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Abstract

Performing statistical hypothesis tests is an important method for analyzing real data

sets occuring in various areas of the society. This thesis studies the properties of Zipf's

law, its relationship to zeta distribution and the connection with heavy-tail phenomena

occuring extensively in economics or demographics. Section 1 contains a short look

at the problem in question and also a brief historical explanation of the origins of Zipf's

law. In section 2, properties of several related terms are described and a method

of the performed analysis is introduced. A practical part of this work is in section 3

where the analysis is performed and results presented. Section 4 summarizes the re-

sults for both theoretical and empirical part of the document.

Student's own contribution includes a consistent description of the theoretical part

and also developing scripts for the analysis.

Abstrakt

Statistické testování nulových hypotéz je d·leºitou metodou v analýzách reálných dat,

která se objevují v r·zných odv¥tvích spole£nosti. Tato práce studuje vlastnosti Zip-

fova zákona, jeho vztah k dzéta distribuci a také jeho spojení s fenomény tzv. t¥ºkých

konc·, které se ve velké mí°e objevují v ekonomických a demogra�ckých studiích. Sekce

1 obsahuje krátký úvod do zmi¬ovaného problému a také lehký náhled na historickou

p°í£inu po£átk· Zipfova zákona. V sekci 2 jsou popsány vlastnosti n¥kolika p°íbuzných

termín· a je také uvedena metoda provád¥né analýzy. Praktická £ást práce je obsaºena

v sekci 3, kde je provedena vlastní analýza a jsou p°edvedeny díl£í výsledky. Sekce 4

sumarizuje výsledky jak teoretické, tak empirické £ásti tohoto dokumentu.

Vlastním p°ísp¥vkem studenta je konzistentní popis teoretické £ásti problému a

také vývoj programových skript· pro vlastní analýzu.
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1 Introduction

1.1 Statistics in large complex systems

Often in real world we encounter situations where terms such as 'many', 'some of

them' or 'average' are used. It does not matter whether we talk about cars in a par-

king place, people in a crowd or clouds. It is only logical to expect larger groups

of subjects to show unpredicted behavior, not native to individual isolated subjects.

For instance, charged particle in an eletrical �eld behaves in a completely di�erent way

than a quasineutral set of charged particles in the same �eld. Our experience gained

by observing individuals no more applies and we have to look at the problem more

'macroscopically'.

Probability and statistics have proven valuable in concieving theories of 'many'.

Concept of mean values gives us idea what is an average price of some product, vari-

ance suggests what varieties of age a certain society has. Advanced theories were

presented by Pierre Simon de Laplace and later Andrei N. Kolmogorov [8].

One of the most known results of theories concerning probability is probability distri-

bution. The idea allows us to decide how single experiments help construct properties

of systems at larger scales and also has some interesting consequences (see section 2).

Thinking more speci�c examples, let us consider a distribution of urban areas

in a country. The system (now meaning villages, towns and cities in the country,

including e.g. how it develops) is a�ected by numerous factors, such as agricultural

politics, urbanisation intesity etc. As individual, a town develops on the basis of fun-

dings received from government budget, industrial income... simply put, a single town

in some bordered area expands and increases the number of inhabitants according

to the fundings up to the limitations of the borders. Several towns sharing a single

region develop up to the point of interfering, then the model no longer works as the sys-

tem gains completely new features (not mentioning the possibility of correlated amount

of fundings received). It is the interference factor that often decides which town will

be the largest, which will stagnate and to what point will the development converge.

Processing information about these systems using statistical methods can be used

to analyze di�erent systems with similar features to perform reasonable predictions

about the behavior of the other of the same kind. For instance, computing a probability
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distribution for a network data �ux, considering size of �les transfered, could help pre-

dicting the �le size ratios transfered on a new untested network with similar topology.

Designing of the transfer protocols should consider these expectations so as to avoid

serious misconceptions, such as insu�cient management of transfering large amounts

of small and middle-sized �les despite their statistical signi�cance (e.g. cluster com-

puting). Another possible point of view is determining whether the distributions are

sensitive to certain factors. Experimenting on changing parameters of the system to see

if it had some major e�ect on the distribution might lead to robust predictive system

designs. Further in the text, we will focus on a speci�c phenomenons, originating

in Zipf's law and developing into study of so-called heavy-tailed distributions. (see

section 2).

1.2 Zipf's law origin

At halftime of the 20th century, american linguistGeorge Kingsley Zipf with se-

veral of his students studied a number of texts for his quantitative linguistic analysis

[15]. He used several texts written in Chinese, Yiddish and English (Shakespeare's

language in particular, as he analyzed Hamlet). Zipf observed a strange phenomenon

that should the core words in text be sorted by their frequency f into a decreasing

sequence (with an index r), it occurs that from some r0 on, the sequence roughly

satis�es following equation [13]:

rf = c, r ≥ r0, c ≥ 0 (1.1)

where c denotes some constant value, characteristic for the sequence.

Since the publishing of this observation, several studies of the same principle were

performed, although using di�erent kind of data - e.g. town distribution by the num-

ber of inhabitants or connection frequencies on the internet[1][5].

The particular form of the equation 1.1 restricts Zipf's law to simple harmonic se-

ries. Using logarithmic scale (see section 2) o�ers a natural generalization[13] in the ex-

ponents of the fraction

rBf = c (1.2)

The result is a form of power law [14]. Further we will study its connection to Pareto

distribution by performing an analysis on several presented data sets (see section 3).
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For more speci�c conclusions about real systems, a speci�c method needs to be

applied on real data. In this thesis, a method of choice is QQ plotting to decide whether

the real data are distributed in certain manner (see subsection 2.6), namely Pareto[10].

1.3 Delimination

The presented problem is somewhat extensive, so we will focus on a certain part

of it. Namely, In section 2 we �rst describe the problem theoretically and create a basis

for an actual analysis of some data in section 3. Mathematical statistics is a di�cult

area of mathematics and often the answers may be questionable, unless built on a solid

pedestal. What conclusions our performing might o�er, we present in section 4.

We focus on Czech demographics both for the reason that the respective data

analysis might be unique and to present the work in a familiar circumstances. So as

the data be reliable, we must choose validable data sets possibly from the databases

of the accredited institutes.
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2 Theoretical framework

2.1 Needed fundamentals and de�nitions

Mathematical expressions used in this document have to fall under certain set

of rules. As the notation is somewhat unclear and varies in di�erent publications, a

precedence notation, furthermore held, is included in appendix A.

Theory construct uses Kolmogorov probability model and respective de�nitions

described thoroughly in [8]. Essential de�nitions are mentioned in this subsection, as

the notation and terms are required to consistently formulate the goals and conclusions

of this thesis.

2.1.1 Set essentials

Power set Given an arbitrary set M , a set of all subsets of M is called a power set

over M and denoted 2M . Any subset of 2M is called a family of subsets over M .

σ-algebra A set A that is a subset of 2M of some arbitrary setM is called a σ-algebra

over M , if it has following properties:

1. ∅ ∈ A

2. x ∈ A =⇒ x̄ ∈ A, within M

3. (∀n ∈ N : An ∈ A) =⇒
⋃
n∈N

An ∈ A

Consider some S ⊆ 2M . The intersection of all σ-algebras over M that contain S is

also a σ-algebra, is denoted U(S) and is said to be generated by S.

Bounded intervals on R A set of all bounded intervals on R with their �nite unions

together with an empty set generate a σ-algebra over R[4]. This σ-algebra is denoted

B(R) and called a Borel σ-algebra over R.

2.1.2 Basic probability

Sample set Ω denotes set of all possible outcomes considered(e.g. towns in a coun-

try). It is called a sample set and it is often a set of mathematical representations of

real objects, such as in dice throwing, it is the set of all six possible throw results.



