
Czech Technical University in Prague

Faculty of Electrical Engineering

Department of Cybernetics

Master’s thesis

Smartphone as a Geometric
Measurement Tool

January 2011 Matej Horváth

Prohlášeńı

Prohlašuji, že jsem svou diplomovou práci vypracoval samostatně a použil jsem
pouze podklady (literaturu, projekty, SW atd.) uvedené v přiloženém seznamu.

V Praze dne

podpis

Acknowledgement

I would like to thank to everybody who enabled me to complete this thesis. Especially
to my supervisor prof. Ing. Jǐŕı Matas, Ph.D. and my advisors Ing. Michal Perd’och,
Mgr. Andrej Mikuĺık and RNDr. Zuzana Kúkelová, whose help, suggestions and overall
support significantly helped me in my work. Also, I would like to thank to the whole
Center for Machine Perception for supporting me during the time.

Abstrakt

Ćılem této diplomové práce bylo vytvořit univerzálńı aplikaci pro měřeńı geometrických
veličin s využit́ım algoritmů pro zpracováńı obrazu, běž́ıćı na mobilńı telefonech. V prvńı
kapitole jsou analyzovány obecně možnosti využit́ı mobilńıch telefon̊u pro měřeńı geomet-
rických veličin. Je zde představena předchoźı práce Mgr. Davida Stacha, na kterou moje
práce navazuje, a parametry obdobných aplikaćı. Daľśı část se zabývá možnými platfor-
mami pro běh aplikace a jsou vyjmenovány vlastnosti vybrané platformy. Třet́ı kapitola
popisuje použité algoritmy zpracováńı obrazu. Čtvrtá kapitola predstavuje samotnou ap-
likaci z pohledu uživatele. Daľśı část popisuje architekturu aplikace a vybrané algoritmy.
Dále následuje kapitola, která obsahuje výsledky testováńı programu z r̊uzných hledisek.
A posledńı dvě kapitoly shrňuj́ı dosažené výsledky, zkušenosti s vývojem a nastiňuj́ı daľśı
možnosti rozvoje a použit́ı aplikace.

Abstract

The aim of this master’s thesis was to create an universal mobile phone application for
measuring geometric quantities using computer vision algorithms. In the first chapter,
possibilities of measuring geometric quantities by mobile phones are analyzed. This chap-
ter also includes a section, where a previous work of David Stach, in which my work
continues, is described. Another chapter analyzes possible platforms for running such
software, and the chosen platform is presented. The third chapter describes used com-
puter vision algorithms and their roles. The fourth part reviews the application from the
user’s point of view. Another chapter contains the overall application architecture descrip-
tion, and selected algorithms are described in detail. The next chapter presents results
of application testing. And the last two chapters contain conclusions, and overviews of
possible future development.

Contents

1 Introduction 6
1.1 Smartphone As a Measurement Tool . 6
1.2 Requirements . 7
1.3 Previous Work . 7

1.3.1 David Stach’s Contribution . 7
1.3.2 Market Survey . 8

2 Runtime Environment 9
2.1 Platform . 9
2.2 Development Tools . 9

2.2.1 Microsoft Development Tools . 10

3 Image Recognition 11
3.1 Edge Detection . 11
3.2 The Hough Transform . 13
3.3 Shape Recognition . 14
3.4 Homography . 16

3.4.1 Estimation . 16
3.4.2 Image Transform . 17

3.5 The 4-Point Algorithm . 17
3.5.1 Geometry of Camera Pose From Four Points 17

4 Application Overview 19
4.1 Buttons . 20
4.2 Global screen . 21
4.3 Navigation . 21
4.4 Recognition . 23
4.5 Scene Views . 23
4.6 Measurements . 24
4.7 Loading and Saving Measurements and Images 28
4.8 Settings . 29

5 Application Architecture 30
5.1 General Problems and Solutions . 30

5.1.1 Native and Managed Code Cooperation 30
5.1.2 GDI Graphics . 30

5.2 PMLibrary . 31
5.3 BetterControls . 32

5.3.1 Bar . 32

1

5.3.2 Button . 33
5.3.3 ToggleButton . 33
5.3.4 CheckBox . 33
5.3.5 ComboBox . 33
5.3.6 LayeredPictureBox . 34
5.3.7 LayoutPanel . 35
5.3.8 NumericUpDown . 36
5.3.9 Supplementary Classes . 36

5.3.9.1 ContextMenu . 36
5.3.9.2 LabelVerticallyCentered 37
5.3.9.3 GDI . 37

5.4 PocketMeter . 38
5.4.1 State Machine . 38
5.4.2 Stylus Interactions . 40

5.4.2.1 Length Measurement . 42
5.4.2.2 Angle Measurement . 43
5.4.2.3 Area Measurement . 44

5.4.3 The .pmm File Format . 48
5.4.4 Artwork . 49

5.4.4.1 Icons . 49
5.4.4.2 Theme . 49

6 Test Results 50
6.1 Hardware Requirements . 50

6.1.1 Test Case 1-6 . 51
6.1.2 Test Case 7 . 52

6.2 Everyday Life Measurements . 53
6.2.1 Chimney . 54

6.2.1.1 The Embedded Measurement 54
6.2.1.2 The Main Measurement 55

6.2.2 Tree . 55
6.2.3 Wine Bottle Holder . 57

7 Conclusion 58

8 Future Work 60

A First Appendix 64

2

List of Figures

1.1 The David Stach’s PocketMeter . 8

2.1 A typical development setup . 10

3.1 An example of edge detection [15] . 12
3.2 A Hough transform of the image in Figure 3.1a[15] 14
3.3 An edge direction aware Hough transform of the image in Figure 3.1a[15] . 14
3.4 The recognized object with other edge lines[15] 15
3.5 The 4-point pose estimation problem [18] 18

4.1 The new PocketMeter . 19
4.2 Icon buttons . 20
4.3 The global screen . 21
4.4 The navigation box . 21
4.5 Zoom in: before, during and after . 22
4.6 The two recognition modes . 24
4.7 The two scene views . 25
4.8 The two scene views with the grid displayed 25
4.9 Freehand measurements . 26
4.10 Combined vertex-freehand measurements 26
4.11 Vertex measurements . 27
4.12 File Dialogs . 28
4.13 The Settings panel . 29

5.1 The PMLibrary project structure . 31
5.2 The BetterControls project structure . 32
5.3 A Button with icon . 33
5.4 A ComboBox . 34
5.5 The LayeredPictureBox basic principle 35
5.6 Flow layout . 36
5.7 A NumericUpDown . 36
5.8 A ContextMenu . 37
5.9 The application’s state transitions . 39
5.10 Possible stylus interactions . 40
5.11 Stylus interactions algorithm . 41
5.12 Length measurement - adding a new vertex 42
5.13 Length measurement - erasing an existing vertex 42
5.14 Length measurement - vertex operations 42
5.15 Angle measurement - adding a new vertex 43
5.16 Angle measurement - erasing an existing vertex 43

3

5.17 Angle measurement - erasing an existing vertex 43
5.18 Angle measurement - vertex operations . 44
5.19 Area measurement - adding a new vertex 45
5.20 Area measurement - moving an existing vertex 45
5.21 Area measurement - erasing an existing vertex 45
5.22 3 variants of the point-to-line-segment distance 46
5.23 Area measurement - vertex operations . 47
5.24 The .pmm file XML structure . 48
5.25 The Theme XML structure . 49

6.1 Native code test scenes . 52
6.2 Time of inclusion vs. number of existing vertices 53
6.3 The embedded measurement - the window scene 54
6.4 The chimney scene . 55
6.5 The tree scene geometry . 56
6.6 The tree scene . 56
6.7 The wine bottle holder scene . 57

8.1 A proposed display of measurement results 60

4

List of Tables

2.1 HTC Touch HD - Technical details . 10

5.1 The application’s states . 38

6.1 HTC Touch HD - Technical details . 50
6.2 HTC Touch Diamond - Technical details 50
6.3 HTC P4350 - Technical details . 51
6.4 Native code performance, (*) - manual recognition 51

5

Chapter 1

Introduction

Geometric measurements are most probably the oldest kind of measurements undertaken
by human beings. In the earliest times, there were just simple A to B length mea-
surements. As the time went by, new quantities were discovered and new measurement
techniques were invented. Nowadays we can measure a plenty of quantities in various ge-
ometric spaces. The most common are measurements in 2 dimensions. These quantities
have been measured since the oldest times mechanically by contact measurement devices,
such as rulers or protractors. Quantities which cannot be easily measured, because e.g.
a measurement tool for them have not been invented yet, are usually computed from the
former ones by some set of relevant mathematical formulas.

The aim of my work was to modernize these measurements, make them more precise
and easily accessible. For this purpose, I decided to utilize, currently higher-class, cell
phones and turn them into a universal, always available measuring tool.

