
Czech Technical University in PragueFaculty of Electrical Engineering

BACHELOR THESIS
Coalgebraic approach to automata theory

Prague, 2010 Author: Mat¥j DostálDepartment of CyberneticsSoftware Technologies and ManagementIntelligent SystemsAdvisor: doc. RNDr. Ji°í Velebil, Ph.D.Department of Mathematics

Prohlá²eníProhla²uji, ºe jsem svou bakalá°skou práci vypracoval samostatn¥ a pouºil jsem pouzepodklady (literaturu, projekty, SW atd.) uvedené v p°iloºeném seznamu.
V Praze dne podpis

AcknowledgementsIt is a pleasure to thank all the people who helped me through the time I worked onmy bachelor thesis. I want to thank doc. RNDr. Ji°í Velebil, Ph.D., my advisor. Hiseverlasting patience has been a great motivation for me. I thank my family. Theyprovided me with so much more than just food and shelter. If it is true that I am stilla sane person, it is only because of Jan£a Lep²ová. Thank you!

AbstraktUkáºeme, ºe automaty mohou být jednotn¥ popsány jako koalgebry ur£itého funktoru.Pro kaºdý takový funktor p°edvedeme modální jazyk, který nám umoºní popsat stavyautomat·. U tohoto jazyka prozkoumáme jeho korektnost a úplnost.Klí£ová slovaKoalgebra, modální logika, bisimilarita.

AbstractWe show that automata can be described uniformly as coalgebras for a functor. Forevery such functor we present a modal language that allows us to speak about statesof automata. We discuss soundness and completness of semantics of our language.KeywordsCoalgebra, modal logic, bisimilarity.

Contents
1 Introduction 11.1 Background and state of art . 11.2 Informal formulation of the problem and goals of the thesis 21.3 Scope of the text . 21.4 Related work . 32 Coalgebras and automata 52.1 Basic coalgebraic notions . 52.2 Automata as coalgebras . 132.3 Bisimulation . 163 Modal logic 193.1 Preliminaries . 193.2 Syntax . 203.3 Semantics . 213.4 Bisimilarity and logical formulas . 234 Conclusions 33Bibliography 36A On some mathematical constructions IA.1 Constructions on sets . IA.2 Currying . III

i

ii

Chapter 1Introduction
This thesis is devoted to a modern topic in computer science: the coalgebraic approachto automata and the description of their behaviour by (necessarily) modal logic. Inthis chapter we will give an overview of the text, outline what has been done in thepast in computer science that is relevant to our topic, and give credit to related workwhich inspired this thesis.1.1 Background and state of artOur thesis heavily uses the methods and results of several classical areas of mathematicsand computer science. It is mainly automata theory, category theory and coalgebras,and modal logic.Automata theory is an important part of computer science and its roots can befound in the works of Alan Turing dealing with computation theory through the useof now-called Turing machines (1930s). It has been a subject of thorough researchand brought a number of theoretical and practical results. The classical approach toautomata theory is well presented in the classical textbook from Hopcroft, Motwaniand Ulmann [6], from which we use the de�nitions of our example automata.Automata are classically de�ned as tuples with a set of states, inputs, outputs, andtransition functions. A novel approach using coalgebras uni�es the presentation ofautomata to a set of states, a "signature" that describes the interface of the automaton,1

2 CHAPTER 1. INTRODUCTIONand a transition function. Given a standard de�nition of an automaton, we have astraightforward way to describe it coalgebraically. This approach dates back to 1980sand has been well summarised in Rutten's study [13], along with deep results fromuniversal coalgebra.A very young and promising branch of research in theoretical computer science com-bines two disciplines: automata theory and (modal) logic. The main inspiration comesfrom Kripke semantics of possible worlds. See Chellas [5] for a classical approach, orBlackburn, de Rijke and Venema [3], for a more updated overview of modal logic.1.2 Informal formulation of the problem and goals ofthe thesisInformally, the problem of the study of behavioural equivalence can be described asfollows:We have two automata A, B of the same kind, considered as "reactive" systems.Two users UA, UB execute runs of automata A and B, respectively, and "observe"the pattern of their behaviour. The behaviour may be a series of output symbolsor anything else that is intrinsic to the automata.The question we ask is the following one: when are two states behaviourallyindistinguishable?The above problem is formulated rather vaguely, of course. What one needs is a formalapproach to the problem since, ideally, we want another machine to test behaviouralequivalence.The goal of the thesis is, therefore, to develop a mathematical formalism for descrip-tion of automata and a corresponding formal language that is capable of expressing thebehaviour of automata.1.3 Scope of the textIn the text we focus on two topics:

1.4. RELATED WORK 31. In Chapter 2 we show how category theory o�ers a unifying framework for de-scribing automata. We present this phenomenon on various examples of automata� deterministic �nite automata, non-deterministic �nite automata and pushdownautomata. To show that two automata have the same behaviour, we introducethe concept of mutual simulation and show how it works on our examples.2. In Chapter 3 we introduce a modal language for description of possible be-haviours of classes of automata given by coalgebras for a functor. The languageresults quite necessarily in a many-sorted modal logic. Its semantics is given inKripke style � states of an automaton play the role of possible worlds. For suchlanguages we prove two results below:(a) Each language for a Kripke-polynomial functor has a sound semantics (Propo-sition 3.4.1). This means that states with the same behaviour cannot bedistinguished by a formula.(b) Each language for polynomial functors is complete (Proposition 3.4.4). Bycompleteness we mean that any two states satisfying the same formulas havethe same behaviour. We also show that completeness does not hold if un-bounded nondeterminism is present � this is the essence of Example 3.4.2.In short, we give a presentation of automata which allows us to easily determine theconditions under which two automata behave the same way, then we show a languagethat is used to describe the behaviour of these automata, and prove that the languagedistinguishes automata with di�erent behaviour and cannot distinguish behaviourallyequivalent automata.1.4 Related workThe thesis was much inspired by Martin Rössiger's dissertation [12]. The modal laguagewe study in this text di�ers, however, from his. We also present slightly more econom-ical and compact proofs of the results.

4 CHAPTER 1. INTRODUCTION

Chapter 2
Coalgebras and automata
The behaviour of various types of automata has attracted large attention in theoreticalcomputer science. Only recently it has become clear that coalgebras provide a uni-form framework to deal with various types of automata and that the formal logic fordescription of behaviour is necessarily some form of modal logic.In this chapter we will introduce the notion of coalgebra and the constructs neededto de�ne it precisely. We shall see that coalgebras are structures that allow us to studythe behaviour of many automata, and that the type of an automaton can be describedby a functor of the coalgebra. To see the di�erences in both classical and coalgebraicapproach, we will look at standard de�nitions of various automata and then de�nethem coalgebraically. The reason we are interested in this approach is that it uni�esthe view on automata.2.1 Basic coalgebraic notionsTo be able to de�ne automata coalgebraically, we have to introduce some conceptsfrom category theory. Reader who is interested in category theory can �nd additionaldetails in standard reference [2], from which we take some of the basic notions for ourpurposes.In an informal way we can say that a coalgebra is a function c : S ! h� � �S � � � i.By such notation we mean that c is a function from a domain S to a more complexcodomain, while the domain set is usually part of the codomain [7]. Let us make the5