2 THEORETICAL FRAMEWORK 5

Event set Any σ-algebra over Ω can be an event set, depending on the choice and

context. Semantics are interpretable by designer, such as in the sample set of dice

throw results, event set could be the σ-algebra generated by odd/even number events.

Probability measure Let A be an arbitrary event set over Ω. Probability measure

is a real positive set function P (a ∈ A) de�ned on A with a range [0, 1] that satis�es

following conditions:

P (Ω) = 1 (2.1)

P

(⋃
n∈N

An

)
=
∑
n∈N

P (An), if {An} is pairwise disjoint (2.2)

The second property is called σ-additivity

Probability space The trio (Ω,A, P ), where A is some event set over Ω and P a

probability measure de�ned on A, is called a probability space.

2.1.3 Random experiments

Random variable A random variable on a σ-algebra A over Ω is a map X : Ω→ R,

such that for every interval I ⊆ R : C = {ω ∈ Ω;X(ω) ∈ I} ∈ A.

Random variable realization After performing a random experiment with an out-

come ω ∈ Ω, the value X(ω) is called random variable realization. This notes the

di�erence from random variable, as random variable is actually a function[8].

2.1.4 Distributions and inverse

Following de�nitions are essential to introducing the QQ plotting method, namely

cumulative distribution function, because its inverse function de�nes quantile function

used in the plots, and the very de�nition of the inverse function, as it needs to be

de�ned also for functions that are not injective.

Probability distribution Probability distribution PX of the random variable X is

a function PX : B(R)→ [0, 1] de�ned as

PX(I) = PX [X ∈ I] := P ({ω ∈ Ω;X(ω) ∈ I}) (2.3)
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Cumulative distribution function De�nitions of a distribution function are not

unambiguous. We choose a de�nition of a cumulative distribution function as FX :

R→ [0, 1] from [8]:

FX(u) = P [X ≤ u] := PX((−∞, u]) (2.4)

The de�nition implies several properties of FX :

1. F (x) is a nondecreasing function

2. lim
x→−∞

F (x) = 0, lim
x→∞

F (x) = 1

3. FX is right-continuous

Respective proofs are in [8] and are based on σ-additivity of probability measure and

properties of measure-zero sets.

Inverse function The generally accepted de�nition of inverse functions is insu�-

cient for the purposes of this text, as the functions of interest presented here do not

meet the necessary condition for such inverse functions to exist, i.e. they might not

be injective1. An alternative de�nition is as follows[10]: Let H : R → (a, b) be a

nondecreasing function on R with a range −∞ ≤ a < b ≤ ∞. Then we de�ne inverse

H← : (a, b)→ R of H as

H←(y) = inf{s ∈ dom(H) : H(s) ≥ y} (2.5)

Probability density function Given a random variable X, if there is a function

fX : R→ [0,∞) such that

∀u ∈ dom(FX) : FX(u) =

∫ u

−∞
fX(v)dv (2.6)

the cumulative distribution function FX is absolutely continuous [8]. We call such

fx probability density function. If at least one exists, there is an in�nite number of

functions that meet the same condition(as the integral in 2.6 is a Lebesque integral)2.

1Many basic mathematical analysis textbooks and calculus courses de�ne inverse functions only

for injective functions, for an example [6].
2 It is the functions that di�er on a set of measure zero[4]. Such property gives a certain level of

freedom - of right/left continuity - in constructing probability density function of a Pareto distribution.
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Discrete distribution Given a random variable X, if there is a countable subset A

of R such that PX(X ∈ A) = 1, we say that the probability distribution is discrete[8].

A still belongs to B(R) as every point in R is a bounded closed interval of zero length

and B(R) is closed under countable unions.

Riemann zeta function Generally, Riemann zeta function is de�ned as ζ : C→ C,

such that [2]

ζ(z) =
∞∑
l=1

1

lz
,<(z) > 1 (2.7)

Only the real part of the domain of ζ is relevant for purposes of this text, so we can

restrict the function to ζR : (1,∞)→ R as

ζR(x) =
∞∑
l=1

1

lx
, x > 1 (2.8)

Probability mass function If a random variable X has a discrete probability dis-

tribution, a real function dX : R→ [0, 1) de�ned as

dX(u) = PX(X = u) (2.9)

is called a probability mass function[8].

Zeta distribution For some s ∈ (1,∞), we de�ne [9] zeta distribution as a function

fs : N+ → R+ expressed as

fs(k) =
1

ζR(s)ks
(2.10)

Zeta mass function Let X be a random variable with a discrete distribution such

that its probability mass fuction is

dX(u) =

 fs(u) u ∈ N+

0 otherwise
(2.11)

Then dX is called zeta mass function and X is zeta-distributed.

Power-law Under the term power-law, we will understand function pd : R+ → R+,

such that[9]

pd(x) =
K

xα
α,K ∈ R+ (2.12)
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Pareto distribution We say that a random variable X is with a Pareto distribution,

if its cumulative distribution function is (for certain positive parameters β, w, xl)[10]:

FX(x) =

 1− wx−β x ≥ xl

0 x < xl
(2.13)

2.2 Power-law, zeta distribution and zeta mass

Domain of the zeta distribution is N+. However, de�nitions of the cumulative

distribution functions(CDF), probability density functions(PDF) and probability mass

functions(PMF) are functions of a real variable. If the zeta distribution is to be studied

in terms of these de�nitions, we �rst need to connect zeta to such functions somehow.

In this subsection, we will try to �nd some similarities between the zeta distribution,

zeta mass function and the power-law.

2.2.1 Power-law continuity

We now prove that power-law in the form 2.12 is continuous on R+. Obviously,

it is de�ned on R+, so we only need to prove that limit of pd(x) in every x0 ∈ R+ is

equal to the function value. First, continuity of xα:

lim
x→x0

xα = lim
x→x0

eα lnx (2.14)

lim
x→x0

lnx = lnx0
1 on R+ and lim

y→y0
ey = ey0 on R, we apply the chain rule for limits,

therefore lim
x→x0

xα = xα0 . After the application of algebraic limit theorem, that yields

lim
x→x0

pd(x) = pd(x0), so pd(x) is continuous on R+.

2.2.2 Normalization

For zeta distribution, the argument s is greater than 1 because of the fact that if

and only if s > 1, the series in ζR(s) converges and therefore ζR(s) is de�ned[2]. Reason

for its value in the de�nition of zeta distribution is that it normalizes the sum over k:
∞∑
k=1

fs(k) =
∞∑
k=1

1

ζR(s)ks
=

1

ζR(s)

∞∑
k=1

1

ks
=

1

ζR(s)
ζR(s) = 1 (2.15)

Despite the fact that power-law is continuous and therefore Newton's integral exists on

R+, normalization of the power-law is somewhat tricky. The antiderivative of general
1In equation 2.14, the identity is implied by domain equivalence of lnx and pd(x)
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pd(x) is depending on α and divides the primitive functions into two classes:

∫
pd(x)dx =

∫
K

xα
dx = K

∫
1

xα
dx =

 K lnx+ c α = 1

K x−α+1

(1−α) + c α ∈ R+\{1}
(2.16)

In case α ∈ (0, 1], for some a ∈ R+ the limit lim
b→∞

∫ b

a

pd(x)dx =∞ and in all cases for

some b ∈ R+ the limit lim
a→0+

∫ b

a

pd(x)dx =∞. Both these divergences dissapear, when

the condition α > 1 is met and if pd(x) is zeroed on some punctured right neighborhood

of U̇xmin
(0+). This new map we now extend to R and shall denote p(x) : R→ [0,∞):

p(x) =

 K
xα

x ≥ xmin

0 x < xmin

α > 1, xmin > 0 (2.17)

The reasons why we did not de�ne the power-law as p(x) instead of 2.12 are sev-

eral. First, power-law often occurs in physics (gravitational law, Coulomb's law) in

the form of 2.12, p(x) is only right continuous at x = xmin and its construction is

convenient in connection with Pareto distribution(see subsection 2.3). In order to �nd

a normalization constant, we compute the integral of p(x):

S =

∫ ∞
−∞

K

xα
dx =

∫ ∞
xmin

K

xα
dx = K

[
1

(1− α)xα−1

]∞
xmin

=
K

(α− 1)xα−1min

(2.18)

Because the value of the integral is a positive number, we can normalize p(x) to

pn(x) =
p(x)

S
=
K

xα
(α− 1)xα−1min

K
=
α− 1

xmin

(xmin

x

)α
(2.19)

Normalization of the zeta mass function in the sense of the Lebesque integral is im-

possible(see below). The alternative is the normalization of the sum of the values over

supp(dX), however, that coincides with the normalization of the zeta distribution and

needs not to be discussed again.

