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Abstract
This thesis describes analysis, design, implementation and testing of an environ-

ment for evaluation of financial time series predictors. The purpose of this environ-
ment is to allow uncomplicated set up of a market forecasting process from data
input and preprocessing to prediction and trading simulation. For each step of the
process, multiple commonly used methods are available and new ones can be added
effortlessly.

After the configured prediction process is executed, the prediction accuracy and
performance of trading based on made predictions are calculated, which allows to
assess the quality of the prediction process. The environment also supports opti-
mization of parameters of the process and logging of outputs of the experiment.

In addition, an experimental prediction method using combination of input data
clustering and a neural network group is designed and implemented into the testing
environment.

Environment’s functionality is demonstrated by optimizing multiple machine
learning methods and comparing their performance by standard accuracy measures
and profits of simulated trading.

Abstrakt
Tato práce popisuje analýzu, návrh, implementaci a testováńı prostřed́ı pro hod-

noceńı prediktor̊u finančńıch časových řad. Účelem tohoto prostřed́ı je umožnit
jednoduchou tvorbu procesu pro předpověd’ vývoje trhu, a to od datových vstup̊u a
předzpracováńı po stanovováńı předpověd́ı a simulaci obchodováńı. Pro každý krok
procesu je k dispozici několik běžně použ́ıvaných metod a nové mohou být jednoduše
přidány.

Po spuštěńı předpovědńıho procesu je vypočtena přesnost předpověd́ı a výkonnostńı
ukazatele obchodováńı založeného na vygenerovaných předpověd́ıch, což dovoluje
zhodnotit kvalitu předpovědńıho procesu. Vytvořené prostřed́ı také podporuje op-
timalizaci parametr̊u procesu a záznam výstup̊u experimentu.

Dále byla navržena a implementována experimentálńı předpovědńı metoda založená
na kombinaci shlukováńı vstupńıch dat a skupině neuronových śıt́ı.

Funkčnost prostřed́ı je názorně předvedena optimalizaćı několika metod stro-
jového učeńı a jejich porovnáńım pomoćı standardńıch měř́ıtek přesnosti a zisku ze
simulovaného obchodováńı.
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Chapter 1

Introduction

Markets can remain irrational
longer than you can remain solvent.

John Maynard Keynes

1.1 Motivation

Trading of stocks, commodities and financial instruments on global markets is a
highly interesting area of focus for science scholars since it combines unique chal-
lenges with very obvious potential rewards. Although sophisticated research into
prediction of financial time series has been going on for many decades, it was almost
exclusively relying on econometric methods.

However, during ongoing evolution of Machine Learning (ML) as a scientific
discipline, prediction of time series has always been one of its primary applications.
As a result ML has been slowly but steadily gaining interest from researchers in
financial markets prediction. In past two decades this has lead to vast amount of
published research in the area. Most of this research follows a similar path: choosing
a certain set of ML methods and testing their behavior when applied to prediction
on a specific time series. Depth of these researches ranges from general comparative
study of multiple methods where various measures of accuracy and performance are
evaluated to an in-depth analysis of specific aspects of a method and their effect on
the method’s prediction behavior.

In most cases an extensive stack of heterogeneous components was set up and
often even developed from scratch before the research itself commenced. From data
collection, representation, cleansing and transformation to the ML algorithm itself,
efficient data structures it requires and the final evaluation of the prediction per-
formance - all these segments had to be created or selected from existing tools and
adapted to correctly interact with each other.

When applying a ML approach to a research task, the most time is always
spent on experimentation and tuning of the individual components of the process.
And we believe that this is where the researcher’s valuable time should be invested
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CHAPTER 1. INTRODUCTION 2

as opposed to recreating the whole prediction stack yet again, or struggling with
replacing individual components by their alternatives just to verify whether they
don’t perform better in the current task.

Although several categories of tools try to facilitate the task of predicting market
movements and every one of them has their strong point, none succeeds at providing
a prepared powerful environment ready for experimenting with automated predic-
tions:

• Trading tools - Software specifically targeted at analyzing market data. It
provides means to manipulate with the data and usually allows to access online
data sources. Rich visualisation capabilities give good notion of the market.
Many common financial indicators such as moving averages, Bollinger Bands,
etc. can be layered onto the visualisation allowing the user to deduce pre-
dictions based on empirical knowledge. However, automation environments
in these tools are rather limited and not at all optimized for development of
sophisticated prediction systems based on ML.

• General computing environments: Environments such as R, MATLAB
and others are designed to allow user to easily programmatically operate with
data such as financial time series. Thanks to their extendibility, specialized
packages for common processing or financial data are available. Likewise, in
the area of machine learning algorithms these tools provide some options, al-
though their usage and architecture may differ notably. Paradoxically, their
disadvantage lays in their versatility, as finding and putting all the necessary
parts together may be a lengthy process, may require implementation of in-
termediate steps or often resolution of compatibility problems between the
components.

• Machine learning environments: Tools such as RapidMiner or WEKA
provide a large number of components for input, preprocessing, evaluation
and most importantly machine learning. Most popular methods are present,
often in several modifications. Yet, the user still needs to put together the
whole prediction process and is rather limited when custom operations, such
as financial-related preprocessing are necessary.

As can be seen none of the tools alone provides prearranged, end to end solution
for financial prediction. Creating this solution will be our objective as described in
the next section.

1.2 Objectives

Our objective will be to create a testing environment for the financial time series
prediction task. This environment will be extendible and highly adjustable predic-
tion and evaluation process in itself. In addition, it will allow automatic testing of
various paths through the process and parameters tuning. The testing will not only
yield the best performing sets of methods and their parameters, but will provide a
complete overview of performance through the parameter space.
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As input, the testing environment will use several chosen sample datasets, but
also should be able to automatically obtain up-to-date data from freely available
sources. The environment should be able to operate on multiple scales of data, e.g.
minutely, hourly, daily. Also several types of instruments must be supported, such
as stocks and futures.

The data will then need to be preprocessed. This includes adding financial indi-
cators derived from the data, removing the absolute value of the variates, eventually
normalization, discretization or filtering. Apparently, there are multiple choices
for all of these steps and the environment needs to provide them and let the user
choose which is to be used. Further transformations of the data such as Principal
Component Analysis are also a desirable functionality.

Defining the predicted value is as well a step where several alternatives are possi-
ble. It may be a numerical value or an observation’s class. This will define whether
the prediction will be a regression task or a classification task - our environment
needs to support both.

Prediction step should have multitude of options - Nearest Neighbors, Artificial
Neural Networks, Support Vector Machines, etc. The environment should allow, as
with most of the other components, to select a prediction algorithm regardless of
what previous choices were made. Tuning prediction algorithms is where the most
user’s time will be spent, therefore at least some basic parameters for the included
methods should be present.

Once predictions are generated for testing data, the environment will provide two
kinds of evaluation - a synthetic one, based on common accuracy measures and an
empirical one, based on simulated trading. Trading on financial markets is usually
governed by a strategy, which uses a set of rules and signals to decide whether and
what types of market orders should be place. We need to find means to build and
execute such strategy on the testing data. Additional costs, such as order fees and
market slippage need to be taken into account.

The environment will likely be based on a combination of existing tools that
will suitably supplement each other. For transformation of the data and simulation
of trading based on predictions a general computational environment will be used,
whereas the prediction and direct evaluation of its quality will be performed by a
machine learning environment.

A crucial feature will be the ability to automatically optimize the prediction
process. This will be achieved by parametrization of the whole process. These
parameters will need to be externally accessible, so that general optimization algo-
rithms may be connected to the process. A metric for evaluation by the optimization
algorithm (which metric will be used has to be configurable as well) will be provided
at the output of the process.

In order to ensure reproducibility of results, the environment will need to pro-
vide extensive logging capabilities. This includes automatic storage of performance
measures, predictions and used parameters. In addition, visualisations of the trad-
ing process should be provided in order to manually estimate the rationality of the
predicted signals.
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To make this process more than just a single-purpose monolith, it has to be
easily extendible and modifiable. This means that the user should be able to add
his own methods without much effort, as well as modify the behavior of the existing
ones. This also requires the environment to be well-designed - to ease orientation in
it.

1.3 Project breakdown

To achieve the above we have divided the project into following tasks that need to
be accomplished:

• Explore time series preprocessing and prediction methods, best practices and
experimental results in the machine learning area with focus on financial series.
This will help us decide what components to include and how to structure the
environment.

• Find suitable existing machine learning and computational/statistical environ-
ments. Verify that they are adequate to meet our needs, including appropriate
range of choices for each step of the process described above. These environ-
ments will need to be able to integrate well with each other.

• Prepare a design of a modular system starting with predefined financial datasets
and ending with relevant metric output. Reflect on the nature of selected tools
and earlier requirements such as extendibility and support for automated op-
timization.

• Implement this system in previously selected environments. Also implement
the encapsulating optimization method. Both implementations need to incor-
porate detailed reporting - statistics of the prediction process associated with
used parameter combinations and helpful visualisations.

• Test the developed environment by evaluating multiple preprocessing and ML
prediction algorithms using parameter optimization. Show influence of several
major parameters on the prediction accuracy. Investigate relation between
absolute accuracy and the trading behavior.

1.4 Thesis structure

This thesis will be divided into 6 chapters, which will describe the author’s progress
on tasks laid out in the previous section:

• In chapter 2 we will introduce the general characteristics of Machine Learning
(ML) task and its similarity with econometric methods. Next, we will list
possibilities of what can constitute a predicted value. Afterwards, a deeper
review of two major methods of ML and associated preprocessing practices
is given. This review is based on our research into existing literature in the
area and therefore provides many references to notable resources. Finally,
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basics of performance evaluation from both, ML and trading, point of view
are described.

• In chapter 3 the environment’s architecture will be gradually built. First,
the general structure and then the specifics of individual components of the
process. The optimization process, which will encapsulate the main prediction
environment, will be constructed as well. This chapter will also describe the
software tools and their extensions, on top of which we will implement the
designed project.

• Implementation of the project according to the design is described in chapter 4.
This includes details on connecting the tools, which parts of the project are
realized in which environment and what precise processing steps were applied
to the data. The chapter concludes with overview of configurable parameters
that the implemented process supports with explanation of possible values.

• To test how the environment meets its purpose of allowing fast experimenta-
tion, in chapter 5 we describe experiments we have executed. These experi-
ments show general prediction performance, trading performance and influence
of various parameters on these results.

• In chapter 6 we outline directions, in which we would like to expand the
environment in the future.

• Final conclusion of what has been achieved and what experience has this work
given to the author is in chapter 7.



Chapter 2

Background

Essentially, all models are wrong,
but some are useful.

George E. P. Box

Successful prediction of financial series using econometric methods is always
based on a more or less general assumption about the behavior of the market. Such
assumption needs to provide leads on how to approximate the assumed behavior.
Usually, the derived approximation method is parametric, meaning it depends not
only on the processed data itself, but also on additional values not directly calculable
from the data. Very often these parameters are to be found by experimentation or
empirically evolved estimation methods (e.g. Box-Jenkins methodology for fitting
autoregressive moving average models[Box et al., 1994]).

The situation is very similar in Data Mining / Machine Learning. Every method,
be it from the area of preprocessing, prediction or evaluation has its parameters,
often a significant number of them. Furthermore, there are multitude alternative
methods for each individual step. These circumstances provide many degrees of
freedom, which open many wrong turns to take.

