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CHAPTER

ONE

INTRODUCTION

1.1. Optimization
Let Θ be the domain of feasible values for a vector x. In optimization prob-
lem, values of vector x ∈Θ⊆ Rn are searched to minimize1 a scalar-valued loss
function f (x). Other common names for the loss function f : Rn→ R are cost
function, objective function, fitness function, or criterion. [15]

Optimization algorithms are classified in variety of ways. One of the main
classifications is based on the continuity of the domain of f (x). There are three
main groups of optimization problems:

Continuous domain optimization problem when f (x) is defined on continues
domain for all elements of x

Discrete domain optimization problem when f (x) is defined on discrete do-
main for all elements of x

Combination of continuous and discrete domain elements of f (x) in one opti-
mization problem

Another important classification of the optimization problems is based on the
amount of information which is known about the fitness function e.g. it’s deriva-
tives in arbitrary place, discontinuities etc. In optimization, this knowledge about
inner structure of the problem can be used to design a special optimization algo-
rithm suited for given problem. This approach is called white-box optimization.
However, many optimization problems have objective function for which no fur-
ther information is known. In such case, the only obtainable information about
the problem is the value of fitness function f () for a given vector x. To deal with

1In this work, minimization problem is addressed. However, maximization problem can
be converted to minimization trivially by changing the sign of the criterion min( f (X)) =
max(− f (X)).
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this limitation, numerical black-box optimizers are designed to evaluate candi-
date solutions one by one, choosing them according to a specified strategy.

In general, numerical black-box optimization is solved by two types of algo-
rithm: a local search algorithms which move from one solution to another by
applying a local change to current solution and population based methods which
perform a parallel search using previous set of solution to generate a new one.

1.2. Aim of the work
Differential evolution (DE) is a genetic algorithm –an example of population
based methods– equipped with a special crossover and mutation operators suited
for continuous function optimization. It is due to Prince and Storn who used DE
[18] to solve the Chebychev polynomial fitting problem in 1995. Since then, DE
became favorite and widely used optimization technique mainly because of its
simplicity and good performance on wide range of problems. [17]

Adaptive encoding (AE) is a general method that makes the search indepen-
dent of the coordinate system. It is applicable to any continuous domain search
algorithm. In step-wise manner, AE changes the coordinate system and searches
for a good encoding of original optimization problem. One popular way of AE
is used in evolution strategy with covariance matrix adaptation (CMA-ES). [7]

In this work, an AE derived from CMA-ES is used to adjust the problem rep-
resentation in DE search. Resulting novel algorithm (DE+AE) is tested on a set
of standard benchmark functions featured in COmparing Continuous Optimizers
platform (COCO) [1] and results are compared with original DE and CMA-ES.

1.3. Chapter order
In chapter 2 DE algorithm is described and its suitability for optimizing non-

separable functions is considered.

In chapter 3 DE algorithm is equipped with a mechanism for adaptation of
problem representation (AE). In the first part, the description of framework
for adaptive encoding of the search space representation is given. The sec-
ond part of the chapter is devoted to description of an updating procedure
AECMA-Update which is a part of the framework. The AECMA-Update is
based on principles employed in CMA-ES algorithm. Thus, the CMA-ES
algorithm is explained first and AECMA-Update is introduced after that.

In chapter 4 the performance of resulting novel algorithm DE+AE is com-
pared with original DE and CMA-ES algorithms. At first, a short descrip-
tion of testing framework COCO and it’s setting is provided. Afterward,
experiments for variety of setting are described and its results are assessed.
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CHAPTER

TWO

DIFFERENTIAL EVOLUTION

Differential evolution (DE) is a simple population based algorithm for global
optimization of continuous multi-modal functions of real variables. DE requires
few control parameters, shows robust convergence quality and has proven its util-
ity in many real-life and theoretical problems [17].

2.1. Basic DE
As any other evolution strategy algorithm [3], DE starts with a population of ε

individuals each represented by n-dimensional real number vector. This initial
population is randomly sampled from the entire search domain given by upper
and lower bound for every search dimension. Population evolves in discrete time
steps called generations. Thus, the i-th individual in population is denoted as
vector xi(t) = [xi,1(t),xi,2(t), ...,xi,n(t)] where t = 0,1,2, ..., t, t + 1, ... denotes
generation. Those vectors are often referred as “genomes” or “chromosomes”
pointing back to its inspiration in natural evolution process. Every individual is
assessed with real-valued fitness f (xi(t)), where f () is objective function of the
optimization problem.

In every iteration, new set of individuals –offspring– is generated using crossover
and mutation. The number of offspring individuals is usually the same as num-
ber of individuals in population ε . Afterwards, fitness of each new individual is
evaluated and based on its quality, a competition is carried out between parental
individuals and offspring. Individuals with better fitness are more likely to be
placed in next generation of ε individuals, so that, this competition stands for
process of natural selection.

Genetic algorithms differ in operators of mutation, crossover and selection.
For DE, a new differential mutation operator was designed, so it is suitable for
optimizing functions of real variables. Classical DE creates a donor vector vi(t)
for every parental individual i. For its construction, three other randomly chosen
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vectors r1,r2 and r3 are combined in following manner:

vi(t) = xr1(t)+g · (xr2(t)−xr3(t)) (2.1)

A scalar number g > 0 is one of DE’s tuning parameters. Its value is constant
and chosen usually within the range [0,2] [16]. Donor vector vi(t) has elements
vi, j(t) where j = 1, ...,n. Afterwards, for sake of higher diversity in population,
crossover on every offspring individual is performed. In DE, two schemes of
crossover are used most often - “binomial” and “exponential”. The crossover
method is not so important although Ken Price claims that “binomial is never
worse than exponential” [17].

Before crossover a new - trial vector ui(t) = xi(t) is assigned to every donor
vector vi(t). During crossover, elements of ui, j(t) are selected belong chosen
crossover scheme and replaced by elements of respective donor vector vi, j(t).
Binomial crossover generates a random number rn ∈ [0,1] for every element and
performs crossover when this random number is smaller then a scalar number
cr which is another tuning constant of DE. Elements of trial vector ui, j are then
given as:

ui, j(t) = vi, j(t) if rn < cr
= xi, j(t) else

Exponential crossover selects for replacement a random coherent block of el-
ements. At first, two random integers are generated - the starting point s drawn
from uniform discrete distribution U (0,n) which marks the beginning of the re-
placed block in trial vector and length of the block l ∈ [1,n+1] drawn using the
following scheme:

l = 0
do{
l = l +1
}while (rn < cr) AND (l < n)

Elements of trial vector ui, j are then given along exponential crossover methods
as:

ui, j(t) = vi, j(t) for j =< s >n,< s+1 >n,< s− l +1 >n

= xi, j(t) forother j

The brackets <>n denote a modulus function with modulus n. After mutation
and selection the trial vectors ui(t) are already finished offspring individuals.

Last step in processing toward new generation is selection. Common selection
method in DE is based on direct comparison which is performed between each
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Algorithm 2.1 Classical DE.
1. initialize {x1,x2, ...,xε} ∈ Rn (a set of solutions)
2. fi = f (xi) for i = 1, ...,ε
3. repeat:
4. vi = create_donor({x1,x2, ...,xε}) for i = 1, ...,ε
5. ui = crossover(xi,vi) for i = 1, ...,ε
6. f offs

i = f (ui) for i = 1, ...,ε

7. {xi, fi}= selection
(

xi,ui, fi, f offs
i

)
for i = 1, ...,ε

8. until stopping criteria is met

couple of parental individual xi(t) and its particular offspring vector ui(t). Thus,
individuals advance into next generation in accordance with decision rule:

xi(t +1) = ui(t) if f (ui(t))> f (xi(t))
= vi(t) if f (ui(t))< f (xi(t))

In result, new generation of ε individuals with better fitness is evolved and DE
continues to next iteration.

The pseudo-code of DE algorithm is given in Alg. 2.1.

2.2. Variations of DE
The authors of DE Storn and Price themselves suggested whole family of variants
of DE [20]. Standard notation to determine particular variation of DE has form
DE/x/y/z. In this notation x is a string denoting which vector from the parental
populations is chosen for perturbation during mutation. This vector can be chosen
randomly (rand) or the best vector from population with respect to fitness value
is chosen (best). Different combinations of best and random vectors are also
feasible. y is the number of difference vectors used for perturbation of vector x.
Finally, z determines the type of crossover (exponential or binomial).