2.2.3 Mass functions and zeta mass

It should be noted that all probability mass functions have at most countable

support. All probability mass functions then di�er from a zero function on a set

of measure zero, so the integral in eq. 2.6 would be therefore zero ∀u ∈ R. No prob-

ability mass function can form a cumulative distribution function in the sense of a

common Lebesque integral, another procedure is required.[8].
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Comulative distribution function implied by a probability mass function will be

constructed as follows: Let T = supp(dX), the elements indexed as Ti. We assign

the values of the respective CDF using the equation

∀u ∈ T : FX(u) =
∑
Ti≤u

dX(Ti), Ti ∈ T, u ∈ R (2.20)

Proof of this relation clears from the σ-additivity of the probability measure, as

the function values of dX are the probability distribution values at pairwise disjoint

singletons in R and the sum can be identi�ed with the sum in the eq. 2.2 with

dX(Ti) = P (An) = P ({ω ∈ Ω;X(ω) = Ti}). FX is right continuous and also constant

at the other points, which follows the CDF properties.

Zeta mass function is a special case of the above and following eq. 2.20, we obtain

∀k ∈ N+ : FX(k) =
k∑
l=1

dX(l) =
k∑
l=1

fs(l) =
k∑
l=1

1

ζR(s)ls
(2.21)

And for other u leaving FX(u) constant with regard to the right-continuity of FX .

2.2.4 Power-law and zeta distributed data relationship

Comparing de�nitions 2.10 and 2.12, we see that zeta distribution fs is a restriction

map of power law pd(x) with parameters α = s and K = ζ−1R (s). From mathematical

point of view, only this much is to say, although with the implications of the fact.

In order to be able to discuss correlation between zeta distribution and power-

law, the semantics of the problem are essential. Respective cumulative distribution

functions of both zeta and power-law distributions are key to presented data analysis,

so we will focus on comparing them. Cumulative distribution function(CDF) FX(u)

of the zeta mass function is a stairs-like function, rising by fs(k) at each u = k, k ∈

N+. For computation, the equation 2.21 only needs to be followed. On any interval

[k, k+1) it is constant. We can approximately illustrate the comparison on cumulative

distribution functions of series 1
k2
, k ∈ N+ and its extension 1

x2
, x ≥ 1. They are shown

in �g. 2.1 (regard the right-continuity).

Clearly the discrete case is pointwise greater than CDF for the continuous extension.

We now illustrate that for such extension of the discrete distribution, this is always so.
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Figure 2.1: Unnormalized CDF of zeta/power-law for α = 2

Figure 2.2 shows how CDF increase in both cases. Continuous CDF increases by

a value equal to area under the curve 1
x2

on every interval [k, k + 1], k ∈ N+. That is

equal to integral (for general α > 1)

∆p(k) =

∫ k+1

k

1

xα
dx =

[
1

(1− α)xα−1

]k+1

k

(2.22)

Discrete CDF increases at k by an area pictured by the red rectangle in �g. 2.2 �

on some interval [k, k + 1) � and remains constant to the point k + 1(proceeding ite-

ratively). Speaking in calculus terms, discrete construction of a CDF is equivalent

to some upper Darboux sum of the continuous extension with steps equal to the 'dis-

tance' of 1.

Thus we have concluded that CDF for a zeta distribution and power-law as its

extension are not generally equal. Additionally, they are not equal at any point within

the intersected support of both fs(k) and pd(x). Testing data on power-law distribu-

tions thus does not imply that data are zeta-distributed. However, looking at the ap-

proximate di�erentials of both graphes in �g 2.1, for relatively large x one asks what

is the di�erence between them. Both can be approximated with the corresponding



2 THEORETICAL FRAMEWORK 12

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

f(
x)

 

 
continuous extension
discrete
sum contribution

Figure 2.2: CDF increase of zeta/power-law for α = 2

increases of discrete and continuous CDFs on intervals of the length 1. We compute

the di�erence of increase for discrete and continuous case on general interval [k, k+1).

The increase for the discrete case is

∆ζ(k) =
1

kα
(2.23)

That is the area of a rectangle in the upper Darboux sum. Di�erence between the

increases is then

I(k) = ∆ζ(k)−∆p(k) =
(k + 1)α−1(1− k−1(α− 1))− kα−1

(1− α)kα−1(k + 1)α−1
(2.24)

For k � 1, the expression yields

I(k � 1) ≈ 1

kα
(2.25)

This directly implies that both CDFs do not equal on the intersected support of the res-

pective functions. One could argue that neither of the functions are normalized, how-

ever presented derivations only illustrate the fact that generally these cumulative dis-

tribution functions are not equivalent. However, they converge to the same 'tail'.
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Figure 2.3: CDF normalized for α = 2

It will be seen that testing the data positively on power-law tail(i.e. the test results

in positive for X > X0 for some X0 > 0) implies that the data are also zeta-distributed

there. This is a clue how we can reach a conclusive statement about the character

of the distribution of some real data. We say that real data are zeta distributed on the

tail, if the respective CDF 'follows' power-law CDF from some point [10][13]. More pre-

cise explanation of the term 'real data' and its connection to the theory is in subsection

2.5.

2.2.5 Power-law median

Concerning the integral of pn(x), we may simply estimate the median. It will be such

MX > xmin that is a solution of an equation∫ MX

−∞
pn(x)dx =

∫ ∞
MX

pn(x)dx (2.26)
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Knowing the antiderivative, we compute

[x−α+1]
MX

xmin
= [x−α+1]

∞
MX

MX = xmine
ln2
α−1

(2.27)

It is obvious that for α → 1+ the expression diverges to in�nity. Even for values

of α near 1 the median is quite large. This suggests that the data being distributed

as the power-law for such value of α bear a signi�cant measure of probability on its

tail(see subsubsection 2.3.2).

2.3 Pareto distribution

De�nition 2.13 mentions only CDF of some probability distribution. We now show

that terms power-law and Pareto are replaceable. This is useful, because we may study

zeta distribution and power-law as a heavy-tail phenomenon[10].

2.3.1 Pareto as an integral

Normalized power-law function pn(x) de�ned in equation 2.19 is integrable on any

interval on R. We can compute the integral

F (u) =

∫ u

−∞
pn(x)dx = (α− 1)xα−1min

∫ u

xmin

x−αdx = 1−
(xmin

u

)α−1
, u ≥ xmin (2.28)

That obviously satis�es the requirements of Pareto distribution (see de�nition 2.13).

Note that the exponent satis�es conditions both for parameter α in power-law and

positive β in Pareto CDF. The coe�cient w = xα−1min = xβmin 'connects' the zero part

of Pareto CDF to the rest continuously. In addition, the identity implies that Pareto

CDF is absolutely continuous. From now on, we may consider power-law and Pareto

distributions as the same for all terms and purposes[9].