1.1 Smartphone As a Measurement Tool

As written in the introduction, in this work I’m using cell phones called smartphones
as geometric measuring tools. The online edition of the Encyclopædia Brittanica defines
smartphone as: “Mobile telephone with a display screen (typically a liquid crystal display,
or LCD), built-in personal information management programs (such as an electronic cal-
endar and address book) typically found in a personal digital assistant (PDA), and an
operating system (OS) that allows other computer software to be installed for Web brows-
ing, e-mail, music, video, and other applications. A smartphone may be thought of as
a handheld computer integrated within a mobile telephone.” ... “Smartphones contain
either a keyboard integrated with the telephone number pad or a standard “QWERTY”
keyboard for text messaging, e-mailing, and using Web browsers. “Virtual” keyboards can
be integrated into a touch-screen design. Smartphones often have a built-in camera for
recording and transmitting photographs and short videos. In addition, many smartphones
can access Wi-Fi “hot spots” so that users can access VoIP (voice over Internet protocol)
rather than pay cellular telephone transmission fees. The growing capabilities of hand-
held devices and transmission protocols have enabled a growing number of inventive and
fanciful applications—for instance, “augmented reality,” in which a smartphone’s global
positioning system (GPS) location chip can be used to overlay the phone’s camera view
of a street scene with local tidbits of information, such as the identity of stores, points of
interest, or real estate listings.”[8]

It’s clear smartphones offer a vast amount of ways how to measure geometric quantities,

6

among others also applications of computer vision, for which I decided in this thesis.
Their cameras are not perfect, but good enough for everyday life measurements. Their
computational power nowadays is high enough for running advanced high-demanding
algorithms, which computer vision algorithms in general are. Another positive feature of
these devices is their incorporation of touchscreen technologies, which makes user-device
interaction much easier. These features create a potential for smartphones to become
universal measuring tools. As mobile devices they can be carried almost anywhere, and
their long-time decreasing cost and widespread use make the available for a significant
amount of people, with a future overview of practically everyone possessing a mobile
phone [4] [1] [12].

1.2 Requirements

A system, which is supposed to run computer vision algorithms necessarily has to include
these parts:

• computer system

• image input subsystem

• image output subsystem

The first requirement assumes the computer system has enough computational power
for running the algorithms in a reasonable time. The second requirement is in case of
smartphones satisfied either by camera, and/or input from a file stored on some storage
device, e.g. a flash memory, or a miniature hard disk drive. Image output is in case
of smartphones usually done on their screens, or to their storage devices. Another very
important requirement, but in fact optional, is the requirement of a user input subsystem
with easy positioning capabilities. This is case of smartphones satisfied by the use of
touchscreen interfaces.

Requirements specific for the developed software are described later in chapter 6.

1.3 Previous Work

1.3.1 David Stach’s Contribution

The previous work was done predominantly by David Stach in his master’s thesis [15], also
under supervision of doc. Dr. Ing. Jǐŕı Matas. Mr. Stach presented and developed there
the core functions of the computer vision algorithms used in my thesis, most importantly
the Hough transform and detection of rectangles in transformed images. These functions
are included in a library file called PMLibrary.dll written in the C++ language. He also
developed a very simple graphical user interface written in C# and naturally running under
the .NET Compact Framework from Microsoft. An important “heritage” of his thesis,
which significantly influenced my work is the choice of the Microsoft Windows Mobile
operating system, the .NET Compact Framework and the Microsoft Visual Studio as the
program’s runtime and development environment.

My work was more focused on the user interface, which I developed from scratch,
and extensions and corrections of the computer vision library. The aim was to make the
program more commercially attractive and user friendly.

7

Figure 1.1: The David Stach’s PocketMeter

1.3.2 Market Survey

Before any work was done, I did a simple survey of the state-of-the-art commercial solu-
tions. To have as many inputs as possible, I decided for the Apple App Store, which is
nowadays the most vital smartphone software market place.

I found 6 applications in total, none of them using any kind of image recognition.
There were several approaches, but the principle in all of them was marking a known
distance by hand, and then marking the unknown. Some applications let the user input
the known dimensions directly, some demanded the user to fit a template silhouette to an
appropriate object in the scene. Especially the latter approach cannot perform very well
by means of measurement precision, because there is just one silhouette for a whole class
of objects, e.g. sedan cars.

Another feature common to these applications was that they were not counting with
any other measurements than those in a single x-y plane, perpendicular to the camera’s
axis. Any kind of breaking these constraints would result in even more measurement
inaccuracy and growth of measurement error.

By means of included functionality, all the considered applications where offering just
simple A to B length measurements. Measurements of areas, angles or 3D distances would
be impossible, or would demand the user to compute them by hand.

8

Chapter 2

Runtime Environment

2.1 Platform

As stated in the previous chapter (Chapter 1), the chosen hardware platform is a smart-
phone capable of running 3rd party software, equipped with camera, storage subsystem
and touchscreen display. According to section 1.3, the chosen software platform is .NET
Compact Framework running on Microsoft Windows Mobile operating system.

This platform currently occupies approximately 10% of the global smartphone OS
market [12], and it’s expected to shrink in the years to follow [12]. Since one of the
purposes of my work was to make the software more commercially attractive, in the
beginning of the development, I was also considering other platforms, such as the Apple’s
iPhone, Google Android, or Symbian. I decided to remain on the .NETCF and Windows
Mobile, because some work has already been done before by David Stach and I assumed,
in any case, it would not be impossible or just unacceptably complicated to rewrite the
program for any other platform.

2.2 Development Tools

Because of the previous work of David Stach and the decision to remain on Microsoft
Windows Mobile and the .NET Compact Framework, the used programming language for
the user interface and a minority of image processing functions was the C# programming
language, the majority of image processing code is written in C++ and is included int the
PMLibrary.dll.

There were three main reasons for splitting the project to two programming languages
and two software platforms. One reason is that the C# programming language along
with the .NET Framework is marketed by Microsoft as, and also widely believed to be
a tool for rapid development of software. The second reason for the split is the widely
believed rich offer of features in Microsoft’s development tools, which are supposed to
create a comfortable development environment. The last reason for splitting the project
was a fear of slow performance of the .NET Compact Framework and the C# for running
computer vision, and in general high-demanding algorithms. Due to this reason, the vast
majority of the image processing functions is written as a native code, not as the user
interface, which is running in the .NET’s Common Language Runtime virtual machine.

9

2.2.1 Microsoft Development Tools

Development of an application in C# under the .NET Compact Framework is practically
possible only in the Microsoft’s Visual Studio with Microsoft Device Emulator or a real
device with the Windows Mobile operating system installed. Possibilities for develop-
ment of an application or a library in C++ are more diverse, there is a lot of integrated
development environments (IDEs), but since the C# part of the project was tied to the
Visual Studio, I decided also in this case for this IDE. Most of the work was done in
Microsoft Visual Studio 2008 Professional, with Microsoft Windows Mobile in version 6.1
Professional, running in Microsoft Device Emulator, or on a real device, and with the
.NET Compact Framework in version 3.5 . The real device was mostly a HTC Touch HD
borrowed from doc. Matas, connected via a USB cable.

Processor Qualcomm® MSM 7201A™ 528 MHz
ROM 512 MB
RAM 288 MB

Display
3.8-inch TFT-LCD flat touch-sensitive screen with 480 x 800
WVGA resolution

Camera Main camera: 5 megapixel color camera with auto focus
Operating System Windows Mobile® 6.1 Professional

Table 2.1: HTC Touch HD - Technical details

Developer

Microsoft Visual

Studio

Microsoft

Device Emulator

HTC Touch HD C++

C#

Figure 2.1: A typical development setup

10

Chapter 3

Image Recognition

There are two main branches of object recognition algorithms, one based on region-based
segmentation, the another based on edge-based segmentation. The first method consid-
ered was based on region-based segmentation, more specifically on Watershed segmenta-
tion, which is in theory a quite straightforward concept. But because the development of
this kind of algorithms is a complex task, with many of the early methods resulting in
either slow or inaccurate execution [14], the implemented algorithm was a very simple one
due to constrained computational power of smartphones, and in the end performed well
in strict laboratory conditions, but poorly in real life setups. The program for example
required the object to highly contrast with it’s background, to have only one color, and
even just very ordinary reflections on the object’s surface were causing the segmentation
to fail. Therefore another approach was necessary. The decision was made in favor of
edge-based recognition algorithms.

3.1 Edge Detection

Edge detection is the first step of the implemented image recognition algorithm. Edges
are pixels where the image color intensity function (brightness) changes abruptly [14]. In
other words, an edge is a property attached to an individual pixel and is calculated from
the image function behavior in a neighborhood of that pixel. It is a vector variable with
two components, magnitude and direction. The edge magnitude is the magnitude of the
gradient, and the edge direction φ is rotated with respect to the gradient direction ψ by
-90°. The gradient direction gives the direction of maximum growth of the function, e.g.,
from black f(i, j) = 0 to white f(i, j) = 255 [14].

