
Czech Technical University in Prague

Faculty of Electrical Engineering

DIPLOMA THESIS

Micro Quadrotor: Design, Modelling,
Identification and Control

Prague, 2011 Author: Jaromı́r Dvořák





Prohlášeńı

Prohlašuji, že jsem svou diplomovou (bakalářskou) práci vypracoval samostatně a použil
jsem pouze podklady (literaturu, projekty, SW atd.) uvedené v přiloženém seznamu.

V Praze dne 12.5.2011

i



Acknowledgements

First of all, my deepest gratitude belongs to Zdeněk Hurák, for his great support,
which enabled me to finish this work. The thesis would not also have been possible
without the project contractor and sponsor Kamil Knotek. I would like to thank Pavel
Dvořák for the cooperation in hardware development and finally, Marcelo de Lellis, who
has made available his support in a number of ways.

This work is dedicated to my dear Katie.

ii



Abstract

The latest developments in MEMS technology, microcontrollers, electrical energy ac-
cumulators and motors combined with cheaper costs have fomented a growing number of
studies and designs of small UAVs such as quadrotors. This work shows development re-
sults of one of such projects and tries to collect its main theoretical and practical ascpets,
while highlighting the modelling and controller synthesis. The work presents a complete
strategy on how to design an advanced, structured flight controller for a quadrotor us-
ing an alternative control methods, while trying to document other related aspects of the
project, such as quadrotor-specific AHRS algorithm issues, real-time control over wireless
link and RPM measurement of BLDC motors by its controllers. Unlike the traditional
approach of linearisation around some operating point, the work introduces an advanced
singularity-free eigenaxis non-linear controller, cappable to handle large-scale maneuvers,
such as flip-over.

iii



Abstrakt

Pokrok posledńı doby v oblasti MEMS technologie, mikrokontrolér̊u, akumulátor̊u
a motor̊u v kombinaci s jejich nižš́ımi cenami zp̊usobil nár̊ust počtu studíı a projekt̊u
týkaj́ıćıch se vývoje malých létaj́ıćıch bezpilotńıh prostředk̊u, jako jsou kvadrotory. Tato
práce ukazuje výsledky vývoje jednoho z takových projekt̊u a snaž́ı se představit jeho
hlavńı teoretické a praktické aspekty, ale hlavně se zaměřuje na modelováńı a návrh ř́ızeńı.
Práce představuje kompletńı strategii jak navrhnout pokročilé, struktorované ř́ızeńı letu
kvadrotoru s použit́ım alternativńıch metod ř́ızeńı. Práce také ukazuje ostatńı souvisej́ıćı
aspekty projektu, jako problémy vývoje quadrotor-specific AHRS algoritmu, real-time
ř́ızeńı skrz bezdrátovou linku a měřeńı otáček BLDC motor̊u jejich regulátorem. Narozd́ıl
od tradičńıho př́ıtupu linearizace nelineárńıho modelu kolem operačńıho bodu, práce
představuje pokročilý regulátor rotace pomoćı vlastńı osy, schopný rozsáhlých manévr̊u,
jako je looping.

iv



v



vi



Contents

List of figures xi

List of symbols xv

List of tables xviii

1 Introduction 1
1.1 Motivation and background . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Why quad-rotor? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Subdivision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 System design, construction and programming 5
2.1 Project status summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Quadrotor body and mechanical organisation . . . . . . . . . . . 8
2.2.2 Actuators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.2.1 Selection of BLDC motor . . . . . . . . . . . . . . . . . 9
2.2.2.2 Design of BLDC controller . . . . . . . . . . . . . . . . . 10

2.2.3 Power source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.4 Sensor mainboard . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.5 Wireless data link . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.6 Groundstation circuit . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.1 Microcontroller firmware . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.2 PC control software . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Analysis, modelling and controller design 19
3.1 Dynamic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 Rigid-Body Dynamics . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.2 Actuator Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.2.1 Non-linear Actuator Model . . . . . . . . . . . . . . . . 21
3.1.2.2 Linearized Actuator Model . . . . . . . . . . . . . . . . 21
3.1.2.3 Input and output non-linear mapping . . . . . . . . . . . 22

3.1.3 Acting Forces and Moments . . . . . . . . . . . . . . . . . . . . . 23
3.1.3.1 Axial Thrust moments and Drag torque moment . . . . 23

vii



3.1.3.2 Gyroscopic Moments from Rotors . . . . . . . . . . . . . 24
3.1.3.3 Thrust/lift force . . . . . . . . . . . . . . . . . . . . . . 25
3.1.3.4 Earth’s Gravity force . . . . . . . . . . . . . . . . . . . . 25
3.1.3.5 Aerodynamic Forces and Moments . . . . . . . . . . . . 26

3.1.4 Complete Non-Linear Model . . . . . . . . . . . . . . . . . . . . . 26
3.1.4.1 Computer numerical simulation of derived model . . . . 27

3.2 Controller design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.1 Control Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.2 Orientation Representation . . . . . . . . . . . . . . . . . . . . . . 29
3.2.3 Desired Orientation and Thrust . . . . . . . . . . . . . . . . . . . 30
3.2.4 Control of Orientation using Eigenaxis . . . . . . . . . . . . . . . 31
3.2.5 Rotation Controller Synthesis . . . . . . . . . . . . . . . . . . . . 33

3.2.5.1 Axial Decoupling . . . . . . . . . . . . . . . . . . . . . . 33
3.2.5.2 LQ-optimal controller with non-linear overshoot compensator 35
3.2.5.3 Non-linear gyroscopic compensation and thrust control . 37
3.2.5.4 Overall control law and actuator linearsation extensions 38

3.2.6 Translation controller design . . . . . . . . . . . . . . . . . . . . . 39
3.2.6.1 Translation damper design . . . . . . . . . . . . . . . . . 40
3.2.6.2 Position controller design . . . . . . . . . . . . . . . . . 42
3.2.6.3 Final translation control law . . . . . . . . . . . . . . . . 42

3.3 Observer Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.1 Orientation observer design . . . . . . . . . . . . . . . . . . . . . 43

3.3.1.1 The Accelerometer Paradox . . . . . . . . . . . . . . . . 44
3.3.1.2 Observer principle . . . . . . . . . . . . . . . . . . . . . 45
3.3.1.3 Vectors as state of the observer . . . . . . . . . . . . . . 46
3.3.1.4 Quaternion extraction . . . . . . . . . . . . . . . . . . . 47
3.3.1.5 Quaternion as state of the observer and gyro bias tracking 49
3.3.1.6 Combined state approach . . . . . . . . . . . . . . . . . 50
3.3.1.7 Sensor calibration . . . . . . . . . . . . . . . . . . . . . 52

3.3.2 Position observer design . . . . . . . . . . . . . . . . . . . . . . . 54

4 Identification, implementation, experiments and results 57
4.1 Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1.1 Inertial Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.1.2 Actuator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Implementation and simulation experiments . . . . . . . . . . . . . . . . 62
4.2.1 Rotation controller . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.1.1 LQ-optimal control synthesis . . . . . . . . . . . . . . . 62
4.2.1.2 Coupling with the eigenaxis algorithm . . . . . . . . . . 63
4.2.1.3 Gyroscopic compensator . . . . . . . . . . . . . . . . . . 63
4.2.1.4 Overshoot compensator . . . . . . . . . . . . . . . . . . 63
4.2.1.5 Actuator non-linear mapping . . . . . . . . . . . . . . . 65

4.2.2 Target orientation and thrust computation . . . . . . . . . . . . . 65
4.2.3 Translation controller . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2.3.1 Translation damper . . . . . . . . . . . . . . . . . . . . 67

viii



4.2.3.2 Position controller . . . . . . . . . . . . . . . . . . . . . 68
4.2.4 Orientation and position observer . . . . . . . . . . . . . . . . . . 68

4.3 Laboratory experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 Conclusion 75
5.1 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

References 79

A Complete Simulink model I

B Simulation plots IX

C Appended CD XIII

ix



x



List of Figures

1.1 The quadrotor concept. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Project block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 The complete quadrotor assembly. . . . . . . . . . . . . . . . . . . . . . . 6
2.3 The hardware parts interconnection block diagram. . . . . . . . . . . . . 7
2.4 Body construction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Sensor board mounted on the body with elastic bands. . . . . . . . . . . 8
2.6 Visualisation of magnetic field inside the BLDC motor. . . . . . . . . . . 9
2.7 3D 550 E from PJS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.8 Block diagram of the general BLDC controller. . . . . . . . . . . . . . . . 11
2.9 Ilustrational photo of the controller PCB. . . . . . . . . . . . . . . . . . . 12
2.10 Photo of the main battery. . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.11 Assembly of thesensor board. . . . . . . . . . . . . . . . . . . . . . . . . 14
2.12 Simplified timing diagram of the data flow. . . . . . . . . . . . . . . . . . 14
2.13 Assembly of the groundstation logic board. . . . . . . . . . . . . . . . . . 15
2.14 Control software block diagram. . . . . . . . . . . . . . . . . . . . . . . . 16
2.15 Control software visualisation using OpenGL. . . . . . . . . . . . . . . . 17

3.1 Quadrotor’s fixed-body reference frame. . . . . . . . . . . . . . . . . . . . 19
3.2 Actuator model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Separate rigid body dynamics . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 basic model inputs/outputs . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5 Proposed control structure. . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.6 Target orientation and thrust block placement in the global structure. . . 30
3.7 Relation between eigenaxis and body angular velocities. . . . . . . . . . . 33
3.8 Rotation controller placement in the global structure. . . . . . . . . . . . 34
3.9 Single axis dynamic model. . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.10 Single axis dynamic model during correction maneuver. . . . . . . . . . . 35
3.11 Single axis dynamics with asymptotic tracking and overshoot compensator. 37
3.12 Translation controller placement in the global structure. . . . . . . . . . 39
3.13 Proposed structure of the translation controller. . . . . . . . . . . . . . . 40
3.14 Orientation observer placement in the global structure. . . . . . . . . . . 43
3.15 The 3DOF 2D simplification of a basic quadrotor model. . . . . . . . . . 45
3.16 General diagram of the orientaion observer. . . . . . . . . . . . . . . . . 46
3.17 Bias tracking principle in a single degree of freedom system. . . . . . . . 50
3.18 The AHRS algorithm flowchart. . . . . . . . . . . . . . . . . . . . . . . . 51

xi



3.19 The AHRS algorithm in pseudo-code. . . . . . . . . . . . . . . . . . . . . 52
3.20 Visualisation of the ellipsoid fitted to the measured data. . . . . . . . . . 53
3.21 Position observer placement in the global structure. . . . . . . . . . . . . 54

4.1 Quadrotor’s airframe and inertial identification scheme. . . . . . . . . . . 58
4.2 Scheme of the thrust output function measurement experiment. . . . . . 59
4.3 Output functions identification of the actuator. . . . . . . . . . . . . . . 59
4.4 DC characteristics of the actuator. . . . . . . . . . . . . . . . . . . . . . 60
4.5 Identification of the rotor moment of inertia. . . . . . . . . . . . . . . . . 60
4.6 Identification of the actuator dynamics. . . . . . . . . . . . . . . . . . . . 61
4.7 Decoupled axial dynamics. . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.8 Omega magnitude comparison. . . . . . . . . . . . . . . . . . . . . . . . 63
4.9 Gyroscopic compensator comparison. . . . . . . . . . . . . . . . . . . . . 64
4.10 Overshoot compensator performance. . . . . . . . . . . . . . . . . . . . . 64
4.11 Voltages applied to the actuators. . . . . . . . . . . . . . . . . . . . . . . 65
4.12 Non-linear actuator extension comparison. . . . . . . . . . . . . . . . . . 65
4.13 Step response of acceleration commands. . . . . . . . . . . . . . . . . . . 66
4.14 Step response of heading command. . . . . . . . . . . . . . . . . . . . . . 66
4.15 Step response of acceleration commands with the non-linear mapping. . . 67
4.16 Simple translation damper structure. . . . . . . . . . . . . . . . . . . . . 68
4.17 Translation controller response with damping in NED frame. . . . . . . . 68
4.18 Translation controller response with damping in body frame. . . . . . . . 69
4.19 Translation controller performance. . . . . . . . . . . . . . . . . . . . . . 69
4.20 First, wired outdoor flight, 10.4.2010. . . . . . . . . . . . . . . . . . . . . 70
4.21 Control software running on MS Windows PC. . . . . . . . . . . . . . . . 71
4.22 Eigenaxis error during the flight. . . . . . . . . . . . . . . . . . . . . . . 72
4.23 Quaternion elements tracking and error. . . . . . . . . . . . . . . . . . . 73
4.24 Acceleration commands tracking and error. . . . . . . . . . . . . . . . . . 73
4.25 Heading command tracking and error. . . . . . . . . . . . . . . . . . . . . 73

A.1 The overall closed-loop diagram. . . . . . . . . . . . . . . . . . . . . . . . II
A.2 The quadrotor diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . III
A.3 The rotation controller diagram. . . . . . . . . . . . . . . . . . . . . . . . IV
A.4 The gyroscopic compensator diagram. . . . . . . . . . . . . . . . . . . . . V
A.5 The quaternion logarithm Matlab code. . . . . . . . . . . . . . . . . . . . VI
A.6 The target orientation and thrust computation Matlab code. . . . . . . . VI
A.7 The translation controller diagram. . . . . . . . . . . . . . . . . . . . . . VII
A.8 The simplified 2D-quadrotor model with rotation controller diagram. . . VIII

B.1 Position history. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IX
B.2 Target acceleration history. . . . . . . . . . . . . . . . . . . . . . . . . . . X
B.3 Quaternion elements history. . . . . . . . . . . . . . . . . . . . . . . . . . X
B.4 Eigenaxis error history. . . . . . . . . . . . . . . . . . . . . . . . . . . . . X
B.5 Actuator voltage history. . . . . . . . . . . . . . . . . . . . . . . . . . . . XI
B.6 Actuator angular velocity history. . . . . . . . . . . . . . . . . . . . . . . XI
B.7 Body angular velocity history. . . . . . . . . . . . . . . . . . . . . . . . . XI

xii



B.8 Body linear velocity history. . . . . . . . . . . . . . . . . . . . . . . . . . XII
B.9 Body acceleration history. . . . . . . . . . . . . . . . . . . . . . . . . . . XII
B.10 Accelerometer reading history. . . . . . . . . . . . . . . . . . . . . . . . . XII

xiii



xiv



List of Symbols

Symbol Descripton SI unit

Ω Angular velocity in body frame rad/s
p Angular velocity in body frame around X axis rad/s
q Angular velocity in body frame around Y axis rad/s
r Angular velocity in body frame around Z axis rad/s
L Angular momentum vector in body frame N·m·s
M Total angular moment in body frame N·m
I Inertia tensor of the quadrotor in body frame kg·m2

Ix moment of inertia around X axis kg·m2

Iy moment of inertia around Y axis kg·m2

Iz moment of inertia around Z axis kg·m2

V Translational velocity in body frame m/s
u Translational velocity in body frame, X axis m/s
v Translational velocity in body frame, Y axis m/s
w Translational velocity in body frame, Z axis m/s
Ve Translational velocity in NED frame m/s
X Position of the quadrotor in NED frame m
P Translational momentum vector in body frame kg·m/s
F Total ranslational force in body frame N
mt Total mass of the quadrotor kg
g Earth’s acceleration vector m/s2

uj Unbiased voltage applied to the j-th actuator V
ωj Angular velocity of j-th actuator rad/s
Tj Thrust output of j-th actuator N
qj Torque output of j-th actuator N·m
δj Drag torque of j-th actuator N·m
Mj Angular moment of j-th actuator N·m
Lr Summed angular momentum of all the actuators none
T Total thrust generated by the actuators N
la distance from each motor to CG m
ω0 angular velocity of the operating point rad/s
u0 voltage of the operating point V
Ir total moment of inertia of the actuator kg·m2

xv



K linear gain of the actuator V·s/rad
B bearing damping of the actuator N·m·s/rad
H thrust output non-linearity gain none
F drag torque output non-linearity gain none
G1 actuator voltage to torque constant for stepup none
G2 actuator voltage to torque constant for stepdown none
k linearised actuator constant: sensitivity none
l linearised actuator constant: damping none
m linearised actuator constant: thrust change none
n linearised actuator constant: drag torque change none
kd Thrust gain correction non-linear mapping constant none
ki Actuator input non-linear mapping constant none
li Actuator output non-linear mapping constant none
Fg Gravity force m/s2

tad Translation aerodynamic damping constant N·s/m
rad Rotation aerodynamic damping constant N·s/rad
Q Current orientation state quaternion none
α Angle of rotation rad
â Target acceleration in NED frame m/s2

ψ̂ Target heading in NED frame rad
Qt Target tilt quaternion none
Qy Target yaw quaternion none

Q̂ Target quaternion none

X̂ Target position in NED frame m

T̂ Target thrust in vertical axis N
Qe Error quaternion none
r Eigenaxis of the error correction maneuver none
E Eigenaxis error vector rad
ũj Decoupled axial voltage V
ω̃j Decoupled axial angular velocity rad/s
Kj LQ-control feedback for j-th axis none
Lj Overshoot compensator gain constant for j-th axis none
Kdlat Lateral translation damper: gain constant none
τlat Lateral translation damper: time constant sec
Kplat Lateral position controller: proportional term none
Kilat Lateral position controller: integral term none
Kdlong Longitudinal translation damper: gain constant none
τlong Longitudinal translation damper: time constant sec
Kplong Longitudinal position controller: proportional term none
Kilong Longitudinal position controller: integral term none
acc Calibrated accelerometer reading m/s2

mag Calibrated magnetometer reading none
gyro Calibrated gyro reading rad/s
Sa Estimated Earth’s acceleration vector m/s2

xvi



Sm Estimated Earth’s magnetic vector none
Sp Accelerometer paradox compensator state none
Sb Gyro bias estimation vector rad/s
Sα Estimated magnetic inclination angle rad
SQ Estimated orientation quaternion none
Qc Measurement error quaternion none
Qr Measurement quaternion none
Ka Accelerometer correction weight none
Km Magnetometer correction weight none
Kb Bias estimation correction weight none
KQ Quaternion correction weight none
τα Magnetic inclination lowpass filter time constant sec
τac Accelerometer paradox compensator time constant none
Kac Accelerometer paradox compensator gain constant none

xvii



xviii



List of Tables

1.1 Difference between the main aerial concepts. . . . . . . . . . . . . . . . . 2

2.1 Key parameters of the selected BLDC motor. . . . . . . . . . . . . . . . 10
2.2 Key parameters of the BLDC controller. . . . . . . . . . . . . . . . . . . 12

3.1 Systematic errors of the inertial sensors . . . . . . . . . . . . . . . . . . . 44

4.1 Basic identified model constants of the body dynamics . . . . . . . . . . 58
4.2 Basic actuator model identified constants . . . . . . . . . . . . . . . . . . 61
4.3 LQ-optimal feedback law for decoupled dynamics . . . . . . . . . . . . . 62
4.4 Basic actuator model identified constants . . . . . . . . . . . . . . . . . . 67
4.5 Orientation observer parameters . . . . . . . . . . . . . . . . . . . . . . . 70

xix



xx



Chapter 1

Introduction

Goal of the background project was to design, build and control a function sample of a
quadrotor. This work presents results of two year intensive project development and tries
to collect its main theoretical and practical elements, while focusing on the modelling and
controller synthesis. Please note that the development is still in progress, hence some of
the key aspects are remained open. Main result of this work is a complete quadrotor
model with designed controller.

