
CZECH TECHNICAL UNIVERSITY IN PRAGUE

FACULTY OF ELECTRICAL ENGINEERING

BACHELOR’S THESIS

Binary local optimizer with linkage learning

Prague, 2010 Author: Stanislav Vaní̌cek







Acknowledgements

I would like to thank Ing. Petr Pošík Ph.D., my advisor. Petr was always there to listen and

to give advice. Without his encouragement and constant guidance, I could not have finished this

work. A special thanks goes to my family. They’ve still believed in me and gave me strength

when I was down. Thank you!!!!

ii



Abstrakt

V této práci popíši algoritmus nǎrešení optimalizǎcních úloh, tyto úlohy budou typu Black-

box. Funǩcnost algoritmu poté otestujeme na několika testovacích funkcích. Ty budou dvojího

typu, aditivňe dekomponovatelné funkce a hierarchické funkce. Testovatse bude pǒcet evaluací

poťrebných ke spolehlivému nalezení globálního optima. Výsledky budou poté porovnány proti

dvěma genetickým algoritmům ECGA a BOA.
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Abstract

In this paper I will describe algorithm for Black-box optimization problems. The algorithm

will be tested against two types of test functions, additively decomposable functions and hierar-

chical functions. Subject to testing, the number of evaluations needed to reliably find the global

optima. Results will be compared with results of two geneticalgorithms ECGA and BOA.
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Chapter 1

Introduction

1.1 Optimization and optimization problems

In computer science, optimization refers to choosing the best element from set of available

elements.

This means solving problems which one seeks to minimize or maximize, that is our goal

in this paper, a real function by systematically choosing the values of real or integer variables

from within an allowed set. This formulation, using a scalar, real-valued objective function, is

the simplest example. More generally, it means finding best available values of some objective

function given a defined domain, including a variety of different types of objective functions

and different types of domains.

1.2 Black-box optimization

In black-box optimization the objective function is a blackbox, that means we know nothing

about it. More specific it means:

• we don’t know nothing about the function derivation

• we don’t know how is defined a fitness function

1



2 CHAPTER 1. INTRODUCTION

• we don’t have the applicable implementation of the right optimization method

• we know nothing about the right optimization method

1.3 Ways of solution

In this paper we will focus on binary represented functions,therefore we will proceed in the

discrete world. We have two ways how to optimize functions which are described in Chapter

2:

Local optimization is a metaheuristic for solving computationally hard optimization prob-

lems. Local search algorithms move from solution to solution in the space of candidate solu-

tions until a solution deemed optimal is found or a time boundis elapsed.

Genetic algorithms is a search technique to find exact or approximate solutions to opti-

mization and search problems. Genetic algorithms are categorized as global search heuristics.

Genetic algorithms are a particular class of evolutionary algorithms (EA) that use techniques

inspired by evolutionary biology such as inheritance, mutation, selection, and crossover.

But there is a problem, what if there are dependencies between variables (bits) representing

a solution. We need an information about groups of bits, which are dependent, if we want to

find the global optimum of a given function. If we don’t know anything about the dependencies

and work with the variables (bits) like independent ones (one by one), it’s almost impossible to

find the global optimum.

1.4 Chosen solution

Solution described in this paper combines two algorithms. First part is algorithm for depen-

dencies detection. There are many algorithms, which can give us information about dependen-
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cies between variables, they are described below in Chapter2.

The second part of solution is a local optimization. This algorithm can use information given

from the algorithm for dependencies detection. So, it worksover groups of bits.

1.5 Thesis organization

In chapter 2 are described dependencies between variables and algorithms to its detection.

Chapter 3 describes the chosen solution in detail. In chapter 4 are experiments with the chosen

solution and confrontation to other algorithms and chapter5 is a work analysis.



Chapter 2

Dependencies between variables and their

detection

If there are dependencies between variables (bits) we can’tsolve a problem with common

genetic algorithm. If we do, we will need a very large population to get the global optimum,

we hitch in local optimum in most cases.