Sharp changes in image brightness are interesting for many reasons. Firstly, object
boundaries often generate sharp changes in brightness - a light object may lie on a dark
background, or a light object may lie on a dark background. Secondly, reflectance changes
often generate sharp changes in brightness which can be quite distinctive - zebras have
stripes and leopards have spots. Cast shadows can also generate sharp changes in bright-
ness. Finally, sharp changes in surface orientation are often associated with sharp changes
in image brightness [5].

11

(a) The original scene (b) The same image with edges detected

Figure 3.1: An example of edge detection [15]

Edge detectors are a collection of very important local image pre-processing methods
used to locate these changes in the intensity function. In these detectors, there are indi-
vidual gradient operators that examine pixel small local neighborhoods. These operators
are in fact convolutions, and can be expressed by convolution masks. Operators which
are able to detect edge direction are represented by a collection of masks, each corre-
sponding to a certain direction [14]. In the beginning the Sobel operator was considered,
but the tests revealed the Prewitt operator is giving much better results, therefore a 5x5
Prewitt operator is used. Here the gradient is estimated in eight (for a 3 x 3 convolution
mask) possible directions, and the convolution result of greatest magnitude indicates the
gradient direction. More information about the operators can be found in [14].

h1 =

−2 −2 −2 −2 −2
−1 −1 −1 −1 −1
0 0 0 0 0
1 1 1 1 1
2 2 2 2 2

 (3.1)

The 5x5 Prewitt operator for one direction

h1 =

−1 −2 −1
0 0 0
1 2 1

 (3.2)

The 3x3 Sobel operator for one direction

12

3.2 The Hough Transform

If an image consists of objects with known shape and size, segmentation can be viewed
as a problem of finding this object within an image. One very effective method that
can solve this problem is the Hough transform, which can even be used successfully in
segmentation of overlapping or semi-occluded objects [14] .

The input to the transform is typically an image of detected edges in some original
image. These points of interest have a value other than the value of the scene background,
e.g. the points of interest have value 1, the background pixels have value 0. The basis
for the Hough transform is the knowledge of the shape of the object we are looking for,
and it’s parametrization. For example a 2D line can be characterized by an equation
0 = ax + by + c , where x and y are coordinates of points lying on the line, and a, b
and c are the line parameters. The principle of the Hough transform is then moving the
shape across the input image, so that the shape’s defining point will be in each step at
a position of a different interest point (those with value 1), so that it will walk through
all of them. A defining point can be e.g. in case of circles their center, in case of lines a
point lying on them. When the shape is at an interest point position, locations of points
of the shape are computed for several pre-defined combinations of it’s parameter values.
In case of lines defined as above, it would be parameters a, b and c. In theory there are in
general infinitely many combinations of values, therefore in real implementations of this
algorithm, finite sets of value combinations are used. The number of all interest points
lying at the same position as the points of the shape is then stored for every parameter
setting. These numbers are in each step summed with previous numbers belonging to the
same parameter setting, regardless of the defining point positions, and altogether create
a frequency map of parameter settings, which is the final transformed image. For the line
example, the map would have 3 dimensions corresponding to the 3 parameters a, b and
c. The local maximums in this image (frequency map) are then those parameter settings
which cover the most interest points, which means the shapes with these parameters are
the best approximations of the shapes behind the interest point (edge) images. This
also means the edge points of an object don’t have to create a solid path, they may be
interrupted, and yet, the transform is able to find the underlying shape.

A Hough transform of the image in Figure 3.1a with line parametrization
xcosϕ + ysinϕ = r is shown in Figure 3.2. A Hough transform of the same image, with
the same line parametrization, but with considering edge directions by accepting just
edge pixels with an edge angle in some certain interval, is shown in Figure 3.3. The
edge directions are obtained from the edge detection described in section 3.1 by applying
the Prewitt operator in certain directions. The result of applying this constraint is a
transformed image with more distinct local maximums and therefore further processing
is easier in this case.

13

Figure 3.2: A Hough transform of the image in Figure 3.1a[15]

Figure 3.3: An edge direction aware Hough transform of the image in Figure 3.1a[15]

3.3 Shape Recognition

In this step of a rectangular object recognition is the recognition of the rectangle itself.
The input here is the output of the Hough transform - the line parameters with the best
edge approximations. A set of rules is applied to these data and the most promising
(possibly deformed) rectangles defined by their edge points are returned.

14

The lines have to fulfill these requirements to be marked as lines of the object we are
looking for:

1. A line has to cover at least some number of edge points

2. A line may have at most a certain amount of perpendicular edges in it’s neighbor-
hood

3. Opposite lines of a convex quadrangle have to be parallel, with some diversion
tolerance

4. Opposite lines of a convex quadrangle have to have opposite edge directions

5. Opposite lines of a convex quadrangle have to have some minimal distance between
them

6. The other sides of a convex quadrangle have to be perpendicular to the previously
found two lines, with some diversion tolerance

7. These lines have to fulfill the same requirements as the previously found ones

8. A valid convex quadrangle is that, which has some certain side ratio

The purpose of the first two constraints is to eliminate inferior lines and therefore
speed-up the computation. The next five constraints are there to find potential convex
quadrangles. The opposite lines have to have opposite edge direction, because one line
has to lay on a transition form the background to the object, and the another has to
lay on a transition from the object to the background. The last constraint is there to
eliminate the most improbable and therefore inferior quadrangles. The rectangle corner
points are then computed as intersections of those side lines.

Figure 3.4: The recognized object with other edge lines[15]

15

3.4 Homography

Homography is any mapping Pd → Pd that is linear in the embedding space Rd+1. It’s
also known as collineation or projective transformation [14].

In case of this thesis, homography is used to transform raw images supplied by the
image inputs (e.g. a camera) to bird view, so that it is possible to undertake measurements
even when the measurement plane is not perpendicular to the camera axis.

If we consider a 2 dimensional space of images taken by a smartphone camera, the
basic problem to be solved when looking for a homography is to find a vector ~a:

~a = [a11, a12, a13, a21, a22, a23, a31, a32, a33] (3.3)

by solving the equation:

u11 u12 1 0 0 0 −x11u11 −x11u12 −x11
0 0 0 u11 u12 1 −x12u11 −x12u12 −x12
u21 u22 1 0 0 0 −x21u21 −x21u22 −x21
0 0 0 u21 u22 1 −x22u21 −x22u22 −x22
u31 u32 1 0 0 0 −x31u31 −x31u32 −x31
0 0 0 u31 u32 1 −x32u31 −x32u32 −x32
u41 u42 1 0 0 0 −x41u41 −x41u42 −x41
0 0 0 u41 u42 1 −x42u41 −x42u42 −x42

~aT = 0, (3.4)

where xi1,2 and ui1,2 are coordinates of corresponding n points (i ∈ 〈1;n〉) in the images.
The homography matrix is then:

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 . (3.5)

Transformation of a point with coordinates u1,2 in one image to coordinates x1,2 in
another image is then:

~xT = A~uT. (3.6)

The opposite transformation of a point, from coordinates x1,2 in the second image to
coordinates u1,2 in the first image is then:

~uT = A−1~xT, (3.7)

while

~x = [x1x3, x2x3, x3] ~u = [u1u3, u2u3, u3]. (3.8)

[7]

3.4.1 Estimation

Homography can be computed by solving the equation (3.4) e.g. by the Gaussian elimi-
nation. For this, at least 4 point correspondences have to be known. In case of this work,
those are the 4 corner points of the known object in the raw and bird view image.

16

3.4.2 Image Transform

Raw image can be transformed to bird view according to formula 3.7, where the x1,2 are
the points of the bird view image, and the u1,2 are the points of the raw image. Points in
the bird view image corresponding to transformed points with coordinates not in the raw
image, are supplied by a default background color value, e.g. black.

3.5 The 4-Point Algorithm

Camera pose is determined by the 4-Point algorithm first introduced by Lihong Zhi and
Jianliang Tang in [18]. The algorithm has several advantages: it’s linear, stable, in general
provides a unique solution and at last, but not at least, it’s easy to implement.

3.5.1 Geometry of Camera Pose From Four Points

Before any pose computation can be done, according to [6] in any case these preconditions
have to be necessarily satisfied:

• calibrated camera

• model with feature-points

• corresponding points on the screen (image-plane)

In the camera pose determination we want to obtain a rotation matrix and a translation
vector that minimize the geometric reprojection error:∑

i

‖R~pi + ~t− λi~qi‖/λi → min., (3.9)

where ~pi is a set of world points, ~qi is a set of normalized image points, R is a rotation
matrix, ~t is a translation vector and λi models the depth of a point from the given view
[3].

For this we will have to know at least 4 points as stated in [13]. This number of points
solves the ambiguity present when solving the problem with less points. According to [16]
for example, 3 points generate up to four possible solutions, which makes them insufficient
for general pose estimation. Therefore, in the following text I’m considering just the case
of camera pose determination from 4 points.