1.1 Motivation and background

History of this project reachs quite far into the past. Since the growth of aerial industry,
control engineering and microprocessors, the area of autonomous flying machines always
belonged into my field of interest. When becoming CTU student, I had allready designed
inertial measurement unit board and want to use it to control a conventional RC model
helicopter. Two years ago, I got an offer from VIPRON s.r.o. to design and realise a low-
level control system for autonomous flying robot. Having the required construction skills,
component base and willing to learn, I started to build the new quadrotor for education
purposes, using the knowledge base from existing projects together with my own ideas.

1.2 Why quad-rotor?

From one of the very basic field of view, the aerial vehicles can be divided into two groups.
The table 1.1 shows some of the main features.

For our approach, there are undeniable advantages of a rotating wing over the fixed
wing aircraft, especially for short-range or indoor missions where maneuverability, omni-
directional movement, ability of hovering and obstacle avoidance is critical. The main
difference is that the copter is omnidirectional in translation, i.e. it can move up, down,
left or right, backward or forward in space independently. Price to pay for this property

1



2 CHAPTER 1. INTRODUCTION

Table 1.1: Difference between the main aerial concepts.

Fixed wing Rotating wing
Power consumption lower higher
Maneuverability non-omnidirectional omnidirectional
Range higher lower
Vtol no yes
Speed higher lower
Hover mode no yes
Control fault tolerance not always critical often deadly

is the need for constant power to the propellers to ”keep the device in-the-air”, which
results to shorter battery life and shorter flight range.

Figure 1.1: The quadrotor concept.

http://www.rc-airplane-world.com/rc-ufo.html

There are many rotating-wing aircraft configurations, like the classical helicopter
model with tail rotor for yaw control or multi-rotor and co-axial configurations. Quad-
rotor over the classical helicopter concept is mechanically much simpler and easier to
construct. There is no need for complicated rotor head, blades that must change their
attack angles, collective pitching, nor tail rotor for yaw stabilisation. There are only 4
(or any even number) of rotating propellers with parallel axis mounted around a rigid
body. The propeller doesn’t only generate a static thrust, but also a torque, which can
be effectively used to control the yaw angle. One half of the properells are rotating clock-
wise, the other half counter-clokwise. That’s why even number of propellers is needed.
Attitude, heading - (spatial orientation) and movement - (spatial translation) is con-
trolled via the power of propeller motors. Each propeller must be, of course, controllable
separately, which makes it a challenging control engineering problem. By using today’s
brushless synchronous motors with excellent rigidity and lifetime, which actually depends



1.3. CONTRIBUTIONS 3

only on their bearings, the resulting device is, from the mechanical field of view, pratc-
ticaly faulty-free, care-free, and can be easily constructed using cheap, available parts.
In recent years, the quadrotor aircraft concept has become popular for UAV applications
due to their high maneuvering capabilities, making them especially adequate not only for
aerial surveillance applications, but also as single units in swarm robotics and collective
behaviour studies.

1.3 Contributions

• The project invovles design and construction of the function sample, to be used as a
basis for further development and education. All the electronic circuitry was there-
fore designed especially for this project, aiming to utilize the potential of currently
available parts and come through the competition with another similar projects.
From special features of this project I can mention the custom-made BLDC con-
trollers allowing the motor RPM measurement and faster transient responses, or
alternative usage of some commonly available sensors, like optical mouse camera
with attached optics for visual motion detection. Finally, the controller was placed
outside of the quadrotor body, which requires a special workaround to allow fast
real-time control over the wireless link, but enables a comfortable way of designing
a controller, easy demonstration, education and much more.

• Apart from an ordinary control problem, where U is input to and Y is a known
output from a real system we wish to control, the quadrotor control problem is
bit more complicated. Usually, the target values for an aircraft are spatial orienta-
tion and/or spatial position. Nevertheless, unlike a rotary encoder in an inverted
pendulum, there is no solid-state sensor that can provide theese variables. In fact,
the output vector, Y , is not known. The value of Y can only be estimated using a
multiple sensors which reads a related values. Apart from vision-based systems [51],
that uses some external sensors to determine orientation/position, one of the goals
of this work will be to discuss the posibilities of an orientation an position observers
for the quadrotor concept, making it independent on external workarounds. The
highly experimental approach of the quadrotor-specific AHRS unit was synthesized
and will be presented.

• Regarding the aircraft as rigid body, the key question is how to describe its ori-
entation. Euler angles have been sucessfully used for control of fixed-wing aircraft
as natural representation of errors from straightforward flight. Nevertheless, for an
omnidirectional aircraft, non-linearities arise when moving far from the zero orien-
tation state. As an attitude description alternative, quaternions offer a potentially
significant advantage in terms of mathematical robustness, not suffering from sin-
gularities, but also by enabling a more energy-optimized control action, especially
when more aggressive maneuvers are considered. Despite these advantages, they
have been relatively neglected in aeronautics. In aerospace field, the problem of



4 CHAPTER 1. INTRODUCTION

reorienting an aircraft with minimum effort through large angles, without any path
constraints, has been addressed in several contexts. A rigid body in any initial
orientation can be rotated into a final orientation through a single rotation about
a fixed axis, which is called an eigenaxis rotation and constitutes the ”shortest”
rotation between the two orientations [6]. Unlike the traditional approach of lin-
earisation the non-linear model around some operating point, this work aims to
synthesize a non-linear controller that will be operational in entire orientational
space and thus able to handle very large-scale maneuvers, such as flip-over. The
eigenaxis control approach was found to be new in the quadrotor design field, thus
a paper about the problematics was sent to IEEE MSC 2011.

1.4 Subdivision

The work will begin with a short description of the real quadrotor project construction.
In the next chapter, I will derive the complete, non-linear dynamic model of the aircraft,
followed by the proposal of a suitable controller structure with separated translation and
rotation subsystem. Advantages of eigenaxis control will be examined and advanced rota-
tion controller with various non-linear extensions will be synthesized. Next, I will present
a suitable precedent translation controller. Finally, possibilities of orientation/position
state observers will be discussed. The last chapter will attempt to join both construction
and modelling branches together. The system identification and controller implementa-
tion will be presented, various numerical simulations performed and finally, the designed
controller will be verified on the real aircraft. Altough the sections are presented one
after another, the reader should be aware of the fact that encountered needs, limitations
and necessary interventions during the system development influenced all the parts, thus
the construction, modelling, identification and implementation were done more like in
parallel.



Chapter 2

System design, construction and
programming

2.1 Project status summary

The project is currently being developped in cooperation with the industrial contractor.
The particular project subtask was to design and implement the vestibular part (low level
dynamic controler) for our aircraft, represented by the coloured blocks in fig. 2.1. The
precedent layer will consist of an task/mission control unit, which will pass the commands
to the dynamic controller. Mission control unit design belongs to the area of machine
perception, image processing and artificial inteligence, rater than control engineering.

Figure 2.1: Project block diagram.

I have decided to build a function sample of the quadrotor at first, suitable especially
for the educational purposes. Hence, personal computer is used in role of real-time
controller hardware, instead of placing the controller onboard. This conception enables
to do the develompent, tuning and adjustments in a very comfortable way and won’t
practically limit the computational power. Neverheless, there is the need for a fast and
low latency data link between the computer and the aircraft that will be able to transfer

5



6 CHAPTER 2. SYSTEM DESIGN, CONSTRUCTION AND PROGRAMMING

the sensor measurements to the PC and motor commands back within one chosen discrete
controller time step. There is only a simple sensor board onboard with fast data telemetry.
When development is done, the controller will be placed onboard. The remaining part of
this chapter will briefly describe the construction of this function sample.

Figure 2.2: The complete quadrotor assembly.

2.2 Hardware

Hardware part of the project consists of the groundstation and the vehicle. The quadrotor
represents a combination of various elements, such as aluminium-carbon body, brushless
motors, rechargeable battery, motor controllers, microcontrollers (MCU), sensors and
aerial interface whereas the groundstation consists of a personal computer and interfac-
ing circuitry. From electrical field of view, heart of both quadrotor and groundstation
circuitry are microcontrollers handling the necessary perpiherals. The onboard computer
queries the sensors, passes the readings through data link, reads back the motor com-
mands and sends them to the motor controllers. Ground microcontroller reads data
from the air and from the RC model transmitter, passes them to the PC, waits for the



2.2. HARDWARE 7

computation to complete ands sends the result back to the aircraft.

Figure 2.3: The hardware parts interconnection block diagram.

Main components of the groundstation

• RC handpad with two joysticks as human pilot interface

• logic board

• wireless data transceiver

• PC as the real-time dynamic controller

Main components of the aerial vehicle

• aluminium-carbon body

• four BLDC motors with attached propellers

• four BLDC motor controllers (ESC)

• 2.2Ah lithium-ion ploymer battery

• logic board with sensors

• wireless data transceiver



8 CHAPTER 2. SYSTEM DESIGN, CONSTRUCTION AND PROGRAMMING

(a) Aluminium cross piece. (b) Aluminium motor mount.

Figure 2.4: Body construction.

2.2.1 Quadrotor body and mechanical organisation

The main body of the quadrotor is made of four carbon fibre pipes with 8mm diameter
which are glued into the aluminium cross piece in the center. The arms are ended with
aluminium mount with a perpendicular hole for motor rod.

Several mechanical problems were encountered during the vehicle construction. Pri-
marily, the the rotating motors with just slightly unbalanced propellers are causing vibra-
tions, which spreads through the body and interferes the accelerometer. For some values
of revolutions per seconds ratio, high frequency acceleration shocks can arise in the center
cross that are even out of accelerometer’s range. Then the accelerometer becomes non-
linear, mean value of its readings does not respond to the earth’s gravity acceleration and
error in orientation estimation will develop. The problem has been temporarily solved
by mounting the entire sensor board on the body using elastic bands. The additional
carbon pipes were also added as braces aiming to cancel the shocks in the center cross
by spreading the vibrations through them. I am planning the further experiments with
various other materials and main body construction to cancel the vibrations.

Figure 2.5: Sensor board mounted on the body with elastic bands.



2.2. HARDWARE 9

Another problem to solve is that the high current flow to the motors (orientationally,
about 12A total is needed to maintain device in the air) causes magnetic fields that
interferes the magnetometer. Currently, the device is equipped with twisted wire pairs
for high current supply that cancels the parasitic fields, nevertheless some residual error
in magnetic readings are still present.

2.2.2 Actuators

From the variety of propeller actuators, suitable type for this project are clasiccal brushed
DC motor with mechanic commutator or brushless DC motor. Limitations of brushed
DC motors overcome by BLDC motors include lower efficiency and susceptibility of the
commutator assembly to mechanical wear and consequent need for servicing, at the cost
of potentially less rugged and more complex and expensive control electronics. Brushless
DC motors (BLDC motors, BL motors) also known as electronically commutated motors
(ECMs, EC motors) are synchronous electric motors powered by direct-current (DC)
electricity and having electronic commutation systems, rather than mechanical commu-
tators and brushes. The current-to-torque and voltage-to-speed relationships of BLDC
motors are linear, like DC motor. Moreover, classical DC motors usually have less torque
at lower speeds, leading to the need of gearbox in front of the propeller. Relationship
between the voltage and speed can be approximated by a first order dynamic system.

Figure 2.6: Visualisation of magnetic field inside the BLDC motor.

http://www.bugman123.com/Engineering/index.html

2.2.2.1 Selection of BLDC motor

To select a suitable motor and propeller combination for the device, one must consider
several parameters, from which of the mains are weight, static thrust, efficiency etc. The
various motor paramteres have been examined. Note that some parameters needs to be
cross-compared. For example the efficiency can be outbid by a weight, e.g. more massive



10 CHAPTER 2. SYSTEM DESIGN, CONSTRUCTION AND PROGRAMMING

Table 2.1: Key parameters of the selected BLDC motor.

Parameter Value
Voltage 10.6V (3 Li-Ion cells)
Maximum power 110W
Thrust 750g
Weight 55g
Efficiency 6.76g/W
Relative thrust 13.64g/g
Propeller size 11/4.7

motor with higher efficiency can be replaced by a lighter one with lower efficiency. After
extensive seek through, the 3D 550 E [45] from a Czech manufacturer PJS was selected.

Figure 2.7: 3D 550 E from PJS.

http://www.pjs.cz

2.2.2.2 Design of BLDC controller

Altough BLDC motors are generally synchronous machines, the phase alternating is usu-
ally not forced, but a need for electronic commutator appears to achieve the best results
and to ensure optimal control. Because the controller must directly drive the phase alter-
nation, the controller needs some means of determining the rotor’s orientation/position
(relative to the stator coils). Some designs use Hall effect sensors or a rotary encoder to di-
rectly measure the rotor position. Others measure the back EMF in the undriven coils to
infer the rotor position, eliminating the need for separate Hall effect sensors, and therefore
are often called sensorless controllers. They enable the even simpler motor construction,
without the need of expensive hall sensors. There are commercially available sensorless
BLDC controllers, especially for aircraft RC models. However, I have decided to design
my own system because of the interfacing and especially, the possibility for revolutions
per second measurement to be used as state variable in the rotation feedback controller.
Designing of such realization electronic circuit requires considering cooperation of some
delicate components, such as high-current switching transistors, a microcontroller and



2.2. HARDWARE 11

simultaneous low-voltage back EMF signal sampling, making the PCB design a challeng-
ing task. The main components of the circuit are properly controlled six high powered
MOSFET drivers and suitable microcontroller, with integrated perpiherals allowing the
PWM control and A/D conversion of the back EMF signals. Due to extensive experiences
and deep knowledge of the architecture, I have choosen to use the ATMega48 from the
AVR family of Atmel corp as a suitable microcontroller [37].

The another reason for the choice of designing the specific BLDC drive, was the
fact that most of the conventional BLDC controllers have a different transient responses
when accelerating and deccelerating. This is an intrinsic property of the PWM driving
strategy. Most of the commercially available BLDC controllers avoid this problem by
artificially slowing-down the stepup response, by a ramp applied to the PWM signal.
Such approach, used in most existing quadrotor designs, results in slowing down the
entire actuator dynamics. Such system can therefore be stabilised by an ordinary PID
controller, where the information about the motor RPM is not necessary. In my design, an
advanced switching strategy is implemented, aiming to equalize the stepup and stepdown
response without the need of slowing down the transient response.

Figure 2.8: Block diagram of the general BLDC controller.

An extensive work has yet been done in the theory of sensorless BLDC control [44],
aswell as many circuit realisations have been designed [36]. The design is almost entirely
an implementation task and the details are out of focus of this work. Only some key
resulting parameters of the designed unit will be presented.



12 CHAPTER 2. SYSTEM DESIGN, CONSTRUCTION AND PROGRAMMING

Table 2.2: Key parameters of the BLDC controller.

Parameter Value
Voltage range tested 7.4 - 14.4 V (2-4 lipol cells)
Maximum current six 40A N-channel mosfets, tested up to 16A
Interface Bi-directional, addressed I2C and/or UART.
Operation The input is target PWM duty cycle and out-

put is actual RPM of the motor. Availability
of voltage, current measurement, self-test re-
sult, fault detection. Safety motor shut off
at communication lost.

Figure 2.9: Ilustrational photo of the controller PCB.

http://www.mikrokopter.de/

2.2.3 Power source

The interesting possibility for power source of final version of the device, discussed with
the contractor, was a fuel cell or a micro gas turbine. Howewer, such devices is often much
more expensive than a electrochemical battery and suitable for larger scale quadrotors.
Thus, for development, from the variety of commercially accessible mobile power sources,
I have chosen the lithium-ion polymer rechargeable battery.

Lithium-ion batteries are common in consumer electronics and in recent days they
also recorded huge entrance as the RC model hoby power sources. They are one of the
most popular types of rechargeable battery for portable electronics, with one of the best
energy densities, no memory effect, and a slow loss of charge when not in use. Beyond
consumer electronics, LIBs are also growing in popularity for military, electric vehicle,
and aerospace applications. Research is yielding a stream of improvements to traditional
LIB technology, focusing on energy density, durability, cost, and intrinsic safety. The
battery was chosen to fullfill the motor supply requirements. It consists of three serially
connected cells. The nominal voltage is 10.6V , capacity 2200mAh and weight 180g.



2.2. HARDWARE 13

Figure 2.10: Photo of the main battery.

http://www.rc-modelar.cz/

2.2.4 Sensor mainboard

Currently used main logic board was originally developped as an autopilot platform for
classical micro helicopter. It is based on the ATMega168 microcontroller [37]. The on-
board sensors include triaxial accelerometer ADXL335 from Analog Devices [47], triaxial
magnetometer module MicroMag 3D from PNI [41] and triple gyro1 ENC-03 from Mu-
rata [46]. The magnetometer is connected to the MCU through SPI interface. The analog
sensors (accelerometer and gyros) are connected to the multiplexed 10bit A/D converter
of ATMega168 through second-order lowpass filter realized using operating amplifiers.
MCU samples each of the six analog signals at about 4kHz and performs a numerical fil-
tering (exponential filter for the accelerometer readings to obtain most recent value and
period-averaging for the gyros, suitable for the integration). Simultaneously, the custom-
made BLDC controllers, connected through the I2C interface provide information about
each motor RPM. The overall sampling frequency is fs = 100Hz. For experimenting, the
logic board can also be equipped with a translational sensors, such as sonar rangefinder,
optical proximity detector [40] and optical mouse flow sensor [39]. All the readings are
collected by onboard microcontroller and sent through RF data link towards a PC, which
is used for real-time control. The computer then performs the control scheme according
to fig. 3.21 and finally sends the commands back to the aircraft, which are then passed
on to four onboard BLDC controllers.

1Angular rate sensor.



14 CHAPTER 2. SYSTEM DESIGN, CONSTRUCTION AND PROGRAMMING

Figure 2.11: Assembly of thesensor board.

2.2.5 Wireless data link

The conception of placing the controller outside the quadrotor body demands a fast and
low latency data link between the computer and the aircraft that will enable transfer
of the sensor measurements to the PC and motor commands back within one chosen
discrete controller time step. It took a lot of time to find such a data link on the market.
It has been shown that Bluetooth or Zigbee standards are unsuitable for real-time control,
because of their high, unpredictable latency. Nordic NRF24L01 [42] provides a low-level
SPI interface for data transfer in 2.4GHz band with data rates up to 2MBPS. However,
since there is no encapsulating protocol, an extensive support must be provided from
the MCU side, such as channel selection, data loss handling etc. The simplified data
throughput timing diagram of the entire system is shown in fig. 2.12.

Figure 2.12: Simplified timing diagram of the data flow.



2.2. HARDWARE 15

Note that the transport delay, td, may vary due to the jitter in USB-to-RS232 converter
and PC computation, according to its load, for example. In order to operate correctly, td
must be always lower than the sampling period.

2.2.6 Groundstation circuit

The groundstation circuit is an interface between the wireless link to the quadrotor,
human pilot and the PC performing the dynamical controller. The heart of this circuit
is the ATMega644 microcontroler [38]. The main issue here was a problem of finding the
appropriate interface at the PC side. At the beginning, a COM port was used due to
its intrinsic low latency. Nevertheless, during the development it was found out that the
maximum speed of the UART, 115200 baud/sec is not sufficient. Thus, seeking for the
higher throughput interface but preserving the low latency, I found out that some of the
USB-to-RS232 converters can meet these requirements. Current unit is USB powered
and uses the high-baudrate enabled Prolific PL2303 USB-to-RS232 converter.

For the next version, nRF24LU1+ will be used, which features a fully integrated USB
2.0 compliant device controller. Thus, if the throughput and latency requirements will
be met, it will eliminate the need for extra microcontroller. RC Handpad can be then
connected to the PC with commercialy available interface.

Figure 2.13: Assembly of the groundstation logic board.



16 CHAPTER 2. SYSTEM DESIGN, CONSTRUCTION AND PROGRAMMING

2.3 Software

2.3.1 Microcontroller firmware

There are totally 6 microcontrollers involved. All the firmware was designed and imple-
mented especially for this project. The high precission timing demands leads to the need
for interrupt driven perpiheral service and an extensive workaround for correct program
synchronization. The firmware was programmed in C using AVR GCC compiler, with
some in-line assembler optimizations and functions.