6 CHAPTER 2. COALGEBRAS AND AUTOMATAconcept clearer by formalising it.CategoryFirst we need to de�ne a category, the structure on which we will operate the wholetime. Roughly speaking, a category consists of objects and arrows between them, wherethe arrows can be composed according to the usual laws of map composition. We willde�ne categories more precisely in the following de�nition.De�nition 2.1.1. A category C consists of� a class of objects Obj (C)� and a class of morphisms Mor(C).The above data are subject to the following axioms:Every morphism m 2 Mor(C) is tied to a domain object D 2 Obj (C) and acodomain object C 2 Obj (C). Such morphism is then written as m : D ! C, or asD m�! C.For every two morphisms m : A ! B and n : B ! C there exists a compositemorphism n Æ m : A ! C, and morphism composition is associative: (p Æ n) Æm =p Æ (n Æm).Lastly, every object A 2 Obj (C) has an identity morphism idA : A! A, which actsas an identity element on morphism composition: for a morphism m : A ! B thereare morphisms idA and idB such that m Æ idA = m = idB Æm.De�nition 2.1.2. In a category C , the set1 of all morphisms between a domain objectA and a codomain object B is denoted C (A;B) and is called a hom set.If f : X ! Y is a morphism andA is an object from C , we de�ne C (A; f) : C (A;X) !C (A; Y) as a function that takes a morphism g from C (A;X) and returns a morphism(f Æ g).1If the morphisms between any two objects of a category form a set, then the category is locallysmall. Note that not every category satis�es this requirement. See [2].

2.1. BASIC COALGEBRAIC NOTIONS 7Categories are very general structures. There are many interesting and diverse ex-amples of categories. We will take a look at some of them.Example 2.1.3. The category of sets and functions between them. We need to checkwhether it satis�es all the category properties. Let us de�ne a structure called Setsconstituted of two classes: the class of all sets and the class of all functions betweenthose sets. Every function has a domain and a codomain, and is therefore tied to twosets from the class of all sets. If there are two functions f : X ! Y and g : Y ! Z, thenthere is a function (g Æ f) = h : X ! Z, and function composition is associative. Thestructure satis�es the morphism composition property from the de�nition of category.There is an identity function for every set as well, which obeys the rules of the identitymorphism. Sets is therefore truly a category.The above example is a very important one. Now we will try to form a category fromsome algebraic structures together with homomorphisms.Example 2.1.4. Suppose we have some groups and homomorphisms between them.We know that a composition of homomorphisms is again a homomorphism and thathomomorphism compositions are associative. Moreover, every group has an identityhomomorphism, which maps every element to itself. This is enough for making acategory Groups of all groups together with group homomorphisms.In a similar manner, a category Monoids, Magmas can be made, with these struc-tures as objects and their corresponding homomorphisms as morphisms.Viewing morphisms as a sort of "moves", morphism composition is a connection oftwo moves which can be made one after another. Identity morphism then correspondsto the act of not moving at all. We could apply this view in graph theory:Example 2.1.5. With a graph (V;E) of vertices V and edges E, we can form a categorywith vertices as objects. If there is an oriented path from one vertex to another, wejoin them with a morphism. Then there is a trivial path of length zero, acting as theidentity morphism. Morphism composition in this category is simply a connection oftwo paths.

8 CHAPTER 2. COALGEBRAS AND AUTOMATAA category can be thought of as a structure that generalises the concepts of bothposets and monoids. Consider a category with one object 4, and consider a monoidM . The elements of M can be viewed as arrows from 4 to 4 in our category, theassociativity of the arrows is forced by de�nition, and so is the existence of the identityarrow. Now consider a poset (P;�). It can be viewed as a category with objects fromP . The arrows between objects show that the objects are in the relation�. This kind ofgeneralisation turns out to be fruitful in many more situations than we presented here.More examples of interesting categories include the category of posets and monotonefunctions, category of metric spaces and metric maps, etc.FunctorThe notion of a functor is important, for it allows us to transform the objects andmorphisms of a category to other objects and morphisms (generally in another category)in a well-behaved manner. That is, the transformation preserves domains, codomains,identities and compositions.De�nition 2.1.6. For two categories C and D , a functor F is given by a mappingF : Obj (C) ! Obj (D) and a mapping F : Mor(C) !Mor(D). We usually shorten thisnotation as F : C ! D . These mappings have to satisfy the following requirements:� for a morphism f 2Mor(C); f : A! B the following holds: F (f) : F (A)! F (B),� for an identity morphism idA 2Mor (C), F (idA) = idF (A), and� for a morphism composition (f Æ g) 2Mor (C), F (f Æ g) = F (f) Æ F (g).In case that the domain and range category is the same, we say that F is anendofunctor (of the ambient category).A composition of two functors is a functor as well.Proposition 2.1.7. Let F be a functor F : C 1 ! C 2 and G be a functor G : C 2 ! C 3 .Then the composition G Æ F of these functors is a functor.

2.1. BASIC COALGEBRAIC NOTIONS 9Proof. For an arbitrary object X, morphism f : A! B, and a pair of composable mor-phisms g; h, all from the category C 1 , we prove that the three functorial requierementshold.The morphism f is turned into a morphism (G Æ F)(f) = G(F (f)), and since forF (f) the domain and codomain is F (A), respectively F (B). After the application ofthe functor G the domain is G(F (A)) = (G Æ F)(A) and the codomain is G(F (B)) =(G Æ F)(B). So we see that the morphism f is turned into a morphism(G Æ F)(f) : (G Æ F)(A)! (G Æ F)(B).The second requirement can be proven easily:(G Æ F)(idX) = G(F (idX)) = G(idF (X)) = idG(F (X)) = id(GÆF)(X):To show that the composition rule is satis�ed, it su�ces to consider this equation:(G Æ F)(g Æ h) = G(F (g Æ h))= G(F (g) Æ F (h))= G(F (g)) ÆG(F (h))= (G Æ F)(g) Æ (G Æ F)(h):
A closer look on functors in Sets will be helpful in the construction of coalgebraicautomata. We will inspect some basic functors and and their properties. Commentson used notation can be found in Appendix A, further information on functors can betaken from [7].Firstly, we can make a mapping Id(X) = X for every X from Obj (Sets) and Id(f) =f for every f from Mor (Sets). It is trivially a functor, and we will call it the identityfunctor (on the category Sets).There is also a functor constS, that maps every set X to a �xed set S, and everyfunction f : X ! Y to an identity function idS : S ! S. The �rst functorial requirementholds because for a function f : X ! Y the sets become constS(X) = constS(Y) = S