Let the P be the calibrated camera center, A, B, C, and D the control points. Let p =
2cos∠(BPC), q = 2cos∠(APC), r = 2cos∠(APB), s = 2cos∠(CPE), t = 2cos∠(APE),
u = 2cos∠(BPE). The 4-point pose estimation equation system is then [18]:

X2
1 + X2

2 − X1X2r − |AB|2 = 0
X2

1 + X2
3 − X1X3q − |AC|2 = 0

X2
2 + X2

3 − X2X3p − |BC|2 = 0
X2

1 + X2
4 − X1X4s − |AE|2 = 0

X2
4 + X2

3 − X3X4t − |CE|2 = 0
X2

2 + X2
4 − X2X4u − |BE|2 = 0

(3.10)

17

P

X4

X3
X1X2

A E

Figure 3.5: The 4-point pose estimation problem [18]

The computed camera-point distances Xi are used to estimate coordinates of the 3D
reference points in camera-centered 3D frame: ~Pi = ~XiK−1ui. Then the absolute orienta-
tion is computed. The translation and scale is determined directly after determining the
rotation [18].

18

Chapter 4

Application Overview

From the user’s point of view, the application is split to 3 sections, the upper section, the
middle section, and the lower section. In figures below you can see the application both
after start (4.1a) and in use (4.1b) running in the Windows Device Emulator as it would
look in a real device. Images in the following sections will show just the screen, and not
the whole device.

(a) After start (b) In use

Figure 4.1: The new PocketMeter

The upper section’s purpose is mainly to display instructions for the user and the
measurement results. It also contains two general purpose buttons for zooming the image
in (Figure 4.2k) and out (Figure 4.2j).

The middle section serves as the main part of the application where most of the work
is done. It displays either an image with measurements, or a panel with various controls.

19

The lower section harbors several buttons, by which the application is controlled.
Detailed descriptions of these buttons are in the following sections.

4.1 Buttons

Here is a general description of all buttons with icons in the application:

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m)

Figure 4.2: Icon buttons

a. Take a picture with the smartphone’s camera
b. Run an image recognition
c. Reset all measurements and return zoom to the default setting
d. Run length measurement
e. Run angle measurement
f. Run area measurement
g. Load or save a measurement or an image
h. Display application settings
i. Quit the application
j. Zoom out
k. Zoom in
l. Erase one vertex in a measurement

m. Erase a whole measurement

20

4.2 Global screen

The global screen is the root of all user interaction with the application. From here, users
can take a photo, load and save measurements, run recognition, switch to various measure-
ment modes, change application settings, navigate in the image, reset the measurement
or exit the application.

Figure 4.3: The global screen

4.3 Navigation

Users can navigate in an image any time it’s displayed. The situation overview is depicted
in a navigation box in the upper left corner (Figure 4.4). For changing the window
position in the image, the user can simply drag the image, or move the rectangle in the
navigation box. In case of freehand input, dragging image is disabled, but navigation by
the navigation box remains.

Figure 4.4: The navigation box

For zooming in and out, the application offers two buttons in it’s upper section (Figures
4.2k and 4.2j). Both of these buttons work in a double regime: if a button is hold just

21

shortly (up to 1 second), the image is zoomed in or out just over one step, if it’s hold
over a longer period of time, in case of zoom out, the whole image is fitted to the screen,
in case of zoom in, the user is asked to mark a rectangle to which the application should
zoom, by marking it’s two corners laying on the same diagonal line. The step size can be
configured in the application settings shown in section 4.8.

(a) Waiting for the rectangle (b) Zooming in

(c) After zooming in

Figure 4.5: Zoom in: before, during and after

22

4.4 Recognition

Users can choose one of two recognition modes, automatic or manual. In the automatic
mode the application tries to find the known object automatically. In the manual mode,
users are asked to mark 4 corners of the known object. If the user places a corner marker
to a wrong place, he/she can still move it to the right location. After these markers are
at the right places, the input can be confirmed by touching the screen once more as if
placing another marker. The automatic mode falls to manual mode, if the program is
unable to find the known object in the loaded image. There are in total 3 predefined
known objects: a credit card, an A4 paper, and a 100CZK banknote. Beside these, users
are also able to input the object dimensions directly (Section 4.8).

4.5 Scene Views

After the known object is recognized, the user is able to switch between two scene views:
a raw view and a bird view. The raw view shows the scene as it was taken by the cam-
era. The bird view shows the image transformed to a perspective where the measurement
plane is parallel to the camera plane, or in other words, the measurement plane is perpen-
dicular to the camera’s main axis. Both views are equal by means of available application
functionality, i.e. users are able to undertake measurements, move and zoom the image,
etc. in both of them. Switching between the two views can be done in the application
settings (Section 4.8).

In the application settings, users can also display a scene grid. Cell distances can be
configured there as well - the distance is equal to a unit length of the selected grid scale
unit (Section 4.8). Every fifth line is thicker than the rest of the grid.

23

(a) After automatic recognition (b) During manual recognition

(c) After manual recognition

Figure 4.6: The two recognition modes

4.6 Measurements

Users are able to measure 3 quantities in total: distance, angle and area, all in one plane.
The camera and measurement planes are not expected to be parallel, an angle between
them is considered. In all three measurements, users are able to move and zoom the
image, and input, move and erase measurement points. In case of length and area, users
can choose between input by vertices, or a freehand input (can be combined). Users can
also change units of measurements. Both of these options can be found on the Settings

24

(a) Raw (b) Bird

Figure 4.7: The two scene views

(a) Raw (b) Bird

Figure 4.8: The two scene views with the grid displayed

panel 4.8. In case of incorrectly placed vertex, the user is able to either erase the vertex by
pushing the appropriate button (Figure 4.2l), erase the whole active measurement (Figure
4.2m), or drag the vertex to a new location.

25

(a) Length (b) Area

Figure 4.9: Freehand measurements

(a) Length (b) Angle

Figure 4.10: Combined vertex-freehand measurements

26

(a) Length (b) Angle

(c) Area

Figure 4.11: Vertex measurements

27

4.7 Loading and Saving Measurements and Images

Images and measurements can be loaded and saved in the File panel. The panel contains 3
buttons: “Load”, “Save As” and “Save”. The user is able to save and load either a whole
measurement, or just an image. Measurements are stored as an XML file with extension
.pmm (PocketMeter Measurement) and a PNG image file. Images can be stored as and
loaded from PNG or JPEG files. Due to .NET Compact Framework’s restrictions, it’s
possible to load and save files anywhere elsa than the \\My Documents\\ directory.

(a) Open (b) Save As

(c) The File Panel

Figure 4.12: File Dialogs

28

4.8 Settings

The application options can be found in the Settings panel. The panel is split to two
sections, the upper section contains frequently used options, the lower section, which can
be displayed or hidden by pushing the Show More button, contains additional options.

(a) Upper section (b) Lower section

Figure 4.13: The Settings panel

In the upper section users can set the reference object dimensions either directly, or
by choosing one of the predefined objects. Then, they can set there the recognition type
to automatic or manual, select input method to vertex or freehand input, units used in
measurements, grid scale (note that the grid cell width and length is equal to unit length
of the selected grid scale unit), and finally whether the grid should be displayed or not
and whether the scene should be displayed from the raw or, from the bird perspective.

In the lower section, users can typically set appearance options, but also zoom step
size and the active circle radius, which is an imaginary touch sensitive circle around every
marker (Section 5.4.2).

29

Chapter 5

Application Architecture

From the developer’s point of view, the program is split to two main parts. The first one
is a so called managed code[17], it’s written in the C# language running in the Microsoft
.NET Common Language Runtime virtual machine, the second part is native code written
in the C++ programming language.

The native code contains image processing and object recognition functions, and it’s
included in a dynamically linked library (DLL) called PMLibrary.dll.

The managed code contains predominantly the graphical user interface (GUI) of the
application, but also some simple graphic functions for cases when using native code would
not pay off. This situation occurs, when the amount of processed data is relatively small.
In this case, data transfers between managed and native code would make up most of the
execution time.

5.1 General Problems and Solutions

Most of the problems in development were related to the .NET Compact Framework itself.
It does not include so much functionality as the desktop .NET branch, and programs
written in it are relatively slow compared to native programs. In this section I will focus
on the latter problems.

5.1.1 Native and Managed Code Cooperation

Because of the poor .NET Compact Framework speed performance, the majority of the
image processing functions was written in the C++ language. Since the main part of the
application is managed code written in C# , data transfers between these two parts have
to be done. The interfacing functionality is included in a class Lib.Gfx.TransApi on
the side of the managed code, where functions from the PMLibrary.dll library are being
called.