In order to be able to better understand what choices should be made during
creation of our testing environment we need to explore existing knowledge in the
area. In this chapter we will give an overview of what consist a prediction and of two
prominent methods of machine learning. We will describe preprocessing methods
for each of them, variations of both methods and their specifics. This description is
based on our review of relevant scientific articles in the area and therefore should
provide enough references for eventual deeper exploration.

2.1 Existing approaches to forecasting

There are myriad approaches to forecasting financial time series outside the ML area.
They vary in sophistication, the time scale of their predictions and the amount of
knowledge and time necessary to extract a prediction. They may be divided into
following categories:

6
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• Fundamental analysis of financial time series examines the object of the
series. In case of stocks, the object is the company whose stock is analysed,
but also the industry in which it carries its business and any other relevant
factor that may influence the success of the company. In case of commodity
futures, the examined factors will likely include the state of the industry where
the commodity comes from (mining, agricultural, etc.) and of industries where
it is consumed. Obviously, the insight and analytic skills necessary to perform
a prediction based on fundamental data are significant. The prediction horizon
can be very variable, but is likely to be upwards of several days. The advantage
is that behind every prediction there is an explicit rational process, which also
includes an estimation of confidence of the prediction.

• Technical analysis of time series is based on analyzing the data itself. This
is done by estimating certain states of the market, such as trends, price lev-
els and momentums. This is done with aid of various transformations and
projections - indicators - of the data. Some of the notable ones are Moving
Average Convergence/Divergence, Relative Strength Index, Bollinger Bands
or a Moving Average, but there many others. Predictions are extracted using
rules that are associated with each indicator. Second method of the technical
analysis is repetitive patterns recognition, which can suggest what behavior
will the market exhibit in the future. Trading rules based on indicators may
be automatized and many trading tools currently do so. Also, an automatic
recognition of hard-coded patterns is imaginable, although the author is not
aware of any well known tool performing this task. However, many traders still
perform technical analysis to large extent manually, using trading tools only
as a visualisation guide. The confidence of each prediction based on technical
analysis is rather hardly predictable.

Nevertheless, adding technical indicators into the data input for machine learn-
ing based prediction is a reasonable step. The ML methods should to some
extent be able to extract the presumed regularities in indicators’ behavior if
they are strong enough.

• Econometric models aim to approximate the market by employing one or
more assumptions about its behavior (e.g. autoregressive nature, oscillation
around the moving average, random variable heteroskedasticity, etc.) and
building a parametrized generative apparatus. Many models (apparatuses)
have been developed, often improving on each other - the more known are e.g.
ARMA, ARIMA or the family of GARCH models. For prediction on certain
data, a model is selected and fitted to the data, i.e. the best performing
parameters are found. The predictions and assessments of the market can
then be drawn from the model.

Although these types of models are built using sound theory based on statistics
and probability and seem to be able to capture major features of many time
series, they (perhaps subjectively) seem slightly too rigid to capture the finer
properties of the market’s behavior, which in the models’ interpretation may
be regarded as noise.

It should be noted that there are more sophisticated models relying on proba-
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bility theory and advanced stochastic process modelling - Markov processes in
continuous time; and Random Fields. However, the author hasn’t investigated
the extent of their usage or success when applied to financial data.

With regard to our testing environment, econometric models could be added
in future development to allow comparison with pure ML techniques. Exper-
iments with plugging these models into meta-algorithms such as bagging or
boosting also seem viable. However, currently we will not employ these models
in any way.

• Machine Learning methods are also being utilized in financial prediction.
But although they have been researched and known for quite some time,
they never gained popularity to the extent comparable with econometric ap-
proaches, despite records of both excellent theoretical results and successful
applications within trading frameworks. However, much of the research in
the financial area is done privately and not published, which leads us to be-
lieve that there might be a considerable disparity between the limited public
exposure of these methods and the real extent of their usage.

We will give overview of lazy learners (k-Nearest Neighbors) and Neural Net-
works further in this chapter. Other methods such as decision trees, Markov
models or Inductive Logic Programming are also being applied to prediction
and are examples of possible future additions to our environment.

Most of the existing literature and research work deals with ML prediction
methods in isolation and their results are measured using standard accuracy
measures. Luckily, there are some recent works that connect all the necessary
components into a complete solution and provide practical market performance
results [Barbosa and Belo, 2008], [Lee et al., 2007], [Martinez et al., 2009].

A great overview of the financial time series data mining research area is
provided in [Zemke, 2003].

Tightly connected and at least as important as making a prediction is the trading
strategy governing the actions that are taken based on a prediction. The strategy
specifies timing, what properties should an order or orders placed to the market have
and whether to place them at all. This includes methods for order sizing, policies
governing what type of order is placed or how limit orders lowering the risk in case
the market goes against the prediction are used. More advanced schemes such as
hedging, arbitrage or spread trading are also often utilized.

2.2 Prediction

The prediction itself may have various forms. One class of methods may be a numeric
predictor, where one or more future values of the time series are forecast. However,
this output might be relatively inaccurate and the application necessarily doesn’t
demand as exact information as a specific numeric value.

Simply recognizing whether at a given moment the time series evolution will
take some expected direction is very well sufficient in many scenarios. The taken
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direction might be a rising trend, a movement assuring that the trend will continue or
a precursor of a sudden drop of the series. This recognition is commonly formulated
as a classification task. More advanced variations of the both numeric predictor
(e.g. predicting expected minimum and maximum value on a day) and the classifier
exist as well.

Combining approaches such as decision trees, ensembles and mixtures of experts
are also frequently used.

2.3 Instance-based learning

To perform a given learning task the Instance-based learning (IBL) methods operate
on a dataset of individual instances. For an input instance, the algorithm retrieves
relevant instances and combines them into the output. The definition of relevant
instances and their combination is defined by each method and eventually by its
parameters.

In the prediction task, the algorithm is given an instance whose future evolution
we would like to know and yields either a forecast or a predicted class of the instance.

Since time series are continuous, one needs to define how to extract an instance
from the data flow. Practically, the only used method is application of a sliding
window on the series. The width, shift and sampling rate of the window are again
optimizable parameters. It is important to note that the instance extraction nec-
essarily needs not to be literal. The algorithms working with the concept of an
instance may merely operate on appropriate subsequences of data points in the time
series stream.

The time series values may need to be altered before being processed into indi-
vidual instances. Similarly, transforming the instances may be necessary. This is
discussed in the next section.

2.3.1 Preprocessing

The financial time series are given as absolute values, be it in ticks or the actual
price. Since the absolute value is in most cases relatively large in comparison to its
change between neighboring data points, it is very advisable to apply a difference
operator , i.e. ∆xn = xn+1 − xn. This way we will obtain a returns series, which
is much more suitable for further processing [Maggini et al., 1997]. Other noticed
transformations of the time series are Moving Average of several past data points,
ratio operator ( xn = xn

xn−1
), or higher orders of the described difference operator.

Each instance extracted from the series, can be defined as
xm,τt = (xt, xt−τ , ..., xt−(m−1)τ ), where m is called an embedding dimension and τ is a
delay parameter [Rodŕıguez et al., 1999]. The delay parameter is almost always set
to 1 in the case of financial time series, i.e. no subsampling is taking place. There
is also an implicit parameter of the window’s shift, which is almost invariably equal
to 1.
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Embedding dimension (i.e. the length of the instance feature vector) is a very
important parameter and many approaches for its estimation exist. A very popular
one seems to be Casdagli’s algorithm [Casdagli, 1992], while one of the more recent
interesting approaches is [Zufiria and Campoy, 2009], where Self-Organizing Maps
are used to provide whole probability distribution on the embedding dimension.
More methods can be found in subsection 2.4.1, since Neural networks are sensitive
to embedding dimension value and thus literature in the area lends more focus to
available estimation methods.

Instance feature vectors may be further transformed into alternative representa-
tion in order to reduce dimension or to allow usage of more advanced metrics and
data structures. This may lead to both increased efficiency and higher accuracy. Al-
ternative representations are introduced in the next section along with the learning
methods themselves.

2.3.2 Methods

A strong majority of works on time series prediction using Instance-based meth-
ods use Nearest Neighbor (NN) approach [Maggini et al., 1997][Barbosa and Belo,
2008] [Arroyo, 2010]. This method finds similar instances according to a provided
metric and combines them into the desired output. The obvious assumption of this
approach is that similar subsequences of a time series are likely to have similar
continuation (evolution) of the subsequence.

If no dimension reduction is applied, commonly used metric is the Euclidean dis-
tance. Another very suitable, yet more advanced, metric is Dynamic Time Warping
(DTW), which allows the compared sequences to vary in speed, i.e. it is able recog-
nize two instances as very close if they contain very similar pattern, although one is
realized in different number of data points than the other.

If the neighbor look up is taking place in reduced instances space, the applicable
metrics are dictated by the representation of the instance. However, most of the
distance metrics are modelled to exhibit similar behavior as the Euclidean distance
or DWT - often the works state the problem as implementing Euclidean or DWT
using alternative representation for the sake of efficiency improvement.

If the prediction is formulated as a classification task, known classes of the found
neighbors determine the input’s instance target class. Commonly, the target class is
the class with the highest frequency (majority class) or highest normalized frequency
(account for distance of each neighbor).

When a numeric forecast of future observations is the desired output, combina-
tion of the data points following after each of the neighbors is calculated. Popular
options include linear combination, weighted linear combination based on the dis-
tance of each neighbor or linear autoregression [Rodŕıguez et al., 1999]. In the
linear autoregression, the forecast data point is calculated using preceding points as
xn+1 = a0xn + a1xn−1 + ...+ am−1xn−(m−1) + am. The nearest neighbors are used to
perform least-squares error estimation of the coefficients a0..m.

While the idea of NN algorithm is very straightforward, the realization for mas-
sive datasets needs to deal with the complexity of finding the neighbors. This
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problem (often more generally termed similarity search) can be resolved using ap-
propriate data structures and/or alternative instance representations that reduce
the dimension of instances.

M-trees is a popular data structures family based on organizing the instances
into a tree based on their relation through the metric used for the neighbor lookup
[Ciaccia et al., 1997]. Other used metric-based tree structures include VP-tree [Fu
et al., 2000], Bk-tree, Pk-tree or R-trees. Combinations of a more complex pre-
processing and a specific suitable data structure are also known, such as iDistance
method, which creates a B+-tree based on clustering the instances [Yu et al., 2001].
Different representations of instances broaden the possibilities and are used for one
or more of following reasons: reduce the dimension of the instance feature vector
(i.e. reduce the amount of data), speed up the similarity search, provide better
results. The dimension reduction is often the means to improve the search speed.
However, the reduction transformation needs to preserve distance relations in a way
that will prevent near relevant neighbor to be excluded from the result due to large
distance in the transformed space. This property of combination of a feature space
and a metric is called lower bounding.

Since some information is inevitably lost during the transform, the search results
in the transformed space are approximate. Therefore, most works on the subject
include a secondary step where the approximate result set, whose size is already
reasonable, can be further processed to retrieve exact results.

Using Discrete Fourier Transforms (DFT) to significantly reduce the dimension
and R*-tree as an index structure for several most significant DFT coefficients is
one of the early approaches [Agrawal et al., 1993]. A Discrete Wavelet Transform
(DWT), especially Haar Wavelets, is another option to reduce the dimension and
is explored in [Chan and Fu, 1999]. Dynamic Time Warping metric can be applied
to DWT as described in [Chan et al., 2003]. Symbolic Aggregate Approximation
(SAX) is a transformation that is recently gaining popularity, which represents an
instance as a string of symbols. Each symbol denotes a value range in one segment
of the instance. SAX is based on Piecewise Aggregate Approximation and extends
it with transformation from segment aggregate values into the symbols. Distance
metrics for SAX that lower-bound Euclidean and DTW exist, as well as several
composite metrics [Nguyen and Anh, 2007] [Liu and Shao, 2009].