2.3.2 PC control software

To enable the real-time control, all the algorithms were implmented in C using the GNU
GCC compiler. Multi-threaded approach is used to reach the desired performance. The
threads use different priorities and various synchronization techniques. The current build
runs on MS windows, uses OpenGL and SDL graphical libraries for visualisation and a
console windows for user input, constant adjustments etc.

Figure 2.14: Control software block diagram.

Modular design of the software respects the proposed control structure. Apart from
the visualisation, input and communication modules, the main components are the orien-
tation observer, translation damper and rotation controller. Theese modules are aproxi-
mating continuous designs by rectangle discretization and running on the same sampling
frequency, directed by the quadrotor mainboard. The translation controller is reduced
to a translation damper. The pilot is placed in the role of position controller in the way
that he directs target spatial acceleration.



2.3. SOFTWARE 17

Figure 2.15: Control software visualisation using OpenGL.



18 CHAPTER 2. SYSTEM DESIGN, CONSTRUCTION AND PROGRAMMING



Chapter 3

Analysis, modelling and controller
design

In this chapter, I will introduce a theoretical view on the quad-rotor dynamics. At first,
non-linear model will be developped and a suitable controller structure proposed. Each
block in the structure will be then examined and its design strategy will be derived.

3.1 Dynamic Model

A simplified schematics of the quadrotor’s body-fixed and inertial frames of reference is
shown in fig. 3.1. Both of them are right-handed coordinate systems where the right-
hand rule applies for determining the direction of a vector cross-product. For the first,
X,Y and Z are its orthogonal axes with correspondent body linear velocity vector V =
[

u v w
]b T

and angular rate vector Ω =
[

p q r
]b T
. The second one is the NED1

inertial (navigation) reference frame, with which initially the body-fixed coincides.

Figure 3.1: Quadrotor’s fixed-body reference frame.

1NED stands for North-East-Down coordinate system.

19



20 CHAPTER 3. ANALYSIS, MODELLING AND CONTROLLER DESIGN

3.1.1 Rigid-Body Dynamics

In an inertial frame of reference it is known that the torque (moment) is defined as
the time derivative of the angular momentum, Mn , dL

dt
= d

dt
(In ·Ω), where In is the

body’s inertia tensor measured in NED inertial reference frame, a 3x3 matrix. However,
to simplify the calculations, M is rather considered in the body-fixed rotating frame,
using principial axes with the origin at the centre of gravity. In this frame, the moment
of inertia tensor is constant2 (and diagonal), I = diag(Ix, Iy, Iz).

I =





Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz



 =





Ix 0 0
0 Iy 0
0 0 Iz



 (3.1)

The angular momentum vector L can now be written as L =
[

Ix p Iy q Iz r
]T
. In

a rotating reference frame, the time derivative must be replaced with time derivative in
rotating reference frame, it yields

M =

(

dL

dt

)

rot
+Ω× L ⇐⇒ M = I · Ω̇+Ω× (I ·Ω) (3.2)

which is the particular vector form of Euler’s equations. By developing the cross-product
term its algebraic form is found as the set of equations

Mx = Ix ṗ+ (Iz − Iy) q r

My = Iy q̇ + (Ix − Iz) r p

Mz = Iz ṙ + (Iy − Ix) p q

(3.3)

which are also referred to as the Euler moment equations. One can note the physical
natural sense in these equations: the simultaneous rotation around two axis will generate
a torque around a third axis, given that the previous causal two axis don’t have the same
inertia.

Similarly to the reasoning applied until here to the rotational aspect of the rigid-body
dynamics, in the translational case a force is generated, according to Newton’s 2nd law,

as F ,
dP

dt
=

d

dt
(m ·V), where m is the total mass of the quadrotor in whose center

the origin of the aircraft’s fixed-body rotating frame is located. Once again turning
to the body-fixed rotational frame and defining translational momentum vector P =
[

mt u mt v mtw
]T
, the calculation is simplified to

F =

(

dP

dt

)

rot
+Ω×P ⇐⇒ F = m

(

V̇ +Ω×V
)

(3.4)

By solving the cross-product, the set of force equations is obtained

Fx = mt (u̇+ q w − v r)

Fy = mt (v̇ + r u− w p)

Fz = mt (ẇ + p v − q u)

(3.5)

2Assumption is valid because flexible modes are disregarded and aircraft’s mass is constant.



3.1. DYNAMIC MODEL 21

3.1.2 Actuator Dynamics

In this section, a simplified model of a BLDC (brushless DC) motor with attached pro-
peller will be introduced. Please note that this particular model was designed especially
for the quadrotor control purposes and may not consider all the physical influences. Input
to the actuator is unbiased applied voltage uj and output vector is formed of propeller
angular velocity ωj, axial thrust Tj and drag torque δj. By term unbiased I mean that
the voltage offset constant has been subtracted from (and needs to be added to) the
actual motor voltage input, such that the DC gain from voltage uj to angular velocity ωj
crosses the origin. The voltage offset is caused by non-linearities of the bearing friction
and BLDC driving strategy and will not be reffered to anymore. Note that the actuator
input, uj, is expressed in volts rather than natural percentage of PWM duty cycle. This
choice was made to make the system independent on the battery charge level. The uj
needs to be scaled according to the actual battery voltage and therefore passed to the
BLDC controller as PWM duty cycle percentage.

3.1.2.1 Non-linear Actuator Model

To simplify the model, the stress-free motor will be treated as an ordinary, linear first-
order system. The fast dynamics caused by magnetic inductance will be neglected. Never-
theless, experiments have shown that a conventional cheap BLDC motor with controller
has different dynamics when accelerating and deaccelerating due to its PWM driving
strategy. A special motor controller was developed in order to minimize this effect, how-
ever a certain difference between the two poles still remained, described by f1(uj −Kωj)
in the model.

The propeller adds non-linear damping caused by the air friction with the blades,
resulting in a drag torque δj = f4(ωj), which [1] demonstrates to be polynomially depen-
dent on ω. This damping makes non-linear not only the steady-state gain, but also the
entire dynamics, which is often mistreated. From fig. 3.2, following the Newton’s 2nd law
ω̇j = (qM − qB − δj)/Ir. Since torque can be transfered from propeller to body through
the motor only (air is an independent liquid medium with its own inertia), the output
torque equals qj = qM − qB which is again equal to δj in steady state.

The model dynamics is described as

Irω̇j = f1(uj −Kωj)−Bωj − f4(ωj) (3.6)

with output relations

qj = f1(uj −Kωj)−Bωj = Irω̇j + δj

Tj = f3(ωj)
(3.7)

3.1.2.2 Linearized Actuator Model

To linearize the dynamics, in (3.6) the non-linear sensitivity function caused by the
assymetric up and down step response can be averaged, f1(uj−Kωj) = G1+G2

2
(uj−Kωj).

Polynomial relations f3(ωj) and f4(ωj) can be linearized around the operating point ω0,



22 CHAPTER 3. ANALYSIS, MODELLING AND CONTROLLER DESIGN

Figure 3.2: Actuator model.

where T = mt g = 4f3(ω0), the sum of all four propeller thrusts equals the gravity force
acting on the body, Tj = f3(ωj) ≡ n∆ωj + f3(ω0) and δj = f4(ωj) ≡ m∆ωj + f4(ω0),
leading to a linearized dynamics describing the actuator as an ordinary first-order system

Irω̇j = k

(

uj −
lω0 + f4(ω0)

k

)

− (m+ l)∆ωj (3.8)

with linearized output relations

qj = Irω̇j +m∆ωj + f4(ω0)

Tj = n∆ωj + f3(ω0)
(3.9)

where k = G1+G2

2
, l = K G1+G2

2
+ B, m = ḟ4(ω0) and n = ḟ3(ω0). Note that in linear

approximation around ω0, stady-state drag torque δj is proportional to axial thrust Tj ,

namely qj
.
= m

n
Tj , when

n
m

=
f3(ωj)

f4(ωj)
or at least n

m
= f3(ω0)

f4(ω0)
.

3.1.2.3 Input and output non-linear mapping

For further extension of the operational range of the linear controller, we will define here
a stady-state gains of the non-linear model.

Let’s assume that inner polynomial relations, f4(ωj) and f3(ωj), can be approximated
by f4(ωj)

.
= Hω2

j and f3(ωj)
.
= Fω2

j . We can then define steady-state gain from uj to the



3.1. DYNAMIC MODEL 23

ωj, from the non-linear model (3.6), using the new combined constants, as

ωj(uj)∞ =

√

l2 + 4kujH − l

2H
(3.10)

and more, when inserting (3.10) into the output non-linear function f3(ωj), we can
obtain the total DC gain from voltage uj to thrust tj

tj(uj)∞ = f3(ωj(u)j)∞) = F
2l2 + 4kujH − 2l

√

l2 + 4kujH

4H2
(3.11)

Similarly, for the DC gain from voltage uj to drag torque δj

δj(uj)∞ = f4(ωj(u)j)∞) = H
2l2 + 4kujH − 2l

√

l2 + 4kujH

4H2
(3.12)

It can be shown later, for the particular identified actuator constants, that both (3.11)
and (3.12) in the entire voltage operating range, can be well aproximated by a simple
parabolic function, such that tj(uj)∞

.
= αu2j and δj(uj)∞

.
= βu2j . This result suggest to

create an inverse non-linearity (i.e. square root), which will be then inserted in front of
the non-linear actuator.

3.1.3 Acting Forces and Moments

Hereby all those forces and moments which act on the model derived in the previous
section shall be addressed.

3.1.3.1 Axial Thrust moments and Drag torque moment

It is known that, as the blades of the propellers rotate in the air, they ”push” the air into
a specific direction, in this case downwards, thus producing the thrust/lift force, however
not without being affected by the reaction of the air flow onto them, what we call the
drag torque. Once the propellers’ axis of rotation is assumed perfectly aligned with the
Z-axis of the aircraft body-fixed frame, the drag torque does not affect the other axis. In
fact, this is the main mechanism to cause the quadrotor to yaw. Also, the difference of
the thrust force pushing on the same axis generates moment only around that axis, which
enables the tilt control. On the contrary to gyroscopic moments, these forces are always
present when angular speed of some of the rotors is nonzero. The forces are outputs of
Actuator dynamics, derived in the previous section.

The difference in thrust produced by the propellers in the same axis define a moment
around that axis. Also, for the Z-axis only, the drag thrust reaction δj caused by the air
friction with the blades applies, hence

MT
x = la (T4 − T2)

MT
y = la (T1 − T3)

MT
z = δ1 − δ2 + δ3 − δ4

(3.13)



24 CHAPTER 3. ANALYSIS, MODELLING AND CONTROLLER DESIGN

where la is the lever length of each of the quadrotor’s arms, assumed to be the same for
all of them.

As shown in the previous section, the linearized drag torque δj can be treated as
linearly dependent on Tj, when nf4(ω0) = mf3(ω0), in such a way that all thrusts can be
mapped into moments through a matrix









T
MT

x

MT
y

MT
z









=









1 1 1 1
0 −la 0 la
−la 0 la 0
c −c c −c

















T1
T2
T3
T4









(3.14)

where c = m
n
. The matrix is invertible, thus the axial moments are uniquely determinig

the applied thrusts by the propellers. This is an important relation, since it reflects
the fact that number of inputs is equal to number of controllable degrees of freedom.
Quad-rotor has 4 inputs, representing the motor voltages, and simultaneously only 4 of
the total 6 degrees of freedom can be independently controlled. I’ve chosen Ycontrol =
[

x y z ψ
]

as a final control goal.

3.1.3.2 Gyroscopic Moments from Rotors

The four rotors induce gyroscopic moments on the aircraft due to their angular veloc-
ity, ωj, being an additional mechanism which causes the quadrotor to yaw. Moreover,
their gyroscopic effect affects also, although relatively less intense, the other two axes.
Considering the spin direction of rotor j = 1, the gyroscopic torque resulting from the
interaction of the rotor with the rotating aircraft and acted on the generic rotor j = 1 . . . 4
is given, similarly to (3.2), by

Mj =
dLj

dt
+Ω× Lj = Ij · ω̇j +Ω×

(

Ij · ωj
)

(3.15)

where Ij is the gyroscopic inertia, namely that of the rotating part of the rotor. By
solving the cross-product it comes

Mj =





Ijx ω̇
j
x

Ijy ω̇
j
y

Ijz ω̇
j
z



+





p
q
r



×





Ijx ω
j
x

Ijy ω
j
y

Ijz ω
j
z



 =





Ijx ω̇
j
x + Ijz ω

j
z q − Ijy ω

j
y r

Ijy ω̇
j
y + Ijx ω

j
x r − Ijz ω

j
z p

Ijz ω̇
j
z + Ijy ω

j
y p− Ijx ω

j
x q



 (3.16)

However, the direction of ωj coincides with the Z-axis of the aircraft whereas all its
other components are zero, therefore equation 3.16 is simplified and the set of 3 algebraic
equations expressing the gyroscopic torques acted on a rotor j = 1 . . . 4 is

M j
x = Ij ωj q

M j
y = −Ij ωj p

M j
z = Ij ω̇j

(3.17)



3.1. DYNAMIC MODEL 25

Now for taking into consideration all rotors, all angular speeds need to be summed
up according to their respective sign (direction) and assuming that the gyroscopic mass
of each rotor is the same, Ir, we define

LR = Ir

4
∑

j=1

ωj = ω1 − ω2 + ω3 − ω4 (3.18)

Considering the reaction torques on the aircraft’s body, hence inverting the sign of
the set (3.17), the total rotor gyroscopic moment exerted on the aircraft’s body is

MR
x = −Ir ωR q = −LR q

MR
y = Ir ωR p = LR p

MR
z = −Irω̇R = −L̇R

(3.19)

3.1.3.3 Thrust/lift force

The thrust force is generated by the rotation of the propellers through the viscous air and
is used to maintain the aircraft in the air. This force is always aligned with the body-fixed
Z-axis, thus the components on the other axis are zero. Considering again each rotor
j = 1 . . . 4, according to [?] the thrust can be modelled, as acted on the aircraft, as

Tz = −
4

∑

j=1

Tj = −T (3.20)

The effects of the thrust generated by the rotors through their attached propellers is
directly calculated in the body-fixed frame.

~Fb T =
[

0 0 −T
]T

(3.21)

3.1.3.4 Earth’s Gravity force

The Earth’s gravitational field around the quadrotor causes its weight force to act upon it
on its mass center. This is modeled in the inertial (NED) frame again simply by Newton’s
2nd law as

Fn g =
[

0 0 mg
]T

(3.22)

where g = 9, 81m/s2 is the absolute value of Earth’s gravity acceleration. However
this acting force needs to be considered in the body-fixed frame, therefore the need for
a rotation matrix appears. This is the first time when I need to consider a rotation
representation in our model. Let’s write coordinate transform in matrix-form for this
moment

Fb g = Rbn Fn g (3.23)



26 CHAPTER 3. ANALYSIS, MODELLING AND CONTROLLER DESIGN

3.1.3.5 Aerodynamic Forces and Moments

By term Aerodynamic Forces and Moments I mean the forces caused by air friction
of the quad-rotor body due to its translational/rotational movements. The separate
actuator model was designed previously. However, it works in a static air environment,
meaning that the overall model is valid only when assuming that the air flow through
the propellers is much faster than translational speed of the quadrotor body. Adding the
body movements into actuator dynamics will result in much more complicated model and
thus is disregarded.

It was shown in further controler (and orientation observer) design that the even
though the aerodynamic forces exerted upon the quadrotor are very small due low trans-
lational speeds, they cannot be completely disregarded. For simplification, we will con-
sider the air friction as a simple, first order, linear damping caused by negative feedback
from translational speed in body frame, u, v, w to acting force

Fb a = −diag(tad)V (3.24)

and similarly, from p, q, r to acting moment

Mb a = −diag(rad)Ω (3.25)

3.1.4 Complete Non-Linear Model

Having already assessed the forces and moments acting on the quadrotor, its non-linear
model is obtained by applying (3.19) and (3.13) into the left side of (3.3). The model
assumes Ix

.
= Iy, so that the p q product of Mz in (3.3) is not considered. From (3.7), the

gyroscopic torque MR
z is already contained in the actuator output qj. After rearranging

the terms and isolating the angular accelerations, the moment equations are obtained































ṗ =
la
Ix

(T4 − T2) +
gx(ω,Ω)

Ix
− radp

Ix
p

q̇ =
la
Iy

(T1 − T3) +
gy(ω,Ω)

Iy
− radq

Iy
q

ṙ =
1

Iz
(q1 − q2 + q3 − q4)−

radr
Iz

r

(3.26)

where gx(ω,Ω) and gy(ω,Ω) are gyroscopic torques defined as

gx(ω,Ω) = (Iy − Iz) q r − LR q
gy(ω,Ω) = − (Ix − Iz) r p+ LR p

(3.27)

whereas by inserting the set of equations (??) into the left side of (3.5) and isolating the



3.2. CONTROLLER DESIGN 27

translational accelerations, the force equations arise







































u̇ = −q w + v r +
Fb gx

mt

− tadu
mt

u

v̇ = −r u+ w p+
Fb gy

mt

− tadv
mt

v

ẇ = −p v + q u− T

mT

+
Fb gz

mt

− tadw
mt

w

(3.28)

Similar quadrotor model can be found in [2].

3.1.4.1 Computer numerical simulation of derived model

The overall model has been implemented in Simulink as a single block with four inputs
u1, u2, u3, u4 and several outputs from which of the mains are position, orientation and
motor angular speed vector ω. Up to now, we tried to avoid the need for particular
orientation representation in the above equations. This is due to a non-straightforward
and non-intuitive relation of angular rates to orientation describing variables, which, in
general, could not be obtained by simple integration of angular rates, on the contrary to
linear rates. This non-linear relation makes the optimal problem in some meaning of a
rigid-body reorientation very challengning and has been recalled several times, especially
in aerospace field.

For our approach, I created first a rigid-body dynamics block that takes the acting
forces and moments in body frame, uses the body mass mt and body moment of inertia
I as parameter and performs all the necessary calculations, including body-related gyro-
scopic effects. This makes the resulting diagram more straightforward and first member
of (3.27) and first two members of (3.28) doesn’t have to be considered, as they’re part
of rigid-body dynamics, computed by the block itself. The block has its internal state of
position, rates and orientation, which are aswell its outputs. The block uses quaternion
as orientation representation. Reasoning for this choice will be explained later. Overall
model diagram is presented in the appendix.

3.2 Controller design

3.2.1 Control Goals

There are in total 10 outputs3, Y =
[

φ θ ψ x y z ω1 ω2 ω3 ω4

]

, that can
be naturally measured or estimated from physical sensor readings, and 4 inputs, U =
[

u1 u2 u3 u4
]

, representing the voltage (PWM duty cycle) level for each of the
actuators.

The goal is to reach a target spatial orientation and/or position. As the model has
less inputs than outputs, not all of the latter can be controlled independently, i.e. the

3Disconsidering their time derivatives and integrals.



28 CHAPTER 3. ANALYSIS, MODELLING AND CONTROLLER DESIGN

Figure 3.3: Separate rigid body dynamics

Figure 3.4: basic model inputs/outputs

device is not holonomic. In gravity-free environment, the non-holonomic idea can be
brought to all parts: the device can only move, or generate thrust T along Z-axis (2-wheel
robot analogy). In a NED frame, the generated thrust vector Tn can be separated into
horizontal and vertical components as Tn =

[

Tn h Tn v

]

. The horizontal one Tn h is a
vector that accelerates the aircraft in horizontal (North-East) plane whereas the vertical,
Tn v, is a scalar that must be equal to Earth’s gravity magnitude in order to maintain
the altitude. The simplified 2D-diagram is shown in fig.3.15. However, the direction of
Tn h depends directly on 2 degrees of freedom describing the attitude, namely the Euler
angles φ and θ, meaning that theese outputs can not be controlled independently. Since
the position has bigger priority than the orientation itself, the target control vector is
reduced to Ycontrol =

[

x y z ψ
]

.

