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Abstract

After the World Wide Web Consortium (W3C) introduces the newer version of the
Web Ontology Language (OWL 2) in 2009, a demand for a new more expressive query
language for OWL 2 DL ontologies was rising which resulted in the creation of the
SPARQL-DL. This document describes the designing, development and integration of a
graphical visualization and editing query tool for the semantic web based on the new
query language SPARQL-DL. This document introduces the current state of the seman-
tic web and explains the need of a query tool that will ease the query building process. I
continue with more detailed introduction to the technologies and standards involved in
the semantic web, namely OWL2 SPARQL SPARQL-DL. Then I describe two designed
graphical models and their basic features after which I discuss their capabilities and
suggest feature extensions of the model. Afterwards I discuss the implementation of the
tool. Firstly I give an overview of the used technologies and libraries. In subsequent
chapters I present the detailed description of the designed API and present some imple-
mentation design decisions. Next I shortly discuss the possibilities for integration of the
tool in practice. Finally summarize the reached results.



Abstrakt

Poté co World Wide Web Consorcium (W3C) uvedly novou verzi standardu Web Ontol-
ogy Language (OWL 2) v roce 2009, velká část nástroj̊u pro sémantický web které stavěli
na této technologii, začal nar̊ustat požadavek na nový expresivněǰśı dotazovaćı jazyk pro
OWL 2 DL ontologie. Diky tomu vznikl SPARQL-DL. Tento dokument popisuje návrh,
vývoj, a integrace nastroje pro grafickou vizualizace a editace dotazu pro sémantický
web, který stav́ı na novém dotazovaćım jazyku SPARQL-DL. Tento dokument uvád́ı do
aktuálńıho stavu sémantického webu a vysvětluje potřebu dotazovaćıho nastroje který
usnadńı proces tvorby dotazu. Potom pokračuji detailńım úvodem do technologii a stan-
dardu př́ıslušné sémantickému webu, konkretně OWL 2, SPARQL a SPARQL-DL. Po-
tom popisuji dva navržené grafické modely a jejich základńı vlastnosti. Potom prob́ırám
jejich dovedenosti a naznačuji budoućı rozš́ı̌reńı modelu. Nasleduje a rozbor implemen-
tace nastroje. Zač́ınám s přehledem použitých technologie a knihovny. V daľśıch několik
kapitol uvád́ım detailńı popis navrženého API a zmiňuji se o několik návrhové rozhod-
nut́ı. Potom krátce zmiňuji možnosti pro integrace nastroje v praxe. Na konec shrnuj́ı
dosažeńı stav.
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1 Introduction

The semantic web community is in the middle of an important step of accepting a new
version of one of its most fundamental standards, the web ontology language OWL 2.
The OWL 2 as well its older vrsion OWL is a fromal or logical language [4]. Some of the
advantages that come along with the new language are clearer syntax and semantics.
The language has been also enriched with new constructs. In the case of OWL 2 DL the
expressivity has been kept under the boundaries of the SROIQ description logic which
offer computational advantages for practical reasoning [8]. To gain the advantages over
the old OWL, the community started rewriting semantic web programs and tools so
that they comply with the new standard. This major event was also a trigger for other
changes of aspects and standards. For example the query languages available for OWL 2
DL were either not expressive enough or had too complex syntax which also didn’t have
much common with the newer semantics. So a new query language was demanded. A
new query language SPARQL-DL was developed that started a new chain of events like
creating new reasoning and development tools. Its objectives are to have clear syntax
and semantics that follow OWL 2 DL and to extend expressivity. Another advantage is
that the language is build so that new reasoning tools can be built onto existing ones.

While fast answering a query is important and have been taken care of, query design-
ing is still left for the text editor. A new graphical query development tool is needed.
This is common approach in the semantic web community. Developers build ontologies
containing hundreds of entities and relations and even more individuals with graphical
tools like Protégé and others. Such need of an instrument is not just a luxury, conversely
it is essential.

In this work I design a graphical query designer (GQD - DL) for SPARQL-DL query
language. Design objectives are: to graphically represent query terms and the relations
between them, to ease the search for particular element in the queried ontology, the
possibility of integration of the query designer in other environments such as Protégé or
in the semantic web application.

For the graphical query representation it is natural to select a graph structure. Simply
description of the graph that is used is that nodes of the graph represent terms and the
entities to which they belong and edges in the graph represent relations between terms.
Since SPARQL-DL queries are build of query atoms which are basically a triple

term, predicate, term

one term can be used more than once, this graph structure will keep the view more
simple reducing the query elements. It is common that ontologies are quite big. For a
query developer it is mandatory to be able to be able to find the needed entity, relation
or individual. This is achieved using context filtering. That is when for example someone
wants to add a property to an object, the GQD can filter the available properties to those
having their domain as a subclass of the entity to which the object belongs. To illustrate
better the power of a graphical representation of a query here I show an example query
written in SPARQL:
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?C rdfs:subClassOf :x .
:x rdf:type owl:Restriction .
:x owl:onProperty ex:q .
:x ?p ?C .

This query is example from [10] which finds classes ?C that are subclasses of a property
restriction over the property ex:q. The property is restricted to the range of the class
that we are looking for ?C and in the same time we are asking for the quantifier of the
property restriction with the variable ?q. This query is quite unusual because it uses a
variable at the place at the quantifier. To understand what this query is supposed to do,
it may take a while. Designing such queries is also as hard. Now I will show a possible
graphical representation using a graph. On image 1 we can see a simple graph with three
nodes. The shape of the nodes denotes what there are used for what is their semantics.
For example the red node, in this particular example graph represents a class node. The
ellipse is used to represent a class description node of thy restriction. The rectangle node
represents a property. Edges can have can have decorations at their connection points to
distinguish between the meaning of different edges. The triangle arrow is used to denote
a sub class relation in UML. Labels can be placed on the edges to further specify their
semantics. The color may also be used to distinguish semantics. For example the blue
is used to denote constants and constructs while the red is used to denote variables.

Figure 1: Type Node

In the next chapter I will introduce in more details the technologies on which the
GQD-DL is build. I will start with description OWL 2 – DL its syntax and differences
over OWL. Next I present SPARQL-DL query language. Then I present the chosen
graph model.
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2 Semantick web - Involved Technologies

2.1 OWL 2

OWL 2, as its previous version OWL, is based on the formalism of description logics
and can have its expressivity reduced to offering better computational properties. These
restrictions are subsets of OWL 2 and are called OWL 2 profiles. This introduction to
OWL 2 will be targeted mainly to one of its most common profiles OWL 2 DL which
happens to be the optimal choice due to the combination of its expressivity and compu-
tational capabilities.

OWL 2 is the new ontology language. Its major difference from its previous version
OWL is in the extension of OWL vocabulary and expressivity. Moreover the specifi-
cation introduces functional style syntax which closely follows the abstract structural
specification and is used to define OWL 2 ontology semantics. Additionally this syntax
is designed so that ontologies can be written in compact form. The functional syntax is
tailed for OWL 2 and it can be used as a basis for a compatible API models and tools.
One of the reasons the definition of the functional syntax was introduced in OWL 2 is
because in OWL which did not specify any specific syntax leaded to some misusing of
OWL and problems between different API models and tool designers. OWL 2 overcomes
this issue by creating an abstract structural specification which and defines a functional
syntax that follows closely the structural model. Despite the changes of the definition of
the abstract structure and its semantics OWL 2, the underling technologies that OWL
was build on are kept. The most common syntax that OWL 2 ontologies are serialized
and exchanged is RDF/XML (Resource Definition Framework). This underling technol-
ogy supplies semantics and well designed tools such as reasoners and query languages
as SPARQL for RDF. Another aspect of OWL specification is that it provides mapping
between the underling semantics of RDF graphs and the new structural specification.
This gives another way of interpreting OWL 2 ontologies as RDF graphs as it was with
OWL thus making it possible to take advantage of existing RDF reasoning tools. In the
case of OWL 2 DL this mapping is not only bidirectional meaning that having any OWL
2 DL ontology can be converted to a RDF graph and the other way around, but also
the later conversion will generate the same input ontology. Moreover the RDF graph
representing an OWL 2 DL ontology will have the same expressivity and thus its com-
putational advantages. For more detail on the OWL 2 specification see [8].

As mentioned earlier OWL 2 DL language is based on description logics. The concrete
informal name of the description logic backing up OWL 2 DL is SROIQ (D) (SROIQ
with data types). This is an extension to the SHOIN (D) description logic that was
used in OWL 1 DL. The letters in the name of the description logic are abbreviations
of groups of constructs that are allowed to be used. Here is a short description of the
SROIQ description logic.
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S is abbreviation for the ALC with the addi-
tional construct for transitive roles. AL abbre-
viation for the Attributive Language which al-
lows concept expressions containing the follow-
ing constructs: atomic concept negation, con-
cept intersection, universal restrictions and lim-
ited existential quantifications.

R stands for: limited complex role inclusion ax-
ioms, reflexivity and irreflexivity, role disjoint-
ness.

O stands for nominals. (Enumerated classes
of object value restrictions - owl:oneOf,
owl:hasValue).

