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Abstrakt

V této praci popisi algoritmus rf@Seni optimalizénich uloh, tyto ulohy budou typu Black-
box. Funknost algoritmu poté otestujeme nekolika testovacich funkcich. Ty budou dvojiho
typu, aditivre dekomponovatelné funkce a hierarchické funkce. Tessavatide pet evaluaci
potrebnych ke spolehlivému nalezeni globalniho optima. \Wlgldudou poté porovnany proti

dvéma genetickym algoritmtim ECGA a BOA.



Abstract

In this paper | will describe algorithm for Black-box optimaition problems. The algorithm
will be tested against two types of test functions, addyidecomposable functions and hierar-
chical functions. Subject to testing, the number of evadustneeded to reliably find the global

optima. Results will be compared with results of two genelgorithms ECGA and BOA.
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Chapter 1

Introduction

1.1 Optimization and optimization problems

In computer science, optimization refers to choosing tret bBeement from set of available

elements.

This means solving problems which one seeks to minimize odimmae, that is our goal
in this paper, a real function by systematically choosireyualues of real or integer variables
from within an allowed set. This formulation, using a scataal-valued objective function, is
the simplest example. More generally, it means finding bestable values of some objective
function given a defined domain, including a variety of difiet types of objective functions

and different types of domains.

1.2 Black-box optimization

In black-box optimization the objective function is a bldakx, that means we know nothing

about it. More specific it means:
e we don’t know nothing about the function derivation

o we don’t know how is defined a fitness function

1



2 CHAPTER 1. INTRODUCTION

e we don't have the applicable implementation of the rightroptation method

e we know nothing about the right optimization method

1.3 Ways of solution

In this paper we will focus on binary represented functiahsrefore we will proceed in the
discrete world. We have two ways how to optimize functionsolwtare described in Chapter
2:

Local optimization is a metaheuristic for solving computationally hard optation prob-
lems. Local search algorithms move from solution to sotutiothe space of candidate solu-

tions until a solution deemed optimal is found or a time boisnelapsed.

Genetic algorithms is a search technique to find exact or approximate solutiorspti-
mization and search problems. Genetic algorithms are capegl as global search heuristics.
Genetic algorithms are a particular class of evolutiondgprthms (EA) that use techniques

inspired by evolutionary biology such as inheritance, riota selection, and crossover.

But there is a problem, what if there are dependencies betwa@ables (bits) representing
a solution. We need an information about groups of bits, tvlie dependent, if we want to
find the global optimum of a given function. If we don’t knowaining about the dependencies
and work with the variables (bits) like independent one®(oyone), it's almost impossible to

find the global optimum.

1.4 Chosen solution

Solution described in this paper combines two algorithnist Bart is algorithm for depen-

dencies detection. There are many algorithms, which caagvnformation about dependen-
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cies between variables, they are described below in Chapter

The second part of solution is a local optimization. Thigaliym can use information given

from the algorithm for dependencies detection. So, it worker groups of bits.

1.5 Thesis organization

In chapter 2 are described dependencies between variaidealgorithms to its detection.
Chapter 3 describes the chosen solution in detail. In chdee experiments with the chosen

solution and confrontation to other algorithms and chaptera work analysis.



Chapter 2

Dependencies between variables and their

detection

If there are dependencies between variables (bits) we salve a problem with common
genetic algorithm. If we do, we will need a very large popiolato get the global optimum,

we hitch in local optimum in most cases.

2.1 Additively separable functions

Additively separative functions (ASF)I[1] are defined

K
f= S afi(S). (2.1)
k=1

So, they represent a linear combination of a non-linearqudatr functionsfy, which are defined
over subset of variables (S is a subset of input variables g .) If setsS, are disjoint sets
(variable on positior can be only in one s& ), components are independent. Components
do not have to be continuous, that means, dependency hitsdine component could be away

from each other. If setS; aren’t disjoint, we can create relatively difficult strucs.

Let’s have a binary chainwith a lengthD . We can define a lot of fitness functions over this

chain. We will use following four functions in this paper.

4



2.1. ADDITIVELY SEPARABLE FUNCTIONS 5

2.1.1 One Max

A benchmark based on a maximization@fie Maxfunction [2] is simple. The function is
unimodal and easy for each optimizer. The value of this fonds number of ones in a chain,

SO 5
fDbitoneMax(X) = dz Xd (2.2)
=1

The minimum of this function is 0 for a chain containing ongras, the maximum iB for

a chain containing only ones. The simplicity of this funatie the independence of all bits.