Respecting the relationship between the rotation and translation subsystem, the con-
trol structure proposed for the overall system is shown in fig. 3.21.



3.2. CONTROLLER DESIGN 29

Figure 3.5: Proposed control structure.

3.2.2 Orientation Representation

There are several methods for describing spatial orientation [15] The most common one
is by the Euler angles φ, θ and ψ, directly used, in aeronautics, as proportional error
inputs to the controllers. However, φ, θ and ψ represent consecutive rotations applied to
the rigid body, thus the controllers should correctly act in the same order, stabilising the
axes respectively. Nevertheless, in an orientational state far from the operating point,
during simultaneous stabilization of all the axes based on Euler angles error, significant
errors arise due to non-linearities and even singularities as the angle change does not
correspond to angular velocity.

Each spatial rotation can be expressed using the eigenaxis vector and rotation an-
gle [5] [16]. Rotation quaternions are effectively used for such purpose. Nevertheless,
they add a certain redundancy (4 scalar numbers to describe 3 degrees of freedom) in
opposite to Euler angles. Rotation quaternions have unitary norm and their eigenaxis
r is a unit vector also. A special non-commutative multiplication operation is defined
for the quaternions, denoted with the ⊗ operator [5]. Multiplying two or more rotation
quaternions produces another rotation quaternion that represents the two consecutive
rotations performed on the coordinate system. The noncommutativity of the ⊗ operator
reflects the fact that a rigid body is in different orientation state after two consecutive
rotations, depending on their order. A conjugate quaternion Q−1 represents a backward
rotation. Relations between the quaternions, angle α of rotation and eigenaxis vector r



30 CHAPTER 3. ANALYSIS, MODELLING AND CONTROLLER DESIGN

are defined as

Q =









q0
q1
q2
q3









=

[

cos(α
2
)

sin(α
2
)r

]

(3.29)

lnQ =
rα

2
(3.30)

3.2.3 Desired Orientation and Thrust

Figure 3.6: Target orientation and thrust block placement in the global
structure.

Regarding the control structure proposed in fig. 3.21 and obeying the prioritary dy-
namics of the rotation over the translation subsystem, first the target spatial acceleration
and yaw command need to be transformed into a target absolute orientation Q̂ and a
thrust T̂ in the body frame. Note that this block represents a simple mapping function
with no dynamics designed so that the body acceleration in target orientation and thrus
state follows target acceleration when disconsidering the translation aerodynamic damp-
ing forces. Considering g as the magnitude of Earth’s gravity acceleration, for the tilt we

first introduce a vector â =
[

âx ây g + âz
]T

representing target linear acceleration in
NED frame, and then compute the angle of tilt orientation α as that between â and the
unitary vector pointing up

α = arccos
â

|â|
[

0 0 1
]

(3.31)



3.2. CONTROLLER DESIGN 31

The resulting tilt quaternion Qt is then formed as a rotation with eigenaxis composed
of vector cross product

Qt =

[

cos(α
2
)

sin(α
2
) â
|â| ×

[

0 0 1
]T

]

(3.32)

The yaw rotation is simply defined around the Down-axis in the NED frame

Qy =
[

cos( ψ̂
2
) 0 0 sin( ψ̂

2
)
]T

(3.33)

Finally, Q̂ can be composed by multiplying these two quaternions. Note that this
step can be executed in two ways. In (3.34a) first the tilt is applied, thus preserving the
absolute accelerations in the NED frame, whereas in (3.34b) the heading is applied first,
so that the acceleration commands become relative to heading and hence the aircraft
behaves like a manned helicopter as perceived by the translation controller.

Q̂ = Qy ⊗Qt (3.34a)

Q̂′ = Qt ⊗Qy (3.34b)

Using the total quadrotor massmt, the desired sum of the propellers thrust magnitude
in the body frame is simply defined as

T̂ = mt|â| (3.35)

Another way to compute T̂ in order to maintain the target thrust in the NED frame
Z-axis during the entire correction maneuver could be done by dynamically mapping the
desired vertical thrust into the body frame

T̂ ′ = mt

g + âz
cos(β)

(3.36)

where β is the angle between
[

0 0 −1
]n T

and the unitary vector pointing down in
body-frame.

3.2.4 Control of Orientation using Eigenaxis

Altough Billimoria and Wie in [9] showed that the eigenaxis correction maneuver is not
time-optimal in general, the maneuver still represents the ”shortest” path from one orien-
tation state to another, in natural sense. Each reorientation maneuver can be performed
along a single axis and specified angle. This axis is called Euler axis, or Eigen axis, as
in view of rotation matrices. Billimoria and Wie showed that target orientation state
can be reached faster by deflecting the rigid body from natural eigenaxis rotation first,
such that other actuators may help accelerating the rotation and then, when reaching
the goal state, revert the deflection back, all using the bang-bang control. Nevertheless,



32 CHAPTER 3. ANALYSIS, MODELLING AND CONTROLLER DESIGN

this technique requires constant saturation of all the actuators, which claims 300% the
energy, with gain less than 10% of time, in comparison with simple eigenaxis rotation,
which makes it unsuitable for quadrotor approach. Eigenaxis rotation also enables much
agressive maneuvers, like looping, as there are no singularities and no implicit need for a
linearisation as all the orientation states are equal.

Assuming we have the orientation estimation subsystem onboard the flying device,
which outputs the actual absolute orientation state based on the sensor readings and our
target orientation state, error correction maneuver can be achieved by driving the body
angular rates proportionally to eigenaxis of error correction maneuver.

Proof: Let’s define the error quaternion Qe such as

Qe = Q−1 ⊗ Q̂ (3.37)

where Q is the current orientation state quaternion and Q̂ is our target state one. Qe is
left-invariant with respect to Q and stands for a rotation needed to be performed in order
to reach state Q̂ from state Q, namely Q̂ = Q⊗Qe. Both Qe and −Qe lead to the target
state, since Q̂ represents the same state as −Q̂. Therefore, aiming at minimizing the
rotation angle, we select Qe = minα(Qe,−Qe). Based on the knowledge of rigid-body
angular velocities, an orientation quaternion propagation through time is defined as

Q̇ = W (Ω)Q =
1

2









0 −p −q −r
p 0 −r q
q r 0 −p
r −q p 0









Q (3.38)

The state Q must be renormalized in order to preserve the unitary norm. Time
propagation of Q can be also rewritten as multiplication by another quaternion formed

out of the angular velocities, QΩ =
[

0 p q r
]T
, such as the time derivation of the

elements corresponds to infintesimal small rotations of Q by QΩ

Q̇ =
1

2
Q⊗

[

0 p q r
]T

(3.39)

Assuming Ω = c Ω̃ where Ω̃ is unitary and constant over the time interval [0, T ] and
c is time function denoting actual magnitude of rotation (eigenaxis angular velocity), the
integral of (3.38) starting from the quaternion Q and preserving |Q̃| = 1 during maneuver
yields

Q̂ = deW (Ω̃)IQ, I =

∫ T

0

c(τ)dτ (3.40)

where d is a scalar used to preserve the unitary norm. Such operation can therefore be
viewed as a multiplication of Q by a constant matrix. Moreover, using the quaternion
algebra, the matrix multiplication can be substituted by a quaternion multiplication,
Q̂ = Q ⊗Qr. Similarly, when integrating (3.39), the operation is again equivalent to a
multiplication by the same unitary quaternion Qr

Q̂ = Q⊗ d
[

1 pI qI rI
]T

= Q⊗Qr, I =

∫ T

0

c(τ)dτ (3.41)



3.2. CONTROLLER DESIGN 33

thus, let’s define maneuver quaternion Qr, representing the operation needed to reach
state Q̂ from Q, as

Qr =
[

a bΩ̃I
]T
, I ≤ 2π (3.42)

where a = cos(α
2
) and b is a scalar used to preserve the unitary norm, |Qr| = 1. Since

the total angle of rotation must be α = I, substituting maneuver quaternion Qr by error
quaternion Qe in (3.37) and then comparing with (3.29) and (3.30) leads to

rα = 2 ln(Q−1 ⊗ Q̂) = Ω̃

∫ T

0

c(τ)dτ (3.43)

meaning that the error rotation correction can be achieved by performing the maneuver
which drives the angular velocity Ω proportionally to eigenaxis r, namely Ω(t) = c(t) r
with the time constraint I = α. 2

Such constraint is satisfied by each controller-plant system that uses rα as error input
and shows equal dynamic responses for all three axes disregarding the gyrosopic effects,
while fulfilling asymptotic tracking. The proof for P-control is shown in [8].

Figure 3.7: Relation between eigenaxis and body angular velocities.

Similar proof could be done for eigenaxis of the rotating matrix R. Moreover, the rα
vector can be used as a feedback in existing decoupled axial controllers instead of φ, θ
and ψ with significantly less errors, when moving far from zero orientation state, because
the poportional term is integral of the derivative term (angular velocity). The eigenaxis
rotation represents the shortest possible correction maneuver (quaternion interpolation)
[6]. The only restriction is the constant Ω̃ during the correction maneuver, requiring
equaly adjusted dynamics for all axes. Nevertheless, if the feedback controller recalculates
the eigenaxis error at each time step, the errors are still much more acceptable during
large maneuvers in comparison with Euler angles.

3.2.5 Rotation Controller Synthesis

3.2.5.1 Axial Decoupling

Using the superposition principle on the acting thrust and drag torque on each axis in the
linearized actuator model from (3.8) and (3.9), the separate decoupled axial dynamics is



34 CHAPTER 3. ANALYSIS, MODELLING AND CONTROLLER DESIGN

Figure 3.8: Rotation controller placement in the global structure.

shown in fig. 3.9.

Figure 3.9: Single axis dynamic model.

During the correction maneuver, assuming the equal step responses for all axes from

(3.43), the eigenaxis error
[

Ex Ey Ez
]T

= 2 ln(Q⊗ Q̂−1) can be treated as a simple
integral of the angular velocity. The diagram shown in fig. 3.9 thus is reduced to the one
in fig. 3.10.



3.2. CONTROLLER DESIGN 35

Figure 3.10: Single axis dynamic model during correction maneuver.

Ëx =
la
Ix

(T4 − T2) +
radp
Ix

Ėx +
gx(ω,Ω)

Ix

Ëy =
la
Iy

(T1 − T3) +
radq
Iy

Ėy +
gy(ω,Ω)

Iy

Ëz =
1

Iz
(q1 − q2 + q3 − q4) +

radr
Iz

Ėz

(3.44)

3.2.5.2 LQ-optimal controller with non-linear overshoot compensator

Since all the system state variables are available and simultaneously, the precise model
is known, the possibility of the LQ control puts up. The hierarchical controller design
will not be performed, since the LQ control offers an optimal solution in view of the
energy efficiency, simplifies the tuning process and thus enables setting of equal dynamic
responses for all three inertial axes. Moreover, on the contrary to similar projects, a simple
PID controller failed to stabilise the system, since it does not consider the essential motor
angular velocity feedback, which shows to be required due to faster actuator transient
responses.

Hereby the conventional LQ-optimal control design will be presented for decoupled ax-
ial dynamics augmented with additional integrator to ensure asymptotic tracking. A spe-
cial non-linear extension will be introduced to compensate the overshoot. Controller will
be then equipped with open-loop control to compensate the gyroscopic torques gx(ω,Ω)
and gy(ω,Ω) and open-loop thrust control. Linearised decoupled error dynamics on the



36 CHAPTER 3. ANALYSIS, MODELLING AND CONTROLLER DESIGN

X and Y axes can be written in matrix-form, composed of (3.8), (3.9) and (3.44) as

ẋj =





− l+m
Ir

0 0
nla
Ij

radj
Ij

0

0 1 0



xj +





k
Ir

0
0



 (ũj)

Ej =
[

0 0 1
]

xj

(3.45)

where j = {x, y} is the axis index, ũx = (u4 − u2) and ũy = (u1 − u3). Similarly, for the
vertical axis

ẋz =





− l+m
Ir

0 0

− l
Iz

radr
Iz

0

0 1 0



xz +





k
Ir
k
Iz

0



 (ũz)

Ez =
[

0 0 1
]

xz

(3.46)

where ũz = (u1−u2+u3−u4). The LQ-optimal design control with augmented integrator
is defined with state feedback vector

ũL j = −Kj

[

ω̃j Ωj Ej
∫ t

0
Ej(τ)dτ

]T
(3.47)

where j = {x, y, z} is the axis index. Similarly like the axis voltage ũj , using the super-
position principle again, the ω′ rotor angular velocity vector can be mapped to the axial
omega ω̃ through a matrix





ω̃x
ω̃y
ω̃z



 =





0 1 0 −1
−1 0 1 0
1 −1 1 −1



ω′ (3.48)

which also satisfies the linearized difference actuator model around the operating
point, as only the differences reamains in ω̃. The LQ-optimal controller was tuned by
careful adjusting of penalisation matrices Q and R. The tuning was an iterative process,
which included extensive simulation experiments and real system tests. It was shown that
tradeoff between the desired asymptotic tracking behavior versus accepteble overshoot is
not satisfactory. Generally speaking, control of four integrators connected in serial can
be accompanied with an unavoidable overshoot. I-control in our case is not explicitly
necessary, however, required to compensate the steady-state errors, like unequal charac-
teristics of all the actuators or displacement of center of gravity from the inertial axes.
In our case, the overshoot is caused by the topmost integrator, intended for I-control,
which tends to increase its value even when the underlying PD-control could stabilise the
system by itself. After the control error Ej reaches zero, the accumulated state inside
the integrator then creates the overshoot. Since the topmost integrator is part of the
controller, and in our case, pure software implemented, a possibility of some augmented
non-linear compensation arises.

Several such techniques have been developped in the literature. As for an example
we can name reset-control [20] which is, in general, a simple algorithm that ”resets”
the integrator state as the control error value crosses zero. Nevertheless, this technique
might cause here unwanted effects, since the state of the integrator might be ”correct” at



3.2. CONTROLLER DESIGN 37

zero cross of Ej, compensating some steady-state errors. It has been observed that the
fast dynamics can be handled effectively by underlying PD control, whereas the steady
state error might deveolp more likely when the system is in steady state. Such train of
thoughts leads to create an overshoot compensator that would ”decrease” the input to
the integrator when the control error is changing rapidly, i.e. when Ωj is far from zero.
The proposed algorithm is shown in fig. 3.11.

Figure 3.11: Single axis dynamics with asymptotic tracking and overshoot
compensator.

where Lj is a hand-tuned constant for j-th axis. The (3.47) therefore changes to

ũ′L j = −Kj

[

ω̃j Ωj Ej
∫ t

0

Ej(τ)

1+LjΩj(τ)
2 dτ

]T

(3.49)

This is not quite a standard procedure and should be examined using non-linear
dynamic system theory to exclude the cause of potential system instability. However,
both simulations and real system experiments have proven that it reduces overshoot to
less than 30% while preserving suitable asymptotic tracking behavior.

3.2.5.3 Non-linear gyroscopic compensation and thrust control

The gyroscopic torque compensator must be an open-loop controller, since actual gyro-
scopic torques acting on the body frame cannot be distinguished from the torques used to
accelerate the angular velocity. Since gx(ω,Ω) and gy(ω,Ω) can be analyticaly computed
from sensor readings ω,Ω and the steady-state gain of the linearized actuator is known,
we can define

ũG x = −m+ l

n k la
(P gx(ω,Ω) +Dġx(ω,Ω))

ũG y = −m+ l

n k la
(P gy(ω,Ω) +Dġy(ω,Ω))

(3.50)



38 CHAPTER 3. ANALYSIS, MODELLING AND CONTROLLER DESIGN

where P and D are hand-tuned constants for the open-loop control. Similarly, for the
total thrust control, since there is not a straightfoward way to distinguish generated
thrust force from Earth’s gravity vector, open-loop control is proposed as a linearized DC
gain of the actuator, such that

ũT x =
ω0 l + f4(ω0)

4 k f3(ω0)
T̂ (3.51)

The operating point, u0 =
l ω0+f4(ω0)

k
, was already considered and is a part of ũT , since

ω0 is defined as the rotor speed when the sum of all thrusts equals the aicraft’s weight
mt g.

3.2.5.4 Overall control law and actuator linearsation extensions

Using the superposition principle, the overall, linear control law is then defined









u′1
u′2
u′3
u′4









=









1 0 −1/2 1/4
1 1/2 0 −1/4
1 0 1/2 1/4
1 −1/2 0 −1/4

















ũ′T

ũ′L x + ũG x

ũ′L y + ũG y

ũ′L z









(3.52)

To obtain the complete and yet functioning linear controller, we need to furthermore
assign the computed voltage uj = u′j, open-loop thrust voltage ũ′T = ũT and motor
angular velocity, ω′

j = ωj, in (3.48). These variables have been purposely separated for a
special, non-linear mapping technique.

To exted the operational range of the designed controller, I will attempt to create
a non-linear input and output mapping functions, which will be used to linearize the
non linear actuator on-the-fly. When designing such non-linear extension for an allready-
designed controller, one must consider at first, that it should have unitary derivation at
the operating point of the controller. Since we have previously stated in (3.11), (3.12)
that the non-linearity of the steady state gain from uj to tj and from uj to δj can be
approximated by a parabolic function with zero offset, this is the only and sufficient

condition. Having d
√
u′

du′
= 1

2
√
u′
, let’s define a constant ki which satisfies the non-linearity

unitary derivation ki
2
√
u′

= 1 where its output equals to the actuator operating point

ki
√
u′ = u0. The input non-linear mapping function then yields

uj = ki

√

u′j (3.53)

where ki =
√
2u0 obtained as a solution of the two consraints, uj is the actual input to

non-linear model and u′j is the action value computed by the controller. The secondary
effect we need to correct is the evident shift of DC gain, since u0 6= ki

√
u0. Therefore ũ′T

from (3.51) needs to be scaled. To preserve the unitary thrust gain at operating point u0
we define constant kd such that u0 = ki

√
kdu0. ũT is then mapped to ũ′T simply as

ũ′T = kd ũT (3.54)

where kd =
u0
k2i

= 1
2
.



3.2. CONTROLLER DESIGN 39

The ωj output is one of the state variables used as feedback of the linearised controller.
The controller ”assumes” that this variable is proportional to angular acceleration. Nev-
ertheless, accepting the assumption that generated thrust tj is related to angular velocity
ωj non-linearly, the aim for output linearisation arises. Once again, the non-linear map-
ping function should have unitary derivation at the operating point of the controller.
Since we’re assuming that simply f4(ωj)

.
= Hω2

j , this is the only and sufficient condition.

Having dω2

dω
= 2ω, let’s define a constant li such that 2liω0 = 1. The output non-linear

mapping function then yields

ω′
j = li

√
ωj (3.55)

where li =
1

2ω0

, ωj is the actual output of the non-linear model and ω′
j is the state

variable used by the controller.
Finaly, the non linear extended controller is composed of (3.48), (3.49), (3.50), (3.51),

(3.52), (3.53), (3.54) and (3.55). One must consider that input and output mapping non-
linearities, gyroscopic compensator and overshoot compensator are not the only non-

linear extensions inside the controller. The eigenaxis algorithm,
[

Ex Ey Ez
]T

=

2 ln(Q⊗ Q̂−1), is non-linear from its nature. In fact, I do not have mathematical support
for validation of most of the extensions inside the system. The non-linear controller was
designed to control a non-linear system, in order to operate in entire rotational space and
does not have to rely on any operating points. The controller was extensively tested in
simulations and can fly the real system on a very good level.

