
Czech Technical University in

Prague

Faculty of Electrical Engineering

BACHELOR THESIS

Car Recognition in Cross-traffic

Video-sequences

Prague, May 2011 Aram Simonian

Acknowledgement

Foremost, I would like to thank to Ing. Martin Matoušek, PhD. for his

excellent leadership, improving ideas and valuable advice. I would also like

to express great gratitude to my family for their support, patience and calm

study environment they provided.

ii

Abstract

This thesis deals with passenger car recognition in individual frames of

cross-traffic video sequences. Firstly, we have suggested characteristic visual

features of the car object class that are suitable for detection from the side-

view. Secondly, we have designed, implemented and trained detectors of

these individual features. Thirdly, we have suggested a structural model of

car side-view, which allowed us to integrate the detectors of the individual

features together. Finally, we have proposed a probabilistic fusion of the

visual features and structural model. The probabilistic fusion is then used

for final detection of cars as whole objects.

iii

Abstrakt

Tato práce se zabývá rozpoznáváńım osobńıch automobil̊u v jednotlivých

rámćıch videosekvenćı z př́ıčného dopravńıho provozu. Nedř́ıve jsme navrhli

optické rysy charakteristické pro bočńı pohled na automobil, které by byly

vhodné k detekci. Pro tyto jednotlivé rysy jsme navrhli, naimplementovali a

naučili elementárńı detektory. Dále jsme navrhli strukturńı model bočńıho

pohledu na automobil, který nám umožnil propojit dohromady detektory

jednotlivých rys̊u. Nakonec jsme vytvořili pravděpodobnostńı model spo-

juj́ıćı optické rysy a strukturńı model. Tento pravděpodobnostńı model jsme

následně použili pro výslednou detekci automobil̊u jako celk̊u.

iv

vi

viii

Contents

1 Introduction 1

1.1 State of the art . 2

1.2 Suggested approach overview 5

1.3 Notation . 7

2 Visual appearance features 9

2.1 Detection at a single scale . 9

2.2 Components for detection . 9

2.3 Wheel detection . 10

2.3.1 Training samples for wheel detection 11

2.3.2 Building a strong classifier with AdaBoost 12

2.3.3 Masks for wheel detection 14

2.3.4 Detection of wheel candidates 15

2.3.5 Learning process and optimisation 18

2.3.6 Transforming wheel detector responses to probability . 20

2.4 B-pillar detection . 21

2.4.1 B-pillar detector training 21

2.5 A-pillar detection . 22

2.5.1 AdaBoost based detection 23

2.5.2 Edge based detection 25

2.5.3 Transformation of oriented angles to probability 26

2.6 Side panel verification . 28

2.7 Contribution . 31

3 Structural model 33

3.1 Learning the structure . 34

ix

3.2 Probabilistic representation of the structure 35

3.3 Contribution . 35

4 Final detector 37

4.1 Labelling of detections and its probability 38

4.2 Labelling evaluation optimisation 40

4.3 Multi-scale detection . 40

4.3.1 Merging detections across scales together 41

4.4 Contribution . 42

5 Experiments 43

5.1 Data for experiments . 43

5.2 Experimental results . 44

6 Conclusion 49

A Contents of the attached CD I

x

Chapter 1

Introduction

Various assistance systems are being integrated into cars these days to sup-

port the driver. The aim of these systems is to contribute to the traffic safety,

either in passive (information/warning) or active (intervention) way. In ad-

dition, the assistance systems can share information and cooperate with each

other (car-to-car systems). In order to be able to deal with the environment,

the intelligent vehicles must be equipped with various sensors allowing them

to observe their surrounding. These sensors include radar, lidar, sonar, stereo

vision or monocular vision systems. We focus on the latter one.

The monocular vision systems have the advantage that they are passive.

The monocular camera is fairly small and encapsulated to be easily integrated

into the vehicle. In addition, these systems are cheap enough to be used in

wide range of car models. However, it is still a problem for a machine to

understand the obtained data in global context. In our case, this means

to give a desired interpretation to an image – not to take the image only

as a set of pixels, but also recognise some objects it contains. This is a

typical problem of pattern recognition, easy for a human being, difficult for

a machine.

In this work, we describe design of a detector of cars in cross-traffic video-

sequences. A car equipped with a camera and such detector could “see” the

other cars and therefore would be able to actively prevent collisions. We will

focus on side crashes, which are quite frequent in street traffic. Following a

typical scenario depicted in Figure 1.1, a car approaches to crossroads and

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Typical scenario for car side-view detector application

monitors the traffic situation ahead. If the system detects another car coming

in cross-direction it can assess velocities of both vehicles and activate brakes

in case of imminent danger of collision.

The fact that we focus only on cross-traffic and side crashes simplifies the

recognition problem. We will only have to detect the cars from side-view. If

we didn’t know the orientation of the car in the image a priori, the problem

would be far more difficult, because we would have to deal also with rotation

in space beside the variability of the appearance of cars.

1.1 State of the art

Car detection is an object recognition problem, whose purpose is to deter-

mine, if the input image contains a car(s), or not. If there are some cars in

the image, we also want to mark their position. The problem can be solved

using different approaches that vary in the representation of the detected

object, representation of the input image and machine learning methods for

detector training.

There are two main types of object representation. The global one,

which treats the detected objects as compact units, and the component-

or part-based one that understands object as a geometrically organised set

of component features. The part-based models consist of a set of compo-

nent detectors that are encapsulated into a higher level detector. The two

approaches can be combined like in [3], where they use a global root filter

which covers whole detected object plus a set of part filters and spatial model

for the location of each part with respect to the root. The score of detector

1.1. STATE OF THE ART 3

is then given as sum of scores of the root and part filters minus the defor-

mation cost. The part-based models are more robust against pose and shape

changes than the global ones ([4]). The challenge of the part-based models

is to choose the components suitable for detection. The components must

be at once characteristic for the whole detected object class and distinguish-

ing from the background. The authors of [3] prefer training the models on

images labeled only with bounding boxes around the objects of given class.

They claim that training with automatic component labelling has potential

to achieve better performance than training with manually labeled compo-

nents. Richer labelling can result in better training, but it can also lead to

worse performance of the final classifier, if the labeled components are not

optimal. The problem of the automatic component labelling is that it needs

large training sets. There are annotated databases of car images available,

such as the PASCAL Object Detection Challenge Dataset or StreetScenes

Dataset, but these databases are not useful for our purpose, because they

contain cars in various poses or partially occluded. In addition, we have a

wide field of view (FOV) in our application, which yields lower image res-

olution per a single car. Therefore we decided to choose and annotate the

components in training data manually, so we also had to think of the com-

ponents for detection.

A detector classifies the input image evaluating a feature vector that

represents the information carried in it. We have to choose a suitable feature

space, into which the input will be transformed before classification. There

are several commonly used feature spaces including grayscale pixel intensities,

histograms of oriented gradients (HOG) or Haar wavelet coefficients. Each of

them fits a different object class. HOG features were successfully applied in

[3] for detection of different object classes including cars. Their advantage is

that they cover also the statistic information between adjacent pixels of the

image. According to [5], grayscale pixel intensity values work well enough

for the car class and for some data sets even better than HOG features. The

image transformed to chosen feature space is subsequently classified on the

principle of sliding window, which is based on application of a filter at all

positions and scales of the image.

4 CHAPTER 1. INTRODUCTION

When designing an object detector, we also have to choose a classifier

that will be used for detection. According to [1], the classifiers can be di-

vided into two major groups: generative and discriminative. The two groups

differ in the method of solving the decision problem, which requires deter-

mining the posterior probability p(y|x) of labelling y given observed data x.

