set of elementary transformations, we

gradually get a sentence with higher sequentiality factor. As the transformations are linguistically

relevant, we can also qualify, quantify and register the additive semantic shifts (smaller or bigger)

caused by these transformations, which enables us to define a distance measure the overall semantic

shift, the sum of costs required by the given transformations.

Gene name propagation. Simplifying a word sequence can not proceed without removing

words, which are considered irrelevant from the general syntactical and semantical point of view.

However, our task requires us to work with gene and protein names; what if a gene or protein

name holds such a position, which should be considered irrelevant from that general point of view?

The fact that we concentrate on a specific semantic subclass of nouns does not imply, that the

entities of our interest are equally important in the sentence structure. By simply allowing for

removal of gene and protein names from irrelevant positions, we would suffer information loss

with fatal consequences. To avoid this, we need to propagate the entities of our interest to more

stable positions. However, this proceeding causes non-negligible shift in the semantic space of the

given sentence. To control the resulting semantic shift, we use the distance measure defined in the

previous paragraph.
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Proximity assumption. Due to declared operation atomicity, the word sequence is never seen

as a whole, but always locally. As a result, conjunctional elements may be ambiguous: since we are

given only the immediate neighborhood, we are not capable of determining, what subsequences of

the sentence actually constitute the arguments of the conjunctional element. However, in case that

both left and right neighboring words are of the same or related tag class, the following principle

is applied: unless there is special reason for not treating them as arguments of the conjunctional

element, they are treated as such.

Assumption of stylistic correctness. Clearly ambiguous sentences remain at least equally

ambiguous after being skeletonized. However, we assume that texts written by experts are stylis-

tically correct, and therefore not ambiguous.

To anchor the suggested method into the context of common methodologies introduced in

section 2.3 (page 13), the following needs to be said: The skeletonization resides somewhere

between rule-based approaches and approaches based on shallow parsing: it comprises of a small

set of predefined rules operating on the micro-syntactic level, which are employed to reveal a

very limited set of structures on the macro-syntactic level. Allowing such incompleteness of the

output macro-syntactic information results from the observation, that components constituting

the grammatical (and also semantical) content of the given sentences are not equally relevant for

extracting a highly specific type of information.

3.2.4 Instrumentarium

Additional terms have to be explained to conceive the ideas of resolving specifically the problems

identified in section 3.2.1. The structural units defined in this section are built around similar

concepts used in the shallow parsing methodologies, especially in [52].

Cluster. Minimal cluster. We define cluster as a sequence of words of the same tag class

(noun class or verb class), either without arguments or with non-prepositional arguments: the

noun cluster contains primarily nouns, but also adjectives, numerals, adverbs or determiners (ex.

16); the verb cluster contains primarily verbs, but also adverbs and prepositions (ex. 17). A

cluster consisting of only one word is called minimal cluster.

Cluster sequence. Head cluster. We define cluster sequence as a set of subsequent clusters of

the same class separated by prepositions or conjunctions (ex. 18). Note that clusters sequence is

not equal to phrase. Furthermore, the head cluster is a minimal cluster which is not prepositional

argument of any other cluster of the given cluster sequence and which holds the core meaning of

the whole cluster sequence.

Cluster head, cluster prefix. We define cluster head as a word at the right-most position in

the given cluster. The head word holds the core meaning of the whole cluster. Consequently prefix
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of the cluster is the word or cluster of the same class preceding the cluster head. Cluster prefix

shrinks the semantic space covered by the cluster head.

(16) the@DT very@RB active@JJ gene@NN G1@GENE

(17) has@VHZ been@VBN proven@VVN to@TO activate@VV

(18) activation@NN (head cluster) of@IN [G2@GENE] and@CC [G3@GENE] in@IN [mouse@NN cells@NN]

(19) cell@NN gene@NN

Left gene pole. Right gene pole. We say that a gene entity word has left pole (LP) if it has

a strong affinity to the nearest left neighboring word. Left pole appears in case that a gene entity

word follows a preposition (ex. 20) or adjective (ex. 22). Similarly, we say that a gene entity word

has right pole if it has a strong affinity to the nearest right neighboring word. Right pole appears

in case that a gene entity word precedes an adjective (ex. 22) or verbal noun (ex. 21).

(20) of@IN G@GENE(LP)

(21) G@GENE(RP) activation@NN

(22) G1@GENE(RP) activated@JJ G2@GENE(LP)

3.2.5 Noun Cluster Sequence Reduction

Reduction of noun cluster sequences is achieved using the following four elementary transforma-

tions.

Left removal. Assume a two-word cluster, where both prefix and head positions are held either

by ordinary words (ex. 23) or by gene entity words (ex. 25), or where the prefix position is held

by an ordinary word and the head position by a gene entity word (ex. 24). We define left removal

as removal of the word at the prefix position. The shift in semantic space is considered negligible,

therefore cost = 0.

(23) cell@NN gene@NN → gene@NN

(24) gene@NN G{0,0}@GENE → G{0,0}@GENE

(25) G1{0,0}@GENE G2{0,0}@GENE → G2{0,0}@GENE

Forward propagation. Assume a two-word cluster, where the prefix position is held by a target

word and the head position by an ordinary word, which is not required as a special separator.

We define forward propagation as removal of the word holding the head position, i.e. moving the

target word to the head position (ex. 26). The forward propagation causes a non-negligible shift

in the semantic space, therefore cost = 1.

(26) G{0,0}@GENE activation@NN → G{1,0}@GENE

Right removal. Assume two minimal clusters connected by a preposition, where both clusters

are represented by words of the same importance class or where the left cluster is represented by

a target word and the right cluster by an ordinary word. We define right removal as removal of
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Original pattern Reduced pattern Example sequence

gene1{0,0} nv IN gene2{0,0} (gene1{1,0},gene2{0,2}) G1 activation of G2

nv IN gene1{0,0} IN gene2{0,0} (gene1{0,2},gene2{0,2}) activation of G1 by G2

nv between gene2{0,0} and gene1{0,0} (gene1{0,2},gene2{0,2}) interaction between G1 and G2

gene1{0,0} JJ gene2{0,0} gene2{0,0} G1 -induced G2

gene1{0,0} JJ-ing gene2{0,0} gene1{0,0} G1 inducing G2

gene1{0,0} JJ IN gene2{0,0} gene1{0,0} G1 required for G2

Table 3.1: Reduction of specific nominal structures. Legend: nv ∼ verbal noun, JJ-ing ∼ ing-form

in role of adjective.

the right cluster and the connecting preposition (ex. 27). The shift in the semantic space caused

by the right removal is considered negligible, therefore cost = 0.

(27) G{0,0}@GENE in@IN cell@NN → G{0,0}@GENE

Backward propagation. Assume two minimal clusters connected by a preposition, where the

left cluster is represented by an ordinary word not required as a special separator and the right

cluster is represented by a target word. We define backward propagation as removal of the left

cluster and the connecting preposition, i.e. moving the right cluster to the position of the left

cluster (ex. 28). The shift in the semantic space is considered significant, therefore cost = 2.

(28) activation@NN of@IN G{0,0}@GENE → G{0,2}@GENE

Adjectives are removed from noun clusters, unless they are considered to be kernel candidates.

Moreover, nominal kernels build together with gene intities a limited number of specific structures,

which may be patternalized and reduced in the way shown in table 3.1.

3.2.6 Verb Cluster Reduction

Assume a verb cluster consisting of at least two words, where the head position is held by a verb

and the prefix position is held by single verb (ex. 29), couple verb + to (ex. 30) or triples be +

adjective + to (ex. 31) or have + noun + to (ex. 32). We define verb reduction as removal of all

words at the prefix position. The shift in semantic space is considered negligible, therefore we do

not count any cost.

(29) have@VHP activated@VVN → activated@VVN

(30) known@VVN to@TO activate@VV → activate@VV

(31) is@VBZ able@JJ to@TO activate@VV → activate@VV

(32) has@VHZ ability@NN to@TO activate@VV → activate@VV

Adverbs are removed except for the negation element not, which does not allow full verb

reduction (ex. 33).

(33) have@VVP not@RB activated@VVN → have@VVP not@RB activated@VVN
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3.2.7 Appositions and Coordinations

Appositions and coordinations are another factors contributing significantly to the sentence com-

plexity. They are reduced using a specific rule set.

Appositions. Assume a couple of minimal noun clusters, the second of which is separated from

both sides by a delimiter. Being both clusters represented by ordinary noun, the first one is

selected to replace the appositional structure (ex. 34); gene entity is, however, always preferred

to ordinary noun (ex. 35); being both clusters gene entities, the appositional structure is replaced

by a concatenation of both of them (ex. 36). Since both clusters are coordinated, we do not count

any cost.

(34) gene@NN ,@, protein@NN ,@, → gene@NN

(35) gene@NN ,@, G@GENE ,@, → G1@GENE

(36) G1@GENE ,@, G2@GENE ,@, → G1,G2@GENE

Coordination. Assume a couple of minimal noun clusters separated by a delimiter. To reduce

such a structure, we apply similar rules as used with appositions (ex. 37, 38). Gene entities

are, however, concatenated only if they have not opposite poles (proximity assumption, ex. 39),

otherwise no change is applied (ex. 40).