2.1 Additively separable functions

Additively separative functions (ASF) [1] are defined

f =
K

∑
k=1

ak fk (Sk) . (2.1)

So, they represent a linear combination of a non-linear particular functionsfk, which are defined

over subset of variablesx. (Sk is a subset of input variables tofk .) If setsSk are disjoint sets

(variable on positiond can be only in one setSk ), components are independent. Components

do not have to be continuous, that means, dependency bits from one component could be away

from each other. If setsSk aren’t disjoint, we can create relatively difficult structures.

Let’s have a binary chainx with a lengthD . We can define a lot of fitness functions over this

chain. We will use following four functions in this paper.

4



2.1. ADDITIVELY SEPARABLE FUNCTIONS 5

2.1.1 One Max

A benchmark based on a maximization ofOne Maxfunction [2] is simple. The function is

unimodal and easy for each optimizer. The value of this function is number of ones in a chain,

so

fDbitOneMax(x) =
D

∑
d=1

xd (2.2)

The minimum of this function is 0 for a chain containing only zeros, the maximum isD for

a chain containing only ones. The simplicity of this function is the independence of all bits.

2.1.2 Trap

The Trap [2] function is made from easyOneMaxfunction by simple modification. This

function is very difficult for many optimizers. It’s the maximization of a function

fDbitTrap(x) =







D, if x = 11...1,

D−1− fDbitOneMax(x) , otherwise.
(2.3)

The functionTrap is a linear combination of all bits, same as the functionOneMax, except one

point: the maximum, we are searching for, is where we minimumawait.

The complexity of this problem is an apparent independence of bits over the whole domain.

But if we will look on bits independently to others, we will becaught in local optimum -

mistaken attractor. Dependence between the bits we find onlywhen sludges optimum.

Dbit trap optimizing is wasting time. A lot of real problems can be broken down to semi-

independent subtasks, which are very difficult. TheTrap function can be easily modified like

one of these problems - an interconnection of several bits into groups of independent. This

function will be separable to independent very difficult subtasks. For exampleTrap from 10

5bits blocks is defined:

f10x5bitTrap(x) =
10

∑
k=1

f5bitTrap
(

x5(k−1)+1, ...,x5k
)

(2.4)

The definition is analogous forTrap from 8bits block.
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2.1.3 Equal Pairs

This is a maximization task [3]. The fitness function is defined

fDbitEqualPairs(x) = 1+
D

∑
d=2

fEqualPair(xd−1,xd) , (2.5)

where are defined individual items with length 2 (bits)

fEqualPair(x1,x2) =







1, if x1 = x2

0, if x1 6= x2

(2.6)

This function is symmetric, that means each chain and its inverse have the same evaluation.

The minimum of this function is 1 and it’s for chains where zeros and ones alternate. The

maximum is of this function isD and it’s for chains where are only ones or only zeros. There

two sources of difficulty:

1. Function is bimodal, has two optima, thanks to symmetry. Chromosomes should con-

verge towards them. But later, when one of parents will have sequence of ones and the

second parent will have sequence of zeros it could create thechild with less quality, that

is for GA.

2. Function contains dependencies between pairs of bits: optimal bit value depends on his

predecesor. These dependencies are transmitted from bit tobit, thanks to this the whole

chain is one big item.