10 CHAPTER 2. COALGEBRAS AND AUTOMATAand constS(f) = idS : constS(X) ! constS(Y). In the second requirement we can seethat constS(idA) = idS = idconstS(A) and the composition property can be proven easily:constS(f) Æ constS(g) = idS Æ idS = idS = constS(f Æ g):Such functor is called a constant functor (at a set S). In the following text we aresometimes going to use an abbreviation notation constA = A, when no confusion canoccur.A hom functor on a set A is a functor denoted Sets(A;�), which turns each set Xinto a hom set Sets(A;X) and every function f to Sets(A; f).Let us check that this de�nition indeed gives rise to a functor. A morphismf : X ! Y is mapped to a function Sets(A;�)(f) = Sets(A; f) : Sets(A;�)(X) !
Sets(A;�)(Y)The identity morphism idX is mapped to an identity function on Sets(A;X),because Sets(A;�)(idX) = Sets(A; idX) = idSets(A;X) = idSets(A;�)(X). Two morphismsf : Y ! Z and g : X ! Y satisfy the functorial composition property � for any mor-phism h : A! X we see that(Sets(A; f) Æ Sets(A; g))(h) = Sets(A; f)(Sets(A; g)(h))= Sets(A; f)(g Æ h)= f Æ (g Æ h)= (f Æ g) Æ h= Sets(A; (f Æ g))(h):If we are given some set functors F and G, we can combine them in a way thatthe result is a functor as well. We can take their product K: it will be denoted byK = F � G and we shall de�ne K(X) = F (X)�G(X), and functions f : X ! Y willbe transformed to K(f) = F (f)�G(f).With this de�nition the functoriality is guaranteed: for a function f : X ! Y weget K(f) = F (f)�G(f) : F (X)�G(X) ! F (Y)�G(Y):Since F (X) � G(X) = K(X) and F (Y) � G(Y) = K(Y), we see that K(f) is afunction K(X)! K(Y), and the �rst requirement is met.

2.1. BASIC COALGEBRAIC NOTIONS 11The second requirement is easy:K(idA) = F (idA)�G(idA) = idF (A) � idG(A) = idF (A)�G(A) = idK(A):To prove the composition rule we see thatK(f) ÆK(g) = (F (f)�G(f)) Æ (F (g)�G(g))= (F (f) Æ F (g))� (G(f) ÆG(g))= F (f Æ g)�G(f Æ g)= K(f Æ g):In a similar manner, we can make a disjoint sum of set functors F and G, calledtheir coproduct C = F +G. The de�nition is analogous to product functor � C(X) =F (X) +G(X), function mapping is de�ned as C(f) = F (f) +G(f).A very useful construction is the exponent of a functor. If we have a set functor Fand a set A, then the exponent H = FA is de�ned as Sets(A;�) Æ F . In coalgebras,we can use the exponent functor to model an input of an automaton.If we want to generalise the notion of the exponent to non-set functors, we need tointroduce the notion of a cotensor. Let C be a category. Given a set A and an objectX in C , we de�ne an A-fold cotensor of X to be an object A t X in C together withan isomorphism C (Y;A t X) �= Sets(A; C (Y;X)). See that if C = Sets, then A t X isthe product of A-many copies of X.Let C be a category where all objects have cotensors with a �xed set A. Supposethat F : C ! C is a functor. Then A t F is a functor from C to C , that is de�nedon objects (A t F)(X) = A t F (X). Due to the de�nition of cotensors, it is easy toprove that A t F is indeed a functor. We will use the notation FA to denote A t F .To describe non-determinism, it is vital to introduce the powerset functor. We willdenote it by P . The de�nition is expectable: it transforms sets into their powersetsand functions over sets are extended to work over powersets of these sets. For a functorF , we have P (F)(X) = P (F (X)) and for functions P (F)(f) = P (F (f)). Thus P (F) isde�ned as the composite P Æ F . The functoriality comes straight from the de�nitionsof the powerset operations on sets and functions (see Appendix A).

12 CHAPTER 2. COALGEBRAS AND AUTOMATAWe now see that functors can be composed and altered in many ways, and the resultis still a functor. This allows us to construct complicated functors inductively. Wewill form the collection of Kripke-polynomial functors. They can be described by thefollowing set of rules:� The identity functor is in the collection.� For every set S, the constant functor constS is in the collection.� The product of two functors in the collection is also in the collection.� The coproduct of two functors in the collection is also in the collection.� For every set A and a functor F from the collection, the exponent FA is also inthe collection.� The powerset of a functor from the collection is also in the collection.A convenient way to describe such inductive de�nition is by Backus-Naur form.F ::= Id j constS j F � F j F + F j F S j P (F)CoalgebraNow we �nally have all the needed constructs to de�ne coalgebra.De�nition 2.1.8. For a category C and an endofunctor F , an F -coalgebra is an objectA 2 Obj (C) with a morphism c 2Mor(C) in the form c : A! F (A). We write it downas (A; c).An F -coalgebra on an object A is then determined by the de�nition of the morphismc. The complexity of the codomain depends on the functor F .Example 2.1.9. An easy example of a coalgebra is the following. Let A be an alphabetand N set of nodes. Then we can form a coalgebra t : N ! A�N �N for the functorF = constA�(Id)� (Id), which for every node gives a symbol from the alphabet andreturns two nodes. The functor constA�(Id)� (Id) describes the behaviour of in�nitebinary trees which have a label on each node.

2.2. AUTOMATA AS COALGEBRAS 13As with other structures, we are interested in structure-preserving mappings, coal-gebraic homomorphisms.De�nition 2.1.10. Let c : S ! F (S), d : T ! F (T) be two F -coalgebras. A functionf : S ! T is a homomorphism from (S; c) to (T; d), if the following diagramS f //c
��

Td
��F (S) F (f) // F (T)commutes, or, in other words, if F (f) Æ c = d Æ f .2.2 Automata as coalgebrasTo show that coalgebras can be useful in computer science, we will form more inter-esting and complex examples. Automata theory gives many examples of systems thatare easily transformable into coalgebraic form. We will use the notions de�ned aboveto make coalgebraic de�nitions of deterministic, non-deterministic and pushdown au-tomata. All the standard de�nitions and results from automata theory presented hereare well known and have been summarised in the standard textbook [6].Deterministic �nite automataWe can think of a deterministic �nite automaton (DFA) as of a simple machine. Thismachine can be in various states and move from one state to another by receiving someinput, namely a symbol from a previously de�ned alphabet. The machine also has astarting state and an output for every state, telling whether the state is accepting ornot. In other words, the output tells us if the sequence of symbols we put into themachine is accepted by the machine.If we revise what is needed to form a DFA, we see that it is� a �nite set of states (S), also called a state space,� an alphabet (A) of input symbols,

14 CHAPTER 2. COALGEBRAS AND AUTOMATA� a start state (s0 2 S)� a transition function (Æ : S �A! S),� and an output function (! : S ! O, where O = f0; 1g).From this list we can see that an arbitrary DFA called D can be characterized asa tuple D = (S;A; s0; Æ; !). Alternatively, we could write D as a tuple (S;A; s0; Æ; F),where the output function ! is replaced by a set F of accepting states from S de�nedby F = fs j !(s) = 1g.We shall take a di�erent view on DFA's. Automata can be studied from a coalgebraicperspective. Borrowing the above notation, we can describe a DFA as a coalgebrac : S ! O � SA. This is possible because the function c can be viewed as a functionc(s) = h!(s); �(s)i, with ! being the output function as de�ned above and the function� being de�ned as follows:For each state s 2 S, the output of �(s) is a function i : A ! S, with the de�nitioni = f(a; Æ(s; a)) j a 2 Ag and Æ being the DFA's transition function. Therefore, we willomit the distinguished start state s0 from our description. This is nothing grave: anystate can be considered as a start state.Non-deterministic �nite automataAnother example of an interesting automaton is a non-deterministic �nite automaton(NFA). Its main di�erence from DFA is that its transition function works di�erently.While with DFA there could be just one possible successor state for any state and inputsymbol, now it can lead to any subset of the state space. Its expressive power (in termsof describing some language) is, however, equal to DFA.De�nition of an NFA very much resembles that of DFA. We need:� a �nite set of states (S), also called a state space,� an alphabet (A) of input symbols,� a start state (s0 2 S)