A generative model learns the joint probability p(x, y) and prior distributions

p(x), p(y) from training data and then uses the Bayes’ rule to assign observed

data to a class with highest posterior probability. However, large training

sets are needed to find the joint distribution p(x, y) and priors p(x), p(y) with

sensible accuracy, especially for high dimensional x. If we only want to make

classification decisions (object is either included or excluded from a class),

the posterior probabilities p(y|x) are sufficient and we do not need the joint

distribution at all. A discriminative model determines the posterior proba-

bility directly from the observed data without any assumption about their

probability. The discriminative models are more popular than the generative

ones, because they are less difficult to train.

The most common discriminative training methods for object detection

are Support Vector Machines (SVM) and boosting algorithms including the

AdaBoost. These supervised learning methods can be used for training a

global or component detector, as well as for composition of component de-

tectors into a part-based model. SVM algorithm constructs an optimal hy-

perplane in a high-dimensional feature space of training samples, which sep-

arates positives and negatives. If the problem is not linearly separable, the

samples are mapped to a higher-dimensional feature space in which the sep-

arability is ensured. Further description of SVM can be found in literature

[1, 2]. The boosting algorithms construct a strong (boosted) classifier from

a set of weak classifiers (weak learners). The weak classifiers can be based

on different principles (linear classifier, k-nearest neighbour, etc.). The only

condition for a weak learner is, that it has to perform at least better than

chance. Note that if the weak learners have high accuracy on the training

data set, the boosting effect will be small. The most popular variant of

boosting is AdaBoost, which is described in Section 2.3.2.

There already exist sophisticated systems for object detection including

car, pedestrian or face recognition. There are even general detection systems

1.2. SUGGESTED APPROACH OVERVIEW 5

that can be trained to recognise different object classes, like the one presented

in [3]. These systems provide an excellent detection accuracy and also certain

robustness against class variances. However, they are also very complex and

the question is, whether our problem is worth of such complexity. We attempt

to design a simpler detection method that could be implemented for real-time

video processing, which is necessary for the intended area of application. In

addition, we are not so interested in highly precise object location in the

input image as the authors of [6]. It is not that important for us if we detect

a car a few pixels next to its real position, but the more precise detection we

get, the better, because the detector could be later extended with some kind

of object tracking.

1.2 Suggested approach overview

We decided to adopt a component-based detection approach using a struc-

tural model, which is often referred to as bag-of-features in literature. This

approach is based on detection of several characteristic features that are rela-

tively invariant within the object class and their subsequent integration into

the structural model. Its advantage is that it makes use of the informa-

tion that is carried in the structure of the car, i.e., not only in the visual

appearance of its components, but also in their relative displacement.

In comparison with the “whole object” detection, this approach has better

ability of generalisation when being learnt from a relatively small training

sets. Similarly to the systems like [3], it provides some robustness against

class variability, which is directly what we need, because we want to detect

cars and the cars are quite variable in shape, colour and size. This is obvious

even if we only consider types of car body - limousine, hatchback, waggon,

SUV, MPV, coupé etc.

We have transformed the problem of car detection in a video-sequence to

the problem of car detection in every single video frame. Our detector does

not use any mutual information between the adjacent video frames. The

detector consists of three major modules:

1. visual appearance of components,

6 CHAPTER 1. INTRODUCTION

2. structural model of car side-view,

3. probability model for final detection.

The visual appearance of components is represented by component detectors,

whose principles and learning are described in Chapter 2. The structural

model presented in Chapter 3 captures the information carried in the struc-

ture of the car and allows us to build and use the probability model for final

car side-view detector described in Chapter 4.

The proposed detection method is divided into several consecutive stages:

• Step 1: Detection of single wheel candidates. We use wheel component

detector to locate wheel candidates in the input image.

• Step 2: Formation of car candidates. We form pairs of wheel can-

didates using geometrical constraints given by the structural model.

These pairs act as whole car candidates in further stages of detection.

• Step 3: Verification of the car candidates. We evaluate the rest of

components (the A-pillar and side panel) corresponding to every car

candidate.

• Step 4: Probabilistic fusion. We transform all measurements per-

formed on the input image to probabilities and use the probability

model to find the best labelling of car candidates.

• Step 5: Merging of different scales. The detection in previous steps

is done for vehicles that have one size in the image – i.e., for each

particular scale separately. The final interpretation of the input image

is acquired by merging the optimal labellings across all inspected scales.

The whole process described above is performed independently on every sin-

gle video-frame. By measurements mentioned in Step 4, we mean the com-

ponent detector responses, as well as relative displacement of component

detections. The probabilities of component detector responses are learnt

from distributions of the responses on annotated training samples, whereas

the probabilities of relative displacements of the components represented by

the structural model are learnt from displacements of the annotated training

samples.

1.3. NOTATION 7

1.3 Notation

We will use lowercase bold Roman letters such as x to denote vectors. Up-

percase bold Roman letters such as X will denote matrices. When referring

to size of matrices or images, as well as to coordinates of an element of matrix

or image, we will preserve the usual convention x × y for size and (x, y) for

coordinates, where x denotes horizontal size or column index and y denotes

vertical size or row index. The origin of system of coordinates is always

located in the upper left corner of matrix or image.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Visual appearance features

In this chapter, we will describe the component detectors we have designed.

We will show the principles and training of the component detectors, as well

as subsequent component detection and transformation of detector responses

to probabilities that will be used in probability model for final detection

described later in Chapter 4.

2.1 Detection at a single scale

The component detectors are learnt on training samples normalised to a de-

fined size. Nevertheless, when using the detector, we do not have granted

that all cars in the scene are in the same viewing distance, so we have to

process each frame at multiple scales, too. To preserve simplicity, all exam-

ples of detections provided in this chapter are computed at the same scale, at

which we have trained the detectors. The multi-scale detection is described

in Chapter 4.

2.2 Components for detection

Undoubtedly, the best component for detection are the wheels. Other suit-

able features proposed in [5] include roof, rear view mirror and the ”side

panel”, which is the area between wheels containing lower part of doors, usu-

ally a strong horizontal edge and the shadow under the car. We had to reject

9

10 CHAPTER 2. VISUAL APPEARANCE FEATURES

Figure 2.1: Components suggested for detection: wheels, A-pillar, lower part

of B-pillar and side panel

the rear view mirrors, because we have low resolution per one car due to the

wide FOV, so the mirrors are too small to be detected. At first, we had not

chosen neither the roof, neither the side panel, because they are both charac-

terised by horizontal edges, which are quite common in the scene, especially

in the urban environment. However, we later returned to the side panel and

used it for verification of detections.

Instead of the rejected components we suggested the A-pillar and the

lower part of B-pillar with the upper part of doors in addition to wheels.

The main advantage of the A-pillar is that sloping edges are not very usual

in the scene, so it is quite a well distinguishing feature. During experiments,

it came clear that B-pillar is problematic, because it is hardly visible in many

cases. The components we suggested for detection are shown in Figure 2.1.

2.3 Wheel detection

Wheels are probably the most characteristic attribute of the side view of a

car. They are constant in shape and if we consider a fixed viewing distance,

they have nearly the same size, too. Therefore, they are ideal for detection.

We use the AdaBoost algorithm to learn the classifier, which is a substantial

part of the proposed wheel detector. The algorithm is closely described in

[1] or [2], we will give only a brief description in Section 2.3.2.

2.3. WHEEL DETECTION 11

Figure 2.2: Examples of annotated video-frames (blue – bouding boxes and

positions of wheels, yellow – angle and location of A-pillar, red – location of

B-pillar)

2.3.1 Training samples for wheel detection

To build up the training set, we extracted a set of frames from a few video-

sequences and manually annotated the components suggested for detection.

Each car has been annotated twice in a sequence. We have annotated location

and size of wheels (as bounding boxes), as well as all the other components

(described later) belonging to just one car in each annotated frame. The an-

notations were later reused for learning the structural model. Two examples

of annotated video-frames are shown in Figure 2.2.