2.3.2 Pareto as a heavy-tail

According to the de�nition of a heavy-tailed distribution in [10], the probability dis-

tribution is heavy-tailed if it has Pareto tail, i.e. from some point it 'follows' the Pareto

distribution. The term 'follows' is ambiguous and de facto means that after perfoming

a certain �t/hypothesis test[3], this must give a positive result[8]. This is what we will
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further consider the term 'follow' to mean.

The very term 'heavy tail' re�ects the properties of the function

F̄X(u) = P [X > u] := 1− FX(u) (2.29)

where FX(u) is a Pareto CDF. F̄X(u) =
(
xmin

u

)α−1 obviously converges to zero as

u→∞, however, more 'slowly' than other distributions, e.g. normal. In precise terms,

F̄X does not belong to any Schwartz space[4]. This means that for such distribution,

there is a polynomial a(u) so that a function η(u) := a(u)F̄X(u) does not converge

to zero for u → ∞. No such polynomial exists e.g. for normal distribution, hence

Pareto F̄X falls more 'heavily' within its 'tail' (i.e. on some subset of its domain

(k,∞), k ≥ xl).

Pareto implies that heavy-tailed data sets with relatively large values of random

variable X still carry a relative statistical signi�cance[10]. Because of that, even such

extremes in distributions must be taken into account, unlike e.g. in the estimation

of errors in the normally distributed data[8].

2.4 From Zipf's law to Pareto

In this subsection, we present several statements that specify the problem to a nar-

row area of interest. We will build on statements and derivations mentioned above.

2.4.1 Logarithmic scale

Let us consider the simpliest form of Zipf's law, equation 1.1: rf = c. Applying

natural logarithm1 yields

ln r + ln f = ln c (2.30)

In logarithmic scales, the dependence of frequency on rank is linear, as ln c is a constant.

The generalization mentioned in subsection 1.2 means simply that the line can be

linearily rescaled by a factor of B[13], changing the law to

B ln r + ln f = ln c (2.31)

1 Considering f being non-zero, only intervals where Zipf's law holds and thus the logarithm is

de�ned are taken into account. The observation holds only up to the limits of the core language

lexicon, namely its �niteness.
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To assure convergence of the function to zero(high rank means lower frequency), we

choose B to be greater than zero. If we now exponentiate the equation, we end up

with the equation rBf = c, i.e. eq. 1.2.

Notice that if B > 1, the function f(r) is equivalent to a zeta distribution with a pa-

rameter s = B and normalization c = ζ−1R (B). Thus in this case, considering this ge-

neralized Zipf's law, we may lay an equivalency between the zeta distribution and such

Zipf's law.

2.4.2 Connection between the terms

So far we only vaguely discussed properties of the equation characterizing Zipf's

law. Equation 1.2 is thus only some relation without links to the terms such as pro-

bability mass function or Pareto. Semantics of it are that for the rank r, there is

some frequency with which the given subject(e.g.word, �rm with a certain turnover)

occurs. The frequency is basically the amount of times certain random variable value

Xi occured in the whole data set, but normalized (possibly). This is somewhat similar

to constructing Laplace probability[8]. Intuitively, because these data sets are at most

countable(theoretically) and summed probabilities yield 1, it is only natural to consider

these to be probability mass functions [9] with a special case of Zipf's law in the form

of a zeta distribution1.

2.4.3 Heavy tail in Zipf's law

If we solve eq. 1.2 towards f, we will obtain a familiar relation:

f =
c

rB
c, B > 0, r ∈ N+ (2.32)

As mentioned in the subsubsection 2.2.2, equation 2.32 is normalizable only if B > 1.

We only generalized Zipf's law using logarithmic scale, so the value of B in the log-

scale was previously chosen only for f to be a decreasing function, converging to 0.

There are several arguments that help to solve this problem. Simply, we could

restrict B to the interval (1,∞). Indeed, in real systems this is mostly the case[9].

However, it is generally possible that B falls to the interval (0, 1]. The respective CDF

1 Of course the domain needs to be extended, see de�nition of zeta distribution and zeta mass

function in subsection 2.1.
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still needs to have the limit lim
u→∞

F (u) = 1, so if such case occurs, from some point it

must inevitably break the relation and converge to zero more rapidly.

Because of the �niteness of the data sets, we will perform the hypothesis tests up

to the points where data values still occur, as further extension would be meaningless.

Because of that, In case of a positive match, we will accept the null hypothesis on

the whole tail, as there is no evidence against any null hypothesis where no data

exist. For the case where B > 1, we formally consider eq. 2.32 to be following zeta

distribution. Because of the nature of used statistical hypothesis test, di�erent case

cannot be found(see subsection 2.6).Otherwise, we omit any such conclusion and if

such case is found using a statistical hypothesis test, only the a�litation to the family

of the Schwartz functions will be discussed.

2.5 Data handling

As the empirical(real) data are often sets of random variable realizations, Ω is

bounded to the respective samples belonging to these values. Ω then can contain

individual cities, pupils at school etc. Numerical samples then de�ne a random variable

X on Ω.

An intuitive way to assign measure on B(R) is to assign points in R the number

of members in Ω that are mapped by X to the point value and normalize by 1
n
, where

n is the number of members in Ω. This suggests a way of construction of the empi-

rical cumulative distribution functions, while following de�nition 2.4(see below). Such

measure is by de�nition discrete.

2.5.1 Empirical CDF

CDF constructed from a data set will be denoted F̂n and estimated as following: Let

Y be a data set with values X1, X2, ..., Xn, where n,Xi ∈ N+1. We sort Y increasingly

and denote the new indexes as X1:n, X2:n, ..., Xn:n. Then we take such subset Λ ⊆ Y

that each integer value occuring in Y is also in Λ, but only once. For all λ ∈ Λ then
1Positive integers, as decimal values in the data for purposes of this document are irrelevant and

at least some data are recommended to exist.
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compute F̂n(λ) := 1
n

∑
Xi:n≤λ

1. For Λ sorted in the same way as Y , we de�ne

F̂n((λk:m, λk+1:m)) := F̂n(λk:m), F̂n((−∞, λ1:m)) := 0, F̂n((λm:m,∞)) := 1 (2.33)

This is an equivalent procedure to the ones described in [3] and [10], only modi�ed

so as to gain an actual algorithm to run on stored data �les.

2.5.2 Test performed

Furthermore, we will focus on a certain hypothesis test, called QQ plotting(see

below, subsection 2.6). We will attempt to test whether a data set is heavy-tailed

and if so, additionally estimate the coe�cient β of the Pareto distribution. The null hy-

pothesis will be a typical heavy-tailed distribution. Because of the nature of the hypo-

thesis test, the null hypothesis will not possess the same parameters of the distribu-

tion, yet it will serve as a scale reference. We test on Pareto because of the theorem

that if data are Pareto distributed on the tail, they uphold Zipf's law there[11], in this

case generalized Zipf's law1. Accepting Pareto null hypothesis means also accepting

that the data set also upholds Zipf's law and in this sense also is zeta distributed.

2.6 QQ plotting

Many statistical hypothesis tests of certain distributions that are often a �rst choice

include χ2 or Kolmogorov test[3][8]. For a power-law distribution, there is another

test, often used in economic studies - Hill's estimator [10]. QQ plotting is an alterna-

tive method, providing a good illustration at the cost of precise direct mathematical

conclusions. Its result is a QQ plot, which afterwards needs to be further examined.

Q stands for quantile, which relates with the quantile functions of given cumulative

distribution functions.