2.2. AUTOMATA AS COALGEBRAS 15� an output function (! : S ! O, where O = f0; 1g),and lastly, making the only di�erence,� a transition function (Æ : S � A! P (S)),P denoting a powerset.It should not be surprising that NFA can be described coalgebraically as well. Namelywe can form a coalgebra c : S ! O�P (S)A, take c(s) = h!; �i(s) as with deterministicautomata. Note that now the de�nition of � remains the same as in the DFA case, itjust works with the NFA Æ transition function.Pushdown automataThere are also more complicated automata, which can describe formal grammars higherthan regular languages. Pushdown automata are automata that accept preciselycontext-free grammars. The di�erence between our NFA and a pushdown automaton(PDA) is that PDA allows �-transitions, which means that there can be state transi-tions that do not need any input symbol to be executed. We shall deal with this byextending the domain of the transition function from A to (A [�). More importantly,PDA can work with stack, where it can store additional information, and accordinglyto the top symbol on stack and the input, it can decide what state to go to next.Formally, the pushdown automaton consists of� a �nite set of states S,� an alphabet A of input symbols,� an alphabet � of stack symbols,� the Æ transition function,� the start state s0 2 S,� the start symbol Z0 2 �, which is the only symbol that is on the stack at thebeginning, and

16 CHAPTER 2. COALGEBRAS AND AUTOMATA� the output function (! : S ! O, where O = f0; 1g) again.Let us look closely on the transition function Æ. It takes a state, an input symbol oran empty word � and a stack symbol. The result is a �nite set of pairs (s; �), wheres is the successor state and � a word of � symbols. This word replaces the top of thestack of the previous state. The transition function Æ is then a function of the formÆ : S� (A[f�g)��! P (S���). The notation �� stands for a set of �nite words overalphabet �. Coalgebra for such automaton is then c : S ! O � P (S � ��)(A+1)��.We have shown that examples of (classical) automata can be described in a uniformway, using set functors. Moreover, the functors have typically a special shape: they are"built" from "simple" ones using products, coproducts, etc. The shape of functors willplay a signi�cant role later, see De�nition 3.1.1 below.2.3 BisimulationIn the de�nition 2.1.10 we wrote about the homomorphism between coalgebras, whichis a structure-preserving morphism and therefore shows that the two coalgebras arevery similar. It is, however, more strict than we need, so we are going to introduce aconcept which generalises that of a homomorphism.We want to be able to say that some automata (or parts of them) are indistinguishablefor the observer, even if their inner structure is di�erent. This can be reformulated as ademand that the automata have to be able to simulate their behaviour mutually. Themutual relation is called a bisimulation and we are going to de�ne it categorically witha number of examples to enlighten the de�nition.De�nition 2.3.1 (Rutten [13]). For a functor F and two F -coalgebras (S; f) and (T; g),an F -bisimulation is a relation R � S � T , for which a morphism r : R! F (R) existsto make the following diagram commute:

2.3. BISIMULATION 17Sf
��

R�Soo �T //r
���
�

� Tg
��F (S) F (R)F (�S)oo F (�T) // F (T)The morphisms �S and �T are the corresponding projections of the product S � T .We say that two states s and t are bisimilar if there exists a bisimulation R with(s; t) 2 R.We shall take some concrete examples of coalgebras, see what the requirements fora bisimilarity in these speci�c cases are, and how they arise from the general de�nitionof bisimulation written above.Example 2.3.2. Let us inspect the DFA �rst. It is a coalgebra for a functor F =O � (Id)A. So if we take two di�erent coalgebraic DFA's (S; f) and (T; g), when aresome two states s 2 S, t 2 T bisimilar?Firstly, they must yield the same output o 2 O, because the function r : R !F (R) makes only one output and it remains the same after making either one of theprojections F (�S) or F (�T), and this is true for every r.Secondly, we see that if s 7! (o; �) and t 7! (o; �), where � and � are functionsgenerated by the coalgebras, then it obviously has to hold (s; t) 7! (o; (� � �)), andsince for every input a 2 A the output (�� �)(a) must belong to R, we can state thefollowing: For every a 2 A, the ordered pair (�(a); �(a)) must be in R.Example 2.3.3. Nondeterministic �nite automata are modelled by a coalgebra be-longing to a functor G = O � P (Id)A. We are given two G-coalgebras (S; f), (T; g)and two states s 2 S, t 2 T . The application of the function f on the state s gives usf(s) = (o; �), where o 2 O is the output of the automaton and � : A! P (S) a functionthat takes some input from A and returns a set of states S 0 � S, which can be thoughtof as a next-states set.As with the DFA, it is quite clear that if the states are to be bisimilar, they shouldhave the same output. The function � in DFA returns just one state, though. Now wehave to deal with the non-deterministic aspect brought by the powerset functor.Having two bisimilar states, we can simulate the behaviour of one automaton by theother one and vice versa. This approach can help us imagine what the requirements for

18 CHAPTER 2. COALGEBRAS AND AUTOMATAbisimilarity should be. For every input a 2 A we get a set of states �(a) = (S 0 � S),and for every state s0 2 S 0 we should be able to �nd a state t0 2 T 0 = �(a), which isbisimilar to s0. This way we can simulate the behaviour of (S; f) by (T; g), if we startboth automata at the states s; g. Of course, the same simulation has to be possible inthe other way, from (T; g) to (S; f).Example 2.3.4. Taking the same notation as in the previous two examples, we changethe functor to H = O � P (S � ��)(A+1)��. For s; t to be bisimilar, they have to satisfy(remember that ! denotes the output function):1. The output is the same for both automata, !(s) = !(t).2. For all a in fA [�g and in �, for all (s0; w) in �(a;) there exists (t0; w) in�(a;) such that s0 and t0 are bisimilar.3. For all a in fA [�g and in �, for all (t0; w) in �(a;) there exists (s0; w) in�(a;) such that t0 and s0 are bisimilar.

