Czech Technical University in Prague

Faculty of Electrical Engineering

BACHELOR THESIS

Coalgebraic approach to automata theory

Prague, 2010 Author: Matéj Dostal
Department of Cybernetics
Software Technologies and Management
Intelligent Systems
Advisor: doc. RNDr. Jifi Velebil, Ph.D.

Department of Mathematics

Prohlaseni

Prohlasuji, ze jsem svou bakaldfskou préci vypracoval samostatné a pouzil jsem pouze

podklady (literaturu, projekty, SW atd.) uvedené v pfiloZeném seznamu.

V Praze dne

podpis

Acknowledgements

It is a pleasure to thank all the people who helped me through the time I worked on
my bachelor thesis. I want to thank doc. RNDr. Jifi Velebil, Ph.D., my advisor. His
everlasting patience has been a great motivation for me. I thank my family. They
provided me with so much more than just food and shelter. If it is true that I am still

a sane person, it is only because of Jan¢a LepSova. Thank you!

Abstrakt

Ukéazeme, ze automaty mohou byt jednotné popsany jako koalgebry urcitého funktoru.
Pro kazdy takovy funktor pfedvedeme modalni jazyk, ktery ndm umozni popsat stavy
automatt. U tohoto jazyka prozkoumame jeho korektnost a tiplnost.

Klicova slova

Koalgebra, modalni logika, bisimilarita.

Abstract

We show that automata can be described uniformly as coalgebras for a functor. For
every such functor we present a modal language that allows us to speak about states
of automata. We discuss soundness and completness of semantics of our language.

Keywords

Coalgebra, modal logic, bisimilarity.

Contents

1 Introduction

1.1 Background and stateofart L.
1.2 Informal formulation of the problem and goals of the thesis
1.3 Scopeofthetext Lo
1.4 Related work

2 Coalgebras and automata

2.1 Basic coalgebraic notionso Lo
2.2 Automataascoalgebraso oL
2.3 Bisimulation

3 Modal logic

3.1 Preliminaries e
3.2 Syntax e e e e e e e
3.3 Semantics e
3.4 Bisimilarity and logical formulas

4 Conclusions
Bibliography

A On some mathematical constructions
A.1 Constructionson sets

A2 Currying

w N N -

ot

13
16

19
19
20
21
23

33

36

i

Chapter 1

Introduction

This thesis is devoted to a modern topic in computer science: the coalgebraic approach
to automata and the description of their behaviour by (necessarily) modal logic. In
this chapter we will give an overview of the text, outline what has been done in the
past in computer science that is relevant to our topic, and give credit to related work

which inspired this thesis.

1.1 Background and state of art

Our thesis heavily uses the methods and results of several classical areas of mathematics
and computer science. It is mainly automata theory, category theory and coalgebras,

and modal logic.

Automata theory is an important part of computer science and its roots can be
found in the works of Alan Turing dealing with computation theory through the use
of now-called Turing machines (1930s). It has been a subject of thorough research
and brought a number of theoretical and practical results. The classical approach to
automata theory is well presented in the classical textbook from Hopcroft, Motwani

and Ulmann [6], from which we use the definitions of our example automata.

Automata are classically defined as tuples with a set of states, inputs, outputs, and
transition functions. A novel approach using coalgebras unifies the presentation of

automata to a set of states, a "signature" that describes the interface of the automaton,

1

2 CHAPTER 1. INTRODUCTION

and a transition function. Given a standard definition of an automaton, we have a
straightforward way to describe it coalgebraically. This approach dates back to 1980s
and has been well summarised in Rutten’s study [13], along with deep results from

universal coalgebra.

A very young and promising branch of research in theoretical computer science com-
bines two disciplines: automata theory and (modal) logic. The main inspiration comes
from Kripke semantics of possible worlds. See Chellas [5] for a classical approach, or

Blackburn, de Rijke and Venema [3], for a more updated overview of modal logic.

1.2 Informal formulation of the problem and goals of

the thesis

Informally, the problem of the study of behavioural equivalence can be described as

follows:

We have two automata A, B of the same kind, considered as "reactive" systems.
Two users Uy, Up execute runs of automata A and B, respectively, and "observe"
the pattern of their behaviour. The behaviour may be a series of output symbols

or anything else that is intrinsic to the automata.

The question we ask is the following one: when are two states behaviourally

indistinguishable?

The above problem is formulated rather vaguely, of course. What one needs is a formal
approach to the problem since, ideally, we want another machine to test behavioural
equivalence.

The goal of the thesis is, therefore, to develop a mathematical formalism for descrip-
tion of automata and a corresponding formal language that is capable of expressing the

behaviour of automata.

1.3 Scope of the text

In the text we focus on two topics:

1.4. RELATED WORK 3

1. In Chapter 2 we show how category theory offers a unifying framework for de-
scribing automata. We present this phenomenon on various examples of automata
— deterministic finite automata, non-deterministic finite automata and pushdown
automata. To show that two automata have the same behaviour, we introduce

the concept of mutual simulation and show how it works on our examples.

2. In Chapter 3 we introduce a modal language for description of possible be-
haviours of classes of automata given by coalgebras for a functor. The language
results quite necessarily in a many-sorted modal logic. Its semantics is given in
Kripke style — states of an automaton play the role of possible worlds. For such

languages we prove two results below:

(a) Each language for a Kripke-polynomial functor has a sound semantics (Propo-
sition 3.4.1). This means that states with the same behaviour cannot be

distinguished by a formula.

(b) Each language for polynomial functors is complete (Proposition 3.4.4). By
completeness we mean that any two states satisfying the same formulas have
the same behaviour. We also show that completeness does not hold if un-

bounded nondeterminism is present — this is the essence of Example 3.4.2.

In short, we give a presentation of automata which allows us to easily determine the
conditions under which two automata behave the same way, then we show a language
that is used to describe the behaviour of these automata, and prove that the language
distinguishes automata with different behaviour and cannot distinguish behaviourally

equivalent automata.

1.4 Related work

The thesis was much inspired by Martin Rossiger’s dissertation [12]. The modal laguage
we study in this text differs, however, from his. We also present slightly more econom-

ical and compact proofs of the results.

CHAPTER 1. INTRODUCTION

Chapter 2

Coalgebras and automata

The behaviour of various types of automata has attracted large attention in theoretical
computer science. Only recently it has become clear that coalgebras provide a uni-
form framework to deal with various types of automata and that the formal logic for
description of behaviour is necessarily some form of modal logic.

In this chapter we will introduce the notion of coalgebra and the constructs needed
to define it precisely. We shall see that coalgebras are structures that allow us to study
the behaviour of many automata, and that the type of an automaton can be described
by a functor of the coalgebra. To see the differences in both classical and coalgebraic
approach, we will look at standard definitions of various automata and then define
them coalgebraically. The reason we are interested in this approach is that it unifies

the view on automata.

2.1 Basic coalgebraic notions

To be able to define automata coalgebraically, we have to introduce some concepts
from category theory. Reader who is interested in category theory can find additional
details in standard reference [2], from which we take some of the basic notions for our
purposes.