The training samples for wheel detector were cut from the annotated

video frames. The samples were scaled during cutting, so that the wheels at

all samples had a uniform size, which we defined as 20 pixels in diameter. As

the training samples contain also certain surrounding, their final size is 30×35

pixels. It is worth mentioning that the wheels are not vertically centred in

the positive training sample, because the area above the wheel contains the

mudguard, which carries more information than the area below the wheel,

which usually contains only the shadow of the car on the road.

Our positive and negative training samples differ in relative location of

the wheel centre within the sample. Location of the wheel centre within pos-

itive and negative samples is shown in Figure 2.3. The negative samples were

generated by shifting the centre of the wheel to the points lying on the border

of positive wheel location. These points are marked red in Figure 2.3. This

12 CHAPTER 2. VISUAL APPEARANCE FEATURES

20

20

5
30

35

5

x0

y
0

Figure 2.3: Location of the wheel

centre within training samples

(centre of the circle for positive,

red crosses on its perimeter for

negative samples)

Figure 2.4: Examples of positive

(top) and negative (bottom) wheel

training samples

way, we generated one positive and eight negative training samples from each

annotation. In fact, the negative samples do not necessarily have to contain

wheels at all – they could be cut randomly from the background or contain

other car parts than wheels. However, this way, we reach strong positive

detector response around the wheel centre and strong negative response on

its borders simultaneously. We will take advantage of this effect and will

detect the wheels as positive peaks in wheel classifier responses using Mexi-

can hat filtration, which is described in Section 2.3.4. Beside the mentioned

negative samples, we have automatically generated additional negatives con-

taining horizontal and vertical stripes of various shades in different positions

to decrease the detector sensitivity to strong contrasts. Examples of positive

and negative training samples are shown in Figure 2.4.

2.3.2 Building a strong classifier with AdaBoost

AdaBoost is an iterative algorithm that composes multiple weak classifiers

into a strong one. Inputs of the AdaBoost are a labelled set of training sam-

ples and a set of weak classifiers to choose from, output is a set of chosen

weak classifiers, their parameters and weights. The key idea of the AdaBoost

2.3. WHEEL DETECTION 13

algorithm is weighting of the samples and minimizing the weighted training

error. The weights are updated in each iteration, so that the learning process

focuses on wrongly classified samples. We can influence the learning process

by setting the initial weights of the training samples. These weights are usu-

ally set uniform for all samples. However, our training sets are unbalanced

(the wheel training set contains 8 times more negative than positive samples,

as described in previous section), so we have to set uniform weights for pos-

itives and negatives separately, so that sum of weights in both groups was

0.5. Otherwise, the learning would rather focus on negative samples, which

would be undesirable.

Classified samples are 2D regions of the input image. Our weak classifiers

consist of a mask Mi of the same size as training samples and an associated

threshold ti. The classification hi(X) of a sample or detection window X

using mask Mi is

hi(X) =


1, if

∑
u

∑
v

|X(u, v)Mi(u, v)| ≥ ti

−1, if
∑
u

∑
v

|X(u, v)Mi(u, v)| < ti.
(2.1)

The choice of particular masks and threshold values is made by the AdaBoost

learning algorithm.

Numeric value of response r(X) of the strong classifier to detection win-

dow X is

r(X) =
imax∑
i=1

αihi(X), (2.2)

where imax is number of weak classifiers chosen by AdaBoost and αi are

weights of the weak classifiers learnt by AdaBoost as well. Classification

c(X) of detection window X is then given depending on the value of r(X)

as

c(X) =

1, if r(X) > 0

−1, if r(X) ≤ 0,
(2.3)

where c(X) = 1 signifies membership in class and c(X) = −1 excludes the

sample from the class.

14 CHAPTER 2. VISUAL APPEARANCE FEATURES

2.3.3 Masks for wheel detection

All the masks available for weak classifiers are generated as matrices of the

same size as the size of training samples. We use three different types of

masks: circular, radial and edge masks.

Circular masks M c are special case of radial masks with zero circular

frequency k (see (2.5) for definition of radial masks). They are generated as

matrices containing ones in a circle around the expected centre of the wheel

and zeros elsewhere. They differ in the radius of the circle rmax, which is

graded from 3 to 12 pixels with step 1. Elements of masks are defined as

M c
i (x, y) =

1, if r ≤ rmaxi

0, otherwise,
(2.4)

r =
√

(x− x0)2 + (y − y0)2,
rmaxi ∈ {3, 4, . . . , 12}.

Complete set of circular masks is shown in Figure 2.6a. These masks give

good response for wheels with full naves, but their response to wheels with

spokes is worse.

The pixel intensity values of wheels with spokes form a periodic function

along the perimeter, so we are able to detect them using radial periodic masks

M r, whose elements are defined in complex domain as

M r
i (x, y) =

ejkiϕ, if r ∈ 〈ki/2; rmaxi〉

0, otherwise ,
(2.5)

r =
√

(x− x0)2 + (y − y0)2,

ϕ = tan−1
(
y − y0
x− x0

)
,

rmaxi ∈ {3, 4, . . . , 12},
ki ∈ {5, 6, . . . , 12}.

The responses of radial masks are invariant to the rotation of detected wheel

thanks to the application of absolute value in (2.1). Radial masks vary in

radius rmax and circular frequency k. The nonzero elements of the masks

form an annulus with centre identical with the expected centre of the wheel.

2.3. WHEEL DETECTION 15

Figure 2.5: Detail of real (left) and complex (right) part of a radial mask

(rmax = 12, k = 5)

Outer radius of the annulus rmax is graded in the same way as in case of

the circular masks. Reason for the presence of the inner circle is the aliasing

caused by limited resolution of the processed images. Its radius depends on

the circular frequency k. Figure 2.5 shows example of real and complex part

of a particular radial mask. Real parts of complete set of radial masks are

shown in Figure 2.6b.

The last type of masks used for wheel detection are the edge masks. An

edge mask contains ones in a rectangle in its upper left corner and zeros

elsewhere. Particular edge masks differ in the dimensions of the rectangle,

M e
i (x, y) =

1, if x ∈ 〈1;xmaxi〉 ∧ y ∈ 〈1; ymaxi〉

0, otherwise ,
(2.6)

xmaxi ∈ {1, 2, . . . , 30},
ymaxi ∈ {1, 2, . . . , 35}.

We get 1050 edge masks in total. Examples of edge masks are shown in

Figure 2.6c.

In summary, the AdaBoost learning selects masks Mi for weak classifiers

from the union of all masks M c, M r and Me.

2.3.4 Detection of wheel candidates

We have built a strong classifier, that can classify a detection window of size

30×35 pixels into two classes – wheels and non-wheels. To compute detector

responses for the whole video-frame G, we would need to place the detection

16 CHAPTER 2. VISUAL APPEARANCE FEATURES

(a) Set of circular masks

(b) Set of radial complex masks, real part displayed

(c) Examples of edge masks (only 20 of 1050 shown)

Figure 2.6: Masks for wheel detection

2.3. WHEEL DETECTION 17

window above each pixel of the frame and store the value r(X) from (2.2) as

the strong classifier response for that pixel. This principle can be effectively

implemented using 2D convolution with the selected masks. For each mask

Mi, we compute 2D convolution with the whole frame. By thresholding the

absolute values of the convolution result Z, we get matrix Hi that contains

values hi(X) from (2.1) for each pixel of G:

Z = G ∗Mi,

Hi(x, y) =

1, if |Z(x, y)| ≥ ti,

−1, if |Z(x, y)| < ti.

Resulting matrix of responses of the strong classifier R(G) is given according

to (2.2) as weighted sum over masks

R(x, y) =
imax∑
i=1

αiHi(x, y). (2.7)

As it is shown in Figure 2.7a, the strong classifier gives positive response not

only for wheels, but also for the background, thus generating false positives.