2.1.2 Trap

The Trap [2] function is made from eas@neMaxfunction by simple modification. This

function is very difficult for many optimizers. It's the mamization of a function

D, ifx=11...1,

Y

fobitTrap(X) = (2.3)

D — 1— fppitonemax(X),  otherwise.

The functionTrapis a linear combination of all bits, same as the functiireMax except one

point: the maximum, we are searching for, is where we mininawnit.

The complexity of this problem is an apparent independehb@®over the whole domain.
But if we will look on bits independently to others, we will lmaught in local optimum -

mistaken attractor. Dependence between the bits we findvamdy sludges optimum.

Dbit trap optimizing is wasting time. A lot of real problemsnche broken down to semi-
independent subtasks, which are very difficult. Tiiap function can be easily modified like
one of these problems - an interconnection of several bitsgnoups of independent. This
function will be separable to independent very difficult ®gxs. For examplérap from 10
5bits blocks is defined:

10
fleSbitTrap (X) = Z f5bitTrap (X5(k—1)+17 ---7X5k> (2-4)
k=1

The definition is analogous fdirap from 8bits block.
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2.1.3 Equal Pairs

This is a maximization task [3]. The fitness function is dadine

D
beitEquaIPairs(X) =1+ dz quuaIPair(Xd—laxd)a (2.5)
=2

where are defined individual items with length 2 (bits)

1, ifxg=x
fEqualpair(X1, X2) = . (2.6)
0, if xg#Xo

This function is symmetric, that means each chain and i&rgezhave the same evaluation.
The minimum of this function is 1 and it's for chains whereaeand ones alternate. The
maximum is of this function i® and it's for chains where are only ones or only zeros. There

two sources of difficulty:

1. Function is bimodal, has two optima, thanks to symmetrgro@iosomes should con-
verge towards them. But later, when one of parents will haepience of ones and the
second parent will have sequence of zeros it could createhiteewith less quality, that

is for GA.

2. Function contains dependencies between pairs of bitsnapbit value depends on his
predecesor. These dependencies are transmitted fromkbtt tbanks to this the whole

chain is one big item.

Dependencies in this function are much simpler than depeele inTrap. We could op-
timize its basic version. But we could define separable gargiith k bits blocks, like by the
Trap. For exampléequal Pairsfrom 10 5bits blocks is defined:

10

f106bitEqualPairs(X) = Z quuaIPairs()%(k—1)+1a---7X5k> (2.7)
k=1

Each quintuple of bits is evaluated by functi®ite quaipairs The definition is analogous for

EqualPairsfrom 8bits block.
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2.1.4 Sliding XOR

This is a fitness function [3] maximization task.

D
fobitslidingx or(X) = 1+ falEqual (X) + dz (1— fxoRPatterd Xd—2,%d—1,%d)) - (2.8)
=

As fequalpair function has dependencies between 2 variabiiggrpatternfunction has depen-

dencies between 3 variables:

1L, iftxi®dxe=x3
fx ORPatteriX1, X2, X3) = ) (2.9)
0, otherwise

that means, a value is 1 if 3 bits make a row from XOR functionghttable. But in this
function is returned 1 if XOR function of 3 consecutive bigsurns O, because of 1f-. So,
if chain contains triple 001, 010 or 111. Sum in theorem alr@terns maximum for chain
001001001001...001 or for chain 11111...111. The function

1, ifx=00...0 orx=11...1,
fAlEqual(X) = . (2.10)
0, otherwise,

ensure, that there is only one global optimum 11...1. Theimax of function fppitsiidingxor
will be equalD , thanks to adding 1. This function creates dependencidsedsiction above,
but with ternary of bits. There is created indirect linkagevieen all bits in chain, because
of shifting of basic function over ternary of bits. We cancatseate separative version of this

function by implementation of short independent blocks gicample:

10
f1oebitslidingxorR(X) = > TebitslidingX OR(X5(k—1)+1: -+ Xsk) - (2.11)
=

2.2 Hierarchical functions

The purpose of this hierarchical functions [2] is to desigieas of challenging problems that
can be used to test the scalability of optimization algongton difficult hierarchical problems.