2.6.1 Quantiles and quantile function

At �rst glance, the very de�nition of a quantile function is quite simple. Basic

term quantile refers to a single value of X0 that is mapped by FX(X0) to a given

1 The theorem actually states that the increase rates of the cumulative distribution functions are

equivalent for su�ciently large number of samples.
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value in (0, 1), thus forming a map qFX : (0, 1) → R1. For an injective CDF, there is

always but one such value. Otherwise, if the quantiles are to form a function, we

must also choose but one value. The de�nitions in case of discrete distributions vary

in di�erent texts, however our motivation will be that the quantile b = qFX (a) should

be the smallest point in the support of the probability measure that contributed

to FX(u) ≥ a, u ≥ b. Loosely speaking, it is the smallest point that accumulated

the value of CDF to reach or exceed a certain value a. This is consistent with the de-

�nition 2.5 and we can say that the quantile function is de�ned as

F←X (a) := inf{u ∈ dom(FX) : FX(u) ≥ a} (2.34)

The de�nition is good for both continuous injective cumulative distribution functions

and CDF of discrete distributions (for the continuous injective case it is an ordinary

inverse on (0, 1)).

2.6.2 Constructing a QQ plot

Clasiccal QQ plot is a graphic representation of two quantile functions on a two-

dimensional plane, i.e. given two quantile functions F←X1(a), F←X2(a), the QQ plot is

a plot of ordered pairs (F←X1(a0), F
←
X2(a0)) for all a0 in some subset A ⊆ dom(F←X1) =

dom(F←X2)[10]. Basically, we plot the values of both quantile functions with the same

argument a. Because the method is often used in analyzing the empirical data, it is

convenient to choose A to re�ect the fact the data sets are �nite and the de�nitions

in subsubsection 2.2.3 create the characteristic 'stairs' in the cumulative distribution

function. As the CDF is normalized by 1
n
, where n is the number of samples, the small-

est height of such 'stair' is exactly 1
n
. No more than n values of a is needed, as it is

the largest information we could hope to obtain from the empirical data set.

The height of the stair is only a motivation for choosing A. According to [10],

A should be a sequence { i
n+1
}ni=1, therefore the QQ plot would be (F←X being a null

hypothesis quantile function, F̂←X the empirical quantiles):{(
F←X

(
i

n+ 1

)
, F̂←X

(
i

n+ 1

))
: i = 1, 2, ..., n

}
(2.35)

1 The domain (0, 1) needs to be an open interval for a good reason. If FX is injective, the values

at {0, 1} would inevitably diverge to in�nities, as FX is de�ned on R and if FX(u) = 1 for any �nite

u, FX would no longer be injective - re�ectively for FX(u) = 0. It is better to avoid such problems

and if needed, to extend quantile function conveniently
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The motivation for the values of i
n+1

is said to be partly historical[10], yet the following

argument should su�ce. At every point with a non-zero measure, the CDF increases

by the measure of that singleton. Measure constructed following procedure described

in the subsection 2.5 implies that such measure is at least 1
n
. Because of that, F̂←X is

constant on intervals
(
i−1
n
, i
n

]
1. It is logical for the values of a to iterate between the in-

tervals so a falls within them2. The expression 2.35 is therefore acceptable (detailed

discussion also in [10]).

Previous statements lead to a conclusion that the value of the quantile F̂←X
(

i
n+1

)
equals Xi:n [10] (or the quantile of any value within the above interval for that matter).

The set 2.35 can be substituted, resulting in a general QQ plot:

3

{(
F←X

(
i

n+ 1

)
, Xi:n

)
: i = 1, 2, ..., n

}
(2.36)

If the values in the pairs are equal, all points will lie on some line in the two-dimensional

plane of the plot. That results in a logic implication and key statement about QQ

plotting: There is no evidence real data do not follow the null hypothesis, if the re-

spective QQ plot looks roughly linear [10]. It expresses the fact that such test does

not actually prove the null hypothesis. By de�nition, probability distribution of any

real data hardly equal to any probability distributions of interest, neither discrete

nor others, if only due to the di�erences between cardinalities of the respective sample

sets. The conclusion is somewhat loosened in the requirement that the QQ plot should

look(by naked eye) at least approximately linear. Of course further analysis of the lin-

earity might be in order, but the apparent linear shape concludes the QQ hypothesis

plot.

2.6.3 Location-scale families

Plots of two non-equal quantile functions generally do not have to produce a linear

QQ plot. However, there are certain classes of quantile functions that do have this

1If i = n, the expression i
n = 1 does not belong to the domain of F̂←X . However, the empirical

CDF is equal to 1 in the point of the respective quantile and is further constant, so without fear we

may consider even such a value. Secondly, ∀i > 0 : i
n+1 < i

n .
2We might want to avoid the upper endpoint just for the reasons of the edge of the formal domain

of F̂←X .
3 The theorem actually states that the increase rate of the cumulative distribution functions are

equivalent for su�ciently large values of X
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property. This can be expressed as following identity for a class of the cumulative

distribution functions:

Fµ,σ :=

{
Fµ,σ(x) = F0,1

(
x− µ
σ

)}
, µ ∈ R, σ ∈ R\{0} (2.37)

F0,1(x) is a certain CDF, every other member of Fµ,σ is parametrized by an o�set µ

and a scale σ. Fµ,σ is called a location-scale family and the quantile function of any its

member is1

F←µ,σ(q) = µ+ σF←0,1(q) (2.38)

If the data are distributed with a certain CDF Fµ,σ that is a member of some location-

scale family containing also a known function F0,1, QQ plot may be adjusted by F0,1

to both determine the a�liation to the location-scale family and estimate the values

of µ and σ. By the substitution in the QQ plot de�nition 2.36 using identity 2.38

we obtain {(
µ+ σF←0,1

(
i

n+ 1

)
, Xi:n

)
: i = 1, 2, ..., n

}
(2.39)

This is an implication from F0,1 being in the same location-scale family as Fµ,σ.

The conclusion is that should F0,1 be known, above QQ plot is linear for every res-

pective member of the family, provided the data set is distributed with Fµ,σ. Parame-

ters µ and σ are simply the linear coe�cient and the o�set of both quantile functions

in the plot.

2.6.4 Adaptation for the Pareto case

Testing a heavy-tail on any real data is somewhat problematic. The normaliza-

tion of the cumulative distribution functions and therefore of the quantiles as well

results only in scaling of either of the axes of the plot. However, Pareto cumulative

distribution function has two parameters that we do not know, considering that we

�rst need to know whether the data are heavy-tailed or not. Especially the para-

meter β of the Pareto CDF is somewhat troubling, as it directly in�uences the shape

of the cumulative distribution function. Parameter xl creates an o�set where CDF

is still zero and also serves as a normalization parameter. Therefore, even heavy-

tailed data set would not generally produce a linear QQ plot against every Pareto

distribution with arbitrary parameters β and xl. Conclusion of this is either we need
1The relation originates in the fact that the quantiles are scaled with an o�set[10]
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to know the parameters before we attempt to produce any QQ plot or we need to adapt

the method to an equivalent so that the QQ plots would look linear for heavy-tailed

data.