In this notation, the classical variant of DE is denoted as DE/rand/1 with mu-
tation in Eq. (2.1). Other common variation of DE is DE/best/1 with mutation
operator:

vi(t) = xbest(t)+g · (xr2(t)−xr3(t))

where instead of random individual xr1(t) the individual with best fitness xbest(t)
is used.

For purpose of this work, a new mutation operator was created.

vi(t) = xavg(t)+g · (xr2(t)−xr3(t))

7
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Again, it is similar to Eq. (2.1) but instead of variation of xr1(t), the new vector
is used:

xavg(t) =
ε

∑
i=1

xi(t)wi

where

wi=1,...,ε =
ln(µ +1)− ln(i)

∑
µ

j=1 ln(µ +1)− ln( j)
for i = 1, ...,µ

= 0 for i = (µ +1), ...,ε

where µ = ⌊ε/2⌋.
The computation of xavg(t) is identical with computation of m(t+1) in AECMA-

Update (Chap. 3), and the motivation to create this mutation operator is to make
DE more similar to CMA-ES.

2.3. Choice of parameters
Beside choice of crossover and mutation operator, there are three parameters to
be tuned:

Population size ε Usually ranges from 2n to 40n [14]. According to [17], rising
ε above 40 does not improve performance of the algorithm.

Mutation scale factor g Must be strictly greater than zero. Typically ranges be-
tween 0.4 and 1. Also, new value of g can be randomly generated
for every generation.[17][14]

Crossover probability cr Range 0≤ cr ≤ 1. Smaller values are recommended
for separable functions. [14]

2.4. DE on separable and non-separable
functions

Separable functions allow to reduce the search process on n one-dimensional
search problems which makes it easier to be optimized. In contrary, optimiza-
tions of non-separable functions is considered to be much more challenging,
since many optimization algorithms exploits separability and are not designed
for non-separable functions. A rotation matrix R can be applied to a separable
function to obtain a non-separable one. [6]

The crossover operators in DE are rotation dependent. Hence, for non-separable
function, DE must rely mainly on rotation invariant mutation operators. This

8
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results in significant difficulty when dealing with non-separable functions [19].
Testing of DE on non-separable function is published e.g. in [14].

In this work, adaptive encoding mechanism (Chap. 3) is applied to DE al-
gorithm to adjust the search space representation. As a result, crossover muta-
tion becomes rotation independent and performance of DE algorithm on non-
separable functions should improve.
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CHAPTER

THREE

ADAPTIVE ENCODING

In search and optimization, way of state space representation is crucial. For a
given optimization method, convenient representation can render an optimiza-
tion problem trivial [7] whereas inappropriate representation can make the same
problem practically unsolvable. Therefore, state space representation needs to be
considered when an efficient method for solving optimization problem is to be
designed.

In purpose of making an algorithm universal or when finding of eligible rep-
resentation is difficult and not apparent to a man, convenient state space repre-
sentation can be found in step-wise manner during the search automatically. In
practice, variety of successful optimization methods beside iterative optimiza-
tion steps, also adjusts problem representation according to current search state.
The class of algorithms conducting implicit representational change contains e.g.
quasi-Newton methods, covariance matrix adaptation (CMA), or estimation of
distribution algorithm (. [7]

Adaptive encoding mechanism used in this work has proven to be beneficial
also when applied to Coordinate Descent algorithm in work [13].

3.1. General Adaptive-Encoding Framework
In his research report from 2008 [7], Nikolaus Hansen describes a general frame-
work for an iterative incremental representation change, adaptive encoding (GAEF)
and extracts an universal update rule (AECMA-Update) based on evolution opti-
mization algorithm CMA-ES [8]. This framework considers only linear trans-
formations i.e. rotation and scaling. Search problem and representation problem
are decoupled, thus the framework is applicable on any optimization problem
in continuous domain. In particular, he expects good results of AE applied on
population based optimization algorithms [3].

The principle of GAEF is based on three steps: encode - decode - update.

11
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Algorithm 3.1 DE with AE using GAEF.
1. initialize {x1,x2, ...,xε} ∈ Rn (a set of solutions)
2. initialize B ∈ Rn×n (a transformation matrix)
3. fi = f (xi) for i = 1, ...,ε
4. repeat:
5. x′i = B−1xi for i = 1, ...,ε (encode)
6. begin
7. v′i = create_donor({x′1,x′2, ...,x′ε}) for i = 1, ...,ε
8. u′i = crossover(x′i,v′i) for i = 1, ...,ε
9. f offs

i = f ( B u′i) for i = 1, ...,ε

10. {x′i, fi}= selection
(

x′i,u′i, fi, f offs
i

)
for i = 1, ...,ε

11. end
12. xi← Bx′i for i = 1, ...,ε (decode)

13. B←update
(
B,x1,...,µ

)
(x1,...,µ is µ best individuals ordered belong fitness)

14. until stopping criteria is met

Alg. 3.1 shows the three steps of GAEF applied on classical DE algorithm as
described in chapter 2. In comparison with original DE algorithm as described
in Alg. 2.1, all changes are marked with gray background.

The three steps of GAEF are repeated within main loop of original optimiza-
tion algorithm. At the beginning of every iteration, the entire population is en-
coded, i.e. transformed into a space representation that should be profitable for
the modification operators (Alg. 3.1, line 5). The consecutive step of optimiza-
tion algorithm is done with encoded population and is slightly changed: The
fitness evaluation of newly generated individuals is done in original space thus
the offspring must be decoded first and then evaluated on fitness function (Alg.
3.1, line 9). After the optimization step is done, population of individuals ad-
vancing into next generation is decoded into original representation in which the
fitness function is defined (Alg. 3.1, line 12). Encoding and decoding operations
are trivial because linear transformation is implemented by matrix multiplica-
tion applied on every individual from current population which are determined
by vectors {x1,x2, ...,xε} ∈ Rn. This also implies, that AE is fully described by
one matrix B of size n×n.

The iteration step is finished with the update step (Alg. 3.1, line 13). In this
step, the procedure adjusting the transformation matrix B is executed, hence the
transformation is adapted and encoding of search space in next iteration will dif-
fer.

In Alg. 3.2, a small change to algorithm Alg. 3.1 is proposed. The function
of the algorithm is the same and decoding is performed on offspring population

12



AECMA Updating Rule

Algorithm 3.2 DE with AE using GAEF with direct offspring decoding.
1. initialize {x1,x2, ...,xε} ∈ Rn (a set of solutions)
2. initialize B ∈ Rn×n (a transformation matrix)
3. fi = f (xi) for i = 1, ...,ε
4. repeat:
5. x′i = B−1xi for i = 1, ...,ε (encode)
6. begin
7. v′i = create_donor({x′1,x′2, ...,x′ε}) for i = 1, ...,ε
8. u′i = crossover(x′i,v′i) for i = 1, ...,ε
9. ui← Bu′i for i = 1, ...,ε (decode offspring)
10. f offs

i = f (ui) for i = 1, ...,ε

11. {xi, fi}= selection
(

xi,ui, fi, f offs
i

)
for i = 1, ...,ε (selection)

12. end
13. B←update

(
B,x1,...,µ

)
(x1,...,µ is µ best individual ordered belong fitness)

14. until stopping criteria is met

before fitness evaluation (Alg. 3.2, line 9). However, in contrary to Alg. 3.1,
selection is done with decoded individuals and resulting new population doesn’t
have to be decoded anymore. Thus, execution of one decoding on population is
saved during every iteration.

3.2. AECMA Updating Rule

In previous section, the general framework for adaptive encoding of state space
was introduced. It allows to transform search space linearly and adapt this trans-
formation after every iteration of arbitrary optimization algorithm. Linear trans-
formation described by matrix B is separable into two operations: rotation and
scaling. The remaining question is how to determine the transformation matrix
B so the rotation and scaling of original search space assists optimization algo-
rithms to perform better.

At this point CMA-ES can serve as an inspiration for an universal updating
rule [7]. This subsection starts with description of CMA-ES and AECMA-Update
rule is explained subsequently.