Chapter 3Modal logic
Given a speci�c automaton and its state, is it possible to describe its behaviour bysome formal language? In this chapter we shall see that such a language exists, thatit is structurally a many-sorted modal logic, and its speci�c structure is given by thestructure of the automaton. This language will moreover enable us to express bisim-ilarity of some two states by stating that the states satisfy the same formulas in thelogic, which we are going to prove in this chapter. The construction presented here canbe seen in the dissertation [12].3.1 PreliminariesThe behaviour of an automaton is determined by its coalgebra and the underlyingfunctor of the coalgebra. If we want to create a language that would be able to expressthe behaviour of automata of a given functor, then the language should probably beconstructed accordingly to the structure of the functor. Because we take only Kripke-polynomial functors into account, the language is de�ned inductively with respect tothe inductive structure of the functor.De�nition 3.1.1. If a functor F is constructed from two functors F1 and F2 such thatF 2 fF1 � F2; F1 + F2g, F1 and F2 are called direct ingredients of F . If F = P (G),then G is a direct ingredient of F . Also constS and H are direct ingredients of F ,if F = HS. Transitive closure of the direct ingredient relation with forced re�exivityforms an ingredient relation denoted by �.19

20 CHAPTER 3. MODAL LOGICIf we have a Kripke-polynomial functor F , we see that it has a tree structure (if weloosen up the view on what a tree is a little bit1), with the nodes being ingredientsof F , and from every functor to the direct ingredients used for its construction thereare (possibly many) edges. The tree we describe will bear more structural informationthan just the one about direct ingredients. We will create more edges and name themto be able to use them in further work. If G = G1 � G2, then the edge from G to G1or G2 is named h�1i or h�2i respectively. If G = G1 +G2, then the edge from G to G1or G2 is named h�1i or h�2i respectively. If G = HS , then for every s in S there is anedge from G to H named hevsi. If G = P (H), then there are two edges from G to Hnamed hP i and [P].The sorts of our language shall relate to the ingredients of F . Let us form a categoryIng(F) of the ingredients of the functor F as its structural tree described above, with anadded vertex, named hnexti, from every Id ingredient directly to F . This change willenable us to decribe the coalgebra transition, which takes a state from S and returnsan element from F (S).It will be technically more pleasant for us to work with the opposite category ofIng(F).De�nition 3.1.2. For a category C with objects Obj (C) and morphisms Mor(C),an opposite category C op is a category with objects Obj (C), and its morphisms aremorphisms of C with opposite orientation, that is, for a morphism m : A ! B inMor(C) of C , there is a morphism m : B ! A in Mor(C) of C op . If h = g Æ f in C ,then h = f Æ g in C op .3.2 SyntaxWe shall �rst introduce the syntax of the language informally. The structural tree of Fhas some leaves, namely Id functors and constant functors. When we form a categoryIng(F) from the structural tree, it is no longer a tree, but we can still think of theconstant functors as of "quasi-leaves". Starting in such a leaf constA in the category1It is rather a multitree in the sense of the di�erence between graphs and multigraphs.

3.3. SEMANTICS 21Ing(F)op, we can take an element a from A and it will be a formula of sort constA. Ifthere is a morphism named h$i from sort G1 to G2, we can turn a formula ' of sortG1 (denoted ' : G1) into a formula h$i' : G2. The set of formulas of a sort can bealso closed under boolean connectives. The following de�nition of the language syntaxo�ers a di�erent view than the one presented above, but the reader should see that theconstruction of the formulas follows the same principle in both cases.De�nition 3.2.1 (Rössiger [12]). For a functor F we de�ne a family (LG)G�F of lan-guages, where G is an ingredient of F by simultaneous induction using the Backus-Naurform: G = constA : ' ::= ? j '! ' j a; where a 2 A;G = Id : ' ::= ? j '! ' j hnexti ; where 2 LF ;G = F1 � F2 : ' ::= ? j '! ' j h�ii ; where 2 LFi;G = F1 + F2 : ' ::= ? j '! ' j h�ii ; where 2 LFi;G = HA : ' ::= ? j '! ' j hevai ; where 2 LH ;G = P (H) : ' ::= ? j '! ' j hP i j [P] ; where 2 LH :We have de�ned a language for each ingredient of the functor F . See that byconstructing the formula of sort G, we follow the walk on the graph induced by thecategory Ing(F)op, starting in the node of the constant functor and ending in G, so ourinformal view really catches the way the formulas are constructed. Indeed, we can forma functor L between the category Ing(F)op and the category Sets � it sends the sortG to the set of all formulas of the sort G, and the morphisms in Ing(F)op are turnedinto functions that transform the formulas from one sort to another accordingly to thede�nition of the syntax above.3.3 SemanticsIn order to give the formulas some meaning, we have to introduce semantics for our newlanguage. Let us have a coalgebra c : S ! F (S). De�ning the meaning of the formulascreated by the inductive structure mentioned above, we will have to proceed inductivelyas well. For a sort G, the meaning of a formula ' : G is a certain subset k' : Gkc of

22 CHAPTER 3. MODAL LOGICG(S). We shall be especially interested in the formulas of sort Id , because these willbe giving us the information about the behaviour of the states of our coalgebra.The semantics of boolean connectives for the formulas of any sort are de�ned ina standard way, disjunction as union of the meanings of the formulas, negation ascomplement etc.De�nition 3.3.1. Given an F -coalgebra c : S ! F (S), we de�ne for every ingredientG of the functor F the semantics of the family of languages (LG)G�F in the followingway (see the appendix for the de�nition of the inverse image of a function):� If G = constA, then ka : constA kc = fag.� If G = F1 � F2, then kh�ii' : F1 � F2kc = ��1i (k' : Fikc).� If G = F1 + F2, then kh�ii' : F1 + F2kc = �i(k' : Fikc).� If G = HA, then khevai' : HAkc = ev�1a (k' : Hkc). (Function eva takes a functionf and returns f(a).)� If G = P (H), then k[P]' : P (H)kc = P (k' : Hkc). Also khP i' : P (H)kc = fk 2P (H(S)) j 9l 2 k such that l 2 k' : Hkcg:� If G = Id , then khnexti' : Idkc = c�1(k' : Fkc).For a state s in S, we denote by s c ' the fact that s is an element of k' : Idkc,and say that s satis�es the formula '.We saw that the meaning of a G-sorted formula is a subset of G(S). This may leadus to a thought that the powerset of G(S) is the set of all the possible meanings aG-sorted formula can have. We will denote this setM(G). Since this can be done withevery sort, we can form a functor M from the category Ing(F)op to the category Sets,which takes the sorts and transforms them into the sets of all possible meanings of thesorted formulas. What will the functions between the sorts then be? If we want M tobe a functor, we need to de�ne them exactly as the functions that de�ne the semanticsof our language above. For example, if we take one possible meaning m of sort F1 andwant to turn it into a meaning of sort G = F1 � F2, we get ��11 (m).