(37) gene@NN and@CC protein@NN → gene@NN

(38) G@GENE and@CC gene@NN → G@GENE

(39) G1@GENE and@CC G2@GENE → G1,G2@GENE

(40) of@IN G1@GENE(LP) and@CC G2@GENE(RP) [inhibition@NN] → [of@IN] G1@GENE and@CC G2-

@GENE [inhibition@NN]

3.3 Clause Skeleton

3.3.1 Example Derivation

We demonstrate the skeleton idea on an example sentence. Note that the example sentence

is intentionally complex, since we want to demonstrate the general case; by selecting a simple

example some operations would seem needless.

(41) the@DT expression@NN of@IN G1@GENE gene@NN and@CC the@DT G2@GENE induction@NN of@IN

gene@NN G3@GENE in@IN B-cells@NPS proved@VVD recently@RB to@TO activate@VV the@DT

G4@GENE phosphorylated@JJ genes@NN G5@GENE and@CC G6@GENE

Redundant words (determiners, adverbs) are removed from the sequence, noun and verb clusters

are marked for easier orientation:

(42) [expression@NN] of@IN [G1@GENE gene@NN] and@CC [G2@GENE induction@NN] of@IN [gene@NNS

G3@GENE] in@NN [B-cells@NPS] [proved@VVD to@TO activate@VV] [G5@GENE phosphorylated@JJ

genes@NN G5@GENE] and@CC [G6@GENE]
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Left removal and forward propagation are applied leaving candidate nominal kernels untouched.

Furthermore, poles of gene entities are determined:

(43) [expression@NN] of@IN [G1{1,0}@GENE(L)] and@CC [G2{0,0}@GENE(R) induction@NN] of@IN

[G3{0,0}@GENE(L)] in@IN [B-cells@NPS] [proved@VVD to@TO activate@VV] [G4{0,0}@GENE(R)
phosphorylated@JJ G5{0,0}@GENE(L)] and@CC [G6{0,0}@GENE]

Appositions and coordinations are resolved. Since G1 and G2 have opposite poles, they are not

considered coordinated. In contrast, G5 and G6 are coordinated:

(44) [expression@NN] of@IN [G1{1,0}@GENE(L)] and@CC [G2{0,0}@GENE(R) induction@NN] of@IN

[G3{0,0}@GENE] in@IN [B-cells@NPS] [proved@VVD to@TO activate@VV] [G4@GENE{0,0}(R)
phosphorylated@JJ G5{0,0},G6{0,0}@GENE(L)]

Notice that the resulting sequence allows for extraction of all nominal interactions contained in

the precessed clause: G2@GENE induction@NN of@IN G3@GENE and G4@GENE phosphory-

lated@JJ G5,G6@GENE. We name this sequence nominal skeleton.

Now assume we are seeking for interactions built around verb kernel. First, verb structure is

reduced:

(45) [expression@NN] of@IN [G1@GENE{1,0}(L)] and@CC [G2@GENE{0,0}(R) induction@NN] of@IN

[G3{0,0,}@GENE] in@IN [B-cells@NPS] [activate@VV] [G4@GENE{0,0}(R) phosphorylated@JJ

G5{0,0},G6{0,0}@GENE(L)]

The verb activate requires two arguments, one on the left, one on the right side, i.e. cluster

sequences preceding and following the verb need to be reduced. Complex structures are resolved

in preference according to table 3.1:

(46) [expression@NN] of@IN [G1@GENE{1,0}(L)] and@CC [G2{1,0},G3{0,2,}@GENE] in@IN [B-cells@NPS]

[activate@VV] [G5{0,0},G6{0,0}@GENE(L)]

The right removal and backward propagation are applied:

(47) [G1@GENE{1,2}] and@CC [G2{1,0},G3{0,0}@GENE] [activate@VV] [G5{0,0},G6{0,0}@GENE]

Again, coordinations are resolved; this time, however, regardless of the gene poles:

(48) [G1{1,2},G2{1,0},G3{0,0}@GENE] [activate@VV] [G5{0,0},G6{0,0}@GENE]

The resulting sequence allows for extraction of the interaction built around a verb kernel. There-

fore, we name this sequence verb skeleton.

The process of finding the clause skeletons can be roughly summarized into four steps: (1)

reduce noun clusters into minimal clusters using the left removal and forward propagation; resolve

appositions and coordinations according to the gene poles, which results to a nominal skeleton. The

remaining two steps are specific to verb skeletons: (3) resolve nominal structures, mainly using the

right removal and backward propagation; (4) resolve appositions and coordinations regardless of

the gene poles. Following the path of abstraction, the above four steps may be further summarized

in two steps: (I) investigate in details the internal structure of noun cluster sequences; (II) reduce
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the noun cluster sequences (if possible) to such forms which can be passed as arguments to clause

verb predicate.

3.3.2 Nested Nominal Kernels

Nominal structures are resolved and passed as arguments to clause predicates, i.e. nominal struc-

tures are subordinated to verb predicates. However, nominal kernels are also predicates, i.e. they

bind arguments: nouns, gene entity words or other nominal predicates. Nominal structures built

around nominal kernels are saved in nominal skeletons before they are dissolved to become verb

arguments. We need to define a storage device, where to save subordinated nominal structures

built around nominal kernels, before they are dissolved to become arguments of their superior

nominal predicates.

To resolve this problem the following procedure is applied: (i) nested nominal structures are

detected - they are indicated e.g. by sequences adjective + verbal noun 49 or by gene entity words

having both left and right poles 53; (ii) mark candidate kernels either as superior (the left one) or

subordinated (the right one); (iii) subordinated structures are reduced to a minimal cluster (table

3.1) leaving superior structures untouched (first skeleton)a; (iv) superior structures are removed

leaving subordinated structures untouched (second skeleton). Note also, that when creating verb

arguments, first subordinated structures and then superior structures are reduced.

We demonstrate this procedure on two simple examples. In example 49 noun kernel is an

argument of an adjective kernel:

(49) G1{0,0}@GENE(R) -induced@JJ activation@NN of@IN G2{0,0}@GENE(L) by@IN G3{0,0}@GENE(L)

Following the above steps, candidate kernels are detected (ex. 50), first skeleton in derived by

reducing subordinated structure (ex. 51), second skeleton is derived by removing superior structure

(ex. 52).

(50) G1{0,0}@GENE(R) -induced@JJ(superior) activation@NN(subordinated) of@IN G2{0,0}@GENE(L) by@IN

G3{0,0}@GENE(L)

(51) G1{0,0}@GENE -induced@JJ G2{0,2},G3{0,2}@GENE

(52) activation@NN of@IN G2{0,0}@GENE by@IN G3{0,0}@GENE

In example 53 an adjective kernel is an argument of a noun kernel:

(53) G1{0,0}@GENE activation@NN of@IN G2{0,0}@GENE -induced@JJ G3{0,0}@GENE

Following the above steps, candidate kernels are detected (ex. 54), first skeleton is derived by

reducing subordinated structure (ex. 55), second skeleton is derived by removing superior structure

(ex. 56).

(54) G1{0,0}@GENE(R) activation@NN of@IN G2{0,0}@GENE(L,R) -induced@JJ G3{0,0}@GENE(L)

(55) G1{0,0}@GENE(R) activation@NN of@IN G3{0,0}@GENE(L)

(56) G2{0,0}@GENE(L,R) -induced@JJ G3{0,0}@GENE(L)

The above procedure assumes two-level nominal structures, i.e. once being subordinated,
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nominal kernel does not take another nominal kernel as its argument. Nominal structures of higher

order are not only improbable, but they also do not meet the requirement of understandability,

i.e. they considered stylistically incorrect. To confirm this statement, a number of queries were

made in a large set of biomedical abstracts.

3.3.3 Skeleton Tasks

Consider that we are given a sentence containing an interaction built around a verb kernel. The

expected structure of the sentence is as follows:

• noun cluster sequence containing gene entity word G1,

• noun cluster sequence containing gene entity word G2,

• verb cluster,

• word environment surrounding the three above components.

The interaction requires two operands and an kernel. The required transformations may be defined

in the following manner:

• noun cluster sequence containing gene entity word G1 → head cluster (gene entity word

only),

• noun cluster sequence containing gene entity word G2 → head cluster (gene entity word

only),

• verb cluster → minimal cluster.

Consider that we are given a sentence containing an interactions built around a nominal kernel.

The expected structure of the sentence is as follows:

• nominal cluster sequence containing the gene entity word G1, gene entity word G2 and a

nominal kernel,

• environment surrounding the component above.

The interactions requires two operands and a kernel. The required transformation may be defined

in the following manner:

• nominal cluster sequence → sequence containing nominal kernel, whose arguments are min-

imal nominal clusters.