Consider a cumulative distribution function FX(u) = P [X ≤ u] that is of a Pareto

distribution. The function F̄X = 1− FX is then

F̄X(u) =


(
xl
u

)β
=
(
u
xl

)−β
u ≥ xl

1 u < xl

(2.40)

The de�nition of cumulative distribution function in eq. 2.4 allows certain operations

within the inequality in the expression P [a ≤ b] (P [a > b] respectively) - e.g. substi-

tution. Consider a transformation of X ≥ xl : X −→ β ln X
xl
[10]. Probability for such

CDF is then expressed as (for y > 0)

P

[
β ln

X

xl
> y

]
:= P

({
ω ∈ Ω : β ln

X(ω)

xl
> y

})
(2.41)

It is noteworthy that X ≥ xl to properly express the logarithm and the probability

distribution of X is still of Pareto distribution. The inequality could be transfered

to a convenient form:

P

[
β ln

X

xl
> y

]
= P

[
X

xl
> e

y
β

]
= P

[
X > xle

y
β

]
(2.42)

Right side of the last inequality is then a substitution for u should u ≥ xl in the

de�nition of F̄X . Knowing this, the result is following[10]:

P
[
X > xle

y
β

]
=

(
xle

y
β

xl

)−β
= e−y (2.43)

This lemma for the Pareto distribution is a preparation for investigating of the log-scale

in the QQ plot. Using this, we may now estimate the expression

P [lnX > z] = P
[
lnX−lnxl

β−1 > z−lnxl
β−1

]
=

= P
[
β ln X

xl
> z−lnxl

β−1

]
= e

− z−ln xl
β−1

(2.44)

Motivation for adding parameters β and xl is to identify heavy-tailed distributions

in a location-scale family. Let W1 be a function

W1(t) := 1− e−t (2.45)
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In a log-scale, we may derive the respective cumulative distribution function:

P [lnX > z] = e
− z−ln xl

β−1 = 1− (1− e
− z−ln xl

β−1 ) = 1−W1(
z−lnxl
β−1 )

P [lnX ≤ z] = W1

(
z−lnxl
β−1

) (2.46)

Both parameters are separated and identi�ed with a scaling and an o�set of one axis

in the plot. W1

(
z−lnxl
β−1

)
presents a member of a location-scale family with µ = ln xl

and σ = β−1. This is an implication for P [X ≤ x] being a Pareto CDF - if the data

are heavy-tailed, QQ plot of lnXi:n against W←
1

(
i

n+1

)
should look linear regardless

of the parameters xl and β [10].

Estimated quantile for W1 is

q = 1− e−x

x = W←
1 (q) = − ln(1− q)

(2.47)

This leads to a compact statement regarding tests for Pareto distributions by the QQ

plots[10]: QQ plot method does not disprove that the presented data set is Pareto

distributed, if the respective plot of lnXi:n:{(
− ln

(
1− i

n+ 1

)
, lnXi:n

)
: i = 1, 2, ..., n

}
(2.48)

looks linear from some point i0. With a certain degree of belief, we might conclude

that the data actually are distributed in this manner (accepting the null hypothesis).

The term 'roughly linear' is somewhat vague in the sense of a proper mathe-

matical analysis. Decision about whether data follow or not a certain distribution

falls entirely into the competence of the analyst. A helpful tool might be genera-

ting a su�cient(order of 100) number of quantile sets using a method of 'shooting'

at the respective cumulative distribution function[7]. The algorithm generates random

numbers in the open interval (0, 1) and determines the quantiles of these numbers

for the respective CDF. Plots of these data sets covering the original QQ plot show

where the original plot 'sticks out' from the cover. An example of such 'cover' using

uniform distribution is in �g. 2.4.

The plot makes a band around an imaginative line that denotes the range

of 'acceptable' deviation from the reference quantile function. Its width is varying

to re�ect the possible shape deviations in di�erent parts of the plot, i.e. deviation

in the edges of the plot is more 'serious' than around the center.
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Figure 2.4: Uniform distribution QQ test cover

2.7 Modus operandi

The main advantage of the QQ plot is its illustrativeness. However, as was men-

tioned above, it lacks a clear statement about the null hypothesis in question. Main

dilema is whether to state that the null hypothesis was not disproved or the null hy-

pothesis is correct. Of course the �rst statement is more precise, as we cannot be

100% sure that the data indeed are distributed according to the hypothesis (Pareto

in this case). Nevertheless, we might choose to accept the null hypothesis on the basis

of the QQ plot, provided we set a certain rule on which basis we decide. We now choose

such rule: if the QQ plot looks scattered, we decide only according to the simulated

data sets test. Should the plot resemble a continuous trajectory(a drawn line between

the discrete points if necessary), we �rst judge the appearance. If the plot is clearly

linear for the naked eye, we only use the simulated data cover for additional illustra-

tion and accept the null hypothesis. If the plot is clearly not linear (e.g. an arc), we

deny the null hypothesis and also use the simulated data cover only for an illustration.

Otherwise, we rely on the simulated data cover test.

It should be noted that we are testing the tails of the real data distributions,

not the entire data sets. It is because of the properties of the zeta distribution
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and the power-law described in the subsection 2.2.4. We need to examine the shape

of the QQ plots per intervals. It will be shown that the real data may look linear only

on certain parts of the plot.

2.7.1 On other tests

It was mentioned that the QQ plotting method is an alternative statistical hypo-

thesis test. For economic and statistical studies, there are several di�erent estimators,

namely Hill's estimator, POT method or Pickand's estimator. Due to the uncertainity

of the results of statistical estimators, a result of a single estimator is not considered

su�cient and should not be pre�ered over the others [10]. However, the theoretical

background of other estimators, particulary the Hill's estimator, is quite extensive

and beyond the capacity of this text, and so only the QQ plotting method will be per-

formed, leaving a suggestion for further analyses.

Most of the data presented in this document were analyzed using log-log probability

plots or Hill's estimator, namely towns population or �rst or family names, although

in di�erent context(country, age) [5][9] In these cases, a certain result is expected.

There is, however, a data set that is unique and characteristic for the Czech Republic

(see subsection 3.5) and that should be analyzed more extensively. The data set re�ects

the forming of Czech tertiary education - academic titles distributed in the population.

2.7.2 On performing the analysis

The analysis part of this thesis performs a single task of making the QQ plots

out of the chosen data �les with an afterwards discussion. In no sense the output

will be a statement that the null hypothesis is correct, at best we only will accept it

as a su�cient model. We are particularily interested in the null hypothesis for the tails,

i.e. for the values that exceed a certain threshold.

Data stored and formatted on the attached CD are processed using MATLAB.

The focus is on the QQ plots, however, the data �les contain data variables suitable

for other analyses, e.g. the mentioned Hill's estimator.
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3 Data analysis

The applied part of this work includes a statistical analysis of the presented

data. Because the data sets needed to be reliable, these were searched and taken

from the database on the websites of the Czech Statistical O�ce(CZSO) and

the Ministry of the Interior of the Czech Republic(MI). Respective sources

are summarized in tab. 3.1 and the url links of the �les in tab. 3.2.

# Data description Reference date Institution Homepage

1 Towns population 1.1.2001 CZSO http://www.czso.cz/

2 Towns population 1.1.2010 CZSO http://www.czso.cz/

3 Men �rst names 1.5.2009 MI http://www.mvcr.cz/

4 Academic titles 19.5.2006 MI http://www.mvcr.cz/

Table 3.1: Data sources(links actual to 21 December 2010)

# Url address

1 http://www.czso.cz/csu/2010edicniplan.nsf/t/06003C3DD7/$File/13011003.xls

2 http://www.czso.cz/csu/2001edicniplan.nsf/t/130032A03F/$File/obce.xls

3 http://www.mvcr.cz/soubor/cet-jm-mall090501-xls.aspx

4 http://aplikace.mvcr.cz/archiv2008/sprava/informat/cetnost/2006d/cet_tit_sum.xls

Table 3.2: Data �le names(links actual to 21 December 2010)

All data�les were converted into �les with sorted data sequences. All analyzes were

done using MATLAB 2009a (CTU students' license) for Unix operating systems.

Input data �les are simply sorted sequences of values related to each data �le.

Loosely speaking, each value in the data set is a random variable realization acquired

upon collecting the statistics. Respective sample set depends on the data�le, however

for the analysis purposes only the sequences are required, as they form a discrete mea-

sure described in the subsection 2.5 and in such way declare respective probability mass

functions and cumulative distribution functions. An example might be a sample set

http://www.czso.cz/
http://www.czso.cz/
http://www.mvcr.cz/
http://www.mvcr.cz/
http://www.czso.cz/csu/2010edicniplan.nsf/t/06003C3DD7/$File/13011003.xls
http://www.czso.cz/csu/2001edicniplan.nsf/t/130032A03F/$File/obce.xls
http://www.mvcr.cz/soubor/cet-jm-mall090501-xls.aspx
http://aplikace.mvcr.cz/archiv2008/sprava/informat/cetnost/2006d/cet_tit_sum.xls
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of all towns in the Czech Republic with a random variable represented by the number

of inhabitants.