I is for inverse properties.

Q is qualified cardinality restrictions.

SROIQ is decidable, meaning that there is an effective method for determining the
membership of formulas in the theory. This can be proved by using a tableau based
algorithm that decides the consistency of a SROIQ concept w.r.t. a reduced RBox . For
more details on the prove of and the extension of the new and more expressive SROIQ
(D) and for practical reasoning see [5, 6] .

2.2 Introdiction to OWL 2 Structural Specification

The core building blocks of OWL 2 ontologies are entities literals and anonymous in-
dividuals. The entities are actually all elements of the ontology that are described by
IRI (Internationalized Resource Identifier). Entities are divided into six types which
are: class, object property, data property, annotation property, data type and named
individual. Literals in the ontology are accompanied with a string representing their
data type. Anonymous individuals is new concept but it has been around before but
under the notion of a RDF’s blank node. The most mandatory elements in an ontol-
ogy are the entities. They represent the domain and given their identifiers, their IRIs,
entities are commonly thought as the vocabulary of the ontology. Next I will describe
the meaning of each of the entities and will show examples of axioms dealing with them.
In following examples I will use a prefixed version of IRIs a:Person where the a: stands
for the abbreviation of the IRI of the fictional ontology and the following part Person
is the actual entity name or identifier in the referenced ontology.

The class entity interpreted as a set of individuals. There are different constructs or
expressions that are provided by the language that manipulate with the class entity.
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Expressions are assigned to IRI with the help of axioms. For example one can use an
SubClass(a:Clown a:Person) to say that a:Clown is subclass of the more general
class a:Person, that is every Clown is also a Person. The list of available class axioms
is:

SubClass(a:C1 a:C2)

Equivalent(a:C1 . . . a:C2)

Disjoint(a:C1 . . . a:C2)

DisjointUnion(a:C a:C1 a:C2 . . . )

The SubClass(a:C1 a:C2) axiom states that all individuals in a:C1 are also contained
in a:C2. The Equivalent(a:C1 . . . a:C2) axiom asserts that all individuals in a:C1
are also contained in a:C2 and vice verse. For example the class a:Father is equivalent
to the class a:MaleParent. The Disjoint(a:C1 . . . a:C2) axiom states that non of the
individuals in class a:C1 is contained into the classa:C2. An example of disjoint classes
is two class a:Cat and a:Dog. The DisjointUnion(a:C a:C1 a:C2 . . . ) axiom states
that all individuals in a:C are also contained in the union of the classes a:C2 , a:C2
. . . which are declared to be disjoint by the same axiom.

For class expressions one can chose from a wide variety of set operations such as inter-
section, union, object and property restrictions , object and data property cardinality
restrictions. A full list including details and interpretation is presented at [8]

The next entity type is the object property which can be thought of as a binary
relationship between two individuals. There is only one object property expression and
that is:

InverseObjectProperty(ObjectProperty).

This expression states that if two i1 and i2 are in an InverseObjectProperty(
ObjectProperty) relation if and only if i2 and i1 are in an ObjectProperty relation.
In OWL 2 new object property axioms have been added. Here is a list of all supported
property axioms:
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SubObjectpropertyOf(a:P1)

EquivalentObjectProperties(a:P1 a:P2 . . . )

DisjointObjectProperties(a:P1 a:P2 . . . )

InverseObjectProperties(a:P1 a:P2)

ObjectPropertyDomain(a:P a:C)

ObjectPropertyRange(a:P a:C)

FunctionalObjectProperty(a:P)

InverseFunctionalObjectProperty(a:P)

ReflexiveObjectProperty(a:P)

IrreflexiveObjectProperty(a:P)

SymmetricObjectProperty(a:P)

AsymmetricObjectProperty(a:P)

TransitiveObjectProperty(a:P)

The first three axioms have the same semantics as the corresponding class axioms
mentioned earlier. The InversObjectProperties(a:P1 a:P2 . . . ) axiom is used to
declare inverse relations, that is when the pair of individuals, i1 and i2 is in a a:P1
relation, then the reversed ordered pair, i2 and i1 is of the relation a:P2. The axioms
ObjectPropertyDomain(a:P a:C), ObjectPropertyRange(a:P a:C) asert the do-
main and the range of the propery a:P. The FunctionalObjectProperty(a:P) axiom
defines the property a:P that permits only one value for each argument. For example
the a:hasFather property has this characteristics because each argument child has only
one value parent. The InverseFunctionalObjectProperty(a:P) axiom states that
the inverse property of P is functional. For example think of the proerty a:hasChild,
only one person can be the father of one childe childe. The ReflexiveObjectProp-
erty(a:P) axiom declares that eache element is related to itself by the property a:P.
Example for this construct is the a:areRelatives because everyone is a relative to him-
self. The IrreflexiveObjectProperty(a:P) axiom states in a sense the opposite, the
property a:P any object to itself. In this case a good example is the a:ParentOf nobody
can be a parent of himself. The AsymmetricObjectProperty(a:P) axioim assert that
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the property a:P is symmetric, that is when a two individuals, i1 and i2 are related by
the property then the reversed ordered pair i2 and i1 is also related by it. An example
of symmetric property is a:areRelatives. The AsymmetricObjectProperty(a:P)
axiom does the opposite, that is the property a:p do not contains any symmetric indi-
vidual pairs. For example the a:hasFather, a:olderThan. The last object property
axiom is the TransitiveObjectProperty(a:P). It assumes that if the two pairs (i1,
i2) and (i2, i3) are included in the property a:P then the property contains also the
pair (i1, i3).

Next follows the data properties. Data properties can be thought as of object prop-
erties, however their domain is not a OWL 2 class but a data type, which makes the
domain and the range of data properties disjoint. For data properties there are not
any expressions defined. The axioms available is actually a reduced list of the axioms
available for the object properties. This reduction is due to the fact that some of the
axioms of object properties assume that the domain and the range of the property are
not disjoint, which is not the case of data properties. Here is the list of the data property
axioms:

SubDataPropertyOf(a:P1)

EquivalentDataProperties(a:P1 a:P2 . . . )

DisjointDataProperties(a:P1 a:P2 . . . )

DataPropertyDomain(a:P a:C)

DataPropertyRange(a:P a:C)

FunctionalDataProperty(a:P)

The semantics of these axioms are the same as the semantics of their corresponding
object property equivalents with the only difference that the value of the data property
is a literal and not an individual.

The last group of axioms of interest are the individual assertions. Here is the list of
axioms that involve individuals as their arguments:
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SameIndividuals(a:i1 a:i2 . . . )

DifferentIndividuals(a:i1 a:i2 . . . )

ClassAssertion(a:C a:i)

PositiveObjectProerty(a:P a:i1 a:i2 . . . )

PositiveDataProerty(a:P a:i l)

NegativeObjectProerty(a:P a:i1 a:i2 . . . )

NegativeDataProerty(a:P a:i l . . . )

The SameIndividual(a:i1 a:i2) states that a:i1 is the same individual as a:i2.
The second axiom, DifferentIndividual(a:i1 a:i2), states that the individual a:i1
is the different from a:i2. The next axiom is the class assertion ClassAssertion(a:C
a:i), which states that the individual a:i is an instance of the class a:C. The axiom
PositiveObjectProerty(a:P a:i1 a:i2 ) asserts that the individuals a:i1 and a:i2 are
connected with the object property a:P. The axiom PositiveDataProerty(a:P a:C l)
states that the individual a:i is connected to the literal l. The next two axioms are new
in the OWL 2 language and they have the opposite effect than last two motioned above.
The axiom NegativeObjectProerty(a:P a:i1 a:i2 ) states that the two individual are
not connected with the object property a:P. The axiom NegativeDataProerty(a:P
a:i l ) states that the individual and the literal are not connected with the data property
a:P.

Apart from the listed axioms and expressions there are also other defined by OWL 2.
Like stated earlier the language offers a rich collection of class expressions. However are
not very important for the definition of the GQD-DL graph model and so will be not
listed here. The whole list of expressions with explanation of their semantics and other
details are found in [8].

2.3 RDF and SPARQL

The existence of the OWL language and its newest version OWL 2 is based on the
much more abstract conceptual web resource definition framework. This technology
has been introduced for the first time by the W3C, along with the XML file format.
In this section I will introduce the basics of the RDF frame work and SPARQL for
RDF query language. RDF is has formal semantic, and abstract syntax with extensible
vocabulary. The interpretation of the RDF data is determined by the interpretation of
the vocabulary, a collection of all identifiable of named RDF terms used to describe the
data. The source data can be physically stored in a RDF file format or viewed using
middleware as RDF format. The recommended syntax for RDF is XML (Extensible
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Markup Language). In a RDF file the data is basically stored as a collection of RDF
triples of the form.

argument, predicate, value

RDF triples can be view as a binary relations where the argument and the value are
connected or related to each other by the predicate relation. For example the sentence
“The house has a flat roof” can be written as a RDF triple which will look like this:

The house, hasRoof, flat.