Here we can make profit of the fact that there is usually an area with strong

positive response around the centre of the wheel and another area with strong

negative response around its border, as mentioned in Section 2.3.1. We can

suppress the false positive responses in the background and emphasise the

wheel responses by convolving the AdaBoost response R with 2D Mexican

hat wavelet (see [7]), which is negative of normalised second derivative of a

Gaussian,

ψ(x, y) =
2√

3σπ1/4

(
1− x2 + y2

σ2

)
e−

x2+y2

2σ2 . (2.8)

The value of σ = 7 has been found experimentally using numeric responses

of the strong classifier to the positive training samples. The result R′ of the

Mexican hat filtration is shown in Figure 2.7b,

R′ = R ∗ψ. (2.9)

In the next step, the filtered AdaBoost responses R′ are thresholded and

we then use the Non-Maximal Suppression algorithm (NMS) [7] to find local

18 CHAPTER 2. VISUAL APPEARANCE FEATURES

−10

0

10

(a) Raw classifier responses R (Equation 2.7)

−10

0

10

(b) Filtered numeric responses R′ (Equation. 2.9)

Figure 2.7: Comparison of raw and filtered wheel classifier responses

Figure 2.8: Wheel detections after thresholding and NMS. The detection was

run on scale = 1, i.e. the size of the squares is 20 pixels.

maxima of the thresholded values, which represent the centres of detected

wheel candidates. Each wheel candidate is then characterised by its coor-

dinates (xw, yw) in the image and numeric value of the response function

R′(xw, yw) = w. We can adjust sensitivity of the detector by setting the

threshold level and size of the non-maximal suppression window. Example

of wheel detections is shown in Figure 2.8.

2.3.5 Learning process and optimisation

Adding edge masks significantly lengthens the learning process, because the

learning algorithm has to choose from over 1100 masks in each iteration

instead of 74 masks without the edge masks. However, only the learning

2.3. WHEEL DETECTION 19

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Iterations of learning algorithm

W
ei

gh
te

d
er

ro
r

[%
]

without edge masks
with edge masks

(a) Comparison of learning with and with-

out edge masks (zoomed).

0 50 100 150 200 250 300
0

5

10

15

20

25

Iterations of learning algorithm

W
ei

gh
te

d
er

ro
r

[%
]

(b) Learning with edge masks (overview)

Figure 2.9: Weighted training error (weighted by initial weights of the trai-

ning samples) depending on number of iterations of the learning algorithm

process is slowed down. The computational complexity of the strong classifier

stays the same, because it depends on the number of masks chosen, which

is limited by number of learning iterations. Both learning and subsequent

classification and detection are implemented in Matlab.

Without edge masks, we reached training error 0.07% after 300 iterati-

ons. The error was caused by false positives and with the use of edge masks

dropped down to 0%. Usefulness of the edge masks can be seen from dis-

tribution of kinds of masks. AdaBoost has chosen 94 circular, 106 radial

and 90 edge masks in 300 iterations, so the contribution of edge masks is

not negligible. Figure 2.9 shows training error weighted by initial weights

depending on number of iterations of the learning algorithm.

Unlike the A-pillar and side panel detector responses, the computation

of wheel detections is lengthy. It is given by the principle of the classifier

algorithm, which requires convolving the input image with all the masks

chosen during learning and subsequently thresholding the convolutions. We

can accelerate both of these two stages.

Let’s have a look at the convolution computation first. The masks we

suggested for wheel detection contain large “inactive” areas of zeros, which

can be cut off without any impact on the results of convolutions. We must

20 CHAPTER 2. VISUAL APPEARANCE FEATURES

only be aware of the fact, that the Matlab function conv2 we are using stores

every partial result of convolution in the pixel corresponding to the centre

of the mask, so we must take care of the relative offset of the mask centre

caused by cutting. The acceleration of computation cannot be predicted in

advance, because different masks have different relative size of inactive areas

and we do not know, which masks will be chosen during the learning process.

We have reached speed-up about 49.6% for the learnt wheel detector.

In case of the convolution thresholding, we cannot improve the compu-

tation speed, but we can minimise the number of calls of the thresholding

function, because AdaBoost sometimes chooses the same mask with the same

thresholds more times, only with different weights. Such group of weak clas-

sifiers can be merged into a single one with the same mask and threshold and

weight equal to sum of weights over the group. This trick reduces multiple

thresholding calls needed when evaluating the group of weak classifiers one

by one to just one call. On our wheel detector, the difference makes another

7.2%.

Both trimming of the masks and mask merge are performed at the end

of the learning process.

2.3.6 Transforming wheel detector responses to probability

In the probabilistic model described later in Chapter 4, we will need condi-

tional probabilities P (w|L) of wheel detector numeric responses for wheels

and non-wheels, where L denotes label of a wheel candidate, which can be

0 for a non-wheel or 1 for a wheel. We can learn these probabilities from

distributions of detector responses to positive and negative training samples.

Figure 2.10 shows histograms of wheel detector numeric responses after Me-

xican hat filtering. The histograms can be fitted by Gaussian distributions

quite precisely,

p(w|L = 0) = N (µneg, σneg), (2.10)

p(w|L = 1) = N (µpos, σpos).

We identified the constants of the Gaussian distributions for the learnt wheel

detector as µneg = −2.19, σneg = 1.67, µpos = 6.32 and σpos = 2.83.

2.4. B-PILLAR DETECTION 21

-20 -15 -10 -5 0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

Numeric detector response

R
el

at
iv

e
fre

qu
en

cy

negative
positive
positive fit
negative fit

Figure 2.10: Conditional probability of wheel detector response R′

(blue – responses to negative training samples, red – responses to positive

training samples)

2.4 B-pillar detection

The next feature we suggested for detection is the lower half of the B-pillar

with its surrounding. Having implemented the AdaBoost learning, we tried

to apply the same method as for the wheels. We generated different trai-

ning samples and provided AdaBoost only with the edge masks described in

Section 2.3.3.

2.4.1 B-pillar detector training

The training samples were again cut from annotated video frames. As well as

in the case of wheels, it was essential to normalise the scale to reach effective

training. However the B-pillar is not so invariant in shape and size as the

wheels, so this appeared to be a slight problem. Finally, we decided to pick

the pillar height as a measure of its scale. The normalised height of the

pillar is defined as 20 pixels. As we want the positive training sample to

contain lower half of the pillar and its surrounding, we chose training sample

size 30×20 pixels. Similarly to the wheel training samples, we generated

negative samples by shifting the lower end of the pillar to different relative

positions within the detection window. Location of the pillar in positive and

negative training samples is shown in Figure 2.11, a few examples of positive

and negative training samples are depicted in Figure 2.12.

22 CHAPTER 2. VISUAL APPEARANCE FEATURES

20

30

20

Figure 2.11: Location of the

B-pillar within training samples

(red crosses denote location of

lower pillar end for negative sam-

ples, positive location is drawn di-

rectly)

Figure 2.12: Examples of posi-

tive (top) and negative (bottom)

B-pillar training samples

In spite of the fact that the positive and negative samples should be easily

distinguishable using the edge masks, we have not reached expected results.

The learning algorithm had not reached zero training error even in 1000 ite-

rations, having problem with high false positive rate, shown in Figure 2.13.

The reason is that the B-pillar is nearly or completely unrecognisable in ap-

proximately 50% of cases. The problem may be also caused by other factors,

which include strong motion blur, variety of possible combinations of colours

(dark pillar/light windows, dark pillar/dark windows, etc.) or non-optimal

training samples and masks. The last and most probable possibility is pre-

sence of reflections and visibility of passengers and car background through

the window, which can confuse the learning algorithm. The feature we pro-

posed is therefore probably too varied to be detected effectively. We have

finally excluded the B-pillar detection from our method due to the poor per-

formance of the detector.