3.1 Scripting

All user-de�ned programming scripts used are in the set of m-�les for MATLAB that

were developed for the purpose of this thesis. They include the scripts for computing

the probability mass functions, cumulative distribution functions, scripts for estimating

the QQ plots, full-chain analysis of the data sets and a script for testing of the 'rough

linearity'. The data are handled in the number of variables common for all data �les.

Essential variables are listed:

• data_cdf : Matrix variable of 2 columns, �rst the domain of the cumulative

distribution function, second the mapped values.

• data_pmf : Matrix variable of 2 columns, �rst the domain of the probability

mass function, second the mapped values.

• data_qqplot: Matrix variable of 2 columns, �rst the values of the data set

values natural logarithms, second the quantiles of the reference quantile family.

• data_raw: 2 columns variable, �rst the data set sorted upwards, second down-

wards.

• data_raw_down: A column of the data set values sorted upwards.

• data_raw_up: A column of the data set values sorted downwards.

• data_size: Number of samples.

• maximum: Maximum of the data values.

• minimum: Minimum of the data values.

• mu: Parameter µ of the location-scale family.

• name: Identi�cator of the data set(data �le core name).

• sigma: Parameter σ of the location-scale family.



3 DATA ANALYSIS 28

These values are stored in the *.mat �les dataname_raw.mat (only data_raw and name)

and dataname_final.mat (all). Descriptions of the operation algorithm of the scripts

follow:

pmf The function iteratively adds 1 to A ∈ {1, 2, ..., n} where n is the size of the data

set.

cdf Using pmf as input, cdf �rst estimates the support of pmf and then adds up

the values to make a cumulative distribution function.

makeqq Natural logarithm is applied on the data set values and then the values

of reference quantiles by the index are assigned.

theorquantile Given a range of a matrix, the output is a matrix of the simulated

values of the reference quantile function(the 'shooting' method).

qqtesting Creates the 'cover' for the QQ plots in form of a matrix.

fullchain(data#anal) Loads a data �le, estimates pmf, cdf, QQ plot of the data

set and shows the plots.

3.2 #1 - Population of the towns in the Czech Republic(2001)

The �rst data set was the population in the Czech towns to date of 1 January 2001.

Sample set Ω is represented by the towns in Czech Republic and the random variable is

de�ned by the number of inhabitants. Speci�c markers were the numbers of inhabitants

in the most populated and least populated towns - Prague with 1,180,131 inhabitants

and the village 'B°ezina' with 8 inhabitants. A full-chain analysis ran with 6258

samples. All probability mass functions and cumulative distribution functions use log-

scale in the random variable axis, partly because also the QQ plot uses logarithmic

values of X and partly due to better clarity of the �gures.

It is obvious that on certain interval the probability mass function in �g. 3.1

certainly is not decreasing. Also, the QQ plot suggests that until certain point the data

are not Pareto distributed. However, for the values of lnXi:n > 1(i ≥ 4000) the QQ



3 DATA ANALYSIS 29

Figure 3.1: Probability mass function - data set #1

Figure 3.2: QQ plot - data set #1

plot shows a clear linearity. The deviances for larger values are due to the character

of the distribution, as the values of − ln(1− q) are sensitive to perturbations in q as it

approaches 1. This is shown in the QQ plot test by simulated data in �g. 3.3.
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Figure 3.3: QQ plot simulated test - data set #1

Figure 3.4: QQ plot linearization - data set #1

The covering band clearly spreads for higher values, therefore deviances at the far
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No. of samples min max µ σ xl β Decision

6,258 8 1,180,131 5.3579 0.9818 212.2838 1.0185 +

Table 3.3: Summarized parameters - data set #1

edge are more acceptable. Linearization to determine the parameters for the cover

was done using basic �tting tool in MATLAB. Parameters obtained through analysis

are summarized in tab. 3.3 (values rounded to four decimal places).

µ and σ are the parameters of the location-scale family the null hypothesis

belongs to, xl and β the respective parameters of the Pareto distribution. Value

for 'decision' is a statement whether the QQ plot is in favor of the null hypothesis

or not (+ for positive).

3.3 #2 - Population of the towns in the Czech Republic(2010)

As a second data set the towns population in the Czech Republic was chosen

again with the data actual to 1 January 2010. The motivation was to determine

whether the coe�cients characterizing the null hypothesis will change signi�cantly

due to the urbanization. During the decade, 8 towns(villages) lost their legal status.

Extremes changed to a minimum of 3 inhabitants in B°ezina and 1,249,026 inhabitants

in Prague. Results are again plotted and summarized.

No. of samples min max µ σ xl β Decision

6,250 3 1,249,026 5.4720 0.9563 237.9422 1.0457 +

Table 3.4: Summarized parameters - data set #2

Focusing on the problem at hand, only slight changes in parameters µ and σ were

observed, suggesting that provided the null hypotheses are accepted, population �ow

focused into the rural areas over the decade in question.
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Figure 3.5: Probability mass function - data set #2

Figure 3.6: QQ plot - data set #2
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Figure 3.7: QQ plot simulated test - data set #2

Figure 3.8: QQ plot linearization - data set #2
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3.4 #3 - Male �rst names in the Czech Republic(2009)

Male �rst names of the inhabitants that have a valid legal residence in the Czech

Republic is the sample set for the third data set. Ω is a set of all di�erent registered �rst

names and the random variable is de�ned as the number of individuals that have such

�rst name. This set is characteristic by a high number of samples - 61,904. Minimum

sample is 1 and the same value is shared by a large number of �rst names. It is

noteworthy that even foreign names not domestic to the Czech Republic are included,

possibly in�uencing the result. Full chain analysis follows.

Figure 3.9: Probability mass function - data set #3

No. of samples min max µ σ xl β Decision

61,904 1 315,369 -3.6188 1.8056 0.0268 0.5538 -

Table 3.5: Summarized parameters - data set #3
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Figure 3.10: QQ plot - data set #3

Figure 3.11: QQ plot simulated test - data set #3
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Figure 3.12: QQ plot linearization - data set #3

The QQ plot in �g. 3.10 obviously departs from the linearity for higher values

of X. This leads to a conclusion that the data set is not Pareto distributed even

if the testing plot in �g. 3.11 envelops the QQ plot (however, one can see the QQ

points at the very edge of the band).

3.5 #4 - Academic titles in the Czech Republic(2006)

The fourth and last data set is chosen from the statistics of the university education

in the Czech Republic. System of terciary education has not been uni�ed in every

country, therefore study of its results may prove interesting. All registered titles are

the sample set, number of people who have valid residence in the Czech Republic

and do possess the speci�c title de�ne the random variable. The data set is the smallest

presented here with only 603 samples, however even such statistics seem to show a clear

result.

No. of samples min max µ σ xl β Decision

603 1 368,596 -0.7707 2.2109 0.4627 0.4523 +

Table 3.6: Summarized parameters - data set #4
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Figure 3.13: Probability mass function - data set #4

Figure 3.14: QQ plot - data set #4
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Figure 3.15: QQ plot simulated test - data set #4

Figure 3.16: QQ plot linearization - data set #4

The QQ plot is clearly in favor of a Pareto distribution, maintaining the linearity

even for the upper values of the data set.
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4 Conclusions

In the section 2, we discussed and described properties of the zeta distribution

and Pareto distribution. We also studied the power-law to identify with Pareto

and the connection between zeta distributed and Pareto distributed data. Described

method of QQ plotting was used to analyzing of the downloaded data in the section

3. In this part, we discuss the results and conclusions of those two sections.

4.1 QQ plot evaluation

The way of using the QQ plotting method in this thesis does not allow to study

cases where the parameter α of the respective power-law distribution would equal 1.