5.1.2 GDI Graphics

Another part, where the .NET’s speed performance was an issue, was the C# code alone.
Here, functions dealing with graphics are called frequently. These functions are charac-
terized by relatively large amounts of data which they process. As the .NET performs
poor in speed, and users demand program reactions in some reasonable time, I had to
look for an another solution. I solved this problem by using the Windows native graphics

30

API called Graphics Device Interface, or the GDI. All GDI functions are available in a
Windows Mobile library called coredll.dll. Most notably, from this library I’m us-
ing the well-known functions BitBlt() and StretchBlt() instead of the .NET function
drawImage(), which enabled me to significantly accelerate image drawing in the applica-
tion to the present speed. With the BitBlt() and StretchBlt() functions I’m able to
get almost instant responses, while the drawImage() function is approximately 10 times
slower.

5.2 PMLibrary

This library file contains most of the image processing functions. It is mostly a work
of David Stach, but I also made some contributions. The code is optimized for fast
image processing on mobile devices. Before further processing, images are downsized and
transformed to gray scale, which significantly reduces the amount of data and in the
end, also the processing time. Another speedup is achieved by not using mathematical
functions from libraries, but searching their values in pre-calculated tables. This way is
for example the sqrt(), or the trigonometric functions done.

One of my contributions, among others, is switching the whole design from integers
to real numbers. David Stach’s reason for using integers was to speedup the functions,
but the most significant drawback of using integers is the creation of rounding error. This
was probably not a problem in case of David’s work, but as I kept adding more advanced
measurements, in particular cases, the accumulated error was unacceptably high, or was
even causing the application to malfunction.

Figure 5.1: The PMLibrary project structure

31

5.3 BetterControls

The BetterControls is a subproject of the new PocketMeter project, which initially was
not expected to exist. It emerged as the number of classes inheriting from the .NET
Compact Framework’s System.Windows.Forms package classes became significant. The
reason for this is the major exclusion of methods, attributes, classes and packages in the
.NET Compact Framework, which are present normally in the desktop .NET branch, or
in many other frameworks. The subproject is not meant to be a replacement of the .NET
Compact Framework’s System.Windows.Forms package, but rather a supplement fit for
the demands of this thesis. The components were created in a slightly universal fashion,
but not entirely. Functionality which is not necessary for the project and would take a
significant time to implement, was omitted.

Figure 5.2: The BetterControls project structure

5.3.1 Bar

Bar is a simple class created by inheriting from the class System.Windows.Forms.Panel.
It’s purpose is to display a one pixel wide black border around the control. Whether a

32

border is displayed on a particular side is defined by four boolean properties of instances
of this class.

5.3.2 Button

This class is as it’s name suggests a simple button. The reason for creating it was the lack
of icon support in the .NET’s System.Windows.Forms.Button class. Basically it has two
states, released and pushed.

There are 4 bitmaps in the class that have the same dimensions as the control. One
bitmap stores the released button look, second bitmap stores the pushed button look,
third bitmap stores the disabled button look and finally the fourth stores the actual
button look. These bitmaps are recreated after every change of an instance’s parameters,
otherwise they remain unchanged and serve as a caches of what should be drawn in the
standard method OnPaint(). This approach creates faster controls than if they are being
drawn dynamically.

Except an icon, a Button instance can also display text, or have rounded edges.
Basically there are 5 colors, a base color, a background released color, a background
pushed color, a foreground released color, and a foreground pushed color. Base color lays
on the lowest layer which cannot be rounded, back colors lay on the middle layer which
can be rounded, and finally foreground colors are the colors of the possible button text.
These properties can also be controlled via the instance’s public parameters.

(a) Released (b) Pushed (c) Disabled

Figure 5.3: A Button with icon

5.3.3 ToggleButton

The ToggleButton class inherits from the class Button, and does nothing else than di-
viding the pushed-to-click frequency by two, i.e. it remains pushed after a first click, and
is released after another, second click. This component is completely missing in the .NET
Compact Framework.

5.3.4 CheckBox

The CheckBox class differs from the CheckBox in the .NET framework by the ability to
define it’s colors. These color are then loaded from the application specific theme, instead
of the system theme.

5.3.5 ComboBox

The ComboBox class is a replacement for the .NET’s ComboBox, but it doesn’t inherit
anything from it, it’s built from scratch. Basically it contains the same functionality as

33

the .NET’s ComboBox, but additionally developers are able to define their own colors and
therefore use an application theme, and unlike the .NET’s ComboBox, it’s menu is able to
hold also items other than string. This means a developer are able create for example a
color picker combo box, where items would be nothing but color.

The menu of this control is a single class in the BetterControls project. It’s located
in the package Supplementary and it’s name is ContextMenu. More about this component
can be found in Section 5.3.9.1.

(a) Closed (b) Opened

Figure 5.4: A ComboBox

5.3.6 LayeredPictureBox

LayeredPictureBox is a class meant as a replacement of the .NET’s PictureBox class.
The initial reason for creating this class was lack of a display component with support
of layers in the .NET Compact Framework. The other reason, which emerged later in
development was the need for a component for fast image displaying. Drawing images
with the .NET’s methods showed up to be very slow, therefore drawing graphics with the
Windows native API, the GDI, became necessary (Section 5.1.2).

The LayeredPictureBox contains two layers, one layer where a background image is
located, and an upper layer, where shapes, such as lines, circles, or rectangles are being
drawn. These shapes are stored in form of a list, in which the particular shape instances
are objects. The final image is generated as a composite of these two layers, where the
background image is drawn first, and then the shapes from the list are drawn onto it.
This composite bitmap is then displayed in the OnPaint() method.

This approach has several advantages, most importantly, it’s possible to erase a par-
ticular shape instance from the final image. The shape has to be deleted from the shape
list first, then the whole component is redrawn in the OnPaint() method. The result is
the same image as before, but without the shape instance.

Because it’s possible to control redrawing of the component, it’s also possible to erase
several shapes in a batch and when all operations are done, redraw the final image. This
way, erasing several shape instances is made a very fast operation, because the whole
image doesn’t need to be recreated every time a shape is erased.

Another improvement which makes the component even faster is the so called fast
mode. In this mode, an external entity is allowed to draw to the component’s graphics
directly, instead of storing the drawings to the component’s background bitmap. After-
wards, when the fast mode is not necessary, the final background image should be stored
to the component’s background bitmap by calling an appropriate method, otherwise all
changes would be lost.

34

LayeredPictureBox

Final ImageBackground Image

Plotter

Shape ListLine

Circle

Filled Circle

Rectangle

Filled Rectangle

Draw Graphics

Get Next Shape

Add/Remove Shape

Figure 5.5: The LayeredPictureBox basic principle

5.3.7 LayoutPanel

LayoutPanel is an extension of the .NET’s System.Windows.Forms.Panel class. It adds
a few simple layout management features, as the .NET Compact Framework doesn’t
contain any layout manager at all. The class contains a flow layout manager and a design
without a layout manager (none).

A flow layout manager arranges components in a directional flow, much like lines of
text in a paragraph. It arranges components horizontally until no more components fit on
the same line, then it places them on another line.[9]

35

1. element
2. element

3. element

4. element 5. element 6. element 7. el.

8. element

Figure 5.6: Flow layout

5.3.8 NumericUpDown

NumericUpDown is a replacement of the .NET’s System.Windows.Forms.NumericUpDown

class. It was build from scratch and does not inherit anything from the .NET class.
Basically it does the same, but also adds a possibility of changing it’s appearance. Except
the component’s colors, it’s possible also to set it’s rounding and padding width.

Figure 5.7: A NumericUpDown

5.3.9 Supplementary Classes

The supplementary classes in the BetterControls package are a collection of both classes
inheriting from the .NET’s System.Windows.Forms.Control class and regular general
purpose classes. The classes inheriting from the Control class are never used alone, but
embedded inside some other components.

5.3.9.1 ContextMenu

ContextMenu menu is used in the ComboBox (Section 5.3.5) class as one of it’s crucial
components. It’s similar to the .NET’s ContextMenu, except that it’s able to display also
other item types than strings, and it’s appearance is customizable. In the ComboBox class,
the ContextMenu instance is added as a child of the ComboBox’s parent, so that it can be
displayed next to the ComboBox instance component. The ComboBox also listens to every
mouse event in the application, and if such event occurs, the ContextMenu instance is
closed.

36

Figure 5.8: A ContextMenu

5.3.9.2 LabelVerticallyCentered

LabelVerticallyCentered is, as it’s name suggests, a class similar to the the .NET’s
class Label, except that the displayed text is vertically centered. This is useful in bars, or
explanatory labels attached to some other GUI component, and it’s in fact used almost
everywhere a text is displayed in the application, most frequently in the Settings panel
(Section 4.8).

5.3.9.3 GDI

GDI is a class which is an interface between the coredll.dll library and the BetterCon-
trol’s C# classes. Here all necessary GDI functions are imported, and moreover it contains
also some supplementary methods, which should simplify use of the GDI functions by the
rest of the C# code.

37

5.4 PocketMeter

In this section some of the application’s user interface most interesting algorithms are
described. These algorithms were implemented entirely in C# .