Dependencies in this function are much simpler than dependencies inTrap. We could op-

timize its basic version. But we could define separable version with k bits blocks, like by the

Trap. For exampleEqual Pairsfrom 10 5bits blocks is defined:

f10x5bitEqualPairs(x) =
10

∑
k=1

fEqualPairs
(

x5(k−1)+1, ...,x5k
)

(2.7)

Each quintuple of bits is evaluated by functionf5bitEqualPairs. The definition is analogous for

EqualPairsfrom 8bits block.
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2.1.4 Sliding XOR

This is a fitness function [3] maximization task.

fDbitSlidingXOR(x) = 1+ fAllEqual(x)+
D

∑
d=3

(1− fXORPattern(xd−2,xd−1,xd)) . (2.8)

As fEqualPair function has dependencies between 2 variables,fXORPatternfunction has depen-

dencies between 3 variables:

fXORPattern(x1,x2,x3) =







1, if x1⊕x2 = x3

0, otherwise
(2.9)

that means, a value is 1 if 3 bits make a row from XOR functions truth-table. But in this

function is returned 1 if XOR function of 3 consecutive bits returns 0, because of 1 -f . So,

if chain contains triple 001, 010 or 111. Sum in theorem abovereturns maximum for chain

001001001001...001 or for chain 11111...111. The function

fAllEqual(x) =







1, if x=00...0 or x=11...1,

0, otherwise,
(2.10)

ensure, that there is only one global optimum 11...1. The maximum of function fDbitSlidingXOR

will be equalD , thanks to adding 1. This function creates dependencies as the function above,

but with ternary of bits. There is created indirect linkage between all bits in chain, because

of shifting of basic function over ternary of bits. We can also create separative version of this

function by implementation of short independent blocks, for example:

f10x5bitSlidingXOR(x) =
10

∑
k=1

f5bitSlidingXOR
(

x5(k−1)+1, ...,x5k
)

. (2.11)

2.2 Hierarchical functions

The purpose of this hierarchical functions [2] is to design aclass of challenging problems that

can be used to test the scalability of optimization algorithms on difficult hierarchical problems.

In this section are presented two types of hierarchical trapfunctions.
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2.2.1 Hierarchical if-and-only-if (HIFF)

The hierarchical if-and-only-if function [5] was proposedas an example of a function that

is not separable and should therefore challenge even those GAs that are capable of finding

building blocks of bounded order.

The structure of HIFF is a balanced binary tree. The input to the contribution1 and mapping2

functions therefore consists of two symbols. A single mapping function is used on all levels

where 00 is mapped into 0, 11 is mapped into 1 and everything else is mapped into the null

symbol ’-’. On each level, blocks 00 and 11 contribute to the overall fitness by2level, where

level is the number of the current level. Anything else doesn’t contribute to the overall fitness.

Each single bit in the tree contributes to the fitness by 1. Since the structure is a balanced

binary tree, the size of the problem should be a power of 2. Figure 2.1 shows the three HDF

components defining HIFF.

Figure 2.1: The tree components defining a 32-bit HIFF function

HIFF has two global optima, one in the string of all ones and one in the string of all zeros. An

optimizer must preserve either zeros or ones on all string positions to ensure that the optimum

can be reached. There are two ways of solving HIFF. The algorithm can decide whether to go

after zeros or ones, or preserve both alternatives as the optimization proceeds. In the second

1The function determines how the different blocks involved in the total value of fitness function
2A mathematical expression relating observed recombination fraction to map distance expressed in centiMor-

gans (a unit of recombinant frequency for measuring geneticlinkage).
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case, the algorithm must ensure conservation of the partitions on the current level of optimiza-

tion, because mixing zeros with ones moves the optimizationone or more levels down. The

pieces of zeros and ones must be combined together effectively.

2.3 Linkage learning

To identify linkage groups, several algorithm were propose. They are classified [2] into three

categories:

1. Direct detection of bias in probability distribution

2. Direct detection of fitness changes by perturbation

3. Direct detection along genetic search of BBs

For the firs category, several algorithms such as the estimation of distribution algorithm

(EDA) (Mühlenbein & Paaß, 1996), the univariate marginal distribution algorithm (UMDA)

(Mühlenbein, 1997), the factorized distribution algorithm (FDA) (Mühlenbein & Mahnig, 1999),

the bivariate marginal distribution algorithm (BMDA) (Pelikan & Mühlenbein, 1999), and the

Beysian optimization algorithm (BOA) (Pelikan, Cantú-Paz, & Goldberd, 1998) were proposed

to identify linkage groups by detecting bias on probabilitydistributions after selections.