In this section are presented two types of hierarchicalfuraptions.
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2.2.1 Hierarchical if-and-only-if (HIFF)

The hierarchical if-and-only-if function_[5] was proposas an example of a function that
is not separable and should therefore challenge even thésetltat are capable of finding

building blocks of bounded order.

The structure of HIFF is a balanced binary tree. The inpmmDntributioH and mappirB
functions therefore consists of two symbols. A single maggunction is used on all levels
where 00 is mapped into 0, 11 is mapped into 1 and everythsgyislmapped into the null
symbol *-’. On each level, blocks 00 and 11 contribute to therall fitness by2'¢"¢! where
levelis the number of the current level. Anything else doesn’ttigbate to the overall fitness.
Each single bit in the tree contributes to the fithess by 1.ce&the structure is a balanced
binary tree, the size of the problem should be a power of 2urgi@.1 shows the three HDF

components defining HIFF.

Structure

NN
ot ENNNNERRENNNNNEE

/’;’{i/ - ——

Level 1 s
eve
dnpaseing LTI TITITTT

Mapping functions Contribution functions
e
0 o0

n—-1 1

anything else —  (NULL) anything else —= 0

Figure 2.1: The tree components defining a 32-bit HIFF famcti

HIFF has two global optima, one in the string of all ones angliarthe string of all zeros. An
optimizer must preserve either zeros or ones on all strirsitipas to ensure that the optimum
can be reached. There are two ways of solving HIFF. The dlgorcan decide whether to go

after zeros or ones, or preserve both alternatives as tlmingtion proceeds. In the second

1The function determines how the different blocks involvedhie total value of fitness function
2A mathematical expression relating observed recombinditaction to map distance expressed in centiMor-

gans (a unit of recombinant frequency for measuring getiekage).
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case, the algorithm must ensure conservation of the masiton the current level of optimiza-
tion, because mixing zeros with ones moves the optimizadima or more levels down. The

pieces of zeros and ones must be combined together effigctive

2.3 Linkage learning

To identify linkage groups, several algorithm were propddeey are classified [2] into three

categories:
1. Direct detection of bias in probability distribution
2. Direct detection of fithess changes by perturbation

3. Direct detection along genetic search of BBs

For the firs category, several algorithms such as the estimaf distribution algorithm
(EDA) (Muhlenbein & Paal3, 1996), the univariate marginatmbution algorithm (UMDA)
(Miahlenbein, 1997), the factorized distribution algomtiFDA) (Muhlenbein & Mahnig, 1999),
the bivariate marginal distribution algorithm (BMDA) (Hen & Miuhlenbein, 1999), and the
Beysian optimization algorithm (BOA) (Pelikan, Cantu-P&azoldberd, 1998) were proposed

to identify linkage groups by detecting bias on probabiliigtributions after selections.

For the third category, the linkage learning GA (LLGA) (Hari997) employs a two-point
like crossover over circular strings to grow tight linkagdsBBs. The LLGA works effec-
tively on problems with exponentially scaled subfunctidmst fails to exploit linkage groups
in uniformly-scaled problems. This is because simultaseaarch for linkage groups and BBs

may cause a negative feedback effect that prevents eaahfitireobtaining correct results.

In this thesis | will concentrate on the second group. In tiikowing, | will describe four

algorithms for linkage detection using perturbation.
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2.3.1 LINC (Linkage Identification by Nonlinearity Check)

LINC [B] is an effective method for dividing a larger problento small sub-problems. For
example, if we need to solve a maximization problem for afiemchat is represented as a sum
of two independent partial functions, maximizing each iphftinction independently is more
efficiently method of solution. In LINC, division is done iartns of Building Blocks (BB’s).
BB’s are generated as an approximated best solution withmem linkage value inside each

linkage set. These generated BB’s are combined to get a gualddisult.

N

For example, lets consider a functiérix) = 3 f,,) with Linear sub functions. The char-
n=1

acter strings is created by joining all the encoded bit stringghat are the encoded bit strings,

respectively (Figure 2.1).

filx) + fox)

01

Figure 2.2: Example of function

HereAf; (s) represents the fitness value change wiffeof stringsiis perturbed. Similarly

Afij (s) represents the fitness value change when botttige jt bit of strings are perturbed.

Therefore if we consider a strirg= $1553%4Ss...Sm and define changes of fitness values by

bit-wise perturbations te as follows.