5.4.1 State Machine

The state machine of the application is represented by an instance of the class
Lib.Fcn.StateMachine and contains 15 states in total:

State Description

START The application is started, and no image has been loaded or taken

NONE
The application is showing the global screen (Section 4.2),
an image has been loaded or taken

CAMERA The user is taking a new picture by the smartphone camera

RECOGNITION
The application is in manual recognition mode, where the user
is asked to mark the known object in the current image

DISTANCE MEAS The user is enabled to input new length measurement vertices

DISTANCE ERASER
The user is enabled to delete existing length measurement
vertices

ANGLE MEAS The user is enabled to input new angle measurement vertices
ANGLE ERASER The user is enabled to delete existing angle measurement vertices
AREA MEAS The user is enabled to input new area measurement vertices
AREA ERASER The user is enabled to delete existing area measurement vertices
MOVE The user is moving the image by dragging it

MOVENAV
The user is moving the image by moving the rectangle in the
navigation box 4.4

ZOOM The application is zooming in or out
OPEN SAVE The user is enabled to open a save a measurement
SETTINGS The application is showing it’s Settings panel

Table 5.1: The application’s states

There are many possibilities and many causes of how transitions between the states
may occur, therefore the figure 5.9 shows just a simplified state transition graph.

38

AREA_MEAS

DISTANCE_MEAS

MOVE

ANGLE_MEAS

MOVENAV

ZOOM

DISTANCE_ERASER

CAMERA

NONERECOGNITION

START

AREA_ERASER

ANGLE_ERASER

SETTINGS

OPEN_SAVE

Figure 5.9: The application’s state transitions

39

5.4.2 Stylus Interactions

If a user touches the screen in any kind of measurement mode, the application has to
determine whether the user want to input a new vertex , delete or move a one already
in the measurement, or move the image. Around every point there is an invisible circle,
which determines, whether the user intended to pick some vertex, and whether he/she
intended to move the vertex or move the image. At the moment of touch, the program
determines, whether there is an existing measurement vertex inside the circle. If there is,
based on the settings it erases the vertex immediately, or prepares to move it, in that case
wherever the smartphone’s stylus goes, there the vertex is moved, until the stylus leaves
the screen. If there isn’t any vertex in the circle at the first moment, and the application
is not in any of it’s erase modes, a new point may be placed at that location, or the whole
image may be moved. This is determined based on whether the stylus leaves the circle
before it leaves the screen. If it does, the image is moved. If it doesn’t, a new vertex is
created at the location at the moment when the stylus leaves the screen. Radius of the
circle area is configurable in the application’s Settings panel (Section 4.8).

Move vertex

Move image
Erase vertex

Create vertex

Figure 5.10: Possible stylus interactions

40

Vertex inside the circle?

Yes

Erase mode?Stylus down?

Yes

No

Create vertex

Stylus up?

No

Yes

No
Yes

Erase vertex

Stylus up?

Yes

No

Yes

Stylus moved?

Stylus up?
No

No

No

Update vertex locationYes

Yes

Move

image

Stylus moved outside the circle?

Yes

No

Stylus moved?
Yes

Stylus up?

No

No

Figure 5.11: Stylus interactions algorithm

41

5.4.2.1 Length Measurement

When the application is in the state of measuring length, every new vertex is added as a
continuation of the measurement polyline, i.e. at the end of the line. If an existing vertex
is erased, a new line is created between it’s neighboring points. The same applies for both
the vertex and the freehand input.

Figure 5.12: Length measurement - adding a new vertex

Figure 5.13: Length measurement - erasing an existing vertex

Is touch point? Erase mode?

Add mode?

Add vertex to the end of

the measurement’s vertex list

Calculate distance between

the two last vertices

Add the distance to

the overall length Remove the vertex from

the measurement’s vertex list

Calculate distances between

the vertex and it’s neighbors

Substract these distances from

the overall polyline distance

Calculate distance between

the two neighbors

Add the distance to

the overall length

Yes

No No

Yes

No

Yes

Figure 5.14: Length measurement - vertex operations

42

5.4.2.2 Angle Measurement

In angle measurements, 3 points can be added at most. If the number of points is lower
than 3, the angle is not computed, therefore exactly 3 points are needed. If there aren’t
3 vertices in the measurement, every new vertex is added to the measurement as a new
point. If there are 3 vertices, every new point is added as the last vertex and the previous
last vertex is erased. This means there may be a new angle, therefore it’s value is updated.

Figure 5.15: Angle measurement - adding a new vertex

Figure 5.16: Angle measurement - erasing an existing vertex

Figure 5.17: Angle measurement - erasing an existing vertex

43

Is touch point? Erase mode?

Add mode?

Yes

No No

No

Yes

Is middle?

Set angle to 0

Erase link from the point

to the middle point
Erase all links

No

Yes

Are 3 points?

Yes

Add the vertex to the end of

the measurement’s vertex list

Erase the last vertex

Are 3 points?

Calculate the angle

No

Yes

Yes

No

Figure 5.18: Angle measurement - vertex operations

5.4.2.3 Area Measurement

When the application is in the state of measuring area, the first two new vertices are
added to the measurement as 2 new points immediately, however at least 3 points are
necessary for an area to exist. Every further point therefore causes the area value to
be updated. The following statements hold for both the vertex and the freehand input
method, as the freehand line is in fact nothing more than a polyline.

Because an area is a closed structure, there isn’t any end or start point, therefore a
new point has to be added somewhere between the existing points and in fact break the
structure. The edge which has to be broken is determined by search for a closest line
segment to a point algorithm, where the point is the new vertex. Moreover, these points
may be added only in case the edges of the final shape don’t intersect each other, therefore
an additional check is performed. If the new shape breaks this condition, the new vertex
is not accepted and the shape won’t change. If no two edges intersect each other, the
new vertex is accepted and the area value is updated. The same rule is applied also when
moving a vertex. If it’s broken, the vertex is not moved.

44

Figure 5.19: Area measurement - adding a new vertex

Figure 5.20: Area measurement - moving an existing vertex

Figure 5.21: Area measurement - erasing an existing vertex

The point-to-edge distance is calculated as a point-to-line-segment distance by the use
of these formulas:

u =
(x3 − x1)(x2 − x1) + (y3 − y1)(y2 − y1)

((x2 − x1)2 + (y2 − y1)2
(5.1)

d =

√

(x3 − x1)2 + (y3 − y1)2 if u< 0√
(x3 − y2)2 + (y3 − y2)2 if u> 1√
(x3 − (x1 + u(x2 − x1)))2 + (y3 − (y1 + u(y2 − y1))2 if 0 ≤u≤ 1

, (5.2)

where P1 = [x1; y1] and P2 = [x2; y2] are vertices of an edge, P3 = [x3; y3] is the third
(new) point which does not lay on the same line as the vertices P1 and P2, and d is the
distance of the point P3 from the line segment between vertices vertices P1 and P2.

45

P1

P2

P'3

P'''3

P''3

d'''
d'

d''

Figure 5.22: 3 variants of the point-to-line-segment distance

The area value is computed as an area of a non-intersecting (simple) polygon. The
formula for this was first time described by A. M. Lopshits in 1963 [11]:

A =
1

2
(a1[a2 sin(θ1) + a3 sin(θ1 + θ2) + · · ·+ an−1 sin(θ1 + θ2 + · · ·+ θn−2)] (5.3)

+ a2[a3 sin(θ2) + a4 sin(θ2 + θ3) + · · ·+ an−1 sin(θ2 + · · ·+ θn−2)] (5.4)

+ · · ·+ an−2[an−1 sin(θn−2)]), (5.5)

where a1,a2, ..., an are the lengths of the sides, and θ1, θ2, . . . , θn are the exterior angles
of the polygon [10].

46

Is touch point? Erase mode?

Add mode?

Find the closest edge (line segment)

Create a new edge between the neighbors

Yes

No

No

Yes

No

Yes

Would there be any intersection?

Yes

Find the end vertices of the edge

No

Insert the point between the vertices

Create 2 edges between the new point and the neighbors

Erase the edge

Recalculate the area value

Would there be any intersection?

Yes

Find the point’s direct neighbors

No

Remove the vertex from

the measurement’s vertex list

Erase the 2 edges between them

Recalculate the area value

Figure 5.23: Area measurement - vertex operations

47

5.4.3 The .pmm File Format

PocketMeter Measurement (.pmm) files are used for storing whole measurements. Their
format is XML, therefore it’s possible to view and edit them in any text editor, or a
specialized XML editor. An accompanying image (photo) file is necessary.

image: Image

object: Object

length: Length

angle: Angle

area: Area

measurement

name: string

width: int

height: int

Image

type: Type

corner: Corner

Object

vertex: Vertex

Length

vertex: Vertex

Angle

vertex: Vertex

Area

x: int

y: int

id: byte

Corner

4

x: int

y: int

input: Input

Vertex

0 .. n 0 .. n 0 .. n

Vertex

Freehand

Input

Credit_Card

100_CZK

Paper_A4

Type

Figure 5.24: The .pmm file XML structure

48

5.4.4 Artwork

The application’s appearance was an important part of the work, as one of the initial
requirements was to make the program look more appealing.

