
Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

Bachelor’s Project

Heterogeneous Parallel Genetic Algorithm

Jan Černý

Supervisor: Ing. Jiří Kubalík, Ph.D.

Study Programme: Softwarové technologie a management, Bakalářský

Field of Study: Inteligentní Systémy

May 27, 2010

ii

iv

vi

vii

Aknowledgements
I would like to thank my supervisor Ing. Jiří Kubalík, Ph.D. whose guidance and support
allowed me to overcome all difficulties and finish this work.

viii

ix

Declaration
I hereby declare that I have completed this thesis independently and that I have used only
the sources (literature, software, etc.) listed in the enclosed bibliography.

In Prague on May 27, 2010 .

x

Abstract

This thesis compares performance of heterogeneous and homogeneous parallel genetic algo-
rithms for optimization of real functions. For the purpose of this experiment an optimization
application capable of both homogeneous and heterogeneous evolution has been created. It
has been shown that on several benchmark problems heterogeneous approach give better
results while it fails on some others.

Abstrakt

Tato práce srovnává vlastnosti heterogenních a homogenních paralelních genetických algo-
ritmů při optimalizaci reálných funkcí. Pro účely tohoto experimentu byla vytvořena op-
timalizační aplikace schopná jak homogenní tak i heterogenní evoluce. Bylo ukázáno, že
na několika testovacích problémech dosahují heterogenní PGA lepších výsledků zatímco na
některých jiných selhávají.

xi

xii

Contents

1 Introduction 1

2 Conventional Evolution Algorithms 3
2.1 Canonical Genetic Algorithm . 3
2.2 Chromosome Representation . 3

2.2.1 Direct Binary Representation . 3
2.2.2 Gray Coded Binary Representation . 4
2.2.3 Real Representation . 4
2.2.4 IEEE 754 format . 4

2.3 Binary-coded Crossover Operators . 4
2.3.1 Single Point crossover . 4
2.3.2 Two Point Crossover . 5
2.3.3 Uniform Crossover . 5

2.4 Real-coded Crossover Operators . 5
2.4.1 Mean Crossover . 5
2.4.2 Blend Crossover Operator (BLX-α) . 6
2.4.3 Simulated Binary Crossover . 6
2.4.4 Parent Centric Crossover . 7

2.5 Mutation Operators . 7
2.5.1 Point Mutation . 8
2.5.2 Mutation of Real Parameters . 8

2.6 Evolution Model . 8
2.6.1 Generational Evolution . 9

2.6.1.1 Elitism . 9
2.6.2 Steady-State Evolution . 9
2.6.3 Generalized Generation Gap . 10

2.7 Parent Selection Strategies . 10
2.7.1 Tournament Selection . 10
2.7.2 Stochastic Universal Sampling . 10
2.7.3 Greedy Over-selection . 11
2.7.4 Truncation Selection . 11
2.7.5 g3 Selection . 11

xiii

xiv CONTENTS

3 Island Model Parallel EA 13
3.1 Motivation for Island Model . 13
3.2 Basic Island Model . 13
3.3 Migration Topologies . 14
3.4 Migration Schemes . 14

4 Heterogeneous EA Concept 15
4.1 Topology and Migration Parameters . 15
4.2 Expected Behaviour . 16

5 Realization 17
5.1 Language and Libraries Selection . 17

5.1.1 PyGene . 17
5.1.2 Pyevolve . 17

5.2 Package Description . 18
5.2.1 Chromosome . 18
5.2.2 Organism . 18
5.2.3 Population . 18

5.2.3.1 Parent Selection and Evolution Model 19
5.2.3.2 Migration . 19

5.2.4 World . 19
5.2.5 Benchmark Functions . 19

5.3 Experiment Configuration . 19

6 Experiments and Results 21
6.1 Problem Description . 21

6.1.1 Uni-modal Benchmark Problems . 21
6.1.1.1 Sphere Function . 21
6.1.1.2 Rosenbrock’s Function . 21
6.1.1.3 Ellipsoidal Function . 22
6.1.1.4 Quartic Function . 22
6.1.1.5 Schwefel’s Double Sum Function 23

6.1.2 Multi-modal Benchmark Problems . 24
6.1.2.1 Rastrigin Function . 24
6.1.2.2 Schwefel Function . 25
6.1.2.3 Masters’s Cosine Wave Function 25
6.1.2.4 Pathological Function . 25
6.1.2.5 Stretched V Sine Wave Function 26
6.1.2.6 Michalewics Function . 27

6.1.3 Binary Only Benchmark Problems . 28
6.1.3.1 DF3 Function . 28

6.2 Experimental Configuration . 28
6.2.1 Experiments with Float Representation 28

6.2.1.1 PGA-1-real . 29
6.2.1.2 PGA-2-real . 29
6.2.1.3 PGA-3-real . 29

CONTENTS xv

6.2.1.4 PGA-4-real . 30
6.2.1.5 PGA-5-real . 30
6.2.1.6 PGA-mix-real . 30

6.2.2 Experiments with Direct Representation 30
6.2.2.1 PGA-1-bin . 31
6.2.2.2 PGA-2-bin . 31
6.2.2.3 PGA-3-bin . 31
6.2.2.4 PGA-4-bin . 32
6.2.2.5 PGA-5-bin . 32
6.2.2.6 PGA-mix-bin . 32

6.2.3 Experiment with DF3 Function . 32
6.2.3.1 PGA-1-df3 . 33
6.2.3.2 PGA-2-df3 . 33
6.2.3.3 PGA-3-df3 . 33
6.2.3.4 PGA-4-df3 . 33
6.2.3.5 PGA-5-df3 . 33
6.2.3.6 PGA-mix-df3 . 34

6.3 Experimental Results . 34
6.3.1 Experiments with Real Coded Chromosomes 34
6.3.2 Experiments with Direct Coded Chromosomes 34
6.3.3 df3 Experiment . 34

7 Conclusion 41

Bibliography 43

A List of Abbreviations 45

B The Wilcoxon Ran-Sum Test 47
B.1 Calculation . 47
B.2 P-value . 47
B.3 ρ Statistic . 48

C CD Content 49

xvi CONTENTS

List of Figures

3.1 Example topology of Island Model PGA . 14

4.1 Uni-directional ring topology of Island Model PGA 15

6.1 Sphere Function . 22
6.2 Rosenbrock’s Function . 22
6.3 Ellipsoidal Function . 23
6.4 Quartic Function . 23
6.5 Schwefel’s double sum . 24
6.6 Rastrigin Function . 24
6.7 Schwefel Function . 25
6.8 Masters’s cosine wave function . 26
6.9 Pathological Function . 26
6.10 Stretched-V Sine Wave Function . 27
6.11 Michalewics Function . 27

xvii

xviii LIST OF FIGURES

List of Tables

6.1 Values for "deceptive function 3" . 28
6.2 Median fitness values for experiments with real coded chromosomes 35
6.3 P-values for experiments with real coded chromosomes 36
6.4 ρ-statistic values for experiments with real coded chromosomes 36
6.5 Median fitness values for experiments with direct coded chromosomes 37
6.6 P-values for experiments with direct coded chromosomes 38
6.7 ρ values for experiments with direct coded chromosomes 38
6.8 Results for experiments with df3 fitness function. 39

xix

xx LIST OF TABLES

List of Algorithms

2.1 Mean Crossover . 5
2.2 Generational Evolution . 9
2.3 Steady State Evolution . 9
2.4 Generalized Generation Gap . 10
2.5 Tournament Selection . 10
2.6 Stochastic Universal Sampling . 11
2.7 Greedy over-selection . 11

xxi

xxii LIST OF ALGORITHMS

Chapter 1

Introduction

Genetic algorithms are class of optimization methods inspired by Darwinian evolution and
natural selection. They are often described as a global search methods that do not use
gradient information. Thus, non-differentiable functions as well as functions with multiple
local optima represent classes of problems to which genetic algorithms might be applied.
Genetic algorithms, as a weak method, are robust but very general [14]. For that reason
they are generally a good choice for black-box optimization or when there is no specialized
optimization method for a specific problem.

Part of the biological metaphor used to motivate genetic search is that it is inherently
parallel. In natural population thousands of individuals execute in parallel [14]. This thesis
deals with subset of parallel genetic algorithms called "Island Model". Its main objective
is to explore the possibilities and possible benefits offered by employing different genetic
algorithms and parameter variation on each population in island model.

To compare performance of heterogeneous PGA with conventional homogeneous PGA
some benchmark problems have to be chosen. While genetic algorithms can solve all sorts of
optimization problems, function optimization has been chosen for several reasons. The first
reason is that benchmark functions are well described in literature, their properties, location
and value of the optimal solution are known in advance and can be in certain degree altered
as needed. There are also many different benchmark functions that can prove different capa-
bilities of optimization algorithm. Another reason is that it is possible to use different data
representations and easily switch between them. With more data representation there is also
a greater number of crossover operators which can be employed and that is advantageous for
the objective of this work.