The last representation we will mention is Piecewise Linear Approximation,
which approximates segments of an instance with line segments. Application to
improve efficiency of the DTW metric on extensive data sets has been pioneered
in[Keogh and Pazzani, 1999].

An appealing variation to the k-Nearest Neighbor is the K* algorithm [Cleary
and Trigg, 1995], which uses entropy as a distance metric. It has been applied in an
ensemble in [Barbosa and Belo, 2008] trading agent implementation.

Most of these methods are applied to univariate time series. Multivariate time
series pose considerably more complicated problem, since the methods often go from
polynomial to non-polynomial complexity. However, more advanced attempts to
predict financial time series require more dimensions (e.g. for open price, close price,
mean, volume etc.), hence different approaches must be taken. These approaches are



CHAPTER 2. BACKGROUND 12

in some cases extensions of the univariate ones or follow a different path altogether.
A thorough review of existing methods and new interesting solutions can be found
in [Yang and Shahabi, 2007].

Although all of the above works focus on efficiency, there are still time bounds
that Nearest Neighbors can have big problems to meet. These tight time bounds
are required for tick-by-tick scale (where High Frequency Trading operates). Some
answers to these problems can be found in the research area of Data Streams pro-
cessing, where input data may come in high volumes in non-constant intervals. The
methods need to do very fast both - give a prediction and incorporate the new
data. A related problem - classification on data streams employing adaptive nearest
neighbor is presented in [nei Law and Zaniolo, 2005]

2.4 Neural networks

Artificial Neural Networks (ANN) have a long tradition of being used as approx-
imators with training based only on function’s input and output. The universal
approximation abilities have been formally proven by [Cybenko, 1989]. Yet really
successful application of ANN is a complicated process that may include many un-
successful tweaking attempts. This is caused by non-transparency of the state of an
ANN, i.e. in most cases one can’t explain why the ANN tends to behave one way
or another. On the other hand, ANNs are able to grasp the nature of the process
to some extent and provide reasonable performance in most cases.

The basic ANNs are generally defined by <nodes, weights, activation function>,
where the weights can also be used to indirectly describe the structure of the network.
The activation function defines the output of a neuron based on the weighted sum of
its inputs. Common choices are the logistic, tanh or step function. More advanced
architectures may include recurrent or over-two-layers connections of neurons or
custom activation functions.

The parameters that need to be chosen are the number of hidden neurons and
the structure of the network (depending on the type of the network). There are
no widespread techniques for neither of these tasks and most configurations are
determined through several rules of thumb and various search methods, such as
Genetic Algorithms. Generally, it is recommended to keep the number of neurons
high just enough to be able to capture the generating process’ nature, but low
enough to prevent memorization of the input data.

The input to the ANNs is an instance vector in the case of univariate time
series. For multivariate series, the embedding dimension is in most works reduced
to 1, so input is a vector comprising of individual values of each dimension of the
multivariate series.

A great review of existing approaches to foreign-exchange rates prediction using
ANNs is given in [Huang et al., 2004]. An overview on existing literature compared
through used parameters, prediction horizon and success of the experiment is in [YU
et al., 2007]. Other recent review of existing approaches to forecasting stock markets
using softcomputing approaches (including ANNs) can be found in [Atsalakis and
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Valavanis, 2009]. An older, general, but explanatory review of forecasting with
ANNs is [Zhang et al., 1998].

2.4.1 Preprocessing

For ANN time series prediction the crucial part of preparing data is selecting the
most beneficial inputs. The networks are sensitive to the number of input variables
and to hidden dependences between the inputs, therefore the selection process should
evaluate contribution of each input and its relation to other inputs. However, most
works do not seem to have a rigorous process of selecting inputs, either with no
explanation or with a reference to use of expert knowledge.

The most straightforward input setting for univariate application is to feed the
network instances (time-delayed vectors) extracted from time series as described in
subsection 2.3.1. Results for networks using just the time-delayed vectors aren’t
very satisfactory, as they are on par with the conventional ARIMA models and
behind networks with other inputs [Yao and Tan, 2000]. Better results can be easily
achieved using more advanced inputs.

The input can contain indicators of the time series, such as Moving Average
(MA), Relative Strength Index or Momentum. These may be combined with time-
delayed vectors (shortened accordingly in order to maintain reasonable number of
input nodes) to provide more condensed information on the history of the time
series to the network. Even several indicators of the same type but with different
parameters may be used ([Yao and Tan, 2000],[Martinez et al., 2009]) uses MAs with
lengths 5, 10, 20, 60).

By including inputs not directly derived from the time series, the network can
be considered to perform fundamental analysis. Selection of such inputs depends
on the predicted financial time series. E.g. for currency exchange rates the relevant
information may be GDP, interest rates, consumer price index, etc.

In order to determine which inputs are advantageous, several methods may be
used. Traditional choices are Akaike Information Criterion or Bayesian Information
Criterion. When time-delayed vectors are used as input (or part of it), embedding
dimension can be determined by methods mentioned in subsection 2.3.1, Autocorre-
lation Criterion[Huang et al., 2004], which is used specifically for NNs, False Nearest
Neighbor or simply by leaving out individual inputs and comparing the performance
of created networks.

ANNs give slightly more freedom in input normalization and transformation than
Nearest Neighbor, since they are able to cope better with unnormalized data in most
prediction tasks. Still, most literature transforms and normalizes the data. The
available options are similar to those used for Nearest Neighbor (subsection 2.3.1),
i.e. a difference operator, ratio operator, logarithm, mean and deviation correc-
tion, etc. When the ANN performs numerical prediction tasks, it is necessary to
de-normalize the output values, since they will inevitably fall into an interval deter-
mined by the activation function. Normalization is also necessary when the input
consists of values from multiple time series.
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Transformation into wavelets has been applied with positive effect on accuracy
in [Mitra and Mitra, 2006].

2.4.2 Methods

ANNs are divided into many types, each of them specific in the network’s archi-
tecture, different type of activation function, specialized neurons or combinations
of the above. Most of these types have been already tested in financial time series
predictions, some of them have been consistently performing relatively well. We will
describe several most common types below.

Apart from choosing the architecture, there are several options as to the output of
a network. This again depends on the designated task. For conventional prediction
tasks the network has one output neuron giving the predicted value (which might
have to be de-normalized). More advanced variations of the prediction task may
have several output neurons, whose values are subject to weighted summation. The
weights may be adjusted dynamically with aim to improve performance [Baba and
Suto, 2000]. Other noteworthy option is to have the network predict minimum and
maximum for a predefined time unit [Martinez et al., 2009].

ANN may also be used as a classifier, in which case only the direction (sign in
the case of differenced values) is usually predicted. While not yielding the actual
value, classification approach may have better accuracy than direction prediction
based on a network predicting the numeric value.

Multi-layer Feed-forward Neural Networks (MLFNN) are the basic type of net-
work with one or more hidden layers, each layer connecting only to the next layer
and a standard sigmoid function used as activation function. Majority of works use
this type of network. The properties of the networks used in literature are following:
there are 1 to 3 hidden layers, number of neurons are in ranges 2 - 60 / 5 - 60 / 1
- 3 in input / hidden / output layers, respectively. While they generally perform
well, in most cases they are marginally or even significantly worse than more ad-
vanced types of networks. Well known methods for training are Backpropagation,
Levenberg-Marquardt or Genetic Algorithm [El Shazly and El Shazly, 1999], [Mitra
and Mitra, 2006]. General optimization methods such Gauss-Newton or Steepest
Descent can also be applied, but generally do not achieve good performance. De-
tailed description of construction and application with comparison against ARIMA
is in [Yao et al., 1999]. Another well-performed application (with 2 output neurons
for min+max value prediction) was done in [Martinez et al., 2009].

Radial Basis Function Networks (RBFN) have architecture similar to the MLFNN.
Their main difference is the activation function of neurons in the hidden layer. This
function is defined by a center and a radius and is symmetric around the center -
in most cases a Gaussian function is used for the purpose. RBFN performs quite
well in most comparisons [Kodogiannis and Lolis, 2002]. While most of the train-
ing algorithms for MLFNN can be modified and applied to RBFN, there are two
popular specializations - Orthogonal Least Squares [Kodogiannis and Lolis, 2002]
and EvRBF[Rivas et al., 2004] (the work also provides categorization of training
approaches for RBFN).
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Other family of ANNs are Recurrent Neural Networks (RNN), in which connec-
tions in the network can form cycles. The basic type has all the neurons in the
hidden layer strongly connected - this leads to large number of connections and slow
convergence. Another type - the Autoregressive RNN has recurrent connections only
within individual neuron (the connection originates and end in the same neuron).
Third common type is the Elman network, which presents context neurons serving
as memory cells. Outputs from the hidden layer are stored in the context neurons
and fed to the hidden layer along with new inputs on the next iteration. The latter
two types are described and compared with other types on exchange-rate prediction
in [Kodogiannis and Lolis, 2002].

Probabilistic Neural Networks (PNN) and General Regression Neural Networks
(GRNN) are basically representations of Bayes Classifier and Kernel regression, re-
spectively, expressed as neural networks. They both consist of 4 layers: input, pat-
tern, summation and output. The pattern layer contains a neuron for each instance
of the training data with a Gaussian function centered at the respective instance. For
PNN the summation layer weights are determined by loss ratio of individual classes
and for GRNN the weights are the target values of individual instances (patterns).
It is apparent that GRNNs are actually very similar to a subclass of RBFN. Both
types of networks perform relatively well, better than MLFNN and RNN. Descrip-
tive comparative application of GRNN is in [Leung et al., 2000], while PNN-based
classification is compared to RNN in [Saad et al., 1998].

TDNN, DBNN are two other types of ANNs that, although applications in
financial time series exist, are not so common and are left for reader’s own research.

The basic type of Support Vector Machine (SVM) is a binary classifier model
based on constructing separation hyperplane that maximizes overall margin from
the training instances. Although not a neural network, SVM is often mentioned
in connection with ANNs, since it can be expressed as a structure of a multilayer
perceptron. Further work on SVM enabled it to provide different outputs, such as
non-linear regression. In most literature it outperforms all the ANN types described,
while requiring less parameter tuning. Comparative application on financial series
prediction was done in [Tay and Cao, 2001], [Abraham et al., 2003] or [Huang et al.,
2005].

Combining several instances of a particular method or even of several methods
is a popular way to improve performance in many machine learning tasks and this is
also true for ANNs and SVMs. Mixture of experts and Ensemble are two well-known
methods in the area. In both cases several well-performing networks are combined
- either by precalculated weights (Ensemble) or by additional ANNs called gating
networks (Mixture of experts). The Ensemble weights are most commonly calcu-
lated based on individual networks’ average error or error variance. [Yümlü et al.,
2003] compares Mixture of Experts to several standalone ANNs. Several options for
Ensemble weighting, Mixture with RBF gating network are compared along with
standalone ANNs in [Yu et al., 2008]. General methods of bagging and boosting are
also applicable.
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2.5 Performance evaluation

In order to be able to make conclusions from a certain prediction setup and used
parameter set it is necessary to measure the usefulness of the generated predictions.
This usefulness can be either measured on testing data by comparing the prediction
with the real values of the attribute we predicted or by applying the prediction to
its use. In case of our testing environment, this means to perform a simulation of
trading based on the predicted values.