In an informal way we can say that a coalgebra is a function ¢: S — (---S--).
By such notation we mean that c is a function from a domain S to a more complex

codomain, while the domain set is usually part of the codomain [7]. Let us make the

5

6 CHAPTER 2. COALGEBRAS AND AUTOMATA

concept clearer by formalising it.

Category

First we need to define a category, the structure on which we will operate the whole
time. Roughly speaking, a category consists of objects and arrows between them, where
the arrows can be composed according to the usual laws of map composition. We will

define categories more precisely in the following definition.
Definition 2.1.1. A category C consists of

e a class of objects Obj(C)

e and a class of morphisms Mor(C).

The above data are subject to the following axioms:

Every morphism m € Mor(C) is tied to a domain object D € Obj(C) and a
codomain object C € Obj(C). Such morphism is then written as m: D — C, or as
D% C.

For every two morphisms m : A — B and n : B — C there exists a composite
morphism nom : A — C, and morphism composition is associative: (pon)om =
po(nom).

Lastly, every object A € Obj(C) has an identity morphism ¢d, : A — A, which acts
as an identity element on morphism composition: for a morphism m : A — B there

are morphisms 2d4 and idg such that moidy, = m = idg om.

Definition 2.1.2. In a category C, the set! of all morphisms between a domain object
A and a codomain object B is denoted C(A, B) and is called a hom set.
If f: X — Y is a morphism and A is an object from C, we define C(4, f): C(4,X) —

C(A,Y) as a function that takes a morphism g from C(A4, X) and returns a morphism
(fog).

'If the morphisms between any two objects of a category form a set, then the category is locally

small. Note that not every category satisfies this requirement. See [2].

2.1. BASIC COALGEBRAIC NOTIONS 7

Categories are very general structures. There are many interesting and diverse ex-

amples of categories. We will take a look at some of them.

Example 2.1.3. The category of sets and functions between them. We need to check
whether it satisfies all the category properties. Let us define a structure called Sets
constituted of two classes: the class of all sets and the class of all functions between
those sets. Every function has a domain and a codomain, and is therefore tied to two
sets from the class of all sets. If there are two functions f: X — Y andg: Y — Z, then
there is a function (go f) = h: X — Z, and function composition is associative. The
structure satisfies the morphism composition property from the definition of category.
There is an identity function for every set as well, which obeys the rules of the identity

morphism. Sets is therefore truly a category.

The above example is a very important one. Now we will try to form a category from

some algebraic structures together with homomorphisms.

Example 2.1.4. Suppose we have some groups and homomorphisms between them.
We know that a composition of homomorphisms is again a homomorphism and that
homomorphism compositions are associative. Moreover, every group has an identity
homomorphism, which maps every element to itself. This is enough for making a

category Groups of all groups together with group homomorphisms.

In a similar manner, a category Monoids, Magmas can be made, with these struc-

tures as objects and their corresponding homomorphisms as morphisms.

Viewing morphisms as a sort of "moves", morphism composition is a connection of
two moves which can be made one after another. Identity morphism then corresponds

to the act of not moving at all. We could apply this view in graph theory:

Example 2.1.5. With a graph (V, E) of vertices V and edges E, we can form a category
with vertices as objects. If there is an oriented path from one vertex to another, we
join them with a morphism. Then there is a trivial path of length zero, acting as the
identity morphism. Morphism composition in this category is simply a connection of

two paths.

8 CHAPTER 2. COALGEBRAS AND AUTOMATA

A category can be thought of as a structure that generalises the concepts of both
posets and monoids. Consider a category with one object A, and consider a monoid
M. The elements of M can be viewed as arrows from A to A in our category, the
associativity of the arrows is forced by definition, and so is the existence of the identity
arrow. Now consider a poset (P, <). It can be viewed as a category with objects from
P. The arrows between objects show that the objects are in the relation <. This kind of
generalisation turns out to be fruitful in many more situations than we presented here.
More examples of interesting categories include the category of posets and monotone

functions, category of metric spaces and metric maps, etc.

Functor

The notion of a functor is important, for it allows us to transform the objects and
morphisms of a category to other objects and morphisms (generally in another category)
in a well-behaved manner. That is, the transformation preserves domains, codomains,

identities and compositions.

Definition 2.1.6. For two categories C and D, a functor F' is given by a mapping
F: Obj(C) — Obj(D) and a mapping F': Mor(C) — Mor(D). We usually shorten this

notation as F': C — D. These mappings have to satisfy the following requirements:

e for a morphism f € Mor(C), f: A — B the following holds: F'(f): F(A) — F(B),
e for an identity morphism ids € Mor(C), F(id4) = 1dr(a), and

e for a morphism composition (f o g) € Mor(C), F(fog) = F(f) o F(g).

In case that the domain and range category is the same, we say that F' is an

endofunctor (of the ambient category).

A composition of two functors is a functor as well.

Proposition 2.1.7. Let F be a functor F': C;, — C, and G be a functor G: C;, — Cs;.

Then the composition G o F' of these functors 1s a functor.

2.1. BASIC COALGEBRAIC NOTIONS 9

Proof. For an arbitrary object X, morphism f: A — B, and a pair of composable mor-
phisms g, h, all from the category C;, we prove that the three functorial requierements
hold.

The morphism f is turned into a morphism (G o F)(f) = G(F(f)), and since for
F(f) the domain and codomain is F'(A), respectively F(B). After the application of
the functor G the domain is G(F(A)) = (G o F)(A) and the codomain is G(F(B)) =
(G o F)(B). So we see that the morphism f is turned into a morphism

(Go F)(f): (Go F)(A) — (Go F)(B).

The second requirement can be proven easily:
(G o F)(1dx) = G(F(1dx)) = G(idr(x)) = tda(r(x)) = 1d(cor)x)-
To show that the composition rule is satisfied, it suffices to consider this equation:

(GoF)(goh) = G(F(goh))
= G(F(g9)o F(h))
= G(F(9)) o G(F(h))
= (GoF)(g)o(GoF)(h).

O

A closer look on functors in Sets will be helpful in the construction of coalgebraic
automata. We will inspect some basic functors and and their properties. Comments
on used notation can be found in Appendix A, further information on functors can be

taken from [7].

Firstly, we can make a mapping Id(X) = X for every X from Obj(Sets) and Id(f) =
f for every f from Mor(Sets). It is trivially a functor, and we will call it the dentity

functor (on the category Sets).

There is also a functor constg, that maps every set X to a fixed set S, and every
function f: X — Y to an identity function ids: S — S. The first functorial requirement

holds because for a function f: X — Y the sets become consts(X) = constg(Y) = S

10 CHAPTER 2. COALGEBRAS AND AUTOMATA

and constg(f) = tds: consts(X) — consts(Y). In the second requirement we can see

that constg(ids) = ids = 1dconst 5(4) and the composition property can be proven easily:
consts(f) o consts(g) = ids o ids = tds = constg(f o g).