13



Adaptive Encoding

Figure 3.1.: Six ellipsoids, depicting lines of equal density of six different normal
distributions, where σ = R+, D is a diagonal matrix, and C is a
positive definite full covariance matrix. Thin lines depict exemplary
objective function contour lines.
Nikolaus Hansen. The CMA evolution strategy: A comparing review,
2006. [8]

3.2.1. Covariance Matrix Adaptation - Evolution
Strategy

CMA-ES [8, 10] is based on the concept of self-adaptation in evolution strategies.
It is originally suited for small population sizes. The algorithm adapts the mean
and covariance matrix of a multi-variate normal distribution, see Fig. 3.1. It
efficiently minimizes uni-modal objective functions and in particular is superior
on ill-conditioned and non-separable problems. It was successfully applied to a
considerable number of real world problems. [10]

The following description of CMA-ES is extract of Nikolaus Hansen. The
CMA evolution strategy: A comparing review, 2006. chap.: 2 - 4 [8]. The nota-
tion has been changed slightly.

CMA-ES works in an iteration-wise manner. Every iteration t, new set of λ

individuals is generated from multi-variate normal distribution:

xi(t)∼N (m(t),σ(t)2C(t)) for i = 1, ...,λ

with mean m∈Rn and covariance matrix C∈Rn×n . The matrix C is symmetric
and positive definite. σ(t)2 is step size control parameter explained later.

All individuals are evaluated on fitness function, and µ best individuals are
then used for adaptation of the multi-variate normal distribution. The adjusted
distribution N (m(t +1),σ(t +1)2C(t +1)) is used for generating a new popu-
lation in next iteration.

The adaptation is based on several principles described below.
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AECMA Updating Rule

Adjusting the mean m

The mean used in next iteration m(t + 1) is computed as an average of µ best
individuals weighted with weights wi:

m(t +1) =
µ

∑
i=1

wixi(t) (3.1)

This step substitutes the principles of selection and recombination from evo-
lution strategies.

Hereinafter, the measure called variance effective selection mass µeff is used:

µeff =
µ

∑
i=1

(
w2

i
)−1

Adapting the covariance matrix C

The new covariance matrix C(t+1) is composed of three weighed parts: the cur-
rent covariance matrix C(t), rank-µ-update Cµ(t) and cumulation-update pc(t)pc(t)T.
The weighing coefficients q1,q2,q3 are specified below.

C(t +1) = q1C(t)+q2 Cµ(t)+q3 pc(t)pc(t)T

Rank-µ-update Cµ(t) - Estimation of covariance matrix
An unbiased maximum likelihood estimate of covariance matrix Cemp given a

sample population xi(t), i = 1, ...,λ is:

Cemp(t) =
1
λ

λ

∑
i=1

(xi(t)− x̄(t)) (xi(t)− x̄(t))T (3.2)

where x̄(t) is x̄(t) = ∑
λ
i=1 xi(t).

For update used in CMA-ES a slightly different equation is used. Rank-µ-
update Cµ(t) is computed as:

Cµ(t) =
µ

∑
i=1

wi
(
(xi(t)−m(t)) (xi(t)−m(t))T) (3.3)

Unlike Cemp(t), the rank-µ-update Cµ(t) is computed with weighed elements
using weights wi, while Cemp(t) considers all vectors with the same weight. Also,
wi = 0 for i > µ thus only µ best samples x1,...,µ is relevant to the sum. Other
remarkable difference between Cemp(t) and Cµ(t) is usage of different mean val-
ues. For Cemp(t) the mean of actual samples x̄(t)=∑

λ
i=1 xi(t) is used while Cµ(t)

employs the mean value of samples from previous iteration m(t). Therefore,
the estimators Cemp(t) and Cµ(t) can be interpreted differently: while Cemp(t)
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estimates the distribution variance within the sampled points, Cµ(t) estimates
variances of sampled steps.

CMA-ES uses the Cµ(t) estimate. Cemp(t)-like estimation, where number of
samples smaller then λ is considered, features in Estimation of Multivariate Nor-
mal Algorithm (EMNA) [12]. Fig. 3.2 compares the two approaches in an ex-
ample. CMA-ES increases the variance in direction of the gradient while EMNA
decreases variance. It is obvious that CMA-ES is less susceptible to premature
convergence and its distribution estimate is more likely to sample better results
in next iteration than EMNA.

The Cµ(t) estimate is called rank-µ-update because it is of rank min(µ,n).
CMA-ES is designated to run with small populations in order to achieve fast

search. In contrary, to ensure reliable maximum likelihood estimate of covari-
ance matrix used in rank-µ-update Cµ (t) in Eq. (3.3) the population needs to
contain enough information i.e. to contain enough samples. Solution to this con-
tending demands is to use information comprised in estimates done in previous
iterations. Therefore, covariance matrix C(t) is used for computation of C(t+1)
as well.

Using exponential smoothing, current estimates are given higher weight. Re-
sulting rank-µ-update has form:

C(t +1) = (1− ccov)C(t)+ ccov
1

σ(t)2 Cµ(t)

= (1− ccov)C(t)+ ccov

µ

∑
i=1

wi
(xi(t)−m(t))

σ(t)
(xi(t)−m(t))T

σ(t)

= (1− ccov)C(t)+ ccov

µ

∑
i=1

wi OP
(
(xi(t)−m(t))

σ(t)

)
(3.4)

where OP(x) = xxT is outer product, 0 < ccov ≤ 1 is a learning rate and σ(t) is
step size control parameter which will be, at the moment, regarded as to be equal
to 1 and explained closely later.

Rank-one-update pc(t)pc(t)T - Evolution path
In Eq. (3.4), the rank-µ-update does not take advantage of the information

about the sign of the step because OP(x) = xxT = OP(−x). In order to improve
this, the evolution path pc is introduced. Evolution path is a sum of consecutive
steps with exponential weighing:

pc(t) = (1− cc)pc(t−1)+
√

cc(2− cc)µeff

(
m(t +1)−m(t)

σ(t)

)
(3.5)

where cc is a learning rate and
√

cc(2− cc)µeff is a normalization factor explained
closer in [7].

Using evolution path, the rank-one-update has form:

C(t +1) = (1−µcov)C(t)+µcov pc(t)pc(t)T

= (1−µcov)C(t)+µcov OP(pc(t)) (3.6)
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AECMA Updating Rule

Figure 3.2.: Estimation of the covariance matrix on flinear(x)=−∑
2
i=1 xi is to be

minimized. Contour lines (dotted) indicate that the strategy should
move toward the upper right corner.
(a) Estimation of Cµ(t) according to Eq. (3.3), where µ = 50,
wi =

1
µ

for i = 1, ...,µ and σ(t) = 1.
(b) Estimation used in EMNA featuring Cemp(t) update, Eq. (3.2),
with only 50 best samples considered.
Left: sample of λ = 150 N (0,I) distributed points. Middle: the
µ = 50 selected points (dots) determining the entries for the esti-
mation equation (solid straight lines), and the estimated covariance
matrix (ellipsoid). Right: search distribution of the next generation.
Given wi =

1
µ

, (a) increases the expected variance in gradient direc-
tion for all µ < λ

2 , while (b) decreases this variance for any µ < λ .
Nikolaus Hansen. The CMA evolution strategy: A comparing review,
2006. [8]
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Combining rank-one-update and rank-µ-update
The rule for covariance matrix update in CMA-ES exploits both principles

captured in Eq. (3.4) and Eq. (3.6) giving the resulting equation:

C(t +1) = (1− ccov)C(t)+ (3.7)

+ccov

(
1− 1

µcov

) µ

∑
i=1

wi OP
(
(xi(t)−m(t))

σ(t)

)
+

ccov

µcov
OP(pc(t))

where ccov and µcov are learning rates used in coefficients which sum to 1:

(1− ccov)+ ccov

(
1− 1

µcov

)
+

ccov

µcov
= 1

.

Cumulative step-size control σ

The last part which completes description of CMA-ES defines the step-size con-
trol parameter σ(t) and its purpose. The motivation for using this parameter
comes from the cause, that the covariance matrix adaptation rule in Eq. (3.7)
does not explicitly control the “overall scale” of the distribution. In Eq. (3.7),
the scale is increased for each selected step while decreasing of the scale is done
only implicitly by exponential declination of old information via the factor ccov.
[9] A closer view to this goes beyond the purpose of this work and is given in
[8, 9].