In the next chapter, conventional GAs and their operators will described. Description of
classical Island Model PGA follows in chapter 3. Chapter 4 describes theoretical concepts
of proposed heterogeneous IM PGA with implementation described in subsequent chapter.
The rest of this work describes performed experiments and their results.

1

2 CHAPTER 1. INTRODUCTION

Chapter 2

Conventional Evolution Algorithms

2.1 Canonical Genetic Algorithm

An implementation of genetic algorithm begins with initial population of (typically random)
chromosomes [14]. Those chromosomes are then evaluated by fitness function and this eval-
uation is used to select parent sollutions that will be the base for the new generation1. The
chromosome representation (see section 2.2) and fitness function are usually the only prob-
lem dependent parts of genetic algorithms [14]. There are many different ways how to select
parents for recombination (see section 2.7), how to create offspring (see section 2.3) and how
to perform mutation on them (see section 2.5), some of those that were implemented for the
purpose of this work are described in this chapter.

2.2 Chromosome Representation

In every genetic algorithm, one of the basic properties is how the data are represented in
chromosomes. The chosen data representation has large impact on the choice of crossover
and mutation operators. For the purpose of this experiment, four possible representations
of real numbers were implemented.

2.2.1 Direct Binary Representation

With this representation, each number is converted to a binary string and a chromosome is
created by connecting all those strings together. For this representation, it’s necessary to set
the upper and lower boundary and precision (number of bits to represent each number). If
xup is the upper boundary, xdown is the lower boundary and xb is the number of bits used to
represent each gene then any single part of chromosome can be computed with equation (2.1).

x2 = bin

(
(x10 − xdown) · 2xb − 1

xdown − xup

)
(2.1)

1This is not true for some evolution models like Minimal Generation Gap Model which select parents
randomly but for traditional GA models this principle is quite important

3

4 CHAPTER 2. CONVENTIONAL EVOLUTION ALGORITHMS

This representation allows binary crossover operators and binary mutation but it has
several disadvantages, especially that its not possible to use it to represent a number from
outside the pre-set boundaries.

2.2.2 Gray Coded Binary Representation

This representation is very similar to the Direct binary representation, it also represents
chromosome as binary string and equation (2.1) is also used to compute chromosome parts,
but each part is then transformed to the Gray code before the final chromosome is con-
structed [15].

2.2.3 Real Representation

With this representation, chromosomes have the same length as the dimension of the problem
and each gene contains one real number. This is probably the most natural representation
for selected optimization problem but it requires special crossover operators.

2.2.4 IEEE 754 format

IEEE-754 is the standard for floating point arithmetic and it also specifies how floating
point numbers are represented in computer memory. IEEE-754 representation creates chro-
mosomes in the form of binary strings identical to those in computer memory. This has
the advantage that no precision is lost and it is not necessary to set any boundaries. On
the contrary, there is a disadvantage that this format is not optimal for genetic algorithms
since the number is represented as mantissa and exponent and it has a fixed binary length
of 64 bits [5].

2.3 Binary-coded Crossover Operators

The following three crossover operators can be used on any of the three binary representation.

2.3.1 Single Point crossover

Single point binary crossover is the most basic crossover operation for genetic algorithms. It
takes two parent solutions and creates two offspring. The algorithm used to create offspring
can be described as follows:

1. select crossover point in parent chromosome

2. split both parent chromosomes into two parts at this crossover point

3. create child by combining first part from the first parent and second part from the
second parent

4. create second child by combining first part from the second parent and second part
from the first parent

2.4. REAL-CODED CROSSOVER OPERATORS 5

2.3.2 Two Point Crossover

Two point binary crossover is quite similar to single point binary crossover, the difference is
that it uses two crossover points. The algorithm can be described as:

1. select two crossover points

2. split both parent chromosomes into three parts at those two crossover points

3. create the first child from the first and the third section of the first parent and the
middle section of the second parent

4. create the second child from the first and the third section of the second parent and
the middle section of the first parent

2.3.3 Uniform Crossover

The uniform crossover differs from the previous two crossover operators in the fact that there
is no given number of crossover points, but each bit is treated separately. This operator
produces two children from two parents. The process of creating children chromosomes is
rather simple: two parent chromosomes are copied and each corresponding bit is swapped
between them with probability of 0.5.

2.4 Real-coded Crossover Operators

The following four crossover operators are applied to real values of chromosomes.

2.4.1 Mean Crossover

This is one of the simplest crossover operators for real coded chromosomes. It creates one
child from two parents and this child is located between them. The algorithm is quite
simple 2.1.

Algorithm 2.1 Mean Crossover
1: A← parent1 chromosome
2: B ← parent2 chromosome
3: for i = 0 to chromosome length do
4: child[i] = (A[i] + B[i])/2
5: end for

It can be easily seen that each new generation created by this crossover operator occupies
smaller area in search space and if the optimal solution is outside this area it is impossible
for this operator to find it. On the other hand this crossover operator can be quite effective
on simpler problems if bounds of optimal solution are known and are within space covered
by initial population.

6 CHAPTER 2. CONVENTIONAL EVOLUTION ALGORITHMS

2.4.2 Blend Crossover Operator (BLX-α)

This crossover operator creates a single child solution (x(1,t+1)) from two parent solutions
(x(1,t), x(2,t)). When ui is random number from 0 to 1, child solution is computed using
equation (2.2) [3].

x
(1,t+1)
i = (1− γi)x(1,t)i + γix

(2,t)
i (2.2)

γi = (1 + 2α)ui + α (2.3)

If α is 0 this generates a random solution in range (x(1,t), x(2,t)).

Equation 2.2 can be written as:(
x
(1,t+1)
i − x(1,t)i

)
= γi

(
x
(2,t)
i − x(1,t)i

)
(2.4)

From this form it is easy to see that the location of child solution depends on the distance of
parent solutions. If the distance between parent solutions is small then the distance between
the first parent and child will also be small [3].

2.4.3 Simulated Binary Crossover

This crossover operator was created to simulate the behaviour of the single point binary
crossover directly on real parameters in sense that common interval schemata between par-
ents are preserved in children [2].

The procedure of creating children (x(1,t+1), x(2,t+1)) from parent solutions (x(1,t), x(2,t))
can be described as follows [3]: A spread factor is defined as absolute ratio of children
difference to that of parents (2.5).

βi =

∣∣∣∣∣x(2,t+1)
i − x(1,t+1)

i

x
(2,t)
i − x(1,t)i

∣∣∣∣∣ (2.5)

First, a random number ui between 0 and 1 is generated. From Specified probability
distribution function, the ordinate βqi is found so that area under the probability curve from
0 to βqi is equal to ui. The probability distribution is derived to have similar search power
to that of the single point binary crossover and is given as [2]:

Γ(βi) =

{
0.5(η + 1)βni if βi ≤ 1
0.5(η + 1) 1

βn+2
i

otherwise (2.6)

Using Equation (2.6) we calculate βqi as:

βqi =

{
(2ui)

1
η+1 if ui ≤ 0.5

(1
2(1−ui))

1
η+1 otherwise

(2.7)

2.5. MUTATION OPERATORS 7

With βqi the two children solutions are calculated from equations (2.8)(2.9):

x(1,t+1) = 0.5[(1 + βqi)x
(1,t) + (1− βqi)x

(2,t)] (2.8)

x(2,t+1) = 0.5[(1− βqi)x
(1,t) + (1 + βqi)x

(2,t)] (2.9)

So the following three steps are required to create children solutions:

1. Generate random number ui ∈ [0, 1)

2. Calculate βqi from equation (2.7)

3. Calculate children solutions from equations (2.8)(2.9)

2.4.4 Parent Centric Crossover

Parent centric crossover is a multi-parent crossover operator. Its operation can be described
as follows [7, 10]:

1. Select µ parents from population.

2. Compute mean vector ~g from selected parents.

3. Select one random parent ~x(p) as a base for offspring.

4. Compute the direction vector ~dp = ~x(p) − ~g.

5. From the remaining parents compute their perpendicular distances Di to line ~d(p).

6. D is computed as the mean value of all ~dp.

7. Offspring is calculated from equation (2.10)

~y = ~x(p)ωζ |~d(p)|+
µ∑

i=1,i 6=p
ωηD~e

(i) (2.10)

In equation (2.10) ~e(i) are the(µ−1) orthonormal bases that span the subspace perpendicular
to ~d(p). The parameters ωζ and ωη are normally distributed variables with variance σ2ζ and σ

2
η.

The important attribute of parent centric operator is that offspring solutions are centred
around parent solutions. Also the distance between parent and offspring depends on the
distances between parents.

2.5 Mutation Operators

Mutation is a genetic operator used to enhance genetic diversity and introduce new or pre-
viously lost genetic information into the population by changing chromosome of selected
individuals.

8 CHAPTER 2. CONVENTIONAL EVOLUTION ALGORITHMS

2.5.1 Point Mutation

Point Mutation operator in GA is based on biological point mutation (or single base substi-
tution). The mutation process is rather simple, with set probability the value of one or more
bits is changed to its negation. Therefore this mutation operator works only on chromosomes
with bit string representation and can’t be used on real represented parameters.