3.4. BISIMILARITY AND LOGICAL FORMULAS 23Because of the way we de�ned the functor M, we see that the semantics of ourlanguage, as introduced in our de�nition, acts like a natural transformation betweenthe functors L and M.De�nition 3.3.2. For functors F and G between the categories C and D , we call � anatural transformation from F to G if it gives for every object X from C a morphism�X : F (X)! G(X) in D , such that the following diagramF (X) F (f) //�X
��

F (Y)�Y
��G(X) G(f) // G(Y)commutes for every morphism f : X ! Y .3.4 Bisimilarity and logical formulasIn this section we will show that the language LId is sound, that is, two bisimilarstates s and t satisfy the same formulas in the language. This is certainly a usefulresult, allowing us to distinguish non-bisimilar states just by �nding a formula that issatis�ed for one state and not satis�ed for the other one. Moreover, we will specify theconditions under which the language LId is complete � which means that two statessatisfying the same formulas are bisimilar. It will be shown that for Kripke-polynomialfunctors without the powerset functor (called just polynomial functors) LId truly iscomplete, which makes it a perfect language to describe the behaviour of an automatonup to bisimilarity.Proposition 3.4.1 (Soundness of LId). Two bisimilar states satisfy the same for-mulas.We are going to prove this proposition by structural induction on the complexityof the underlying functor of the coalgebra.Proof. Let us take two coalgebras c : S ! F (S) and d : T ! F (T), a bisimulationR on these two coalgebras, and a pair of bisimilar states s 2 S and t 2 T , where

24 CHAPTER 3. MODAL LOGICsRt. We are going to prove that if s c ', then t d ', and conversely. See that' : Id = hnexti : F . We will deal with the base cases �rst.If F = constA, the formula : constA is either atomic or open. Suppose it is atomic:then = a, where a is an element of A. Then it follows that c(s) 2 k kc, which meansthat c(s) = a. And because the following diagramSc
��

R�Soo �T //r
��

Td
��A AidA idA Acommutes, it is also true that d(t) = a, and therefore t 2 d�1(fag), from which we candirectly see that t d '. It is easy to see that starting with t d ', we could proves c ' in the same way.Now we know that s and t satisfy the same atomic formulas. Showing that theysatisfy the same formulas built inductively from the atomic formulas using the standardlogical connectives is then a matter of an easy induction on the complexity of the syntaxtree of the formula. Because this will be true for all the cases we are going to cover inthe proof, we are going to restrict ourselves to atomic formulas and keep in mind thatthe proof for non-atomic formulas follows immediately.If F = Id , we cover three cases.� Suppose = ?: Then ' does not hold for s and does not hold for t, becausec(s) = s0 and s0 is not an element of ;, similarly for d(t) = t0.� Taking = (? ! ?) = >, we see that c(s) 2 S = k> : Idkc and d(t) 2 T = k> :Idkd, so s c ' and t d '.� Let us form an induction hypothesis: If s0 and t0 are R-bisimilar, then s0 c ifand only if t0 d .Now we know that there are states s0 = c(s) and t0 = d(t), and that s0 and t0 arebisimilar as well. Because s c ', it follows that s0 c , and using the inductionhypothesis, t0 d . And since t 2 d�1(t0), we �nally get t d '.It can be shown very similarly that t d ' implies s c '.

3.4. BISIMILARITY AND LOGICAL FORMULAS 25In the case the functor F is more complex, we are going to introduce the inductionhypothesis � that for every direct ingredient of F , bisimilar states of any two coalgebrasof that ingredient satisfy the same formulas.If F = F1 � F2, then = h�ii ~ , with i 2 f1; 2g. Because the following diagramSc
��

R�Soo �T //r
��

Td
��F (S)�i

��

F (R)F (�S)oo F (�T) //�i
��

F (T)�i
��Fi(S) Fi(R)Fi(�S)oo Fi(�T)// Fi(T)commutes, we see that R is a bisimulation for coalgebras (S; c0) and (T; d0), wherec0 = �iÆc and d0 = �iÆd. Since2 ' = hnextih�ii ~ and khnextih�ii ~ kc = c�1(��1i (k ~ kc0)),it follows that s c0 hnexti ~ , and from induction hypothesis t d0 hnexti ~ . And becaused0 = �i Æd, it means that t 2 d�1(��1i (k ~ kd)), from which it directly follows that t d '.The proof in the opposite direction is analogous.If F = F1 + F2, then = h�ii ~ , with i 2 f1; 2g. This shows us that c(s) 2 �i(k ~ k).We need to construct a function that acts as an inverse of �i, but has F (S) as a domain.Since F1(S)+F2(S) is necessarily nonempty, we can suppose, without loss of generality,that F1(S) is nonempty. Let us take a dummy element M2 F1(S). Then we can make afunction ki that takes w = (v; i) to ��1i (w) = v, and takes x = (z; j) to M, where j 6= i.The function ki de�ned this way is a total function from F (S) to Fi(S) and, moreover,makes the following diagram Sc

��

R�Soo �T //r
��

Td
��F (S)ki

��

F (R)F (�S)oo F (�T) //ki
��

F (T)ki
��Fi(S) Fi(R)Fi(�S)oo Fi(�T)// Fi(T)2We use the fact that k ~ kc = k ~ kc0 , which comes immediately from the inductive de�nition of thesyntax.

26 CHAPTER 3. MODAL LOGICcommute. If we take c0 = ki Æ c and d0 = ki Æ d, it comes from the diagram that R is abisimulation for (S; c0) and (T; d0). Because s 2 c0�1(k ~ kc0) means that s c0 hnexti ~ and this implies t d0 hnexti ~ from induction hypothesis, we see that t 2 d0�1(k ~ kd),which turns into t 2 d�1(k�1i (k ~ kd)), and we can conlude that t d hnextih�ii ~ , andbecause hnextih�ii ~ = ', the proof is complete.If F = GA, then = hevai ~ , where a is an element of A. The following diagramSc
��

R�Soo �T //r
��

Td
��F (S)eva

��

F (R)F (�S)oo F (�T) //eva
��

F (T)eva
��G(S) G(R)G(�S)oo G(�T) // G(T)commutes, and therefore, for c0 = eva Æ c and d0 = eva Æ d it is clear that R isa bisimulation for coalgebras (S; c0) and (T; d0). Now we see from s 2 k'kc thats 2 c�1(ev�1a (k ~ kc)), use the de�nition of c0 to write s 2 c0�1(k ~ kc0), from induc-tion principle get t 2 d0�1(k ~ kd0), by de�nition of d0 see that t 2 d�1(ev�1a (k ~ kd)), andconlude that t 2 k'kd, which is what we wanted to prove. Again, the proof in theopposite direction is done similarly.If F = P (G), then suppose that = [P] ~ . (For the case where = hP i ~ , we cantake hP i = :[P]:.)We are going to use slightly di�erent induction hypothesis for the powerset case.Because G is an ingredient of F , we are going to assume that bisimilar states of G(S)and G(T) satisfy the same formulas.Let us denote c(s) = s0 and d(t) = t0. Since s0 is an element of P (G(S)), it followsthat s0 � G(S), and similarly t0 � G(T). From bisimilarity we get that for every x 2 s0there exists some y 2 t0 that is bisimilar to x, and conversely, for every y 2 t0 there isan element x 2 s0 such that x and y are bisimilar as well. Now taking any x 2 s0, we seethat it satis�es ~ . We are now going to show that t0 is a subset of k ~ kd. That wouldbe true if every y 2 t0 was an element of k ~ kd. We can �nd an element x 2 s0 such thatx and y are bisimilar, and since x 2 k ~ kc, we see from induction hypothesis that y is

3.4. BISIMILARITY AND LOGICAL FORMULAS 27an element of k ~ kd. Therefore, it is truly satis�ed that t0 � k ~ kd, and from this wecan easily conclude that t0 d [P] ~ , and t d hnexti[P] ~ . The proof is now completein one direction, and to prove the opposite direction, we would follow the same stepsanalogously.We have proven that LId is sound, and now we are going to show that under certainconditions it is complete as well.First we are going to show that the fact that two states satisfy the same formulasdoes not always imply that they are bisimilar.Example 3.4.2. Let us think of coalgebras for a functor F = P (Id). On the �gurebelow we see a standard counterexample showing that there are two coalgebras for Fwhich have two states satisfying the same formulas without being bisimilar.
�s0 � � � : : : �� � � � ...� � �� � �

//
__?? OO ??��

77oooooo // // // //

OO ??��
77oooooo

??��
77oooooo

77oooooo �t0 � � � : : : �� � � � ...� � �� � �
� � � �

//
__?? OO ??��

77oooooo // // // //

OO ??��
77oooooo

??��
77oooooo

77oooooo

��?
?