Afi(s)=f(.5.....)— f(..5.....) (2.12)
Afj(s) = ( ..... §j..) —f ( ..... Sj..) (2.13)
Afij(s) = f (..SSJ'..) — f (..S.Sj..) (2.14)

Where,f () is fitness of individuak, ands= 1— s (Means that change©& 1 and 1— 0)

s represents thé" bit of string s.
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If | Afij (s)—Afi(s) |> e, thatis, changes of fitness values by perturbations ands; are
additive, which indicates a linear interaction betweemthdlowever, ifAfjj (s) # Afj(s) +
Af; (s), this means that they are not additive, which simply meaméimearity. Checking non
linearity in only one string is not enough because there mst Bnearity inside a BB in some
contexts. Therefore, all the strings in a properly sizedutetipon must be checked. If linearity

is detected for all the string in a pair of loci than it is sad&kéeep them as unlinked.

To store linkage groups, we assign a linkage set - a list ofidich are tightly linked - to

each locus, concluding the above explanation.

1. If Afij(s) # Afi(s)+Afi(s) thens ands; are surely members of a linkage set, so we
addi to the linkage set of locugand add;j to the linkage set of locus Direct detection

of fitness changes by perturbation.

2. If Afjj (s) = Afi(s)+Afi(s), thes ands; may not be a member of a linkage set, or they

are linked but linearity exists in the current context we dthing in this case.

We can introduce the value “e "that specifies the amount afrieéfllowed for linearity/non

linearity detection and replace the abavé; (s) # Afi (s)+Afi(s) by |Afij (s) —Afi(s)| > e

2.3.2 LIMD (Linkage ldentification by non-Monotonicity Det ection)

Instead of checking non linearity like in LINC procedureg thinkage Identification by non-
Monotonicity Detection (LIMD)[[6] procedure checks the lation of monotonicity conditions

to detect linkage groups.

A monotonous function and non-monotonous function are shawigure 2.2 respectively.

monotonicity non—monotoniciﬂ

Figure 2.3: Monotonicity (left), Non-monotonicity (right
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As shown in the figure the Monotonic functions can be easilyexbby using simple "Hill
Climbing" methods, such problems are also easy for the GA'such cases even if the change
of fitness shows non-linear behavior still it is possible talfihe optimal solution for the prob-

lem.

The equations for monotonicity and non-monotonicity candbscribed by the following
expressions. The procedure adds a pair of [0gi) to the linkage set when the following

condition is not satisfied in at least one string in populatio

if (Af;(s) > O0and\ f; (s) > 0)
then(Afi; (s) > Afi (s)andA fij (s) > Afj ( s)
if (Afi(s) < Oand\ fj(s) < 0)
then(A fij (s) < Afi(s)andA fij (s) < Afj(s))

Where Afi (s), Afj(s), Afij (s) are the same as defined in LINC.

2.3.3 LIEM (Linkage Identification with Epistasis Measures)

The LIEM [9] replaces the strict condition of the LINC with mdition based on a linkage
measure that represents strength of epistasis betwee leeiinkage should be identified by
detecting difference between strong epistasis and weakWleak epistasis among a set of loci
means that the problem can be decomposed into subproblgaslieg the loci and will be
easily optimized separately. Beyond, a set of loci withrsfrepistasis are difficult to separate
and optimize, therefore they should be treated all togetloerg optimization process through
recombination operators. Genetic search with recomlzinatiperators processes relatively
weak epistasis and strong epistasis. A deception can oydoessed with enumerative search
realized in an enoughly-sized population of strings (theytation needs to hav@ (2") strings

wherek is the maximum order of BBs). Figure 2.3 shows this idea dfdge identification.
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11011 110101 1]0]0
\ > v
I » .'eﬁ. a
Strong Epistasis Weak Epistasis
Linkage Sepration is Possible

Figure 2.4: Overview of LIEM

The LIEM we propose aims to deal with linkage identificati@sed on a clear definition of
strength of epistasisThis approach is based on apistasismeasurge>= 0 defined for each
pair of loci (i, j). For example, a simple epistasis measure based on the LiNCian can be

defined as follows:

aj = rye%xmfij (s)— (Afi(s)+Afj(9)], (2.15)
Where
Af(S) = f(.§o)— F () (2.16)
Afj(s)=f(....5..) = f(.....5)..) (2.17)
Afij (s) = (.Si._j..) — f (..S.Sj..), (2.18)

S= $19%%S5...5n ands = 1— s (Means that change 9> 1 and 1— 0) s represents th&"

bit of strings.