2.5.2 Mutation of Real Parameters

The fact is that when some crossover operators for real parameter chromosomes (for example
PCX) are used, mutation is not required since the crossover operator itself adds random vari-
ables to the offspring. In spite of that, real parameter mutation is still important for proper
function of genetic algorithms. Since the point mutation is not suitable for real parameter
mutation, another mutation operator has to be used.

For the purpose of this experiment, the following mutation mechanism has been imple-
mented:

1. When mutation should occur, single variable x is randomly selected from chromosome
to be mutated.

2. Several individuals from from population are selected and mean vector ~g is computed
from them.

3. Distance σ between mutated individual and mean vector ~g in the direction of variable
x is computed.

4. New value is calculated using equation (2.11)

y = x+ sign(~gx − x)(|ω|+ σ) (2.11)

The parameter ω from equation (2.11) is a normally distributed variable with variance σ.

This approach has two important positive attributes. The first is that the extent of
mutation depends on the actual state of the population (assuming that representative sample
has been used to calculate ~g) so there is smaller chance that it would cause negative effects.
The Second is that it generates values outside of the space where most crossover operators
place offspring, so it can effectively maintain diversity of population.

2.6 Evolution Model

To influence the behaviour of GA in order to adapt it to a specific problem that is to be
solved, different evolution models can be employed.

2.6. EVOLUTION MODEL 9

Algorithm 2.2 Generational Evolution
1: Create initial population.
2: loop
3: repeat
4: select parents
5: create offspring from selected parents
6: until new generation is complete
7: replace parent generation with a new one
8: end loop

2.6.1 Generational Evolution

Generational evolution model is one of the most widely used models adopted directly from
biology. The algorithm 2.2 is quite straightforward and easy to understand, it also performs
quite well on wide variety of problems.

Whit this model, every generation is discreet and offspring does not mix with their
parents.

2.6.1.1 Elitism

It is easy to see from algorithm 2.2 that all individuals from parental generation are lost
when new generation is finished and there is no guarantee that the best individual from new
generation will exceed the old one so it is often desirable to preserve the best genes for the
new generation without crossover or mutation. This process is called elitism and is done
by simply copying one ore more selected individuals to the new generation before crossovers
begin. While this process can save good solutions that would normally be lost it may also
disrupt evolution if too many individuals are moved to the new generation.

2.6.2 Steady-State Evolution

The contrary to generational evolution is steady state model described with algorithm 2.3.
With steady state there are no discreet generations and children chromosomes are placed
between their parents (thus no elitism is needed). It’s also possible to tune the behaviour of
this model by choosing specific scheme for selection of parent which is removed in step 5 but
most widely used and almost always sufficient policy is to replace the worst individual [12].

Algorithm 2.3 Steady State Evolution
1: Create initial population.
2: loop
3: select parents
4: create offspring from selected parents
5: replace selected individual with offspring
6: end loop

10 CHAPTER 2. CONVENTIONAL EVOLUTION ALGORITHMS

2.6.3 Generalized Generation Gap

Generalized generation gap or g3 model is one of several models designed specifically for
function optimization. It differs significantly from conventional models and has no precedence
in biology. The algorithm 2.4 is also more complicated but it allows proper function of parent
centric crossover (see section 2.4.4) and several others statistic-based operators [7].

Algorithm 2.4 Generalized Generation Gap
1: create initial population
2: loop
3: select best parent and µ− 1 random parents
4: create λ offspring from chosen µ parents
5: choose two parents at random from µ chosen parents
6: from combined sub-population of chosen two parents and λ offspring select two best

solutions to replace selected two parents
7: end loop

G3 model looks similar to steady state model at first but the most significant differences
are in the facts that fitness has minimal role in parent selection and that large number
of offspring is created with each crossover operation, depending on used CX operator and
optimization problem it might be advisable to set λ to values as high as 200 [7].

2.7 Parent Selection Strategies

To influence the overall behaviour but especially the convergence rate, different parent se-
lection strategies can be used.

2.7.1 Tournament Selection

Tournament selection is quite commonly used selection method 2.5. The idea of this method
is to choose randomly some number of individuals and then select the best one of them [4].
This allows for selection pressure to be easily tuned because in large tournaments weaker
individuals has much smaller chance of success.

Algorithm 2.5 Tournament Selection
1: repeat
2: select k (tournament size) individuals at random
3: select the best individual out of k individuals
4: until specified number of parents is selected

2.7.2 Stochastic Universal Sampling

Stochastic Universal Sampling (SUS) is a simple, single phase, O(N) sampling algorithm. It
is zero biased, has minimum spread and will achieve all N samples in a single traversal [1].

2.7. PARENT SELECTION STRATEGIES 11

It can be described as a roulette wheel selection but with equally spaced pointers. It is
described in algorithm 2.6.

Algorithm 2.6 Stochastic Universal Sampling
1: sort population by fitness
2: F ← total fitness of the population
3: N ← number of individuals to be selected
4: ptr ← rand(F/N)
5: sum← 0
6: i← 0
7: while i < N do
8: sum += population[i].fitness
9: while sum > ptr do

10: ptr += F/N
11: select(population[i])
12: i += 1
13: end while
14: end while

2.7.3 Greedy Over-selection

Greedy over-selection is a selection mechanism that helps to preserve diversity in population.
The process of selecting parents is described by algorithm 2.7.

Algorithm 2.7 Greedy over-selection
1: sort population by fitness
2: place best 20% of chromosomes in group H
3: place rest of the chromosomes in group L
4: repeat
5: 80% of the time select individual from group H and 20% from group L
6: until specified number of parents is selected

2.7.4 Truncation Selection

Truncation is quite simple artificial selection method in which individuals are sorted from
the best to the worst and n best individuals are selected for breeding.

2.7.5 g3 Selection

This selection mechanism selects the best individual and µ − 1 random individuals from
population. It is intended for use in g3 evolution model (see section 2.6.3) and there is
probably no good reason to use it anywhere else.

12 CHAPTER 2. CONVENTIONAL EVOLUTION ALGORITHMS

Chapter 3

Island Model Parallel EA

3.1 Motivation for Island Model

Part of the biological metaphor used to motivate genetic search is that it is inherently paral-
lel. In natural population thousands of individuals execute in parallel [14]. While there are
many ways to exploit this parallelism, in this work the Island Model is used.

An Island Model genetic algorithm can be described as classical genetic algorithm braked
into sub-populations or as multiple genetic algorithms running in parallel and exchanging
data. While at first this may look like the main reason for this is to exploit specific hardware
configuration by allowing the algorithm to run on multiple processors simultaneously, the
fact is that Island Model has different advantage.

When there are several isolated genetic algorithms without migration, independent search
occurs at each. Each search will be different since the initial population will impose cer-
tain sampling bias; also, genetic drift will tend to drive those population in different di-
rections [14]. When migration is introduced, this model is able to exploit differences in all
sub-populations and use it as a source of genetic diversity.

3.2 Basic Island Model

The basic design of Island Model consists of several sub-populations of the same evolution
algorithms with identical parameters. At the beginning the only thing that makes difference
between islands is their initial population. Only that and random factor in parent selection
and mutation (if there is any) makes it possible for various islands to develop a different
scope of genetic material.

The number of populations in Island Model PGA is not set nor restricted. In implemen-
tations that exploit hardware parallelism, number of islands is commonly set to be the same
as number of processors or cluster nodes [14], but in any case the number can vary from two
to hundreds of islands [11].

13

14 CHAPTER 3. ISLAND MODEL PARALLEL EA

3.3 Migration Topologies

Since number of islands can be greater than number of individuals on them it is sometimes
not desirable to exchange individuals between all pairs of islands. For that reason, islands
can be aligned into topologies and migration then occurs only between connected islands.
One example of such topology is on figure 3.1. This example consists of six islands aligned
in circle where every island can directly communicate with its nearest and second nearest
neighbours but not with island across from itself.

Figure 3.1: Example topology of Island Model PGA

3.4 Migration Schemes

While migration is positive for the function of Island Model PGA, it can also have negative
effects. If the migration is too large then local differences between islands are diminished.
When it’s too small, it may not be able to prevent local populations from prematurely con-
verging [14].

While the migrations topology can be used to alter the behaviour of Island Model PGA
it is not sufficient measure. Other parameters that can be used to alter migration are [11]:

Migration Rate determines how many individuals migrate from one population to an-
other.

Migration Frequency determines how often migration occurs.

Migration Policy sets the method used to select individuals for migration.

To reduce the negative effects of migration it is necessary to alter those parameters.

Chapter 4

Heterogeneous EA Concept

In this work a heterogeneous Island Model is used. The main difference against the traditional
island model is that each island in this model uses different genetic algorithm or at least
different settings than other islands.

4.1 Topology and Migration Parameters

While in ordinary island model the migration network topology can be used to alter the
speed by which genetic information spreads across all populations, this could have undesired
side-effect in heterogeneous model. For example with unidirectional ring topology such as
that shown on figure 4.1 genetic information from any population is altered by crossover and
mutation operators of for islands before it arrives to island which is one step in clockwise
direction. In some cases like when one island is configured to use mean crossover operator
(see section 2.4.1) a loss of information will occur which would be avoided with different
topology. For that reason a fully connected network topology where each island can com-
municate with each other will be used.