3.4 Resolving Language Pointers

3.4.1 Problem Specification

To address another problem regarding the sequential text mining task first assume the following

sentence triple:
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(57) it@PP [G1] activates@VVZ G2@GENE

(58) its@PP$ [G1] activation@NN of@IN G2@GENE

(59) which@WDT [G1] activates@VVZ G2@GENE

Our observations will focus on pronouns contained in each of the three above sentences (it, its

and which). Pronouns represent a structural element (word, clause) without actually holding its

semantic value: being given only the above sentence stubs, we are able to guess the grammatical

meaning, but not the semantic contents. Using the pointer/value opposition, pronouns point to

the structural element actually holding the semantic value; therefore, we name them language

pointers. Personal and possessive pronouns (examples 57 and 58) point either to a noun word

in any preceding clause (i.e. within the same sentence), or to a noun word in any (but typically

close) preceding sentence; relative pronouns (example 59) point most typically to the last word of

the preceding clause. Hence, predicate argument is not represented by any element holding the

semantic value, but rather by a pointer referring to this element. Now consider one more sentence

stub:

(60) and@CC [G1] activates@VVZ G2@GENE

In example 60, the subject argument is represented neither by element holding the semantic

value, nor by pointer referring to that element. To be more precise, there is a language pointer

(since transitive verb simply requires two arguments), though not explicit, but rather implicit.

We will call it implicit language pointer; consequently the personal pronouns, possessive pronouns

and relative pronouns will be referred to as explicit language pointers.

The difficulty arising from the existence of language pointers is obvious: Being given a task

to determine, whether two lexical entities build a semantic relation, we first have to resolve the

element the pointer refers to. This problem will be named the existence of language pointers.

3.4.2 Main Principles

The methodological approach of resolving the problem of language pointers complies with the

following general principles.

Mapping language pointers to corresponding values. Treating pointers as values naturally

generates errors in sentence interpretation. In case that a pointer stands for a gene entity, we

typically miss at least one semantical relation (possibly an interaction) concerning this entity.

Substituting pointers by their values naturally avoids this problem, however, it requires a correct

mapping of language pointers to their lexical values. In fact, we determine the most probable

mapping rather than correct mapping, since this task proves to be very difficult.

Restriction to gene values. As we restrict our interest exclusively to those relations describing

gene interactions, we leave unresolved all pointers, which are unlikely to refer to any gene entity.

If at least one relation operand is not a gene entity, we do not miss any interaction. This principle

is analogy to the gene propagation principle (section 3.2.3, page 20).



CHAPTER 3. METHOD DESCRIPTION 29

Assumption of left pointer orientation. Language pointers may refer both to the left and

to the right (i.e. pointers referring to a subject clause). However, we take into account only those

pointers pointing to the left and thus following the common textual principle: an entity is referred

to (as clause/sentence rheme) not until it has been introduced (as sentence/clause theme).

Operation minimality. In contrast to the cluster simplification task, pointer mapping can not

be evaluated using a reliable language based measure, since the context we are working with is too

large and therefore too versatile. To minimize the probability of making errors, we only apply a

minimum number of steps/transformations to find the most probable values of the given pointer.

3.4.3 Pronoun Mapping

Two restrictions are set for resolving explicit language pointers: (1) Relative pronouns are excluded

from the pronoun mapping since they, following contiguously the word they are pointing to, do not

actually break the sentence sequentiality. (2) The considerations focus only on those personal and

possessive pronouns preceding the clause predicate, i.e. being part of the noun cluster sequence

containing the clause subject, since occurrences in noun cluster sequences at object or prepositional

positions prove to be very rare.

In the majority of cases both personal and possessive pronouns refer to an entity, which plays

a role of subject in one of the previous clauses. Such situations are demonstrated in example 61

and 62 for both pronoun types.

(61) G1@GENE consists@VVZ of@IN three@CD exons@NNS and@CC it@PP (→ G1@GENE) activates@VVZ

G2@GENE

(62) G1@GENE consists@VVZ of@IN three@CD exons@NNS and@CC its@PP$ (→ G1@GENE) expres-

sion@NN activates@VVZ G2@GENE

In some cases, on the other hand, personal and possessive pronouns refer to an entity, which is

employed as object or prepositional verb argument (e.g. interacts@VVZ with@IN G1@GENE) in

one of the previous clauses. Most typically, however, such entity is mentioned right in the previous

clause. Mapping to object is shown in examples 63 and 64 for both pronoun types.

(63) We@PP reported@VVD the@DT phosphorylation@NN of@IN G1@GENE and@CC it@PP (→ G1@GENE)

associates@VVZ with@IN G2@GENE

(64) We@PP reported@VVD the@DT phosphorylation@NN of@IN G1@GENE and@CC its@PP$ (→ G1@GE-

NE) association@NN with@IN G2@GENE

Furthermore, ambiguous cases, in which both subject and object (or prepositional argument)

of the previous clause are held by gene entity words, also appear in biomedical literature (examples

65 and 66). This ambiguity is resolved by mapping the pronoun to the entity holding the subject

role, since this interpretation is stylistically (i.e. with respect to sentence understandability) more

appropriate in most cases.

(65) G1@GENE activates@VVZ G2@GENE ,@, but@CC it@PP (→ G1@GENE) associates@VVZ more@RBR
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strongly@RB with@IN G3@GENE

(66) G1@GENE activates@VVZ G2@GENE ,@, but@CC its@PP$ (→ G1@GENE) association@NN with@IN

G3@GENE is@VVZ considered@VVN more@RBR strong@JJ

In all examples above, only singular pronouns are employed. By analogy, we could rewrite all

these sentences using only plural pronoun forms, which are mapped to plural gene entities. Note

that entity names appear very rarely in plural forms, however, coordinate singular entity names

are also considered to be plural entity forms. The problem complexity rises when pronoun and

entities have different numerus. To resolve these situations, we define the following principles: (1)

singular pronoun is never mapped to plural entity names; (2) plural entity names may be mapped

to singular entity names, if no plural entity name is available, since often not all entity names

have been marked as entity names by data curators; (3) plural pronouns are preferably mapped

to plural entity names.

3.4.4 Verb Coordinations

Coordinate verb with no explicit subject is resolved by making a sentence fork, i.e. by creating

a new, shorter sentence, in which all tokens preceding this verb are removed unless finally a verb

with an explicit subject is met. Examples 67 through 71 demonstrate this procedure, consider-

ing all possible forms of coordinate verbs with no explicit subject: coordinate verbs following a

conjunction (ex. 67), comma (ex. 68), gene or noun being an object (ec. 69) or prepositional

(ex. 70) argument of the preceding clause verb predicate, and an ing-form following a preposition

indicating a verb argument1 (ex. 71).

(67) G1@GENE activates@VVZ G3@GENE and@CC interacts@VVZ with@IN G3@GENE ↪→ G1@GENE in-

teracts@VVZ with@IN G3@GENE

(68) G1@GENE activates@VVZ G3@GENE ,@, interacts@VVZ with@IN G3@GENE ↪→ G1@GENE inter-

acts@VVZ with@IN G3@GENE

(69) G1@GENE which@WDT activates@VVZ G2@GENE interacts@VVZ with@IN G3@GENE ↪→ G1@GENE

which@WDT interacts@VVZ with@IN G3@GENE

(70) G1@GENE which@WDT interacts@VVZ with@IN G2@GENE activates@VVZ G3@GENE ↪→ G1@GENE

which@WDT activates@VVZ G3@GENE

(71) G1@GENE activates@VVZ G2@GENE by@IN associating@VVG with@IN G3@GENE ↪→ G1@GENE as-

sociating@VVG with@IN G3@GENE

3.5 Sentence Skeleton

In section (page 24) construction of clause skeletons has been discussed (i.e. skeletons on clause

level); in this section, skeleton concept is extended to cover whole sentences (i.e. skeletons on

sentence level).

Sentence skeleton is created by simply concatenating clause skeletons in the same order, in

which corresponding clauses appear in the original sentence, using the same connectives as in
1This phenomenon will be explained in section 3.6.4, page 33.
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the original sentence. On sentence level, word clusters continue to play the role of candidate

components of possible interactions, i.e. there is no abstraction towards higher level structures

(e.g. cluster sequences, clauses). Predications, however, may either stay within one clause or

extend over multiple neighboring clauses. To demonstrate this difference, consider the following

two example sentences:

(72) G1@GENE interacts@VVZ with@IN G2@GENE ,@, which@WDT also@RB activates@VVZ G3@GENE

(73) G1@GENE interacts@VVZ with@IN G2@GENE ,@, but@CC activates@GENE also@RB G3@GENE

Both two example sentences contain two predications, one staying within the first clause

(G1@GENE interacts@VVZ with@IN G2@GENE) and one extending to both sentence clauses

(built around the word activates@VVZ). Predications extending over multiple clauses require lan-

guage pointers, either explicit or implicit, in their implementation: which@WDT in example 72

and the implicit pointer in example 73.