3.2.6 Translation controller design

Figure 3.12: Translation controller placement in the global structure.

The translation controller represents the topmost layer of the introduced control struc-
ture. In the generalised point of view, actual and target position are its inputs and the



40 CHAPTER 3. ANALYSIS, MODELLING AND CONTROLLER DESIGN

target acceleration vector, â, is its output. Both input and output are expressed in NED
coordinates. The underlying target orientation and thrust computation blocks ensures
the universal mapping of the â into the target orientation (when disregarding the transla-
tion aerodynamic damping). This non-linear conversion is valid for all â vector directions
(e.g. quadrotor upside down), does not work with any operating points, complies with
the goal of synthesizing a globally applicable controller and therefore can be even used to
perform large scale maneuvers. However, thr decoupling cannot be treated similarly like
in the rotation controller, since the axial dynamic response here depends on the actual
orientation state. Some NED maneuvers involves the rotating (left/right), some does not
(up/down) and mainly, all of them depends on initial orientation and body velocity. An
exact modelling could be done by linearising the underlying translational dynamic model
around the horizontal hovering state, from â to the position. Such linearisation might
result in pretty complicated model since the body ”rotating” must be incorporated, when
considering lateral motion. Nevertheless, simulations have shown that the control of po-
sition can be generally synthesized using a decoupled PD+ Ḋ or PID+ Ḋ approach, for
each axis of the NED coordinate system.

One must remember that an explicit knowledge of NED position is difficult to obtain.
Moreover, the complete position observer has not been designed. Nevertheless, since
the onboard accelerometer reads the body acceleration, which can be used directly for
translational motion damping, the idea was to split the translation controllerinto position
controller and translation damper. Translation damper will perform the D + Ḋ control,
based on the accelerometer readings whereas the position controller the P or PI control
based on some kind of absolute spatial position readings, like GPS, barrometer, sonar
etc. This structure will be designed hierarchicaly.

Figure 3.13: Proposed structure of the translation controller.

3.2.6.1 Translation damper design

Since the â vector is expressed in the NED frame, acceleration readings to fed back needs
to be also transferred into the NED frame coordinates. However, the rigid body dynamics
shown in fig. 3.3 performs the transfer from body to NED coordinaties in velocity stage.
In between the body translational acceleration, V̇ =

[

u̇ v̇ ẇ
]

and time derivation of

the NED velocity vector V̇e is a time-varying coordinate transform matrix. The NED
acceleration cannot be therefore obtained by simply rotating the V̇ vector into NED



3.2. CONTROLLER DESIGN 41

frame. Such conversion would require integrating the body acceleration to obtain body
velocity V first, then perform the coordinate transform and then derivate back to obtain
the NED acceleration V̇e. One can reflect the physical natural sense in this statement.
If the quadrotor body is moving with constant velocity and then a rotation occurs, the
acceleration in NED frame will be generated, even without the change of acceleration
vector in body frame.

The best results were measured when using the V̇e vector for direct damping in NED
frame. However, since the conversion would require additional controller states, as for
the integrators of the NED acceleration, it may result in potential causes of instability.
To avoid this problem, I propose the translation damping to be performed in body frame
coordinates as for an aleternative solution. The D+Ḋ control approach requires the inte-
gration of V̇ vector, since it allready represents a second time derivation of the position.
To avoid the potential drift when integrating the accelerometer readings, and similarly
considering the influence of aerodynamic damping of the translational motion, a diffrent
approach is suggested. The simulations have shown that D + Ḋ control can be replaced
with a first-order lowpass filter, where the tuned parameters would be the time constant
and gain, instead of separate gains for D and Ḋ constraints. Let’s then define the boody
translational damper, as

L { aB
d }x =

Kdlat
s τlat + 1

L {V̇}x

L { aB
d }y =

Kdlat
s τlat + 1

L {V̇}y

L { aB
d }z =

Kdlong
s τlong + 1

L {V̇}z

(3.56)

where Kdlat, Kdlong, τlat and τlong are the damper paremeters for lateral and lon-
gitudial motions. Direct usage of acc reading for damping is impossible due to the
Accelerometer Paradox. However, the the Accelerometer Paradox also results in natural
lowpass filtering of the acc vector direction caused by the aerodynamic forces and there-
fore could possibly aid the damping aswell, which is a subject of further examination.
The body acceleration, V̇ vector is obtained from (3.71) and depends on correct orienta-
tion estimation Q. Note that the aBd n vector needs to be transfered again into the NED
frame.

The current approach might seem unecessarily complicated: passing the computed
body-frame damping through a coordinate transform, then converting it into a target
quaternion and finally convert it back into a body-frame eigenaxis errors. One may
object that the since the damping has yet been computed in the body frame, it could
be used directly inside the feedback of rotation controller, the lateral part as the angle
deviations and the longitudial as thrust damping, as the rotation controller yet works
directly in the body frame. Such alternative approach was extensively examined and was
found to be unsuitable due to the following reasons.

• Since both translation damper and position controller outputs are joined into a
single direction vector â, the tilt limitations can be easily achieved by applying
saturation limit to this vector. For example, a simple condition can be stated to



42 CHAPTER 3. ANALYSIS, MODELLING AND CONTROLLER DESIGN

prevent the quadrotor to cross the tilt limit of 90 degrees (upside down), or limit
the overall tilt deflection to certain suitable value. Such limitations couldnot be
achieved when feeding back the damping directly into orientation controller output.

• The separate damping from the vertical acceleration in body frame to the thrust T̂
performs much worse than the current approach. Passing the computed damping
as a part of the â vector to the target orientation and thrust computation blocks
helps the damping response not only by modyfiing the thrust, but also by rotating
the entire quadrotor body in parallel, or ”against” the arised acceleration. The two
acpproaches were compared in simulations.

• The additional element inside the rotation controller could disturb the eigenaxis
algorithm by violating the need for equal axial dynamic response and could even
lead to system destabilisation.

3.2.6.2 Position controller design

The topmost position controller can then be accomplished using the PI control strategy
with an input of the absolute spatial sensors with low update rates (e.g. GPS) and the
target position value obtained from the mission control unit.

N
p âx = Kplat(X̂x −Xx) +Kilat

∫ T

0

X̂x(τ)−Xx(τ)dτ

N
p ây = Kplat(X̂y −Xy) +Kilat

∫ T

0

X̂y(τ)−Xy(τ)dτ

N
p âz = Kplong(X̂z −Xz) +Kilong

∫ T

0

X̂z(τ)−Xz(τ)dτ

(3.57)

where Kplat, Kplong, Kilat and Kilong are the controller paremeters for lateral and
longitudial motions. To prevent the possible overshoot caused by the I-control, a com-
pensator can be engaged, similar like the one shown in fig. 3.11.

3.2.6.3 Final translation control law

The overal law is obtained by combinig the results of translation damper and position
controller, according to the fig. 3.13. The output of the translation damper must be
coordinate transferred from body to NED.

â = N
pâ+Q−1 B

dâQ (3.58)

Note that all the constants involved inside this controller were obtained from either
linearizing the underlying translational motion model and then using the classical con-
troller synthesis method in frequency and time domain, or experimentally adjusted by an
iterative process, involving the simulation and laboratory experiments.



3.3. OBSERVER DESIGN 43

3.3 Observer Design

3.3.1 Orientation observer design

Figure 3.14: Orientation observer placement in the global structure.

The problem of determining the actual orientation state, often using inertial sensors
only, has been again recalled many times in aerospace field [10], [11], [19]. However,
quadrotor-specific approach has not been found in the available literature. The solid-state
unit providing the orientation state is often abbreviated the Attitude Heading Reference
System (AHRS). The approach presented here will be highly experimental. The principles
will be more explained using a natural language rather than mathematical derivations.
The algorithm proved to be functional and suitable for the quadrotor control usage.
Nevertheless, the mathematical validation of the approach remains open.

Latest progress in MEMS technology (Micro-Electro-Mechanical Systems) enabled to
manufacture single chip sensors that can be used to avoid the need of high precission me-
chanical gyroscopes. A common type of modern AHRS unit, suitable and affordable for
this project, is fully electronical and uses inertial and magnetic sensors to determine the
absolute spatial rotation. Such unit can be constructed to work stand-alone as a black
box with no evident inputs. It determines the absolute rotation using accelerometers,
magnetometers and gyrometers. The key difference between an IMU (inertial measure-
ment unit) and an AHRS is the addition of an on-board processing system in an AHRS
which provides solved attitude and heading solutions versus an IMU which just delivers
sensor data to an additional device that solves the attitude solution. AHRS differ from
traditional inertial navigation systems by attempting to estimate only attitude (i.e. roll,
pitch, yaw a.k.a heading) states, rather than attitude, position and velocity as is the case
with an INS.

The orientation state could be theoretically determined only from the accelerometer
and magnetometer, because of the readings are two linearly independent vectors in NED
frame, which is enough to uniquely determine the absolute orientation. Similarily or by



44 CHAPTER 3. ANALYSIS, MODELLING AND CONTROLLER DESIGN

Table 3.1: Systematic errors of the inertial sensors

sensor used to measure systematic error
accelerometer earth’s accelera-

tion - tilt
parasitic acceler-
ation and vibra-
tions

magnetometer earth’s magnetic
field - heading

parasitic mag-
netic field

gyro angular rates drift error

integrating the gyro readings. Nevertheless, all the sensors have some unavoidable sys-
tematic errors. For a reasonable rotation determination, we need to use the measurements
from all of them. A form of non-linear estimation such as a Kalman filter is typically used
to compute the solution from these multiple sources. The method is often recalled fusion
algorithm. In the language of control engineering, the correct name is rather orientation
estimator or orientation observer - an algorithm, that works with model of actual system
and tries to adjust its state according to the sensor measurements that are somehow
related to the state of the real system.

3.3.1.1 The Accelerometer Paradox

As shown in table 3.1, accelerometer is used to measure Earth’s acceleration vector. How-
ever, accelerometer also reads the translational acceleration in body frame, acc = V̇− g
where V is the velocity vector in body frame. Since the correction of orientation es-
timation relies only on a two, linearly independent spatial vectors acc and mag, the
superposition of linear acceleration V̇ to acc will result in estimation error, if not cor-
rected. Most of the universal, yet modern AHRS algorithms often does not incorporate
a model related to translational movements of the unit carrier. This phenomena is often
simply solved by applying less weight on accelerometer estimation correction stage, re-
quiring more precise gyro sensors to avoid the estimation drift. In higher level aerospace
field, the observer often contains a complete model, including the rigid body motion and
is generally able to estimate the translational movements and can therefore distinguish
between the two componets of accelerometer readings.

During late development of this project, an orientation estimation error caused by
translational movements of the quadrotor becomes evident and a call for joining the ori-
entation and position observer equipped with the motion model arises. Nevertheless, a
special phenomena, called the Accelerometer Paradox has been encountered. For expla-
nation, a simplified motion model of the quadrotor in a flat surface with three degree of
freedom is shown in 3.15.

The accelerometer reads the difference of acceleration from a free fall. One must
consider that the NED coordinate system is not an inertial system, since there is the
Earth’s acceleration present. The inertial coordinate system on Earth is attached to a



3.3. OBSERVER DESIGN 45

Fg

Fs

T

Th

Tv

Ft

Figure 3.15: The 3DOF 2D simplification of a basic quadrotor model.

body free falling towards the centre of the Earth. Accelerometer placed on the desk
will read the acceleration vector pointing up, as the table is generating a force that
inhibits the accelerometer to fall. Such force can be viewed to as similar to the one
that would accelerate the carrier with accelerometer to the side. For more detailed
explanation, please refer to [21]. Thus, for the quadrotor case, the accelerometer reading
acc = −Fs−Fg

mt
= Th+Tv

mt
= T

mt
. Since accelerometer is attached to the quadrotor body

and thrust vector T is always aligned with the vertical axis, the accelerommeter will
read a nonzero value only in the Z-axis. Other two parts of the acc vector will be zero.
The similar result is obtained from (3.28) when subtracting the Earth’s acceleration
acc = V̇ − g and neglecting the gyroscopic and disregarding the aerodynamic forces.
However, the aerodynamics forces are actually the ones that makes the accelerometer
useful again in the orientation estimation. Aerodynamics forces reflects natural resistance
of translational movement by air friction of the body. After the time constant given as 1

tad
,

the resistance of air friction becomes as high that the accelerating stops and the velocity
becomes constant. After that time, we can expect the accelerometer to be measuring only
the gravity again acc = −Fgmt. Thus, to include the translational model into orientation
observer, a complete and accurate aerodynamics model would be needed. Due to non-
availability of some key values, such as wind speed and need for a complex modelling, an
alternative solution to correct the Accelerometer Paradox will be proposed.

3.3.1.2 Observer principle

The general discrete observer has two main stages: prediction and correction. Both of
them are modyfiing the internal state, that represents the current spatial orientation in
our case. Since the gyro readings correspond to time change of the orientation, they will



46 CHAPTER 3. ANALYSIS, MODELLING AND CONTROLLER DESIGN

most likely act in the prediction stage, whereas accerometer and magnetometer readings
are related to the state directly, they need to be used in correction stage. The general
diagram of the discrete-time orientation observer is shown in fig. 3.16.

Figure 3.16: General diagram of the orientaion observer.

The key question is the choice of spatial orientation representation for the state of
the observer. Commonly used Euler angles, φ, θ and ψ, are related highly non-linearly to
all the sensor readings. Moreover, the relation varies according to the actual orientation
state. Such approach thus needs on-the-fly linearisation in the correction stage, requires
time demanding computation of a Jacobian matrix at each time step and generally leads
to explicit need for the extended Kalman filter [13], [14]. An alternative method to this
standard, but computationally very demanding technique was described in [18].

3.3.1.3 Vectors as state of the observer

For the first part of the observer state S, let’s define estimated magnetic vector, Sm,
and acceleration vector, Sa. The prediction stage will therefore consist of time-varying
time propagation of theese three dimensional spatial vectors. The propagation can be
also viewed as an infinitesimaly small rotation by a rotational matrix formed out of the
angular velocities obtained from gyro sensors

S′
a = Sa +





0 −r q
r 0 −p
−q p 0



Sadt

S′
m = Sm +





0 −r q
r 0 −p
−q p 0



Smdt

(3.59)

where dt, using rectangular discretization, is the time interval elapsed since the last
prediction. The correction stage for the vector states is then a simple state injection with
weight Ka and Km defined as

Sa = Sa + (acc− S′
a)K

′
adt

Sm = Sm + (mag − S′
m)Kmdt

(3.60)



3.3. OBSERVER DESIGN 47

where acc and mag are unbiased accelerometer and magnetometer readings. The
observer now predicts both vectors using angular rates measured by gyro and corrects
the developping drift by actual accelerometer and magnetometer readings. Constants K ′

a

and Km represents the correction weight i.e. how much we ”trust” to the accelerometer
and magnetometer in relative to the gyro, and similarly it is related to cutoff frequency
of lowpass filter for the accelerometer and magnetometer.

Here I will present a special strategy on how to compensate the Accelerometer Para-
dox. It was stated above that aerodynamic forces after certain time constant causes the
aircraft to stop accelerating and furthermore accelerometer readings are not disturbed by
the translational acceleration. It is known that a change of either direction or magnitude
of the thrust generated by the propeller can be viewed to as a step applied to the aerody-
namics. After its time constant, 1

tad
, system will enter into steady state and accelerometer

can be used to aid the orientation estimation again. The main idea is to create a function,
fac(Ω, T̂ ), that estimates the actual change of the thrust vector. Output of this function
will be connected to a first order lowpass filter, with a time constant τac reflecting the
constant of the aerodynamics, 1

tad
. Accelerometer correction weight, Ka, will be then

adjusted dynamically, indirect proportionally to the output of this filter. Let’s define a
new state variable, Sp, representing the state of this filter. The Accelerometer Paradox
compensator can be then described as

Ṡp = (fac(Ω, T̂ )− Sp)
dt

τac

K ′
a =

Ka

1 +Kac Sp

(3.61)

where Kac is the gain of the compensator. The expression of fac(Ω, T̂ ) function is not
yet clearly stated currently being experimented with. A simplest possibility is to use a
squared magnitude of the Ω vector, fac(Ω, T̂ ) = |Ω|2, assuming that the thrust vector
changes when device is rotating. One can object that the thrust vector change can be
obtained analyticaly. However, such computation relies mainly on the correct orientation
estimation. Since this is a part of the orientation observer, an unwanted feedback can arise
and destabilise the system. A special care must be taken mainly when using the gyro
bias tracking together with the Accelerometer Paradox compensator. Generally, each
additional state in such highly nonlinear and coupled system, formed out of a model,
observer and controller might cause an instability. For that reason, it is intended to keep
the amount of necessary states at minimum.

3.3.1.4 Quaternion extraction

The controller requires orientation state in the form of a quaternion. Several techniques
were introduced in the literature on how to form a quaternion from accelerometer and
magnetometer readings. The most common metod involves solving inverse relation of
quaternion rotation for the vectors, a set of non-linear equations. This not very easy
to implement and moreover, reference magnetometer and accelerometer readings, are
required, which might not be invariant during entire flight period. Here I will present
a more analytical method, without the need of any reference measurements and easy to



48 CHAPTER 3. ANALYSIS, MODELLING AND CONTROLLER DESIGN

implement. Since both vectors are linearly independent, they are uniquely determining
the spatial orientation and a complete DCM matrix can be obtained simply by applying
vector operations for the states, as

R =
[

S̃a×Sm

|S̃a×Sm|
(S̃a×Sm)×S̃a

|(S̃a×Sm)×S̃a|
− S̃a

|S̃a|

]

(3.62)

Assuming S̃a = Sa, acceleration vector is used to determine the tilt (2 degrees of
freedom) and magnetic vector to determine heading (remaining single degree of freedom).
Nevertheless, the method has been critisized, since magnetometer can provide a valuable
information of tilt aswell, wich is not used here, in opposite of the metod desribed in [19].
To improve this problem and simultaneously avoid the need of reference magnetometer
and accelerometer measurements, a special algorithm, called the angle filter is proposed.
Basically, it is a single order lowpass filter with state of an angle between magnetic and
acceleration vector, which modifies the acceleration vector so that the angle in a plane
defined by Earth’s acceleration and magnetic vector tends to remain constant. Let’s define
a new state variable for our observer, Sa, representing the angle between acceleration and
magnetic vectors. Algorithm can be then defined as a set of differential equations

Ṡα = (−acos
(

Sa

|Sa|
• Sm

|Sm|

)

− Sα)
1

τα

S̃a =
Sm

|Sm| cos(Sα) +
(Sa × Sm)× Sm

|(Sa × Sm)× Sm| sin(Sα)
(3.63)

where S̃a is the ”angle filtered” acceleration vector and τα is the time constant for
the lowpass angle filter. When inserting S̃a from (3.63) into (3.62), the tilt is not deter-
mined only by accelerometer reading, but also depends on a change of angle between the
magnetic and acceleration readings. Sudden change of estimated acceleration vector di-
rection, Sa not accompanied by a sudden change of estimated magnetic vector direction,
Sm won’t invoke a sudden change of a orientation estimation in R. In this situation, the
orientation estimation will follow the change in Sa exponentially with time constant τα,
preserving the Sα angle in North-Down plane. Therefore, setting of τα should reflect the
expected time constant of the real magnetic inclination change. Note that the noise power
and bandwidth of the accelerometer is supposed to be much higher than noise power and
bandwidth of the magnetometer. The final task is then to convert the DCM matrix R
into the form of a rotation quaternion. This generally involves finding an eigenaxis of the
R matrix corresponding to eigenvalue 1. Various algorithms have been designed to avoid
the need of numerical computations, using the special properties of the DCM matrix. A
good, singularity-free algorithm was designed by Klumpp [12]. It computes the quater-
nion analyticaly as function of R using only linear algebra and program flow conditions.
Let’s then simply define our result quaternion estimation Qr as

Qr = klumpp(R) (3.64)



3.3. OBSERVER DESIGN 49

3.3.1.5 Quaternion as state of the observer and gyro bias tracking

In the above section, both prediction and correction stages were applied on the three
dimensional vectors. The other possibility is a direct usage of a quaternion widely used
in the existing AHRS designs [19]. Let’s define SQ as observer state. For prediction, time
propagation of a quaternion was allready described in (3.38):

S′
Q = SQ +

1

2









0 −p −q −r
p 0 −r q
q r 0 −p
r −q p 0









SQdt (3.65)

The correction stage is often performed as a state injection, or in sensor readings
space using on-the-fly linearisation by forward-inverse transformation of the reference
magnetometer and accelerometer readings [19]. I have chosen to use a state injection of
a measurement quaternion computed directly from senosr readings. Such quaternion is
easily obtained by an algorithm developed above. After substituting the unbiased sensor
readings directly into the set of equations (3.62), (3.63) and (3.64) namely S̃a = acc and
Sm = mag, Qr is then the measurement quaternion. Since both state and measurement
are available in the same representation, a constant and diagonal gain can be applied in
state injection for the quaternion elements. Such technique is used widely in the extisting
AHRS algorithms.