Such functor is called a constant functor (at a set S). In the following text we are
sometimes going to use an abbreviation notation const, = A, when no confusion can

occur.

A hom functor on a set A is a functor denoted Sets(A, —), which turns each set X
into a hom set Sets(A, X) and every function f to Sets(4, f).
Let us check that this definition indeed gives rise to a functor. A morphism
f: X — Y is mapped to a function Sets(A4, —)(f) = Sets(4, f) : Sets(4, —)(X) —
Sets(A, —)(Y') The identity morphism ¢dx is mapped to an identity function on Sets(A4, X),
because Sets(A, —)(idx) = Sets(A, 1dx) = tdgets(a,x) = tdsets(4,~)(x). TWo morphisms
f:Y — Z and g: X — Y satisfy the functorial composition property — for any mor-

phism h: A — X we see that

(Sets(4, f) o Sets(A, 9))(h) = Sets(4, f)(Sets(4, g)(h))
= Sets(4, f)(goh)
— fo(goh)
= (fog)oh
= Sets(4,(fo9))(h).

If we are given some set functors F' and G, we can combine them in a way that
the result is a functor as well. We can take their product K: it will be denoted by
K = F x G and we shall define K(X) = F(X) x G(X), and functions f: X — Y will
be transformed to K(f) = F(f) x G(f).

With this definition the functoriality is guaranteed: for a function f: X — Y we
get
K(f) = F(f) x G(f): F(X) x G(X) = F(Y) x G(Y).
Since FI(X) x G(X) = K(X) and F(Y) x G(Y) = K(Y), we see that K(f) is a
function K(X) — K(Y'), and the first requirement is met.

2.1. BASIC COALGEBRAIC NOTIONS 11

The second requirement is easy:
K(ZdA) = F(ZdA) X G(ZdA) = 'l,dF(A) X Zd(;(A) = idF(A)XG(A) = 'l,dK(A)

To prove the composition rule we see that

K(f)oK(g9) = (F(f) xG(f)) e (F(g)xG(9))
= (F(f)o F(9)) x (G(f) e G(9))
= F(fog)xG(foy)
= K(fog)
In a similar manner, we can make a disjoint sum of set functors F' and G, called

their coproduct C = F' + G. The definition is analogous to product functor - C(X) =
F(X)+ G(X), function mapping is defined as C(f) = F(f) + G(f).

A very useful construction is the exponent of a functor. If we have a set functor F'
and a set A, then the exponent H = F“4 is defined as Sets(A,—) o F. In coalgebras,

we can use the exponent functor to model an input of an automaton.

If we want to generalise the notion of the exponent to non-set functors, we need to
introduce the notion of a cotensor. Let C be a category. Given a set A and an object
X in C, we define an A-fold cotensor of X to be an object A h X in C together with
an isomorphism C(Y, A h X) = Sets(A4, C(Y, X)). See that if C = Sets, then A h X is
the product of A-many copies of X.

Let C be a category where all objects have cotensors with a fixed set A. Suppose
that FF : C — C is a functor. Then A rh F' is a functor from C to C, that is defined
on objects (A h F)(X) = Amh F(X). Due to the definition of cotensors, it is easy to
prove that A M F is indeed a functor. We will use the notation F4 to denote A rh F.

To describe non-determinism, it is vital to introduce the powerset functor. We will
denote it by P. The definition is expectable: it transforms sets into their powersets
and functions over sets are extended to work over powersets of these sets. For a functor
F, we have P(F)(X) = P(F(X)) and for functions P(F)(f) = P(F(f)). Thus P(F) is
defined as the composite P o F'. The functoriality comes straight from the definitions

of the powerset operations on sets and functions (see Appendix A).

12 CHAPTER 2. COALGEBRAS AND AUTOMATA

We now see that functors can be composed and altered in many ways, and the result
is still a functor. This allows us to construct complicated functors inductively. We
will form the collection of Kripke-polynomial functors. They can be described by the

following set of rules:

e The identity functor is in the collection.

For every set S, the constant functor consts is in the collection.

The product of two functors in the collection is also in the collection.

The coproduct of two functors in the collection is also in the collection.

For every set A and a functor F' from the collection, the exponent F4 is also in

the collection.

The powerset of a functor from the collection is also in the collection.

A convenient way to describe such inductive definition is by Backus-Naur form.

F:=1Id|consts | Fx F|F+F|F5|P(F)

Coalgebra
Now we finally have all the needed constructs to define coalgebra.

Definition 2.1.8. For a category C and an endofunctor F', an F'-coalgebra is an object
A € Obj(C) with a morphism ¢ € Mor(C) in the form c: A — F(A). We write it down
as (4,c).

An F'-coalgebra on an object A is then determined by the definition of the morphism

c. The complexity of the codomain depends on the functor F'.

Example 2.1.9. An easy example of a coalgebra is the following. Let A be an alphabet
and N set of nodes. Then we can form a coalgebrat: N — A x N x N for the functor
F = const, x(Id) x (Id), which for every node gives a symbol from the alphabet and
returns two nodes. The functor const4 x(Id) x (Id) describes the behaviour of infinite

binary trees which have a label on each node.

2.2. AUTOMATA AS COALGEBRAS 13

As with other structures, we are interested in structure-preserving mappings, coal-

gebraic homomorphisms.

Definition 2.1.10. Let ¢: S — F(S), d: T — F(T) be two F-coalgebras. A function
f: S — T is a homomorphism from (S, c) to (T, d), if the following diagram

s—I .
L
F(S) 5+ F(T)

commutes, or, in other words, if F(f)oc=4do f.

2.2 Automata as coalgebras

To show that coalgebras can be useful in computer science, we will form more inter-
esting and complex examples. Automata theory gives many examples of systems that
are easily transformable into coalgebraic form. We will use the notions defined above
to make coalgebraic definitions of deterministic, non-deterministic and pushdown au-
tomata. All the standard definitions and results from automata theory presented here

are well known and have been summarised in the standard textbook [6].

Deterministic finite automata

We can think of a determainistic finite automaton (DFA) as of a simple machine. This
machine can be in various states and move from one state to another by receiving some
input, namely a symbol from a previously defined alphabet. The machine also has a
starting state and an output for every state, telling whether the state is accepting or
not. In other words, the output tells us if the sequence of symbols we put into the

machine is accepted by the machine.

If we revise what is needed to form a DFA, we see that it is
e a finite set of states (S), also called a state space,

e an alphabet (A) of input symbols,

14 CHAPTER 2. COALGEBRAS AND AUTOMATA

e a start state (so € S)
e a transition function (6: S x A — S),
e and an output function (w: S — O, where O = {0, 1}).

From this list we can see that an arbitrary DFA called D can be characterized as
a tuple D = (S, 4, so,0,w). Alternatively, we could write D as a tuple (S, 4, so, 9, F),
where the output function w is replaced by a set F' of accepting states from S defined
by F = {s|w(s) =1}.