It only could near this case if the QQ plot reached very large value of σ. It is because

the null hypothesis quantile function is monotonne and increasing and the sorted data

are non-decreasing. However, there might occur a case where σ = 0. In this case,

the data also are not Pareto distributed, as the parameter β ∈ R+ and such value of σ

would cause β to diverge to in�nity. Such case would occur in the analysis of the data

set #4, if we took only the few �rst members of the data set.

In the case of Pareto distribution, the cover QQ plots show that the quantile func-

tions F←(a) are particularily sensitive in changing the value of a if it is somewhere

in the near neigbourhood of the point 1. In the QQ plot it shows an increased scatter-

ing. This might be useful in analyzing the Monte Carlo performance, where quantiles

of a certain distribution are generated. Simulating random numbers, especially where

the rate of CDF is low, These covers may show where caution might be in order,

because values too scattered indicate a lack of samples(the need of the mentioned

'band').

4.2 Zipf's law, zeta, power-law and Pareto tails in the theory

Pareto distribution, as well as the power-law in form of the normalized function

pn(x), are characterized by two parameters: Pareto in β, xl and power-law in α =

β + 1, xmin = xl. The original problem concerned Zipf's law in form of 1.1. However,

this particular form complies neither with the de�nition of power-law, nor Pareto

distribution. It is because the value of α(β respectively) would be out of the possible
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interval, α = 1(such Pareto CDF from the de�nition 2.13 would be unde�nable).

A possible way around would be accepting Zipf's law in form described by eq. 1.2

and allowing α to be slightly greater than 1. Note that the highly improbable yet not

ruled out case of α < 1[9] in no way can be described using the estabilished method

(but still can be analyzed using e.g. log-log probability mass function plot, re�ecting

the logarithm in eq. 2.30).

The form of Zipf's law with generalized exponent indeed is considered also Zipf's

law (although di�erently de�ned)[12]. We then are forced to depart from the original

idea of eq. 1.1 and allow a generalized exponent. Only then we can conclude that

the respectively zeta distributed data also uphold Zipf's law (regarding to the value

s = B). Thus we identi�ed Zipf's law with zeta distribution and earlier the power-

law and Pareto distribution. The connection between these two distributions(zeta,

Pareto) lies in the somewhat troubling theorem that states these two equivalent on their

tails(with the respective values of s and β). If so, the chosen method is correct also

in testing the zeta distribution.

4.3 Test results

As a �nal summary, we create a table with all relevant results of the data analysis:

Data set # samples α β xl Median NH Med Dec.

#1 6,258 2.0185 1.0185 212.2838 384 419.2562 +

#2 6,250 2.0457 1.0457 237.9422 417 461.6793 +

#3 61,904 1.5538 0.5538 0.0268 1 0.0937 -

#4 603 1.4523 0.4523 0.4523 2 2.1420 +

Table 4.1: Summary - all data sets

Values of Median and NH Med refer to the values of the actual median of the data

and the null hypothesis median computed for the respective null hypothesis power-

law, described in subsubsection 2.2.5. The median values are mentioned as a 'test'

how well the null hypothesis describes the actual data set.
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4.3.1 #1 and #2 results

There is no surprise that the QQ plot method is in favor of the Pareto null hy-

pothesis. According to what already has been derived and described in the theoretical

framework, if the data were zeta(Zipf) distributed, they would also have a Pareto tail.

Despite for a di�erent country, the study of towns population in US also showed a

positive match with Zipf's law[5]. Also, the order value of median of the data cor-

responds with the null hypothesis median quite well. For the second data set, there

is an increase in the median. This supports the earlier statement suggesting that the

population somewhat �owed into the rural areas.

4.3.2 #3 Results

Parameters of the null hypothesis for the third data set are only formal, as the

null hypothesis has been denied following the QQ plot. The order of the median also

is o�, however, it is di�cult to determine properly, as the integer values of the data

set mean only 0.5 multiples in the value, much larger than the theoretical median

of the respective Pareto. Possible further analysis could include focusing on the names

in a certain local area or Czech-only names.

4.3.3 #4 Results

This result is one of the most surprising, as the Czech system of possible academic

titles is somewhat unique both in Europe and the world. A clear linearity holds

until the upper values of the set, despite the clear uncertainty in that part of the plot.

Both theoretical and real medians are equal to the minimum error, suggesting further

analyses of this particular data set.

4.4 Epilogue

We described several terms and properties concerning Zipf's law. There is a number

of papers and other publications discussing this interesting phenomenon, both in em-

pirical and theoretical point of view. However, there are also inconsistent opposing

de�nitions and descriptions that need to be �rst fully understood, if we are to present

any solid result. The analysis results supported several known facts and also intro-
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duced a whole apparatus for studying the problem. In the cases where the described

de�nitions and formulations departed from the ones mentioned in any of the referenced

sources, this was done only because there was a choice to be made(e.g. the Zipf's law

de�nition). For di�erent premises, the results could also be di�erent, however the an-

swers based on the structure of this thesis and the line described in [10] are quite solid.

If there is anything this text is hoped to achieve, it is raising questions about the pre-

sented data sets and encouraging further analyses. The topic is so vast that one pa-

per, thesis or book cannot cover it completely. QQ plot method is only one amongst

a large number of possible estimators. Additionaly, there is still a missing link between

the varying character of the data and the same Zipf's law that holds for so many

of them. The biggest question is then what is this link, how people with di�erent

dreams and passions end up being a part of this simple mathematical distribution

or how Shakespeare could uphold this law with his unique plays that set a course

of speech for next tens of generations of the whole nation.
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A Notation

(a, b) Open interval

[a, b] Closed interval

2M A power set of an arbitrary set M

A Arbitrary σ-algebra

B Zipf's law exponent parameter

B(R) A Borel σ-algebra on a set of real numbers

dX Probability mass function

dom(A) Domain of A

fs Zeta distribution

FX(u), P [X ≤ u], PX((−∞, u]) Cumulative distribution function

F̄X(u), P [X > u] Supplement of the cum. distr. function in R

F←X Quantile function

F̂n Empirical cumulative distribution function

Fµ,σ Location-scale family member

Fµ,σ Location-scale family

H← Inverse of H should it be non-injective

ln Logaritmus naturalis

N Set of natural numbers with 0

N+ Set of positive natural numbers, without 0

pd Power-law

p Extension of the power-law

pn Normalized power-law

P Probability measure

PX Probability distribution

r Zipf's law rank

R Set of real numbers

R+ Set of positive real numbers

supp(dX) Support of dX

U(S) A σ-algebra generated by S

X Random variable

Xi:n ith smallest value of X
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α Exponential parameter of a power-law

β Pareto exponential parameter

ζ(z) Riemann zeta function

ζR(x) Riemann zeta function with a real parameter

Λ Support of the empirical probability mass function

µ O�set parameter of the location-scale family

σ Scale parameter of the location-scale family

Ω Sample set
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B CD content

Besides the electronic copy of the thesis in pdf format in the root directory (�le

delonvoj-bcthesis-zipf.pdf), the CD also contains a directory analysis. In the di-

rectory, there is a number of commented m-scripts containing all mentioned functions

used for the analysis. This directory also contains four subdirectories marked

datanumber _name _year denoting

• number - number of the data set

• name - name of the data set

• year - reference year of the data set

This string will now be referenced as the dirname , the original data set �le names

origname . Each subdirectory contains these �les:

• dirname _final.mat - MATLAB output data �le with all result variables

• dirname (origname ).xls - original downloaded data �le

• dirname _raw.mat - MATLAB input data �le

• dirname _sorted.csv - CSV �le with the data

• dirname _sorted.ods - ODS OpenO�ce �le with the data

The csv and ods �les where created in OpenO�ce Calc v3.1 for Linux Ubuntu.
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