Figure 4.1: Uni-directional ring topology of Island Model PGA

15

16 CHAPTER 4. HETEROGENEOUS EA CONCEPT

Since complex migration topologies have unwanted side-effects on heterogeneous version
of Island Model PGA all migration control mus be done with migration frequency and and
migration rate parameters. This alone would not be ideal for large number of islands [11]
but it should be sufficient for this work where only small number of islands is used.

4.2 Expected Behaviour

For ordinary single population GAs the choice of genetic operators such as mutation of
crossover is determining to their exploration and exploitation powers and predetermines
them for certain types of optimization problems while it handicaps them for other problems.
Heterogeneous PGA model should exploit different properties of its component population
to achieve good results on various optimization problems.

It should also same capability to preserve genetic variability as homogeneous Island Model
PGA. In fact islands heterogeneous model should have greater tendency to diverge because
of their different genetic operators and thou maintain genetic variability much better than
ordinary Island Model PGA.

Given all the above heterogeneous PGA should perform better or at least not worse on
majority of testing problems.

Chapter 5

Realization

5.1 Language and Libraries Selection

For implementation of this experiment, several programming languages were considered, in-
cluding C, C++, Go, JAVA and Python. As each of those languages has its advantages and
disadvantages, Python was eventually selected for its object oriented properties, reflection,
type safety and expressiveness. Python has also full support for unicode strings and au-
tomated memory management. The main disadvantage of Python is its speed, from listed
languages it is the only one with no compile time optimization1 and runtime optimization is
on lower level that that of JAVA or Go.

There are also several genetic algorithm frameworks and libraries written for python that
could have been used in this work. Pyevove and PyGene frameworks were initially considered
as base for this work but in the end none of them were used for various reasons.

5.1.1 PyGene

PyGene is simple and easily understandable framework for genetic algorithms and genetic
programming. While it allows for fully customisable recombination, mutation and selection,
there is no support for Island Model or any other parallel genetic algorithm.

5.1.2 Pyevolve

Pyevolve is more complex, more actively developed and larger framework and it has some
very interesting features, for example Interaction module which allows for easy population
inspection. In the end Pyevolve has been rejected for the same reason as PyGene, there is
no support for any form of parallel evolution yet.

1While compile time optimization is in development for Python version 3.2, it has not yet been ready at
the time of writing of this work

17

18 CHAPTER 5. REALIZATION

5.2 Package Description

The core of the whole experiment is PyPGA, pure python package which implements all used
crossover and mutation operators, selection strategies, evolution models and chromosome
representations. The package can be logically divided into four parts:

• Chromosome

• Organism

• Population

• World

There is also a variety of other utilities and benchmark functions but those are not
essential parts of PyPGA package.

5.2.1 Chromosome

All chromosome related classes and functions are located in file genome.py. This part of
PyPGA package handles different chromosome representation described in section 2.2. To
provide access to different representations of chromosome there is a variable for each im-
plemented representation. To assure that all those variables always return the same value
(in their specific representation) only one value is stored and other variables are set as its
transparent encapsulation. This has the advantage that different CX and mutation opera-
tors can be used on the same individual without any need to explicitly convert chromosomes
every time different representation is needed. On the other hand, this approach brings some
performance penalties.

5.2.2 Organism

Each chromosome object belongs to one organism object. Class Organism is defined in
file organism.py and contains methods for all implemented crossover operators described in
sections 2.3 and 2.4. The crossover methods require a list of partners for mating, all two
parent crossover operators will use the first parent from the list even if the list is longer but
multi-parent CX operators generally don’t work with just one partner.

Another task that is handled by Organism class is fitness evaluation. The reference to
fitness function must be supplied as an argument to constructor, when fitness value is needed
this function will be called with real-coded chromosome as parameter.

5.2.3 Population

Organisms are grouped in populations. Classes and methods related to population are lo-
cated in file population.py and are responsible for parent selection (see section 2.7), evolution
models (see section 2.6) and migration (see section 3.4).

5.3. EXPERIMENT CONFIGURATION 19

5.2.3.1 Parent Selection and Evolution Model

Both parent selection mechanism and evolution model are set when Population object is
created according to values supplied to constructor as arguments. It is not possible to use
external functions, only methods implemented in class Population can be used.

5.2.3.2 Migration

This experiment uses Island Model (see section 3.4) parallel genetic algorithm. The migra-
tion starts every turn just before parent selection and reproduction, and is implemented
so that all migrating individuals are migrated concurrently. In other words, no island can
receive individual that originated from there in the same generation and one individual can
be migrated to more than one island if both ask for it.

To change the behaviour of migration process several parameters can be set:

Migration Period is used to allow migration to specific island only every n-th turn.

Immigration Count sets number of individuals that will be accepted to the island every
time migration happens.

Emigration Probability changes probability that one island will be selected as a source
in migration process.

5.2.4 World

All populations in each experiment are grouped into World (file world.py). The World class
has no special function other that to keep track of all populations in experiment and assure
their synchronization.

5.2.5 Benchmark Functions

The PyPGA is designed so that any function that takes list of numbers as its argument
and returns one number can be used as fitness functions. PyPGA package provides several
fitness functions (including all functions described in section 6.1) in file fitness.py. To use
those prepared functions it is sufficient to import PyPGA.fitness or single function from this
file.

5.3 Experiment Configuration

To run an experiment using PyPGA package it is necessary to write a simple python script
that does following:

1. Creates new object of class World

20 CHAPTER 5. REALIZATION

2. Adds one or more islands into the newly created world

3. Tells the world to run specified number of generations

The following code sample shows how to create simple World with two islands named
"a" and "b" and let it evolve for 10 generations. In the end, fitness of the best individuals
from both islands is printed to standard output.

1 #! /usr / b in /env python3 .1
2
3 from PyPGA. world import World
4 from PyPGA. f i t n e s s import rosenbrock
5
6 def main () :
7 experiment = World (genome_len=5, f i t n e s s_ func t i on=rosenbrock)
8 experiment . add_island ("a" , cx_operator="blx_a" ,
9 s e l e c t_ func t i on=’ o v e r s e l e c t i o n ’ ,

10 migrat ion_period = 3)
11 experiment . add_island ("b" , cx_operator="blx_a" ,
12 s e l e c t_ func t i on=’ o v e r s e l e c t i o n ’ ,
13 migrat ion_period = 1)
14
15 r e s = experiment . s tep (10)
16 print (s t r (r e s [0])+"\ t "+s t r (r e s [1]))
17
18 i f __name__ == ’__main__ ’ : main ()

Chapter 6

Experiments and Results

6.1 Problem Description

To test the performance of parallel heterogeneous genetic algorithms, several well known and
widely used optimization benchmark problems were selected. Those benchmark problems
should represent wide variety of properties and several levels of difficulty. For convenience
reasons all problems were stated to be minimized.

6.1.1 Uni-modal Benchmark Problems

6.1.1.1 Sphere Function

Sphere function is continuous convex uni-modal function with optimum of zero at the origin.
It is defined by equation (6.1). Its two dimensional form is shown on figure 6.1. Because of
its simplicity and symmetry, it provides easily analysable first test [6, 8].

F1(x) =
D∑
i=1

x2i (6.1)

6.1.1.2 Rosenbrock’s Function

Rosenbrock’s function 6.2 is standard test used in optimization literature. It is defined by
equation (6.2) and is continuous, non-convex, uni-modal, quadratic function with minimum
of zero at (1,1). This function is a difficult optimization problem because of its deep parabolic
valley [6, 8].

F2(x, y) = 100(x2 − y)2 + (x− 1)2 (6.2)

21

22 CHAPTER 6. EXPERIMENTS AND RESULTS

-10
-5

 0
 5

 10 -10
-5

 0
 5

 10

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

Z axis

Sphere Function

Sphere
 200
 150
 100
 50

X axis

Y axis

Z axis
 0
 20
 40
 60
 80
 100
 120
 140
 160
 180
 200

Figure 6.1: Sphere Function

-10
-5

 0
 5

 10 -10
-5

 0
 5

 10

 0.01
 0.1

 1
 10

 100
 1000

 10000
 100000
 1e+06
 1e+07

Z axis

Rosenbrock Function

Rosenbrock
 1e+06
 1e+04

 100
 1

X axis

Y axis

Z axis
 0
 200000
 400000
 600000
 800000
 1e+06
 1.2e+06
 1.4e+06

Figure 6.2: Rosenbrock’s Function

6.1.1.3 Ellipsoidal Function

Ellipsoidal function 6.3 is a continuous convex uni-modal function defined by (6.3) [8].

F3(x) =
D∑
i=1

i · xi (6.3)

6.1.1.4 Quartic Function

Quartic function 6.4 is a continuous convex uni-modal function defined by equation (6.4) [6].

