

ii

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Computer Science and Engineering

Master's Thesis

Using Markov Models and Textual News Data in Financial
Series Prediction

Bc. Petr Zadraºil

Supervisor: doc. Ing. Filip �elezný, Ph.D

Study Programme: Arti�cial Intelligence

Field of Study: Open Informatics

January 3, 2012

iv

Aknowledgements

I would like to thank the following people:

• My supervisor doc. Ing. Filip �elezný, Ph.D for all the inspiration and patience.

• Doc. Dr. Boris Flach for providing a great insight into the world of Markov Models.

• Ing. Libor Grafnetr for valuable remarks and the thesis idea.

• All my friends and family for support and encouragement.

v

Declaration

I hereby declare that I have completed this thesis independently and that I have listed all
the literature and publications used.
I have no objection to usage of this work in compliance with the act �60 Zákon £. 121/2000Sb.
(copyright law), and with the rights connected with the copyright act including the changes
in the act.

In Prague on January 3, 2012 .

Abstract

This thesis covers analysis of �nancial markets and experimental evaluation of a possibility of
automated trading. The major part of the thesis describes design, implementation and test-
ing of two machine learning tools. The �rst one predicts market movements using newspaper
articles, whereas the second one uses Hidden Markov Models for strictly technical analysis.
A brief overview and comparison of other frequently used approaches is also included.

Abstrakt

Práce se zabývá analýzou �na£ních trh· a experimentálním zhodnocením moºností autom-
atizovaného obchodování. St¥ºejní £ást spo£ívá v návrhu, implementaci a testování dvou
systém· strojového u£ení. První z nich slouºí k predikci pohybu trh· s pomocí novinových
£lánk·, zatímco druhý vyuºívá Skryté Markovovy Modely k £ist¥ technické analýze. Práce
rovn¥º zahrnuje stru£ný p°ehled a porovnání dal²ích £asto pouºívaných technik.

vi

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Objectives . 2
1.3 Overview . 2

2 Background 4
2.1 Markets . 5
2.2 Systems for Algorithmic Trading . 7
2.3 Text Mining Integration . 14
2.4 Other Used Algorithms . 18

3 Design 20
3.1 Simplifying Assumptions . 21
3.2 Text Integration . 21
3.3 Time-Series Analysis . 24

4 Implementation 27
4.1 Implementation Environment . 28
4.2 System Design . 29
4.3 Article Retrieval . 31
4.4 Text Processing . 32
4.5 Article Preprocessing . 32
4.6 Data Series Processing . 33
4.7 Other Software Tools . 39

5 Testing and Results 41
5.1 Data Selection . 42
5.2 Text Analysis . 42
5.3 Markov Models . 49

6 Future Work 59

7 Conclusion 61

A List of Abbreviations 68

vii

CONTENTS viii

B NY Downloader User Guide 70
B.1 Installation . 71
B.2 Usage . 71

C Validation Framework User Guide 72
C.1 Installation . 73
C.2 Usage . 73

D Additional Plots and Tables 74

E DVD Content 87

List of Figures

2.1 Examples of simple strategies based on patterns or indicators 8
(a) A Head & Shoulders pattern example 8
(b) A Moving Average example . 8

3.1 Textual Data Analysis Flow . 21
3.2 Time-Series Analysis Flow . 24

4.1 Examples of application candidates . 29
(a) A Matlab screen example . 29
(b) Example usage of the RapidMiner . 29

4.2 Screenshot of the NY Downloader . 40

5.1 The standard deviation of a relative di�erence 43
5.2 Simple HMM Models Logarithmic Likelihood 50

(a) Relative Di�erence . 50
(b) Logarithmic Di�erence . 50

5.3 Simple HMM models direction prediction . 50
(a) Relative Di�erence . 50
(b) Logarithmic Di�erence . 50

5.4 The �rst iteration of the two best trading HMMs 53
(a) 8 State Relative Di�erence HMM . 53
(b) 3 State Relative Di�erence HMM . 53

5.5 Learning Together Performance . 53
(a) Direction Accuracy . 53
(b) 3 States Simple Threshold Trading . 53

5.6 Examples of application candidates . 57
5.7 Trading Performance of Models During Validation 57
5.8 Value Distributions for Individual HMM States 58

B.1 Screenshot of the NY Downloader . 71

ix

List of Tables

2.1 ILP Comparison: Percent of correct "up" and "down" estimates. 10
2.2 ILP Comparison: Gain per year in simulated trading. 10
2.3 Sentiment analysis results . 16
2.4 Performance of the system proposed by Fung, Yu and Lam 17
2.5 AZFinText: Closeness Results . 17
2.6 AZFinText: Directional Accuracy Results . 18
2.7 AZFinText: Simulated Trading Engine Results 18