For the third category, the linkage learning GA (LLGA) (Harik, 1997) employs a two-point

like crossover over circular strings to grow tight linkagesof BBs. The LLGA works effec-

tively on problems with exponentially scaled subfunctions, but fails to exploit linkage groups

in uniformly-scaled problems. This is because simultaneous search for linkage groups and BBs

may cause a negative feedback effect that prevents each other from obtaining correct results.

In this thesis I will concentrate on the second group. In the following, I will describe four

algorithms for linkage detection using perturbation.
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2.3.1 LINC (Linkage Identification by Nonlinearity Check)

LINC [6] is an effective method for dividing a larger probleminto small sub-problems. For

example, if we need to solve a maximization problem for a function that is represented as a sum

of two independent partial functions, maximizing each partial function independently is more

efficiently method of solution. In LINC, division is done in terms of Building Blocks (BB’s).

BB’s are generated as an approximated best solution with maximum linkage value inside each

linkage set. These generated BB’s are combined to get a good final result.

For example, lets consider a functionf (x) =
N
∑

n=1
fn(xn) with Linear sub functions. The char-

acter strings is created by joining all the encoded bit stringsxn that are the encoded bit strings,

respectively (Figure 2.1).

Figure 2.2: Example of function

Here∆ fi (s) represents the fitness value change whenith of strings is perturbed. Similarly

∆ fi j (s) represents the fitness value change when both theith & jth bit of stringsare perturbed.

Therefore if we consider a strings= s1s2s3s4s5...sm and define changes of fitness values by

bit-wise perturbations tosas follows.

∆ fi (s) = f (..si .....)− f (..si.....) (2.12)

∆ f j (s) = f
(

.....sj ..
)

− f
(

.....sj..
)

(2.13)

∆ fi j (s) = f
(

..si .sj ..
)

− f
(

..si.sj ..
)

(2.14)

Where, f (s) is fitness of individuals, ands= 1−si (Means that change 0→ 1 and 1→ 0)

si represents theith bit of string s.
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If | ∆ fi j (s)−∆ fi (s) |> e, that is, changes of fitness values by perturbations onsi andsj are

additive, which indicates a linear interaction between them. However, if∆ fi j (s) 6= ∆ fi (s)+

∆ fi (s), this means that they are not additive, which simply means nonlinearity. Checking non

linearity in only one string is not enough because there may exist linearity inside a BB in some

contexts. Therefore, all the strings in a properly sized population must be checked. If linearity

is detected for all the string in a pair of loci than it is safe to keep them as unlinked.

To store linkage groups, we assign a linkage set - a list of loci which are tightly linked - to

each locus, concluding the above explanation.

1. If ∆ fi j (s) 6= ∆ fi (s)+∆ fi (s) thensi andsj are surely members of a linkage set, so we

addi to the linkage set of locusj and addj to the linkage set of locusi. Direct detection

of fitness changes by perturbation.

2. If ∆ fi j (s) = ∆ fi (s)+∆ fi (s), thesi andsj may not be a member of a linkage set, or they

are linked but linearity exists in the current context we do nothing in this case.

We can introduce the value “e ”that specifies the amount of effort allowed for linearity/non

linearity detection and replace the above∆ fi j (s) 6= ∆ fi (s)+∆ fi (s) by |∆ fi j (s)−∆ fi (s) |> e.

2.3.2 LIMD (Linkage Identification by non-Monotonicity Det ection)

Instead of checking non linearity like in LINC procedure, the Linkage Identification by non-

Monotonicity Detection (LIMD) [6] procedure checks the violation of monotonicity conditions

to detect linkage groups.

A monotonous function and non-monotonous function are shown in Figure 2.2 respectively.