The collection of triples actually defines a graph data structure, where the argumets and
the values of triples represent the nodes of the graph and the predicates represents the
edges in the graph. Because this framework is created to work in the web environment,
there are curtain rules for what can be put in the place of the individual elements of a
triple. The main types of elements used in a RDF triple are URI’s (Universal Resource
Identifier), literals and blank nodes. In the place of the argument one can put only
an URI or a blank node. In the place of the predicate it is allowed to use only URI’.
For the value there is no limitation assuming that guessed value is complies the RDF
specification [2]. The blank node element is necessary concept for the RDF specification
for it is designed to be used on the web. The blank node can be interpreted as a place
holder for a resource that is not available or not known, which can happen quite easily
on the web. For example, imagine the next situation where the users of a certain page
upload poems. To submit a poem the page requires that the user fills in a form where
supplying the author’s name, the name of the poem and the poem itself. And internally
the data are stored in a RDF format with triples of the form:

Author , wrote , poem name
poem , hasName , poem name

If the owner of the web page decides to make all the fields of the form mandatory, then
one do not need the use of blank nodes. However if the owner decides that maybe some
authors may want to be anonymous or the uploaded does not know the name of the
poem, than he may want to enable page to allow visitors to upload poems even though
they do not supply the name of the poem or the name of the author. In that case if
RDF do not have elements such as blank nodes, the triples that have to be asserted in
the RDF graph will be inconsistent. So in this case when a user uploads only the poem
itself the two RDF triples with blank nodes will be written as follows:

:A , wrote , :PN
poem , hasName , :PN

As the example shows the triples are consistent even though there is missing infor-
mation of resources. This example demonstrates only the basic use of blank nodes.
However, blank nodes are not only limited for this use, for example one can create multi
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arrity relationship using a blank nodes. This is called a decomposition. For more details
about blank nodes and other RDF elements . . . see [2].

If we have a source RDF graph describing some data we can query this data source
using the SPARQL for RDF query language. SPARQL is based on the RDF’s graph
equivalence defined in the RDF specification [2], which states that two graph G and G’
are the same if there exists a bijection mapping such that maps URI’s and literals to
themselves, blank nodes to blank nodes and a triple is in graph G if and only if the
mapping of the same triple is in graph G’. SPARQL defines graph patterns that are
RDF graphs containing variables. Next I will introduce the basics of how queries are
represented and how variables are resolved in the basic graph patterns. Basic graph
patterns are RDF graphs that contain variables for some of their nodes. So in its basic
form a query is represented as a collection of RDF triples that may contain variables.
As such basic graph patterns can be matched to a sub graph of the data source graph
patterns. In the process of matching variables are bind to constants of the input graph.
Details about the way basic graph patterns match to input graph is defined in [9]. The
basic idea is that when we substitute the variables in the basic graph pattern we will
obtain a valid RDF graph. If the graph obtained by substitution is a sub graph of the
input graph then the basic graph pattern has found a match. The result for this match is
the substitution of the variables. This is only a description of how the matching process
should behave. Actual query tools take into account that the RDF graph is actually a
list of triples. Then a sub graph is equivalent to a sub list of triples. So a query tool
may start with the one of the triple patterns and try to match that pattern to a triple
in the source graph. The result of the positive matching is the binding of the variables
present in the pattern. All occurrences of the bound variables are replaced by the value
they are bound to. Then , the next triple pattern is processed. When no matching triple
is found in the whole input tree then a backtracking can be done, this is when we go one
step back, unbind variables that were bound in that step and try to find a new matching
pattern. Here is an example input graph. In following examples I will omit the prefix
from the abbreviated URI, for example if a:Name will be written as Name.

song1 hasCompouser Compouser1

song10 hasCompouser Compouser1

Here is an example basic graph pattern query and the its result.
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SELECT ?X, ?Y
WHERE{

?X hasCompouser ?Y
}
result
X Y
song1 Compouser1
song10 Compouser1

In this example the query consists of one basic graph pattern containing only one triple
pattern with two variables ?X hasCompouser ?Y that has two variables. So the graph
pattern has two variable nodes and one edge. Matching the graph pattern against the
input graph we get two results because there were two substitutions available for the
graph pattern which were a sub graph of the input graph. The first row of the result
represents the first binding of variables. It shows that the variable ?X is bound to the
value song2 and the variable Y is bound to the Compouser1. The second represents the
second binding of variables.

The syntax of the query begins with a SELECT clause that is used to define the
variables whose bindings will be listed in the result or the result variables. Next is the
WHERE clause, this is where the basic graph pattern is placed. In SPARQL the first
clause of the query, in this caseSELECT, determines the form of the query. There are
four query form:

SELECT

CONSTRRUCT

ASK

DESCRIBE

The SELECT form as shown earlier is used to create queries that return the result
in a tabular form. The CONSTRUCT query form is similar to the SELECT with the
difference that it returns the result as the RDF graph created after substituting the
variables. The ASK query form returns as a result a boolean value, that is yes or
no when the query succeeded in finding a matching sub graph. The last query form
DESCRIBE is used to describe a resource. As mentioned earlier queries are build using
graph patterns. For now I have introduced the basic graph pattern which is a set of
simple triple patterns with semantics of conjunction that is the graph pattern matches
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if all the triple patterns match. There are also other graph patterns that with different
semantics that make SPARQL quite flexible. Here is a list of the graph patterns:

Basic Graph Pattern

Grou Graph Pattern

Optional Graph Pattern

Alternative Graph Pattern

Patterns on Named Graphs

The basic basic graph pattern was already discussed. The next pattern is the group
graph pattern. This pattern has similar semantics as the basic graph pattern with the
difference that it is not a set of triple patterns but a set of graph patterns with conjunc-
tion semantics. Group graph pattern are delimited by { and }. In the example above
there was one graph pattern in the where cluase consisting of one basic graph pattern.
The optional graph patter is used to mark parts of the query as optional. When an op-
tional part does not match, this does not have an effect on the matching process of the
mandatory (normal) part of the query. So is the query matches except for the optional
part the binding succeeds. If the optional part matches than the result of the query
is enriched by the bindings of the variables in the optional part. The a graph pattern
is marked as optional using the syntax OPTIONAL { graph pattern}. The alternative
graph pattern is used to make alternative graph patterns so that a query can find a result
in more than one ways. This can be used when dealing with multiple URI dictionaries
that have URI’s with the same meaning. The syntax for alternative graph pattern is
{graph pattern} UNION { graph pattern}. The last patterns on named graphs is used
when we are querying multiple graphs.

Apart from this functionality SPARQL offers filters that can be used to filter the result.
There are also ordering constructs that can sort or transform the result in various ways.
The language also defines informative functions that can be used in filters to extract parts
from the URI check whether its URI, blank node or literal etc. Another application is
that SPARQL can be transformd into a relational algebra [3] which can take advatage
of the caapavilities of modern relatioal databases. For more details on SPARQL see [9].

2.4 SPARQL-DL

SPARQL-DL is a new query language for OWL 2 DL. The language offers new con-
structs that comply with the abstract functional syntax of OWL 2. SPARQL-DL in-
trduces can handle mixed ABox, TBox and RBox queries. When ABox queries offer
the posibility of optimization of computation [11] because its lack of expresivity. How
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ever SPARQL-DL tries to push the boundries of expresivity and still provide reasonable
computational properties and posible optimization techniques [7]. The query language is
based on SPARQL which supports an extension for a custom entailment regime [9, 10].
SPARQL-DL offers a lot more expressivity than other DL query languages. The basic
building block for queries is a query atom. A query consists of collections of these query
atoms. Next I will describe the basics of the query atoms are interpreted and then I
will go through all the query atoms and their interpretation that are specified in [10, 7].
I will omit the Annotation(s,pa,o) because it is not relevant. Then I will list the new
query atoms which are an extension to that specification.
Query atoms are defined over the OWL ontology vocabulary VO = (Vcls, Vop, Vdp, Vap,
Vind, VD, Vlit) and the sets Vbnode and Vvar. The ontology vocabulary components are
interpreted as follows in the same order : classes, object properties, data properties,
annotation properties, individuals, data types and literal. These sets together with the
newly added sets for variables and blank nodes are pair wais disjoint. The semantics of
the query atoms are based on the vocabulary VO of the ontology O and the interpreta-
tion I = (·I , ·I). The query atoms can be compatible with the vocabulary if it satisfies
conditions on the arguments of the query atoms. For example ObjectProperty(P) is
compatible with the vocabulary VO if P ∈ Vop and so on. There is another condition
that must be satisfied for some other query atoms so that they can entail with the ontol-
ogy vocabulary. For example the Type(a, C) query atom is not entailed just by being
compatible with the ontology vocabulary VO. There is also the requirement that the
interpretation of a must be a member in the interpretation of the class C or formaly
aI ∈ CI . To make this work there are two more concepts defined in[7, 10]. First the
semi-ground query atom which is the an atom with all of its variables bound except
for maybe some blank nodes and second the mapping σ : Vind ∪ Vlit ∪ Vbnode → ∆I .
The mapping is defined so that it will interpret constants that is individuals and liter-
als to themselves but it will provide a mapping for the blank nodes. This mapping is
needed because of the blank nodes and their scope. The basic goal of blank nodes is to
represent a missing resource as stated earlier and described in detail in [2, 9]. In the
case of SPARQL-DL we talk blank nodes have the meaning of not asserted but inferred
resource. Internally, in inference engines, we can think that the blank node or the in-
ferred resources are identified by an internal id with scope that is not accessible from
the outside. Using a blank node in the query atom we are trying to infer a resource
and so the only way that match the id used in the query and the id in the inference
engine is through the σ mapping. So that’s why the domain of the sigma mapping is
Vind ∪ Vlit ∪ Vbnode, because it is allowed to use inferred resources in the query that are
of type individuals or literals. Next I will list the query atoms and their entailment
semantics including the compatibility of the semi-ground query atom. The tab.?? has
three columns first for the query atom type, the second for the compatibility constraints
and the last for the specific query atom semantics. The semantics of the query nodes
proposed in SPARQL-DL are very similar to OWL 2 DL semantic [10, 7].
There are also a few more axiom which I will describe only informally. The Direct-
Type(a,C) is used to state that the most general that the class C is the most general
class of the individual. Query atom DirectSubClassOf(C1, C2) states that C1 is the most
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Query Atom Compatibility Specific Semantics
Type(a,C) a ∈ Vind , C ∈ Vcls σ(a) ∈ CI