F9(x, y) = x4 + 2y4 (6.4)

6.1. PROBLEM DESCRIPTION 23

-10
-5

 0
 5

 10 -10
-5

 0
 5

 10

 0

 50

 100

 150

 200

 250

 300

Z axis

Ellipsoidal Function

Ellipsoidal
 300
 250
 200
 150
 100
 50

X axis

Y axis

Z axis
 0
 50
 100
 150
 200
 250
 300

Figure 6.3: Ellipsoidal Function

-10
-5

 0
 5

 10 -10
-5

 0
 5

 10

 0

 5000

 10000

 15000

 20000

 25000

 30000

Z axis

Quartic Function

Quartic
 3e+04

 2.5e+04
 2e+04

 1.5e+04
 1e+04
 5e+03

X axis

Y axis

Z axis
 0
 5000
 10000
 15000
 20000
 25000
 30000

Figure 6.4: Quartic Function

6.1.1.5 Schwefel’s Double Sum Function

Schwefel’s double sum 6.5 functions main difficulty is that its gradient is not oriented along
their axis due to the epistasis among their variables; in this way, the algorithms that use the
gradient converge very slowly [9, 8]. Schwefel’s double sum is defined by equation (6.5).

F11(x) =
D∑
i=1

 i∑
j=1

xj

 (6.5)

24 CHAPTER 6. EXPERIMENTS AND RESULTS

-10
-5

 0
 5

 10 -10
-5

 0
 5

 10

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

Z axis

Schwefel's double sum

double sum
 500
 400
 300
 200
 100

X axis

Y axis

Z axis
 0
 50
 100
 150
 200
 250
 300
 350
 400
 450
 500

Figure 6.5: Schwefel’s double sum

6.1.2 Multi-modal Benchmark Problems

6.1.2.1 Rastrigin Function

Rastrigin function 6.6 was constructed from a sphere adding a modulator term α cos(2πxi).
It has large number of global minima whose value increases with distance from global mini-
mum [9, 8]. The function is defined by equation (6.6).

F4(x) = 10D +

D∑
i=1

x2 − 10 cos(2πx) (6.6)

-10
-5

 0
 5

 10 -10
-5

 0
 5

 10

-500
 0

 500
 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

Z axis

Rastrigin Function

Rastrigin
 4e+03
 3e+03
 2e+03
 1e+03

 0

X axis

Y axis

Z axis
-500
 0
 500
 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

Figure 6.6: Rastrigin Function

6.1. PROBLEM DESCRIPTION 25

6.1.2.2 Schwefel Function

The surface of Schwefel function 6.7 is composed of a great number of peaks and valleys.
The function (6.7) has a second best minimum far from the global minimum where many
search algorithms are trapped. Moreover, the global minimum is near the bounds of the
domain [9, 8].

F5(x) = 4.189828872724339 ∗D +
D∑
i=1

x sin
√
|x| (6.7)

-10
-5

 0
 5

 10 -10
-5

 0
 5

 10

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

Z axis

Schwefel Function

Schwefel
 1.5e+03
 1e+03

 500

X axis

Y axis

Z axis
 0
 200
 400
 600
 800
 1000
 1200
 1400
 1600
 1800

Figure 6.7: Schwefel Function

6.1.2.3 Masters’s Cosine Wave Function

Masters’s cosine wave function 6.8 is a multi-modal function defined with equation (6.8).

F6(x, y) = e−
1
8
(x2−0.5xy+y2) cos (4

√
x2 − 0.5xy + y2) (6.8)

6.1.2.4 Pathological Function

Pathological function 6.9 is a multi-modal function defined with equation (6.9).

F7(x) =
D−1∑
i=1

sin2 (
√

100x2i + x2i+1)− 0.5

(0.001(x2i − 2xixi+1 + x2i+1))
2 + 1

+ 0.5 (6.9)

26 CHAPTER 6. EXPERIMENTS AND RESULTS

-4
-2

 0
 2

 4 -4
-2

 0
 2

 4

-1
-0.8
-0.6
-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

 1

Z axis

Masters's Cosine Wave Function

Masters's Cosine Wave
 0.5
 0

 -0.5

X axis

Y axis

Z axis
-1
-0.8
-0.6
-0.4
-0.2
 0
 0.2
 0.4
 0.6
 0.8
 1

Figure 6.8: Masters’s cosine wave function

-100
-50

 0
 50

 100-100
-50

 0
 50

 100

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

Z axis

Pathological Function

Pathological
 0.8
 0.6
 0.4
 0.2

X axis

Y axis

Z axis
 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

Figure 6.9: Pathological Function

6.1.2.5 Stretched V Sine Wave Function

Stretched V Sine Wave Function 6.10 is defined by equation (6.10).

F8(x) =

D−1∑
i=1

(x2i + x2i+1)
0.25(sin2(50(x2i + x2i+1)

0.1) + 1) (6.10)

6.1. PROBLEM DESCRIPTION 27

-10
-5

 0
 5

 10 -10
-5

 0
 5

 10

 0
 1
 2
 3
 4
 5
 6
 7
 8

Z axis

Stretched-V Function

Stretched-V
 6
 4
 2

X axis

Y axis

Z axis
 0
 1
 2
 3
 4
 5
 6
 7
 8

Figure 6.10: Stretched-V Sine Wave Function

6.1.2.6 Michalewics Function

Michalewics function 6.11 is a multi-modal function with parameter m which changes the
steepness of valleys. Larger m leads to more difficult search [8]. This function is defined by
equation (6.11).

F10(x) =

D∑
i=1

sin(xi) sin2m

(
ix2i
π

)
; m = 10 (6.11)

-10
-5

 0
 5

 10 -10
-5

 0
 5

 10

-1.8
-1.6
-1.4
-1.2

-1
-0.8
-0.6
-0.4
-0.2

 0

Z axis

Michalewics Function

Michalewics
 0

 -0.5
 -1

 -1.5

X axis

Y axis

Z axis
-1.8
-1.6
-1.4
-1.2
-1
-0.8
-0.6
-0.4
-0.2
 0

Figure 6.11: Michalewics Function

28 CHAPTER 6. EXPERIMENTS AND RESULTS

6.1.3 Binary Only Benchmark Problems

6.1.3.1 DF3 Function

For GA and other optimization algorithms as well, the most challenging problems are de-
ceptive. And one such problem is "deceptive function 3" [13]. This function is designed for
binary strings only and can’t be used with real parameters. To evaluate a binary string, it
must be first divided into four bit long parts. Each part is then evaluated by table 6.1 and
all evaluations are added together.

f(1111) = 0 f(0100) = 3 f(0110) = 25 f(1110) = 30
f(0000) = 20 f(1000) = 2 f(1001) = 25 f(1101) = 30
f(0001) = 5 f(0011) = 25 f(1010) = 25 f(1011) = 30
f(0010) = 4 f(0101) = 25 f(1100) = 25 f(0111) = 30

Table 6.1: Values for "deceptive function 3"

6.2 Experimental Configuration

With PyPGA package, several experiments we implemented. There are three heterogeneous
experiments and for each different island in them, one homogeneous experiment was exe-
cuted so that results can be compared.

All experiments have common following parameters:

• There are five islands in the World.

• Each island contains 50 individuals.

• All problems are solved in 5D.

• Search space is constrained into < −10, 10 > interval.

• 50 children are generated each generation.

• The experiment runs for 400 generations.

• The number of individuals to be accepted with each migration is 5.

6.2.1 Experiments with Float Representation

All experiments described in this section use crossover operators with real chromosome rep-
resentation 2.2.3.

6.2. EXPERIMENTAL CONFIGURATION 29

6.2.1.1 PGA-1-real

The first experiment with real coded chromosomes has five identical islands with following
setting:

• CX operator is set to mean crossover (see section 2.4.1).

• Parent selection is set to greedy over-selection (see section 2.7.3).

• Evolution model is set to generational model (see section 2.6.1).

• Migration period is set to 10 generations.

• Probability of mutation is set to 10%.

6.2.1.2 PGA-2-real

The second experiment with real coded chromosomes has five identical islands with following
setting:

• CX operator is set to BLX − α (see section 2.4.2).

• Parent selection is set to greedy over-selection (see section 2.7.3).

• Evolution model is set to generational model (see section 2.6.1).

• Migration period is set to 10 generations.

• Probability of mutation is set to 10%.

6.2.1.3 PGA-3-real

The third experiment with real coded chromosomes has five identical islands with following
setting:

• CX operator is set to SBX (see section 2.4.3).

• Parent selection is set to tournament selection (see section 2.7.1).

• Evolution model is set to generational model (see section 2.6.1).

• Migration period is set to 10 generations.

• Probability of mutation is set to 10%.

30 CHAPTER 6. EXPERIMENTS AND RESULTS

6.2.1.4 PGA-4-real

The fourth experiment with real coded chromosomes has five identical islands with following
setting:

• CX operator is set to SBX (see section 2.4.3).

• Parent selection is set to tournament selection (see section 2.7.1).

• Evolution model is set to steady state model (see section 2.6.2).

• Migration period is set to 10 generations.

• Probability of mutation is set to 10%.