Fig. 3.3 shows three different evolution paths composed of six steps. It is
obvious that the path on the right could be substituted by one longer step. In the
contrary, the steps on the left part of the Fig. 3.3 cancel each other out because
the algorithm is trying to search within the area adjacent to the initial point. In
this case the step-size should be decreased so the algorithm can preform a finer
search. In ideal case, consecutive steps of the algorithm are not correlated. The
situation in the middle part of Fig. 3.3 is close to the ideal case because successive
steps are almost perpendicular.

The evolution path used for step-size control pσ Eq. (3.8) is called conjugate
evolution path.

pσ (t +1) = (1− cσ )pσ (t−1)+
√

cσ (2− cσ )µeff C(t)−
1
2

m(t +1)−m(t)
σ(t)

(3.8)
where C(t)−

1
2

de f
= B(t)D(t)−1 B(t)T. Matrix B(t) is orthogonal basis of eigen-

vectors, D(t) is diagonal matrix of square roots of the corresponding positive
eigenvalues. B(t) and D(t) are obtained by eigendecomposition of covariance
matrix C(t) = B(t)D(t)D(t)B(t)T.
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AECMA Updating Rule

Figure 3.3.: Three evolution paths of respectively six steps from different selec-
tion situations (idealized). The lengths of the single steps are all
comparable. The length of the evolution paths (sum of steps) is re-
markably different and is exploited for step-size control.
Nikolaus Hansen, The CMA Evolution Strategy: A Tutorial, 2008.
[9]

The construction of conjugate evolution path pσ differs from the rank-one-
update pc, Eq. (3.5) by additional transformation factor C(t)−

1
2 which scales

the size of evolution path in the coordinated system given by B(t). As a result,
expected length of pσ does not depend on its direction.

The updating rule for σ(t + 1), Eq. (3.9), compares the length of pσ with
expected length under random selection E(‖N (0,I)‖) =

√
2Γ
(n+1

2

)
/Γ
(n

2

)
≈

√
n
(

1− 1
4n +

1
21n2

)
[10].

σ(t +1) = σ(t) exp
(

cσ

dσ

(
‖pσ (t)‖

E(‖N (0,I)‖)
−1
))

(3.9)

Where factor cσ/dσ control the speed of change of σ .

The pseudo-code of CMA-ES algorithm is depicted in Alg. 3.3.

Parameter setting and initial values

CMA-ES is ready-to-use optimization algorithm. Its parameters are determined
by empirical studies and users are not supposed to change them. The recom-
mended setting with extended description of parameters is available in [8].

3.2.2. Principle of AECMA-Update
The AECMA-Update procedure is in Alg. 3.4. It is based on principles of rank-
one-update and rank-µ-update of covariance matrix C originated in CMA-ES.
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Algorithm 3.3 CMA-ES optimization algorithm
1. initialize λ , µ, wi=1,...,µ , µeff,, cσ , dσ , cc, µcov, ccov
2. initialize C(t) ∈ In, m(t) = vectorofones(n×1), p(t) = vectorofzeros(n×1)
3. repeat:
4. xi(t)∼N (m(t),σ(t)2C(t)) for i = 1, ...,λ
5. m(t +1) = ∑

µ

i=1 wixi(t)

6. pc(t) = (1− cc)pc(t−1)+
√

cc(2− cc)µeff

(
m(t+1)−m(t)

σ(t)

)
7. C(t +1) = (1− ccov)C(t)+ ccov

(
1− 1

µcov

)
∑

µ

i=1 wi OP
(
(xi(t)−m(t))

σ(t)

)
+

+ ccov
µcov

OP(pc(t))

8. pσ (t) = (1− cσ )pσ (t−1)+
√

cσ (2− cσ )µeff C(t)−
1
2

m(t+1)−m(t)
σ(t)

9. σ(t +1) = σ(t) exp
(

cσ

dσ

(
‖pσ (t)‖

E(‖N (0,I)‖) −1
))

10. until stopping criteria is met

The cumulative step-size control σ is omitted.
The covariance matrix C is not used for drawing new samples from a multi-

variate normal distribution. Instead, the eigendecomposition is used to extract
eigenvectors and eigenvalues of C. The eigenvectors compose columns of matrix
B∘ and corresponding eigenvalues are featured in diagonal matrix D.

The eigenvectors are directions in which the problem space is stretched by
respective scaling factors given by eigenvalues. The desired transformation of
representation space is given by matrix B obtained as B = B∘D.

By application of B, vectors in original search space are rotated and scaled in
a manner that fits them to the space in which the optimization problem given by
fitness function is proposed.

Parameter setting and initial values

For experiments in Chap. 4.3, the recommended values of parameters were cho-
sen. When adjusting the parameters, the weights wi must sum to 1 and 0 <
c1 + cµ ≤ 1. The recommended default setting of AECMA-Update provided be-
low as well as extensive information on choice of parameters and it’s meaning is
available in [7].
The recommended default setting:

µ = ⌊λ/2⌋

wi=1,...,µ =
ln(µ +1)− ln(i)

∑
µ

j=1 ln(µ +1)− ln( j)
for i = 1, ...,µ
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Algorithm 3.4 AECMA-Update
(
{x1,x2, ...,xµ}

)
Updates the encoding matrix B using the µ best-ranked candidate solutions.
(Nikolaus Hansen. Adaptive encoding for optimization. Technical report, Centre
de recherche INRIA Saclay – Île-de-France, 2008. [7])
1. given parameters wi,cp,c1,cµ

2. given m ∈ Rn, p ∈ Rn and C ∈ Rn×n from last iteration
3. let be matrix B∘ orthogonal and matrix D diagonal with diagonal elements
sorted in ascending order
4. m− = m
5. m← ∑

µ

i=1 wixi
6. set scalars αi ≥ 0, for i = 1, ...,µ cf. Sect.
7. p← (1− cp)p+

√
cp(2− cp)α0(m−m−)

8. Cµ = ∑
µ

i=1 wiα
2
i (xi−m−)(xi−m−)T

9. set scalar αp ≥ 0, cf. Sect.
10. C←

(
1− c1− cµ

)
C+ c1αpppT + cµCµ

11. B∘DDB∘← C (eigendecomposition)
12. optionally normalize D
13. B← B∘D

µeff =
µ

∑
i=1

(
w2

i
)−1

αc = 1, αp = 1

β = 2

α0 =

√
n

||B−1(m−m−)||

αi =

√
n

max
(

li
β
, median

j=1,...,µ

(
l j
)) for i = 1, ...,µ

cp =
1√
n

c1 =
0.2 cp

(n+1.3)2 +µeff

αµ = 0.2

cµ =
0.2αc µeff−2+ 1

µeff

(n+2)2 +αµ µeff

Initial values for variables are:

m = ∑
µ

i=1 wixi, p = vectorofzeros(n×1) and C = In
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CHAPTER

FOUR

EXPERIMENTS

In this chapter, tests and experiments done within this thesis are described. All
tests were performed using the platform called COmparing Continuous Optimis-
ers (COCO) [1] which is described at first section of the chapter. Following sec-
tions contain description of experiments and measured results with discussion.

4.1. COmparing Continuous Optimizers
platform

Sensible performance assessment of optimization algorithm is a difficult and te-
dious task. COCO [1] is a platform created to facilitate sound performance quan-
tification and comparison of real-parameter global optimizers. It contains a set of
benchmark functions divided into groups according to their characteristics [6]:

∙ Separable fcts - separable functions

∙ Moderate fcts - Functions with low or moderate conditioning

∙ Ill-conditioned [6] fcts - Functions with high conditioning and uni-modal

∙ Multi-modal fcts - Multi-modal functions with adequate global structure

∙ Weak structure fcts - Multi-modal functions with weak global structure

Both noiseless and noisy alternative of the testbed is provided. Any optimization
algorithm under review can be implemented using a framework given in included
examples. The framework is available in several languages (C, C++, Java and
Matlab/Octave). To create an output, gathered results can be further processed
(using Python) and visualized. LATEX templates are available to generate a report
reviewing and comparing performance of one, two or more optimizers.
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Experiments

Two GECCO Workshops for Real-Parameter Optimization called Black-Box
Optimization Benchmarking (BBOB) 2009 and 2010 has been held based on
COCO platform [1] thus the competence of COCO is validated.