PropertyValue(a, p, v) a ∈ Vind, v ∈ Vind ∪ Vlit,
p ∈ Vdp ∪ Vdp

〈σ(a), σ(v)〉 ∈ pI

SameAs(a,b) a, b ∈ Vind σ(a) = σ(b)
DifferntFrom(a,b) a, b ∈ Vind σ(a) 6= σ(b)
SubClassOf(C1, C2) C1, C2 ∈ Vcls CI

1 ⊆ CI
2

EquivalentClass(C1, C2) C1, C2 ∈ Vcls CI
1 = CI

2

DisjointWith(C1, C2) C1, C2 ∈ Vcls CI
1 ∩ CI

2 = ∅
ComplementOf(C1, C2) C1, C2 ∈ Vcls CI

1 = ∆I \ CI
2

SubProperty(p1, p2) p1, p2 ∈ Vop or p1, p2 ∈
Vdp

pI1 ⊆ pI2

EquivalentProperty(p1, p2) p1, p2 ∈ Vop or p1, p2 ∈
Vdp

pI1 = pI2

EquivalentProperty(p1, p2) p1, p2 ∈ Vop or p1, p2 ∈
Vdp

pI1 = pI2

ObjectProperty(p) p ∈ Vop

DataProperty(p) p ∈ Vdp

Functional(p) p ∈ Vop or p ∈ Vdp 〈a, b〉 ∈ pI and 〈a, c〉 ∈
pI ⇒ b = c

InverseFunctional(p) p ∈ Vop or p ∈ Vdp 〈a, c〉 ∈ pI and 〈b, c〉 ∈ pI ⇒
a = b

Transitive(p) p ∈ Vop or p ∈ Vdp 〈a, b〉 ∈ pI and 〈b, c〉 ∈ pI ⇒
〈a, c〉 ∈ pI

Symmetric(p) p ∈ Vop or p ∈ Vdp 〈a, b〉 ∈ pI ⇒ 〈b, a〉 ∈ pI

Table 1: Query atoms and their entailment semantics

general class that is still a subclass of c2. The StrictSubClassOfC1, C2 query atom states
that the class is C1 is subclass of C2 but it cannot be equivalent to it. For properties
there are two more axioms that have the same semantics over the property sets of the
ontology vocabulary as the last two class query atoms. For properties there are also
defined two more query atoms Asymmetric(p), Irreflexive(p).

3 Query Graphical Interactive Designing and Visualization

This section begins with the description of the basic ABox visual graph model followed
by examples. Next I describe some of the design issues that occurred when developing
the graph model. In the following section I present the basic graphical elements and
the semantics that they present, that is how they represent SPARQL-DL query atoms.
Then a show some query examples both with their serialized form and as a graph which
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is a screen shot from the prototype implementation of the model. I discuss objectively
properties of the model. Then I try to make conclusions on the model and how it can
be improved. The last sub section is dedicated to the graph creation and editing.

3.1 Conjuctive ABox visual graph model

The GQD DL is based on a graph model visualization. In this section I will describe
the first graph model that was chosen in the first stage of the project. The first graph
model was designed to be able to express conjunctive ABox queries. This graph mod
has three element types, one node type and two edge types.

Type Node

Property edge

DifferentFrom or Same as Edge

Figure 2: Type Node

On fig.3 is the graphical representation of the Type Node element. The node is rep-
resented as a bounded rectangle and contains several lines of labels. Bottom label is
denotes a variable name, individual name or a literal. Above the bottom label there is a
separating line and other labels that denote ontology classes. The Type Node can repre-
sent one or more Type or DirectType query atoms for the same individual or variable. In
the example above, the node represent the two Type query atoms with the object vari-
able x1 a the classes univ-bench.owl#Person and univ-bench.owl#Organization. More
enhanced model should be able to handle the DirectType query atom and to show the
difference between the two query atoms. This can be done withe a dot or a square in
front of the label that represents the class that is an argument of the DirecteType query
atom. Here is an example of one Type and oneDirectType query atoms and the node
that represents them.

DirectType(?X,C1)

Type(?X,C2)
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Figure 3: Type Node distinguishing a direct type query atom

The node element is the only element that represents a variable which is located in
the bottom label. The model supports both types of SPARQL-DL variables distinguised
and undistinguised filling the background of the node with a different color. The only
constraint defined for the color is that undistinguised nodes, that is nodes that contain
undistinguished variable, should look more neglectable than the other nodes in the graph.
In the case when the node’s bottom label is a literal, then the node represents a single
literal term. In this case the node has only one type label which is the IRI or the
abbreviated prefixed IRI of a data type. Here is an example of a literal node:

Figure 4: Literal node

10 nteger

The next elemnt is the property edge. This element represents one or more Proper-
tyValue atoms with the same argument and the same value. The edge itself represents
only the propertiy list the same way the node represents a type list with the difference
that labels are drawn along the edge in a comma separated list. The other information,
the argument and value of the PropertyValue query atom is represented by the nodes
it edge is connected to, more specifically by their bottom labels. One end of the edge
is has an arrow head to mark the value node. The edge itself is drawn as a continues
line. This element is used to represents both data and object properties the same way
as the query atom it represents is used regardless of the type of the property. Here is an
example of the query terms and their graph

PropertyValue(arg, prop1, val

PropertyValue(arg, prop2, val

The last graphical element in the graph model is the edge representing the SameAs
and DifferentFrom query atoms. The edge is dashed and connects two nodes having
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Figure 5: Property representation

individual IRI or variable in their bottom label. The edge has no arrows and has label
that can be ¡¡SameAs¿¿ or ¡¡DifferentFrom¿¿. Again as with the property edge, the
arguments of the query atoms are the bottom labels of the nodes that the edge connects
to. It is obvious that there is no meaning putting the two when one puts both labels at
the same time, that’s why the model permits only one label to be added between unique
pair of nodes. Here is an example of this element and the query atom it represents.

SameAs(ind1, ind2)

Figure 6: SameAs relation betwee individuals

The graph model represnting conjuctive ABox queries covers this set of query atoms:

Type(ind1, C)

ProperyValue(arg, P, val)

SameAs(ind1, ind2)

DifferntFrom(ind1, ind2)

Here I defined the model for simple conjunctive ABox queries. This definition of this
model was underestimated and was created after the implementation of the first version
of the GQD-DL was. This implementation was based on the programmatic model that
was not well designed to support the graphical model. For instance it did not supported
the DirectType, SameAs and DifferentFrom query atoms. Another issue was that the
model could only show a node as a simple node object without a type which can be quite
common in a SPARQL-DL query.

Here is an example of the graph of the SPARQL-DL query:

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>
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SELECT ?X ?Y1 ?Y2 ?Y3
WHERE
{

?X rdf:type ub:Professor .
?X ub:worksFor <http://www.Department0.University0.edu> .
?X ub:name ?Y1 .
?X ub:emailAddress ?Y2 .
?X ub:telephone ?Y3 .

}

Figure 7: A conjunctive ABox query exampple

On fig.7 we can see the visual graph elements in action. This is a snap shot from the
implementation which was in the process of adopting to the new model so there are nu-
merous bugs, like for example there is no color difference for variable and constant nodes.
When we look at the graph we see that object X of type Propfessor. The property works-
For at the bottom shows that the Profesor X is working at www.Department0.University0.edu.
The rest of the properties have as their value a variable meaning that the query is looking
for the Professors name, address and telephone. So this query finds all the professors
from the given university and retrieves their name, addres and telephone.