There are certain specifics to time series prediction, namely the fact that observa-
tions are ordered by time. Not respecting this property during training and testing
(e.g. by using stratified sampling for splitting training and testing data) phases
would invalidate the performance measurement, because the prediction method ex-
ecuted on an observation could act based on information not possibly known at the
time of the observation. Therefore, evaluation of time series usually relies on one
of the following two approaches - split validation using linear sampling or sliding
window validation.

Split validation on the dataset, where the splitting is done by linear sampling
simply takes the older observations from the dataset for training and the newer
for testing. The split is usually done around 75% / 25%. The sliding window
validation starts with training and testing windows of predefined sizes. At the
beginning the training window is placed at the start of the time series data, with
the testing window placed right behind it. After each training/testing cycle, training
and testing windows are shifted forward in time. Optionally, the training window
can be increasing in size rather than shift, meaning more training observations are
available in each cycle.

Sliding window validation is closer to a probable real-world application of pre-
diction techniques where the algorithm would be periodically re-trained. It will also
provide more stable results. Conversely, the split validation may yield less balanced
results. However, it may be better at showing how well the algorithm generalizes
the behavior of the series, since with the same size of the training data it is required
to predict further into the future. Hence it may tend to overestimate the prediction
error.

Many measures are available to assess the prediction quality. Apart from division
by their application - for regression or classification tasks - every method has its pros
and cons and picking the correct one is tightly dependent on the requirements of
the task itself.

Among the candidates for evaluation of the regression task in our environment,
these are the most relevant ones: Root Mean Squared Error (RMSE), Mean Absolute
Percentage Error (MAPE) and Mean Normalized Absolute Error (MNAE). RMSE’s
disadvantage is that its value scales with the range of the predicted value. This range
may change with different normalization and discretization methods, making it hard
to compare their contribution. While MAPE mitigates this issue by normalizing
using the target value, exactly because of this it gets into problems when the target
values are 0, which is a possible case when the value expresses differences between
subsequent observations. MNAE performs the normalization using a different value
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extracted from the data - it may be an average of the target value or a value for
each observation predicted by a selected baseline algorithm.

To judge the performance of the classification task, we have focused on the basic
Accuracy measure, Weighted Mean Recall and Weighted Mean Precision. The major
disadvantage of the Accuracy measure is its predisposition to display unjustified
good results if the distribution of the target classes is unbalanced. Hence usage of
weighted recall and precision to crosscheck the validity of results would be necessary.
The next option would be to use the F Score, which is based on precision and recall
- in fact, the F Score could utilize the weighted variants of both.

While synthetic measures provide enough information about the precision of
given predictions, they do not show how the imprecisions could affect the practical
application. In case of financial time series this means the trading decisions. To
investigate this, an evaluation based on simulating trading using a certain trading
strategy needs to performed. The selection of the trading strategy is crucial in this
process. It needs to provide a compromise between the real world of market trading
and the influence of the predictor itself. If a very sophisticated strategy using e.g.
pair trading methods to minimize an impact of incorrect decisions would be used,
the weight of the prediction itself could be so small that distinguishing between
slight difference of two prediction methods would be made impossible.

Hence reasonable, yet straightforward strategies seem the best choice for the
evaluation process. A basic strategy for regression task could e.g. simply act on a
certain percentile of best predictions (highest returns) and enter the market when
such prediction occurs. Exiting the market could then performed e.g. when a
negative market return has been predicted.

It is apparent that the evaluation needs to take into account things like transac-
tion fees, price slippages or eventually order delays and partial order fills.
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Design

October: This is one of the
peculiarly dangerous months to
speculate in stocks. The others are
July, January, September, April,
November, May, March, June,
December, August and February.

Mark Twain

Based on objectives set out in section 1.2 we will design a testing environment
for financial predictors that will allow to execute experiments with minimal effort,
but still provide enough flexibility to allow altering the experiment in any manner.

Apart from the functional demands we have specified in the aforementioned
section, there are two structural goals we need to keep in mind:

• Steps of the prediction process need to be designed as components which are
truly independent of each other and will function regardless of previous pro-
cessing steps.

• The process needs to be easily modifiable and understandable, so that any
hypothesis can be quickly introduced into the process and verified.

In this chapter, we will decide which environments will be used to build the
project, lay out the general structure of the project, shape the internals of individual
components and conclude with description of the tools we have decided to use for
each part during the design.

3.1 Software environments evaluation

In order to be able to commence the design of our testing environment, we first had
to decide on the tools using which we would like to implement our project, because
their selection will strongly influence the structure of the project.

18
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As indicated in section 1.2 the project will be based on combination of two
software environments - a computing one (such as R, MATLAB, Mathematica) and
a machine learning one (such as RapidMiner, WEKA or Statistica). Since there were
several possible candidates we have tested each one of them, reviewed its capabilities
in the respective areas and integration abilities with possible counteparts.

For computational environments we explored capabilities in the areas of data
acquisition and manipulation; financial time series preprocessing and quantitative
trading. For machine learning tools we evaluated breadth of available ML, pre-
processing and evaluation methods, support for time series and suitability of the
modelling paradigm of the tool for our purpose.

The evaluation has shown that the best choice will be a combination of R com-
puting environment [R Development Core Team, 2011] and RapidMiner [Mierswa
et al., 2006]. R language has extensive record of use in the financial area and has
a wide range of specialized packages for this purpose. RapidMiner has a sufficient
collection of ML algorithms and allows intuitive construction of complex processes.
A recent addition to RapidMiner - R Extension allows convenient integration with
the R language.

3.2 General structure

The environment will provide choice from multiple methods or approaches in each
data mining step. Every method also has parameters, which need to be centrally
configurable in order to allow easy experimentation and also to facilitate the opti-
mization process. These requirements lead to a completely componentized process,
where inputs and outputs are the same regardless of the internal behavior of each
component.

The main components of the process will be the following:

• Data input will provide the predefined datasets either from a local store or
an online source.

• Preprocessing should perform cleansing and shaping of the data, add derived
technical indicators and calculate the target value for each observation.

• Prediction is going to train the selected ML method on the training data
and apply the learnt method to the testing data. It will also perform accuracy
evaluation of the prediction.

• Trading will perform simulation of trading using a selected strategy based on
the generated predictions. One of the statistics of the trading session will be
used as the output performance.

• Logging will be responsible for storing the results into files. The results will
contain not only all output data created by the process, but also all input
settings necessary to reproduce the experiment.

• Parameter loading shall obtain settings either from an external input or
will provide default settings. These will be propagated to all components and
also logged with other results.
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• Optimization will not be a component in the process itself, but a separate
process encapsulating the main one. It will set the input parameters and
evaluate the performance metrics provided on the output.

In addition, auxiliary code for settings propagation through the process and for
interaction with the optimization will be necessary.

We expect to use the R language for data input and more complex parts of
processing and trading, whereas RapidMiner will be used as the main development
environment connecting the components and for the machine learning prediction
itself.

Environment for testing financial series predictors

<<component>>
Testing Process

<<component>>
Optimization Process

<<component>>
Data Input

<<component>>
Parameter loading

<<component>>
Preprocessing

<<component>>
Prediction

<<component>>
Trading

<<component>>
Logging

Performance
Measure

Performance
Measure

Predictions

Preprocessed
Data

Parameter Set Performance Measure

Parameter Set

OHLCV
Data

Figure 3.1: Component diagram of the prediction environment. The main prediction
process has a performance metric output and a parameter set input. This allows
the optimization process to attach itself and employ general optimization methods
without the knowledge of internal workings of the prediction process.
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3.3 Data input

The only data input to the process (except parameters) will be the dataset of market
prices. The shape of the data always remain the same, regardless of the type of the
market - be it company stock, forex instruments or commodity futures. The data
input component should materialize the dataset either from a local store or an online
service and provide it for processing.

3.3.1 OHLCV representation

The common representation of the data has a constant time frequency (i.e. minutely,
hourly, daily) and includes five basic statistics for each observation at this frequency.
These statistics, commonly abbreviated as OHLCV, are:

• Open is the price at the beginning of the current observation.

• High determines the highest price during the course of this observation.

• Low is the lowest price during the course of this observation.

• Close is the price at end of the current observation.

• Volume is the amount of items (e.g. stock, futures contracts) that have
exchanged hands during the observation.

The OHLCV data are not the real representation of how the exchange markets
work, but rather an extract of its behavior adapted for constant frequency. Data
representing the precise events of the market operation - a listing of individual
ask/bid orders being placed - are also available. However, this data isn’t available
freely, it is quite voluminous and in order to be able to take advantages of patterns
extracted at this time scale, large volume transactions need to be executed with very
short time delays. We also believe that operating on this scale is not particularly
suitable for machine learning methods we would like currently to focus on.

Therefore, the format of datasets used by our environment will be OHLCV.

3.3.2 Datasets

The component will contain several predefined datasets. Selection of a dataset will
be performed by a parameter from process’ parameter set.

The probable composition of prepared datasets will be: multiple daily stock
markets (probably of technology companies), at least one minutely observations
dataset and some commodity futures instrument. Datasets should contain rather
larger number of instances. If less data would be preferable in the learning process,
it can be filtered using mechanisms in the Preprocessing component.

Offline datasets should be stored either in a database, standard file format such as
Comma Separated Value or in RapidMiner’s (RM) repository infrastructure. Since
all of these options are very easily accessible from RM, we should evaluate ease of
deployment and any possible advantages during the implementation phase.
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Online data can be obtained using HTTP protocol from services such as Google
Finance or Yahoo! Finance. Interface to these service is provided by quanstrat[Ryan,
2011] R package described in subsection 3.11.2.

There are several particulars for each class of instruments that require additional
transformation steps to be performed on the dataset values in order to give them
as unified meaning as possible. For stock markets data, one needs to consider two
events: stock splits and dividend payouts. A stock split occurs whenever the number
of shares on the market is increased. Since the price on the market is expressed per
share and the company value remains the same, the price jumps when the split is
made. In order to avoid major disproportion in comparison to prices before the
split, the prices are adjusted based on the ratio of the new stock. The second event
is a dividend payout. Dividends are paid to the owner of the stock, therefore stock’s
price gradually raises until the pay day. This distortion also needs to be adjusted
for.

For futures trading, the situation is slightly more complicated. Futures markets
usually express the market movements in points rather than a currency. Hence it is
suitable to perform conversion into prices. The second issue is the manner in which
futures contracts are traded - by using leverage. When a trader buys a contract,
he doesn’t pay the whole price of the contract, but deposits a margin to his broker
company. However, when he closes the transaction, he receives the difference in price
for the whole contract. In order to make trading stocks and futures comparable in
our environment, we have decided that our simulation of trading will not use the
leverage mechanism, but will allow to buy an arbitrary fraction of a futures contract
for the appropriate fraction of the price.

3.4 Preprocessing

This component together with prediction is the centre of the testing environment. It
will perform all the steps between loading the data and learning the predictor. This
includes: initial shaping, addition of secondary data, normalization, transformation
into instance space and several others. The initial parts of the processing will be
executed in R language, while the instance space transformation and onward steps
will be in RapidMiner.

3.4.1 Initial shaping

The first step with the dataset from the Data input component is to reduce its
size based on a designated parameter. This may be desirable for those machine
learning algorithms, whose performance varies notably depending on the amount of
the learning data.