Figure 2.3: Monotonicity (left), Non-monotonicity (right)
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As shown in the figure the Monotonic functions can be easily solved by using simple "Hill

Climbing" methods, such problems are also easy for the GA’s.In such cases even if the change

of fitness shows non-linear behavior still it is possible to find the optimal solution for the prob-

lem.

The equations for monotonicity and non-monotonicity can bedescribed by the following

expressions. The procedure adds a pair of loci(i, j) to the linkage set when the following

condition is not satisfied in at least one string in population.

if
(

∆ fi (s)> 0and∆ f j (s)> 0
)

then
(

∆ fi j (s)> ∆ fi (s)and∆ fi j (s)> ∆ f j (s)
)

if
(

∆ fi (s)< 0and∆ f j (s)< 0
)

then
(

∆ fi j (s)< ∆ fi (s)and∆ fi j (s)< ∆ f j (s)
)

Where,∆ fi (s), ∆ f j (s), ∆ fi j (s) are the same as defined in LINC.

2.3.3 LIEM (Linkage Identification with Epistasis Measures)

The LIEM [9] replaces the strict condition of the LINC with condition based on a linkage

measure that represents strength of epistasis between loci. The linkage should be identified by

detecting difference between strong epistasis and weak one. Weak epistasis among a set of loci

means that the problem can be decomposed into subproblems regarding the loci and will be

easily optimized separately. Beyond, a set of loci with strong epistasis are difficult to separate

and optimize, therefore they should be treated all togetheralong optimization process through

recombination operators. Genetic search with recombination operators processes relatively

weak epistasis and strong epistasis. A deception can only beprocessed with enumerative search

realized in an enoughly-sized population of strings (the population needs to haveO
(

2k
)

strings

wherek is the maximum order of BBs). Figure 2.3 shows this idea of linkage identification.
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Figure 2.4: Overview of LIEM

The LIEM we propose aims to deal with linkage identification based on a clear definition of

strength of epistasis. This approach is based on anepistasismeasureei j >= 0 defined for each

pair of loci (i, j). For example, a simple epistasis measure based on the LINC criterion can be

defined as follows:

ei j = max
s∈P

|∆ fi j (s)−
(

∆ fi (s)+∆ f j (s)
)

|, (2.15)

Where

∆ fi (s) = f (..si .....)− f (..si.....) (2.16)

∆ f j (s) = f
(

.....sj ..
)

− f
(

.....sj ..
)

(2.17)

∆ fi j (s) = f
(

..si .sj ..
)

− f
(

..si.sj ..
)

, (2.18)

s= s1s2s3s4s5...sm andsi = 1−si (Means that change 0→ 1 and 1→ 0) si represents theith

bit of strings.

Here, we employ the above simple definition. However, we can assume another definition

of linkage measure. The epistasis measure represents atightness of linkagefor the pair of loci.

Therefore, alinkage groupof a locus is identified by sorting epistasis measures concerning the

locus and picking up a fixed number of locik from those with larger value of the measure. For

example, when we have the following values for epistasis measuresei j for locusi,

e12 = 0.5,e13= 1.1,e14= 0.3,e15 = 0.0,e16= 0.1, (2.19)

and we pick up three loci as a linkage group, first,ei j are sorted as follows:

e13 > e12 > e14 > e16 > e15, (2.20)
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and second, we pick up three loci according to the sortedei j and obtain{3,2,4} as tightly

linked with locus 1 and consequently, the obtained linkage group is{1,2,3,4}. Note that loci

with no epistasis should not be included in the linkage group. In the above definition of epistasis

measure, a pair of loci(i, j) do not consider to be tightly-linked whenei j = 0.

To apply the LIEM, we need to assume the maximum length of BBs as the fixed number of

loci k defined above. In this paper, we call the orderdifficultynumberd because it represents the

problem difficulty for genetic recombinations. An initial population ofO
(

2k
)

strings becomes

necessary to obtain correct linkage groups. Rather, it is more natural to argue that when the

initial population size is fixed, the maximum length of BBs ? how many order of BBs can

detect ? is fixed.