3.2 SPARQL-DL Graph Model - mixed ABox, TBox and RBox

As mentioned in the last section the model had to be extended to represent all possible
query atoms available in SPARQL-DL. Another extension of the model is to allow vari-
ables to be placed in the place of classes and properties so that the query graph model
can support mixed ABox, TBox and RBox queries. The first problem that arises when
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allowing variables to be placed everywhere is the fact that class type and property terms
can be used in more than one node in the model defined in the previous section. There
is no problem if the type or the property is not involved in any other query atoms than
the ones already defined. However the problem arises when we are using the rest of the
query atoms most of which represented with an edge. The arguments of the edge element
are defined to be the nodes that the edge connects but one node can have more than
one variable class. Another problem that arises with the fact mentioned earlier that we
can use one class variable at more than one node. In that case which node we should
chose to use to represent the represent the new query atoms? In the case of properties
the graphical representation is defined to be an edge. Should the edge we connect edge
with edge to represent some of the property query axioms? And as with nodes classes,
there are also the problem with the uniqueness of the edge (there can be more than one
variable for an edge) and the variable (one variable can be used in more than one edges).
The answering of these and other questions lead to a definition of new query model.

First of all it was decided that the type nodes will be represented as a round rectangle
nodes. In the case that the node do not contains a type the node representation do not
render an extra OWLClass type. The new model supports nodes without types. The
graphical representation of such node is with two round corners at the bottom and two
sharp (normal) corners at the top. This node should look like the bottom part of a
normal type node with its upper part removed leaving only the separating line. This
way there is a reasonable way to create a distinguishable class node that represents a
single class to which class axioms represented by edges will be directed. The graphical
representation is acquired by doing the opposite that we did to get classless term node,
that is, we remove the bottom part of the type node. The result is a node with two
round upper corners and two sharp (normal) corners at the bottom.

Issues with the representation of the property are resolved by changing the graphical
representation to one node and two edges. The node contains the property list while the
two edges denote the argument and the object of the property with an arrow head at
the object side. This way I was able to create a new term node, the property term node
that can be used to represent property axioms.

3.2.1 Basic graph elements

The new graph model has four shapes and three colors that are used to create a variety of
node types. In addition the individuals are being underlined to be able distinguished it
from literals. However the images in the examples are snapshots taken from the program
which does not support this feature correctly. In this model the color is used in slightly
different way the in the conjunctive ABox query model. In this graph model each label
in the node or each line in the node has its own color. The yellow color is used to
denote constants that is IRI’s and literal. The red color is used to denote distinguished
variables. Finally I use a pale color for undistinguished variables. Here is a list with the
new types of shapes designed for nodes present in the model:
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Round Corners

Down Round Corners

Up Round Corners

Simple Rectangle

The Round Corners node is used to denote Type and DirectType atoms. The node’s
semantics remains the same, only the shape has changed to a round rectangle. The
Down Round Corners node is used to denote ABox terms that are used only in query
atoms different from Type and DirectType. This node can have only one label the term
that the node represents. This two nodes are the only nodes that can contain undistin-
guished variables. Also the union of this two node types is the set of all ABox terms
(individuals, literals and variables), each of this node which is unique and it is identified
by its bottom label. The Up Round Corners node is the shape that denotes class terms
and TBox or class variables. These nodes are called TBox nodes. A tbox node can have
only one element and no other tbox element can contain the same label, term. This node
can have only two colors yellow and red because it can be a variable or a class, but it
can not be a undistinguished variable [8, 9, 10]. The last shape is the Simple Rectangle
node. This node is used to represent RBox variables and property terms. The node
can have only one label and this label is unique for all the rbox nodes. There are also
only two colors used in this node, yellow for IRI’s and red for variables. However there
are a lot of query atoms as Transitive or Functional describing the characteristics of a
single properties. These query atoms are denoted in the unique RBox node. For now
representation is a trailing string containing first one or two letters for the query atoms
used on the property. This can representation can be extended to view symbols instead
of the syntactic abbreviation used in this model.

The new graph model also introduces new edges. For example the for the subclass or
sub property query atom the model uses the UML subclass edge with a triangle arrow
head. As mentioned earlier the property node was introduced an so property edge now
in the extended model is divide in two parts. The first part begins in the argument of
the property and connects to the property node. This edge does not have any arrows or
decoration, neither text. The second edge used when representing properties starts at
the property node and connects to the value node with a simple arrow.

The last basic graphical element used in the model is a dashed edge with no arrows.
This edge is used to represent the query atoms between the individual entities used in
the query, that is, classes, properties and objects (variables or individuals). The role the
edge is determined by a stereotype. The name of the stereotype matches the name of
the query atom that it represents.
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3.2.2 Examples

Here are few example screen shots taken from the implementation of the new model.
The first query describes is the query in the example in the precious chapter in figure
7conjunctive query On fig.8 we can see the advantages that the extended model over

Figure 8: A conjunctive ABox query example presented in the new model

the older ABox model. For example the Professor in the root node in the graph is in
yellow color meaning that it is a constant, in this case a class IRI. This is more complex
than the older model because there we had only one color for each node which was not a
problem because the model assumed that there are no variables in the places of classes
and properties. Now that the model allows this the nodes should be able to have more
colors like in the discussed example. The Fig.?? also is a very good example, showing
that the color can very easily help the eye to distinguished which node is a variable and
which a constant. And thus we can orient in the query semantics much more easier than
when query is in serialized form. However, this example also shows the new model in a
so good way. It is fact that the number of nodes increased and thus the complexity of
the representation rose.

In the next example I demonstrate a SPARQL-DL query.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>

SELECT ?X ?C
WHERE {

?X rdf:type ub:Student .
?X rdf:type ?C .
?C rdfs:subClassOf ub:Employee .

}

In this query we have a mixed ABox and TBox. The variable X will be bound to
an individual and the variable C will be bound to a class that it is also evolved in one
TBox query atom. On fig.9 is the a snapshot of the graphical representation model
implementation.
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Here again it is very easy to distinguished variables from constants. So the first thing
we notice looking at the query graph is that we are searching for the variables X and C
an individual and a class respectively. The Type node on the left shows that there are
two query atoms so we know that we are looking for such X that are both of type C and
of type Student. When we discover a TBox variable in Type node it means that there
may be some TBox query atoms that that variable is involved with. Looking to the right
part in fig. 9 we can see TBox node with the same label C as one in the middle in the
Type node. This means that this node TBox node represents node that is involved in the
description or the constraints of the variable. The label in the Type node only represent
a term tha is used by the Type query atom. So the query atom in which the variable C
is involved is SubClassOf. So next we look at the last node, which is a constant TBox
node, also involved in the SubClassOf query atom as the super class. So this query looks
for students that are also employees and what type of employees they are. This query
shows some limitations of the model. First the variable C is located in two places one
where the variable is defined and constrained and another zero or more places where it
is used as argument in a Type query atom. This separation can be misleading if the
viewer is not well informed about the model.

3.2.3 Model limitations and proposed improvements

There were several unwanted features of the model that were observed in the examples.
First, the increase of the number of nodes, due to the introduction of the property node.
Another aspect of the model, also increases the number of nodes in the graph. This is
when the graph represents the TBox and RBox query atoms , there is an additional node
inserted that is used to for the description of itself and other TBox or ABox variable
nodes. However the second reason for the increase of nodes is not that bad, after all we
add only one node per term. This approach can be used to implement the programmatic
model that stores all the necessary information. Apart from this the other problem with
Rbox and Tbox nodes is that it is not graphically emphasized that for example in fig.9
that variable C in the Type node is actually the same thing as the TBox node on the
right. For a person that have used the model few times that won’t be a problem. An-

Figure 9: Example of a mixed ABox TBox SPARQL-DL query
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other problem is that the model does not handle the separation of ABox and RBox, TBox
query atoms. This may be hard to find the TBox node in a bigger query.// So there
are three approaches that can be assumed for now that solve the issues discussed above.
First, concerning the property nodes which are creating too much detail. Of course the
shape of the property node suggests that there is something that is very similar to other
elements in the graph such as Type nodes. I think the model should keep the property
nodes because this way the they are consistent in their shape as the RBox nodes. The
problem may be solved if the property node and its edges that connect it to its argument
and value can be viewed as one edge. By this I mean that when there is a node between
the edges the node can move around and so the edge move as well, thus creating the
impression of that the property node is independent of its argument and value. So I
need to make the property node non movable. Its position will be determined from the
edge that connects the argument and the value. To create even better impression of that
the property node is part if the edge, I can rotate the node so that it is aligned with the
edge, as it was before with the conjunctive ABox graph model.
The next issue was the separation of the TBox or RBox description of a variable and then
using it in a Type or PropertyvAlue query atoms. I will discuss the solution with respect
to the TBox variables first and then I outline specifics in the case of the RBox variables.
This issue can be resolved very elegantly when there is only one use of a TBox variable
in the Type query atom. In that case the I can substitute the TBox node with the Node
that uses the variable. This way all the extra TBox nodes will disappear and the model
will become liter. However this approach is very limited because if for example the Type
node has more than one class variables or classes IRIs that are used in other TBox atoms
there must be a way to distinguish witch edge corresponds to which term in the type
list of the node. Another obstacle is the fact that it may quite often that one variable is
used in more than one Type nodes. So combining all those cases it is may be optimal if
this functionality is optional. So there might be a menu item that will switch between
the mode where the TBox nodes are independent and the other mode, where the TBox
node is incorporated in to the Tpye node. To emphasize which to which variable in
the node the edge is actually connecting we can make a constraint on the connection
point on the node, for example the edge can connect only on the row where the term to
which it connects is located. At last the problem with multiple places where the TBox
can be incorporated, we can determine a candidate and then let the user decides and
give him the ability to chose where to place the TBox node. In the case of RBox, there
is the only difference that the property can have its characteristics as Transitivity or
Symmetry. This means that the property node should change its representation to be
able to show this characteristic when one tries to incorporate the RBox in the property
node. Everything else stated for the TBox is also true for RBox nodes.