We shall take a different view on DFA’s. Automata can be studied from a coalgebraic
perspective. Borrowing the above notation, we can describe a DFA as a coalgebra
c: S — O x SA. This is possible because the function ¢ can be viewed as a function
c(s) = (w(s), 0(s)), with w being the output function as defined above and the function
o being defined as follows:

For each state s € S, the output of o(s) is a function 7: A — S, with the definition
1t ={(a,0(s,a)) | a € A} and ¢ being the DFA’s transition function. Therefore, we will
omit the distinguished start state sp from our description. This is nothing grave: any

state can be considered as a start state.

Non-deterministic finite automata

Another example of an interesting automaton is a non-deterministic finite automaton
(NFA). Its main difference from DFA is that its transition function works differently.
While with DFA there could be just one possible successor state for any state and input
symbol, now it can lead to any subset of the state space. Its expressive power (in terms

of describing some language) is, however, equal to DFA.

Definition of an NFA very much resembles that of DFA. We need:
e a finite set of states (S), also called a state space,
e an alphabet (A) of input symbols,

e a start state (so € S)

2.2. AUTOMATA AS COALGEBRAS 15

e an output function (w: S — O, where O = {0, 1}),
and lastly, making the only difference,
e a transition function (6: S x A — P(S)),

P denoting a powerset.

It should not be surprising that NFA can be described coalgebraically as well. Namely
we can form a coalgebra c: S — O x P(S)4, take c(s) = (w, o)(s) as with deterministic
automata. Note that now the definition of ¢ remains the same as in the DFA case, it

just works with the NFA § transition function.

Pushdown automata

There are also more complicated automata, which can describe formal grammars higher
than regular languages. Pushdown automata are automata that accept precisely
context-free grammars. The difference between our NFA and a pushdown automaton
(PDA) is that PDA allows e-transitions, which means that there can be state transi-
tions that do not need any input symbol to be executed. We shall deal with this by
extending the domain of the transition function from A to (A U €). More importantly,
PDA can work with stack, where it can store additional information, and accordingly

to the top symbol on stack and the input, it can decide what state to go to next.

Formally, the pushdown automaton consists of

e a finite set of states S,

an alphabet A of input symbols,

an alphabet I' of stack symbols,

the ¢ transition function,

the start state sq € S,

the start symbol Z; € I', which is the only symbol that is on the stack at the

beginning, and

16 CHAPTER 2. COALGEBRAS AND AUTOMATA

e the output function (w: S — O, where O = {0, 1}) again.

Let us look closely on the transition function §. It takes a state, an input symbol or
an empty word € and a stack symbol. The result is a finite set of pairs (s, a), where
s is the successor state and o a word of I symbols. This word replaces the top of the
stack of the previous state. The transition function ¢ is then a function of the form
0: Sx (AU{e}) xT' — P(S x I'*). The notation I'* stands for a set of finite words over
alphabet T'. Coalgebra for such automaton is then c: S — O x P(S x I'*)(4+1)xT,

We have shown that examples of (classical) automata can be described in a uniform
way, using set functors. Moreover, the functors have typically a special shape: they are
"built" from "simple" ones using products, coproducts, etc. The shape of functors will

play a significant role later, see Definition 3.1.1 below.

2.3 Bisimulation

In the definition 2.1.10 we wrote about the homomorphism between coalgebras, which
is a structure-preserving morphism and therefore shows that the two coalgebras are
very similar. It is, however, more strict than we need, so we are going to introduce a

concept which generalises that of a homomorphism.

We want to be able to say that some automata (or parts of them) are indistinguishable
for the observer, even if their inner structure is different. This can be reformulated as a
demand that the automata have to be able to simulate their behaviour mutually. The
mutual relation is called a bisimulation and we are going to define it categorically with

a number of examples to enlighten the definition.

Definition 2.3.1 (Rutten [13]). For a functor F' and two F-coalgebras (S, f) and (T, g),
an F-bisimulation is a relation R C S x T, for which a morphism r: R — F(R) exists

to make the following diagram commute:

2.3. BISIMULATION 17

nr

R T

T
F(8) 5025 F(R) 5 F(T)

The morphisms ms and 71 are the corresponding projections of the product S x T'.

We say that two states s and t are bisimuilar if there exists a bisimulation R with

(s,t) € R.

We shall take some concrete examples of coalgebras, see what the requirements for
a bisimilarity in these specific cases are, and how they arise from the general definition

of bisimulation written above.

Example 2.3.2. Let us inspect the DFA first. It is a coalgebra for a functor F' =
O x (Id)“. So if we take two different coalgebraic DFA’s (S, f) and (T, g), when are
some two states s € S, t € T bisimilar?

Firstly, they must yield the same output o € O, because the function r: R —
F(R) makes only one output and it remains the same after making either one of the
projections F'(mg) or F(mr), and this is true for every r.

Secondly, we see that if s — (o0,a) and t — (o0, 8), where a and S are functions
generated by the coalgebras, then it obviously has to hold (s,t) — (o,(a x B)), and
since for every input a € A the output (o x £)(a) must belong to R, we can state the

following: For every a € A, the ordered pair (a(a), B(a)) must be in R.

Example 2.3.3. Nondeterministic finite automata are modelled by a coalgebra be-
longing to a functor G = O x P(Id)#. We are given two G-coalgebras (S, f), (T, 9)
and two states s € S, ¢ € T. The application of the function f on the state s gives us
f(s) = (o,), where o € O is the output of the automaton and o: A — P(S) a function
that takes some input from A and returns a set of states S’ C S, which can be thought
of as a next-states set.

As with the DFA, it is quite clear that if the states are to be bisimilar, they should
have the same output. The function o in DFA returns just one state, though. Now we
have to deal with the non-deterministic aspect brought by the powerset functor.

Having two bisimilar states, we can simulate the behaviour of one automaton by the

other one and vice versa. This approach can help us imagine what the requirements for

18 CHAPTER 2. COALGEBRAS AND AUTOMATA

bisimilarity should be. For every input a € A we get a set of states a(a) = (S’ C S),
and for every state s’ € S’ we should be able to find a state ¢’ € T = f(a), which is
bisimilar to s’. This way we can simulate the behaviour of (S, f) by (T, g), if we start
both automata at the states s,g. Of course, the same simulation has to be possible in

the other way, from (T, g) to (S, f).

Example 2.3.4. Taking the same notation as in the previous two examples, we change
the functor to H = O x P(S x I**)(4+1)xT" For s,t to be bisimilar, they have to satisfy

(remember that w denotes the output function):

1. The output is the same for both automata, w(s) = w(t).

2. For all a in {AUe€} and v in T, for all (s, w) in a(a,7) there exists (¢, w) in

B(a,~) such that s’ and ¢ are bisimilar.

3. For all a in {AUe€} and v in T, for all (¢,w) in B(a,7) there exists (s, w) in

a(a,y) such that ¢’ and s’ are bisimilar.