In addition to concatenating clause skeletons, sentence skeleton construction involves the pro-

noun mapping and resolving verb coordinations in the following distribution: nominal skeleton

construction is extended only by possessive pronoun mapping, while verb skeleton construction

includes resolving verb coordinations and both personal and possessive pronoun mapping.

Note that predications may exceed also over multiple sentences. In this case we are already

moving on textual level, which is not covered by the presented system. Similarly to sentence level,

predications are implemented using language pointers - It@PP in example 74.

(74) It@PP interacts@VVZ with@IN G2@GENE ,@, but@CC it@PP also@RB activates@VVZ G3@GENE

3.6 Keeping Semantical Integrity

3.6.1 Problem Specification

To address one more problem concerning sequential (but not limited to) text mining tasks, consider

the following sentence triple:

(75) G1@GENE necessary@JJ for@IN G2@GENE interacts@VVZ with@IN G3@GENE

(76) G1@GENE -activated@JJ G2@GENE interacts@VVZ with@IN G3@GENE

(77) G1@GENE activating@VVG G2@GENE interacts@VVZ with@IN G3@GENE

Starting from example 75, the verb interacts splits the above sentence in two parts: subject

argument and prepositional argument, both of which are noun clusters. In general, the predicative

power of verb allows it to operate as top level node which divides clause in two regions containing

arguments of the given verb - either noun clusters or another clauses. However, examples 76 and

77 demonstrate, that verbs may occur also within these regions, behaving similarly to those verbs

constituting clause predicate - they bind the same types of arguments using the same syntactic

rules: activated as past participle and activating as ing-form.
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An error in determining, which verb holds the role of clause predicate, may lead towards

loss of the clause/sentence semantical integrity. As a result, we speak about the problem of

clause/sentence integrity. The difficulty of finding the correct solution for this problem may vary

significantly from case to case, from trivial ones to those being extremely difficult.

3.6.2 Main Principles

The methodological approach for ensuring semantical integrity complies with the following general

principles:

Mapping to potential interaction kernels. To preserve the clause/sentence integrity, se-

lected nominal verb forms are mapped to potential interaction kernels: verbs (i.e. no change),

nouns or adjectives with respect to current local context. The mapping follows rules extracted

manually from random subsets of biomedical abstracts.

Minimality. Similarly to language pointers, there is no higher chance to define a reliable lan-

guage based measure to determine the quality of applied transformations. Therefore, in ambiguous

cases we use the most universal one to minimize the probability of errors.

3.6.3 Linguistic Observations

Assume the following example sentence:

(78) G1@GENE necessary@JJ for@IN G2@GENE interacts@VVZ with@IN [G3@GENE complex@NN] and@CC

inhibits@VVZ [G4@GENE]

The sentence 78 contains three interacting gene pairs: G1@GENE and G2@GENE, G1@GENE

and G3@GENE and G1@GENE and G4@GENE. Now we inject ing-forms into sentence 78, re-

placing necessary@JJ for@IN by activating@VVG, complex@NN by binding@VVG and and@CC

interacts@VVZ by by@IN inhibiting@VVG:

(79) G1@GENE activating@VVG [G2@GENE] interacts@VVZ with@IN [G3@GENE] binding@VVG by@IN

inhibiting@VVG [G4@GENE]

Despite the applied lexical changes, the semantic structure of the resulting sentence 79 remains

very similar to that of sentence 78; all relations between gene entities are preserved, one indirect

relation is added: G3@GENE is now affected by G4@GENE. However, all ing-forms are treated

as verbs (e.g. by Treetagger [56] used in this project), even though some of them play role

of another part-of-speech: in sentence 79, activating works as adjective@VVG, binding@VVG as

noun. Mapping all ing-forms to a single part-of-speech type causes information loss, which makes

us unable to extract the complete and valid set of semantical relations from the given sentence: in

our example, we fail to identify pairs G1@GENE and G3@GENE and G1@GENE and G4@GENE,

and apart from this, we extract incorrect pair G2@GENE and G3@GENE. The way out of this
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problem is to reveal the actual part-of-speech of all ing-forms employed in the given sentence, i.e.

to map them to nouns, adjectives and verbs (possible predicates):

(80) G1@GENE activating@(VVG → JJ) G2@GENE interacts@VVZ with@IN [G3@GENE binding@(VVG →
NN)] by@IN inhibiting@(VVG → VVG) [G4@GENE]

In general, semantical integrity is most typically harmed by nominal verb forms, i.e. ing-forms,

past participles and infinitives. Ing-forms are discussed in section 3.6.4, past participles in section

3.6.5; infinitives are not covered by the presented system.

3.6.4 Resolving ing-forms

The overview of ing-form resolving is given as a list of characteristic patterns in which ing-forms

are encapsulated.

Noun/gene + ing-form + noun/gene. In case ing-form is surrounded by nouns or genes (ex. 81

- 83), we interpret it as an adjective. Considering this triple to be a noun cluster, we define the

left-side argument to hold the role of the head of the cluster. This is needed to correctly resolve the

case, when both arguments are genes (ex. 81); in general case (ex. 82 and 83), this interpretation

is not necessarily correct, however, as not two genes are involved, the error is not important.

(81) G1@GENE[head] activating@(VVG → JJ) G2@GENE

(82) protein@NN[head] containing@(VVG → JJ) G1@GENE

(83) G1@GENE[not head] signaling@(VVG → JJ) pathway@NN

Noun/gene + ing-form + preposition. The most appropriate solution for this pattern is mapping

the ing-form to verbal noun (NN), as shown in ex. 84. In some rare cases, this interpretation seems

linguistically inappropriate, however, it does not lead to errors in detecting correct interacting pairs

(ex. 85).

(84) G1@GENE binding@(VBG → NN) in@IN myometrium@NN

(85) G1@GENE interacting@(VVG → NN) with@IN G2@GENE

Adjective + preposition + ing-form. This pattern covers two frequent situations shown in

examples 86 and 87. The sentence in example 86 represents a predicative sentence with capable in

role of predicative. In this case, we simply remove the adjective and preposition, which leads to

a compound verb form. In the example 87, on the other hand, only a noun phrase is given, even

though capable remains semantically predicative. By removing the adjective and preposition we

obtain the structure of ing-form surrounded by two nouns or genes, which is resolved according to

the corresponding rule.

(86) G1@GENE is@VBZ capable@JJ of@IN inhibiting@VVG G2@GENE→ G1@GENE is@VBZ inhibiting@VVG

G2@GENE

(87) G1@GENE[head] capable@JJ of@IN inhibiting@VVG G2@GENE → G1@GENE[head] inhibiting@VVG

G2@GENE
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Verb + preposition + ing-form. In case that the ing-form is bound directly to a verb, we only

remove the verb and preposition as shown in example 88

(88) G1@GENE competes@VVZ for@IN binding@VVG G2@GENE → G1@GENE binding@VVG G2@GENE

Noun/gene + preposition indicating verb argument + ing-form. Some prepositions bind to the

sentence predicate rather than to the preceding noun: by, via, though, upon, after, before. In

context of this paper, we name them prepositions indicating verb argument. Being given an ing-

form following the sequence of noun and such a preposition (ex. 89 and 90), we do not touch this

structure. It will be further resolved as coordinate verb.

(89) G1@GENE controls@VVZ DNA@NP synthesis@NN by@IN regulating@(VVG → VVG) G2@GENE

(90) G1@GENE activates@VVZ G2@GENE by@IN interacting@(VVG → VVG) with@IN G3@GENE

Adjectival or phraseologically bound noun + preposition not indicating verb argument + ing-form.

In case of prepositions which do not indicate verb argument we concentrate on patterns, where the

preposition follows either adjectival noun or a noun which constitutes together with some verb a

phraseological construct (e.g. play role). I this noun is connected to a verb, we leave the structure

untouched and resolve it further as coordinate verb (ex. 91 and 92). If it, on the other hand,

follows a possessive pronoun, we are working with poorly nominal construct. Since we still do not

know if it is possible to map the possessive pronoun to some gene entity, the safest way to resolve

the ing-form is to map it to verbal noun in the way shown in examples 93 and 94.

(91) G1@GENE shows@VVZ efficiency@NN in@IN activating@(VVG → VVG) G2@GENE

(92) G1@GENE plays@VVZ role@NN in@IN activating@(VVG → VVG) G2@GENE

(93) G1@GENE and@CC its@PP$ role@NN in@IN activating@VVG G2@GENE→ G1@GENE and@CC its@PP$

role(activating)@NN in@IN G2@GENE

(94) G1@GENE and@CC its@PP$ efficiency@NN in@IN activating@VVG G2@GENE → G1@GENE and@CC

its@PP$ efficiency(activating)@NN in@IN G2@GENE

In other cases ing-forms are interpreted as verbal nouns, as demonstrated in examples 95

through 98. It is not necessarily the best interpretation (ex. 97 and 98), however, it does not lead

to errors in detecting interacting pairs.