5.1 Correctly Classi�ed Yahoo Articles Using a Simple SVM Model 45
(a) Relative Di�erence 1 . 45
(b) Relative Di�erence 5 . 45

5.2 Correctly Classi�ed Yahoo Articles After Filtering 46
(a) Technology Business Filtering . 46
(b) Unique Filtering . 46

5.3 Correctly Classi�ed Yahoo Articles Using Naive Bayes 46
5.4 Correctly Classi�ed Yahoo Articles After Filtering 47

(a) Technology Business Filtering . 47
(b) Unique Filtering . 47

5.5 Correctly Classi�ed Yahoo Articles Using Naive Bayes 47
5.6 Correctly Classi�ed Yahoo Articles After Term Reduction 48

(a) Term Reduced to 10% . 48
(b) Term Reduced to 20% . 48

5.7 Validation of Article Classi�cation . 48
5.8 Average Daily Pro�t of the Con�dence Strategy 51

(a) Relative Di�erence . 51
(b) Logarithmic Di�erence . 51

5.9 Average Daily Pro�t of the Threshold Strategy 52
(a) Relative Di�erence . 52
(b) Logarithmic Di�erence . 52

5.10 Parameters of the Final Models . 56
5.11 Parameters of the Final Models . 56

D.1 Number of articles related to given subject . 75
D.2 Ratio of Positive/Negative articles by Category 76
D.3 Average Daily Pro�t of Con�dence Strategy if learnt together 77

x

LIST OF TABLES xi

(a) Relative Di�erence . 77
(b) Logarithmic Di�erence . 77

D.4 Average Daily Pro�t of Threshold Strategy if learnt together 78
(a) Relative Di�erence . 78
(b) Logarithmic Di�erence . 78

D.5 Average Daily Pro�t of Relative Di�erence with Con�dence based Strategy
for Di�erent Window Sizes . 79
(a) 4 Chunks in a Window . 79
(b) 2 Chunks in a Window . 79
(c) 1 Chunk in a Window . 79

D.6 Average Daily Pro�t of Threshold Strategy for Di�erent Window Sizes Lernt
Together . 80
(a) 4 Chunks in a Window . 80
(b) 2 Chunks in a Window . 80
(c) 1 Chunk in a Window . 80

D.7 Average Daily Pro�t of Stationary HMM with Con�dence Strategy 81
D.8 Average Daily Pro�t of Con�dence Strategy for Di�erent Smoothing Values . 82

(a) Smoothing 10 . 82
(b) Smoothing 1 . 82
(c) Smoothing 0.1 . 82

D.9 Average Daily Pro�t of Con�dence Strategy for Cropping Values 83
(a) Cropping 0.4 . 83
(b) Cropping 0.2 . 83
(c) Cropping 0.1 . 83

D.10 Average Daily Pro�t of 2nd Order HMMs . 84
(a) Relative Di�erence - Simple Threshold 84
(b) Relative Di�erence - Con�dence Threshold 84
(c) Logarithmic Di�erence - Simple Threshold 84
(d) Logarithmic Di�erence - Con�dence Threshold 84

D.11 Average Daily Pro�t of 3rd Order HMMs . 85
(a) Relative Di�erence - Simple Threshold 85
(b) Relative Di�erence - Con�dence Threshold 85
(c) Logarithmic Di�erence - Simple Threshold 85
(d) Logarithmic Di�erence - Con�dence Threshold 85

D.12 Combined HMMs . 86
(a) Stationary Logarithmic Di�erence based HMM learnt together 86
(b) Stationary Logarithmic Di�erence based 2nd Order HMM learnt together 86

Chapter 1

Introduction

Any su�ciently advanced technology is

indistinguishable from magic.

Arthur C. Clarke

1

CHAPTER 1. INTRODUCTION 2

1.1 Motivation

Computers are providing valuable assistance or completely replacing humans in many dif-
ferent �elds and world's �nancial markets are not left behind. It all started few decades ago
with simple data accumulation, storage and visualisation. Now there are sophisticated and
complex systems capable of adept autonomous trading. But those producing pro�t are kept
in secret by their owners.

According to rough estimates these computer algorithms are responsible for 70% of Wall
Street trade volume [Salmon and Stokes, 2010]. The number is a little overrated, because
most of the algorithms are High-Frequency Trading ones, which produce large volumes of
trades even with comparatively smaller amounts of money in each trade. Nevertheless, the
amount of money under the control of machines is de�nitely rising.

Creating such trading algorithm is highly challenging in many ways. One has to predict
future price behaviour from huge amount of data from di�erent sources. It is not easy to
reveal hidden dependencies and incorporate them. Furthermore, there is a large number of
other competing algorithms, individuals or whole companies.