��?
?

��?
?

��?
?The �gure on the left shows a coalgebra with a state from which there goes a branchof length n for each natural number n � 1. The �gure on the right shows the samecoalgebra with the addition of exactly one in�nite branch. These two coalgebras satisfythe same formulas is states s0 and t0, respectively, even though the coalgebra on theleft hand side cannot simulate the in�nite behaviour of the coalgebra on the right handside.If we limit ourselves to polynomial functors and their coalgebras, the completness ofour language holds. First we give a de�nition of polynomial functors.

28 CHAPTER 3. MODAL LOGICDe�nition 3.4.3. A functor is polynomial if it is constructed with respect to thefollowing Backus-Naur form:F ::= Id j constS j F � F j F + F j F S:For this type of functors we can present the completeness theorem and its proof.Proposition 3.4.4 (Completeness of LId). Suppose two coalgebras of a polynomialfunctor. If their two states satisfy the same formulas, they are bisimilar.Proof. Let us take a coalgebra c : S ! F (S), coalgebra d : T ! F (T) and a pair ofstates s 2 S, t 2 T that satisfy the same formulas. We want to show that s and t arebisimilar. Let us form a relation R that contains all tuples (s0; t0), where s0 satis�es thesame formulas as t0. Evidently (s; t) is in R as well. All that is needed to do is to �nda function r such that the following diagramSc
��

R�Soo �T //r
��

Td
��F (S) F (R)F (�S)oo F (�T) // F (T)commutes.Suppose F = constA. Then the function r must make this diagramSc

��

R�Soo �T //r
��

Td
��A AidA idA Acommute. Since for any element (s; t) from R we know that for some a 2 A it holdsthat s c hnextia, it is also true that t d hnextia. Looking at the meaning of hnextia,we see that c(s) = a and d(t) = a. But then we can de�ne r((s; t)) = a and the diagramindeed commutes.Suppose F = Id . To make this diagramSc

��

R�Soo �T //r
��

Td
��S R�Soo �T // T

3.4. BISIMILARITY AND LOGICAL FORMULAS 29commute, we denote c(s) = s0 and d(t) = t0 for every (s; t) in R, de�ne r((s; t)) = (s0; t0)and show that s0Rt0. This requirement is equivalent to the requirement that s0 andt0 have to satisfy the same formulas. Because s and t satisfy the same formulas, itcomes immediately that s0 and t0 satisfy the same formulas too. Suppose s0 c andt0 1c . That would yield a contradiction, since it would imply that s c hnexti andt 1c hnexti .Suppose F = F1 � F2. The diagramSc
��

R�Soo �T //r
��

Td
��F (S) F (R)F (�S)oo F (�T) // F (T)commutes exactly when we set r = (r1 � r2) and the diagramSci

��

R�Soo �T //ri
��

Tdi
��Fi(S) Fi(R)Fi(�S)oo Fi(�T)// Fi(T)commutes for i 2 f1; 2g, where ci = �i Æ c and di = �i Æ d. To ensure that ri can reallybe constructed in a way that makes the preceding diagram commute, we prove thatfor every (s; t) in R, s ci ' if and only if t di ' for every '. Since we know thatkhnextih�ii kc = khnexti kci, it is su�cient to show that s c hnextih�ii if and onlyif t d hnextih�ii . We know that from the fact that s and t satisfy the same formulasfor c and d.Suppose F = GA. If we de�ne ca = eva Æ c, da = eva Æ d and ra = eva Æ r, then thediagram Sc

��

R�Soo �T //r
��

Td
��F (S) F (R)F (�S)oo F (�T) // F (T)

30 CHAPTER 3. MODAL LOGICcommutes if for every a 2 A the following diagramSca
��

R�Soo �T //ra
��

Tda
��G(S) G(R)G(�S)oo G(�T) // G(T)commutes. This comes from a rather technical derivation, but the idea should be clear.We are going to show a part of the derivation. To make this squareSc

��

R�Soo r
��F (S) F (R)F (�S)oocommute, it must hold that c Æ �S = F (�S) Æ r. Let z = (s; t), c(s) = f and r(z) = g.Then the following equations are equivalent:c Æ �S = F (�S) Æ r(8z 2 R) c Æ �S(z) = F (�S) Æ r(z)(8z 2 R) c(s) = F (�S) Æ r(z)(8z 2 R) f = F (�S)(g)(8z 2 R) f = G(�S) Æ g(8z 2 R) (8a 2 A) f(a) = G(�S)(g(a))(8z 2 R) (8a 2 A) eva Æ f = G(�S) Æ eva Æ g(8z 2 R) (8a 2 A) eva Æ c(s) = G(�S) Æ eva Æ r(z)(8z 2 R) (8a 2 A) eva Æ c Æ �S(z) = G(�S) Æ eva Æ r(z)(8a 2 A) eva Æ c Æ �S = G(�S) Æ eva Æ r(8a 2 A) ca Æ �S = G(�S) Æ ra:The last equation means that the following diagramSca

��

R�Soo ra
��G(S) G(R)G(�S)oo

3.4. BISIMILARITY AND LOGICAL FORMULAS 31must commute for every a 2 A. Doing the same procedure for the square with R andT , we show that �nding the function r is equivalent to �nding a function ra for everya 2 A. We then just de�ne r(z) = h and h(a) = ra(z) for every z and a. To show thats and t satisfy the same formulas under ca and da, we use the same argument as in theprevious case. If there was a formula that would distinguish s and t under ca and da,then it would distinguish them even under coalgebras c and d, which would lead to acontradiction.Suppose F = F1+F2. Then it must hold for every s0 2 S that either s0 c hnextih�1i>or s0 c hnextih�2i>, but not both of them, since in that case we would get c(s0) = (a; 1)and c(s0) = (b; 2) for some a 2 F1(S) and b 2 F2(S) , which yields a contradiction,because it would imply that 1 = �2(c(s0)) = 2. From the induction hypothesis we getthat R can be divided into two partitions, R1 and R2, where for (s0; t0) 2 Ri it holdsthat both s0 and t0 satisfy hnextih�ii>.Consider a demarking function ki : F (S) ! Fi(S), which is de�ned the same wayas the function ki in the proof of the Proposition 3.4.1, coproduct part. We can thende�ne ci = ki Æ c, di = ki Æ d for i = f1; 2g. If we ask the diagramSc
��

R�Soo �T //r
��

Td
��F (S) F (R)F (�S)oo F (�T) // F (T)to commute, it is equivalent to ask the diagramSci

��

Ri�Soo �T //ri
��

Tdi
��Fi(S) Fi(R)Fi(�S)oo Fi(�T)// Fi(T)to commute for i 2 f1; 2g, if we set r(zi) = (ri(zi); i), where zi 2 Ri. To show thatevery s and t satisfy the same formulas under ci and di, we use the same logic as in thepreceding cases. The proof is therefore complete.We have proven that LId is complete for polynomial functors. In fact, Proposi-tions 3.4.1 and 3.4.4 give the best result one can expect: modal logic for polynomial

32 CHAPTER 3. MODAL LOGICfunctors captures exactly the behaviour of the relevant automata. The above complete-ness result therefore meets the goals of the thesis.