Here, we employ the above simple definition. However, we caume another definition
of linkage measure. The epistasis measure represégtitiaess of linkagéor the pair of loci.
Therefore, dinkage groupof a locus is identified by sorting epistasis measures conugthe
locus and picking up a fixed number of Idcfrom those with larger value of the measure. For

example, when we have the following values for epistasissun@ss; for locusi,
e12=05e3=11e,=0.3e5=0.0,e;6=0.1, (2.19)

and we pick up three loci as a linkage group, fiegtare sorted as follows:

e13 > €12 > €14 > €15 > €15, (2.20)
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and second, we pick up three loci according to the sogtednd obtain{3,2,4} as tightly
linked with locus 1 and consequently, the obtained linkageig is{1,2,3,4}. Note that loci
with no epistasis should not be included in the linkage grdaphe above definition of epistasis

measure, a pair of logi, j) do not consider to be tightly-linked whex = 0.

To apply the LIEM, we need to assume the maximum length of BBtha fixed number of
loci k defined above. In this paper, we call the ordifficultynumberd because it represents the
problem difficulty for genetic recombinations. An initiabpulation ofO (2) strings becomes
necessary to obtain correct linkage groups. Rather, it iematural to argue that when the
initial population size is fixed, the maximum length of BBs @whmany order of BBs can

detect ? is fixed.

2.3.4 LIEM? (LIEM considering Monotonicity)

The epistasis measure of thiEM 2 [B], which is based on the LIMD condition, is defined
as follows:
8j = maxg (Afij (s),Afi(s),Afj(s)) (2.21)

Where, Functiomg(x,y, 2) is defined as:

tr(y—x)+tr(z—x), (y>0,z>0)

9% Y,2) =< tr(x—y)+tr(x—2z), (y>0,z>0) (2.22)
0, otherwise<
{ X, (x>0)
tr(x) = (2.23)
0, (x<0)<m

This equation gives “0 "in case of Monotonicity but gives Measure of Non-Monotonicity in

case the function is Non-Monotonic.
8 = rge%xmfij (s)— (Afi(s)+Afj ()], (2.24)

if calculated gives.
8j = maxg (Afij (s),Afi(s),Afj(s)) (2.25)
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2.4 Algorithms ECGA and BOA

ECGA and BOA algorithms we will use for comparison in thisdise These algorithms
are Estimation-of-distribution algorithms (EDA) [10]. tiEeation-of-distribution algorithms
are a subclass of evolutionary algorithms (EA), which bglémtheDirect detection of bias
in probability distributiongroup, described in Chapter 2 Section 2.3. The structurbexe

algorithms is:
1. Initialization and evaluation
2. Parent selection
3. Learning a probabilistic model based on the selectechpsare
4. Create children by sampling learned model
5. Children evaluation
6. Replacement strategy

7. Until termination condition is met, proceed to step 2

EDA algorithms are different from EA algorithms only in sgepand 4, where probabilistic

model learning and sampling from it unlike crossing and rioiteis used.

2.4.1 ECGA algorithm

ECGA algorithm [8] uses Marginal Product Model, so the alipon detects groups of de-
pendent bits. Each group is modeled by grouped probabiidiribution. Bits in different

groups are considered to be independent.

2.4.2 BOA algorithm

BOA algorithm [2] uses Bayesian network as a model, a moremg&model then MPM in

ECGA is, which uses conditional dependencies between the bi



Chapter 3

Local optimizer with dependencies

detection

The algorithm studied in this work has 2 main parts. One ofrti@én parts is a linkage
learning algorithm, rather LIMD algorithm which. The sedamain part is a local optimizer

which can work with dependencies between variables foundlip.

There are two versions of the algorithm, but they are diffene one thing only, in linkage
learning process. The first version uses completely ranziairlinkage learning process. That
means, LIMD is always started from a new randomly generatedtp The structure of this

version:

=

. Initialize the dependency structure with no dependeranal fithess function

N

. Run Local optimizer
3. Run LIMD from a new random point

¢ If new dependency is found, then run Local optimizer fromdbwial point and run

LIMD from a random generated point

¢ If new dependency isn't found, then run LIMD from randomlyngeated point

4. If number of evaluations is spend, then return best scolatien

16
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The second version tries to use some kind of heuristic. lkamaith solutions found by LIMD

and tries to use it. The structure of the this version:
1. Initialize the dependency structure with no dependeraa fitness function
2. Run Local optimizer
3. RunLIMD

¢ If new dependency is found, then run Local optimizer fromdbtial point and run

LIMD from best so far solution over the actual point found tseif.