(95) the@DT signaling@(VVG → NN) pathway@NN

(96) active@JJ binding@(VVG → NN) gene@NN

(97) four@CD binding@(VVG → NN) genes@NNS

(98) of@IN preexisting@(VVG → NN) gene@NN

3.6.5 Resolving Past Participles

The grammatical ambiguity caused by past participles is trivial to resolve. After removing redun-

dant words (adverbs, determiners etc.), a simple rule is applied: if the past participle follows a

verb form, it constitutes the clause verb predicate (ex. 99), therefore it continues to be a verb;
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otherwise it is assigned the adjective class (ex. 100.

(99) G1@GENE was@VVD activated@(VVN → VVN) by@IN G2@GENE

(100) G2@GENE activated@(VVN → JJ) G1@GENE

3.7 Improved Sentence Skeleton

3.7.1 Skeleton Grammatical Patches

Improving semantical integrity is achieved through grammatical patches applied to ambiguous or

incorrectly classified grammatical phenomena, i.e. the grammatical interpretation determines the

semantical interpretation. Such dependence of language comprehension on the grammar interpre-

tation is specific to machine language interpreters, being far from human mechanism of language

comprehension. Skeleton derivation is a custom implementation of such a machine interpreter,

therefore it requires grammatical patches to be applied before the concerned grammatical phe-

nomena are used for mining the sentence semantics. Taking this into account, semantical integrity

is solved right at the very beginning of the skeleton algorithm. The complete skeleton derivation

is summarized in algorithm 1.

Algorithm 1: Deriving sentence skeletons
Data: Tagged token sequence

Result: Verb and nominal skeletons

Remove redundant words, make various input corrections, select relevant adjectives, resolve1

past participles;

Do left removal and forward propagation with regard to all candidate nominal kernels;2

Resolve ing-forms, repeat the previous step;3

Register gene poles;4

Resolve gene coordinations and appositions with respect to gene poles;5

Apply right removal and backward propagation;6

Resolve possessive pronouns;7

Detect nested nominal structures;8

Derive nominal skeletons using algorithm 2;9

Derive verb skeletons using algorithm 3;10

Algorithm 2: Deriving nominal skeletons
Data: Output sequence of algorithm 1

Result: Nominal skeletons

Reduce subordinated nominal structures in the input sequence → nominal skeleton 1;1

Remove superior nominal structures from the input sequence → nominal skeleton 2;2
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Algorithm 3: Deriving verb skeletons
Data: Output sequence of algorithm 1

Result: Verb skeletons

Reduce verb cluster to a minimal cluster;1

Resolve subordinated nominal structures;2

Apply the left removal and forward propagation regardless of candidate nominal kernels;3

Resolve personal pronouns, repeat the previous step;4

Detect genes being objects or prepositional arguments of finite verbs;5

Apply the right removal and backward propagation with respect to gene poles;6

Resolve appositions and coordinations with respect to gene poles → verb skeleton 1;7

for each coordinate verb with no explicit subject do8

Create an additional skeleton by mapping the coordinate verb to the first verb with an9

explicit subject → additional verb skeleton;

3.7.2 Skeleton Application

Assume we are given a sequential algorithm which is supposed to be applied on a set of sentences

(i.e. language corpus). Instead of sentences, we apply this tool on a set of skeletons. Schemes 3.2

and 3.3 illustrate this paradigm change.

sentence 1

...

sentence k

...

sentence n

=⇒
Sequential algorithm

↓
sentence k

=⇒

...

patterns from

sentence k

...

Scheme 3.2: Applying sequential algorithm on sentences

sentence 1

...

sentence k

...

sentence n

=⇒

Sequential algorithm

↓
verb skeletons k

Sequential algorithm

↓
nominal skeletons k

=⇒

...

patterns from

verb skeletons k

patterns from

nominal skeletons k

...

Scheme 3.3: Applying sequential algorithm on sentence skeletons



Chapter 4

Experiments and Results

4.1 Testing Method

A simple sequential approach has been used to evaluate the effect of sentence skeletonization (i.e.

improvement of sentence sequentiality) in the gene interaction extraction task: manually created,

grammatically relevant patterns representing predication between two gene entities are matched

against sentence skeletons, matching subsequences of sentence skeletons are considered to express

interactions between the involved gene entities. Two features of this approach are essential:

(I) Syntagmatic rigidity: As the resulting sequentiality is the actual target of testing, the

reference basis (i.e. what is certainly of sequential nature) represented here by the predefined

sequential patterns should mirror the sequential principle in the clearest possible form in order to

provide the most informative evaluation. Therefore, the time span between each two subsequent

elements of all sequential patterns are set to one, i.e. neighboring tokens of a pattern have

neighboring counterparts in the sentence skeleton, no time relaxation is allowed.

(II) Paradigmatic latitude: Instead of lexical elements, the sequential patterns are built (al-

most) exclusively from metalingual components, thus focusing on grammar rather than on the

actual semantics. As shown in section 3.6, the grammar, largely employing sequential principles,

is often a fundamental prerequisite for semantic integrity; therefore, being forced to keep the pat-

tern set relatively small, such simplification seems acceptable (as approximation). The elements of

sequential patterns result from double abstraction: e.g. noun-token (i.e. second-level abstraction)

of a sequential pattern covers four noun tags (i.e. NN, NNS, NP, NPS; first level abstraction) ac-

tually assigned to any English noun word by a language tagger; i.e. any noun may be substituted

for the noun-token.

The set sequential patterns consists of 29 patterns, 23 with a verb kernel, 3 with a noun kernel

and 3 with an adjective kernel, e.g.:

gene verb gene

gene noun preposition gene

gene adjective gene

37
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AiMed Brun Hprd50 IEPA LLL05 BC-PPI

Sentences 2202 1939 145 486 77 1000

Interactions 1031 2509 148 327 157 294

Table 4.1: Testing corpora. Numbers of interactions may slightly differ from the official ones due

to applied normalization principles.

For the complete list of sequential patterns refer to section B, page 53.

4.2 Experimental Data

The resulting sequentialty was evaluated on six biomedical corpora annotated both for gene entites

and gene interactions: AiMed [47], Christine Brun Corpus [5], HPRD50 [42], IEPA [3],

LLL05 [61] and BC-PPI [28]. The corpus selection was largely inspired by [53] and [14]. Basic

features of the testing corpora are given in table 4.1.

All six corpora were handled in the same way acoording to the following four principles: (I)

sentences are stemmed and assigned grammar tags using Treetagger [56]; (II) interactions em-

ploying more than two gene entities are converted into corresponding number of binary interactions

(e.g. one ternal interaction corresponds to three binary interactions); (III) interacting gene pair,

being detected in a corpus sentence, is counted only ones into performance measures (precision,

recall, F-measure) regardless of how many times it is actually expressed in the sentence; (IV) a

triple of two interacting genes and a binding kernel is counted only ones in the pattern analysis

regardless of how many times it actually appears in the sentence.

4.3 Experiments

4.3.1 Introductory Remarks

The overall performance of the presented approach in terms of precision, recall and F-measure is

given in table 4.2. To provide a detailed insight in the actual impact of the sentence skeletonization,

to identify its limitations and possible improvements, six experiments have been designed. They are

described in the following order: first, analysis of false negatives is given (page 38); second, analysis

of false positives is provided (page 39); third, components of sentence skeletonization are studied

in cooperation (page 40); fourth, the effect of individual components of sentence skeletonization

is discussed (page 41); fifth, performance of the system in dependence on the maximum allowed

penalty is analyzed (page 42); sixth, performance of pattern classes and individual patterns are

identified (page 43).

4.3.2 False Negatives

False negatives result mostly from the insufficient sequentiality of skeletonized sentences. Two cor-

pora, LLL05 (providing excellent results) and BC-PPI (providing poor results), were analyzed in
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AiMed Brun Hprd50 IEPA LLL05 BC-PPI

Precision 0.49 0.62 0.81 0.74 0.87 0.36

Recall 0.46 0.47 0.61 0.59 0.72 0.65

F-measure 0.48 0.54 0.69 0.65 0.79 0.46

Table 4.2: Precision, recall and F-measure for all testing corpora

Category Explanation

1 Incorrect tagging E.g. G1 binds@NNS to G2

2 Distance too long E.g. multiple nested clauses before interaction is completed

3 Front-end argu-

ments

E.g. in addition to G2, G1 interacts with G3

4 Nested ing-forms E.g. ... by activating G2 encoding G3

5 Higher level non-

verb coordinations

E.g. G1 interacts (with G2) and (with G3)

6 Unresolved point-

ers

E.g. high concentration of G1 induces G2, but low concentration(!)

activates G3

7 Misleading inter-

punction

E.g. G1 and G2, interact with G3

8 Different language

forms

E.g. complex of G1 and G2; G1 and G2 interact [with each other]

Table 4.3: Analysis of false negatives: unhandled structures, confusing factors

detail to identify both (a) the structures not covered by the sentence skeletonization, and (b) the

factors causing the skeletonization to fail to improve the sentence sequentiality. A classification of

such phenomena is given in table 4.3. Some of the listed problems could be possibly solved by sim-

ply employing a more advanced sequential algorithm (items 5, 7; e.g. algorithm described in [45]),

the other require additional preprocessing steps to be included into the sentence skeletonization.