Chapter 4Conclusions
We presented a logical calculus for description of behaviour of automata. The approachwe took was that of a modal (many-sorted) language for coalgebras. We showed thatthe given semantics of the language is sound with regard to bisimulation. We alsoproved a partial converse: the semantics is complete provided the construction of therelevant automata does not use use unbounded non-determinism.Thus, the proposed goals of the thesis have been ful�lled: each type of automatagiven by a polynomial functor admits a formal language that is capable to describe thebehaviour of the relevant class of automata.Due to the properties of our language, its applications could arise in the �elds offormal speci�cation and veri�cation of simple systems.The problems we have studied admit a natural generalisation. For example, onemight be interested in modal languages describing automata on a category, di�erentfrom the category of sets [11]. Another interesting area of research is to understand bet-ter how the modal language and its semantics arise naturally from logical connections,making a bridge between the category of coalgebras and the category of the underlyingpropositional logic [4], [8].

33

34 CHAPTER 4. CONCLUSIONS

Bibliography
[1] Henk Barendregt, Erik Barendsen, 2000. Introduction to Lambda Calculus, Lec-ture Notes available online at http://www.cs.ru.nl/ henk/courses.html[2] Michael Barr, Charles Wells, 1990. Category Theory for Computing Science,Prentice Hall.[3] Patrick Blackburn, Maarten de Rijke, Yde Venema, 2002.Modal Logic, CambridgeUniversity Press.[4] Marcello M. Bonsangue, Alexander Kurz, 2005. Duality for Logics of TransitionSystems, Lecture Notes in Comput. Sci., volume 3441, pages 455-469, Springer.[5] Brian F. Chellas, 1980. Modal Logic: An Introduction, Cambridge UniversityPress.[6] John E. Hopcroft, Rajeev Motwani, Je�rey D. Ullman, 2000. Introduction to Au-tomata Theory, Languages, and Computation (2nd Edition), Addison Wesley.[7] Bart Jacobs, 2005. Introduction to coalgebra. Towards Mathematics of Statesand Observations, available online athttp://www.cs.ru.nl/B.Jacobs/PAPERS/index.html[8] Bartek Klin, 2007. Coalgebraic modal logic beyond sets, Electron. Notes Theoret.Comput. Sci., volume 173, pages 177-201, Elsevier B. V., Amsterdam.[9] Alexander Kurz, 2001. Coalgebras and Modal Logic, Course Notes for ESSLI2001, available electronically at http://www.cs.le.ac.uk/people/akurz/cml.html35

36 BIBLIOGRAPHY[10] Saunders MacLane, 1994. Categories for the Working Mathematician, Springer,New York.[11] Larry Moss, Ignacio Viglizzo, 2005. Harsanyi Type Spaces and Final CoalgebrasConstructed from Satis�ed Theories, Electron. Notes Theoret. Comput. Sci.,volume 106, pages 279-295, Elsevier B. V., Amsterdam.[12] Martin Rössiger, 2000. Coalgebras, Clone Theory, and Modal Logic, Ph.D. dis-sertation, Dresden University of Technology.[13] J.J.M.M. Rutten, 2000. Universal coalgebra: a theory of systems, Theoret. Com-put. Sci., volume 249, pages 3-80, Elsevier B. V., Amsterdam.

Appendix AOn some mathematical constructions
A.1 Constructions on setsReader can consult [7] for in-depth treatment of the following constructions.Image of functionLet us have a function f : A ! B and a set X, which is a subset of A. The notationf [X] then stands for the set f [X] = fb j x 2 X; f(x) = bg.Inverse imageFor a function f , we denote f�1(z) = fx j f(x) = zg.Powerset functionThe powerset of a set A is de�ned as the set P (A) = fX j X � Ag.Let Q be a subset of A. If we have a function f : A! B, we can de�ne the powersetfunction P (f) : P (A)! P (B), de�ned as P (f)(Q) = f [Q].ProductThe product of two sets A and B, denoted by A� B, is de�ned as the set of orderedpairs f(a; b) j a 2 A; b 2 Bg. I

II APPENDIX A. ON SOME MATHEMATICAL CONSTRUCTIONSThe product of the functions f : A! B and g : C ! D is the function(f � g) : (A� C) ! (B �D):If f(a) = b and g(c) = d, then (f � g)(a; c) = (b; d).The product can be de�ned categorically by its universal property. Let A, B and Cbe objects from a category C . The object A � B and two projection morphisms �A,�B form together a product of A and B, if for every object C and morphisms C f�! Aand C g�! B there exists a unique morphism C p�! A�B. That means, if the followingdiagram A A� B�Aoo �B // BCfccGGGGGGGGG
g ;;wwwwwwwww

pOO��
�commutes. The dashed arrow indicates that the morphism p is unique.CoproductThe coproduct of two sets A and B, marked A + B, is de�ned as the set of orderedpairs f(a; 1) j a 2 Ag [f(b; 2) j b 2 Bg.The coproduct of the functions f : A! C and g : B ! D is the function(f + g) : (A+ B)! (C +D):If x = (a; 1), then (f + g)(x) = (f(a); 1). If x = (b; 2), then (f + g)(x) = (g(b); 2).Coproduct can be de�ned by an universal property as well. Moreover, its categoricalde�nition is dual to the de�nition of a product. This means that to de�ne the coproduct,we can take the commutative diagram de�ning the universal property of a product andreverse the orientation of the morphisms. In other words, the object A + B and twoinjection morphisms �A, �B are together a coproduct of A and B, if the followingdiagram

A.2. CURRYING IIIA �A //f ##GGGGGGGGG A+ Bc
���
�

� B�Boo g
{{wwwwwwwwwCcommutes for every C.A.2 CurryingCurrying is often used when we try to transform automata into coalgebraic form. Ba-sically it turns functions of many variables into a function of one variable [1]. Supposewe have a function f : (A� B) ! C;which gives us f(a; b) = c. If the arguments are a and b, the result is c. There isanother way to look at the function, though. We can view it as a function that takesonly one argument and returns another function. In our example, we could create afunction �:f : A! CB;for which the following holds: �:f(a) = g, where g is a function and g(b) = c. It isnot hard to prove that there is a bijection between f and �:f , and the bijection is,moreover, natural.