4.1.1. COCO parameters setting and restarting of tested
algorithms

The preferred setting of COCO was used in order to preserve comparability with
other algorithms tested in BBOB. All tests were done on complete set of noiseless
functions. Every function was optimized for dimensions n = 2,3,5,10,20,40.
The number of trials on every function and dimension was 15.

Following restarting criteria are implemented inside every tested algorithm.
The search is restarted if:

∙ the algorithm does not improve best found solution fbest for 50 iterations

∙ the algorithm does not improve best found solution fbest for 30 iterations
and population diversity is low. Specifically, when average variation counted
individually for every dimension is lower then 10−10.
In Matlab: (sum(var(popde,1,2))/DIM< 1e−10.

The search is restarted until the maximum number of evaluations #FEmax is reached
or the best found solution is better than the defined precision range of optimum
fitness value. The desired fitness value ftarget which terminates the algorithm is
then given as ftarget = fopt +∆ f , where fopt is optimum fitness value for a given
benchmark function and ∆ f is the precision to reach. In this thesis, the recom-
mended final smallest ftarget = fopt +10−8 was used.

The maximum number of evaluations #FEmax determines running time of the
experiment. #FEmax = 104 was chosen as trade-off value since the running time
of most experiments is shorter than 12 hours for this #FEmax and obtained results
show convincingly the fundamental features of studied algorithms.

Starting populations are sampled uniformly within the recommended range
[−5,5] for every dimension [5].

Tests were done for many different settings of respective algorithm. Every
setting had to be tested separately as though it was a self-contained algorithm.

An abbreviation scheme for restart criteria

In order to shorten the description of a restarting rule, a simple abbreviation is
used. The abbreviation has form XX iYY v, where XX is first restart criterion
(maximum number of iterations when algorithm does not improve fbest) and YY
is the second restart criterion (maximum number of iteration when fbest is not im-
proved and diversity in population is small). When XX=YY , the second restarting
criterion does not have influence.
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4.1.2. Performance measure
In optimization, the running time is usually measured in number of fitness func-
tion evaluations #FE since evaluations of fitness function are usually most costly
operation in a single iteration of optimization algorithm.

The performance measure used in COCO is based on #FE. It is called expected
running time (ERT) [5]:

ERT( ftarget) =
#FEs( fbest ≥ ftarget)

#succ
for #succ > 0 (4.1)

= ∞ otherwise

where #FEs( fbest ≥ ftarget) is number of function evaluations summed over all
trials such that the best found solution up to now fbest has fitness higher than
ftarget and #succ is number of successful trials i.e. trials which reached ftarget.
Thus, it is the average (expected) number of fitness function evaluations before
the desired target precision of fitness value is reached for the first time.

4.1.3. Visualization
Results of the experiments described in Sec. 4.3 are visualized in a variety of
different graphs and tables generated by COCO. In this subsection, examples of
used graphs are given and their meaning are explained. Thus, the flow of the
experiment’s description is not disrupted by side comments on the visualization
means.

Empirical Cumulative Distribution Functions graphs [5]

Fig. 4.1 is an example of Empirical Cumulative Distribution Functions (ECDF)1

graph for two algorithms ALG0 (+) and ALG1 (∘). It exploits the principles of
fixed-target (horizontal view) Fig. 4.2.

The left subgraph on Fig. 4.1 is based on fixed-target approach. The target
values are given as the tolerance to the optimal fitness value ∆ f = 10{+1,−1,−4,−8}

1Let x1, ...,xn ∈Φ⊆R be realizations of random variables. The empirical cumulative distribu-
tion function Fn(x) based on x1, ...,xn is

Fn(x) =
1
n

n

∑
i=1

χAi(x)

where Ai is subset Ai = {x |xi ≤ x} and χAi(x) is the indicator function:

χAi(x) =

{
1, when x ∈ Ai

0, when x ∈Φ∖Ai

Source: www.planetmath.org [2]
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Figure 4.1.: Example of ECDF. The numbers in legend denote how many of
testbed functions where optimized to given level of precision ∆ f in
at least one trial.
Generated by COCO [1].

- in graph marked by colour of the line. On y-axis, proportion of trials which
reached target value ∆ f with cost lower than the cost given on x-axis is marked.
The cost on x-axis is given as log10(#FE)/n 23, where #FE is variable. The beige
lines on background belong to other algorithms in BBOB 2009 and ∆ f = 10−8

(equivalent to red line).
Efficient algorithms optimize functions with smaller #FE. Thus, the more

upper-left a line is situated the better performing algorithm it depicts.
The right subgraph on Fig. 4.1 is ECDF of ERT of ALG1 over ERT of ALG0

for different ∆ f . The more line rises on left half of the graph, the more efficient
is the algorithm ALG1 in comparison with ALG0 and vice versa. The difference
in performance is smaller when the rise is situated close to the separation border
at value 0.

ECDF of the bootstrapped ERT [5]

Fig. 4.3 shows an example graph where several algorithms (marked on the right
side of the figure) are compared. For this purposes, ECDF of ERT computed over
given dimension for 50 target levels ftarget in 10[−8,2] is used. This computation
can be done for all or a subgroup of testbed functions. The beige line corresponds
to the algorithms from BBOB 2009 with the best ERT for each of the targets
considered. [5]

The actual results were measured on #FEmax marked with×. From this mark
2#FEs is total number of functions evaluation summed over all trials while #FE is used as num-

ber of evaluations in single run.
3A notation dissimilarity occurs here. On graph, the dimension of optimization problem is

denoted as DIM while, in the text, the letter n is used.
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Figure 4.2.: Illustration of fixed-cost (vertical view) and fixed-target (horizontal
view). Black lines depict best function value fbest versus number of
fitness evaluations in several trials.
Real-Parameter Black-Box Optimization Benchmarking BBOB-
2010: Experimental Setup [5]

Figure 4.3.: Example graph: Comparison of several algorithm’s ECDF using
bootstrapping.
Generated by COCO [1].

to the right, estimates of ERT are used. The estimates are computed using boot-
strapping method and is claimed to be a good estimate of real ERT [5].

When the #FEmax is reached, bootstrapping method randomly picks trials which
were already performed until it chooses one which reached ftarget = fopt +10−8.
The ERT is then computed considering #FE which is sum of all function eval-
uation over all performed and randomly drawn trial. If there is at least one trial
which reaches the ftarget = fopt +10−8, the ECDF of ERT estimated in this way
reaches the top of the graph. In other case, the line converges to the proportion
of target levels which where successfully reached.
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4.2. Implementation
The tested algorithms are: DE, DE+AE and CMA-ES. All tests were performed
in Matlab using COCO framework. DE algorithm was implemented with re-
spect to easy application of AE. Entire AE is encapsulated in class AdaptiveEn-
coding.m. The CMA-ES algorithm’s implementation was taken from [11] and
modified for using with COCO. In order to obtain comparative results to DE and
DE+AE, the same restart rules were applied to CMA-ES as well.

4.2.1. Notes on AECMA-Update implementation
Several problems appeared during implementation of AECMA-Update procedure.

The transformation matrix B = B∘D needs to be composed of real numbers.
For covariance matrixes, the eigenvectors and eigenvalues are real-valued since
covariance matrixes are Hermitian. Due to numerical inaccuracy in Matlab, up-
dated matrix C is not every time symmetric and numbers opposite to each other
over diagonal can differ slightly. This occurs mainly for higher dimensions n.
Therefore, the symmetry of matrix C needs to be enforced. In Matlab, this can
be done as:

C= tril(C,0)+tril(C,−1)′ or C= 0.5* (C+C′)

Other problem with numerical instability occurred when inverse of matrix B
is computed. In order to avoid this problem, condition number of matrix C needs
to be limited. The solution used to resolve this problem is coincident with the
one in CMA-ES implementation [11]:

if max(diag(D))> 1e14*min(diag(D))
tmp= max(diag(D))/1e14−min(diag(D));
C= C+tmp*eye(DIM);
D= D+tmp*eye(DIM);
end

4.3. Experiments and results
In this subsection, experiments comparing performance of DE, DE+AE and CMA-
ES are described.