2.3.4 LIEM2 (LIEM considering Monotonicity)

The epistasis measure of theLIEM 2 [6], which is based on the LIMD condition, is defined

as follows:

ei j = max
s∈P

g
(

∆ fi j (s) ,∆ fi (s) ,∆ f j (s)
)

(2.21)

Where, Functiong(x,y,z) is defined as:

g(x,y,z) =



















tr(y−x)+ tr(z−x), (y> 0,z> 0)

tr(x−y)+ tr(x−z), (y> 0,z> 0)

0, otherwise≤ π

(2.22)

tr(x) =







x, (x≥ 0)

0, (x< 0)≤ π
(2.23)

This equation gives “0 ”in case of Monotonicity but gives theMeasure of Non-Monotonicity in

case the function is Non-Monotonic.

ei j = max
s∈P

|∆ fi j (s)−
(

∆ fi (s)+∆ f j (s)
)

|, (2.24)

if calculated gives.

ei j = max
s∈P

g
(

∆ fi j (s) ,∆ fi (s) ,∆ f j (s)
)

(2.25)
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2.4 Algorithms ECGA and BOA

ECGA and BOA algorithms we will use for comparison in this thesis. These algorithms

are Estimation-of-distribution algorithms (EDA) [10]. Estimation-of-distribution algorithms

are a subclass of evolutionary algorithms (EA), which belong to theDirect detection of bias

in probability distributiongroup, described in Chapter 2 Section 2.3. The structure of these

algorithms is:

1. Initialization and evaluation

2. Parent selection

3. Learning a probabilistic model based on the selected parents

4. Create children by sampling learned model

5. Children evaluation

6. Replacement strategy

7. Until termination condition is met, proceed to step 2

EDA algorithms are different from EA algorithms only in steps 3 and 4, where probabilistic

model learning and sampling from it unlike crossing and mutation is used.

2.4.1 ECGA algorithm

ECGA algorithm [8] uses Marginal Product Model, so the algorithm detects groups of de-

pendent bits. Each group is modeled by grouped probability distribution. Bits in different

groups are considered to be independent.

2.4.2 BOA algorithm

BOA algorithm [2] uses Bayesian network as a model, a more general model then MPM in

ECGA is, which uses conditional dependencies between the bits.



Chapter 3

Local optimizer with dependencies

detection

The algorithm studied in this work has 2 main parts. One of themain parts is a linkage

learning algorithm, rather LIMD algorithm which. The second main part is a local optimizer

which can work with dependencies between variables found byLIMD.

There are two versions of the algorithm, but they are different in one thing only, in linkage

learning process. The first version uses completely randomized linkage learning process. That

means, LIMD is always started from a new randomly generated point. The structure of this

version:

1. Initialize the dependency structure with no dependencies and fitness function

2. Run Local optimizer

3. Run LIMD from a new random point

• If new dependency is found, then run Local optimizer from theactual point and run

LIMD from a random generated point

• If new dependency isn’t found, then run LIMD from randomly generated point

4. If number of evaluations is spend, then return best so far solution

16



3.1. LOCAL OPTIMIZER 17

The second version tries to use some kind of heuristic. It works with solutions found by LIMD

and tries to use it. The structure of the this version:

1. Initialize the dependency structure with no dependencies and fitness function

2. Run Local optimizer

3. Run LIMD

• If new dependency is found, then run Local optimizer from theactual point and run

LIMD from best so far solution over the actual point found by itself.