4.3.3 False Positives

False positives result either from (a) shortcommings of the sentence skeletonization, or (b) short-

commings of the sequential algorithm. Similarly to analysis of false negatives, two corpora, LLL05

(giving excellent results) and BC-PPI (giving poor results), have been selected to identify the main

factors generating false positives.

(a) Provided that stylistical correctness is guaranteed, the sentence complexity rises together

with the complexity of the idea held by this sentence; thus, reducing the sentence complexity

naturally distorts the underlying idea. All components of the sentence skeletonization cause errors.

However, it proves to be difficult to determine the principal of the fault, since the level of component

interconnection is high. The most distinguishable fault contributions are made by components

resolving appositions and coordinations (ex. 101), verb coordinations (ex. 102) and ing-forms (ex.

103); also pronoun mapping (ex. 104) is well distinguishable fault contributer, though not very
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Category Examples

Mediate view on sth. indicate, be observed, be analyzed, reveal, resemble

Relationship correspond to, be related to, be correlated with

Part of sth. be member/subunit of, include, contain, be inserted to, locate, par-

ticipate in complex

Role of sth. serve as, act as

External action trigger using G1 as G2, examine G1 for [e.g. activating G2]

Negation in absence of, block [e.g. activity of ], prevent G1 [e.g. from activating

G2]

Result of an action lead to, result from

Table 4.4: Analysis of false positives: semantically confusing expressions

frequent.

(101) G1 interacts with G3 but G2 not.
!−→ G1 interacts with (G3, G2) not.

(102) G1 activates G2, if G2 is present, and also inhibits G3.
!−→ G2 inhibits G3. [fork]

(103) G1 activates G2, and G3 activation by binding@(VVG
!−→ VVG) G4 inhibits...

→ G1 binding G4. [fork]

(104) The above mentioned gene interacts with G1, and it (
!−→ G1) also activates G2.

Furthermore, a destructive multiplicative effect of coordinations has been observed: assuming all

coordinations have been correctly resolved, an error in any other component distributes the error

to all participants of the given coordination, which may lead to more than five errors in a single

sentence. Whether the improvement of the sentence skeletonization would decrease the error rate

significantly, is the question for further work.

(b) Errors of the testing algorithm rise mostly from the ommission of semantics: not every word

holding the position of a kernel is trully a kernel. Based on a detailed analysis, several semantic

classes frequently confused with interaction kernels have been identified; they are available together

with examples in table 4.4. The overall performance on various corpora (table 4.2) depends

strongly upon the frequency of such confusing kernel candidates. This kind errors could probably

be to great extent reduced by employing a more advanced sequential algorithm, e.g. the algorithm

described in [45] (hypothesis for further work).

4.3.4 Effect of Gradually Adding Components

The impacts of preprocessing components can be hardly additive: since each change in the sentence

structure modifies the underlying idea, every other change works with different idea than the

previous one. As a result, the particular components constitute a complicated interference network,

which is hard to estimate. Though, at least an increase in performance measures is required with

any component addition. The experiment documented in table 4.5 lies in gradually adding the

preprocessing components in the same order as they have been described in this report. Most of

the components behave as expected: recall (R) and F-measure (F) increase, while precision (P)
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CC LP SI

corpus value basic +ncs +vcs +gca +prm +vco +ing +ptc

AiMed P 0.47 0.51 0.52 0.50 0.50 0.49 0.50 0.49

R 0.08 0.19 0.22 0.38 0.40 0.46 0.47 0.46

F 0.13 0.28 0.31 0.43 0.44 0.48 0.48 0.48

Brun P 0.64 0.69 0.71 0.64 0.64 0.63 0.63 0.62

R 0.09 0.21 0.27 0.39 0.42 0.48 0.48 0.47

F 0.16 0.33 0.39 0.49 0.51 0.54 0.54 0.54

Hprd50 P 0.73 0.81 0.81 0.86 0.85 0.82 0.82 0.81

R 0.11 0.24 0.29 0.45 0.49 0.54 0.61 0.61

F 0.19 0.37 0.43 0.59 0.62 0.65 0.70 0.69

IEPA P 0.71 0.78 0.75 0.76 0.76 0.73 0.74 0.74

R 0.16 0.33 0.38 0.51 0.52 0.57 0.59 0.59

F 0.26 0.46 0.50 0.61 0.62 0.64 0.66 0.65

LLL05 P 0.77 0.79 0.81 0.86 0.86 0.86 0.87 0.87

R 0.06 0.31 0.38 0.59 0.59 0.65 0.71 0.72

F 0.12 0.44 0.52 0.70 0.70 0.74 0.78 0.79

BC-PPI P 0.52 0.45 0.46 0.42 0.41 0.38 0.36 0.36

R 0.11 0.28 0.36 0.55 0.57 0.63 0.63 0.65

F 0.18 0.34 0.40 0.48 0.48 0.47 0.46 0.46

Table 4.5: Precision (P), recall (R) and F-measure (F) in dependence on increasing number of

applied skeletonization components. Legend: CC ∼ resolving cluster complexity, LP ∼ resolving

language pointers, SI ∼ keeping semantical integrity; basic ∼ no transformations, ncs ∼ reduction

of noun cluster sequence, vcs ∼ verb cluster reduction, gca ∼ gene appositions and coordinations,

prm ∼ pronoun mapping, vco ∼ resolving verb coordinations, ing ∼ resolving ing-forms, ptc ∼
resolving past participles.

varies, depending on how much the underlying idea is likely to be modified by the given operation.

However, the last component, past participle resolving, shows often a decrease in both recall and

F-measure.

4.3.5 Impact of Individual Components

Noun cluster sequence reduction and verb cluster reduction are considered to be the core compo-

nents of the sentence skeletonization, since they construct the backbone of the sentence skeleton.

The other components, in contrast, have been designed as improvements of this basis, as a result of

which they are inherently incomparable with the core components in degree of their contribution

to the resulting performance. However, they may be more easily compared between each other,

when applied on the skeleton backbone. Such an experiment is documented in table 4.6 in terms

of increments or decrements of the observed performance qualities held by the skeleton backbone.

Focusing on the recall and F-measure, there is mostly an increment or at least stagnation in these
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ncs+vcs ncs+vcs ncs+vcs ncs+vcs ncs+vcs

corpus value ncs+vcs +gca +prm +vco +ing +ptc

AiMed P 0.52 -0.02 +0.00 -0.01 -0.01 +0.01

R 0.22 +0.15 +0.01 +0.03 +0.01 +0.01

F 0.31 +0.12 +0.01 +0.03 +0.01 +0.01

Brun P 0.71 -0.07 +0.00 -0.00 -0.00 -0.00

R 0.27 +0.12 +0.02 +0.03 +0.01 +0.00

F 0.39 +0.09 +0.02 +0.03 +0.01 +0.00

Hprd50 P 0.81 +0.05 -0.01 -0.02 -0.02 +0.00

R 0.29 +0.16 +0.03 +0.02 +0.01 +0.01

F 0.43 +0.16 +0.03 +0.02 +0.01 +0.01

IEPA P 0.75 +0.01 -0.00 -0.02 -0.00 -0.01

R 0.38 +0.13 +0.01 +0.03 +0.01 -0.01

F 0.50 +0.11 +0.01 +0.02 +0.01 -0.01

LLL05 P 0.81 +0.05 +0.00 -0.00 -0.01 +0.00

R 0.38 +0.20 +0.01 +0.04 +0.01 +0.00

F 0.52 +0.18 +0.01 +0.04 +0.01 +0.00

BC-PPI P 0.46 -0.04 -0.01 -0.04 -0.01 +0.01

R 0.36 +0.19 +0.01 +0.04 +0.01 +0.03

F 0.40 +0.07 +0.00 +0.00 +0.00 +0.02

Table 4.6: Precision (P), recall (R) and F-measure (F) increments of additional skeletonization

components applied individually to ncs (∼ reducing noun cluster sequence) and vcs (∼ verb cluster

reduction). Legend: gca ∼ gene appositions/coordinations, prm ∼ pronoun mapping, vco ∼
resolving verb coordinations, ing ∼ resolving ing-forms, ptc ∼ resolving past participles.

rates; however, in one case a decrement can be observed, which lowers the confidence in the con-

cerned operation (namely resolving past participles) as component of the sentence skeletonization.

4.3.6 Penalty Analysis

All the experiments except for the present one are conceived assuming the maximum allowed

penalty to be set to infinity, i.e. the penalties are ignored. The subject of the present experiment is

the influence of the maximum allowed penalty on the overall performance measures. The resulting

characteristics are depicted in figures 4.1 through 4.6. The initial decrease of precision results from

enlarging the extent of the language stuff accepted as sequential and thus it may be considered as

price for the rapid initial growth of recall and F-measure. Starting with four, however, all three

measures become constant, which implies that (a) ignoring the penalties in other experiments did

not lower the performance rates, and (b) higly penalized gene pairs may be ignored (which may be

useful for more advanced sequential algorithm). However, since the frequency of growing penalty

values undergoes exponential decay, high penalties (say higher than 6 or 8) appear quite rarely.