The last issue discussed here is to be able to distinguish a TBox atoms the way
variables are distinguished using the color. We can separate the plain of the graph in
to two. One part of the plain will be used only for ABox and the other part of the
plain can be used for both TBox and RBox. What about mixed elements such as the
Type node in fig.9 on the right. One approach is to order the type nodes’ and property
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nodes’ labels so that all the TBox variables are on top and all the class IRIs are at the
bottom of the node of course above the individual. This way mixed ABox, TBox and
RBox nodes can be aligned on a horizontal line so that above the line there is TBox and
RBox expressions and bellow that line there are ABox expressions. This approach is in
small conflict with the solution of the first issue. This approach has other obstacles that
concerns the layout and how edge will be placed but it is a very attractive idea that
should be at least prototyped and tested.

3.3 The graph editor

Figure 10: Screen shot of the query editor designer after creating an ABox node or a
Type node

The Graph editor is designed in two main parts, the graph pane and the editor panel.
On fig.??edits an screenshot example of the prototype implementation of the editor. The
graph pane is located on the left and it is used to view the graph and capture mouse
and key events that trigger editing actions like adding a node removing or deleting a
node or a multiple selection of nodes, creating edges . . . The graph pane is only limited
to insert and remove edits. The editor panel on the right is used to edit the nodes and
edges contents, that is the classes included in the type node whether the variable is of
direct type or not . . . All the edits in the editor are being stored in the undo manager
and can be undone using the action buttons on the up left corner under the file menu.
On the fig.10 we can see part of the class subsumtion witch is useful for finding types
more efficiently. Another helpful feature of the editor is the Individual editor panel is
interconnected with the class view and is filtered by selecting a class in the class view.
There are two lists in the Individual editor to list that is on top is the list of individuals
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that are part of the class selected on the class tree. The bottom list consists of all the
individuals from the ontology. Both lists are sorted alphabetically. This is visualized on
the fig.11. There is also possible to see that the selection of the two lists is synchronized.
The other editor panels responsible for editing the TBox, RBox and Property nodes and

Figure 11: Screen shot of the editor panel

the editors for the dashed edges are not yet implemented. This is because the change
to the new model started recently and there were major changes in the whole program
code. The editor panels will be implemented and functional in the near feature.

4 Query Editor Implementation

The implementation of the editor is based on several libraries. These are JGrapph +
JGraphaddons, OWL2Query, OWLAPI, Pellet and libraries that come with it. In the
next chapter I will describe the functionality and usage of all of the libraries listed
here. Then I will start with description of the implementation itself. First I will start
describing the main components of which the program consists. I will discuss the imple-
mentation of each of the components over a simplified UML class diagram. After words
I will try to explain some of the reasons why I’ve chosen this implementation. Then
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I will shortly talk about the integration of the software in other environments as web
applications a developer tools such as Protege. At the a end I will conclude the state of
the implementation and how the project might proceed into development.

4.1 Used Technologies

4.1.1 OWL2Query

OWL2Query is a programmatic data query model for SPARQL-DL. The tool is very
useful because it provides a complete interface for all the processes that are involved in
reading a query and running it into an inference engine. The two most used interfaces
in this library are the OWL2Query and OWL2Ontology. The way this library is use
is pretty straight forward. The first step is to create an OWL2Ontology. There are
several ways to do so. There is the possibility to choose between three possible ways.
Using owlapi, Pellet or factplusplus. In my case I am using Pellet with OWLAPI. The
pellet is a resoner that implements a tableau algorithm [1].When doing things through
OWLAPI one can also incorporate a reasoner such as Pellet that implements OWLAPI’s
reasoner interface. Here is a sample code for creating the OWL2Ontology interface with
an incorporated pellet resoner:

OWLReasoner r = null;
OWLAPILoader oal = null;
OWLAPIv3OWL2Ontology o = null;
oal = new OWLAPILoader();
oal.setIgnoreImports(false);
oal.parse(filename);
oal.load();
oal.getKB().realize();
PelletReasoner rr = oal.getReasoner();
rr.getKB().printClassTree();
rr.prepareReasoner();
o = new OWLAPIv3OWL2Ontology(oal.getManager(), oal.getOntology(), rr);

Here I use OWLAPILoader to load the owlapi ontology and manger, then I pre-
pare the reasoner and the knowledge base. At the end I instantiate an instance of the
OWL2Ontology with its implementing class OWLAPIv3OWL2Ontology.
After creating the OWL2Ontology object depends what the user wants to d, to load a
query from a file or to create a new query using the editor. The program uses the services
of OWL2Ontology in two ways. The firs way is while editing is in progress. The editor
has a reference to an object that contains the OWL2Ontology and creates an adapter
for the rest of the application. The class name of this object is QuerySymbolDomain.
It delegates tasks such as asking for the subclasses of a particular class to the underling
OWL2Ontology implementation to. The other way I am using this library is when I
read a SPARQL query file or when I want to run the query. In those cases there are two
major steps that are performed. When reading a query from a file, I first load the query
using the ARQParser to parse the query file using the already loaded OWL2Ontology.
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SparqlARQParser p = new SparqlARQParser();
query = p.parse(new FileInputStream(f.getSelectedFile()), ontology);

The next step is to convert the OWL2Query model into the internal query graph model.
The reason why I convert the model to another internal model is because it is more
comfortable to use my own model which is used for visualizing the graph and editing
at the same time. Another very strong reason to do so is that my model is serializable.
And yet third reason is that changing the OWL2Query is not entirely a public API.
That’s why I created a convertor class in the package containing the package scoped
OWL2query API responsible for creating and editing new queries programmatically.
When the user is done with the design of the query, one may choose to execute the
query then the reverse conversion from my internal model to OWL2query. Afterwards
it is straight forward to execute the query. Here is a code example:

QueryResult result = OWL2QueryEngine.exec(query);

The result is a colectioin or iterator of query bindings.

4.1.2 JGraph + jgraphaddons

JGraph is an open source that implements a graph component compatible with swing.
The component is less or more uses some has something in common with the JTree
component in swing but its flexibility is impressive. The JGraph is based on the model,
view, renderer pattern. It has a graph model it has model for the cells used in the graph
that are compatible with that model. The view of each cell is caring all the necessary
information for the cell to be viewed, including the renderer who is the one that actualy
draws the cell using the visual parameters stored in the view. The work type of work
that is involved with JGraph is almost the same as with any customizable JComponent.
The JGraph should be configured with its standard parameters for example that allow
the editing of cells their resizability the background of the graph and so on. To make
JGraph visualize different shapes one has to implement a install renderer or using the
suggested way written in examples in the documentation of JGraph to over write the
cell view factory. The implementation of the renderer or the cell view is not done by
returning the renderer component as with the rest of swing components. In JGraph
one has to take into account the fact that the edges might connect to the node. If the
shape of the node is different than the connecting edges will not connect correctly on
the border of the shape. This is resolved by implementing the getPerimiterPoit() which
has as an input the cell that we have to calculate the connection point, and two points
that represent the direction of the edge that is going to connect to the cell. In this
project JGraph along with JGraphaddons which is a library for layout of the graph.
The library is outdated and is not compatible with the more new version of JGraph.
The compatibility issues are that not all of the jgraphaddons implemented algorithms
for layout are save to run with the newer version of JGraph. The reason why I do not
use a newer version of JGraphaddons is because its support as a open source layout
library was ended. Now days JGraph Layout Pro is available as the commercial up to
date version.
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4.2 The Query Graph Model

In this section I describe the model used to represent SPARQL-DL queries and how
it is used in the program. On fig.12 is the simplified class diagram of the model. On
the left there is one single interface IQueryGraphthat represents the query itself. This
interface defines the methods for accessing the query graphs data which is distributed
within the IGraphElements hierarchy which is the basic interface for all query graph
elements. The main role of this interface is to provide access methods to the query of
type IQueryGraph. This is done so that graph element knows to which query belongs.
In my case this is mainly used to message any changes in the graph element to the
query that it is contained in. This way I can refresh the JGraph component whenever a
graph element has changed some of its properties due to an edit that occurred. So that’s
about the IGraphElemnt. The next two interfaces that extends the IGraphElement, are
the INamdeElement and IEdge. The name of the interface INamedElement tells that
this graph element has a name, it is identifiable. The identifier is of type Term which
represents any term that can occurred into the query graph. This identifier term is
called common term. The interface is used for elements that are identifiable with one
term. Such graph elements happen to be nodes. The INamedInterface defines methods
for accessing the term that identifies the graph element. There is also methods that
informative methods that are accessing information about the term, for example there
are the getter and setter methods for the destinguished and result properties of the
graph elements common term or identifier. These methods should return true only if
the implementation of the interface has a reference to common term which is variable
then the graph element can decide on an internal state whether it will return true or falls
for any of these two properties. The other interface that implements the IGraphElement
is the IEdge. The IEdge interface has extends the base interface by adding four accessor
methods and one test method:

INamedElement getArgument();

INamedElement getValue();

void setArgument(INamedElement arg);

void setValue(INamedElement value);

boolean equalsEdge(Term arg, Term val);

These methods are tailed for the needs of a property or other edge elements. The get-
ters and the setter methods give access the argument and the value of the edge. The
INamedElement is used as the type of these properties. This is done this way because
it is allowed to be only one edge of a particular type between the same two nodes. An-
other useful feature is that if one changes the argument’s term or other properties of the
graph element, the edge does not loses a reference to its arguments. This is also used
in the jgraph component so that the jgraph knows between which nodes an edge should
connect. This works because the nodes are assigned a value of the INamedInterface.
The fifth method in the interface is used to compare weather this edge is connected be-
tween the two supplied terms. This is useful for example when converting a OWL2Query
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Figure 12: Simplified UML class diagram of the Query Graph model

IGraphQuery.
The next two extensions to the next two interface not shown because it is not impor-
tant. The only important thing that misses in this UML class diagram is the ICom-
pundAssertionElement interface. The name is not correctly used. It is better to call
the ICompoundTermElement interface. As the first word suggests that it is an interface
that supports accessor methods for a collection that is represented by this graph ele-
ment. This interface is useful because some of the graph elements can have more terms
as the arguments of the query atoms of the query atom type that the element type of the
element represents. Here are the methods defined by the ICompundAssertionElement
interface:

boolean removeAll(Collection<? > c);

boolean remove(Term t);

boolean add(Term t);

boolean addAll(Collection<?extendsTerm c);

List<?extendsTerm getList();

This methods are used for example by the override JGraph cell renderer to acquire the
elements in the list or the list itself. This interface is extended by another two inter-
faces which the base type in the model for representing the type node and the property
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node. These interfaces are ITypeNode and IProertyNode. The ITypeNode in addition to
the ICompundCAssertionElemnent it extends the also INameElement interface. That’s
what we want for the type node one element identifying the node in the set of all type
nodes and having the ability to store multiple elements for the classes or the data type
of the object that is being typed. On the other hand the IPropertyNode extends the
IEdge interface, thus becoming a type suitable for representing prosperity nodes. The
next step into the structure of the model is implementation of the IPropertyNode by
the class PropertyNode. The class is shown on fig.12 where there are to aggregation re-
lations to the INamedProperty, which actually the argument and value aggregations in
the property node. The property node is than extended to TRBoxEdge and ABoxEdge.
These edges represent query atoms like SubClassOf for the TRBoxEdge or SameAs for
ABoxEdge. Since they extends the PropertyNode class they also have aggregated ar-
gument and value of type INamedElement. The difference between the property nodes
and its subclasses is that they keep a collection of PredicateTerms which are used to
represent TBox And RBox query atoms.

Moving to the left on the fig.?? we can see the implementation of ITypeNode interface.
the Node class. This contains the identifier term, the common term and a collection of
class terms. To represent differnt the query atoms Type and DirectType the Node uses a
set in which contained in the terms of the types that are selected to be DeirectType. The
accessor methods are defined in the ITypeNode interface. There are two more elemnts
to be covered by java classes and these are TBoxNode and RBoxNode. The TBoxNode
class implements directly the INamedInterface and do not extends the ICompundAsser-
tion interface because this node do not represent any query atom but a single term used
in TBox axioms. There is separate RBoxNode class because needs to store information
for the description of the properties, that is for example Transitive ObjectPropery . . .

All of the graph elements have been covered wiith a java class type that represents
the state of the graph element during the designe of the query. Another iportantelemnt
is the Term abstract class and its implementations Variable, GraoundTerm and Pred-
icateTerm. This are waraper objects that store the IRIs the variable names or the
predicate terms. They are used to represent any term that ocure in the query graph and
its query graph elements.
Next I will explain how the QueryGraph class, implementation of the IQueryGraph in-
terface, handles graph elements. The QueryGraph class contains three hash maps that
map the three identifiable types of nodes, that is, the Node, TBoxNode and RBoxNode
classes. Hash maps to keep the graph consistent. This is done by checking before doing
an edit whether there is already such node or whether the property that the user tries
to add is already there. QueryGraph class stores property nodes ABoxEdge and TR-
BodxEdge elements in sets.
In addition to the visual graph model described in the previous chapter this implementa-
tion tries to facilitate and represent a structure that would be useful when the extension
about the incorporated TBox and RBox in Abox and Property nodes respectively. This
is accomplished by a list of IGraphElemtns contained in the TBoxNode and RBoxNode
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classes and a single IGraphElement variable. In the future this would be used as fol-
lows. I am going to explain this first only about TBoxNode class and then I will point
out specifics for RBoxNode. The list in the TBoxNode will contain all the type nodes
that are using this concrete TBoxNode’s common term in their type list. This way the
TBoxNode will have to track its references. The single variable of IGraphElement would
be used to store the current node’s that is chosen to serve as the source and target for all
TBox query atoms. There are actually no differences in the case of the RBoxNode class,
except for that it will store PropertyNode elements in the list and the single IGraphEle-
ment variable will be of the same type.

This is the current implementation of the programmatic query graph model. It stores
the needed information to be able to store correctly the state of the edited query.

4.3 The graph Editor implementation

4.3.1 The undo support and the query models bad design characteristics

First I will start with the basic components and models that I created to use later to
incorporate into the panel editor. Firstly I implemented a JTree cell renderer to as check
box. This was seems a good way of how the selection looks like how it behaves. Here in
fig.?? is an example screenshot of the older version of the editor. Here I can demonstrate
the functionality of the editor panel that I was after. Apart from the check box selection,
which will initialize with the current nodes type list, there is another feature that shades
some of the nodes of the tree. In this example the shaded nodes are the super classes of
the most specific class selected. In this version there is a small bug that shades also the
most specific type. This small frame work can be used to show useful sets in the tree to
ease further the query development.

In the next fig.13 we see the JTree element was initialized with the nodes class list.
Notice that the class list selection on the right has its members also shaded. This way
one can instantly see whether he chose a type that it is actually useless to choose. There
are other ideas around the list and the representing the same selection, I mean normal
mouse selection not the selection denoted by the checkboxes and the list on the right.
Fig.13 is illustrating also the synchronization of the list and the tree. In this example
the user clicked on a class in the selected classes in the list which was not visible in the
JTree component. This event triggered an action to find the class that was acted upon
and to localize it in the JTree component so that it will be able to scroll to it show
change the selection to it. The change of the selection happens also in the normal case
when the node is visible, but that’s not an very interesting feature, but at least it can
remind users that this feature exists or it can interest beginners and they may learn
its use without looking in the help. Another useful feature of the list is that when you
double click it the class was under the mouse pointer will be removed from the list and
of course the removal will be also reflected in the tree. This is useful when we want to
delete some of the classes that we selected and it is much quicker looking the class in
the tree.
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Figure 13: A screen shot showing the initialized selection of the JTree and the selected
classes list

This behavior is going to be used also in the new editor panel. The migration from the
old the new version of the model and the editor is going to be not so hard because this
functionalities are build in way that they can be reused.

4.4 Upgrading to the new Visual Graph Model

In the moment the query designer went through quite a few major changes in the code.
For example the extension of the programmatic query graph model lead to some issues
about the implementation of the model. For example before the QueryGraph class kept
the list of all used variables in the query. It also had a set of all distinguished variables
and a set of all result variables. This was one of the reasons why the undoable edits
where not implemented very practically. After an edit was applied in the panel editor
the panel editor ran a remarkably long function that had the goal to find the differences
between the edited element and the editor form. After each property and aspect in which
the element and form can be different a new undoable edit was generated which was then
added to the list of the compound edit that was going to represent the change. However
this approach was impossible in the case of the new query model because there will be
so many things that each editor should be able to figure out on its own. That’s why I
thought to make much more reliable undoable edits. The idea is based on the simple two
functions that are present in the IGraphElement interface. Those two functions were:

public void copyTo(IGraphElement n);

public boolean compareTo(IGraphElement n);

Those two functions will do two relatively simple for the model tasks. The first will be
able to copy its own contents in to a new node so that the two nodes will be identical with
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regards to terms and properties. The second function will compare with the input node
and it will return true if the nodes are the same and false if there is even the smallest
difference for example the variable has changed from distinguished to undistinguished.
The implementation of this functionality was quite straight forward because the model
is built on few layers. This mean that the comparison of the Node class took care only
of the common term, the result and undistinguished properties and the rest was left to
be done by the super class, in this case that is CompoundAssertionElement. Here is how
the code looks like for the comparison of the two Node objects.