The next step is to perform detrending of the data, that is extracting relative
values from the absolute prices. The common choice is calculating an arithmetic
return (subtracting the previous observation’s value for the feature from the current
value) or a logarithmic return. For the volume value, a rate of change between
observations or division by a moving average are the options.
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3.4.2 Indicators

Although we will not exercise any technical trading methods manually, we expect
that if a phenomenon based on the technical analysis will be showing prominently
enough in the time series, the prediction algorithms should capture it in their pre-
diction. In order to facilitate this, we need to provide the necessary data, in which
the phenomenon is supposed to be easily discoverable. In the case of technical anal-
ysis this data are the technical indicators. Following are some of the well-known
indicators, which should be included in the dataset:

• Average Directional Index (ADX) is supposed to express the strength of
a trend in the market and its assumed direction.

• Moving Average Convergence Divergence (MACD) is also used for spot-
ting trends’ direction as well as momentum.

• Relative Strength Index (RSI) estimates the market’s strength based on
the ratio of up and down observations. Based on this ratio, the proximity of
a turning point in the market’s behavior may be estimated.

• Bollinger Bands (BBands) is a straightforward indicator, which creates a
corridor around the prices based on Moving Average. This corridor should
provide relative measure of fast rise or decline.

Since most of the indicators are relying on a certain amount of previous val-
ues, some of the features cannot be calculated for observations at the beginning of
the dataset. While replacement by values from similar observations is sometimes
practised, we have decided to simply remove any observation which contains an NA
value.

3.4.3 Target value

Determining what should constitute a target value (The value which will be pre-
dicted) is one of the most crucial decisions. The first choice in this matter is re-
gression versus classification. One may perform better than the other depending on
other parameters and the data itself. While an exact value may not be necessary
for trading, the real number continuity may allow for significant nuances to be seen
by certain prediction algorithms. On the other hand, a nominal target value in
classification clearly determines what each training observation means and allows
the learning mechanism to strictly shape the prediction method.

For the regression task’s target value, we plan to use the arithmetic return of
Close price in a predefined number of observations, i.e. the price change in e.g. 5 days
from the current observation. By using a higher number we hope to eliminate some
of the noise of the series. We expect this target horizon to be in direct proportion to
the number of previous observations, from which the prediction needs to be made.
Exploring the relation between the target horizon and the embedding dimension
(subsection 3.4.5) is something we would like to focus on during the testing of the
environment.

In the classification task we will have 3 categories:
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• Up - The price will substantially increase.

• Neutral - The price will not change relevantly in neither direction.

• Down - The price will substantially decrease.

Several options present themselves for defining what will be considered a sub-
stantial change. One is local extrema (i.e. peaks and valleys) detection on the
absolute Close price values. The detection will probably need to use a threshold of
minimum change from the previous value to consider an observation extremum as
the movements of the series are quite erratic and we would like to limit the number
of observations in up/down categories. The second option is to assign the categories
based on quantiles of the return values distribution. The Up category would be
assigned to 20% of highest return values, while the Down category will be assigned
to 40% lowest return values. Alternatively, the Down category could be assigned to
any negative return value.

By this stage of preprocessing the dataset will have all features we have decided
to include and the target value will have been assigned to all observations.

3.4.4 Normalization / Discretization

Normalization is a standard step in most data mining efforts. It is necessary to unify
the scale and usually also the mean of features in a dataset in order to obtain rea-
sonable performance from many if not all ML methods. Some of the normalization
methods are purposely non-linear, to enhance small but relevant differences in values
and downplay outliers’ impact, which may be important for our series of returns.
Although any normalization method will help to improve the prediction performance
and differences between them are often marginal, we would like to support multiple
methods and in future analyze their influence on performance. We have selected the
following popular normalization methods to include in our environment:

• Softmax using logistic sigmoid normalization, which is increasingly non-
linear from the center towards the ends. It normalizes values into (0; 1) inter-
val.

• Softmax using hyperbolic tangent normalization, which is also increas-
ingly non-linear. It normalizes values into (−1; 1) interval.

• Min-Max normalization is linear and normalizes values into an arbitrary
interval. We will probably use (0; 1).

Although discretization is usually used to transform numeric values into nominal
ones, it can be also applied in order to remove noise and help an algorithm to
spot certain patterns more easily. We will include the following two discretization
methods to experiment with:

• Equal frequency discretization will create intervals, whose width will be
adjusted based on the distribution of values.
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• Equal width discretization creates intervals of equal width within the range
of values.

Both normalization and discretization will be optional - the settings will allow
not to use them at all.

3.4.5 Instance space conversion

Conversion into instances is done by creating delay vectors from the series (often
called windowing). Currently, we will use a fixed delay of 1 observation, i.e. a delay
vector will contain every single previous observation up to the number specified by
the embedding dimension. The embedding dimension will be parametrized and will
probably be one of the frequently iterated parameters during optimization.

Since our time series will have many features (variates) after the preprocessing
step, we will need to be able to specify, for each feature, whether it should be included
in the delay vector (E.g. preprocessing adds moving average of stock’s volume to
every observation for later instance filtering purposes. We do not wish this value to
be present for every previous observation in the delay vector). This will likely be
solved by creating a feature naming convention that will allow to distinguish such
features.

As has been mentioned above, we will support filtering after the instances have
been created. Currently, the only supported filtering will be based on moving average
of the volume. This filter will help to remove low liquidity periods in the market time
series - these periods do not provide representative market behavior. In addition, we
will filter delay vectors of observations from the beginning of the time series, which
contain NA values due to insufficient number of previous observations in the series.

3.4.6 Component analysis

One of the more sophisticated groups of statistic methods used in data mining is
component analysis. These methods allow to transform the existing features into a
lower number of new, highly uncorrelated ones while minimizing the loss of infor-
mation. They can help the data mining process by reducing the instance dimension
and emphasizing the major differences between instances in the new features. We
would like to include the following two representatives of the method:

• Principal Component Analysis (PCA)

• Independent component analysis (ICA)

3.5 Prediction

Once the data is completely prepared, it will be separated into training and test-
ing partitions and transferred into the Prediction component. At present, a split
validation with linear sampling will be used as the splitting/validation mechanism.
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This component will execute training of a machine learning method selected using
the corresponding parameter of the environment. Once the training is completed,
the learnt representation of the method (model) is used for prediction on the testing
data.

Although there are very many appealing ML methods, we have selected just
few of the best known to be initially included in the environment. As emphasised
throughout the whole design of the process and by virtue of RapidMiner’s architec-
ture, adding new methods will be very easy. The methods that will be in the process
now are:

• Support Vector Machine(SVM) actually denotes multiple methods for clas-
sification and regression (Support Vector Regression) based on common theory.
SVMs produce very good results in many ML applications, require only few
parameters’ tuning and have fast training. For more details, see section 2.4.

• Artificial Neural Network(ANN) is a classic method in ML, which can be
used for both types of the prediction task. However, it requires considerable
amount of parameter tuning and experimentation with unwarranted results.
More details are also in section 2.4.

• k-Nearest Neighbors(kNN) is a lazy-learner method, i.e. it does not require
any learning and the training data are not used until a prediction for a specific
instance is requested. It has only few parameters for tuning and provides
relatively good results. Detailed description is presented in section 2.3.

• Input Clustering + group of ANNs is an experimental method we set out
to experiment with. It combines clustering of the input dataset and multiple
neural networks. Details are provided in section 3.10

• Generic R method. In order to allow easy integration of prediction methods
created in the R language, we will prepare a template structure, where the
only required step will be to implement the algorithm in R into a predefined
function.

The methods that can support both regression and classification should deter-
mine the required task automatically and behave accordingly. However, there are
methods that are designed only for one of these tasks and these, if applied to the
incorrect type of task, should show an error describing the situation.

Evaluation of prediction performance using standard accuracy measures is car-
ried out within the Prediction component as well. Again, the appropriate metric
needs to be selected depending on the type of the task. Details of used metrics are
in section 3.7.

Output of the prediction component is the testing partition with a prediction
assigned to each instance and the accuracy metric calculated from the predictions.

3.6 Trading

This component will perform a trading simulation on the testing data. The trading
will be governed by a strategy, which will base its decisions on the predicted val-
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ues. Actions yielded by the strategy are virtual market orders, which are evaluated
approximately as they would be by the market (i.e. a brokerage company). This
evaluation is projected into a virtual trading account.

The simulation will iterate through the data’s time period and execute the strat-
egy on every observation. A standard trading strategy consists of signals and rules.
Signal is a definition of a condition, which determines whether the signal should be
triggered for the current observation. In technical analysis, such condition would
be usually linked to an indicator. In our case, the signals will be attached to the
predicted value. Strategy’s rules act based on the generated signal and decide the
type of the issued market order and its values.

Trading strategy
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Figure 3.2: Diagram of the framework for trading strategy simulation. Information
in the trading account will be used to generate the trading performance statistics
after the simulation.

Different signals will be necessary for regression/classification task. For the sake
of simplicity, we will create independent strategies, each with a specific signal trig-
gering logic.

Currently, our environment will contain one testing strategy per prediction task
and a baseline strategy:

• Simple signal-based regression strategy will have signals based on mini-
mal and maximal thresholds. Values of these thresholds will be derived from
the target value distribution in the training data using quantiles. The quan-
tile values will be parameters of the process. A buy signal will be emitted
whenever a prediction is over the max threshold and the sell signal whenever
below the min threshold. Rules will react to these buy/sell signals, but will
be subject to a limit of maximal amount of invested capital. This limit will
also be parametrized.

• Simple signal-based classification strategy will have its signals directly
linked to the predicted class. A buy signal will be triggered whenever the
target class is ”Up” and likewise, a sell signal will be generated by the target
class ”Down”. Rules act in the same manner as in the previous strategy.
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• Buy and Hold strategy this strategy serves only for benchmarking purposes.
It doesn’t make use of predictions at all, but issues a buy signal on the first
day and a sell signal on the last day of the trading period. The issued buy
order is for maximum allowed amount of invested capital.

Whenever an order for entering the market is being issued, the strategy needs
to decide the quantity of the order - how much stock, futures contracts, etc. will be
bought. We intentionally will not use any advanced method of order sizing and will
make all orders have a constant price. This price will be a parameter of the process
and the quantity of the order will be calculated simply as
constant order price/instrument price

The trading component will produce several types of data and multiple statistics
that will be recorded by the Logging component. Its only output returned to the
process will be a selected performance metric.

3.7 Performance evaluation

Evaluation of performance will not be unified into one dedicated component, but
performed within the Prediction and Trading components. The reason is that cal-
culation of the metrics is tightly bound with the prediction and trading simulation
processes.

RapidMiner is rich as to the available accuracy and error measures for prediction
evaluation. Likewise, the R environment and used packages provide many useful
metrics. We would like to use the following measures in our environment (N is
the number of observations, Ok are Pk values of kth observation and prediction,
respectively):

• Root Mean Squared Error(RMSE) is a standard non-normalized error

measure defined as ( 1
N

∑N
k=1(Ok − Pk)

2)
1
2

• Mean Absolute Percentage Error(MAPE) is an error measure based on
normalizing the error by the observed value: 1

N

∑N
k=1(100Ok−Pk

Ok
)

• Normalized Absolute Error(NAE) is the total absolute error normalized

by the total error if an average would be predicted:
∑N

k=1
(Ok−Pk)∑N

k=1
(Ok−O)

• Accuracy for classification task, which expresses the ratio of correctly classi-
fied instances.

• Mean recall and precision for every class, which will allow us to judge the
success on individual classes (directions of prediction).

• Several statistics of the trading simulation that are common when as-
sessing trading performance: net profit of the trading strategy, median prof-
it/loss of a trade, percentage of successful trades, profit factor of trading,
maximum drawdown during the trading session, average ratio of winning and
losing trades.
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All metrics are logged during the course of an experiment. However, a single
main metric has to be selected as the output of the process. This output measure
will be used by the optimization process to judge the quality of tested parameters.
The main metric is selected by a parameter of the process.