Nevertheless, one must consider a fact that a rotation quaternions have unitary norm,
requiring the re-normalisation after each time step. Applying correction directly to the
quaternion elements may thus result in some unwanted effects. When the orientation
difference between Qr and SQ is high, the SQ elements might be close to zero after the
correction. The time change of SQ even after re-normalization then does not correspond to
a closest path in the orientational spherical space, i.e. SQ does not change ”smoothly”.
Re-normalization may even fail, when all the elements of SQ are zero. To avoid this
problem, a technique known as quaternion interpolation is proposed here. At first, we
define an error quaternion Qc that represents rotation needed to perform from state SQ
to state Qr, such as

Qc = SQ
−1 ⊗Qr (3.66)

the angle of rotation of Qc is then scaled by a constant KQ.

Qi =

[

cos (KQ acos(E0) dt) sin (KQ acos(E0) dt)
[ Qc1 Qc2 Qc3 ]

|[ Qc1 Qc2 Qc3 ]|

]T

(3.67)

And finally, state SQ is then multiplied by the scaled quaternion

SQ = SQ
′ ⊗Qi (3.68)

The SQ therefore follows Qr exponentially, but in the rotational space. On the con-
trary to a simple linear correction applied to the quaternion elements, quaternion iner-
polation allways follows the closest path from Qr to SQ with the angle of error changing



50 CHAPTER 3. ANALYSIS, MODELLING AND CONTROLLER DESIGN

exponentially. Moreover, since the error quaternion Qc represents the error in our current
estimated state, we can extract the eigenaxis of Qc and use it to track the bias of the
gyro sensors. If the deviation in our current estimation, represented by the angle of Qc,
tends to stay high for a certain period of time, it is most likely caused due to an error in
the prediction stage, i.e. there is an offset in gyro readings. Let’s then define a gyro bias
state, Sb. We can adjust the bias simply by integrating the eigenaxis multiplied by the
rotation angle of Qc

Sb =

∫ T

0

Kb ln(Qc(τ)) dt (3.69)

where Kb is the bias state inejction weight, and the angular rates can be finally
extracted from the gyro readings as

Ω = gyro− Sb (3.70)

The principle of bias tracking in a 1DOF system is shown in fig. 3.17. Note that Kb

must be much smaller than Ka for the bias estimator to work.

Figure 3.17: Bias tracking principle in a single degree of freedom system.

3.3.1.6 Combined state approach

A two independent AHRS approaches were described above. Advantages and disadvan-
tages of them follows.

• The usage of two linearly independent vectors as the observer state and output
extraction of a quaternion can be modified to correct the accelerometer paradox,



3.3. OBSERVER DESIGN 51

but cannot generally track gyro bias, since the vectors are representing only two
degrees of freedom in view of rotation description. Moreover, the measurement noise
can be expected to be a gaussian white noise superponed to both magnetometer and
accelerometer readings. The linear, constant and diagonal state injection of such
sensor readings will filter out the noise similarly like a first order lowpass filter.

• The usage of a quaternion as the observer state allows an easy gyro bias tracking.
However, correcting the accelerometer paradox then is not a straightforward task.
Moreover, the quaternion correction stage requires converting both accelerometer
and magnetometer readings into the quaternion first. Such conversion is highly
non-linear and high frequency noise with high amplitude may result in even higher
errors in the obtained measurement quaternion Qr.

Thus, aiming to combine the advantages and to diminish the disadvantages of both
theese attitudes, a combined state approach is presented. Both the vectors and the
quaternion are held as the observer state. Both of them are predicted and corrected.
The sensor readings are used to correct only the vector states, to enable the possibility of
accelerometer paradox compensation and to filter out the higher frequency measurement
error. Quaternion is then extracted from the vectors and used as a measurement for the
quaternion correction stage, enabling the gyro bias tracking. In that way, a ”second-
order” observer is created, combining the advantages of both attitudes. Note that this
is a highly-experimental approach and the algorithm convergence should be examined.
however, best results have been recorded using it in comparison with traditional AHRS
algorithms. Constant tuning procedure for this algorithm has not yet been derived.

Figure 3.18: The AHRS algorithm flowchart.



52 CHAPTER 3. ANALYSIS, MODELLING AND CONTROLLER DESIGN

function AHRS_Update (vector acc, vector mag, vector gyro, structure S, parameter dt)

%Ubias the gyro readings to obtain the angular velocities (Omega)

Omega = gyro - S.b;

%apply the vector prediction to accelerometer state

s.a = vector_predict(S.a, Omega, dt);

%apply the vector prediction to magnetometer state

S.m = vector_predict(S.m, Omega, dt);

%apply the quaternion prediction to orientation state

S.q = quat_predict(S.q, Omega, dt);

%apply lowpass filter on the estimated thrust vector change

S.O = S.O + (f_ac(Omega) - S.O) * dt/TAU_AERODYNAMICS);

%compute the target correction weight

k = K_a / (1 + S.O*K_AERODYNAMICS);

%apply correction to the accelerometer state

S.a = S.a + (acc[i] - S.a[i]) * k * dt);

%apply correction to the magnetometer state

S.m = S.m + (mag[i] - S.m[i]) * K_m * dt);

%extract the measurement quaternion from accelerometer and magnetometer state

Qr, S.alpha = accmag2quat_filt(S.a, S.m, S.alpha, dt);

%compute the error quaternion (from measurement to state)

E = quat_multiply(quat_conjugate(state->x), Qr); // E = x^-1 * Qr

%update the bias estimation

S.b = S.b + quat_log(E, axis) * K_b * dt;

%apply the correction (Quaternion interpolation) to the orientation state

S.Q = quat_multiply(S.Q, quat_scale(E, K_Q*dt)); //x = x * quat_scale(E,K_Q)

end function

Figure 3.19: The AHRS algorithm in pseudo-code.

3.3.1.7 Sensor calibration

Up to now, we supposed that acc, mag and gyro sensor reading vectors are scaled
in real units and does not suffer from offset (bias) errors. To obtain theese values, all
three sensors, aiding the orientation estimation (accelerometer, magnetometer and gyro)
needs to be calibrated. A proces of linear calibration, in general, involves finding two
parameters for each vector component: an offset and a scale. The method of calibration
for the onboard sensors is described below.

• The cheap gyro sensor offsets often vary with the temperature change and moreover,
a misplaced offset setting is critical to the orientation estimation. This is the reason
for insisting on automated tracking of the gyro bias values by the developped AHRS
algorithm, even during the flight. The initial value for the offsets are set during
the pre-flight initialization procedure, supposing that the device is standing by.
On the contrary, the scale for a gyro reading is a parameter that often does not
change rapidly with time. Thus, it is being set as a constant determined using



3.3. OBSERVER DESIGN 53

external calibration tool, or as a result of the computation involving the datasheet
specifications, gain of analog circuitry and the A/D converter.

• Both magnetometer and accelerometer calibration procedure is a special human-
aided process implemented in the software. The procedure involves placing (rotat-
ing) the quadrotor body to most possible states of orientation. Both magnetometer
and accelerometer data are sampled and then passed to a special ellipsoid fitting
algorithm, which performs solving a set of overloaded linear equations. The al-
gorithm is realised using Lagrange multipliers, which ensures finding least square
solution of the six unknown variables, from which three of them are main axes of
the ellipsoid and remaining three are its center coordinates. Main axes are then
used as scale parameters whereas the center coordinates are uset as offsets for each
sensor. Please note that a superposition of linear acceleration to the accelerome-
ter readings can disturb the calibration process of the accelerometer. At least six
samples are required to solve the set of six equations with six unknown variables.
The details can be found in [24], [25], [26]. The fitting algorithm was simplified by
disregarding the coefficients of cross-variable multiplicants in the ellipsoid quadric
equation, which is used in [26] to compensate also the perpendicular axes misalign-
ment and cross influencing. The simplified algorithm thus assumes that main axes
of the ellipsoid are parallel to the inertial axes and the simplification therefore yields
to finding eigenvalues of a 3x3 matrix only, which can be computed analytically by
solving roots of its third order characteristic polynomial.

Figure 3.20: Visualisation of the ellipsoid fitted to the measured data.



54 CHAPTER 3. ANALYSIS, MODELLING AND CONTROLLER DESIGN

3.3.2 Position observer design

Figure 3.21: Position observer placement in the global structure.

Just like for the orientation, a similar problem arises for the spatial position deter-
mination. A simple, stand-alone, absolute and global, spatial position sensor, suitable
for translation control does not exist. GPS is the one what comes into consideration,
but due to some limitations, like low accuracy, long time period between measurements
and the need for constant GPS signal, it cannot be used independently as a spaial posi-
tion reference for translation control, especially in a micro UAV. Also another, satallite
independent physical sensors could be used to aid in determining the position, like bar-
rometric presure sensor, which could provide valuable information of altitude, or sonar
rangefinder to measure distance to the ground, useful for example when performing land-
ing procedure. An advandced form of vision-based navigation, radar, omnidirectional
sonar or lidar sensors also comes into consideration, especially for obstacle avoidance.
For experimenting, current device is equipped with optical flux sensor, a device being
used in personal computer optical mice. Generally a camera with onboard DSP proces-
sor that makes the 2D cross-correlation of two consecutive frames and tries to determine
image movement. I have attached an board camera optics to this device to focus on
the ground pattern and currently experimenting with it. There is also onboard sonar
rangefinder for constant altitude hold. Measurement of theese sensors must be corrected
according to the orientation.

Since the orientation state comes as output of the orientation observer, we can sub-
stract the gravitational vector from the accelerometer reading and use it for translation
prediction. The goal is then to design a fusion algorithm, similarly like for orientation,
which would combine the acceleration reading and some of the absolute sensors to esti-
mate the position. As shown in fig. 2.1, the task of translation controller (and position
observer) are mostly out of focus of this work. Only a simple relation will be stated here
as to be used for translational motion damping.

For the translation damper, an essential value is the body acceleration. Since the



3.3. OBSERVER DESIGN 55

magnitude of Earth’s gravity is known, we can obtain the values of u̇, v̇ and ẇ by simply
subtracting the g expressed in the body frame from accelerometer reading. The g can be
translated into body frame coordinates by quaternion vector rotation,

V̇ = acc+QgQ−1 (3.71)

The result, however, relies on an accurate orientation estimation, Q. Now, since V̇ is
known, comes into consideration to use it as an aid for the orientation observer, because
the orientation observer needs only the g part of accelerometer reading in body frame,
which equals g = V̇ − acc. Subtracting the V̇ vector from accelerometer reading would
permanently solve The Accelerometer paradox. Nevertheless, the V̇ is again computed
using the orientation estimation Q. Such algebraic loop would thus unavoidably result in
system destabilisation. The solution for this problem might be found in considering the
translational model (damping by aerodynamic forces), and joining the orientation and
position observer subsystems together, into a sort of a basic inertial navigation system.



56 CHAPTER 3. ANALYSIS, MODELLING AND CONTROLLER DESIGN



Chapter 4

Identification, implementation,
experiments and results

The last chapter will atempt to join the theoretical and construction branches of the
project. The model constants will be identified, previously designed control structure
will be synthesized and numerical simulations will be performed. Finally, the controller
will be tested on the real quadrotor.

4.1 Identification

The function sample of the quadrotor underwent extensive measurements and experi-
ments to determine the constants required by the numerical model. The main procedures
will be generally described here.

4.1.1 Inertial Parameters

For the sake of simplifying the identification process and yet seeking a good approximation
of the parameters, the quadrotor’s inertial structure was regarded as two perpendicular
rods corresponding to the arms and X,Y axes of the aircraft, with one point-mass for the
rotor at each edge, distant la from its rotation axis, as depicted in figure 4.1.

All the aircraft’s mass excluding the rotors’ is assumed to be homogeneously dis-
tributed inside the sphere of radius R, centered in the origin of the axes. Knowing that
the moment of inertia of a solid sphere around an axis σ is given by Is σ = 2

5
msR

2 whereas
for a point-mass, representing the actuator, distant la from the rotation axis is given by
Ir σ = mr l

2
a, and having the sphere mass as ms = m− 4mr, the moment of inertia around

axes X and Y , due to their symmetry, is then easily calculated as

Ix = Iy = I2 x + I4 x + Is x = I1 y + I3 y + Is y = 2
(

mr l
2
a

)

+
2

5
msR

2 (4.1)

57



58CHAPTER 4. IDENTIFICATION, IMPLEMENTATION, EXPERIMENTS AND RESULTS

X

YZ

1

23

4

R
m r

m c

l a

Figure 4.1: Quadrotor’s airframe and inertial identification scheme.

Table 4.1: Basic identified model constants of the body dynamics

constant value description
mt 0.694kg total mass of the body
Ix 5.87 10−3 kg·m2 moment of inertia around X-axis
Iy 5.87 10−3 kg·m2 moment of inertia around Y-axis
Iz 10.73 10−3 kg·m2 moment of inertia around Z-axis
la 0.18m distance from each motor to CG
tad 0.5 translation aerodynamic damping
rad 0 rotation aerodynamic damping

For the Z-axis the four rotors need to be considered, thus

Iz =
4

∑

j=1

Ij z + Is z =
4

∑

j=1

(

mr l
2
a

)

+
2

5
msR

2 (4.2)

The aerodynamic constants, tad and rad are generally hard to identify. Rotational
negative feedback, rad, was decided to be disregarded due to low angular speeds of the
quadrotor body. Nevertheless, the translational negative feedback, tad, is a key for the
orientation observer to work in order to handle with the Accelerometer paradox. Observa-
tions lead to the assigned value. However, theese variables needs an additional attention
to be properly identified.

4.1.2 Actuator

The actuator constants were identified using various performed experiments with a single
actuator, assuming that all of them are equal. The angular velocity, ωj, was available
by direct measurement, as being a part of the sensor measurement trasmitted to the
groundstation.



4.1. IDENTIFICATION 59

1

23

4

scale
Ball bearing

c d

Figure 4.2: Scheme of the thrust output function measurement experi-
ment.

0 100 200 300 400 500 600 700
0

0.5

1

1.5

2

2.5

T
hr

us
t [

N
]

Omega [rad/s]

 

 
measured
fitted

(a) Thrust output function Tj = f3(ωj).

0 100 200 300 400 500 600 700
0

0.02

0.04

0.06

D
ra

g 
to

rq
ue

 [N
m

]

Omega [rad/s]

 

 
measured
fitted

(b) Drag torque output function qj = f4(ωj).

Figure 4.3: Output functions identification of the actuator.

The actuator output, f3(ω) and f4(ω) functions were identified using a digital scale.
The aircraft was mounted on arm of a lever with one degree of freedom, as shown in
fig. 4.2, where c is distance from the lever axis to the actuator and d is the scale arm
length in corresponding experiment. The lever axis needed to be perpendicular to the
Z-axis in order to measure f3(ω) and parallel for identifying f4(ω). The other arm was
put on the scale. The weight variation was observed while driving the angular speed
ωj of a single actuator. The mass difference vector v was then scaled, for f3(ω) =

gcv

d

and for f4(ω) = gdv. The results were obtained by polynomial (parabolic) fitting and is
shown in fig. 4.3. Operating point, u0 and ω0 were then easily computed as parameters
where the total thrust equals the quadrotor mass times Earth’s acceleration. Note that
all actuators are assumed to be equal.

The constant describing the DC gain of the actuator, K, was obtained from the mea-
surement of the DC characteristics of the actuator, either from the stress-free motor
response and then verified on the one of motor with attached propeller shown in fig.
4.4. The stress-free motor characteristic can be well approximated by a linear function
ωj = Kuj, hence it verifies the assumption in deriving the actuator model. The bearing
damping, B, was found difficult to identify as the bearing torque is very small in com-



60CHAPTER 4. IDENTIFICATION, IMPLEMENTATION, EXPERIMENTS AND RESULTS

4 6 8 10 12

200

400

600

800
O

m
eg

a 
[r

ad
/s

]

Voltage [V]

 

 

without propeller
with propeller

Figure 4.4: DC characteristics of the actuator.

0.05 0.1 0.15 0.2
0

200

400

600

O
m

eg
a 

[r
ad

/s
]

time [s]

 

 

with measurement ring
without measurement ring

(a) Transient response without propeller.

0.05 0.1 0.15 0.2 0.25
0

100

200

300

400

O
m

eg
a 

[r
ad

/s
]

time [s]

 

 

with measurement ring
without measurement ring

(b) Transient response with propeller.

Figure 4.5: Identification of the rotor moment of inertia.

parison with the other acting torques. Thus, this constant will be disregarded with the
expectation that the contribution of bearing damping is included in the combination of
identified K, G1 and G2 constants.

A special procedure was performed to identify the rotor moment of inertia using the
measurements either of the stress-free motor transient response and of the one of motor
with attached propeller. Rotor moment of inertia, Ir, was estimated from change of
the transient response of the actuator with mounted reference measurement ring. Using
known parameters of the ring, i.e. mass mg, inner radius di and outer radius do, the ring
moment of inertia is given as Ig = mg

2
(d2i + d2o). The rotor moment of inertia is then in

relation

Ir
1

τa
= (Ir + Ig)

1

τb
(4.3)

where τa and τb are time constants of transient response without and with measure-
ment ring, respectively. Note that separate moments of inertia for the propeller and for
the motor can be measured in this way and then used to verify the results and improve
the precission of the identification process. Step responses are shown in 4.5.

The constants regarding the dynamics, G1 and G2 can be determined from the stress-



4.1. IDENTIFICATION 61

0 2 4 6 8 10 12
0

200

400

600

time [s]

O
m

eg
a 

[r
ad

/s
]

(a) Transient response of BLDC drive.

0 1 2 3 4 5 6 7
100

200

300

400

500

600

time [s]

O
m

eg
a 

[r
ad

/s
]

(b) Transient response of modified BLDC drive.

Figure 4.6: Identification of the actuator dynamics.