6.2.1.5 PGA-5-real

The fifth experiment with real coded chromosomes has five identical islands with following
setting:

• CX operator is set to SBX (see section 2.4.3).

• Parent selection is set to truncation selection (see section 2.7.4).

• Evolution model is set to generational model (see section 2.6.1).

• Migration period is set to 80 generations.

• Probability of mutation is set to 20%.

• Mutation operator is modified so that it places new values 100000 times further from
the original value than normally.

6.2.1.6 PGA-mix-real

The last experiment with real coded chromosomes is a combination of all previous experi-
ments, one island from each. This experiment is the only heterogeneous experiment in this
set.

6.2.2 Experiments with Direct Representation

All experiments described in this section use crossover operators with direct chromosome
representation (see section 2.2.1). Those experiments have following common setting:

• Chance for crossover is set to 90%.

• Chance for mutation is set to 10%.

• Migration period is set to 10 generations.

• The number of individuals to be accepted with each migration is 5.

6.2. EXPERIMENTAL CONFIGURATION 31

6.2.2.1 PGA-1-bin

The first experiment with direct coded chromosomes has five identical islands with following
setting:

• CX operator is set to uniform crossover (see section 2.3.3).

• Parent selection is set to tournament selection (see section 2.7.1).

• Evolution model is set to steady state model (see section 2.6.2).

• Probability of crossover is set to 90%.

• Probability of mutation is set to 10%.

6.2.2.2 PGA-2-bin

The second experiment with direct coded chromosomes has five identical islands with fol-
lowing setting:

• CX operator is set to two-point crossover (see section 2.3.2).

• Parent selection is set to tournament selection (see section 2.7.1).

• Evolution model is set to generational model (see section 2.6.1).

• Probability of crossover is set to 90%.

• Probability of mutation is set to 10%.

6.2.2.3 PGA-3-bin

The third experiment with direct coded chromosomes has five identical islands with following
setting:

• CX operator is set to two-point crossover (see section 2.3.2).

• Parent selection is set to tournament selection (see section 2.7.1).

• Evolution model is set to steady state model (see section 2.6.2).

• Probability of crossover is set to 90%.

• Probability of mutation is set to 10%.

32 CHAPTER 6. EXPERIMENTS AND RESULTS

6.2.2.4 PGA-4-bin

The fourth experiment with direct coded chromosomes has five identical islands with follow-
ing setting:

• CX operator is set to uniform crossover (see section 2.3.3).

• Parent selection is set to tournament selection (see section 2.7.1).

• Evolution model is set to generational model (see section 2.6.1).

• Probability of crossover is set to 90%.

• Probability of mutation is set to 10%.

6.2.2.5 PGA-5-bin

The fifth experiment with direct coded chromosomes has five identical islands with following
setting:

• CX operator is set to two-point crossover (see section 2.3.3).

• Parent selection is set to tournament selection (see section 2.7.1).

• Evolution model is set to generational model (see section 2.6.1).

• Probability of crossover is set to 70%.

• Probability of mutation is set to 40%.

• When mutation occurs 10 random bits are changed.

6.2.2.6 PGA-mix-bin

The last experiment with direct coded chromosomes is a combination of all previous exper-
iments, one island from each. This experiment is the only heterogeneous experiment in this
set.

6.2.3 Experiment with DF3 Function

All experiments described in this section have deceptive function 3 (see section 6.1.3.1) set
as their fitness function, since df3 takes binary string as an argument there is no point in
distinguishing different representations. The length of the binary string for this experiment
is set to 100 bits. Following setting is common to all experiments:

• Parent selection is set to tournament (see section 2.7.1).

• Migration period is set to 10 generations.

• Probability of mutation is set to 15%.

• Probability of crossover is set to 95%.

•

6.2. EXPERIMENTAL CONFIGURATION 33

6.2.3.1 PGA-1-df3

The first experiment with df3 function has five identical islands with following setting:

• CX operator is set to two point crossover (see section 2.3.2).

• Evolution model is set to generational model (see section 2.6.1).

6.2.3.2 PGA-2-df3

The second experiment with df3 function has five identical islands with following setting:

• CX operator is set to uniform crossover (see section 2.3.3).

• Evolution model is set to generational model (see section 2.6.1).

6.2.3.3 PGA-3-df3

The third experiment with df3 function has five identical islands with following setting:

• CX operator is set to two point crossover (see section 2.3.2).

• Evolution model is set to steady state model (see section 2.6.2).

6.2.3.4 PGA-4-df3

The fourth experiment with df3 function has five identical islands with following setting:

• CX operator is set to uniform crossover (see section 2.3.3).

• Evolution model is set to steady state model (see section 2.6.2).

6.2.3.5 PGA-5-df3

The fifth experiment with df3 function has five identical islands with following setting:

• CX operator is set to two-point crossover (see section 2.3.3).

• Parent selection is set to tournament selection (see section 2.7.1).

• Evolution model is set to generational model (see section 2.6.1).

• Probability of crossover is set to 70%.

• Probability of mutation is set to 40%.

• When mutation occurs 10 random bits are changed.

34 CHAPTER 6. EXPERIMENTS AND RESULTS

6.2.3.6 PGA-mix-df3

The last experiment with df3 function is a combination of all previous experiment, one island
from each. This experiment is the only heterogeneous experiment in this set.

6.3 Experimental Results

All configuration described in section 6.2 have been tested with functions described in chap-
ter 6.1. Every experiment was executed thirty times and the best achieved fitness was col-
lected from each run. Results for each homogeneous configuration were then compared with
those from the heterogeneous configuration. To determine if those results are statistically
significant Wilcoxon rank-sum test is used.

6.3.1 Experiments with Real Coded Chromosomes

The median value value from all 30 runs of every experiment is in table 6.2. It can be seen
from table of ρ-statistic 6.4 that heterogeneous PGA shows better results for all but three
experiments. When table of P-values 6.3 is consulted, it can be seen that only one of those
results is statistically significant.

For sphere function, ellipsoidal function and quartic function, heterogeneous configura-
tion was better than any homogeneous in every run, as can be seen from table 6.2 there was
a difference of several orders.

6.3.2 Experiments with Direct Coded Chromosomes

The results for experiments with binary encoded chromosomes are comparable to those with
real coded chromosomes. The main differences are in the ellipsoidal, sphere and quartic
functions. Since this representation has limited precision, most GAs were able to find the
best possible solution in every run.

For the rest of those functions, heterogeneous PGA shows satisfactory results. As can be
seen from tables 6.6 and 6.7, it has similar or better results than experiments PGA-1-bin up
to PGA-4-bin. When compared to PGA-5-bin, heterogeneous model is better in three cases
and worse also in three cases.

6.3.3 df3 Experiment

The results for experiments with df3 function are shown in table 6.8. Heterogeneous model
did not accomplish any significant improvement against homogeneous models, in fact its
results are average. It did much better than experiments with steady state evolution model
but it failed to exceed those with generational evolution model.

6.3. EXPERIMENTAL RESULTS 35

Test Function PGA-1-real PGA-2-real PGA-3-real
Rastrigin 2.68642329692 0.0314731909984 4.97479024765
Schwefel 685.154048135 7.77153445597 · 10−05 118.43833465
sphere 0.00825410263286 7.97414742669 · 10−09 4.59549607292 · 10−26

Rosenbrock 4.47861364706 0.60143126212 1.56684139726
Michalewics −3.7348528679 −4.6876268184 −4.49478058381
pathological 0.0124442964861 0.121741453869 0.274540237362
quartic 6.44630114453 · 10−05 2.20430733108 · 10−15 3.04780222547 · 10−26

ellipsoidal 0.03031079433 1.44044664424 · 10−08 3.51598305269 · 10−24

stretched-V 0.0038751122757 0.000153102881627 8.57097397757 · 10−11

Schwefel’s sum 0.0117300003474 2.33717638449 · 10−09 1.06429869037 · 10−05

masters −3.70177529513 −3.70388180863 −3.70755960932

Test Function PGA-4-real PGA-5-real PGA-mix-real
Rastrigin 7.95967891917 1.42108547152 · 10−14 0.994959057093
Schwefel 236.877574813 9.09494701773 · 10−13 4.54747350886 · 10−13

sphere 5.5651170302 · 10−09 1.13164141549 · 10−41 9.59990873884 · 10−148

Rosenbrock 3.2522858391 0.909349255918 0.626348905181
Michalewics −4.49589320653 −4.68765817909 −4.64589536775
pathological 0.283920555527 0.0351711848968 0.032720947617
quartic 8.08750994685 · 10−11 3.04013160864 · 10−60 1.27847305488 · 10−205

ellipsoidal 1.1680184969 · 10−10 3.41504250838 · 10−41 7.66556954899 · 10−146

stretched-V 1.18811889704 · 10−05 0.0 0.0
Schwefel’s sum 0.00155101043485 4.54483150799 · 10−06 9.17009025845 · 10−13

masters −3.28560911365 −3.70755960932 −3.70755960932

Table 6.2: Median fitness values for experiments with real coded chromosomes

36 CHAPTER 6. EXPERIMENTS AND RESULTS

Test Function PGA-1-real PGA-2-real PGA-3-real
Rastrigin 8.12107314729 · 10−09 0.468797586246 3.50974804775 · 10−11