• If new dependency isn’t found, then run LIMD from randomly generated point

4. If number of evaluations is spend, then return best so far solution

3.1 Local Optimizer

This part of the algorithm is a classical local optimizer that means it tries all possible solutions

from the neighborhood of the current one and chooses the bestsolution of them over the fitness

function. But there is one more thing it can do, it can work with dependencies. So if LIMD

returns some dependency between variables (bits), Local Optimizer works over group of vari-

ables. For example if we have chain with length four and bits on first and second position are

dependent:

Original chain and1. possibly solution: [0000]

2. possibly solution: [1000]

3. possibly solution: [0100]

4. possibly solution: [1100]
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As is shown above, there are four possibilities for two linked variables. Similarly for four

linked bits over same chain that means all variables are linked:

Original chain and1. possibly solution: [0000]

2. possibly solution: [1000]

3. possibly solution: [0100]

4. possibly solution: [1100]

5. possibly solution: [0010]

6. possibly solution: [1010]

...

16. possibly solution: [1111]

So, there are sixteen possibilities for four linked variables. Forn linked variables is there

2n possibilities as is demonstrated in two examples above. That means number of possible

solutions increases exponentially with number of linked variables.



Chapter 4

Experiments

4.1 Experiment entity

The main theme of experiments was a question, how many evaluations is needed to find

global optimum. The algorithm ran 30 times and global optimum had to be found in every

run. There were three algorithms in this competition, Localalgorithm with linkage learning

(two versions)(described in Chapter 3), ECGA algorithm (described in Chapter 2) and BOA

algorithm (described in Chapter 2).

It’s very hard to estimate number of evaluations needed to find global optimum for all func-

tions described in Chapter 2. But in one chase it is easy job, the function OneMax has no

dependencies between bits, so only Local Optimizer is needed to find global optima, therefore

n∗ 2, where n is length of chain, evaluations is needed to find global optima. In other cases

I can’t estimate number of evaluations needed to find global optima without any knowledge

about optimising given function.

4.2 ECGA and BOA results

The results of ECGA and BOA algorithms are with the smallest possible population which

can find global optima in every run of thirty. Both algorithmsusing tournament selection of

19
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size 7 and restricted tournament replacement with window size equal to the length of strings

[7]. This smallest possible population was determined by Bisection method. The Bisection

method is a search algorithm for finding given value from in sorted list by shortening the list

by half in each step. The Bisection method finds median, compares it with sought value and

decides for top or bottom half of list because of result.

4.3 Graphs of convergence

In this section I’ll present graphs of convergence on three random starting points. These

graphs show how the value of the fitness function varies with the number of evaluations. Figure

4.1 shows convergence for Trap function, Figure 4.2 for EqualPairs function and Figure 4.3 for

SlidingXOR function.
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Figure 4.1: Trap function: Increasing the value of the fitness function during

evaluation
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Figure 4.2: EqualPairs function: Increasing the value of the fitness function dur-

ing evaluation
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Figure 4.3: SlidingXOR function: Increasing the value of the fitness function

during evaluation
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4.4 Scalability graphs

Scalability graphs show how many evaluations are needed to find global optimum with in-

creasing dimension. The results are for two lengths of linkage variables group to show how

number of evaluations is changed by increasing length of these groups.

4.4.1 OneMax function

The first function is DbitOneMax function. There is no need totest two different lengths of

linkage learning groups because all variables are independent. As is shown on Figure 4.4 Local

Optimizer with Linkage Learning (our algorithm) returns best results. These results are ex-

pected because our algorithm needs only 2∗k evaluations wherek is length of chain, explained

in Chapter 3 Section 3.1, and it may be less than genetic algorithms need to convergence.
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Figure 4.4: DbitOneMax function: Number of evaluations needed to find global

optimum for increasing length of chain

4.4.2 Trap function

For this function and for functions below, it is interestingto test two different length blocks of

dependent bits. The prerequisite for this test is the longerblocks of dependent bits, the bigger

number of evaluations is needed. The Trap function is the heaviest challenge for optimizers
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from additive functions. Results (Figure 4.5) of this 8bit version function are really great,

where genetic algorithms (ECGA and BOA) fail our algorithm continues. The results of 5bit

version are comparable that means they are in the same order.
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Figure 4.5: Trap function: Number of evaluations needed to find global optimum

for increasing number of blocks

4.4.3 Equal Pairs function

Results of this function (Figure 4.6) show that our algorithm is worse than genetic algorithms.