2.5 A-pillar detection

Whereas horizontal and vertical edges are very common in the scene (espe-

cially in urban environment), sloping edges are not so usual. They appear in

shadows, reflections, they arise as a result of perspective, but in most cases,

2.5. A-PILLAR DETECTION 23

0 200 400 600 800 1000
0

10

20

30

40

Iterations of learning algorithm

W
ei

gh
te

d
er

ro
r

[%
]

(a) Weighted training error (weighted by

initial weights of training samples)

0 200 400 600 800 1000
0

10

20

30

40

50

60

Iterations of learning algorithm

E
rr

or
 [%

]

False positives
False negatives

(b) False positive and false negative rates

Figure 2.13: B-pillar detector learning process

they characterise the A-pillar. In addition, the angle of A-pillar of passenger

cars lays within a relatively bounded interval, so it is a well distinguishing

feature. On the top of that, we are able to determine the direction of car

movement depending on the side, where we detect the A-pillar and the angle,

under which it is detected.

2.5.1 AdaBoost based detection

At first, we tried the AdaBoost approach again. We restricted the detection

problem only to cars going from right to left. The other case is axially

symmetric with respect to the vertical axis, so we transform a trained detector

to the opposite traffic direction by flipping the chosen masks.

Size of training samples was set to 15×15 pixels. We generated slope

masks M s, which contain ones and zeros below and above a sloping edge,

respectively,

M s
i (x, y) =

1, if y ≥ (sinϕi)x+ ki

0, otherwise ,
(2.11)

ϕi ∈ {25◦, 30◦, . . . , 50◦},
ki ∈ {−15,−14, . . . , 15}.

24 CHAPTER 2. VISUAL APPEARANCE FEATURES

(a) Examples of slope masks

(32 of 73 shown)

(b) A-pillar location in training sam-

ples. Black cross is for positive, red

crosses for negative samples.

Figure 2.14: Masks and training samples for A-pillar detection

Figure 2.15: Examples of positive (top) and negative (bottom) A-pillar

training samples

The masks vary in the angle and relative position of the edge. A few examples

of slope masks are shown in Figure 2.14a. Except for the slope masks, we

have added masksMe (2.6) containing horizontal and vertical edges to enable

better elimination of potential false positives.

The training samples were cut from annotated video-sequences. A posi-

tive sample has the middle of the pillar located in its centre, as it is shown

in Figure 2.14b. Negative training samples were generated by shifting the

middle of the pillar along the diagonal about 14 pixels, so that both hori-

zontal and vertical offsets were 10 pixels. Just as in the case of wheel detec-

tor training, we have added automatically generated negative samples with

horizontal and vertical stripes. Examples of training samples are shown in

Figure 2.15.

2.5. A-PILLAR DETECTION 25

−5

0

5

Figure 2.16: Responses of the AdaBoost A-pillar detector

The experimental results were not satisfactory. We were unable to reduce

the high false positive rate of the detector, which is shown in Figure 2.16.

We therefore proposed a different solution based on edge detection.

2.5.2 Edge based detection

The advantage of detecting the A-pillar as a sloping edge is its simplicity

and smaller computational complexity in comparison with the AdaBoost

approach. The A-pillar is characterised not only by one, but in many cases

by two parallel edges. This depends on the differences between intensity

levels of pillar, background and driver’s window.

The edge in each pixel g(x, y) of an imageG is described by its magnitude

m and direction φ identical to the magnitude and direction of gradient.

m = |grad g(x, y)| =

√(
∂g

∂x

)2

+

(
∂g

∂y

)
, (2.12)

φ = arg
(

∂g
∂y
, ∂g
∂x

)
. (2.13)

Gradient is computed as 2D convolution of the image with a gradient

operator. There is quite a big variety of gradient operators like Sobel, Laplace

or Prewitt operator described in literature [7]. We use two operators dx, dy

approximating first derivative of the image function in vertical and horizontal

direction, respectively.

dx =
[
−0.5 0 0.5

]
, (2.14)

dy = dx
T . (2.15)

26 CHAPTER 2. VISUAL APPEARANCE FEATURES

Horizontal and vertical elements of gradient are then

Gx = G ∗H ∗ dx, (2.16)

Gy = G ∗H ∗ dy, (2.17)

where H is additional Gaussian filter for noise suppression.

Magnitude and direction of gradient in each pixel is given by

m(x, y) =
√
G2

x(x, y) +G2
y(x, y) (2.18)

φ(x, y) = arg(Gy(x, y), Gx(x, y)). (2.19)

Consequently, we limit the computed directions φ(x, y) to interval 〈−90◦, 90◦〉,
because the angle of A-pillar can be for example −45◦ as well as 135◦ when

the car goes from right to left and we want to process these two possibilities

as equivalent in further stages of detection. After this transformation, the

cars going from left to the right are characterised by positive A-pillar an-

gles, whereas the cars in the opposite traffic direction are characterised by

negative ones.

2.5.3 Transformation of oriented angles to probability

In the next step, we transform the oriented angles to probability of A-pillar

presence. For this purpose, we extract A-pillar angles from the annota-

tions and approximate their probability distribution. Figure 2.17a shows

histogram of the extracted data with fitted Gaussian distribution:

p(φp) = N (µangle, σangle), (2.20)

where µangle = −34.2◦ and σangle = 4.6◦ were estimated from the annotations

of video-sequences with right-left direction of traffic. The distribution for

opposite traffic direction differs only in the sign of mean value. Using the

distribution (2.20), we can get the probability of A-pillar presence Ppil(x, y)

for each pixel. We are in fact interested only in strong edges, so we use a

simple gradient magnitude thresholding:

Ppil(x, y) =

0, if m(x, y) < t,

P (φp = φ(x, y)), if m(x, y) ≥ t,
(2.21)

2.5. A-PILLAR DETECTION 27

−60 −50 −40 −30 −20 −10
0

0.05

0.1

0.15

0.2

Oriented angle φ [deg]

R
el

at
iv

e
fr

eq
ue

nc
y

Annotations
Fit

(a) A-pillar angle distribution for

right-left traffic direction. (The dis-

tribution for opposite direction differs

only in sign of the mean value.)

(b) A-pillar response probability com-

putation. Green – pillar displacement,

blue – high probability of pillar pre-

sence Ppil, red – 2D Gaussian distribu-

tion.

Figure 2.17: A-pillar response probability

where the threshold t = 10 has been chosen experimentally.

Another problem we had to solve was the fact that the pillar can generate

one or two edges, whereas we would need always a single strong response,

ideally located near the middle of the pillar. Therefore, after transforming

the edge directions φ to probabilities P pil, we expand maximal probabilities

using a square sliding window W . The value of every element Ppil(x, y) is

set to maximum over the sliding window placed with its centre above this

element,

Ppil(x, y) = max{Wxy}. (2.22)

This way, we ensure that the responses of two detected edges are joined into

one compact response. Regarding that the usual thickness of the A-pillar at

normalised scale is around 3 pixels, sufficient sliding window size is the same.

Figure 2.18 shows the detected edge directions transformed to probabilities

P pil. Results reached with the edge based detector are significantly better

than the ones with the AdaBoost detector.

The A-pillar detector responses are not localised very well, so we combine

the A-pillar detector response with the structural model to get probability

P (a), that will be used in probabilistic model during final detection. We eva-

luate a detection window around the expected pillar position according to the

28 CHAPTER 2. VISUAL APPEARANCE FEATURES

0

0.02

0.04

0.06

0.08

Figure 2.18: Input image (top) and detected edge directions transformed to

probability of A-pillar presence Ppil (bottom)

corresponding front wheel detection. The process is schematically depicted in

Figure 2.17b. The green arrow marks mean value of pillar displacement given

by the structural model, the blue ellipse represents high values of probability

Ppil and the red square with dashed ellipses represents detection window con-

taining 2D Gaussian distribution of A-pillar relative displacement described

later in Section 3.2. We are searching for A-pillar location with maximal

joint probability with respect to both structure and visual appearance. We

take maximum of the Hadamard product (�) of detection window and the

overlaid part of probability Ppil as the joint probability of the A-pillar,

P (a) = max {Ppil �N (µa,σa)} . (2.23)

Our implementation of final detector allows also automatic detection of

driving direction of detected car using the A-pillar detection. We can evaluate

the A-pillar detector response with structural models for both directions and

choose the one with higher probability, which determines the driving direction

of the car.