¢ If new dependency isn’'t found, then run LIMD from randomlyngeated point

4. If number of evaluations is spend, then return best soolatisn

3.1 Local Optimizer

This part of the algorithm is a classical local optimizerttmeans it tries all possible solutions
from the neighborhood of the current one and chooses thesblegion of them over the fitness
function. But there is one more thing it can do, it can workhadependencies. So if LIMD
returns some dependency between variables (bits), Lodah@pr works over group of vari-
ables. For example if we have chain with length four and hitéirst and second position are

dependent:

Original chain andl. possibly solution [0000
2. possibly solution [100Q
3. possibly solution [010Q
4. possibly solution [110Q
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As is shown above, there are four possibilities for two Iehkeriables. Similarly for four

linked bits over same chain that means all variables aredink

Original chain andl. possibly solution [0000
2. possibly solution [100Q
3. possibly solution [0100
4. possibly solution [1100
5. possibly solution [0010
6. possibly solution {1010

16. possibly solution [1111]]

So, there are sixteen possibilities for four linked vargabl Forn linked variables is there
2" possibilities as is demonstrated in two examples above.t iffe@ans number of possible

solutions increases exponentially with number of linkedalges.



Chapter 4

Experiments

4.1 EXxperiment entity

The main theme of experiments was a question, how many di@isas needed to find
global optimum. The algorithm ran 30 times and global optimiiad to be found in every
run. There were three algorithms in this competition, Ladgbrithm with linkage learning
(two versions)(described in Chapter 3), ECGA algorithms(dided in Chapter 2) and BOA
algorithm (described in Chapter 2).

It's very hard to estimate number of evaluations needed tbdiabal optimum for all func-
tions described in Chapter 2. But in one chase it is easy jobfunction OneMax has no
dependencies between bits, so only Local Optimizer is rieelénd global optima, therefore
nx 2, where n is length of chain, evaluations is needed to finbajloptima. In other cases
| can’t estimate number of evaluations needed to find glop&ihw without any knowledge

about optimising given function.

4.2 ECGA and BOA results

The results of ECGA and BOA algorithms are with the smallestsible population which

can find global optima in every run of thirty. Both algorithmsing tournament selection of

19
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size 7 and restricted tournament replacement with windae squal to the length of strings
[7]. This smallest possible population was determined kgeBiion method. The Bisection
method is a search algorithm for finding given value from irtess list by shortening the list
by half in each step. The Bisection method finds median, coespawith sought value and

decides for top or bottom half of list because of result.

4.3 Graphs of convergence

In this section I'll present graphs of convergence on theeelom starting points. These
graphs show how the value of the fitness function varies \wggmtumber of evaluations. Figure
4.1 shows convergence for Trap function, Figure 4.2 for Hepies function and Figure 4.3 for

SlidingXOR function.

Graph of convergency (function: k*8bitTrap) Graph of convergency (function: k*8bitTrap)
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Graph of convergency (function: k*8bitEqualPairs) Graph of convergency (function: k*8bitEqualPairs)
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4.4 Scalability graphs

Scalability graphs show how many evaluations are neededdagfobal optimum with in-
creasing dimension. The results are for two lengths of ekeariables group to show how

number of evaluations is changed by increasing length Gitigeoups.

4.4.1 OneMax function

The first function is DbitOneMax function. There is no needest two different lengths of
linkage learning groups because all variables are indegpgnds is shown on Figure 4.4 Local
Optimizer with Linkage Learning (our algorithm) returnssbeesults. These results are ex-
pected because our algorithm needs onik 2valuations wherk is length of chain, explained

in Chapter 3 Section 3.1, and it may be less than geneticitiigts need to convergence.

Graph of reliability (function: DbitOneMax)
T T T T

evaluations
*0O,
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101 i i i i I
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dim

Figure 4.4: DbitOneMax function: Number of evaluationsdexzto find global

optimum for increasing length of chain

4.4.2 Trap function

For this function and for functions below, it is interestiogest two different length blocks of
dependent bits. The prerequisite for this test is the lobgmrks of dependent bits, the bigger

number of evaluations is needed. The Trap function is thgibsiachallenge for optimizers
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from additive functions. Results (Figure 4.5) of this 8bérsion function are really great,
where genetic algorithms (ECGA and BOA) fail our algorithontinues. The results of 5bit

version are comparable that means they are in the same order.