The default setting for DE and DE+AE is as follows: crossover parameter cr =
0.5, and mutation parameter g is drawn from uniform distribution g =U (0.5,1)
for every generation[17]. Other parameters are set respectively to every group of
experiments and are stated in boxes within appropriate subsections.
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For most of the tests, the restarting criterion 50i30v is used. The notation
convention is described at the end of Sec. 4.1.1. The default values of c1, cµ and
cp are given in Sec. 3.2.1.

Datasets with results of the experiments are available at attached CD.

4.3.1. Experiments with population size
Population size is the most important parameter of any population-based algo-
rithm. Fig. 4.4 and Fig. 4.5 show graphs comparing performance of DE and
DE+AE with different population sizes.

According to [17], the recommended, most robust population size for DE is
ε = 10n but population bigger then 40 does not substantially improve the con-
vergence. However, smaller values of ε appear to be more efficient during the
experiments. This can be a result of more frequent restarts, since smaller popu-
lation inclines to faster convergence.

The tested sizes of population are ε = 6n, and 3n. In order to simulate con-
ditions of CMA-ES algorithm, strategy of choosing population size ε = 4 +
⌊3 ln(n)⌋ was taken over from the algorithm and tested as well.

Experimental setting:
#FEmax = 104 n; ε = {min(6n, 80) , min(3n, 80) , min(4+ ⌊3 ln(n)⌋ , 80)};
mutation:rand/1; crossover:bin; restarts:50i30v;
c1 = de f ault; cµ = de f ault; cp = de f ault;

The performance of algorithms with biggest population size ε = 6n is usually
the worst. In small dimensions, ε = 3n is the best option while the smaller pop-
ulation sizes work better for higher dimensions. This suggests that restarting of
algorithm has bigger effect on performance for higher dimensional optimization
problems.

Interestingly, the biggest population ε =min(6n, 80) does not perform the best
on multi-modal functions. This can be caused by the fact, that the population size
is not big enough (only the limit value of population size ε = 80 is chosen in case
of n = 20), or more frequent restarts are more beneficial to performance than big
population.

For DE+AE, good performance of small populations is connected with another
observation. For estimating covariance matrix, AE needs information obtained
from µ = ⌊λ/2⌋ best individuals entering AECMA-Update. The more individ-
uals are provided the better estimate of covariance matrix is obtained. Bigger
populations provide more information in every generation, therefore AE should
work better with them. This could be a reason, why the smallest population
size ε = min(4+ ⌊3 ln(n)⌋ , 80)} is performing the worst on moderate and ill-
conditioned function for dimension 5. However, for dimension 20, the smallest
population performs the best. The most likely explanation seems to be that, the
benefits of frequent restarting dominate the robustness of bigger population.
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Population size experiments - dimension 5
all functions separable fcts
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Figure 4.4.: ECDF of the bootstrapped ERT, see Sec. 4.1.3
Experimental setting:
#FEmax = 104 n;
ε = {min(6n, 80) , min(3n, 80) , min(3n, 4+ ⌊3 ln(n)⌋ , 80)};
mutation:rand/1; crossover:bin; restarts:50i30v;
c1 = de f ault; cµ = de f ault; cp = de f ault;
Abbreviations:
DE: DE algorithms; AE: DE+AE;
06: ε = 6n;
CMA: CMA-ES population size strategy ε = 4+ ⌊3 ln(n)⌋;
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Population size experiments - dimension 20
all functions separable fcts
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Figure 4.5.: ECDF of the bootstrapped ERT, see Sec. 4.1.3
Experimental setting:
#FEmax = 104 n;
ε = {min(6n, 80) , min(3n, 80) , min(3n, 4+ ⌊3 ln(n)⌋ , 80)};
mutation:rand/1; crossover:bin; restarts:50i30v;
c1 = de f ault; cµ = de f ault; cp = de f ault;
Abbreviations:
DE: DE algorithms; AE: DE+AE;
06: ε = 6n;
CMA: CMA-ES population size strategy ε = 4+ ⌊3 ln(n)⌋;

31



Experiments

4.3.2. Experiments with crossover operator

A set of experiments was executed in order to compare the performance of the
two commonly used crossover operators: binomial and exponential, see. Sec.
2.1. Although, “The crossover method is not so important” [17] and the binomial
crossover is usually first-option choice.

The results of the experiments for dimensions 5 and 20 are in Fig. 4.6 and Fig.
4.7 respectively.

Experimental setting:
#FEmax = 104 n; ε = min(6n, 80)
mutation:rand/1 crossover:{bin, exp}; restarts:50i30v;
c1 = de f ault; cµ = de f ault; cp = de f ault;

As expected, the experiments does not show a significant difference in per-
formance between binomial and exponential crossover. However, for all sub-
groups of functions, binomial crossover is the best choice for DE+AE. Exponen-
tial crossover performs better for DE on separable problems with higher dimen-
sion.

Since crossover operation is rotation dependent, DE algorithm can not rely
on this operation when optimizing non-separable functions [19]. Significance of
crossover operator for separable function comes obvious on higher dimensions
where DE/rand/1/exp reached better solution in some trials (the bootstrapped es-
timate reaches top of the graph).

For DE algorithm, the biggest difference between binomial and exponential
crossover appears on functions with low or moderate conditioning and small di-
mensions. Obviously, DE can still benefit from crossover procedure on those
functions since they possess “remains” of separability. In such case, binomial
crossover is more suitable. It replaces elements of candidate solution x by re-
spective individual elements of donor vector (not by blocks elements, see Chap.
2), which leaves more randomness in the process and depends less on particular
coordinate system.

The same reason can also explain overall better performance of DE+AE with
binomial crossover.

4.3.3. Experiments with mutation operator

Unlike crossover, mutation operator is rotation independent [19]. Therefore, in
particular for DE, the choice of mutation operator poses a bigger challenge and
supposedly has bigger influence on performance than crossover operator.

Three different mutation strategies were tested: rand/1, best/1, avg/1. Closer
explanation is provided in Sec. 2.1. The results of experiments with mutation
operators are shown in figures Fig. 4.8 and Fig. 4.9.
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Experiments and results

Experimental setting:
#FEmax = 104 n; ε = min(6n, 80);
mutation:{rand, best, avg}/1; crossover:bin; restarts:50i30v;
c1 = de f ault; cµ = de f ault; cp = de f ault;

In general, mutation operator rand/1 proves as the worst option. avg/1 mutation
performs slightly better than best/1. However, avg/1 mutation does not bring very
convincing improvement in comparison to best/1 and those two mutation can be
considered to perform similarly well.

The mutation operators best/1 and avg/1 create bigger selection pressure on
population and support faster convergence than rand/1 mutation. Thus, the per-
formed search is more local. Interestingly, this not appears to be a disadvantage
on multi-modal functions where premature convergence can cause stucking of
algorithm in local optima easily.

4.3.4. Experiments with adaptation learning rates
The adaptation learning rates c1, cµ and cp in CMA-ES and AECMA-Update ad-
just the speed of accepting new information into covariance matrix C, see Sec.
3.2.1. Therefore, those parameters control the speed of the main function of AE
- the ability to adjust coordinate system.

Tuning c1 and cµ

The first set of experiments adjusts parameters c1 and cµ in DE+AE algorithm
(Fig. 4.10 and Fig. 4.11). The default values of those parameters are [7]:

c1 =
0.2 cp

(n+1.3)2 +µeff
; cµ =

0.2αc µeff−2+ 1
µeff

(n+2)2 +αµ µeff

The default values are relatively small and prove to be feasible for small dimen-
sion. However, in higher dimension, setting bigger c1 and cµ brings appreciable
improvement to performance.

The merit of increasing value c1 and cµ from the default setting is distinct
mainly for ill-conditioned functions. This is expectable result since ill-conditioned
functions are “highly” non-separable. In such case, the capability of AE to adjust
the coordinate system is crucial and increased value of c1 and cµallows AE to do
that more promptly.