3.8 Logging

Several files need to be created with every executed experiment. These files contain
all the necessary parameters to reproduce an experiment and all output data of the
process. This makes it possible to assess the quality of the process setup without
having to execute it again.

All parameters of the process should be stored in a readable format. From the
Prediction component, we should store the performance metrics calculated from the
prediction as well as the generated predictions. The Trading component will log
all trading account statistics and create a graph visualising the trading, including
cumulated profit. Also, since most of the Trading component will be in the R
environment, we should store the inputs - the prediction data and parameters - in
the native R format. Later on, we can load this data and experiment with the
trading strategy only, without the need to generate the predictions again.

3.9 Optimization

Optimization of the prediction process parameters will probably be the most fre-
quent use case of our environment. We have decided to structure it as a separate
process of RapidMiner. This process will contain the optimization algorithm, which
will in turn execute the prediction process and supplies it with a complete parameter
set. This parameter set will be used inside the main process instead of the default
values.

The user has to be able to choose which parameters should be optimized and
what values should the algorithm try.

Every iteration of the optimizer loop will yield the tested parameter set and the
resulting performance. These values should be logged into a single table and stored
into a file, which will afterwards give a clear view of individual parameters’ influence.

Possible choices for the optimization process are Genetic Algorithm or Grid
Search.

3.10 Clustering + Neural Networks group

During the research for this thesis, we came up with a machine learning setup we
were interested in investigating. In order to illustrate how a custom prediction
method can be easily created in the environment, we will add this method into the
initial version.
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The hypothesis of this method is that an Artificial Neural Network (ANN) may
perhaps give better predictions if all the instances it has to deal with were more alike.
This means both the training data and also the instances for which a prediction is
requested.

Therefore, all the data could be divided into clusters and a separate ANN as-
signed to each cluster. A network would be trained only on data from one cluster
and then predict only on instances assigned to this cluster.

The clustering algorithm would be executed on the training data. The resulting
clusters should then remain fixed and the testing data will be assigned to these fixed
clusters. Not all clustering algorithms are capable of operating in such a way, but
e.g. k-Means is able to accomplish this.

Since every instance is predicted by only one of the networks, there is no com-
bining of multiple results. The prediction is just drawn from the corresponding
network.

Although similar to bagging and boosting, this method separates the instances
before the actual training begins and the separation is based on instances’ similarity.

Currently, the method will use a fixed number of clusters and networks. Should
testing show any promising results, a variable number of clusters is the apparent
first step in extension of this method.

3.11 Platform

As described in section 3.1 we will build our project on a combination of RapidMiner
data mining tool and the R computing environment.

Both the main prediction process and the optimization encapsulating process
will be designed in RapidMiner. Operators in the process will largely correspond to
the division into components in this chapter.

The R environment will be used for the online data input, preprocessing and
trading and will be embedded as a subcomponent - it won’t interact directly with
the other main components.

3.11.1 Rapidminer

RapidMiner [Mierswa et al., 2006] is a comprehensive machine learning and data
mining software. The main concept of the design process in RapidMiner is an
operator. Every processing unit, be it a data input, predictor or a performance
evaluator is an operator. Every operator can have one or more inputs and outputs,
which connect to other operators. In most cases, the input and output is a dataset,
eventually it can be a trained machine learning model, a performance vector or one
of the several other less used data types. The ease of design thanks to this concept
is, apart from the broad repertoire of ML methods, the main advantage of this
software.

Several extension have been developed for RapidMiner. The most important
for this project is a recently created R Extension. This extension is what allows
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RapidMiner’s integration with R environment. The extension introduces a new
operator - R script. This operator can contain arbitrary R code, which can process
inputs (which are transparently marshalled into R structures) given to the operator.
Once the R script is finished, its results are propagated to the output of the operator
(again, transparently marshalled to RapidMiner data structures).

3.11.2 R environment and packages

The R language and environment [R Development Core Team, 2011] is a popular
statistical and data analysis platform. The design of the language and broad base
functionality along with large number of additional packages created by a strong
community around the tool make it a perfect choice for financial data analysis and
experimentation.

There are several packages from the financial analysis area we will be using.
We will focus only on the functionality used by our project, although some of the
packages provide much more than mentioned.

Package ”quantmod”[Ryan, 2011] adds a set of methods for managing and ma-
nipulating with symbols - individual instruments and their OHLCV time series. It
allows to download symbols’ historical data from online sources, which we make use
of in the Data input component. ”TTR”[Ulrich, 2011] package contains many techni-
cal indicators, some of which we add during the preprocessing step. ”dprep”[Acuna
et al., 2009] package contains several normalization and discretization methods we
optionally apply during preprocessing. ”blotter”[Carl and Peterson, 2011] package
provides the basic infrastructure for financial simulations, it introduces the notion of
a portfolio, trading account and trading transaction. ”quantstrat”[Carl et al., 2011]
adds trading simulation using strategy as described in section 3.6
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Implementation

In most fields of research, when
someone makes an important
finding, they publish it. In the case
of prices, they set up a firm and sell
advice about their discovery.

Benôıt Mandelbrot

Based on our detailed design charted out in the previous chapter, we have imple-
mented the testing environment. In the following sections we will describe relevant
implementation aspects of each part of the project.

Most of the components depend on one or more configuration parameters. Names
of these parameters are provided in the text. However, for a complete overview of
all parameters including possible values and precise behavior for each value, see
section 4.9 at the end of this chapter.

In order to facilitate central configuration of process parameters, we had to devise
a method to propagate these parameters through the RapidMiner(RM) process and
into the R code. Inside RM we have resolved this using macro support. Macros are
set up in a single operator and then can be referenced from any other operator in
the process. The propagation into the R code was resolved by creating a key/value
dataset, which is then sent into the R functions.

Although the RM and R portions of the project interact closely, we have tried
to keep them as independent as possible. Specifically, we have structured the R
code to depend minimally on RM process. This allowed us to implement the R
preprocessing and trading code without use of RM and then simply link this code
from R Script operator of RM process. Linking of the R code in the operator is done
by including the main R file of the project, calling a necessary conversion function
and then invoking the desired function (e.g. strategy simulation).

4.1 Data input

This component outputs OHLCV dataset of one of the available instruments de-
pending on the value of input dataset parameter. Two modes of operations had to

32
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be implemented:

• Local storage of dataset for datasets that are included with the environ-
ment. We have decided to import the original data into RapidMiner(RM)
repository and use a Retrieve operator to load this data.

• Download of symbol data from an online service will use a method
from ”quantmod” R package to download historical daily data from Yahoo!
Finance web. We have also implemented a caching mechanism that stores the
downloaded data within the environment’s data directory. The length of the
downloaded data is set to 10 years (approximately 2500 observations).

Regardless of the selected option, this component outputs a dataset with identical
structure.

4.2 Preprocessing

The dataset on input of Preprocessing operator is immediately forwarded to an
R Script and initial preprocessing is done within the R environment. Here, the
following steps are performed:

• The dataset size is trimmed based on the max dataset items parameter - only
that many most recent observations are kept.

• Technical indicators ADX, MACD, RSI and Bolinger Bands are added using
the ”TTR” package.

• Open, High, Low, Close columns are converted into returns (difference from
the previous observation). Volume is converted into series of rate of change
quotients.

• The target value is assigned based on target value - numeric calculation for
regression or one of the category assignment methods for classification.

• Normalization and/or Discretization are applied depending on normalization,
discretization and discretization num values.

Afterwards, the preprocessed dataset is returned back into the RM process and
several more operations are executed:

• The observations are transformed into delay vectors using the Window oper-
ator, which depends on the window size parameter.

• Optional filtering based on moving average of Volume is applied (governed by
parameters filtering, filtering volume ma)

• The instance dataset is separated into training and testing partitions using
linear sampling with 0.8/0.2 split.

• Optional component analysis (either PCA or ICA) is applied as per fea-
ture set reduction and num components.

The final dataset, which may now vary vastly in the number of features, value
ranges and even in the type of the target value column, is forwarded into the Pre-
diction component.
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4.3 Prediction

The Prediction component executes one of the five available machine learning meth-
ods depending on prediction parameter . So far, all used implementations support
both regression and classification. The present methods are:

• SVM was added as an operator included in RM. During the course of creation
of the environment we have experimented with multiple kernels of SVM - lin-
ear, radial and polynomial. For polynomial kernels, parameter svm kernel degree
specifies the degree of the polynomial. However, in the last stages of implemen-
tation, we have been receiving consistently better results using dot product
(linear kernel). This phenomenon is something a more extensive future testing
will have to shed a light on.

• ANN is also an RM operator. We have set the feed-forward network to have
two hidden layers, whose size automatically adjusts to the number of inputs
according to a popular rule of thumb formula (num input+num output)/2+1.
Activation function is sigmoid (linear for regression).

• kNN operator is a standard Nearest Neighbor algorithm. The number of
nearest neighbors is governed by knn num neighbors, weight of neighbors is
relative to their distance, for which the Euclidean metric is used.

• R predictor stub is a set up framework for possible generation of predictions
in R environment. The user only needs to implement the prediction method
into function ”prediction1” in source file ”prediction.r”.

• Clustering + ANNs - is our experimental setup, more details in section 4.8.

In RM the learning method’s operator trains a model and then outputs it for
future usage. To generate a prediction, the model has to be input along with the
testing data into an operator for model application.

Once the predictions are generated, their quality is evaluated. This is done
using Performance Evaluation operators that calculate all the metrics described in
section 3.7

4.4 Trading

The trading simulation is performed entirely in the R environment. The evaluation
function ”eval strategy1” receives the original dataset, the transformed dataset in-
cluding predictions and settings. It returns the selected trading performance metric.
Most of the financial-related steps are accomplished by functionality from packages
”quantstrat” and ”blotter”. The steps taken in this component are:

• Merge the prediction into the testing period of the original data, since the
trading framework needs the original prices and volume.

• Set up the correct strategy (controlled by strategy parameter and the type of
the prediction task).
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• Execute the trading simulation using the specified strategy.

• Update virtual account and portfolio with the results of the simulation and
generate statistics.

• Create multiple logs based on the simulation. The logs are stored as files with
a single timestamp inside the environment’s predefined logs directory.

– Create an R structure containing: the original data, transformed data
with predictions, trading transactions, statistics and parameters of the
experiment. Store it in a native R format, which can be easily loaded in
the future.

– Plot a graph of trading visualising the trading prices, moments of buy/sell
orders and cumulated profit.

– Store the trading statistics and parameters in a plain-text format for
easier reading and possibly automatic extraction.

Finally, a metric is chosen according to strategy eval metric from trading stats and
returned into the RM process

4.5 Performance evaluation

Since all metrics were calculated earlier, the only remaining task in performance
evaluation is to decide whether the prediction metric or the trade metric should be
used as output of the whole process. This again depends on the strategy eval metric
parameter.

4.6 Logging

Similarly in logging, most necessary operations have been already performed in Pre-
diction and Trading components. The last useful information that should be stored
is the text representation of the transformed dataset with predictions. Although it
has been already stored as an R structure, it is desirable to also have it in easily
readable format. Therefore, the dataset is stored as a CSV file and the same naming
convention with timestamp is used.

4.7 Optimization

Optimization is implemented as an independent RapidMiner process internally ex-
ecuting the main process. It is smaller than the prediction process and consists of
only few general blocks.