2.6 Side panel verification

We have rejected the side panel as a primary component for detection, be-

cause we are unable to locate it in the image precisely. However, we can

use it for verification of car detections – when we detect a potential pair of

2.6. SIDE PANEL VERIFICATION 29

L

L/4 L/4L/2

H

Figure 2.19: Location and dimensions of the side panel (red box). Wheel

base L is shown as dashed line connecting wheel centres (green circles).

Figure 2.20: Examples of side panel area

wheels, we can inspect the area between them, whether it contains something

similar to the side panel, or not.

We define the side panel as rectangular area of the same height as nor-

malised wheel diameter (20 px for scale = 1) and width equal to one half of

the wheel base, centred between the wheels, as it is shown in Figure 2.19.

Several examples of side panel areas are depicted in Figure 2.20.

The key idea of the verification is that the side panel has typically quite

low variance of intensity levels along the direction of the wheel base and

remarkably higher variance along the perpendicular direction. Our camera

is not inclined, so we can assume that the wheel base is horizontal, which

simplifies the evaluation. To eliminate influence of small deviations of the

wheel base from horizontal direction, we subsample the side panel area to

half vertical resolution before evaluation, which ensures that the pixel rows

are parallel with the edges of the side panel.

30 CHAPTER 2. VISUAL APPEARANCE FEATURES

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

Measure s [−]

R
el

at
iv

e
fr

eq
ue

nc
y

Measured
Fit

Figure 2.21: Conditional probability of side panel measure s

We define measure s that will evaluate a rectangular side panel region D

of size xmax × ymax in a following way:

sh =
∑
y

{
Std

x
{D(x, y)}

}
,

sv = Std
y

{
1

xmax

∑
x

D(x, y)

}
,

s =
s2h
s2v
. (2.24)

The last thing we have to do is to transform values of the measure s to

probability P (s) that the inspected area contains side panel. This probability

is used for final detection. The measure s is used to verify the assumption

that a pair of wheel candidates forms a car. However, it cannot be used to

verify that some wheel candidate is not a real wheel. This is a significant

difference from the usage of the AdaBoost classifier response R′ defined in

Section 2.3.4, which has meaning for both cases. Therefore, we only have to

find the distribution of the measure s on positive samples cut from annotated

video frames. Figure 2.21 shows histogram of measure responses on positive

samples with fitted rational function. The sought probability of side panel

measure s was experimentally identified as:

p(s) =
1

2
√

10
(s+ 0.1)−

3
2 . (2.25)

The shift in s by 0.1 is used in order to obtain proper probability density

function (which has to integrate to 1 over all possible values of s).

2.7. CONTRIBUTION 31

2.7 Contribution

We have implemented the AdaBoost learning algorithm, which is reusable

for different components. It is possible to generate different training samples

and masks to learn a strong classifier for any component, although it has

certain limitations as we could have seen when trying to learn the B-pillar

detector.

We have suggested additional components for detection and annotated

them in the video-sequences. We have introduced new types of masks for

AdaBoost weak classifiers and automatically generated negative training

samples for AdaBoost learning.

We have proposed detectors based on different principles than AdaBoost.

The edge based A-pillar detector does not only give better results than

AdaBoost, but is less computationally demanding, too. The AdaBoost de-

tector was finally used only for wheels.

32 CHAPTER 2. VISUAL APPEARANCE FEATURES

Chapter 3

Structural model

The structural model interconnects single component candidates into whole

car candidates. Without the structural model, we could not interpret any

relationships between the components and we would not be able to detect

cars as sets of components.

The structural model also increases the robustness of detection. Single

component detectors described in Chapter 2 are quite susceptible to false de-

tections on visually similar objects, e.g. the wheel detector can have positive

response on a traffic sign. However, when using more component detectors,

we can detect cars as combinations of components. This is much more resis-

tant to the false detections, because the car is not characterised only by visual

appearance of its components, but also by their relative displacement – the

structure. If we consider the mentioned example with false wheel detection

caused by a traffic sign, there probably won’t be any suitable detection of

another wheel, A-pillar and side panel, that would fit the structural model.

Another advantage brought by the multi-component detection is, that

if we obtain strong detector response for some components and weaker re-

sponses for the others, we will still capture the car as whole object, because

the overall probability of complete car detection will be sufficient.

Regarding experimental results, we have decided to integrate only the

wheels, A-pillar and side panel components into the final detector.

33

34 CHAPTER 3. STRUCTURAL MODEL

0 20 40 60 80 100 120

−40

−30

−20

−10

0

10

fr
eq

ue
nc

y

0

2

4

6

8

10

12

Figure 3.1: 2D histogram of relative displacements of wheels and A-pillar

for right-left traffic direction, front wheel is the anchor position. Red crosses

mark mean values of displacements.

3.1 Learning the structure

In this section, we will describe the structural model of side-view of a car

going from right to left. The model is learnt at normalised scale, at which

the wheels measure 20 pixels in diameter. The model for opposite traffic

direction is axially symmetric with respect to vertical axis, so it does not

have to be learnt separately.

The structure of the car is given by relative positions of the components,

so we need an anchor position to compute the relative displacements of the

other components with respect to it. We have chosen the front wheel centre

as the anchor, because our wheel detector gives the best results in comparison

with the other component detectors, which do not localise the components

so precisely.

As the position of the side panel detection window is given as the centre

of a wheel pair, we need to learn only two parameters of the structure, the

displacement of the A-pillar centre and the displacement of the rear wheel

centre with respect to the front wheel centre. We used the annotations of

video-sequences where we know the direction of traffic for learning, so we

could determine, which of the two wheel annotations present in an annotated

frame denotes the front wheel. Figure 3.1 shows 2D histogram of relative

displacements of the components for right-left traffic direction. Red crosses

mark the mean values of positions of the wheel and A-pillar centres.

3.2. PROBABILISTIC REPRESENTATION OF THE STRUCTURE 35

3.2 Probabilistic representation of the struc-

ture

Similarly to the component detector responses, we will need to get probabili-

ties from the structural model for the final detection. We approximated the

histograms in Figure 3.1 by two-dimensional Gaussian probability density

functions

p(d) =
1

2π|Σ|1/2
exp

(
−1

2
(d− µ)T Σ−1 (d− µ)

)
, (3.1)

where d = (∆x,∆y)T is vector of relative displacement, µ = (µx, µy)
T is

vector of mean displacement values and Σ is covariance matrix. We get

probability density N (µA,ΣA) for A-pillar displacement and N (µd,Σd) for

rear wheel displacement. The constants were identified as

µA =

[
25

−28

]
, ΣA =

[
16 2

2 5

]
, µd =

[
87

−1

]
, Σd =

[
32 1

1 1

]
.

We directly use only the wheel displacement probability density

p(dij) = N (µd,Σd) in the final detector, whereas the A-pillar displacement

probability is merged with the probability of A-pillar detector response as

described in Section 2.5.3.

3.3 Contribution

We have proposed a structural model that integrates wheels, A-pillar and side

panel into a compact set. We have extracted parameters of the structural

model from the video-sequence annotations and suggested its probabilistic

representation for use in the final car detector. It greatly improves robust-

ness of detection – at once, it helps to avoid false detections and covers the

variability of car body types.

36 CHAPTER 3. STRUCTURAL MODEL

Chapter 4

Final detector

In this chapter, we will describe the final detector of car side-views. Inputs

to the final detector are wheel candidates, component detector numeric re-

sponses transformed to probabilities and structural model (probabilities of

component displacements). Its task is to label the wheel candidates.

Because the A-pillar and side panel detector responses are not localised

so well as the wheel candidates, we use following strategy:

1. detect single wheel candidates in the scene and form all possible wheel

pair candidates that could foreshadow cars,

2. use A-pillar and side panel component detector responses in expected

areas for verification of the wheel pair candidates.