Table 4.2: Basic actuator model identified constants

constant value description
ω0 608rad/s angular velocity of the operating point
u0 9.5V voltage of the operating point
Ir 2 10−4kg·m2 total moment of inertia of the actuator
f3(ω0) 1.7024N thrust output of the operating point
f4(ω0) 0.0431N·m drag torque of the operating point
K 0.015319V·s/rad linear gain of the actuator
B 0N·m·s/rad bearing damping of the actuator
H 0.0003452 thrust output non-linearity gain
F 0.0021462 drag torque output non-linearity gain
k 0.235 linearised actuator constant: sensitivity
l 0.0036 linearised actuator constant: damping
m 0.0002 linearised actuator constant: thrust change
n 0.0063 linearised actuator constant: drag torque change

free rotor transient characteristics. It can promptly be seen that the rotor seems to have
a faster response when increasing than when decreasing its speed. This non-linearity is an
intrinsic characteristic of the BLDC motor drive and, despite the efforts in trying to re-
design the PWM control strategy, the respective first-order time-constants could not be
made to be exactly equal. Note that when using the stress-free response for identification,
not only the non-linear damping is removed but also the moment of inertia must be
changed in the equations, as the propeller is not present. However, to compensate the
incidental and disregarded non-linear influences, the values of G1 and G2 were afterwards
fine tuned in the non-linear model simulation to fit the stressed response of the real
actuator with propeller around the operating point as close as possible. The gain constant,
K, can be also fine tuned in that way. Overall step responses with attached propeller are
shown in 4.6.



62CHAPTER 4. IDENTIFICATION, IMPLEMENTATION, EXPERIMENTS AND RESULTS

Table 4.3: LQ-optimal feedback law for decoupled dynamics

∆ωj Ωj Ej
∫ t

0
Ej(τ)dτ

Kxy 0.0386 5.3000 31.9117 −1.7321
Kz −0.0144 4.0177 31.8421 −1.7321
Kxy’ 0.0372 4.8363 25.0955 −54.7723
Kz’ −0.0149 3.9442 23.0665 −54.7723

4.2 Implementation and simulation experiments

4.2.1 Rotation controller

Hereby, the complete rotation controller of the main structure from fig. 3.21, as derived
in the previous chapter, will be synthesized. At first, the LQ-optimal state feedback con-
troller K will be tuned for the decoupled axial dynamics. Then implemented and tested
in numerical simulations to control orientation of a full 6DOF quadrotor model, with
the eigenaxis algorithm coupling. The proposed controller extensions and compensators
will be treated. Please note that the orientation observer is disconsidered in here, hence
assumed that the true orientation state of the quadrotor is known.

4.2.1.1 LQ-optimal control synthesis

The LQ-optimal controller of the decoupled axial dynamic systems, described in (

0 0.5 1 1.5 2 2.5
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 

 

Response to Initial Conditions

Time (sec)

A
xi

s 
er

ro
r

X,Y axes, feedback K
Z axis, feedback K
X,Y axes, feedback K’
Z axis, feedback K’

Figure 4.7: Decoupled axial dynamics.



4.2. IMPLEMENTATION AND SIMULATION EXPERIMENTS 63

4.2.1.2 Coupling with the eigenaxis algorithm

The eigenaxis axial decoupling computation was used as the error input for the three
separate axial controllers. The rotation controller structure was implemented in Simulink
with all the specified extensions. The potential advantage of eigenaxis control is shown in
fig. 4.8. A step input was applied to the closed-loop system target quaternion, formed out
of the quadrotor and rotation controller, namely a command to simultaneously change the
tilt around X axis from φ̂ = −pi/8 to φ̂ = +pi/8 and the heading angle from ψ̂ = −pi/2
to ψ̂ = +pi/2 and the magnitude of Ω was observed. For comparison, the exact same
maneuver was performed replacing the E vector by the Euler angles error. The results
have proven that even close to zero orientation states, eigenaxis control offers the same
maneuver with less energy claim. The diference rises quickly when moving further from
the zero orientation state. Note that the equal rising edge is caused by saturation of
actuator inputs.

2.4 2.6 2.8 3 3.2 3.4 3.6
0

5

10

15

20

time (s)

|O
m

eg
a|

 (
ra

d/
s)

omega magnitude during correction maneuver

 

 
euler angles error
eigenaxis error

Figure 4.8: Omega magnitude comparison.

4.2.1.3 Gyroscopic compensator

During agressive maneuvers, the disturbance caused by gyroscopic effects arises. Fig. 4.9
shows a comparison between compensated and uncompensated maneuvers, with applied
step in target quaternion representing a change in tilt from θ̂ = −pi/4 to θ̂ = +pi/4
and the heading angle from ψ̂ = −pi/2 to ψ̂ = +pi/2. The parasitic excitation of Ey
is well damped by the compensator, nevertheless the other axes might be negatively
affected. After all, the total omega magnitude during correction maneuver was always
observed smaller with the compensator, proving that the gyroscopic compensator reduces
the action energy claim. The gyroscopic effects will be more evident with different system
constants, e.g. with more massive propellers. The compensator constant were iteratively
tuned to P = 2 and D = 0.

4.2.1.4 Overshoot compensator

To avoid the overshoot while preserving the asymptotic tracking behavior, current con-
troller has been augmented with the overshoot compensator according to fig. 3.11. The
Lj parameter was iteratively tuned to Lj = 1 for all axes. Fig 4.10 compares the controller



64CHAPTER 4. IDENTIFICATION, IMPLEMENTATION, EXPERIMENTS AND RESULTS

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
0

0.5

1

1.5

2

time (s)

an
gl

e 
(r

ad
)

axis error

 

 
E

x

E
y

E
z

E
x
 with compensator

E
y
 with compensator

E
z
 with compensator

Figure 4.9: Gyroscopic compensator comparison.

performance with and without the compensator on a single rotation axis. At t = 5s, a
step of approx. 0.9 rad was applied to the target orientation about that axis. Simul-
taneously, a steady state error was simulated, so that a parasitic torque was applied to
the quadrotor body in the same axis of magnitude 1Nm at t = 10s, which could reflect
putting a certain additional mass on the end of one of the quadrotor arms during the
flight. Note that the extended controller compensates the steady-state error at almost
same speed, while reducing the overshoot. However, steady-state error compensation
performance goes down with angular velocity Ω rising, e.g. when a steady-state error
appears during a large maneuver. For illustration, also the computed voltages uj applied
to the actuators is shown in fig. 4.11 to show the steady-state error compensation.

5 6 7 8 9 10 11 12

−0.2

0

0.2

0.4

0.6

0.8

C
on

tr
ol

 e
rr

or
 [r

ad
]

Time [s]

 

 
without compensator
with compensator

Figure 4.10: Overshoot compensator performance.



4.2. IMPLEMENTATION AND SIMULATION EXPERIMENTS 65

5 6 7 8 9 10 11 12
7

8

9

10

11

12

13

Time [s]

V
ol

ta
ge

 [V
]

 

 
u1
u2
u3
u4

Figure 4.11: Voltages applied to the actuators.

10 10.5 11 11.5 12

−2

−1

0

1

C
on

tr
ol

 e
rr

or
 [r

ad
]

Time [s]

(a) Response without extension.

10 10.5 11 11.5 12

−2

−1

0

1

C
on

tr
ol

 e
rr

or
 [r

ad
]

Time [s]

(b) Response with extension.

Figure 4.12: Non-linear actuator extension comparison.

4.2.1.5 Actuator non-linear mapping

The actuator non-linear controller mapping extensions, defined in (3.53), (3.54) and (3.55)
were implemented to extend the operating range of the controller. The mapping should
increase controller performance when acting far from the operating point, ω0. Fig. 4.12
shows that apart from correcting the DC gain, the dynamic response is also improved. The
DC voltage setpoint for the actuators has been set to approx. u0/2 and the control error
was observed. Altough the dynamic response is not changed much in the simulations,
the improvement on the real system was recorded to be essential, mainly due to errors in
motor angular velocity readings and disconsidered effects of the BLDC drive.

4.2.2 Target orientation and thrust computation

Target orientation and thrust computation is a simple mapping relation from the â to
target quaternion and thrust vector, with no state variables or dynamic relations. Never-
theless, few plots will be shown to higlight some aspects of the designed controller. The
step response from zero input to â =

[

4 −2 0
]

and target heading ψ̂ = π/2 at time



66CHAPTER 4. IDENTIFICATION, IMPLEMENTATION, EXPERIMENTS AND RESULTS

t = 1 is shown in fig. 4.13 and fig. 4.14. For illustration, translational aerodynamic
damping forces were temporarily removed, otherwise the actual acceleration would expo-
nentially descend to zero. Step in target heading, ψ̂, was applied in order to show the
ability of independent simultaneous control. The acceleration suffers from steady state
errors and, moreover, the quadrotor ascends. This is due to the non-linear thrust gain
function of the actuator.

0 1 2 3 4 5
−4

−2

0

2

4

6

8

10

time (s)

ac
ce

le
ra

tio
n 

(m
/s

2 )

 Step response of the acceleration 

 

 
a

x

a
y

a
z

target a
x

target a
y

target a
z

Figure 4.13: Step response of acceleration commands.

0 1 2 3 4 5
−2

−1

0

1

time (t)

an
gl

e 
(r

ad
)

Heading error during correction maneuver

 

 
E

z

Figure 4.14: Step response of heading command.

The actuator mapping extensions compensates the non-linear thrust gain and there-
fore the steady-state error is minimized as shown in fig. 4.16. The residual deviation
reflects only the error in approximation of (3.11) by a parabolic function. However, the
acceleration control is still a kind of open-loop control, as it disregards the aerodynamics
forces and the need of additional position sensors arises for the translation controller.

4.2.3 Translation controller

The translation controller takes place in the topmost layer of the proposed structure.
Due to high-complexity of the underlying system, both translation damper and position
controller were adjusted simultaneously using the rules for general PID tunning. The
constants are contained in the table below. Integral control was ommited for this moment.



4.2. IMPLEMENTATION AND SIMULATION EXPERIMENTS 67

0 1 2 3 4 5
−4

−2

0

2

4

6

8

10

time (t)

ac
ce

le
ra

tio
n 

(m
/s

2 )

Step response of the acceleration

 

 
a

x

a
y

a
z

target a
x

target a
y

target a
z

Figure 4.15: Step response of acceleration commands with the non-linear
mapping.

Table 4.4: Basic actuator model identified constants

constant value description
Kdlat 15 Lateral translation damper: gain constant
Kdlong 15 Longitudinal translation damper: gain constant
τlat 15s Lateral translation damper: time constant
τlong 6s Longitudinal translation damper: time constant
Kplat 3 Lateral position controller: proportional term
Kplong 5 Longitudinal position controller: proportional term
Kilat 0 Lateral position controller: integral term
Kilong 0 Lateral position controller: integral term

4.2.3.1 Translation damper

As have been allready discussed, best results were encountered when using the NED
frame acceleration directly for the damping. However, this variable is difficult to obtain,
as a conversion from the onboard accelerometer readings requires additional states (ac-
celerometer integration) which might destabilise the system. As an alternative approach,
damping in body-frame was proposed. Fig. 4.17 and fig. 4.17 shows the response of the
position command from zero to X̂ =

[

10 0 1
]

, explained as to go 10 meters north and
one meter down. The more evident altitude error, when performing body-frame damping,
shown in fig. 4.18, reflect the undamped acceleration, which is generated just by rotating
the quadrotor body with nonzero body velocities. Note that body-frame damping result
must be coordinate transferred into the NED frame before feeding as part of the â vari-
able. The correct operation of the damper also depends on correct estimation of body
acceleration V̇ .



68CHAPTER 4. IDENTIFICATION, IMPLEMENTATION, EXPERIMENTS AND RESULTS

Figure 4.16: Simple translation damper structure.

6 8 10 12 14 16 18

0

2

4

6

8

10

time (s)

po
si

tio
n 

(m
)

Step response of the overall system

 

 

X
x

X
y

X
z

target X
x

target X
y

target X
z

Figure 4.17: Translation controller response with damping in NED frame.

4.2.3.2 Position controller

The position controller needs explicit knowledge of the actual position. The real flight-
cappable design should invove cooperation with the upper level structure of task/mission
control or at least, characteristics of the position sensors, like GPS, computer vision, etc.
In the numerical simulations, exact position was assumed to be known and therefore,
proposed PI control can take place. Fig. 4.19 shows the response to various position
commands. Cross-influencing between the axes, depending on the command history can
be seen in comparison of fig. 4.18 and fig. 4.19. It was shown that a certain overshoot
when using PI, or even only P approach is unavoidable, thus calling for some kind of
more advanced control approach or for the allready discused non-linear compensation.

4.2.4 Orientation and position observer

As the design of the proposed orientation observer is highly experimental. A consistent
tuning process was not yet created and thus will be ommited. On the contrary to lab-



4.2. IMPLEMENTATION AND SIMULATION EXPERIMENTS 69

6 8 10 12 14 16 18

0

2

4

6

8

10

time (s)

po
si

tio
n 

(m
)

Step response of the overall system

 

 

X
x

X
y

X
z

target X
x

target X
y

target X
z

Figure 4.18: Translation controller response with damping in body frame.

0 5 10 15 20
−2

0

2

4

6

8

10

12

time (s)

po
si

tio
n 

(m
)

Step response of the overall system

 

 
X

x

X
y

X
z

target X
x

target X
y

target X
z

Figure 4.19: Translation controller performance.

oratory experiments, presented simulations assumed both true position and orientation
states to be known, as the focus of this work was mainly the controller design. The
constant used in the current AHRS subsystem are presented below.

The translation observer was reduced to estimate the body-frame acceleration using
orientation estimation and accelerometer reading to (3.71). Similarly like the position
controller, the full observer design involves cooperation with the upper level structure of
task/mission control and additional sensors, where the two units might closely cooperate.



70CHAPTER 4. IDENTIFICATION, IMPLEMENTATION, EXPERIMENTS AND RESULTS

Table 4.5: Orientation observer parameters

constant value description
Ka 5.0 Accelerometer correction weight
Km 2.5 Magnetometer correction weight
Kb 1.0 Bias estimation correction weight
KQ 3.3 Quaternion correction weight
τα 0.5s Magnetic inclination lowpass filter time constant
τac 2.3s Accelerometer paradox compensator time constant
Kac 15.0 Accelerometer paradox compensator gain constant

4.3 Laboratory experiments

The designed structured controller was implemented into the software and a lot of real
system experiments were performed during the project development. Note that apart
from the identification, also model verification and controller tuning involves both sim-
ulation and laboratory experiments. All non-linear extensions were also verified on the
real system in that way. The translation controller was reduced to translation damper
and a human pilot was placed in role of position controller using RC handpad with two
joysticks, one to control acceleration in horizontal plane (North-East) and the second for
heading and vertical acceleration.

Figure 4.20: First, wired outdoor flight, 10.4.2010.



4.3. LABORATORY EXPERIMENTS 71

Figure 4.21: Control software running on MS Windows PC.

In the initial phases of the rotation controller verification and tuning, the quadrotor
body was mounted on a ball beared lever with one axis perpendicular to one of the
quadrotor arms, reducing the system degrees of freedom from six to one. Only two of
the four propellers were active during this test. Such experiment was useful to verify the
controller applicability and proved the advantages of a state feedback control including
the motor angular velocities over the simple PID approach. The PID controller failed to
stabilize the system due to imrpoved transient responses of the actuators in comparison
with another similar projects, because thee motor angular velocities feedback was not
present.

Nevertheless, because of the high system complexity and coupling, the flight cappable
quadrotor controller tuning could not be verified using the lever experiment, mainly due
to the lever axis displacement from the center of gravity. Therefore the plots presented
below were recorded during the real flight. However, a mechanical tilt and heading
platform could be constructed and used for rotation controller tuning and education, as
the translational degrees of freedom would be locked.

Fig. 4.22 shows the eigenaxis control error during the real flight. Note that I-control
was turned off for the vertical axis during this experiment, hence there is a steady-state
error present in the Ez. However, fig. 4.22 is not very ilustrational, as the pilot commands
are not known. Generally, showing the actual (current) and the target (setpoint) values
is not as straightforward as when using the common Euler angles contnroller, because of
the nature of the eigenaxis algorithm. To show the orientation tracking, the actual and
target quaternion elements are shown in 4.23.

The deviation in quaternion elements in steady state is not greater than 0.01, which



72CHAPTER 4. IDENTIFICATION, IMPLEMENTATION, EXPERIMENTS AND RESULTS

0.5 1 1.5 2 2.5 3 3.5 4

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

time (s)

ei
ge

na
xi

s 
er

ro
r 

(r
ad

)

 

 

E
x

E
y

E
z

Figure 4.22: Eigenaxis error during the flight.

matches less than one degree orientation error angle magnitude. For even better illus-
tration, the actual state quaternion was converted back to actual heading and expected
actual acceleration. Fig. 4.24 and fig. 4.25 shows how well the designed controller tracks
the target values during real flight. I-control was turned off during this experiment, using
the K feedback. Therefore a slight steady-state errors were met due to slow asymptotical
tracking of K feedback and open-loop thrust control. Please note that high frequency
noise is caused mainly by error in orientation estimation and the actual acceleration in
fig. 4.24 does not reflect the real acceleration in body frame V̇, but is an estimated,
expected acceleration computed from the current orientation state.



4.3. LABORATORY EXPERIMENTS 73

3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

time (s)

qu
at

er
ni

on
 e

le
m

en
ts

 

 
q0
q1
q2
q3
target q0
target q1
target q2
target q3

Figure 4.23: Quaternion elements tracking and error.

29 30 31 32 33 34 35 36

−0.5

0

0.5

1

1.5

time (s)

ac
ce

le
ra

tio
n 

(m
/s

2 )

Tracking target commands by the controller

 

 
a

x

a
y

target a
x

target a
y

Figure 4.24: Acceleration commands tracking and error.

25 30 35 40 45 50 55

−1

−0.5

0

0.5

1

1.5

time (s)

he
ad

in
g 

(r
ad

)

Tracking target commands by the controller

 

 
actual heading
target heading

Figure 4.25: Heading command tracking and error.



74CHAPTER 4. IDENTIFICATION, IMPLEMENTATION, EXPERIMENTS AND RESULTS



Chapter 5

Conclusion

This work presented a complete strategy on how to design an advanced, complete struc-
tured flight controller based on inertial sensors for a quadrotor using an alternative control
methods, while trying to document other related aspects of the overall project. At first,
a brief summary of the vehicle construction and programming was presented, ennumer-
ating the special features, like real-time control over the wireless link and BLDC motor
RPM measurement. Then the full, 6DOF non-linear quadrotor model was derived, try-
ing to include most of the known physical influences, together with quadrotor-specific
non-linear actuator model. The model uses quaternions as orientation state representa-
tion. The quaternion formulation allowed simple transformations from multiple coordi-
nate systems and does not suffer from any singularities in the rotating space. Main steps
of the model constants identification were documented and all constants for the current
device are presented. The model was analyzed and a suitable control structure was in-
troduced. Therefore, an alternative method was suggested for orientation control, using
the eigenaxis extraction of error quaternion. It was shown that decoupled axial control
is possible in an entire orientational space using eigenaxis error, without any singulari-
ties. The axis-decoupled LQ-optimal controller was used to drive the actuator voltages.
Designed rotation controller was finally augmented with various compensators and non-
linear enhancements to improve its performance. The main aspects of the controller were
examined and verified in simulations. Design of a translation controller, divided into
position controller and translation damper was proposed and the main issues when using
the inertial sensors to aid translation control were examined. Finally, the problems of
orientation estimation using the inertial sensors were discussed and a highly-experimental
quadrotor-specific orientation observer (AHRS) was introduced.

Rotation controller, translation damper and rotation observer were implemented aswell
in Simulink as in the C code for real-time quadrotor control. Currently, the device is ready
to take-off, equipped with all necessary perpiherals, ready to experiment with and make
measurements on. The controller was successfully verified on a real quadrotor. Test
flights have proven that the quadrotor is very stable, able to hover in the air while re-
quiring only slight commands from the pilot to correct the position drift. However, the
system performance relies on the onboard AHRS orientation estimation accuracy, which
is still an aspect to be improved. The problem of the Accelerometer Paradox also needs
additional attention together with the convergency of the experimental AHRS algoritm

75



76 CHAPTER 5. CONCLUSION

validation. The AHRS model is not included in the simulations, hence all the presented
simulation results are assuming that true orientation state is known.