5.4.4.1 Icons

The overall design was created by me, but the bases for button icons were created by
Danny Allen [2], whom I would like to thank here. His icon set was released under the
LGPL license, and the changed icon set is either distributed with the program, or available
on request, as the license orders me to do.

5.4.4.2 Theme

Except the icons, almost every GUI component from the BetterControls subproject can
be configured. The application’s component appearances are defined in a single XML file
called pocketmeter.theme, however this file is not accessible for ordinary users, because
it’s embedded in the application. It’s accessible just for the application’s developers.

general: General

statusbar: Statusbar

toolbar: Toolbar

theme

labels: Label

panels: Panel

buttons: Button

General Statusbar Toolbar

colors: ColorList

Label

colors: ColorList

Panel

colors: ColorList

Button

BorderListColorList

left

right

up

down

Position

foreground

background

released

pushed

foreground_released

foreground_pushed

background_released

background_pushed

Type

position: Position

size: byte

Border

type: Type

r: byte

g: byte

b: byte

Color

color: Color border: Border

0 .. * 0 .. *

borders: BorderList

Bar

Figure 5.25: The Theme XML structure

49

http://www.gnu.org/licenses/lgpl.html

Chapter 6

Test Results

There are several points of view of how to test the application. One point of view is a code
oriented point of view, where the application’s runtime and amount of allocated memory
are tested. Another point of view it a function based performance point of view. Here the
application is tested for it’s measurement accuracy. Results of these tests can be found
in the David Stach’s thesis ([15]). The last point of view considered in this thesis is the
everyday life application performance.

6.1 Hardware Requirements

I’ve tried to run the application on several devices (tables 6.1, 6.2 and 6.3), and on all
of them I was successful, although sometimes it was necessary to quit some background
processes, because of the lack of free memory. Speed of run of the application was never
a problem.

Processor Qualcomm® MSM 7201A™ 528 MHz
ROM 512 MB
RAM 288 MB
Display 3.8-inch TFT-LCD touch-sensitive screen with 480 x 800 WVGA
Camera Main camera: 5 megapixel color camera with auto focus
Operating System Windows Mobile® 6.1 Professional

Table 6.1: HTC Touch HD - Technical details

Processor Qualcomm® MSM 7201A™ 528 MHz
ROM 256 MB
RAM 192 MB
Display 2.8-inch TFT-LCD flat touch-sensitive screen with VGA res.
Camera Main camera: 3.2 megapixel color camera with auto focus
Operating System Windows Mobile® 6.1 Professional

Table 6.2: HTC Touch Diamond - Technical details

50

Processor Texas Instruments® OMAP™ 850 200 MHz processor
ROM 128 MB
RAM 64 MB
Display TFT resistive touchscreen, 65K colors, 240 x 320 pixels, 2.8 inches
Camera 2 megapixel color camera
Operating System Windows Mobile® 5.0 PocketPC

Table 6.3: HTC P4350 - Technical details

Later on, I executed the 7 following test cases to get somehow more exact results. Here
I tested the peak hardware requirements. The test is split to two sections. The first section
focuses on the native code performance, the second part focuses on the managed code
performance. In the first part, peak amount of allocated bytes and time of recognition were
tested. In the second part time of new vertex inclusion is tested for area measurement, as
it’s the measurement were the most computation is done upon new vertex creation. The
test device was a HTC Touch HD (Table 6.1). The results can be seen in table 6.4.

6.1.1 Test Case 1-6

1. Start the application
2. Set automatic recognition
3. Take photo of a scene (Figure 6.1a, 6.1b, 6.1c, 6.1d, 6.1e, 6.1f)
4. Let the program recognize the known object
5. Quit the application

Scene 6.1a 6.1b 6.1c 6.1d 6.1e 6.1f
Peak allocated space [B] 1504281 1534372 2451268 1573688 1582996 1580912
Recognition time [ms] 5012 (*) 1034 2120 4302 3209 2346

Table 6.4: Native code performance, (*) - manual recognition

51

(a) No object (b) 1 object (c) 4 ordered objects

(d) 4 unordered objects (e) 8 ordered objects (f) 8 unordered objects

Figure 6.1: Native code test scenes

6.1.2 Test Case 7

1. Start the application
2. Set automatic recognition
3. Take a photo
4. Let the program recognize the known object
5. Switch to area measurement
6. Input 50 vertices
7. Save the measurement
8. Quit the application

52

The values from this measurement were unexpectedly low, inclusion of the fifth vertex
took less than 1 second.

Figure 6.2: Time of inclusion vs. number of existing vertices

6.2 Everyday Life Measurements

This section is here to demonstrate use of the application for everyday life measurements.
Three examples are presented, one, the measurement of a chimney contains in fact an
another embedded measurement. Basically there’s no need for embedded measurements,
if dimensions of some object in the scene are known, but often an object which is known
has inappropriate size to the unknown. The second measurement demonstrates universal
use of object dimensions knowledge, when the results of the embedded measurement in the
first measurement are employed to perform measurements in a different scene. The third
measurement is an indoor measurement of furniture. In these measurements I assume the
measured and the known objects are laying on the same plane.

53

6.2.1 Chimney

In this section height a chimney is measured. An embedded measurement is performed
first, as no dimensions of a object in the final scene are known.

6.2.1.1 The Embedded Measurement

Here dimensions of a window are measured. A known object here is a part of the window.

(a) The recognized object (b) Grid displayed

(c) Window inner width (d) Window inner height

Figure 6.3: The embedded measurement - the window scene

The obtained inner dimensions of a window are: width = 74cm, height=123cm.

54

6.2.1.2 The Main Measurement

Next height of the chimney is measured. Because the chimney and the window are not
precisely on the same plane, to get some approximate results, an assumption that they
are have to be accepted. Due to this issue, the result of this measurement contains some
minor additional error.

(a) A recognized window (b) The chimney height

Figure 6.4: The chimney scene

The obtained height of the chimney is: 14m.

6.2.2 Tree

This measurement employs results of the first measurement to measure geometric quan-
tities in another scene. Here approximate height and width of a tree is measured. The
measurement shows than the previous measurement the importance of the measured and
the known object laying on the same plane, as the measured height of the tree is not
the same as one would expect. Clearly the tree is not as high as the chimney, but the
measurement result is the same. This happens because the tree is not on the same plane
as the window, it’s in front of it. Despite this inaccuracy the measurement still provides
good enough estimate of the tree height for most every day life problems.

55

The window plane

The tree

The smartphone

The height
difference

Figure 6.5: The tree scene geometry

(a) The recognized window (b) The tree height

Figure 6.6: The tree scene

The obtained approximate height of the tree is: 14m.

56

6.2.3 Wine Bottle Holder

In this measurement an indoor scene is processed. Indoor use of the application is expected
to be the most frequent. In this scene I wanted to obtain dimensions of a wine bottle
holder.

(a) The holder width (b) The holder height

(c) The recognized object (d) Grid displayed

Figure 6.7: The wine bottle holder scene

57

Chapter 7

Conclusion

The aim of this master’s thesis was to create an application for geometric quantities
measurements running on a smartphone and employing algorithms and techniques of
Computer Vision. The thesis is a continuation of a work of David Stach ([15]), who
developed an image recognition library for his own master’s thesis. My work then consisted
mainly of designing and programming the user interface, which in David’s work was just
a very simple one. Because the image recognition library does just image recognition,
beside the user interface, I also implemented the algorithms of particular measurements,
namely the measurement of a polyline length, measurement of angle and measurement of
area. Because there was no time left for debugging and enhancing the image recognition
algorithms, the program in some cases fails to recognize known objects. Therefore I added
a possibility for the user to mark the known object by hand. Users are also able to define
known object dimensions, therefore the recognition is not restricted just to the predefined
templates. Concerning the recognition precision and reliability, despite the lack of time,
I first attempted to enhance the library, and then create my own from scratch, but in the
end I abandoned it. In my library I employed the apparently widely known open source
library OpenCV originally from Intel [?], which enabled me to make a very fast progress,
and which, if used from the beginning, would speed up the work significantly and would
enable much broader possibilities of development.

An issue in which I was concerned probably the most was the application speed per-
formance and memory usage. However, the tests (Chapter 6) showed the application
performs quite well (Sections 6.1.1 and 6.1.2), which was also confirmed by usability tests
on two subjects.

Personally, I expected to achieve more with this thesis, but during the development I
encountered several serious problems which caused the time plan to slip.

The majority of the problems were related to the .NET Compact Framework itself.
Because the framework is meant for mobile devices with very constrained resources, such
as the amount of operational memory, or the computational power, it’s relatively restricted
compared to the desktop .NET version. Many necessary methods, and even whole classes
or packages are missing. As a result I spent a lot of time figuring out workarounds for
these problems and implementing classes which are present in the desktop version of the
.NET Framework, or any other framework, but not in the .NET Compact Framework.
This type of problems caused the BetterControls subproject to be created.