Schwefel 3.17521564597 · 10−11 0.12057499226 0.0159585842613
sphere 2.87194712456 · 10−11 2.87194712456 · 10−11 2.87194712456 · 10−11

Rosenbrock 7.76172459638 · 10−11 0.594560256544 0.00496893443565
Michalewics 2.0532686662 · 10−10 0.722719791571 1.79377664811 · 10−06

pathological 0.00341901044855 1.14992747346 · 10−06 0.000232027814361
quartic 2.87194712456 · 10−11 2.87194712456 · 10−11 2.87194712456 · 10−11

ellipsoidal 2.87194712456 · 10−11 2.87194712456 · 10−11 2.87194712456 · 10−11

stretched-V 1.04155128966 · 10−10 8.48722425673 · 10−10 0.117079846005
Schwefel’s sum 2.87194712456 · 10−11 8.0169641592 · 10−08 5.77298209237 · 10−11

masters 2.87194712456 · 10−11 2.87194712456 · 10−11 0.836023950489

Test Function PGA-4-real PGA-5-real
Rastrigin 5.77298209237 · 10−11 0.164609061949
Schwefel 2.29022487641 · 10−08 0.534635240704
sphere 2.87194712456 · 10−11 2.87194712456 · 10−11

Rosenbrock 4.61923248984 · 10−07 0.0443590716039
Michalewics 9.89854166855 · 10−07 0.767467973961
pathological 9.18087424306 · 10−07 0.689760957276
quartic 2.87194712456 · 10−11 2.87194712456 · 10−11

ellipsoidal 2.87194712456 · 10−11 2.87194712456 · 10−11

stretched-V 1.77392789347 · 10−09 0.198357566663
Schwefel’s sum 2.87194712456 · 10−11 5.22830667649 · 10−11

masters 2.87194712456 · 10−11 4.13418361767 · 10−08

Table 6.3: P-values for experiments with real coded chromosomes

Test Function PGA-1-real PGA-2-real PGA-3-real PGA-4-real PGA-5-real
Rastrigin 0.9333 0.5544 1.0 0.9922 0.55
Schwefel 0.9989 0.6167 0.8411 0.92 0.68
sphere 1.0 1.0 1.0 1.0 1.0
Rosenbrock 0.9889 0.46 0.7111 0.8789 0.6511
Michalewics 0.9778 0.5267 0.8589 0.8678 0.4344
pathological 0.28 0.8656 0.7767 0.8689 0.53
quartic 1.0 1.0 1.0 1.0 1.0
ellipsoidal 1.0 1.0 1.0 1.0 1.0
stretched-V 0.9856 0.9611 0.7756 0.9522 0.6522
Schewfel’s sum 1.0 0.9033 0.9922 1.0 0.9933
masters 1.0 1.0 0.8578 1.0 0.7511

Table 6.4: ρ-statistic values for experiments with real coded chromosomes

6.3. EXPERIMENTAL RESULTS 37

Test Function PGA-1-bin PGA-2-bin PGA-3-bin
Rastrigin 8.34120484702 3.07017159868 4.97582767759
Schwefel 34.6546348771 0.311601326484 0.312226411768
sphere 4.54748218249 · 10−10 4.54748218249 · 10−10 4.54748218249 · 10−10

Rosenbrock 4.59786153483 3.99015946567 4.43120043886
Michalewics −4.58607133613 −4.68494565819 −4.64350072279
pathological 0.00422949060419 0.00156596445197 0.00185783705424
quartic 1.240775652 · 10−19 1.240775652 · 10−19 1.240775652 · 10−19

ellipsoidal 1.36424465475 · 10−09 1.36424465475 · 10−09 1.36424465475 · 10−09

stretched-V 0.00675985242698 0.00136533889282 0.00505994460677
Schwefel’s sum 0.195318833551 0.195318833915 0.260556614218
masters −3.70520686943 −3.7058620205 −3.70590284231

Test Function PGA-4-bin PGA-5-bin PGA-mix-bin
Rastrigin 4.92090766906 0.00123136667715 0.994960888044
Schwefel 0.312851497053 0.212514482884 0.208359310348
sphere 4.54748218249 · 10−10 1.90748687627 · 10−06 4.54748218249 · 10−10

Rosenbrock 4.5365185986 3.75174712094 3.98005561148
Michalewics −4.63136361624 −4.68622112381 −4.6852626402
pathological 0.00270303083996 0.000582148173629 0.00115716033953
quartic 1.240775652 · 10−19 6.915967935 · 10−12 1.240775652 · 10−19

ellipsoidal 1.36424465475 · 10−09 1.25611462341 · 10−05 1.36424465475 · 10−09

stretched-V 0.00275152644163 7.11240947651 · 10−05 0.000779480651169
Schwefel’s sum 0.048831198916 1.3520574025 · 10−06 7.56882934455 · 10−07

masters −3.6959558452 −3.70740470635 −3.70683022804

Table 6.5: Median fitness values for experiments with direct coded chromosomes

38 CHAPTER 6. EXPERIMENTS AND RESULTS

Test Function PGA-1-bin PGA-2-bin PGA-3-bin
Rastrigin 3.05612801732 · 10−09 5.6570273077 · 10−06 1.79986793691 · 10−07

Schwefel 2.6754924809 · 10−07 0.0153233302434 0.0172989009604
sphere 1.0 1.0 1.0
Rosenbrock 0.00569773419407 0.63614068577 0.027603250803
Michalewics 6.97449658915 · 10−06 0.94107234914 0.0564958741768
pathological 0.00181149797611 0.917573309613 0.468797586246
quartic 1.0 1.0 1.0
ellipsoidal 1.0 1.0 1.0
stretched-V 2.6836065103 · 10−05 0.433289795622 0.011958983569
Schwefel’s sum 1.43757908289 · 10−06 3.17521564597 · 10−11 2.48787435098 · 10−10

masters 0.000603610841366 0.0760414758302 0.0810611055554

Test Function PGA-4-bin PGA-5-bin
Rastrigin 1.77392789347 · 10−09 0.000484605567805
Schwefel 0.00190453216445 0.0345005081441
sphere 1.0 2.87194712456 · 10−11

Rosenbrock 0.00967385065092 0.193248378919
Michalewics 0.00652159522961 0.103888659318
pathological 0.0187369441809 0.0153233302434
quartic 1.0 2.87194712456 · 10−11

ellipsoidal 1.0 2.87194712456 · 10−11

stretched-V 0.188236525377 0.00126853453938
Schwefel’s sum 1.53366757294 · 10−07 0.554267836324
masters 0.00393953765506 0.000879453706473

Table 6.6: P-values for experiments with direct coded chromosomes

Test Function PGA-1-bin PGA-2-bin PGA-3-bin PGA-4-bin PGA-5-bin
Rastrigin 0.9456 0.8389 0.8878 0.9522 0.2356
Schwefel 0.9 0.6822 0.7089 0.7333 0.6589
sphere 0.5 0.5 0.5 0.5 1.0
Rosenbrock 0.7078 0.5356 0.6656 0.6944 0.4022
Michalewics 0.8378 0.4944 0.6433 0.7044 0.3778
pathological 0.7344 0.4922 0.5544 0.6767 0.3178
quartic 0.5 0.5 0.5 0.5 1.0
ellipsoidal 0.5 0.5 0.5 0.5 1.0
stretched-V 0.8156 0.5589 0.6889 0.5989 0.2578
schewfel’s sum 0.8644 0.9989 0.9756 0.8944 0.5444
masters 0.7578 0.6333 0.6311 0.7167 0.25

Table 6.7: ρ values for experiments with direct coded chromosomes

6.3. EXPERIMENTAL RESULTS 39

PGA-1-df3 PGA-2-df3 PGA-3-df3
mean values 38.8 59.6333333333 41.8333333333
median values 39.0 61.0 42.0
ρ-statistic 0.2256 0.9044 0.4722
P-value 0.000260456253335 7.385504186 · 10−08 0.711672625487

PGA-4-df3 PGA-5-df3 PGA-mix-df3
mean values 62.3333333333 41.4666666667 48.0
median values 62.0 43.0 48.0
ρ-statistic 0.92 0.39 N/A
P-value 2.29022487641 · 10−08 0.139289365687 1.0

Table 6.8: Results for experiments with df3 fitness function.

40 CHAPTER 6. EXPERIMENTS AND RESULTS

Chapter 7

Conclusion

The main objective of this work was to analyse the performance and advantages of hetero-
geneous parallel genetic algorithms in comparison to homogeneous ones. Necessary software
was developed and several experiments were carried out and while the results are interesting
they are also certainly unforeseen. As traditional parallel genetic algorithms compared with
single population GAs gives better result for multi-modal problems, it was expected that
heterogeneous PGAs will improve this capability even more. But the fact is that heteroge-
neous PGAs showed improvement in the area of uni-modal testing problems.