I think, it’s because it can’t work with single pairs, it mustwork under all group.

4.4.4 SlidingXOR function

This is the last function from group of additive functions. ECGA algorithm lost to other

algorithms, so it failed. Our algorithm is comparable to BOAalgorithm and random version is

even better than BOA in 8bit version of function. Results areshown on Figure 4.7.
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Figure 4.6: EqualPairs function: Number of evaluations needed to find global

optimum for increasing number of blocks
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Figure 4.7: SlidinXOR function: Number of evaluations needed to find global

optimum for increasing number of blocks
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4.5 Discussion

There is one interesting question, how is the number of evaluations distributed between

LIMD and Local Optimizer. An answer on this question dependson the LIMD algorithm,

because the longer the dependencies between variables are the bigger number of evaluations

is consumed by Local Optimizer and the less number of evaluations is consumed by LIMD. If

LIMD finds in every iteration new dependency between variables, the distribution curve will

be oscillate around middle. But if new dependency isn’t found in every iteration, the LIMD

algorithm will consume more and more evaluations. On Figure4.8 is shown how is distributed

the number of the evaluations between LIMD and Local Optimizer through solving 4x8bitTrap

function in themselves ratio, where ratio is
NEvals_LO

NEvals_LIMD
.
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Figure 4.8: Trap function: Distribution of evaluation between LIMD and Local

Optimizer. High half: LIMD, bottom half: Local Optimizer
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Conclusion

In this thesis was described an optimization algorithm using local search and linkage learning

in a discrete binary world. This algorithm had two parts, a local search algorithm and a linkage

learning algorithm. The first part, local search algorithm,works under groups of bits, this

groups are created by dependent variables. The LIMD algorithm gives us information which

variables are dependent. There was two versions of the algorithm, first version tried to use

some kind of heuristic (continue from best so far solution) and second version of the algorithm

was completely random.

We have tested this algorithm on several problems against two genetic algorithms. The first

group of problems were additively decomposable functions,described in Chapter 2 Section 2.1.

The second group of problems were hierarchical problems, described in Chapter 2 Section 2.2.

Subject to testing algorithm was to find out how much evaluations is needed to find global

optima in thirty out of thirty-wasting. There was also convergence graphs and graphs showing

the distribution of evaluations.
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5.1 Results

I would say, an algorithm described in this paper returns reliable results within a reasonable

time, in compare to both other algorithms. Particularly well behaved in this algorithm to the

problem of traps, with increasing chain blocks had to find a solution even if other algorithms

failing contra hierarchical functions. In dealing with thehierarchical functions algorithm failed

on chains longer than 8 bits. It is, because of LIMD function,which have big problems with

finding dependencies between bits in long chains. When we have a long chain (for example

chain with length of 16), there is only a few strings to detectpossible dependencies between

variables.

People say, that for problems with dependencies between variables are population algorithms

the best. But with restarts of the algorithm from random points is possible to substitute some

characteristics of the population algorithm and find dependencies between variables. as in this

thesis is shown.

It’s hard to say, which version of algorithm, random or LIMD best so far continue version,

is better on given problem. People would say the longer blockof dependent variables the more

effective is LIMD best so far continue version, it isn’t true. It dependent on the functions

character.

This work made me stronger in optimization problems. Also, it gives me experiences how

to work on large project and how to describe it. In the end, I think that the goals of the work I

was able to meet it with good results, but there is still spacefor improvement, for example if

LIEM or LIEM 2 was used.
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Appendix A

Content provided CD

This work is accompanied by a CD, which includes the source code and the text of the thesis.

• Folder “Code ”: The source code of the algorithm

• Folder “Data ”: Data for the graphs

• Folder “Text ”: The text of the thesis
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