Another issue with the .NET Framework as a whole is poor speed performance of
it’s managed code compared to native code. Although this property was expected, it
was not expected to delay the project significantly. Unfortunately performance of the

58

platform showed up to be insufficient for the majority of graphic functions needed in the
application. Therefore as with the first .NET issue, I ended up inventing workarounds
for the problems, which in some cases led to use of unmanaged native Windows API
functions.

In the process of debugging I encountered another problem with the .NET Compact
Framework specific to my case. At the time of the development just the Microsoft Visual
Studio 2008 Professional and the Microsoft Visual Studio 2010 Ultimate were available to
me, neither of which strangely contains a usable .NET Compact Framework profiler. The
2008 Professional version doesn’t contain any profiler at all, which is quite unexpected
regarding to it’s suffix. The 2010 Ultimate version contains a profiler, but a one which,
again unexpectedly, doesn’t support the .NET Compact Framework. These pitfalls caused
additional development delay.

I estimate that solving these problems with the .NET Compact Framework took me
about 60-70% of the development time, therefore use of another framework and program-
ming language was worth considering. Clearly in this work use of a virtualized environ-
ment did not bring many positives, use of native environment might bring higher speed of
development. In the end I, as well as the image recognition library, attempted to switch
to another GUI framework and another programming language. I chose the Qt framework
from Nokia [?] and the C++ programming language. Although the Qt framework was not
initially intended for Windows Mobile, not even for mobile devices at all, the development
was much faster and the interface was more responsive and enhanced than the .NET ver-
sion. Moreover, thanks to the Qt, OpenCV and C++ portability, it would be possible to
compile and run the program on many platforms other than Windows Mobile, which is
not the case of .NET version. Unfortunately, there was no time left to finish neither the
Qt interface, nor the library, therefore I proceeded with the .NET version with the David
Stach’s library. Due to these reasons I have to conclude that the assumption about fast
software development with C# and the .NET Framework given in Section 2.2 did not hold
for this thesis.

These problems along with careful project planning however provide me with valuable
experience which might help me to not to repeat them in the future.

59

Chapter 8

Future Work

As the work was delayed by the .NET issues, and as the field of Computer Vision is broad,
there is a plenty of space for enhancements.

First, the user interface might be tested on usability and changed accordingly. If the
application is transferred to another platform, e.g. the Apple iPhone, it can be changed
radically, as new software and hardware possibilities might become available, e.g. most
Windows Mobile devices nowadays don’t have multi-touch screens, if such a component is
available, zooming and moving images might be done in a completely new way. The user
interface might become even faster, as currently some of it’s operations (e.g. redrawing
the image) are noticeable by the user. Also, the interface might be simplified by the use of
gestures, or by a different overall architecture. Measurement results might be for example
displayed together as depicted in Figure 8.1.

120°

10m
m

10
m
m

Figure 8.1: A proposed display of measurement results

The second part, where enhancements can be done, is the image recognition. Now,
reference objects are sometimes not recognized precisely, or not found at all. Serious
inaccuracies are caused by shadows and reflections. The recognition is based just on

60

edge detection and shape fitting, the content of the shape is completely ignored, and
moreover the shape is constrained just to rectangular objects. Concerning the first issue,
some probabilistic classification technique of defined image features might be considered,
for example Bayesian networks or Neural networks. Both the object content recognition
and the current algorithm’s parameter settings might be enhanced by some optimization
technique, e.g. evolutionary algorithms, or dynamic programming. These methods would
then require a vast amount of annotated test images. Recognition of lines might be
improved by the use of (Gaussian) image pyramid [5]. This was experimentally confirmed
by the second computer vision library I made. Another possible enhancement of the
application is the use of the 4 point algorithm 3.5 for camera pose estimation. With this
information, distances of objects laying on the same plane as the reference object, from
the smartphone can be estimated which would enable another new kinds of measurement.

61

Bibliography

[1] Mike Abramsky and Paul Treiber. Sizing the Global Smartphone Market, November
2008. RBC Capital Markets.

[2] Danny Allen. Monochrome icon set, 2010. URL http://dannyallen.co.uk/

downloads/icons/.

[3] Andreas Ess, Alexander Neubeck, and Luc van Gool. Generalised linear pose esti-
mation. In British Machine Vision Conference (BMVC ’07), September 2007.

[4] Brian Gammage et al. 2010 and Beyond: A New Balance, December 2009. Gartner.

[5] David A. Forsyth and Jean Ponce. Computer Vision: A Modern Approach. Prentice
Hall, 2002.

[6] Sebastian Grembowietz. Algorithms for Augmented Reality: 3D Pose Esti-
mation, November 2004. URL http://home.in.tum.de/~grembowi/ar2004_05/

3dPoseEstimation_presentation.pdf. Technische Universität München.

[7] Matej Horváth. Poč́ıtačové Viděńı a Virtuálńı Realita: DU-01, November 2009.
Czech Technical University in Prague, Department of Cybernetics.

[8] William L. Hosch. Encyclopædia Brittanica: Smartphone, May 2010. URL http:

//www.britannica.com/EBchecked/topic/1498102/smartphone.

[9] Wikimedia Foundation Inc. Wikipedia: Layout manager, May 2010. URL http:

//en.wikipedia.org/wiki/Layout_manager.

[10] Wikimedia Foundation Inc. Wikipedia: Polygon, May 2010. URL http://en.

wikipedia.org/wiki/Polygon.

[11] Abram Mironovich Lopshits. Computation of Areas of Oriented Figures. D C Heath
and Company: Boston, MA, 1963.

[12] J. Gerry Purdy. 2010 Outlook & Forecast: Mobile & Wireless Communications,
December 2009. Frost & Sullivan.

[13] Long Quan and Zhongdan Lan. Linear N-Point Camera Pose Determination. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 1999.

[14] Milan Sonka, Václav Hlaváč, and Roger Boyle. Image Processing, Analysis and
Machine Vision. CL-Engineering, 2007.

[15] David Stach. Mobilńı telefon jako dálkoměr-hloubkoměr-prav́ıtko. Master’s thesis,
Charles University in Prague, Faculty of Mathematics and Physics, 2009.

62

http://dannyallen.co.uk/downloads/icons/
http://dannyallen.co.uk/downloads/icons/
http://home.in.tum.de/~grembowi/ar2004_05/3dPoseEstimation_presentation.pdf
http://home.in.tum.de/~grembowi/ar2004_05/3dPoseEstimation_presentation.pdf
http://www.britannica.com/EBchecked/topic/1498102/smartphone
http://www.britannica.com/EBchecked/topic/1498102/smartphone
http://en.wikipedia.org/wiki/Layout_manager
http://en.wikipedia.org/wiki/Layout_manager
http://en.wikipedia.org/wiki/Polygon
http://en.wikipedia.org/wiki/Polygon

[16] William J. Wolfe, Donald Mathis, Cheryl Weber Sklair, and Michael Magee. The Per-
spective View of Three Points. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 1991.

[17] Paul Yao and David Durant. Programming .NET Compact Framework 3.5. Addison-
Wesley, 2010.

[18] Lihong Zhi and Jianliang Tang. A Complete Linear 4-Point Algorithm for Camera
Pose Determination. MM Research Preprints, 2002.

63

Appendix A

First Appendix

The first and only appendix to this work is a CD with the following content:

--|-- mt_matej_horvath.pdf // the thesis

|

|-- src.zip // source codes

|

|-- bin.zip // executable application

|

|-- doc.zip // source code documentation

64

	Introduction
	Smartphone As a Measurement Tool
	Requirements
	Previous Work
	David Stach's Contribution
	Market Survey

	Runtime Environment
	Platform
	Development Tools
	Microsoft Development Tools

	Image Recognition
	Edge Detection
	The Hough Transform
	Shape Recognition
	Homography
	Estimation
	Image Transform

	The 4-Point Algorithm
	Geometry of Camera Pose From Four Points

	Application Overview
	Buttons
	Global screen
	Navigation
	Recognition
	Scene Views
	Measurements
	Loading and Saving Measurements and Images
	Settings

	Application Architecture
	General Problems and Solutions
	Native and Managed Code Cooperation
	GDI Graphics

	PMLibrary
	BetterControls
	Bar
	Button
	ToggleButton
	CheckBox
	ComboBox
	LayeredPictureBox
	LayoutPanel
	NumericUpDown
	Supplementary Classes
	ContextMenu
	LabelVerticallyCentered
	GDI

	PocketMeter
	State Machine
	Stylus Interactions
	Length Measurement
	Angle Measurement
	Area Measurement

	The .pmm File Format
	Artwork
	Icons
	Theme

	Test Results
	Hardware Requirements
	Test Case 1-6
	Test Case 7

	Everyday Life Measurements
	Chimney
	The Embedded Measurement
	The Main Measurement

	Tree
	Wine Bottle Holder

	Conclusion
	Future Work
	First Appendix