As a result, every wheel candidate is either assigned to a wheel pair or

marked as non-wheel. We assume that a car side-view must have just two

wheels, an A-pillar and a side panel, i.e. must be fully visible.

For description of the probabilistic model, we will use following notation:

n − total number of wheel candidates detected in the processed frame,

k − number of wheel pairs (car detections) contained in a labelling L,

L − labelling assigning wheel candidates to pairs,

L = {(i1, j1), (i2, j2), . . . , (ik, jk)},

37

38 CHAPTER 4. FINAL DETECTOR

Figure 4.1: Two examples of possible labellings of wheel candidates. Wheel

candidates are symbolised by the green circles. The red rectangles denote

assignment of wheel candidates to a pair.

Li − label of i-th wheel candidate (1 for wheel or 0 for non-wheel),

w − vector of numeric values of AdaBoost responses characterising

the wheel candidates,w = {w1, w2, . . . , wn},
dij − vector of relative displacements of wheel detections in pairs,

dij = {di1j1 , di2j2 , . . . , dikjk},
a − vector of A-pillar displacement and detector responses,

a = {a1, a2, . . . , ak},
s − vector of side panel detector responses,

s = {s1, s2, . . . , sk}.

The final detector considers and evaluates all possible labellings L of the

wheel candidate detections and chooses the optimal one, L∗, as the best

interpretation of the image. In Figure 4.1, we can see two examples of possible

labellings of one image.

4.1 Labelling of detections and its probability

The decision about the optimal labelling L∗ is based on probabilistic model.

When processing a video frame, we necessarily have to interpret all detections

in the whole frame at once, which allows us to consider our measurements be-

ing statistically independent within one concrete labelling. Optimal labelling

L∗ is given as

L∗ = arg max

(
P (L|w,dij ,a, s)

)
. (4.1)

4.1. LABELLING OF DETECTIONS AND ITS PROBABILITY 39

Using Bayes’ theorem and assuming statistical independence of every parti-

cular measurement given a labelling L, we can express the probability as

P (L|w,dij ,a, s) =
P (w,dij ,a, s,L)

P (w,dij ,a, s)
= (4.2)

=
P (w|L)P (dij|L)P (a|L)P (s|L)P (L)

P (w,dij ,a, s)
.

Note, that the components of the joint probability P (w,dij ,a, s) are not

statistically independent while the components of conditional probability

P (w,dij ,a, s|L) are assumed to be independent.

Because values of measurements (and therefore also their joint probabil-

ity) are the same for all labellings of one frame, we can leave out the joint

probability and get the optimal labelling as:

L∗ = arg max

(
P (w|L)P (dij |L)P (a|L)P (s|L)P (L)

)
= (4.3)

= arg max

([
n∏

i=1

P (wi|Li)
k∏

l=1

P (diljl)
k∏

l=1

P (al)
k∏

l=1

P (sl)

]
P (L)

)
.

We have already determined all probabilities from (4.3) in Chapter 2, except

for the prior probability of labelling P (L). We choose P (L) dependent on

the probability of wheel candidate label P (L),

P (L) =
n∏

i=1

P (Li),

P (L = 1) = const.,

P (L = 0) = 1− P (L = 1).

As we are maximising in (4.3), we can divide P (L) by a constant P (L = 1)n

without impact on the result. We substitute P (L) by Q(L),

Q(L) =
P (L)

P (L = 1)n
=

n∏
i=1

P (Li)

P (L = 1)
= (4.4)

=
∏

i:Li=0

P (L = 0)

P (L = 1)
=

(
P (L = 0)

P (L = 1)

)(n−k)

.

40 CHAPTER 4. FINAL DETECTOR

The probabilities are typically quite small numbers and we have only lim-

ited numeric precision, so we’d better work with logarithmic probabilities.

Equation (4.3) after substituting Q(L) for P (L) from (4.4) changes to

L∗ = arg max

(
n∑

i=1

log(P (wi|Li)) +
k∑

l=1

log(P (diljl))+ (4.5)

+
k∑

l=1

log(P (al)) +
k∑

l=1

log(P (sl)) + (n− k) log

(
P (L = 0)

P (L = 1)

))
.

We do not know the exact value of the prior probability P (L = 1), so we

have to find it experimentally. It acts as detector sensitivity adjustment

parameter. The higher probability P (L = 1) we set, the more candidates are

likely to be chosen as positive car detections.

4.2 Labelling evaluation optimisation

In the beginning of this chapter, we have said that our final detector evaluates

all possible labellings L of the wheel candidates. However, we usually reach

tens of wheel candidates at one scale of the processed image, so there is an

enormous number of possible labellings and it would be impossible to really

evaluate each of them. We therefore use hard constraints on the relative

displacement of wheels in a pair to form all potential pairs of wheels in the

image, whose number is substantially smaller than the number of all pairs of

wheel candidates. We then generate labellings L of the wheel candidates in

an exhaustive way as all possible combinations of the potential wheel pairs

and evaluate (4.5). Even after this improvement, the number of possible

labellings is 2N , where N is number of considered wheel pairs.

4.3 Multi-scale detection

During the training process of component detectors and structural model, we

use normalised samples, so they are learnt only on a single scale. In practice,

we need to detect cars in different viewing distances, so we have to process

the input images at multiple scales. We use the scale-image-pyramid as pre-

sented in [3]. Every processed video frame is resized to defined scales, so

4.3. MULTI-SCALE DETECTION 41

we get several images with different resolution from one frame. The choice

of scales depends on the viewing distance, at which we want to detect the

cars. The scales we use are graded by 10% from 1 to 2.14 (i.e. 9 different

scales). Each of the scaled images is then processed separately, at normalised

scale. Processing includes component detector response computation, trans-

forming detector responses to probabilities and finding the best evaluated

image labelling. From this point onwards, a labelling is characterised by two

parameters:

1. its probability P (L|w,dij ,a, s),

2. list of positive car detections given by the labelling,

where every car detection is identified by the coordinates of its wheels and

A-pillar detections. After choosing the optimal image labelling at given scale,

we transform the coordinates of the component detections back to common

coordinate frame corresponding to the scale 1 for further processing.

4.3.1 Merging detections across scales together

Independent processing of different scales leads to overlapping detections

after being merged into the common coordinate frame, because a car is typ-

ically detected at more than one scale at once. Therefore, we remove the

overlaps after the merge.

First, we put all detections from all scales into one set. Then we start

to reject the overlapping detections whose labellings have smaller evaluation

until there are no overlaps. We have to avoid undesired cascade rejections.

Figure 4.2 shows scheme of overlapping detections with numbers marking

the evaluations e of labellings they originally belonged to. If we started

removing overlaps from left to right, we would finish only with the blue one

preserved, because ered < egreen < eblue, so we would reject the red detection

in the first step and in the following step the green detection, too. However, it

would be sufficient to reject only the green detection to remove all overlaps.

Therefore, we first order the detections according to their evaluation and

then start solving overlaps with the best evaluated detection, then with the

second best etc. This way, any cascade rejection cannot occur.

42 CHAPTER 4. FINAL DETECTOR

Figure 4.2: Overlapping detections example

The presented method of overlaps removal is not optimal. To reach opti-

mal solution, we would have to evaluate possible labellings across all scales,

not only at each scale separately. Nevertheless, the number of evaluated

labellings would be so high then, that we would not be able to compute

solution in a sensible time.

4.4 Contribution

We have successfully integrated the suggested component detectors into the

final one with usage of structural model. We have proposed a probabilistic

model for the final detector, which allows making optimal decision about the

wheel candidate labelling at each inspected scale. We have implemented the

final car side-view detector with optional automatic detection of the traffic

direction. We have also implemented the multi-scale detection including the

removals of the overlapping detections originating from independent process-

ing at different scales.

Chapter 5

Experiments

In this chapter, we will give brief information about the data sets that were

used for experiments and we will try to demonstrate experimental results.

The attached CD contains testing video-sequences with detections, which

can give additional information about the performance of the final detector.