Central configuration of parameters and their propagation through the process
is done using macros as in the main process.
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The optimization operator encapsulates most of the setup. We have used the
Grid Search optimizer, since we will mostly want to go through all parameter com-
binations we specify rather than some of them. The optimization operator contains
a separate macro operator for each parameter of the main process. When executing
the optimization, the user selects which macros (parameters) should be tested and
with what values. The main process is invoked through Execute Process operator,
which also specifies all the macros that will be propagated.

A performance metric output from each execution of the prediction process is
stored into a log and saved into a CSV file at the end of the optimization. This table
then gives a very good overview of effects of the tested parameters on performance.

4.8 Clustering + Neural Networks group

As one of the prediction options we have implemented our experimental prediction
setup consisting of clustering and multiple neural networks. In the current imple-
mentation the number of clusters and, in effect, the neural networks is fixed and its
value is 4.

For clustering we used the common k-Means operator. The reason is that it
allows to use the fixed clustering model created by the initial clustering on the
training data to assign clusters to the testing data (This is not exactly online clus-
tering, since the model doesn’t modify itself when assigning clusters to the testing
data instances).

Based on the assigned cluster, the instances are separated into smaller datasets
and fed to individual networks. The neural networks have the same configuration
as the single network used for prediction (section 4.3).

Sets of instances with predictions from networks are then merged back into a
single dataset and this is the result of this prediction method.
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4.9 Environment parameters

As could be noticed throughout previous chapters, the parameters are an impor-
tant part of the process. In this section, we compiled descriptions of all available
parameters with explanation of their every possible value.

• input dataset - Determines which predefined dataset should be used. (default
3)

– 1 - E-mini S&P 500 Futures minutely data traded on CME. The data
starts at midnight of 2008/09/03 and ends on midnight of 2009/03/12.
The dataset consists of 180941 observations.

– 2 - IBM (International Business Machines Corp.) stock daily data traded
on NYSE. The data is dynamically loaded on first request. The down-
loaded data represents 10 years ending with the current day. Therefore,
the dataset contains around 2500 observations.

– 3 - YHOO (Yahoo) stock daily data traded on NASDAQ. The data is
dynamically loaded on first request. The downloaded data represents 10
years ending with the current day. Therefore, the dataset contains around
2500 observations.

– 4 - Gold 100 oz. Futures daily data traded on CBOT. The data starts
at midnight of 2004/12/29 and ends on midnight of 2011/05/04. The
dataset consists of 1602 observations.

– 5 - MSFT (Microsoft Corp.) stock daily data traded on NASDAQ. The
data is dynamically loaded on first request. The downloaded data rep-
resents 10 years ending with the current day. Therefore, the dataset
contains around 2500 observations.

• max dataset observations - Limit the maximum number of observations used
in the process. Value of -1 means all observations are used, any other value X
keeps only the X most recent observations in the dataset. (default -1)

• target value - Determines the nature of the target value (the value that will
be predicted). (default 1)

– 1 - The target value will be difference (return) between the current price
and the future price. The task will, therefore, be regression of returns
in X time steps (e.g. days, minutes, etc.). The X - distance between
the current and the future observation is determined by parameter tar-
get horizont.

– 2 - The target value will be a class based on detection of peaks/valleys in
upcoming time steps. Three classes are present: ”1” - a peak will occur
in X days, ”0” - neither peak or valley will occur in X days, ”-1” - a valley
will occur in X days. The X is determined by parameter target horizont.
The peak/valleys detections have a threshold - the peak/valley must differ
at least by value Y/Z from surrounding observations. Y/Z is determined
by parameters target peak thresh/target valley thresh, respectively.
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– 3 - The target value will be a class based on detection of major difference
(return) between current price and future price. This task is similar to
target value = 1, but will be performed as classification. Three classes are
present: ”1” - major positive return in X days, ”0” - no major positive
or negative return, ”-1” - major negative return in X days. The X is
specified by parameter target horizont. The sensitivity, i.e. the minimum
required return value is determined using quantiles taken from the returns
distribution. These quantiles are given by parameters target min quantile
and target max quantile.

• target horizont - Determines the number of observations between the current
and the future one (from which the target value is calculated). How the future
value is calculated is determined by target value. (default 3)

• target peak thresh - The minimal threshold for peak detection. For an obser-
vation to be considered a local maximum, it must differ at least by this value.
Used with target value = 2. Note that this value is very specific to the used
dataset. (default 0.2)

• target valley thresh - The minimal threshold for valley detection. For an ob-
servation to be considered a local minimum, it must differ at least by this
value. Used with target value = 2. Note that this value is very specific to the
used dataset. (default -0.3)

• target max quantile - This value determines the quantile from the distribution
of the target value in the training data. The value corresponding to the speci-
fied quantile will be the minimal threshold for an observation to be considered
a major positive return when determining the class for training instances (with
target value = 3). When the target value is numeric, i.e. the task is regression
(target value = 1), this value is used as a threshold for a buy signal in the
trading strategy (see parameter strategy = 1). (default 0.8)

• target min quantile - This value determines quantile from the distribution of
the target value in the training data. The value corresponding to the specified
quantile will be the maximal threshold for an observation to be considered
a major negative return. Use -1 to set the threshold to 0, i.e. any negative
return will be considered a major negative return. Used with target value =
3. (default -1)

• normalization - Specifies the type of normalization applied to features. (default
1)

– 1 - No normalization is applied.

– 2 - Softmax normalization is applied.

– 3 - Sigmoidal normalization is applied.

– 4 - Min-Max normalization is applied.

• discretization - Determines what kind of value discretization is applied to
features. (default 1)

– 1 - No discretization of values if performed.
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– 2 - Discretization based on intervals with equal frequencies of values. The
number of intervals is determined by parameter discretization num values.

– 3 - Discretization based on intervals of equal width. The number of
intervals is detected automatically using Scott’s formula.

• discretization num values - The number of bins to be used for discretization.
Used with discretization = 2. (default 5)

• window size - This parameter determines the length of the delay vector. A de-
lay vector is produced when converting the time series features into instances.
The length, therefore, specifies how many historical values for each feature
will be in a single instance. Value of this parameter significantly influences
the prediction algorithm’s success. (default 10)

• filtering - Allows to filter instances (delay vectors) which would negatively
affect the performance. (default 1)

– 1 - No filtering is done.

– 2 - Instances are filtered based on moving average of Volume at the time
of the last observation in the instance. This allows to remove low liquidity
regions of the time series. The threshold for Volume MA is determined
by parameter filtering volume ma.

• filtering volume ma - Defines the cut-off threshold for Volume-based filtering.
Used with filtering = 2. (default 300)

• feature set reduction - This parameters allows to reduce the number of instance
features, either by selection or transformation. Currently, there are no options
for mere selection of features. Transformation reduces the dimensionality by
replacing the existing features with a smaller set of new ones, which are more
informative. (default 1)

– 1 - No feature reduction is performed.

– 2 - Principal Component Analysis is performed on instances and a pre-
defined number of the most significant components is extracted. The
number of components is determined by parameter num components.

– 3 - Independent Component Analysis is performed on instances and a
predefined number of the most significant components is extracted. The
number of components is determined by parameter num components.

• num components - Defines the number of components to be yielded by feature
set reduction. Used with feature set reduction = 2 and feature set reduction
= 3. (default 5)

• prediction - Selects the machine learning algorithm used to predict the target
value. Currently, all algorithms can process both tasks - classification and
regression. The task is determined by RapidMiner algorithms based on the
type of the target feature, but should the need arise, could be determined
by the target value parameter. Note that some of the algorithms perform
parameter optimization by themselves, therefore the processing time may vary
vastly. (default 3)
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– 1 - Support Vector Machine is used for prediction.

– 2 - Artificial Neural Network is used. The network is a feed-forward, with
two hidden layers and is trained by backpropagation. The number of
neurons in hidden layers is computed automatically based on the number
of input features.

– 3 - Nearest Neighbor (kNN) algorithm is used. The predicted value is cal-
culated from the target value of k nearest neighbors. Number of neighbors
k is set by parameter knn num neighbors. The distance is measured by
the Euclidean metric. The influence of each neighbor is weighted, i.e.
determined by its distance from the predicted instance.

– 4 - Predict using R. This choice allows prediction to take place in R
and then marshals the results back into the RapidMiner process. The
prediction implementation is to be put into method ”prediction1” in the
environment’s R file ”prediction.r”.

• svm kernel degree - Specifies the degree of SVM’s polynomial kernel. Used
with prediction = 1. (default 5)

• knn num neighbors - Determines the number of nearest neighbors involved in
prediction using kNN. Used with prediction = 3. (default 10)

• txn fee size - This parameter sets the cost for individual buy/sell orders. It is
utilized when a strategy is executed on predicted values. (default -15)

• order sum - Specifies the size of each order when entering the market. The
value is dollar volume of the order, i.e. if a stock costs $10 and order sum is
100, the order quantity will be 10.

• strategy - Specifies the trading strategy executed on the testing data. The
strategy is defined by rules executed based on signals extracted from the pre-
dicted values. (default 1)

– 1 - Use plain buy on positive signal strategy, sell on negative. When the
task is regression, buy/sell signals are based on return thresholds deter-
mined by quantiles in parameters target max quantile (for buy signal) and
target min quantile (for sell signal). For classification tasks, buy signals
are observations with class ”1” and sell signals observations with class
”-1”. The order sizing and limits are governed by parameters order sum
and limit to order sum.

– 2 - Buy and Hold strategy. This strategy is independent on the actual
predictions and serves only as a baseline benchmark. A single buy order
is placed at the beginning of the trading period and kept for the whole du-
ration of the trading. Every strategy should perform significantly better
than this one in order to be relevant for further examination.

• limit to order sum - Determines whether the strategy is limited to buy at most
order sum worth of the traded instrument. (default 1)

– 1 - A new order is placed only if no stock (or other instrument) is currently
owned.
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– 2 - A new order is placed whenever a buy signal occurs, regardless of
currently owned amount of stock.

• strategy eval metric - This parameter defines which metric is returned from
the prediction environment. The yielded metric is especially relevant when
tuning parameters in the optimization environment. Available metrics are
either synthetic accuracy measures of the prediction algorithm or statistics of
the trading strategy application. (default 1)

– 1 - The metric is based directly on the prediction algorithm accuracy.
For regression task it is currently normalized absolute error (NAE) and
for classification task it is accuracy.

– 2 - The metric is the net trading profit/loss of the trading strategy.

– 3 - The metric is the median trade profit/loss.

– 4 - The metric is the percentage of positive (profitable) trades.

– 5 - The metric is the profit factor. Profit factor is the sum of profits of
positive trades divided by the sum of losses of negative trades.

– 6 - The metric is the maximum drawdown (MDD). MDD is the highest
drop in the accumulated profit through the trading period.

– 7 - The metric is the average win/loss ratio. This ratio is calculated as
the average winning trade size divided by the average losing trade size.
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Testing

In this business if you’re good,
you’re right six times out of ten.
You’re never going to be right nine
times out of ten.

Peter Lynch

In this chapter we will demonstrate the functionality of our environment by
putting it to practical use. We will perform rough exploration of the parameter
space and analyze its results - compare the success of individual machine learning
methods, assess the influence of the optimized parameters on the performance and
evaluate the trading results.

5.1 General comparison

In order to get a notion of the quality of individual predictors and to see how the
parameters affect the prediction, we tested combinations of all predictors and of
those parameters that we believe are the most influential.

The first part of Figure 5.1 shows values of parameters that were not optimized
during this testing and remain the same through the whole test. Their values have
been decided based on previous experimentation. The lower section of Figure 5.1
shows optimized parameters and values that were tested.