Chapter 3

Modal logic

Given a specific automaton and its state, is it possible to describe its behaviour by
some formal language? In this chapter we shall see that such a language exists, that
it is structurally a many-sorted modal logic, and its specific structure is given by the
structure of the automaton. This language will moreover enable us to express bisim-
ilarity of some two states by stating that the states satisfy the same formulas in the
logic, which we are going to prove in this chapter. The construction presented here can

be seen in the dissertation [12].

3.1 Preliminaries

The behaviour of an automaton is determined by its coalgebra and the underlying
functor of the coalgebra. If we want to create a language that would be able to express
the behaviour of automata of a given functor, then the language should probably be
constructed accordingly to the structure of the functor. Because we take only Kripke-
polynomial functors into account, the language is defined inductively with respect to

the inductive structure of the functor.

Definition 3.1.1. If a functor F' is constructed from two functors F; and F5 such that
F € {F, x F5,F; + F5}, F; and F; are called direct ingredients of F. If FF = P(G),
then G is a direct ingredient of F'. Also consts and H are direct ingredients of F,
if F = HS. Transitive closure of the direct ingredient relation with forced reflexivity

forms an ingredient relation denoted by <.

19

20 CHAPTER 3. MODAL LOGIC

If we have a Kripke-polynomial functor F', we see that it has a tree structure (if we
loosen up the view on what a tree is a little bit!), with the nodes being ingredients
of F', and from every functor to the direct ingredients used for its construction there
are (possibly many) edges. The tree we describe will bear more structural information
than just the one about direct ingredients. We will create more edges and name them
to be able to use them in further work. If G = G; x G5, then the edge from G to G;
or G, is named (m;) or (m,) respectively. If G = G; + G», then the edge from G to G,
or G, is named (k) or (k) respectively. If G = H®, then for every s in S there is an
edge from G to H named (ev,). If G = P(H), then there are two edges from G to H
named (P) and [P].

The sorts of our language shall relate to the ingredients of F'. Let us form a category
Ing(F) of the ingredients of the functor F as its structural tree described above, with an
added vertex, named (nezt), from every Id ingredient directly to F'. This change will
enable us to decribe the coalgebra transition, which takes a state from S and returns
an element from F(S).

It will be technically more pleasant for us to work with the opposite category of
Ing(F).

Definition 3.1.2. For a category C with objects Obj(C) and morphisms Mor(C),
an opposite category C° is a category with objects Obj(C), and its morphisms are
morphisms of C with opposite orientation, that is, for a morphism m: A — B in
Mor(C) of C, there is a morphism m: B — A in Mor(C) of C°?. If h = go f in C,
then h = f o g in C°P.

3.2 Syntax

We shall first introduce the syntax of the language informally. The structural tree of F
has some leaves, namely /d functors and constant functors. When we form a category
Ing(F) from the structural tree, it is no longer a tree, but we can still think of the

constant functors as of "quasi-leaves". Starting in such a leaf const, in the category

It is rather a multitree in the sense of the difference between graphs and multigraphs.

3.3. SEMANTICS 21

Ing(F)°, we can take an element a from A and it will be a formula of sort const,. If
there is a morphism named (w) from sort G; to G,, we can turn a formula ¢ of sort
G: (denoted ¢ : G;) into a formula (w)p : G». The set of formulas of a sort can be
also closed under boolean connectives. The following definition of the language syntax
offers a different view than the one presented above, but the reader should see that the

construction of the formulas follows the same principle in both cases.

Definition 3.2.1 (Rdssiger [12]). For a functor F' we define a family (Lg)c<r of lan-
guages, where G is an ingredient of F' by simultaneous induction using the Backus-Naur

form:

G=consta: ¢ == L1L]p—p]a, where a € A,

G=1Id: o == L |o— | (nect)y, where 9 € Lp,
G=FxFy: o == L|lp—e]|(m)y, where ¢ € L,
G=F+F,: ¢ == 1L|p—=e|(k)y, where 9 € Lpg,,
G = H*: o = L]op— | (ev.)?, where ¢ € Ly,
G=PH): ¢ = L|lo—e|(P)Y|[PlY, where ¢ € Ly.

We have defined a language for each ingredient of the functor F. See that by
constructing the formula of sort G, we follow the walk on the graph induced by the
category Ing(F')°P, starting in the node of the constant functor and ending in G, so our
informal view really catches the way the formulas are constructed. Indeed, we can form
a functor £ between the category Ing(F)° and the category Sets — it sends the sort
G to the set of all formulas of the sort G, and the morphisms in Ing(F)° are turned
into functions that transform the formulas from one sort to another accordingly to the

definition of the syntax above.

3.3 Semantics

In order to give the formulas some meaning, we have to introduce semantics for our new
language. Let us have a coalgebra c: S — F(S). Defining the meaning of the formulas
created by the inductive structure mentioned above, we will have to proceed inductively

as well. For a sort G, the meaning of a formula ¢ : G is a certain subset ||¢ : G||. of

22 CHAPTER 3. MODAL LOGIC

G(S). We shall be especially interested in the formulas of sort Id, because these will
be giving us the information about the behaviour of the states of our coalgebra.

The semantics of boolean connectives for the formulas of any sort are defined in
a standard way, disjunction as union of the meanings of the formulas, negation as

complement etc.

Definition 3.3.1. Given an F-coalgebra c: S — F(S), we define for every ingredient
G of the functor F' the semantics of the family of languages (L¢)g<r in the following

way (see the appendix for the definition of the inverse image of a function):

e If G = consty, then ||a : consty ||. = {a}.
o If G = Fy x Fy, then ||(m)p : Fy x Fyll. = 77 (|| : Fill.).
e If G = F) + F,, then ||(k;)p : F1 + Fs|l. = k:(||¢ : Filc)-

o If G = H4, then ||{ev,)p : HA||. = ev;!(||¢ : H||.). (Function ev, takes a function
f and returns f(a).)

e 1t G = P(H), then ||[Plp : P(H)||. = P(ll¢ : H|l). Also [[(P)p : P(H). = {k €
P(H(S)) |3l € k such that ! € ||¢ : H||.}-

e If G = Id, then |[(nezt)p : Id||. = c*(||l¢ : Fl|.).

For a state s in .S, we denote by s I, ¢ the fact that s is an element of || : Id||.,

and say that s satisfies the formula ¢.

We saw that the meaning of a G-sorted formula is a subset of G(.S). This may lead
us to a thought that the powerset of G(S) is the set of all the possible meanings a
G-sorted formula can have. We will denote this set M(G). Since this can be done with
every sort, we can form a functor M from the category Ing(F')° to the category Sets,
which takes the sorts and transforms them into the sets of all possible meanings of the
sorted formulas. What will the functions between the sorts then be? If we want M to
be a functor, we need to define them exactly as the functions that define the semantics
of our language above. For example, if we take one possible meaning m of sort F; and

want to turn it into a meaning of sort G = Fy x F,, we get 71 '(m).

3.4. BISIMILARITY AND LOGICAL FORMULAS 23

Because of the way we defined the functor M, we see that the semantics of our
language, as introduced in our definition, acts like a natural transformation between

the functors £ and M.