5.1 Future Works

• Examination of flipping and another large maneuver capabilities of the real quadro-
tor with synthesized controller. Altough the flip-over maneuver was sucessfuly sim-
ulated with current controller, it has not yet been tested on the real quadrotor.

• Examination of the model and controller characteristics in frequency domain. The
entire design was done in time-domain to avoid the linearisation and allowing to
use various non-linear extensions. Nevertheless, the frequency responses should
also be treated, for example to exclude the possible flexible modes excitation of the
quadrotor body.

• Better formalization and convergency validation of the presented experimental AHRS
algorithm. Verification of closed-loop system stability with the orientation observer.
This algorithm is used in the current real quadrotor with empirically tuned con-
stants and performs very well together with the controller, however, a tuning tech-
nique should be derived.

• More investigations in order to improve the problems regarding the Accelerometer
Paradox. The problems of orientation estimation and translation damping could be
solved by creating a complete INS system.

• Examination of usability of the model-independent eigenaxis controller, described
in [7].

• Realization of a position observer with advanced data fusion algorithm from mul-
tiple sensors.

• Building of a new quadrotor sample version, with onboard controller.



Bibliography

[1] P.Pounds, R.Mahony, J.Gresham, P.Corke, J.Roberts: ”Towards dynamically-
favourable quad-rotor aerial robots”, Australian Conference on Robotics and Au-
tomation, page 10, 2004

[2] M.J.Stepaniak: ”A Quadrotor Sensor Platform”, PhD thesis, Ohio University,
November 2008

[3] C.Balas: ”Modelling and linear control of a quadrotor”, Cranfield Unicersity, MSc
Thesis, 2006-2007

[4] S.Bouabdallah, P.Murrieri, R.Siegwart, ”Design and Control of an Indoor Micro
Quadrotor”, Swiss Federal Institute of Technology

[5] E.Stingu, F.Lewis, ”Design and Implementation of a Structured Flight Controller for
a 6DoF Quadrotor Using Quaternions”, 17th Mediterranean Conference on Control
and Automation, Makedonia Palace, Thessaloniki, Greece, June24-26, 2009

[6] A.Fleming, P.Sekhavat, I. M. Ross: ”Minimum-Time Reorientation of an Asymmet-
ric Rigid Body”, AIAA Guidance, Navigation and Control Conference and Exhibit,
18-21 August 2008, Honolulu, Hawaii

[7] J.Lawton, R.W.Beard: ”Model Independent Eigenaxis Maneuvers using Quaternion
Feedback”, Dept. Electrical and Computer Eng. Brigham Young University

[8] D.P.Han, Q.Wei and Z.X. Li: ”Kinematic control of free rigid bodies using dual
quaternions”, International Journal of Automation and Computing, 2008, 5(3), 319-
324

[9] K.D.Bilimoria, B.Wie: ”Time-Optimal Three-Axis Reorientation of a Rigid Space-
craft”, Journal of Guidance, Control and Dynamics, Vol.16, No.3, May-June 1993

[10] Xiaoying Kong: ”Inertial Navigation System Algorithms for Low Cost IMU”, Dept.
of Mechanical and Mechatronic Engineering, The University of Sydney, August 27,
2000

[11] J.A.Rios, E.White: ”Fusion Filter Algorithm Enhancements For a MEMS
GPS/IMU”, Crossbow Technology, Inc.

[12] Itzhack Y.Bar-Itzhack: ”New Method fro Extracting the Quaternion from a Rotation
Matrix”, Journal of Guidance, Control and Dynamics Vol.18, No.4, 1995

77



78 BIBLIOGRAPHY

[13] G.Welch and G.Bishop: ”An Introduction to the Kalman Filter”, Department of
Computer Science, University of North Carolina at Chapel Hill, July 24, 2006

[14] robotika.cz: ”Měřeńı rychlosti”, http://robotika.cz/guide/filtering/en

[15] wikipedia: ”Rotation representation”, http://en.wikipedia.org/wiki/Rotation representation

[16] L.Vicci: ”Quaternions and Rotations in 3-Space: The Algebra and its Geometric
Interpretation”, Department of Computer Science, University of North Carolina at
Chapel Hill, July 24,2006

[17] Ben H. Cantrell: ”Adaptive Low Pass Filter”, US Patent 3,889,108, June 10,1975

[18] P.Batista, C.Silvestre, P.Oliveira: ”Vector-Based Attitude Filter for Space Naviga-
tion”, Intelligent Robot Systems DOI 10.1007/s10846-010-9528-2

[19] M.Řezáč and Z.Hurák: ”Low-cost inertial estimation unit based on extended Kalman
filtering”, Faculty of Electrical Engineering, Czech Technical University in Prague,
Czech Republic

[20] Banos, A. Vidal, A.: ”Design of PI+CI Reset Compensators for second order plants”,
IEEE International Symposium on Industrial Electronics, 2007

[21] Paul G. Savage: ”What Do Accelerometers Measure?”, Strapdown Associates, Inc.
May 8, 2005

[22] Jay Farrell: ”Aided Navigation: GPS with High Rate Sensors”, April 2008

[23] L.Klauske, T.Lorenz, N.Colberg, M.Janke: ”DSP-Copter - A Quadrotor Helicopter
Controlled by a Digital Signal Processor”

[24] A. Fitzgibbon, M. Pilu, R. B. Fisher: ”Direct Least Square Fitting of Ellipses”, Tern
Analysis and Machine Intelligence, VOL. 21, NO. 5, MAY 1999

[25] Q.Li, J.G.Griths: ”Least Squares Ellipsoid Specifc Fitting”, Department of Com-
puter Science, University of Hull, Hull, HU67RX, UK

[26] X.Zhang, L.Gao: ”A Novel Auto-calibration Method of the Vector Magnetome-
ter”, The Ninth International Conference on Electronic Measurement Instruments,
ICEMI2009

[27] Brian C. Barnes: ”Win32 API: pr̊uvodce vývojáře”, UNIS publishing, Vol.1 and
Vol.2, 1997

[28] Pavel Herout: ”Učebnice jazyka C”, Kopp, 1994

[29] Pavel Herout: ”Učebnice jazyka C 2.d́ıl”, Kopp, 1995

[30] Miroslav Švorek, Karel Richta: ”Připojováńı periferíı k PC”, GRADA, 1996

[31] Vladimı́r Váňa: ”Mikrokontroléry Atmel AVR: vývojové prostřed́ı”, BEN, 2003



BIBLIOGRAPHY 79

[32] Vladimı́r Váňa: ”Mikrokontroléry Atmel AVR: popis procesor̊u a instrukčńı soubor”,
BEN, 2003

[33] Vladimı́r Váňa: ”Mikrokontroléry Atmel AVR: Assembler”, BEN, 2003

[34] Vladimı́r Váňa: ”Mikrokontroléry Atmel AVR: Programováńı v jazyce C”, BEN,
2006

[35] ST: ”BLDC MOTOR START ROUTINE FOR THE ST72141 MICROCON-
TROLLER”, Application Note, http://www.st.com, 2005

[36] Atmel: ”AVR444: Sensorless control of 3-phase brushless DC motors”, Application
Note, http://www.atmel.com 2006

[37] Atmel: ”ATMega168 microcontroller”, datasheet, http://www.atmel.com

[38] Atmel: ”ATMega644P microcontroller”, datasheet, http://www.atmel.com

[39] Avago: ”ADNS-2610 optical mouse sensor”, datasheet, http://www.avagotech.com

[40] Sharp: ”gp2y0a21yk0f IR proximity detector”, datasheet, http://www.sharp-
world.com

[41] PNI: ”MicroMag 3-Axis Magnetic Sensor Module”, datasheet,
http://www.pnicorp.com

[42] Nordic: ”NRF24L01 wireless transceiver”, datasheet, http://www.nordicsemi.com

[43] Prolific: ”PL-2303 USB TO RS-232 BRIDGE CONTROLLER”, datasheet,
http://www.prolific.com

[44] L.Zaplat́ılek: ”Ř́ızeńı bezkartáčových (BLDC) motor̊u”, Bakalářská práce, Uni-
verzita Pardubice, Fakulta elektrotechniky a informatiky, 2009

[45] PJS: ”3D 550 E”, datasheet, http://www.pjs.cz

[46] Murata: ”Piezoelectric Vibrating Gyroscopes ENC-03M (GYROSTAR)”, datasheet,
http://www.murata.com

[47] Analog devices: ”ADXL335 Accelerometer”, datasheet, http://www.analog.com

[48] Autopilot: existing, open-source UAV project, http://autopilot.sourceforge.net/

[49] Mikrokopter: existing, open-source quadrotor project, http://www.mikrokopter.de

[50] Arducopter: existing, open-source quadrotor project,
http://code.google.com/p/arducopter/wiki/ArduCopter

[51] Flying Machine Arena: existing quadrotor project,
http://www.idsc.ethz.ch/ResearchDAndrea/FMA



80 BIBLIOGRAPHY



Appendix A

Complete Simulink model

The implemented Simulink model diagrams will be presented here. Each of the structured
blocks is shown. Also, a simplified 2D-structure of the quadrotor model with controller
is presented, with one degree of freedom in rotation and two degrees of freedom in trans-
lation.

I



II
A
P
P
E
N
D
IX

A
.
C
O
M
P
L
E
T
E
S
IM

U
L
IN

K
M
O
D
E
L

target orientation

and thrust

computation

ad

psi

Qt

Qy

Td

fcn

position

eigenaxis

acceleration

Translation_controller

udotvdotwdot

Current position

Current orientation

Target position

Target acceleration

Step5

Step4

Step2

Step1

Scope9

Scope4

Scope3

Scope2

Scope19

Scope18

Scope1Saturation

Rotation_controller

Current Orientation

Motor omegas

pqr

Target orientation

Target thrust

Voltages

Eigenaxis error

Quaternion
multiply

q

r
q*r

Quadrotor

u1

u2

u3

u4

Velocity

Position

Orientation

uvw

pqr

Motor omega

Accelerometer

Derivative1du/dt Derivative du/dt

target psi

actual acceleration
in NED frame

Td

actual acceleration
in body frame

target position

F
igu

re
A
.1:

T
h
e
overall

closed
-lo

op
d
iagram

.



III

Accelerometer

7

Motor omega

6

pqr

5

uvw

4

Orientation

3

Position

2

Velocity

1

total w

total my

total mx

total moment

total force

total T

total Q

propeller side force

0

mass
M

from nav to body axes 

L_EB

arm length1

la

arm length

la

Translation 
aerodynamics

−K−

Rotor_5

actuator_jerrymdl

u

T

Q

omega

Rotor_3

actuator_jerrymdl

u

T

Q

omega

Rotor_2

actuator_jerrymdl

u

T

Q

omega

Rotor_1

actuator_jerrymdl

u

T

Q

omega

Rigid body

Forces X Y Z

Moments L M N

Ve

Xe

Quat

DCM

uvw

pqr

pdot,qdot,rdot

udot,vdot,wdot

Product1Product

Gravity

(0  0  g)

Gain3

−1

Gain

Ir

Rotaion 
aerodynamics

−K−

u4

4

u3

3

u2

2

u1

1

omegas

Lr

Mx

My

Lrq Lrp

p

q

DCM

Gravity acceleration in body frame

Qtot

uvw

pqr

Propeller force

Gravity force

Aerodynamic force

F
igu

re
A
.2:

T
h
e
q
u
ad

rotor
d
iagram

.



IV
A
P
P
E
N
D
IX

A
.
C
O
M
P
L
E
T
E
S
IM

U
L
IN

K
M
O
D
E
L

non−linear overshot

elimination

Eigenaxis error

2

Voltages

1

wi to wj
K*u

total mx3
quat2euler1

qR1,R2,R3

quat2euler

qR1,R2,R3

quat logarithm

qE fcn

output nonlinearity

open loop thrust

K*u

input nonlinearity1

input nonlinearity

feedbackZ

Kz* u

feedbackY

Ky* u

feedbackX

Kx* u

eigenaxis

vs Euler angles

conjugate1

K*u

\tilde{u} to u

K*u

Scope15

Scope13

Quaternion

multiply

q

r
q*r

Math

Function4

sqrt

Math

Function3
u

2

Math

Function2
u

2

Manual Switch1 Manual Switch

Integrator

1

s

Gyroscopic_compensator

pqr

Motor omegas

Ugx

Ugy

Gain4
li

Gain13

ki

Gain1

1/2

Divide2

Constant4 1

−1

K*u

Target thrust

5

Target orientation

4

pqr

3

Motor omegas

2

Current Orientation

1u

Xx

Xy

Xz

Ulx

Uly

wx

p

Ex

int_Ex

wy

q

Ey

int_Ey

wz

r

Ez

int_Ez

Ulz

E

Ud

F
igu

re
A
.3:

T
h
e
rotation

con
troller

d
iagram

.



V

Ugy

2

Ugx
1

total w

total mx2

total mx1

rp

qr

Product1Product

PID Controller1

PID(s)

PID Controller

PID(s)

Iy−Iz

−K−

Ix−Iz

−K−

Gain

Ir

DCgain1

−K−

DCgain

−K−

Motor omegas

2

pqr
1

q

p

r

Ugx

Ugy

Lr

Lr

p

q

F
igu

re
A
.4:

T
h
e
gy

roscop
ic

com
p
en
sator

d
iagram

.



VI APPENDIX A. COMPLETE SIMULINK MODEL

function E = fcn(q)

%#eml

e = q / norm(q);

if(e(1) < 0)

e = -e;

end

angle = 2*acos(e(1));

size=norm([e(2); e(3); e(4)]);

if(size == 0)

size = 1;

end

E = -angle * [ e(2); e(3); e(4)] / size;

Figure A.5: The quaternion logarithm Matlab code.

function [Qt, Qy, Td] = fcn(g, M, ad, psi)

%#eml

a=[ad(1); ad(2); g-ad(3)];

alpha = acos(a(3)/norm(a));

axis = cross(a, [0;0;1]);

size = norm(axis);

if(size == 0)

size = 1;

end

Qt = [cos(alpha/2); sin(alpha/2) * axis/size];

Qy = [cos(psi/2); 0; 0; sin(psi/2)];

Td = M * norm(a);

Figure A.6: The target orientation and thrust computation Matlab code.



V
II

Target acceleration

1

conjugate1
K*u

Saturation2

Quat rot

q

ve
c

ve
c_

ro
t

Horizontal controller−NS

horizontal acceleration

horizontal position
Target acc_xy

Horizontal controller−EW

horizontal acceleration

horizontal position
Target acc_xy

Body−speed damper

Body accelerationdamping

Body vs. NED damping1

Body vs. NED damping

Altitude controller

vertical acceleration

altitude

target acc_z

NED acc5

Target position

4

Current orientation3

Current position

2

udotvdotwdot1

target acceleration 
in NED

F
igu

re
A
.7:

T
h
e
tran

slation
con

troller
d
iagram

.



V
III

A
P
P
E
N
D
IX

A
.
C
O
M
P
L
E
T
E
S
IM

U
L
IN

K
M
O
D
E
L

The Accelerometer Paradox

total mx

total T

side force

0

inverse coordinate transform

In1

In2

Out1

coordinate transform

angle

In2

Out1

arm length

la

Scope3

Scope1

Scope

Rotor_2

actuator_jerrymdl

u

T

Q

omega

Rotor_1

actuator_jerrymdl

u

T

Q

omega

Integrator3

1
s

Integrator2

1
s

Integrator1

1
s

Integrator

1
s

Earth’s acceleration vector

(0  g/2)

1DOF Rotation controller

omega2

omega1

anngular velocity

angle

Voltage

1/moment of inertia

1/Ix

1/mass

1/M

moment angular momentum

angular velocity (gyro) angle

angle

force

NED positionNED velocity

acceleration

accelerometer
acc = vdot+g

body velocity

Earth’s acceleration in body frame

F
igu

re
A
.8:

T
h
e
sim

p
lifi

ed
2D

-q
u
ad

rotor
m
o
d
el

w
ith

rotation
con

troller
d
iagram

.



Appendix B

Simulation plots

A steps were applied to the target position and heading commands, namely from zero to
X̂x = 10m at t = 1s, X̂y = 2m at t = 3s, ψ̂ = pi/2rad at t = 5s, X̂z = 4m at t = 7s while
the key closed-loop system variables were observed and are plotted below.

0 5 10 15
−2

0

2

4

6

8

10

12

time (s)

po
si

tio
n 

(m
)

Step response of the overall system

 

 
X

x

X
y

X
z

target X
x

target X
y

target X
z

Figure B.1: Position history.

IX



X APPENDIX B. SIMULATION PLOTS

0 5 10 15
−5

0

5

10

time (s)

ta
rg

et
 a

cc
el

er
at

io
n 

(m
/s

2 )

Target acceleration during the maneuver

 

 
a

x

a
y

a
z

target a
x

target a
y

target a
z

Figure B.2: Target acceleration history.

0 5 10 15
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time (s)

qu
at

er
ni

on
 e

le
m

en
ts

 (
−

)

Quaternion elements during the maneuver

 

 
q1
q2
q3
q4
target q1
target q2
target q3
target q4

Figure B.3: Quaternion elements history.

0 5 10 15
−2

−1

0

1

time (s)

ei
ge

na
xi

s 
er

ro
r 

(r
ad

)

Eigenaxis error during the maneuver

 

 
E

x

E
y

E
z

Figure B.4: Eigenaxis error history.



XI

0 5 10 15
0

5

10

15

time (s)

vo
lta

ge
 (

V
)

Actuator voltage during the maneuver

 

 
u1
u2
u3
u4

Figure B.5: Actuator voltage history.

0 5 10 15
0

200

400

600

800

time (s)

m
ot

or
 o

m
eg

a 
(r

ad
/s

)

Actuator angular velocity during the maneuver

 

 
omega1
omega2
omega3
omega4

Figure B.6: Actuator angular velocity history.

0 5 10 15
−5

0

5

10

time (s)

bo
dy

 a
ng

ul
ar

 v
el

oc
ity

 (
ra

d/
s)

Body angular velocity during the maneuver

 

 
p
q
r
magnitude

Figure B.7: Body angular velocity history.



XII APPENDIX B. SIMULATION PLOTS

0 5 10 15
−2

0

2

4

6

time (s)

bo
dy

 li
ne

ar
 v

el
oc

ity
 (

m
/s

)

Body linear velocity during the maneuver

 

 
u
v
w
magnitude

Figure B.8: Body linear velocity history.

0 5 10 15
−5

0

5

10

time (s)bo
dy

 a
cc

el
er

at
io

n 
re

ad
in

g 
(m

/s
2 )

Body acceleration during the maneuver

 

 
udot
vdot
wdot

Figure B.9: Body acceleration history.

0 5 10 15
−15

−10

−5

0

5

time (s)

ac
ce

le
ro

m
et

er
 r

ea
di

ng
 (

m
/s

2 ) Accelerometer reading during the maneuver

 

 
acc

x

acc
y

acc
z

Figure B.10: Accelerometer reading history.



Appendix C

Appended CD

A CD is appended to this work, with the following contents:

• Model: Complete simulink model with all necessary files. To run the simulations,
please load the constants first from quadrotor par.m script file and then synthesize
the rotation controller by running ctrlsynth.m. The complete model is saved in
quadrotor.mdl and the additional, simplified 2D-model in quadrotor2D.mdl.

• Experiments: Two real flights were made and the key system variables were recorded
at native sampling frequency fs = 100Hz. In the first experiment, the translation
damper was disengaged (acro-mode) whereas in the second, the altitude hold-mode
was selected using the altitude reference from onboard rangefinder with the trans-
lation damper engaged. The data format is self-explanatory. Each experiment was
also recorded using a camcorder.

• Gallery: Few photos and videos from the project development history.

XIII