As a result, the penalty characteristics do not provide any optimal penalty values, which raises



CHAPTER 4. EXPERIMENTS AND RESULTS 43

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10  12

P
re

ci
si

on
/R

ec
al

l/F
-m

ea
su

re

Maximum penalty allowed

aimed: precision/recall/F-measure - penalty characteristic

Precision
Recall

F-measure

Figure 4.1: AiMed: penalty characteristic
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Figure 4.2: Brun: penalty characteristic
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Figure 4.3: HPRD50: penalty characteristic

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10  12

P
re

ci
si

on
/R

ec
al

l/F
-m

ea
su

re

Maximum penalty allowed

iepa: precision/recall/F-measure - penalty characteristic

Precision
Recall

F-measure

Figure 4.4: IEPA: penalty characteristic

doubts about actual usability of the designed penalty measure and calls for its redefinition.

An additional note is to be made about how the gene pair penalty is actually counted. Assume

the following sentence and its skeleton:

(105) G1@GENE activates@VVZ the@DT expression@NN of@IN G2@GENE which@WDT induces@VVZ G3-

@GENE→ G1{0,0}@GENE activates@VVz G2{0,2}@GENE which@WDT induces@VVZ G3{0,0}@GENE

The penalty of the pair G1-G2 is 2 due to the backward propagation, whereas the penalty of

the pair G2-G3 is 0, since there was no seamntic shift concerning G2 with respect to G3. Thus,

whether the penalty for backward propagation is counted or not, is immanent property of each

sequential pattern (for details refer to B, page 53).

4.3.7 Pattern Analysis

The sequential patterns, as listed in section B (page 53), differ in how successful they are in

detecting gene interactions. Moreover, only a subset of these patterns proved to by successful.
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Figure 4.5: LLL05: penalty characteristic
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Figure 4.6: BC-PPI: penalty characteristic

Table 4.7 summarizes the efficiency of pattern groups (verb based, noun based, adjective based)

on each of the testing corpora, showing that verb based patterns outperform the other patterns.

Table 4.8, on the other hand, concentrates on the efficiency of individual patterns, based on the

results from all testing corpora. Such characteristics may be useful for designing and tuning a

more advanced sequential algorithm employed in the gene interaction extraction task. The most

successful patterns define indirectly a subset of nodes, in which the projection of the language

stuff into a token sequence is the closest approximation of the actual, multidimensional language

reality.

Corpus VK eff. NK eff. AK eff. TPVK/TP TPNK/TP TPAK/TP

AiMed 0.55 0.49 0.51 0.71 0.18 0.11

Brun 0.69 0.64 0.57 0.72 0.18 0.10

Hprd50 0.78 0.81 0.86 0.69 0.25 0.06

IEPA 0.85 0.69 0.82 0.60 0.17 0.24

LLL05 0.58 0.90 0.90 0.79 0.06 0.15

BC-PPI 0.40 0.35 0.55 0.74 0.15 0.11

Table 4.7: Efficiency of various kernel types. Legend: VK ∼ verb kernels, NK ∼ noun kernels, AK

∼ adjective kernels, TP ∼ number of true positives, TPx ∼ number of true positives built around

kernel type x.

4.3.8 Result Summary

Based on the experimental analysis of the skeletonization impact, following conclusional remarks

can be made: (i) Excluding semantics from sequential approach does not prevent it from in-

fluencing the evaluation results. Therefore, a successful match requires both sequentiality (Seq)

and semantics (Sem) to agree. As a result, a match is (a) true positive ⇒ SeqOk == True

and SemOk == True; (b) false positive ⇒ SeqOk == False or SemOk == False; (c) true

negative ⇒ SeqOk == True; (d) false negative ⇒ SeqOk == False. (ii) Only a subset of lan-
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Pattern Precision TPp/TPvp TPp/TPall
gene+verb+gene 0.59 0.46 0.33

gene+verb+prep+gene 0.60 0.35 0.25

gene+verb+adje+prep+gene 0.49 0.04 0.03

gene+rel+verb+gene 0.53 0.03 0.02

gene+comma+rel+verb+gene 0.50 0.03 0.02

gene+prep+verb+gene 0.40 0.02 0.01

gene+comma+rel+verb+prep+gene 0.52 0.02 0.01

gene+prep+verb+prep+gene 0.54 0.02 0.01

gene+rel+verb+prep+gene 0.59 0.02 0.01

gene+verb+adje+prep+verb+gene 0.92 0.01 0.01

Pattern Precision TPp/TPnp TPp/TPall
noun+prep+gene+prep+gene 0.65 0.44 0.08

gene+noun+prep+gene 0.69 0.36 0.06

noun+prep+gene+conj+gene 0.53 0.20 0.04

Pattern Precision TPp/TPap TPp/TPall
gene+adje+gene 0.64 0.62 0.07

gene+adje+prep+gene 0.54 0.36 0.04

Table 4.8: Efficiency of individual patterns based on results from all testing corpora. Label: TP

∼ number of true positives, p ∼ pattern, [v,n,a]p ∼ patterns built around verb/noun/adjective

kernel, all ∼ all patterns. Note: results only for patterns having TPp/TPall ≥ 0.01.

guage phenomena breaking the sentence sequentiality is covered by the sentence skeletonization.

(iii) Skeletonization components may fail to improve sentence skeletonization due to grammatical

generalizations. (iv) The impact of the individual skeletonization components is hard to esti-

mate due to mutual dependencies and interferences with each other. (vi) The penalty quantifying

measurable semantical error proved not to be enough informative.

4.4 Comparison with Other Approaches

Providing an informative, relevant result comparison proves to be difficult, since the evaluation

methodologies differ significantly among research teams. In this section, several performance

comparisons of the approach proposed in this report with another approaches are presented.

Pyysalo, Airola et al. [1,53] use very similar approach to evaluate extraction performance

on five corpora, four of which are used also in our experiments: AiMed, HPRD50, IEPA and

LLL05. In [53], differences between these corpora are studied using (1) a naive cooccurence

method and (2) the RelEx system proposed by Fundel [24] and mentioned also in this report

(section 2.3.2, page 14). In [1] the same corpus collection is used to evaluate a graph kernel

method, which has been also mentioned in this report (section 2.3.4, page 15). The comparison

of all these three approaches with the method proposed in this report is given in table 4.9.
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AiMed HPRD50 IEPA LLL05

P Graph kernel 0.529 0.643 0.696 0.725

Cooccurences 0.17 0.38 0.41 0.50

RelEx 0.40 0.76 0.74 0.82

Skel. + seq. 0.49 0.81 0.74 0.87

R Graph kernel 0.618 0.658 0.827 0.872

Cooccurences 0.95 1.0 1.0 1.0

RelEx 0.50 0.64 0.61 0.72

Skel. + seq. 0.46 0.61 0.59 0.72

F Graph kernel 0.564 0.634 0.751 0.768

Cooccurences 0.29 0.55 0.58 0.66

RelEx 0.44 0.69 0.67 0.77

Skel. + seq. 0.48 0.69 0.65 0.79

Table 4.9: Performance comparison 1. Legend: Graph kernel ∼ results from [1], Cooccurences ∼
results from [53], RelEx ∼ results from [53], Skel. + seq. ∼ the approach described in this project.

Corpus Method P R F

AiMed SVM 0.7752 0.4351 0.5561

Skel. + seq. 0.49 0.46 0.48

Brun SVM 0.8515 0.8479 0.8496

Skel. + seq. 0.62 0.47 0.54

Table 4.10: Performance comparison 2. Legend: SVM ∼ selected results from [16], Skel. + seq.

∼ the approach described in this project.

Erkan et al. [16] evaluate their system based on deep parsing and machine learning on two

corpora, AiMed and Brun; the comparison is given in table 4.10. Katrenko and Adriaans [35]

evaluate their system built around alignment kernels also on two corpora, LLL05 and BC-PPI;

the comparison is given in table 4.11.

Corpus Method P R F

LLL05 Alignment kernel 0.7425 0.8794 0.8051

Skel. + seq. 0.87 0.72 0.79

BC-PPI Alignment kernel 0.7556 0.7972 0.7756

Skel. + seq. 0.36 0.65 0.46

Table 4.11: Performance comparison 3. Legend: Alignment kernel ∼ selected results from [35],

Skel. + seq. ∼ the approach described in this project.

Obviously, a lot of approaches outperform the system proposed in this report. However, it must

be taken into consideration that the approach based on applying ultrasimple sequential algorithm

on skeletonized text was targeted only to evaluate the effect of sentence skeletonization (∼ text

preprocessing); it was not seriously meant as a full featured system for gene interaction extraction.



Chapter 5

Summary

Since natural language is not sequential, linguistic preprocessing for sequential data mining (not

limited to biomedical literature) can be understood as improving sentence sequentiality.