public boolean compareTo(IGraphElement n) {
if(!super.compareTo(n) || !(n instanceof ITypeNode))return false;
ITypeNode tn = (ITypeNode)n;
if(tn.directSize() != direct.size())return false;

for(Term t : direct){
if(!((ITypeNode)n).isDirectType(t)){

return false;
}

}

return equals(tn) &&
!((isDistinguished() ^ tn.isDistinguished()) ||
(isResultVariable() ^ tn.isResultVariable()));

}

If the super class succeeded in the comparison, than the Node’s task is to check the
elements that he is responsible for. In this code first I check whether the number of
DirectType classes the same. If it is different it means that there is at least one different
element in both direc sets so if that is the case return false. Otherwise check if one of
the elements of our set is not contained in the direct set in the input Node object. If
there was a difference in the set return false. Otherwise true if all of the three variables:
the common term, the distinguished boolean variable and the result boolean variable. If
there at least one difference return false else return true. Next I will show the code for
the compareTo method in the CompoundAssertionElement which the super class of the
of the class Node

public boolean compareTo(IGraphElement n) {
if(!super.compareTo(n) || !(n instanceof ICompoundAssertionElement))

return false;

List<? extends Term> list = ((ICompoundAssertionElement)n).getList();
if(list.size() != predicates.size())return false;

for(Term t : ((ICompoundAssertionElement)n).getList()){
if(!predicates.contains(t))
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return false;
}

return true;
}

Here we are checking for the equivalence in the class sets. First we check whether the
super class finds something wrong if this is the case than the return false. The super
class is actually the implementation of the GraphElement class that actually does noth-
ing else than checking whether the input node has the same query. When we are back
and the first if statement succeeds then I check the list size and the a check whether
every element our list is contained in the inputs node graph element. If lists are the
same return true else return false.
This is how easily is implemented also in the other few classes of the model. The code
for the copyTo method is almost the same when we are talking about the length a the
structure of the code.
The whole idea with the new undoable edit was that create two helper graph elements
after an edit was applied. This means that I have to check the whether the form of the
editor panel is correctly filed and then to fill one of these helper graph elements with
data from the form. This would be new elements state. The other than I will compare
using the original graph element and will call the compare method with its input the
new state. If the two nodes are the same the method will return true and this means
that there is no need of an edit. In the case when compreTo method returns false, than
we call the original elements copyTo method with the other state which I call the old
state. After I have an old state and the new state of the element and I have the element
that is being edited I can always call copyTo from the new state with argument the
original element, which will result in the change of the original node change its state to
its new state. Then I can do the same with the old state and original element. The
result will be that the original element will go back to its former state. This is how it is
possible to implement undoable edits. However for this to work as easy as it looks, the
condition was to move all the data about the graph elements inside the graph elements
themselves. Keeping the result variables and distinguished variables in the query itself
was coursing some serious issues with the graphs model consistency. This also involved
rewriting owl API method calls with the new ones. In some cases I was even pushed to
make minor changes the API of the render classes.

This way the editor panel code cleaned dramatically and was only about keeping the
form synchronized to the node and the user actions. The next important task of the
editor panel is to validate the form.

4.4.1 The renderers

Simultaneously with the change of the model and the API of the undoable edits I needed
to be able to render the shapes defined by the model specification. However the problem
was not only in the shapes of the nodes but also the way I was rendering nodes. Before
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I was using the fact that, swing has the ability to render simple HTML code. In the
last version of the designer I was using HTML to render the nodes. This was also an
alternative but it is quite disturbing that one uses java and inside the java code he
generates HTML code to render something in the java program. So I decided that this
has to go as well. For illustration here is the code that I was using to render the HTML
code:

public String nodeValueToString(ITypeNode n) {
String body = "";
Collection<Term> predicates = n.getTypes();
for (Term t : n.getTypes()) {

if(t.isGround()){
body += "<tr><td align=\"center\">" +

StringRenderer.owl2String(t.asGroundTerm().getWrappedObject()) +
"</td></tr>";

}else{
body += "<tr><td align=\"center\">" +

StringRenderer.owl2String(t.asVariable().getName()) +
"</td></tr>";

}
}
if (predicates.size() == 0) {

body += "<tr><td></td></tr>";
}
body = "<table rules=groups><tbody>" +

body.substring(0, (body.length() - 2 < 0) ? 0 :
body.length() - 2) + "</tbody>";

body = body + "<tr><td align=\"center\"><hr size=1>";
if (n.isVariable()) {

body = body + n.getCommonTerm() + "</td></tr></table>";
} else {

body = body + "<u>" + n.getCommonTerm() +
"</u></td></tr></table>";

}

return "<html><body>" + body + "</body></html>";
}

As I mentioned earlier the two important things that one have to take into account
when creating a JGraph node cell renderer. The first is to create the renderer compo-
nent and then to implement the getPerimeterPoint method. I didn’t wanted to create
a renderer for each node which is present on the models specification. Not that their
too much but I wasn’t sure about how the multiple renderers should be installed on the
JGraph component. So I decided create one custom renderer in which I will build the
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logic of how each node is rendered. Apart from the shape of the nodes there was also a
challenge with the contents of the node. In the end the whole API for the renderer had
the following components, a NodeBorder and a few renderer classes that were combined
to form the desired result. I decided to implement a custom border class NodeBorder
so that I can plug the border easily to a renderer class. The way that the border class
works is that the border class implements some methods that compute intersections of
two lines or a line and a circle. Using this I created parameterized functions that draw a
border of the four shapes from the specification based on the parameter. Then used this
class and delegated these methods the actual renderers methods for drawing a border
and finding the intersection point of the border and the connecting edge. So it was
already quite easy to give the desired border to any cell renderer.
The next step was to create the renderer insights of the node. I accomplished this by im-
plementing three simple renderers which had a common abstract class SubRenderer¡T¿.
The abstract method to be implemented in subclasses is:

public abstract void includeInContainer(Container cont, T element);

The idea was to have ContainerRenderer in which I will put the SubRenderer implemen-
tations. The ContainerRenderer will call the SubRenderer’s includeInContainer method
with a JPanel. Here the classes that implement the SubRenderer¡T¿

class ListRenderer extends SubRenderer¡ICompoundAssertionElement¿
class IDRenderer extends SubRenderer¡INamedElement¿

Having this classes implemented, the code for creating the property node renderer looks
like this:

public class PropertyRenderer extends ContainerRenderer{
protected SubRenderer.ListRenderer rendrer = new SubRenderer.ListRenderer();

public PropertyRenderer() {
border = new NodeBorder.BorderRect();

}

@Override
protected void buildComponent(IGraphElement elemetn) {

rendrer.includeInContainer(container, (ICompoundAssertionElement)elemetn);
}

}

5 The Query Designer in Practice

Once the new model and API is finished the query designer will be very practical tool.
Along with the development of the query tool I was involved in a project where we were
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trying to integrate the designer in to a web application. There the designer gain a also
new dimension because that was the first time I changed the model so the QueryGrpah
an all of its elements including terms is serializable. It was a success to establish the
communication with the glassfish application server and to communicate the query model
as well as all the inference that was carried on the server and then the required data was
send in the form of sets of IRIs.
Another possible application is to make the designer as a plug-in for Protege, where it
will be quite useful in ontology development. For now Protege has a very simple ABox
DL query tool which will be outprefeormed by this one.

6 Conclusion

The project is undergoing major code changes. One of the reasons for this is the upgrade
of the graph model from one that can support conjunctive ABax to a more general model
that supports current versions of SPARQL-DL language. From the beginning I was try-
ing to make the code modular and reusable but eventually the program was ended in
a state where upgrade was needed to change major bad design approaches. These are
concerning the graph model implementation, editor panel design and tasks and graph
visualization using JGraph. On the other hand the old implementation contains a lot of
useful and reusable code in the form of GUI elements and classes which will be used to
rebuild the new GUI.
Currently the program is capable of loading queries from a SPARQL query file and vi-
sualizing the query graph. Graph interaction is implemented so in the moment one can
insert nodes and edges using click and drag mouse gestures, however the connection with
the underlying query model is not correct and there are some bugs to be fixed. Panel ed-
itors are not yet designed except for the type node panel editor which is already designed
but still not integrated in the GUI correctly. Integration of the new panel editor was
possible rebuilding the framework for integration was necessary because of the major
changes made in the code. This editor is actually the most complex one. The design
editors of other panel editors will be simpler and faster also because the framework for
integration will be more stable and the approach will be closely defined.

From the point view of functionality the program is capable only of visualizing the
query graph of SPARQL-DL queries stored as SPARQL files. However the underling
changes are creating a more stable and reusable basis for integrating it in other applica-
tions such as web applications or developer tools, also making it more upgradable and
manageable. Next I will list the program modules and their state. The data model for
SPARQL-DL queries is implemented and functioning. The undo support was simplified
and an easy to use API was designed. Panel editor tasks were reduced and the code
in GUI elements that follow the new approach much more readable and manageable.
JGraph rendering was introduced in the new version that works almost without prob-
lems. Graph interaction were encapsulated in a separate module that can be extended.
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A functional version of the application is going to be available soon. However there
are already suggestions for the upgrade of the model. These suggestions will be easy to
implement in the new version of the query tool because the code was designed so that
such type of upgrades will be possible with minor changes.
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