5.1 Data for experiments

The video-sequences used for training and testing were taken with ordinary

digital camera. They cover both traffic directions and also different scales,

because some of the sequences were taken at multi-track roads. We have put

aside two video-sequences for testing and used the rest for training. We have

one testing video-sequence for each traffic direction.

We have completely annotated 289 cars in right-left traffic for structural

model learning. In addition, we have also annotated 262 extra wheels in the

sequences with opposite traffic direction, so we have 840 wheel annotations

in total. However, some of the annotated wheels are at too big scale or

too close to image border to be used for training. The wheel training data

set therefore contains only 475 positive samples, the data sets for A-pillar

and B-pillar AdaBoost detector training count 177 and 127 positive samples,

respectively. The data set that was used to determine side panel measure

distribution, contains 225 positive samples.

43

44 CHAPTER 5. EXPERIMENTS

5.2 Experimental results

We present results of detection at multiple scales on sample video frames.

We emphasise the contribution of each detection stage.

At the first stage, we detect single wheel candidates. Figure 5.1a shows

result of single wheel AdaBoost detection at multiple scales with a very high

false positive rate. The wheel candidates are marked with squares, whose size

corresponds with scale at which the particular candidate was detected. We

could eliminate majority of the false detections by setting a higher threshold

for the local minima values, but the results of consequent detection stages

wouldn’t be comparable then.

At the second stage, we form potential pairs of wheel candidates from

stage one using the hard constraint on the relative displacement of wheels in a

pair mentioned in Section 4.2. Figure 5.1b demonstrates, how the constraint

can eliminate a great part of false wheel candidates. The potential wheel

pairs are denoted as wheel candidates (green circles) connected by a line.

The results improve, when we use the final detector with probabilistic

model at the third stage. The cars in Figure 5.1c were detected as pairs

of wheels – the detector evaluated only wheel detection responses R′ and

relative displacements of wheels within the pairs and did not use the A-pillar

nor the side panel evaluation. As it can be seen from Figure 5.1d, we are

able to eliminate all false positives with the use of all integrated component

detectors in this particular case. The last step of detection is the removal of

the overlapping car detections described in Section 4.3.1, whose results are

shown in 5.1e.

Figure 5.2 shows the same process as Figure 5.1 for the opposite traffic

direction.

5.2. EXPERIMENTAL RESULTS 45

(a) Multi-scale detection of single wheels (size of squares denotes scale of detection)

(b) All wheel pairs complying the wheel displacement constraint, denoted as green

circles (detected wheel centres) connected by red line

(c) Final detector output using only wheel pair evaluation (only wheel detector

responses R′ and geometrical displacement of wheels were evaluated)

(d) Final detector output using all components evaluation (green crosses denote

A-pillar detections pertaining to particular wheel pairs)

(e) Final detector output, removed overlaps

Figure 5.1: Consecutive stages of detection, given right-left traffic direction

46 CHAPTER 5. EXPERIMENTS

(a) Multi-scale detection of single wheels (size of squares denotes scale of detection)

(b) All wheel pairs complying the wheel displacement constraint, denoted as green

circles (detected wheel centres) connected by blue line

(c) Final detector output using only wheel pair evaluation (only wheel detector

responses R′ and geometrical displacement of wheels were evaluated)

(d) Final detector output using all components evaluation (green crosses denote

A-pillar detections pertaining to particular wheel pairs)

(e) Final detector output, removed overlaps

Figure 5.2: Consecutive stages of detection, given left-right traffic direction

5.2. EXPERIMENTAL RESULTS 47

Figure 5.3: False positive example

Figure 5.4: Automatic detection of driving direction

Even with the final detector, we cannot avoid all false detections, because

the false positives sometimes fit the structural model quite well, as it is shown

in Figure 5.3. The shadow on the building looks like the edge of an A-pillar,

whereas the horizontal edge of the side panel is perfectly substituted by the

roof of the car beneath the false detection.

The last thing we would like to present is the automatic detection of the

driving direction in Figure 5.4. Although it is not very reliable, because the

edge-based A-pillar detector is sensitive to reflections on the car bodies and

sometimes is also activated by the background that can be seen through the

car windows, we consider it to be an interesting feature.

48 CHAPTER 5. EXPERIMENTS

Chapter 6

Conclusion

We have designed several detectors for suggested components of the car

side-view. Having collected and annotated data for experiments, we have

implemented the component detectors in Matlab.

It has been shown during experiments that the AdaBoost algorithm,

though powerful, is not suitable for some features and that detectors based

on different and simpler principles can work better and more efficiently. The

AdaBoost works fine for the wheels, but it is outperformed by the edge di-

rection detection in the case of the A-pillar. In addition, we cannot neglect

that AdaBoost detector is quite computationally demanding.

After experimental testing of particular component detector performance,

we have chosen wheels, A-pillar and side panel for integration into the struc-

tural model. Consequently, we have learnt the structural model and imple-

mented the final detector. Our final detector is a general framework based

on a probabilistic model. Additional or different component detectors and

measures can be integrated into the detector in the same way as the current

ones. The more powerful component detectors we use, the better will be the

performance of the final detector. The detector can return not only position

of the car in the input image, but also its driving direction.

In conclusion, we have developed and tested a working detection method

for car side-views. For a practical use, however, it would have to pass through

a thorough optimisation, because current computation time for one frame

with resolution 120× 720 pixels at 9 scales is around 50 seconds when mea-

49

50 CHAPTER 6. CONCLUSION

sured on a notebook with Intel Core 2 Duo T8100 @ 2 GHz. The most com-

putationally demanding part of detection is the computation of convolutions

with masks. It takes up about 93% of the computation time. Fortunately,

convolution computation is very effectively implemented on FPGA, which is

commonly used in automotive industry.

Bibliography

[1] Christopher M. Bishop. Pattern Recognition and Machine Learning.

Springer, 2006.

[2] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classifi-

cation. John Wiley, 2nd edition, 2001.

[3] P. F. Felzenszwalb et al. Object detection with discriminatively trained

part-based models. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 32(9), September 2010.

[4] B. Heisele, P. Ho, J. Wu, and T. Poggio. Face recognition: component-

based versus global approaches. Computer Vision and Image Understand-

ing, 91:6–21, 2003.

[5] B. Leung. Component-based car detection in street scene images. Mas-

ter’s thesis, Massachusetts Institute of Technology, 2004.

[6] M.Uřičář and V.Franc. Detector of landmarks on human face. 16th

Computer Vision Winter Workshop, February 2011.

[7] M. Sonka, V. Hlavac, and R. Boyle. Image Processing, Analysis and

Machine Vision. PWS Publishing, 2nd edition, 1999.

51

52 BIBLIOGRAPHY

Appendix A

Contents of the attached CD

A CD with Matlab source codes and other materials is attached to the thesis.

The content of the CD is organised in following directories:

• Thesis/ : contains electronic version of the thesis text

• Codes/ : contains Matlab source codes

• Data/ : contains learnt detectors, video-sequence annotations and trai-

ning data

• Video/ : contains sample videos with detections

I

	Introduction
	State of the art
	Suggested approach overview
	Notation

	Visual appearance features
	Detection at a single scale
	Components for detection
	Wheel detection
	Training samples for wheel detection
	Building a strong classifier with AdaBoost
	Masks for wheel detection
	Detection of wheel candidates
	Learning process and optimisation
	Transforming wheel detector responses to probability

	B-pillar detection
	B-pillar detector training

	A-pillar detection
	AdaBoost based detection
	Edge based detection
	Transformation of oriented angles to probability

	Side panel verification
	Contribution

	Structural model
	Learning the structure
	Probabilistic representation of the structure
	Contribution

	Final detector
	Labelling of detections and its probability
	Labelling evaluation optimisation
	Multi-scale detection
	Merging detections across scales together

	Contribution

	Experiments
	Data for experiments
	Experimental results

	Conclusion
	Contents of the attached CD