Definition 3.3.2. For functors F' and G between the categories C and D, we call n a
natural transformation from F' to G if it gives for every object X from C a morphism

nx : F(X) — G(X) in D, such that the following diagram

Px) 2L pey)

x| |

G(X) 5 G(Y)

commutes for every morphism f: X — Y.

3.4 Bisimilarity and logical formulas

In this section we will show that the language L;; is sound, that is, two bisimilar
states s and ¢ satisfy the same formulas in the language. This is certainly a useful
result, allowing us to distinguish non-bisimilar states just by finding a formula that is
satisfied for one state and not satisfied for the other one. Moreover, we will specify the
conditions under which the language L;; is complete — which means that two states
satisfying the same formulas are bisimilar. It will be shown that for Kripke-polynomial
functors without the powerset functor (called just polynomial functors) L;; truly is
complete, which makes it a perfect language to describe the behaviour of an automaton

up to bisimilarity.

Proposition 3.4.1 (Soundness of £;;). Two bistmilar states satisfy the same for-

mulas.

We are going to prove this proposition by structural induction on the complexity

of the underlying functor of the coalgebra.

Proof. Let us take two coalgebras ¢ : S — F(S) and d : T — F(T), a bisimulation

R on these two coalgebras, and a pair of bisimilar states s € S and ¢ € T, where

24 CHAPTER 3. MODAL LOGIC

sRt. We are going to prove that if s I, ¢, then ¢ IF; ¢, and conversely. See that
@ : Id = (next)y : F. We will deal with the base cases first.

If F' = const 4, the formula v : const4 is either atomic or open. Suppose it is atomic:
then ¥ = a, where a is an element of A. Then it follows that c(s) € [|%]|., which means

that ¢(s) = a. And because the following diagram

commutes, it is also true that d(¢) = a, and therefore ¢t € d !({a}), from which we can
directly see that ¢ I-4 . It is easy to see that starting with ¢ I-; ¢, we could prove
s Ik ¢ in the same way.

Now we know that s and ¢ satisfy the same atomic formulas. Showing that they
satisfy the same formulas built inductively from the atomic formulas using the standard
logical connectives is then a matter of an easy induction on the complexity of the syntax
tree of the formula. Because this will be true for all the cases we are going to cover in
the proof, we are going to restrict ourselves to atomic formulas and keep in mind that

the proof for non-atomic formulas follows immediately.

If FF = Id, we cover three cases.

e Suppose ¥ = 1: Then ¢ does not hold for s and does not hold for ¢, because

c(s) = s' and s’ is not an element of @, similarly for d(¢) = ¢'.

e Taking ¢y = (L — L) =T, wesee that c(s) € S=||T : Id||cand d(¢t) € T = ||T :
Id||4, so s k. ¢ and t |4 .

e Let us form an induction hypothesis: If s’ and ¢’ are R-bisimilar, then s’ IF, ¢ if

and only if ¢’ Ik 9.

Now we know that there are states s’ = c¢(s) and ¢’ = d(t), and that s’ and ¢’ are
bisimilar as well. Because s I, ¢, it follows that s’ I, ¥, and using the induction
hypothesis, ¢’ IF4 9. And since t € d!(¢'), we finally get ¢ I, @.

It can be shown very similarly that ¢ I-4 ¢ implies s I, ¢.

3.4. BISIMILARITY AND LOGICAL FORMULAS 25

In the case the functor F' is more complex, we are going to introduce the induction
hypothesis — that for every direct ingredient of F', bisimilar states of any two coalgebras

of that ingredient satisfy the same formulas.

If F = Fy x Fy, then ¥ = (m;)9, with 5 € {1,2}. Because the following diagram

s

S R——T
o s
F($) <" F(R) "2 F(T)
ol
Fi(8) =™ F(R) "2 F(T)
commutes, we see that R is a bisimulation for coalgebras (S,c) and (T,d'), where
¢’ = mocand d' = m;od. Since? ¢ = (next)(m;)9 and ||(next)(m)P||. = ¢ (77 (||D]])),
it follows that s I (nemt)@, and from induction hypothesis ¢ IF4 (neth. And because
d' = m;od, it means that t € d *(m; *(||¥]|4)), from which it directly follows that ¢ I-4 ¢.

The proof in the opposite direction is analogous.

If F = Fy + F,, then 9 = (k;)9, with 1 € {1,2}. This shows us that c(s) € ;(||4}]]).
We need to construct a function that acts as an inverse of «;, but has F'(S) as a domain.
Since F(S)+ F>(S) is necessarily nonempty, we can suppose, without loss of generality,
that F;(S) is nonempty. Let us take a dummy element A€ F;(S). Then we can make a
function k; that takes w = (v,1) to k; *(w) = v, and takes = (z,7) to A, where j # .
The function k; defined this way is a total function from F'(S) to F;(S) and, moreover,

makes the following diagram

s nr

S R T
o
F(8) <" F(R) "™ F(T)
kil lki lkl
F(8) =% F(R) 5 F(T)
2We use the fact that ||¢)||c = ||4||cr, which comes immediately from the inductive definition of the

syntax.

26 CHAPTER 3. MODAL LOGIC

commute. If we take ¢’ = k; oc and d' = k; o d, it comes from the diagram that R is a
bisimulation for (S,c') and (T, d’). Because s € ¢''(||4||¢) means that s I, (next)d
and this implies ¢ Iy (next)d from induction hypothesis, we see that ¢ € d'~'(||%|4),
which turns into ¢ € d~'(k; *(||4||4)), and we can conlude that ¢ I-4 (next)(k;), and

because (next) (k)1 = ¢, the proof is complete.

If F = G#, then ¢ = (eva>2,5, where a is an element of A. The following diagram

<2 p—" .
| P
F(s) £ p(r)) p(T)

evqg l l evq l evqg

G($) <™ G(R) T2 G(T)
commutes, and therefore, for ¢ = ev, oc and d = ev, o d it is clear that R is
a bisimulation for coalgebras (S,c') and (7,d). Now we see from s € ||¢||. that
s € c Y(ev;1(||¥]c)), use the definition of ¢’ to write s € ¢~'(||4||), from induc-
tion principle get ¢ € d'"1(||4||a), by definition of d’ see that ¢t € d~'(ev;'(||¥||s)), and
conlude that ¢ € ||g||4, which is what we wanted to prove. Again, the proof in the

opposite direction is done similarly.

If F = P(G), then suppose that ¢ = [P]¢. (For the case where ¥ = (P)%), we can
take (P) = —[P]-.)

We are going to use slightly different induction hypothesis for the powerset case.
Because G is an ingredient of F', we are going to assume that bisimilar states of G(.S)
and G(T') satisfy the same formulas.