This work shows that the use of heterogeneous PGAs is beneficial but there is still much
work to be done in this field. Future development can be done with advanced migration
topologies specially designed for heterogeneous PGA and dynamic migration control can
also bring some improvements.

41

42 CHAPTER 7. CONCLUSION

Bibliography

[1] J. E. Baker. Reducing bias and inefficiency in the selection algorithm. In Proceedings of
the Second International Conference on Genetic Algorithms on Genetic algorithms and
their application, pages 14–21, Hillsdale, NJ, USA, 1987. L. Erlbaum Associates Inc.

[2] K. Deb and R. B. Agrawal. Simulated binary crossover for continuous search space.
Technical report, Departement of Mechanical Enginering, Indian Institute of Technol-
ogy, Kanpur, India, 1994.

[3] K. Deb and H.-g. Beyer. Self-adaptive genetic algorithms with simulated binary
crossover. Evol. Comput., 9(2):197–221, 2001.

[4] D. Goldberg and K. Deb. A comparative analysis of selection schemes used in genetic
algorithms. In Foundations of genetic algorithms (FOGA 1), volume 1, pages 69–93,
San Francisco, CA, USA, 1991. Morgan Kaufmann.

[5] IEEE Task P754. ANSI/IEEE 754-1985, Standard for Binary Floating-Point Arith-
metic. IEEE, New York, NY, USA, Aug. 1985.

[6] K. D. Jong. An analysis of the behavior of a class of genetic adaptive systems. PhD
thesis, University of Michigan, Ann Arbor, MI, USA, 1975.

[7] D. J. Kalyanmoy Deb and A. Anand. Real-coded evolutionary algorithms with parent-
centric recombination. EVOLUTIONARY COMPUTATION, VOL 10:371–396, 2002.

[8] C. S. M Molga. Test functions for optimization needs.
www.zsd.ict.pwr.wroc.pl/files/docs/functions.pdf, May 2005.

[9] D. Ortiz-Boyer, C. Hervás-Martínez, and N. García-Pedrajas. Cixl2: A crossover op-
erator for evolutionary algorithms based on population features. J. Artif. Intell. Res.
(JAIR), 24:1–48, 2005.

[10] M. Pant, M. Ali, and V. P. Singh. Differential evolution with parent centric crossover.
In EMS ’08: Proceedings of the 2008 Second UKSIM European Symposium on Computer
Modeling and Simulation, pages 141–146, Washington, DC, USA, 2008. IEEE Computer
Society.

[11] M. Rucinski, D. Izzo, and F. Biscani. On the impact of the migration topology on the
island model. Parallel Computing, In Press, Corrected Proof, 2010.

43

44 BIBLIOGRAPHY

[12] J. Wakunda and A. Zell. Median-selection for parallel steady-state evolution strategies.
In M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J. J. M. Guervós, and H.-
P. Schwefel, editors, PPSN, volume 1917 of Lecture Notes in Computer Science, pages
405–414. Springer, 2000.

[13] L. D. Whitley. Fundamental principles of deception in genetic search. In G. J. E.
Rawlins, editor, FOGA, pages 221–241. Morgan Kaufmann, 1990.

[14] L. D. Whitley. A genetic algorithm tutorial. Statistics and Computing, 4:65–85, 1994.

[15] A. H. Wright. Genetic algorithms for real parameter optimization. In G. J. Rawlins, ed-
itor, Foundations of genetic algorithms, pages 205–218. Morgan Kaufmann, San Mateo,
CA, 1991.

Appendix A

List of Abbreviations

2D Two-Dimensional

5D Five-Dimensional

BLX-α Blend Crossover

CX Crossover

df3 Fully deceptive function 3

EA Evolution Algorithm

g3 Generalized Generation Gap

GA Genetic Algorithm

IM Island Model

MGG Minimal Generation Gap Model

PCX Parent Centric Crossover

PGA Parallel Genetic Algorithm

SBX Simulated Binary Crossover

SUS Stochastic Universal Sampling

UNDX Uni-modal Normal Distribution Crossover

45

46 APPENDIX A. LIST OF ABBREVIATIONS

Appendix B

The Wilcoxon Ran-Sum Test

To determine the statistical significance of test results Wilcoxon rank-sum test (also called
Mann–Whitney U) has been used. It is a non parametric test used to estimate whether two
samples are independent or not.

B.1 Calculation

To calculate the value of statistic U following method can be used:

1. Arrange all the observations into single ranked series.

2. Sum all ranks R1 for the observations which came from the first series.

3. Calculate U1 using equation (B.1) where n1 is the size of the series.

4. Value of U2 can be calculated using equation (B.2).

U1 = R1
n1(n1 + 1)

2
(B.1)

U2 = R2
n2(n2 + 1)

2
(B.2)

From the equations (B.1) and (B.2) can be deduced the maximal value of U1 which is the
sum of U1 + U2 = n1n2 when U2 = 0.

B.2 P-value

P-value in this test represents the probability that two series of observations came from the
same set. In other words, if the P-value is large, then both series have similar distribution
and small P-value means that both series are most probably independent.

47

48 APPENDIX B. THE WILCOXON RAN-SUM TEST

B.3 ρ Statistic

ρ statistic is calculated by dividing U by its maximal value n1n2, thus it is linearly related
to U . It is a non-parametric measure of overlap between two distributions, it can take values
from the interval < 0, 1 > with both boundaries meaning no overlap. It can also be used to
say which distribution has better results even when medians are the same.

Appendix C

CD Content

|-- app/
| |-- example.py - Example experiment
| |-- experiment_binary.py - Experiment with Direct coded chromosomes
| |-- experiment_df3.py - df3 experiment
| |-- experiment_float.py - Experiment with real coded chromosomes
| |-- PyPGA/ - PyPGA package
| | |-- fitness.py
| | |-- genome.py
| | |-- __init__.py
| | |-- organism.py
| | |-- population.py
| | |-- util.py
| | \-- world.py
| \-- util/
| \-- ranksum.py - Script used to process results with Rank-Sum test
|-- python/
| |-- numpy-1.4.1.tar.gz - NumPy python package
| |-- python-3.1.2.amd64.msi - Python binary for MS Windows
| |-- python-3.1.2-macosx10.3-2010-03-24.dmg - Python binary for MacOS X
| |-- python-3.1.2.msi - Python binary for MS Windows (32bit)
| |-- Python-3.1.2.tar.bz2 - Python sources
| \-- scipy-0.7.2.tar.gz - SciPy python package
|-- text/
| \-- Cerny-2010.pdf - This text in pdf format
\--README.txt - README file

49

	Introduction
	Conventional Evolution Algorithms
	Canonical Genetic Algorithm
	Chromosome Representation
	Direct Binary Representation
	Gray Coded Binary Representation
	Real Representation
	IEEE 754 format

	Binary-coded Crossover Operators
	Single Point crossover
	Two Point Crossover
	Uniform Crossover

	Real-coded Crossover Operators
	Mean Crossover
	Blend Crossover Operator (BLX-)
	Simulated Binary Crossover
	Parent Centric Crossover

	Mutation Operators
	Point Mutation
	Mutation of Real Parameters

	Evolution Model
	Generational Evolution
	Elitism

	Steady-State Evolution
	Generalized Generation Gap

	Parent Selection Strategies
	Tournament Selection
	Stochastic Universal Sampling
	Greedy Over-selection
	Truncation Selection
	g3 Selection

	Island Model Parallel EA
	Motivation for Island Model
	Basic Island Model
	Migration Topologies
	Migration Schemes

	Heterogeneous EA Concept
	Topology and Migration Parameters
	Expected Behaviour

	Realization
	Language and Libraries Selection
	PyGene
	Pyevolve

	Package Description
	Chromosome
	Organism
	Population
	Parent Selection and Evolution Model
	Migration

	World
	Benchmark Functions

	Experiment Configuration

	Experiments and Results
	Problem Description
	Uni-modal Benchmark Problems
	Sphere Function
	Rosenbrock's Function
	Ellipsoidal Function
	Quartic Function
	Schwefel's Double Sum Function

	Multi-modal Benchmark Problems
	Rastrigin Function
	Schwefel Function
	Masters's Cosine Wave Function
	Pathological Function
	Stretched V Sine Wave Function
	Michalewics Function

	Binary Only Benchmark Problems
	DF3 Function

	Experimental Configuration
	Experiments with Float Representation
	PGA-1-real
	PGA-2-real
	PGA-3-real
	PGA-4-real
	PGA-5-real
	PGA-mix-real

	Experiments with Direct Representation
	PGA-1-bin
	PGA-2-bin
	PGA-3-bin
	PGA-4-bin
	PGA-5-bin
	PGA-mix-bin

	Experiment with DF3 Function
	PGA-1-df3
	PGA-2-df3
	PGA-3-df3
	PGA-4-df3
	PGA-5-df3
	PGA-mix-df3

	Experimental Results
	Experiments with Real Coded Chromosomes
	Experiments with Direct Coded Chromosomes
	df3 Experiment

	Conclusion
	Bibliography
	List of Abbreviations
	The Wilcoxon Ran-Sum Test
	Calculation
	P-value
	 Statistic

	CD Content