Experimental setting:
#FEmax = 104 n; ε = min(6n, 80);
mutation:best/1; crossover:bin; restarts:50i30v;
c1 = {de f ault, 0.1, 0.2, 0.3, 0.4}; cµ = {de f ault, 0.1, 0.2, 0.3, 0.4};
cp = de f ault;
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Crossover experiments - dimension 5
all functions separable fcts

0 1 2 3 4 5 6 7 8
log10 of (ERT / dimension)

0.0

0.2

0.4

0.6

0.8

1.0
P
ro

p
o
rt

io
n
 o

f 
fu

n
ct

io
n
s

DEexp

DEbin

AEexp

AEbin

best 2009f1-24 best 2009

AEbin

AEexp

DEbin

DEexp
0 1 2 3 4 5 6 7 8

log10 of (ERT / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f 
fu

n
ct

io
n
s

AEexp

AEbin

DEexp

DEbin

best 2009f1-5 best 2009

DEbin

DEexp

AEbin

AEexp

moderate fcts ill-conditioned fcts

0 1 2 3 4 5 6 7 8
log10 of (ERT / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f 
fu

n
ct

io
n
s

DEexp

DEbin

AEexp

AEbin

best 2009f6-9 best 2009

AEbin

AEexp

DEbin

DEexp
0 1 2 3 4 5 6 7 8

log10 of (ERT / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f 
fu

n
ct

io
n
s

DEexp

DEbin

AEexp

AEbin

best 2009f10-14 best 2009

AEbin

AEexp

DEbin

DEexp

multi-modal fcts weak structure fcts

0 1 2 3 4 5 6 7 8
log10 of (ERT / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f 
fu

n
ct

io
n
s

DEbin

DEexp

AEexp

AEbin

best 2009f15-19 best 2009

AEbin

AEexp

DEexp

DEbin
0 1 2 3 4 5 6 7 8

log10 of (ERT / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f 
fu

n
ct

io
n
s

AEexp

AEbin

DEexp

DEbin

best 2009f20-24 best 2009

DEbin

DEexp

AEbin

AEexp

Figure 4.6.: ECDF of the bootstrapped ERT, see Sec. 4.1.3
Experimental setting:
#FEmax = 104 n; ε = min(6n, 80);
mutation:rand/1; crossover:{bin, exp}; restarts:50i30v;
c1 = de f ault; cµ = de f ault; cp = de f ault;
Abbreviations:
DE: DE algorithms; AE: DE+AE;
bin: binomial mutation; exp: exponential mutation;
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Experiments and results

Crossover experiments - dimension 20
all functions separable fcts
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Figure 4.7.: ECDF of the bootstrapped ERT, see Sec. 4.1.3
Experimental setting:
#FEmax = 104 n; ε = min(6n, 80);
mutation:rand/1; crossover:{bin, exp}; restarts:50i30v;
c1 = de f ault; cµ = de f ault; cp = de f ault;
Abbreviations:
DE: DE algorithms; AE: DE+AE; bin: binomial mutation; exp: ex-
ponential mutation;
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Mutation experiments - dimension 5
all functions separable fcts
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Figure 4.8.: ECDF of the bootstrapped ERT, see Sec. 4.1.3
Experimental setting:
#FEmax = 104 n; ε = min(6n, 80);
mutation:{rand, best, avg}/1; crossover:bin; restarts:50i30v;
c1 = de f ault; cµ = de f ault; cp = de f ault;
Abbreviations:
DE: DE algorithms. AE: DE+AE.
rand: rand/1 mutation. best: best/1 mutation. avg: avg/1 mutation
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Mutation experiments - dimension 20
all functions separable fcts
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Figure 4.9.: ECDF of the bootstrapped ERT, see Sec. 4.1.3
Experimental setting:
#FEmax = 104 n; ε = min(6n, 80);
mutation:{rand, best, avg}/1; crossover:bin; restarts:50i30v;
c1 = de f ault; cµ = de f ault; cp = de f ault;
Abbreviations:
DE: DE algorithms. AE: DE+AE.
rand: rand/1 mutation. best: best/1 mutation. avg: avg/1 mutation
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Experiments

Adaptation learning rate experiments (c1, cµ) - dimension 5
all functions separable fcts
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Figure 4.10.: ECDF of the bootstrapped ERT, see Sec. 4.1.3
Experimental setting:
#FEmax = 104 n; ε = min(6n, 80);
mutation:best/1; crossover:bin; restarts:50i30v;
c1 = {de f ault, 0.1, 0.2, 0.3, 0.4};
cµ = {de f ault, 0.1, 0.2, 0.3, 0.4};
cp = de f ault;
Abbreviations:
D: DE algorithms. A: DE+AE.
XXcYYc: c1 = 0.XX cµ = 0.YY
DFcDFc: c1 = de f ault cµ = de f ault
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Experiments and results

Adaptation learning rate experiments (c1, cµ) - dimension 20
all functions separable fcts
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Figure 4.11.: ECDF of the bootstrapped ERT, see Sec. 4.1.3
Experimental setting:
#FEmax = 104 n; ε = min(6n, 80);
mutation:best/1; crossover:bin; restarts:50i30v;
c1 = {de f ault, 0.1, 0.2, 0.3, 0.4};
cµ = {de f ault, 0.1, 0.2, 0.3, 0.4};
cp = de f ault;
Abbreviations:
D: DE algorithms. A: DE+AE.
XXcYYc: c1 = 0.XX cµ = 0.YY
DFcDFc: c1 = de f ault cµ = de f ault
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Adaptation learning rate experiments - tuning cp
all functions - dim. 5 all functions - dim. 20
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Figure 4.12.: ECDF of the bootstrapped ERT, see Sec. 4.1.3
Experimental setting:
#FEmax = 104 n; ε = min(6n, 80);
mutation:best/1; crossover:bin; restarts:50i30v;
c1 = 0.2; cµ = 0.2; cp = {de f ault, de f ault +0.2, de f ault−0.1};
Abbreviations:
DF±0.X: cp = de f ault +0.X

Tuning cp

Other experiments were done for different values of cp which controls the learn-
ing rate of evolution path p, see Sec. 3.2.2. The default value of the parameter
is cp =

1√
n . In this case setting value of cp lower or higher than the default value

does not have impact on performance of DE+AE algorithm. The result of exper-
iments is visualized in Fig. 4.12.

Experimental setting:
#FEmax = 104 n; ε = min(6n, 80);
mutation:best/1; crossover:bin; restarts:50i30v;
c1 = 0.2; cµ = 0.2; cp = {de f ault, de f ault +0.2, de f ault−0.1};

4.3.5. Experiments with restart criterion
An important part of tested algorithms is also the restarting mechanism. In order
to assess the influence of restarting on performance, a series of tests was exe-
cuted. Results of this experiments are in Fig. 4.13 and Fig. 4.14. The notation
convention is described at the end of Sec. 4.1.1.

The worst performing restart criterion is 25i25v since it probably does not
allow population to converge and the procedure is restarted prematurely. The best
performing criterion is 80i60v. However, the performance of restarting criteria
50i30v used for most of the experiments is comparable with 80i60v.
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In particular, the difference between 50i30v and 80i60v is small in case of
DE+AE. However, in case of ill-conditioned function the criteria 80i60v is ob-
viously superior to 50i60v also for DE+AE. This could be caused by the fact,
that AE needs some time to adjust the coordinate system correctly before being
beneficial for the search.

This hypothesis is supported also by experiments with value of parameters c1
and cµ in Sec. 4.3.4. DE+AE with bigger values of c1 and cµ performs better for
restart criterion 50i30v (Sec. 4.3.4) than with restart criterion 80i30v and default
values of c1 and cµ (in this section).

Experimental setting:
#FEmax = 104 n; ε = min(3n, 4+ ⌊3 ln(n)⌋ , 80);
mutation:best/1; crossover:bin; restarts:{25i25v, 50i30v, 80i60v};
c1 = de f ault; cµ = de f ault; cp = de f ault;

4.3.6. Comparison of DE, DE+AE and CMA-ES
In order to make a final comparison and conclusion on benefits of applying AE
to DE. The algorithm DE and DE+AE were run for #FEmax = 105 n evaluations.
The setting for this long-run experiments was chosen using experience from pre-
vious tests. The combination of best performing parameters was chosen for DE
algorithm. In case of DE+AE, smaller population sizes than ε =min(6n, 80) and
restart criteria 80i50v performed better in separated tests. However, the settings
do not show good results when used together. Therefore, a tested well-performing
combination of population size ε = min(6n, 80) and restart criteria 50i30v was
chosen instead.