Let us denote ¢(s) = s’ and d(t) = t'. Since s’ is an element of P(G(S)), it follows
that s’ C G(S), and similarly ¢ C G(T"). From bisimilarity we get that for every z € s’
there exists some y € t’' that is bisimilar to z, and conversely, for every y € t’ there is
an element = € s’ such that and y are bisimilar as well. Now taking any z € s', we see
that it satisfies). We are now going to show that #' is a subset of ||9||s. That would
be true if every y € ¢ was an element of ||¢)||;. We can find an element z € s’ such that

z and y are bisimilar, and since = € ||#||., we see from induction hypothesis that y is

3.4. BISIMILARITY AND LOGICAL FORMULAS 27

an element of ||9)||s. Therefore, it is truly satisfied that #' C [|4)||4, and from this we
can easily conclude that #' IF4 [P]4, and t Iy (next)[P]. The proof is now complete
in one direction, and to prove the opposite direction, we would follow the same steps
analogously.

O

We have proven that £, is sound, and now we are going to show that under certain

conditions it is complete as well.

First we are going to show that the fact that two states satisfy the same formulas

does not always imply that they are bisimilar.

Example 3.4.2. Let us think of coalgebras for a functor ¥ = P(Id). On the figure
below we see a standard counterexample showing that there are two coalgebras for F

which have two states satisfying the same formulas without being bisimilar.

[J [J
/ /
[[J [[
A 7 A 7
[J [] [J [] [] [J
A v / A 7 /
[] [J [J [] [] [] [J []
A\ el A\
o>0>0>0—- — @ o>0>0>0—- — 0
So to '\
[]
U
[]
L
[]
U

The figure on the left shows a coalgebra with a state from which there goes a branch
of length n for each natural number n > 1. The figure on the right shows the same
coalgebra with the addition of exactly one infinite branch. These two coalgebras satisfy
the same formulas is states sy and %o, respectively, even though the coalgebra on the
left hand side cannot simulate the infinite behaviour of the coalgebra on the right hand

side.

If we limit ourselves to polynomial functors and their coalgebras, the completness of

our language holds. First we give a definition of polynomial functors.

28 CHAPTER 3. MODAL LOGIC

Definition 3.4.3. A functor is polynomazal if it is constructed with respect to the

following Backus-Naur form:

F:=1Id|consts | FxF|F+ F|F*°.
For this type of functors we can present the completeness theorem and its proof.

Proposition 3.4.4 (Completeness of L;4). Suppose two coalgebras of a polynomial

functor. If theiwr two states satisfy the same formulas, they are bisimilar.

Proof. Let us take a coalgebra c: S — F(S), coalgebra d : T — F(T) and a pair of
states s € S, t € T that satisfy the same formulas. We want to show that s and ¢ are
bisimilar. Let us form a relation R that contains all tuples (s',¢'), where s’ satisfies the
same formulas as ¢'. Evidently (s,t) is in R as well. All that is needed to do is to find

a function r such that the following diagram

S~ —R—"—>T
| ld
F(S) 500 F(B) 5 F(T)

commutes.

Suppose F' = const,. Then the function » must make this diagram

Ly - L
b
A id g id g A

commute. Since for any element (s,t¢) from R we know that for some a € A it holds
that s IF. (next)a, it is also true that ¢ I-; (next)a. Looking at the meaning of (nezt)a,
we see that ¢(s) = a and d(t) = a. But then we can define r((s,t)) = a and the diagram

indeed commutes.

Suppose F' = Id. To make this diagram

s<" g
Lo b
§<" R TT-T

3.4. BISIMILARITY AND LOGICAL FORMULAS 29

commute, we denote c(s) = s’ and d(t) = t' for every (s,t) in R, define 7((s,t)) = (¢, ¢)
and show that s’Rt’. This requirement is equivalent to the requirement that s’ and
t' have to satisfy the same formulas. Because s and t satisfy the same formulas, it
comes immediately that s’ and ¢’ satisfy the same formulas too. Suppose s’ I-. ¥ and
t' ¥, 9. That would yield a contradiction, since it would imply that s IF. (next)y and
t . (next)y.

Suppose F' = F} x F,. The diagram

s T

S T

R
R
F(8) 3 F(R) 7 F(T)

commutes exactly when we set » = (r; X 75) and the diagram

TS T

S T

R
(R

FS) i P ey (T

commutes for 7 € {1, 2}, where ¢; = m; o c and d; = 7m; o d. To ensure that r; can really
be constructed in a way that makes the preceding diagram commute, we prove that
for every (s,t) in R, s IF., ¢ if and only if ¢ |4, ¢ for every ¢. Since we know that

[{next)(m:) ¢l = [[(next)y
if t Ik (next)(m;)y. We know that from the fact that s and ¢ satisfy the same formulas

e, it is sufficient to show that s I, (nezt)(m;)9 if and only

for ¢ and d.

Suppose F = G#. If we define ¢, = ev, oc, d, = ev, od and 7, = ev, o7, then the

diagram

F(S)mF(R)WF(T)

T)

30 CHAPTER 3. MODAL LOGIC

commutes if for every a € A the following diagram

s T

S R T
ok
G(S) =— G(R) — G(T)

G(ﬂ’s) G(ﬂ’T)

commutes. This comes from a rather technical derivation, but the idea should be clear.

We are going to show a part of the derivation. To make this square

s

S R
F(S) 3 F(R)

commute, it must hold that co g = F(mg) or. Let z = (s,t), ¢(s) = f and r(2) = g.

Then the following equations are equivalent:

comg = F(mg)or
(Vz € R) coms(z) = F(ms)or(z)
(Vz € R) c(s) = F(ms)or(z)
(Vz € R) = F(7s)(9)
(Vz € R) f = G(ms)og
(Vze R) (VacA fla) = G(ms)(9(a))

(VzeR) (Vac A
(VzeR) (Vac A
(Vze R) (Vac A

ev,of = G

ev,oc(s) = G

~— el e N

evoocomg(z) = G(ms)oev, or(z)

(Va € A) evoocomg = G(ms)oevzor
(Va c A) Cu, OTTg = G(ﬂ's) OTq.

The last equation means that the following diagram

s

S R

G(S) 3 G(R)

3.4. BISIMILARITY AND LOGICAL FORMULAS 31

must commute for every a € A. Doing the same procedure for the square with R and
T, we show that finding the function r is equivalent to finding a function r, for every
a € A. We then just define r(z) = h and h(a) = r,(z) for every z and a. To show that
s and t satisfy the same formulas under c, and d,, we use the same argument as in the
previous case. If there was a formula that would distinguish s and ¢ under ¢, and d,,
then it would distinguish them even under coalgebras c and d, which would lead to a

contradiction.

Suppose F' = F;+F,. Then it must hold for every s’ € S that either s’ I, (nezt)(k:)T
or s’ Ik, (next) (k) T, but not both of them, since in that case we would get ¢(s') = (a, 1)
and ¢(s') = (b,2) for some a € Fi(S) and b € F»(S) , which yields a contradiction,
because it would imply that 1 = m>(c(s’)) = 2. From the induction hypothesis we get
that R can be divided into two partitions, R; and R,, where for (s,t') € R; it holds
that both s’ and ¢’ satisfy (next)(k;)T.