We have chosen a rather ”hard” dataset of Yahoo Inc. stock for this testing. This
stock hasn’t had any major positive trends during past years and its performance
isn’t very good. Furthermore, in recent years, which fall into the testing period of the
dataset, it has seen several sudden drops and rises, on which the prediction method’s
resilience can be examined. Market movements in this time period can be seen in
Figure 5.3. We believe that choosing more complicated data is superior to selecting
a time series with strong positive trends, which might yield better performance and
trading results, but whose significance, however, isn’t very high.

The results of the testing are presented in Figure 5.2. Total of 145 parameter
combinations were evaluated.
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Parameter name Value Note
input dataset 3 Yahoo! Inc. daily stock (2514 observations

from 2001-05-09 to 2011-05-06)
max dataset items -1 All 2514 observations were used

test/train split 0.8/0.2 Although this value is fixed in the process, it
is noteworthy. This split applied to Yahoo!
stock means 8 years of training data and the
last 2 years used for testing data.

target value 1 Arithmetic return in target horizon days
target max quantile 0.7 Prediction above 70% percentile will be a buy

signal
target min quantile -1 Any negative prediction will be a sell signal

discretization 1 No discretization will be used.
filtering 1 No filtering will be used.

num components 10 If component analysis is used, it will return
the 10 most relevant principal variables.

knn num neighbors 8 The 8 nearest neighbors will be used in kNN
prediction.

txn fee size -15 Cost per transaction will be $15.
order sum 10000 Every buy order will have a value of $10 000.

limit to order sum 1 At most order sum will be invested at one
moment.

prediction (1,2,3,5) Tested machine learning methods will be
SVM, ANN, kNN and our Clustering + ANN
group

target horizon (2, 5, 10) Returns in 2, 5 or 10 days.
normalization (1, 4) No normalization or Min-max.Returns in 2

or 5 days.
window size (5, 10, 20) Embedding dimension 5, 10 or 20 days.

feature set reduction (1, 2) Either no component analysis or PCA

Figure 5.1: The upper section of the table shows the constant parameters of the
experiment. Optimized parameters and the tested values are in the lower section.
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No. NAE Trading
Profit

($)

Prediction
Method

Prediction
Horizon

Normali-
zation

Embedding
Dimension

Comp.
Analysis

1 1.070 6541 SVM 5 None 20 None
2 1.303 5798 Cl. ANN 2 None 10 PCA
3 1.307 4113 kNN 2 None 20 PCA
4 1.410 3876 SVM 10 None 5 None
5 1.897 3663 Cl. ANN 2 None 5 None
6 1.152 3457 SVM 10 None 10 None
7 6.777 3399 SVM 10 Min-max 5 PCA
8 1.469 3387 kNN 10 None 20 PCA
9 1.075 3366 SVM 5 None 5 None

10 1.310 3215 kNN 5 None 20 PCA
11 1.420 3205 kNN 10 None 5 PCA
12 1.310 2854 kNN 5 None 20 None
13 1.202 2832 kNN 2 None 20 None
14 1.277 2762 kNN 2 None 5 PCA
15 1.607 2641 Cl. ANN 2 Min-max 10 None
16 1.298 2459 kNN 10 None 10 None
17 1.275 2294 Cl. ANN 5 Min-max 10 None
18 1.698 2242 Cl. ANN 5 None 20 PCA
19 2.148 2224 Cl. ANN 2 Min-max 5 None
20 1.824 2220 Cl. ANN 10 None 10 PCA
21 2.179 2172 SVM 2 None 20 None
22 1.149 2167 ANN 2 Min-max 5 None
23 1.241 2167 kNN 2 Min-max 20 None
24 5.317 2167 SVM 2 Min-max 20 None
25 1.104 2018 Cl. ANN 5 Min-max 5 PCA
26 4.663 1999 SVM 10 Min-max 10 PCA
27 1.528 1888 kNN 5 Min-max 10 PCA
28 1.343 1832 kNN 5 Min-max 20 None
29 4.704 1832 SVM 5 Min-max 10 None
30 2.119 1776 Cl. ANN 2 Min-max 10 PCA

Figure 5.2: The table contains parameter configurations of the 30 most profitable
test runs ordered by profit. Column NAE contains value of Normalized Absolute
Error. Prediction method Cl. ANN denotes our experimental method described in
section 3.10

The results show that most of the configurations have rather sub par values of
accuracy. The outcomes of trading give more promise for some parameter combi-
nations. As can be seen, the accuracy measure is not a prerequisite for successful
trading. Examination of the generated prediction data has shown that even if the
predictions differ significantly from the target values, it is more important whether
they deviate enough before buy/sell opportunities to be picked up by the trading
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strategy.

Proportion of individual machine learning methods in the top 30 results is mostly
balanced (SVM: 9, kNN: 11, Clustering+ANN: 9, ANN: 1) except the standalone
Artificial Neural Network. This may be due to insufficient amount of experimenta-
tion usually necessary to obtain reasonable results from ANNs. Furthermore, the
best result of ANN (No. 22) is achieved by just one transaction - a buy order at the
beginning of the training period, see Figure A.3. It is, in fact, almost identical to
the benchmark Buy-And-Hold strategy and hence should be taken as a baseline for
a reasonable strategy.

Surprisingly, our method of clustering and using group of ANNs did cope quite
well, although it uses ANNs too. The differences from the standalone ANN are that
each network in our method is trained using less training data (since each network
receives only one cluster) and higher uniformity of the training data (by virtue of
clustering). These distinctions may make the difference necessary to give markedly
better predictions.

Some known characteristics of each method are visible in the results. The SVM
performs well with high dimensional instances - the best configuration is an SVM
with embedding dimension of 20. This dimension combined with all features added
during preprocessing results in instance vectors of dimension 280. Conversely, kNN
operates best on limited number of highly informational features - hence most of
kNN configurations in the results make use of Principal Component Analysis, which
outputs instances with 10 features.

Unexpectedly, majority of the best configurations did not use normalization.
This may mean that Min-max isn’t the best choice normalization method for this
task.

Most entries also exhibit an expectable relation between the prediction horizon
and the embedding dimension (the number of available previous observations) - that
the horizon is much shorter than the embedding dimension, usually less than half.

Figure 5.3 provides visualisation of the No. 1 configuration from the previous
table. It is clearly visible that the prediction method is consistently able to foresee
large price movements. Recall that the testing data are out-of-sample - the SVM
was not trained on the testing period. For visualisation of the best configurations
of the other trading methods, see Appendix A

5.2 Conclusion

The tested configurations of prediction methods did not yield very good absolute
error-based accuracy results. However, some of the more successful configurations
were able to regularly provide good indications of major market movements. Even
our basic trading strategy was able to capture these indications and trade quite prof-
itably. These trading results show that even without long fine-tuning, it is possible
to adjust the prediction processes to learn from the market behavior well enough to
provide a reasonable performance. This provides encouragement to conduct further
research in optimization of the prediction process.
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YHOO, SVM, horizon = 5, embedding = 20, no normalization, no comp analysis. 2009−05−20 / 2011−04−29
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Figure 5.3: Visualisation of trading of the best configuration in the testing. Notice
that the strategy executes rather a small number of high profit trades.
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Future work

Harder!

Sasha Grey

Our future work shall evolve in two main directions: expanding the testing en-
vironment and continually exploring combinations and parameters leading to an
increasing performance of the prediction processes.

In the direction of expansion of project’s features, we see the following candidates:

• Extended support of feature selection - possibility to individually select which
indicators are added during preprocessing. This process should also be opti-
mizable.

• Add more technical indicators.

• Sophisticated prediction approaches, such as predicting two values - e.g. an
expected low and high of a certain time period.

• More advanced methods for assigning classes to instances in classification task.

• Possibility to combine multiple prediction methods using ensembles. Support
for bagging and boosting.

• Alternative evaluation using validation data (i.e. separate the dataset into
training, testing, validation).

• More predictors, such as Markov Models, Decision Trees or Inductive Logic
Programming based methods.

• Alternative trading strategies.

We believe that increasing quality of predictions and trading will be possible
only through persistent effort in experimenting, possibly with help of some of the
future features mentioned above - such as the meta-algorithms for combination of
multiple predictors.
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Chapter 7

Conclusion

Rule No.1: Never lose money.
Rule No.2: Never forget rule No.1.

Warren Edward Buffett

In this work we have provided background on major machine learning methods
by creating a review of existing literature with focus on the practical application
to financial time series prediction. The review has shown that there is an active
research in the area with interesting results.

Based on the gained knowledge we have designed a testing environment for ex-
perimenting with predictors on financial series. We have also introduced our exper-
imental prediction method based on clustering and group of Neural Networks.

The testing environment was implemented according to the design using Rapid-
Miner and R software tools. The environment is configurable and supports opti-
mization of its parameters, which will be crucial for future usage.

To show that the implemented project serves well the purpose it was designed
for and also to get a basic overview of the parameter space’s influence on the quality
of prediction and performance of trading, we have performed several optimization
experiments and presented its results. This testing also included our experimental
prediction method.

We believe that all of these goals have been accomplished successfully.

This work gave a lot to the author - initial insight into the area of financial
predictive analysis and behavior of Machine Learning predictors, substantially ex-
panded experience with R language and RapidMiner and last but not least, the
testing environment itself, which he hopes to put into much use in future research.
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Appendix A

Notable trading strategies

This appendix contains trading visualisations of best configurations for k-Nearest
Neighbor, our Cluster+ANN method and standalone ANN that were found during
the testing described in chapter 5. For illustration, we have also included one of the
worst performing strategies we have found during the testing.
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YHOO, ClustANN, horizon = 2, embedding = 10, no normalization, Principal Comp. Analysis 2009−05−20 / 2011−05−04
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Figure A.1: This is visualisation of the most successful Clustering+ANN group
configuration. This strategy is able to spot smaller trading opportunities and tends
skip the large ones. This is illustrated by performance in the first year of trading,
which is notably worse than e.g. kNN (next page). However, it was able to operate
much better in the more erratic movements of the second year.
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YHOO, kNN, horizon = 2, embedding = 20, no normalization, Principal Component Analysis 2009−05−22 / 2011−05−04
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Figure A.2: This is visualisation of the most successful k-Nearest Neighbors con-
figuration. Although several good trading decisions can be seen in the major rises,
the strategy wasn’t able to avoid losing in some of the subsequent declines (e.g. in
08/2010) and did not prosper in frequently changing market (end of the trading
period)
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YHOO, ANN, horizon = 2, embedding = 5, Min­max norm, no comp analysis 2009−05−19 / 2011−05−04
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Figure A.3: This is visualisation of the most successful standalone Artificial Neural
Network configuration. It generates only the first promising opportunity, but then
never creates an exit signal. Therefore, it can be used as an equivalent of a Buy-
and-Hold strategy - a baseline comparison.
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YHOO, SVM (poly), horizon = 3, embedding = 15, Independent Component Analysis (5), 2009−05−20 / 2011−05−03
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Figure A.4: This prediction process was based on SVM with polynomial kernel and
as can be seen, the strategy behaves almost inversely to what is desirable.



Appendix B

CD directory structure

The attached CD has following directory structure:

\PredEnv - Directory containing the whole project with its

required directory structure.

\PredEnv\repository - Directory with RapidMiner ’s

repository , which contains the main process(file Main.

rmp), the optimization process (file Optimization

Environment.rmp) and the offline time series datasets.

\Thesis.pdf - Text of this work.
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