Graph of reliability (function: k*5bitTrap) Graph of reliability (function: k*8bitTrap)
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Figure 4.5: Trap function: Number of evaluations neededimdlobal optimum

for increasing number of blocks

4.4.3 Equal Pairs function

Results of this function (Figure 4.6) show that our algartis worse than genetic algorithms.

| think, it's because it can’t work with single pairs, it mwsbrk under all group.

4.4.4 SlidingXOR function

This is the last function from group of additive functionsCGA algorithm lost to other
algorithms, so it failed. Our algorithm is comparable to B&gorithm and random version is

even better than BOA in 8bit version of function. Resultssirewn on Figure 4.7.
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Graph of reliability (function: k*8bitEqualPairs)
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4.5 Discussion

There is one interesting question, how is the number of etias distributed between
LIMD and Local Optimizer. An answer on this question depeadsthe LIMD algorithm,
because the longer the dependencies between variabldseaogger number of evaluations
is consumed by Local Optimizer and the less number of evialusmts consumed by LIMD. If
LIMD finds in every iteration new dependency between vadabthe distribution curve will
be oscillate around middle. But if new dependency isn’t thimevery iteration, the LIMD
algorithm will consume more and more evaluations. On FiguBas shown how is distributed

the number of the evaluations between LIMD and Local Optamilarough solving 4x8bitTrap

function in themselves ratio, where ratio pEvalsLO
’ NEvals LIMD
Distribution of evaluations (function: k*8bitTrap) Distribution of evaluations (function: k*8bitTrap)
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(a) 4x8bitTrap function: LIMD BSF continue version (b) 4x8bitTrap function: Randomize version

Figure 4.8: Trap function: Distribution of evaluation beswn LIMD and Local
Optimizer. High half: LIMD, bottom half: Local Optimizer



Chapter 5

Conclusion

In this thesis was described an optimization algorithmgiBigal search and linkage learning
in a discrete binary world. This algorithm had two parts,@lsearch algorithm and a linkage
learning algorithm. The first part, local search algorithworks under groups of bits, this
groups are created by dependent variables. The LIMD algurgives us information which
variables are dependent. There was two versions of theigdgyrfirst version tried to use
some kind of heuristic (continue from best so far solutiarg aecond version of the algorithm

was completely random.

We have tested this algorithm on several problems agaimsgémetic algorithms. The first
group of problems were additively decomposable functidasgribed in Chapter 2 Section 2.1.

The second group of problems were hierarchical problenssrieed in Chapter 2 Section 2.2.

Subject to testing algorithm was to find out how much evaturetiis needed to find global
optima in thirty out of thirty-wasting. There was also corgence graphs and graphs showing

the distribution of evaluations.

26
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5.1 Results

| would say, an algorithm described in this paper returnsloé results within a reasonable
time, in compare to both other algorithms. ParticularlyMeelhaved in this algorithm to the
problem of traps, with increasing chain blocks had to findlatsm even if other algorithms
failing contra hierarchical functions. In dealing with thierarchical functions algorithm failed
on chains longer than 8 bits. It is, because of LIMD functiehjch have big problems with
finding dependencies between bits in long chains. When we adeng chain (for example
chain with length of 16), there is only a few strings to defgm$sible dependencies between

variables.

People say, that for problems with dependencies betweeables are population algorithms
the best. But with restarts of the algorithm from random {®is possible to substitute some
characteristics of the population algorithm and find depewcts between variables. as in this

thesis is shown.

It's hard to say, which version of algorithm, random or LIMBgb so far continue version,
is better on given problem. People would say the longer bddclependent variables the more
effective is LIMD best so far continue version, it isn’'t truét dependent on the functions

character.

This work made me stronger in optimization problems. Alsgjves me experiences how
to work on large project and how to describe it. In the endjrikhhat the goals of the work |
was able to meet it with good results, but there is still sgacémprovement, for example if
LIEM or LIEM 2 was used.
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Appendix A

Content provided CD

This work is accompanied by a CD, which includes the sourde @nd the text of the thesis.
e Folder “Code ”: The source code of the algorithm
e Folder “Data ”: Data for the graphs

e Folder “Text ”: The text of the thesis