Consider a demarking function k; : F(S) — F;(S), which is defined the same way
as the function k; in the proof of the Proposition 3.4.1, coproduct part. We can then

define ¢; = k; 0 ¢, d; = k; od for 1 = {1, 2}. If we ask the diagram

s T

S T

R
R
F(8) 3 F(R) 5 F(T)

to commute, it is equivalent to ask the diagram

S s R; T T

Fi(S) 5009 Fi(B) 515 F(T)

to commute for ¢ € {1,2}, if we set r(z;) = (r:i(2:),1), where 2; € R;. To show that
every s and ¢ satisfy the same formulas under c¢; and d;, we use the same logic as in the
preceding cases. The proof is therefore complete.

O

We have proven that L£;; is complete for polynomial functors. In fact, Proposi-

tions 3.4.1 and 3.4.4 give the best result one can expect: modal logic for polynomial

32 CHAPTER 3. MODAL LOGIC

functors captures exactly the behaviour of the relevant automata. The above complete-

ness result therefore meets the goals of the thesis.

Chapter 4

Conclusions

We presented a logical calculus for description of behaviour of automata. The approach
we took was that of a modal (many-sorted) language for coalgebras. We showed that
the given semantics of the language is sound with regard to bisimulation. We also
proved a partial converse: the semantics is complete provided the construction of the

relevant automata does not use use unbounded non-determinism.

Thus, the proposed goals of the thesis have been fulfilled: each type of automata
given by a polynomial functor admits a formal language that is capable to describe the

behaviour of the relevant class of automata.

Due to the properties of our language, its applications could arise in the fields of

formal specification and verification of simple systems.

The problems we have studied admit a natural generalisation. For example, one
might be interested in modal languages describing automata on a category, different
from the category of sets [11]. Another interesting area of research is to understand bet-
ter how the modal language and its semantics arise naturally from logical connections,
making a bridge between the category of coalgebras and the category of the underlying

propositional logic [4], [8].

33

34

CHAPTER 4. CONCLUSIONS

Bibliography

[1] Henk Barendregt, Erik Barendsen, 2000. Introduction to Lambda Calculus, Lec-

ture Notes available online at http://www.cs.ru.nl/ henk/courses.html

[2] Michael Barr, Charles Wells, 1990. Category Theory for Computing Science,
Prentice Hall.

[3] Patrick Blackburn, Maarten de Rijke, Yde Venema, 2002. Modal Logic, Cambridge

University Press.

[4] Marcello M. Bonsangue, Alexander Kurz, 2005. Duality for Logics of Transition
Systems, Lecture Notes in Comput. Sct., volume 3441, pages 455-469, Springer.

[6] Brian F. Chellas, 1980. Modal Logic: An Introduction, Cambridge University

Press.

[6] John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman, 2000. Introduction to Au-
tomata Theory, Languages, and Computation (2nd Edition), Addison Wesley.

[7] Bart Jacobs, 2005. Introduction to coalgebra. Towards Mathematics of States
and Observations, available online at
http://www.cs.ru.nl/B.Jacobs/PAPERS /index.html

[8] Bartek Klin, 2007. Coalgebraic modal logic beyond sets, Electron. Notes Theoret.
Comput. Sci., volume 173, pages 177-201, Elsevier B. V., Amsterdam.

[9] Alexander Kurz, 2001. Coalgebras and Modal Logic, Course Notes for ESSLI
2001, available electronically at http://www.cs.le.ac.uk/people/akurz/cml.html

35

36 BIBLIOGRAPHY

[10] Saunders MacLane, 1994. Categories for the Working Mathematician, Springer,
New York.

[11] Larry Moss, Ignacio Viglizzo, 2005. Harsanyi Type Spaces and Final Coalgebras
Constructed from Satisfied Theories, Electron. Notes Theoret. Comput. Sci.,

volume 106, pages 279-295, Elsevier B. V., Amsterdam.

[12] Martin Rossiger, 2000. Coalgebras, Clone Theory, and Modal Logic, Ph.D. dis-

sertation, Dresden University of Technology.

[13] J.J.M.M. Rutten, 2000. Universal coalgebra: a theory of systems, Theoret. Com-
put. Sct., volume 249, pages 3-80, Elsevier B. V., Amsterdam.

Appendix A

On some mathemartical constructions

A.1 Constructions on sets

Reader can consult [7] for in-depth treatment of the following constructions.

Image of function

Let us have a function f: A — B and a set X, which is a subset of A. The notation

f[X] then stands for the set f[X]={b|z € X, f(z) = b}.

Inverse image

For a function f, we denote f*(z) = {z | f(z) = 2z}

Powerset function

The powerset of a set A is defined as the set P(A) = {X | X C A}.
Let @ be a subset of A. If we have a function f: A — B, we can define the powerset
function P(f): P(A) — P(B), defined as P(f)(Q) = f|Q]-

Product

The product of two sets A and B, denoted by A x B, is defined as the set of ordered
pairs {(a,b) |a € A,b € B}.

II APPENDIX A. ON SOME MATHEMATICAL CONSTRUCTIONS

The product of the functions f: A — B and g: C — D is the function
(fxg):(AxC)— (BxD).

If f(a) =0 and g(c) = d, then (f x g)(a,c) = (b,d).

The product can be defined categorically by its universal property. Let A, B and C
be objects from a category C. The object A x B and two projection morphisms 74,
mp form together a product of A and B, if for every object C' and morphisms C ENy/|
and C 25 B there exists a unique morphism C % A x B. That means, if the following

diagram

commutes. The dashed arrow indicates that the morphism p is unique.

Coproduct

The coproduct of two sets A and B, marked A + B, is defined as the set of ordered
pairs {(a,1) |a € A} U {(b,2) | b€ B}.
The coproduct of the functions f: A — C and g: B — D is the function

(f+9): (A+B)— (C+ D).

If z = (a,1), then (f + g)(z) = (f(a),1). If z = (b,2), then (f + g)(z) = (9(b), 2).

Coproduct can be defined by an universal property as well. Moreover, its categorical
definition is dual to the definition of a product. This means that to define the coproduct,
we can take the commutative diagram defining the universal property of a product and
reverse the orientation of the morphisms. In other words, the object A + B and two
injection morphisms k4, kg are together a coproduct of A and B, if the following

diagram

A.2. CURRYING

commutes for every C.

A.2 Currying

III

Currying is often used when we try to transform automata into coalgebraic form. Ba-

sically it turns functions of many variables into a function of one variable [1]. Suppose

we have a function

f:(Ax B)—C,

which gives us f(a,b) = c. If the arguments are a and b, the result is ¢. There is

another way to look at the function, though. We can view it as a function that takes

only one argument and returns another function. In our example, we could create a

function

A\f: A— CP,

for which the following holds: A.f(a) = g, where g is a function and g(b) = c¢. It is

not hard to prove that there is a bijection between f and A.f, and the bijection is,

moreover, natural.