Based on a detailed analysis of biomedical texts, three classes of language phenomena breaking

the sentence sequentiality have been identified: (1) arbitrary sentence complexity, (2) existence

of language pointers and (3) existence of forms affecting the semantical integrity. To deal with

these obstacles, seven heuristic transformations have been designed, all of which are employed to

convert a sentence into a form called sentence skeleton. The sentence skeleton may be regarded

as simplified form of the original sentence or sentence approximation (both grammatical and

semantical), thus not being fully equivalent with the original sentence.

The impact of the resulting sentence skeletonization has been evaluated using an intentionally

simple, clearly sequential algorithm. By applying this algorithm in the gene interaction extrac-

tion task on skeletonized sentences from various biomedical corpora, limitations of the sentence

skeletonization have been identified. Furthermore, the usability of mining sequential patterns

from sentence skeletons have been confirmed, provided that further improvements in sentence

skeletonization will be made and a more advanced sequential algorithm will be used.
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Further Work

The current system consists of two components: (1) sentence skeletonization and (2) sequential

data mining. Exploring capabilities of the sequential data mining has remained beyond the scope

of the current project, therefore, an analysis of these capabilities would be the first task of the

further work.

The sentence skeletonization, the core of the current project, has been shown have several weak

points. Furthermore, another limitation of the current scope must be taken into consideration,

namely that the gene interaction extraction implemented in this project and mostly expected by

the corpus curators is sentence oriented. A lot of new problems, however, become relevant, when

moving from sentence level to text level. The shift of interest towards full texts can be observed in

the task definitions of the BioCreative challenge [19]. Focusing on continuous texts is necessary,

since the real tasks are always text oriented.

Below we present a list of ideas possibly improving the preprocessing phase of the presented

system. Note that the list below (1) contains only those improvements applicable to the current

solution and (2) it is not complete.

Cross-clause (sentence level) interactions. Due to enormous complexity of biomedical lan-

guage, sentence structure has to be determined more precisely to detect interactions overlapping

single clause boundaries. Possible solution: By exploiting further the sentence structure simplifi-

cation, sentence schemes could be retrieved (ex. 106). From these generalized sentence patterns,

rules capable of determining, which clause pairs should be analyzed for possible cross-clause in-

teractions, could be learned semi-automatically. After applying such rules onto a given sentence,

additional verb skeletons would be added into the verb skeleton pool. A short demonstration on

the example 106:

(106) We investigated G1, which interacts with G2, and analyzed G3, which activates G4.

→ verb gene , rel verb gene , conj verb gene , rel verb gene

→ [independent 1(gene)] [subordinate 1(gene)] [independent 2(gene)] [subordinate 2(gene)]

Only selected clause pairs would be investigated for cross-clause interactions: independent 1

and subordinate 1, independent 2 and subordinate 2 and independent 1 and independent 2.
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Cross-sentence (text level) interactions. In real text, interactions may extend over multiple

sentences, i.e. we need to operate also on the textual level. Possible solution: After retrieving

patternalized sentence schemes, paragraph schemes could be constructed by simply chaining the

sentence schemes. Most probably, only two subsequent sentences would be reasonable to analyze

for cross-sentence interactions. The theme - rheme principle would play the essential role (ex.

107). Interpretational rules could be learned similarly to those on sentence level.

(107) Our research focused on G1. It proved to activate G2.

→ {[independent 1(gene)]} {[(pronoun)independent 1(gene)]}
→ {[independent 1(gene)]} {[(gene)independent 1(gene)]}

Higher-level coordinations. Apart from gene names and ordinary words, also non-minimal

clusters (not necessarily reducible to minimal clusters) may build coordinate pairs (ex. 108).

Moreover, clusters of different complexity may be connected coordinatively, which can easily mess

up the whole sentence comprehension. Possible solution: Symmetric higher level coordinations

could be resolved by exploring the symmetry of components on the left side and on the right side

of the given coordinative element. No clear suggestions for asymmetric coordinations yet.

(108) G1 activates G2 (in presence of G3) and (in absence of G4)

Modality issues. Modality is a powerful player; standing mostly in background, it is a crucial

language control component, acting as means of pragmatics. In the following, problems concerning

all three main modality types will be shortly introduced.

Subjective epistemic modality. The pragmatic interpretational pattern of this modality

type is as follows: The writer believes with some degree of confidence that something is true. Such

beliefs/evaluations of the current knowledge are expressed either by verbs (ex. 109) or by adverbs

(ex. 110). All adverbs are, however, presently removed since they do not allow for sufficient

generalizations of the resulting patterns.

(109) G1 might[We assume that G1] interact with G2 (!)

(110) G1 hardly@RB interacts with G2 → G1 interacts with G2 (!)

Objective epistemic modality. The pragmatic interpretational pattern of this modality

type is as follows: The writer claims that something is true because there are (from his point of

view) reasonable arguments supporting it. An example of a misleading sentence is given in ex.

111.

(111) X. Y. claims that G1 interacts with G2 (!)

Not-epistemic modality. From the variety of non-epistemic modality we select the cases

represented by example . An example of a misleading sentence is given in ex. 112.

(112) We investigated whether G1 interacts with G2 (!)
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Possible solution: Employing a custom dictionary, integration into the sentence scheme analysis

suggested above.

Disambiguation. Disambiguation has been shown to be an extremely difficult task (especially

ing-forms), the importance of resolving this problem is obvious. Possible solution: Resolving

ambiguous cases by simply investigating all interpretations (ex. 113), evaluating the resulting

structures within the sentence scheme analysis suggested above.

(113) interacting@VVG → interacting@verb; interacting@VVG → interacting@noun(verbal noun); interact-

ing@VVG → interacting@adjective

Negation. Detection of negative clauses is currently limited to those containing the particle

not. However, the negation can take a lot of other forms, such as particles no, none, compound

conjunctions neither - nor, nominal suffixes in-, im-, a-, dis- etc. Furthermore, often it appears

to be closely adherently related to sentence modality (the control power of negation is fairly

comparable with the power of modality), thus being the instrument of pragmatics. Possible

solution: exploiting more precisely word morphology, employing closed word dictionary, integration

into sentence scheme analysis suggested above.



Appendix A

Penn Treebank Tagset

Number Abbrebiation Description

1 CC Coordinating conjunction

2 CD Cardinal number

3 DT Determiner

4 EX Existential there

5 FW Foreign word

6 IN Preposition or subordinating conjunction

7 JJ Adjective

8 JJR Adjective, comparative

9 JJS Adjective, superlative

10 LS List item marker

11 MD Modal

12 NN Noun, singular or mass

13 NNS Noun, plural

14 NNP Proper noun, singular

15 NNPS Proper noun, plural

16 PDT Predeterminer

17 POS Possessive ending

18 PRP Personal pronoun

19 PRP$ Possessive pronoun

20 RB Adverb

21 RBR Adverb, comparative

22 RBS Adverb, superlative

23 RP Particle

24 SYM Symbol

25 TO to

26 UH Interjection

Continued on next page
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Number Abbrebiation Description

27 V[BHV] Verb [to be, to have, other], base form

28 V[BHV]D Verb [to be, to have, other], past tense

29 V[BHV]G Verb [to be, to have, other], gerund or present participle

30 V[BHV]N Verb [to be, to have, other], past participle

31 V[BHV]P Verb [to be, to have, other], non-3rd person singular present

32 V[BHV]Z Verb [to be, to have, other], 3rd person singular present

33 WDT Wh-determiner

34 WP Wh-pronoun

35 WP$ Possessive wh-pronoun

36 WRB Wh-adverb

37 SENT Right sentence boundary

38 , Comma

39 : Collon

40 ; Semicollon

41 GENE Gene

Table A.1: The extended Penn Treebank Tagset
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Sequential Patterns

Pattern scheme Penalty for left gene BP Kernel index

gene+infix+verb+gene yes if infix is empty 1+infix inc

gene+infix+verb+prep+gene yes if infix is empty 1+infix inc

gene+infix+verb+adj+prep+gene yes if infix is empty 2+infix inc

gene+infix+verb+adj+prep++verb+gene yes if infix is empty 2+infix inc

verb+gene+prep+gene yes 0

gene+prep+verb+gene yes 2

gene+prep+verb+prep+gene yes 2

gene+noun+prep+gene no 1

noun+prep+gene+prep+gene yes 0

noun+prep+gene+conj+gene yes 0

gene+adj+gene no 1

gene+adje+prep+gene no 1

gene+noun+adj+prep+gene no 2

Table B.1: List of sequential patterns for evaluation of the text preprocessing. Legend: prep ∼
preposition, adj ∼ adjective, conj ∼ conjunction, rel ∼ relative pronoun, relp ∼ possessive relative

pronoun, infix inc ∼ increment of the given infix (table B.2), BP ∼ backward propagation.

Infix type Kernel index increment

(empty) 0

rel 1

comma+rel 2

relp+noun 2

comma+relp+noun 3

Table B.2: Infixes for verb based patterns. Legend: rel ∼ relative pronoun, relp ∼ possessive

relative pronoun.
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