Experimental setup: DE:
#FEmax = 105 n; ε = min(4+ ⌊3 ln(n)⌋ , 80) ;
mutation:best/1; crossover:bin; restarts:80i60v;

Experimental setup: DE+AE
#FEmax = 105 n; ε = min(6n, 80) ;
mutation:best/1; crossover:bin; restarts:50i30v;
c1 = 0.2; cµ = 0.2; cp = de f ault;

Experimental setup: CMA-ES
#FEmax = 105 n; ε = min(4+ ⌊3 ln(n)⌋ , 80); restarts:80i60v;

On Fig. 4.15 and Fig. 4.16 is ECDF of ERT computed over all functions for
dimensions 5 and 20. For both dimensions the DE+AE algorithm (∘) reaches in
average better fitness values than DE (+).

In more detail view, the results are depicted in Fig. 4.17 and Fig. 4.16 where
ECDF of ERT is computed over subgroups of functions.

On separable function DE algorithm performs better than DE+AE. Although,
in higher dimensions the difference is small. On separable function, adding AE
rather confuses DE algorithm than contributes to its better performance, because
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Restart criterion experiments - dimension 5
all functions separable fcts
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Figure 4.13.: ECDF of the bootstrapped ERT, see Sec. 4.1.3
Experimental setting:
#FEmax = 104 n; ε = min(3n, 4+ ⌊3 ln(n)⌋ , 80);
mutation:best/1; crossover:bin; restarts:{25i25v, 50i30v,
80i60v};
c1 = de f ault; cµ = de f ault; cp = de f ault;
Abbreviations:
D: DE. A: AE.
XXiYYv: The notation convention is described at the end of Sec.
4.1.1.
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Restart criterion experiments - dimension 20
all functions separable fcts
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Figure 4.14.: ECDF of the bootstrapped ERT, see Sec. 4.1.3
Experimental setting:
#FEmax = 104 n; ε = min(3n, 4+ ⌊3 ln(n)⌋ , 80);
mutation:best/1; crossover:bin; restarts:{25i25v, 50i30v,
80i60v};
c1 = de f ault; cµ = de f ault; cp = de f ault;
Abbreviations:
D: DE. A: AE.
XXiYYv: The notation convention is described at the end of Sec.
4.1.1.
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the fitness function is already rotated correctly and additional transformation is
undesirable.

Situation changes for non-separable functions. On moderate, ill-conditioned
and multi-modal function, DE+AE is superior to DE since adaptive encoding is
helping with finding correct representation. In particular, DE+AE outperforms
DE on ill-conditioned (i.e. “highly” non-separable) uni-modal functions.

On weakly structured function, DE reaches better results and proves to be more
suitable for global optimization than DE+AE. However, the difference is negli-
gible for higher dimension.

Fig. 4.19 and Fig. 4.20 provide comparison of DE, DE+AE and CMA-ES
algorithms on ECDF of ERT using bootstrapping to estimate ERT for #EF up to
107.

In general view, CMA-ES performs the best on lower dimension problems
while DE+AE slightly outperforms CMA-ES on problems with dimension 20.
When considering type of fitness function, DE is the best option for separable
functions, in particular is superior on lower dimensions. However, DE performs
the worst on non-separable uni-modal functions. On those functions, DE+AE
and CMA-ES perform almost the same on lower dimensions. For dimension 20,
DE+AE reaches the best results. However, on moderate functions, CMA-ES is
faster then DE+AE at the beginning of the search.

On multi-modal functions neither DE nor DE+AE is better than CMA-ES.
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Comparison DE and DE+AE - dimension 5
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Figure 4.15.: ECDF of ERT, see Sec. 4.1.3 of DE (+) and DE+AE (∘)
Computed over all functions in noiseless testbed.

Comparison DE and DE+AE - dimension 20
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Figure 4.16.: ECDF of ERT, see Sec. 4.1.3 of DE (+) and DE+AE (∘)
Computed over all functions in noiseless testbed.
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Comparison DE and DE+AE - dimension 5
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Figure 4.17.: ECDF of ERT, see Sec. 4.1.3 of DE (+) and DE+AE (∘)
Computed over subgroups of functions in noiseless testbed.
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Comparison DE and DE+AE - dimension 20
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Figure 4.18.: ECDF of ERT, see Sec. 4.1.3 of DE (+) and DE+AE (∘)
Computed over subgroups of functions in noiseless testbed.
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Final comparison - dimension 5
all functions separable fcts
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Figure 4.19.: ECDF of the bootstrapped ERT, see Sec. 4.1.3
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Figure 4.20.: ECDF of the bootstrapped ERT, see Sec. 4.1.3
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CHAPTER

FIVE

CONCLUSIONS

Space representation is a key issue when designing well performing optimization
algorithm. In this work, a system for adaptive encoding introduced by Hansen
in [7] is applied to DE algorithm [14, 17, 19, 20]. The resulting novel algorithm
DE+AE was implemented and tested on testbed of noiseless functions imple-
mented in platform COCO [1, 6]. Performance of DE+AE was compared with
original DE algorithm and CMA-ES.

Application of AE is beneficial primarily in case, that original optimization
algorithm is not efficient on non-separable functions. Applying AE significantly
improved performance of DE algorithm at ill-conditioned functions, where DE+AE
evens up or outperforms the basic version of CMA-ES algorithms. However,
when using AE, performance of DE on separable function is worst. Also, using
AE does not bring significant improvement to DE on multi-modal functions.

The superiority of best/1 and avg/1 mutation operators suggests that AE will
be more efficient when applied to optimizers performing search more locally.

Future work

In this work, the AE algorithm was applied to basic version of DE. However, there
are variety of improvements increasing the performance of DE on non-separable
functions (e.g. [19]) or equipping DE algorithm with automatic mechanisms for
parameter adjustment [4, 21]. Applying AE to them could result in even better
algorithm.

Also, further work should be focused on search of parameters for AECMA-
Update. Depending on given optimization problem, experiments done within
this thesis show that adjusting learning rate parameters c1 and cµ can significantly
improve performance of DE+AE.

Regarding experiments done within this work, the tests could be executed on
noisy functions as well.
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APPENDIX

A

ABBREVIATIONS

AE Adaptive encoding

AECMA-Update Updating procedure based on CMA-ES algorithm.

CMA-ES Covariance Matrix Adaptation - Evolution Strategy

COCO COmparing Continuous Optimizers

DE Differential Evolution

DE+AE Differential Evolution equipped with mechanism for adaptive encoding

GAEF General Adaptive-Encoding Framework

III





APPENDIX

B

NOTATION

n Dimension of optimization problem (scalar). In graphs and code
snips also marked as DIM.

ε Population size in DE (scalar)

λ Number of samples generated every generation in CMA-ES (scalar)

µ Number of best-ranked candidate solutions used for update (scalar)

x,m,p Vectors

xi i−th individual of population (vector)

xi, j j−th element of i−th individual (scalar)

B Matrix

BT Transpose of a matrix

In Identity matrix n×n

Θ Vector space

f () Objective function f : Rn→ R

fopt Minimum value of a fitness function

∆ f Desired precision to which an algorithm is optimizing an optimiza-
tion problem

ftarget The target fitnessvalue to reach in optimization (before the algorithm
is restarted) ftarget = fopt +∆ f

fbest Best (lowest) fitness value reached so far in a trial

V



Notation

#FE Number of function evaluations

#FEs( fbest ≥ ftarget) Number of function evaluations summed over all trials such
that the best found solution up to now fbest has fitness higer than
ftarget

#FEmax Maximum number of fitness evaluation in one trial

OP(x) Outer product OP(x) = xxT

N (m,C) Multi-variate normal distribution with mean m∈Rn and covariance
matrix C ∈Rn×n . The matrix C is symmetric and positive definite;
N (m,C)∼m+N (0,C)

U (a,b) Uniform distribution. Random numbers are drawn from range [a,b]
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CONTENTS OF SUPPLEMENT CD

Diploma_Thesis.pdf This document in .pdf format

/Tests Data containing results of performed tests

/Matlab Matlab code of all programs used in this thesis
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