It is not likely that there will be a complete functional trading system at the end of
this work. The amount of problems to solve is large and we even might be overlooking
a substantial part of them. But it is not possible to complete something without even
starting and eventual success would bring pleasant payback in form of both psychical and
materialistic satisfaction. Furthermore, we believe that knowledge and abilities obtained by
analysing �nancial time series can be easily transformed and applied in many other problem
areas.

1.2 Objectives

As we are new to the �eld, the main objective is to obtain a better insight into the area.
Even though it is much more rewarding to do everything one's way, the knowledge of other
people's work can keep your e�ort on the right track and prevent you from visiting already
discovered dead ends.

Our �rst area of interest is the usage of background knowledge in �nancial time series
prediction. After the initial research is over, a model will be designed, implemented and
tested on historical, but not overly outdated data.

The second major goal is to perform evaluation of a few Hidden Markov Models variations
and experimentally establish their ranking. Again all the design, implementation and testing
steps will he performed.

We will also try to locate both - the bene�ts and the weak points of used techniques and
come up with possible future improvements.

1.3 Overview

The rest of the document is organized as follows. The chapter 2 is dedicated to accumulation
of the available knowledge. The design is proposed in the chapter 3 and the �nal product is

CHAPTER 1. INTRODUCTION 3

described in the chapter 4. Results of our tests are summarized in the following chapter 5.
The chapter 6 describes possible �xes, improvements and future goals. And �nally, the
chapter 7 summarizes our e�ort.

Chapter 2

Background

A business that makes nothing but

money is a poor business.

Henry Ford

4

CHAPTER 2. BACKGROUND 5

2.1 Markets

The term market refers to the same concept as hundreds years ago, however the form and
goods have changed. The target markets of this research are modern open �nancial markets
allowing computer trading.

2.1.1 Market Types

This section summarises common publicly accessible markets. There are also di�erences be-
tween markets around the world even though they have the same type. The most important
thing is that modern markets are accessible virtually using electronic trading systems.

Currency Market The currency market also known as forex serves as an exchange place
for world's currencies. It is popular, traded continuously without breaks, but is also
considered as a risky one.

Stock Markets These markets trade shares in companies. Their advantage is that in addi-
tion to the value of the share you can get dividends in case the company is pro�table.

Futures Markets The items traded here are futures of speci�ed commodities. The futures
are contracts on future delivery of a commodity with �xed term and strict speci�cation.
Common traded subjects include coal, corn, gold, co�ee, various �nancial instruments
and many more. One advantage is that you do not to have to pay full price while
buying something. You can also virtually sell items without having them, buy them
later and pair the contracts. As a result even negative price movement can be highly
pro�table.

2.1.2 Theories

There is a number of theories how the markets work. Although most of them do not exactly
re�ect the reality, they can help to reveal important facts about the market. The following
part of the chapter will review the most notable ones.

2.1.2.1 E�cient Market Hypothesis

E�cient Market Hypothesis EHM comes in three di�erent forms. The week form claims,
that future price cannot be predicted by analysing past prices, because the future price
movement depends entirely on information not contained in the price alone. According to
this theory all pattern matching algorithms or trading strategies trying to take advance of
market ine�ciencies cannot generate systematic pro�t.

The semi-strong version further assumes, that prices adapt public information so fast,
that no excess returns can be generated using that information. If this theory is true then
neither Technical nor Fundamental analysis should be able to generate a long term pro�t.

The strong version further expects, that even private information instantly changes the
price and therefore absolutely nobody and nothing is able to generate a long term pro�t

CHAPTER 2. BACKGROUND 6

without a luck. As a results the trading success of all the subjects on the market should
form something close to a Gaussian distribution.

There is a strong community disagreeing with this hypothesis trying to disprove it using
both empirical and theoretical arguments.

2.1.2.2 Random Walk Hypothesis

A random walk hypothesis leaves even less space for prediction. It claims that the markets
as predictable as coin �ip. Therefore no matter how much information is available the future
direction remains a secret until it happens.

2.1.2.3 Adaptive Market Hypothesis

The Adaptive Market Hypothesis states, that amount of information price re�ects depend
on the environmental conditions and nature of trading subjects. Therefore highly traded
markets with large number of interested subject will re�ect the actual price precisely than
some abandoned market. This theory is based on EHM, but it is combined with behavioral
economics and applies principles of evolution and �nancial interaction. And what is most
important, it does not deny a possibility to make a pro�t.

2.1.3 Types of Analysis

There is a lot of analysis methods, but just two basic analysis direction will be mentioned.

2.1.3.1 Technical

Technical analysis presumes, that all the required information is already present in the price.
It sounds a bit crazy, but actually it is known that large quantities of people behave a bit
predictively and as they react on market changes, they follow some patterns. According to
this approach the patterns could be discovered and used. The technical analysis is compatible
with EHM, because the EHM claims that discovering such patterns would a�ect the price
and destroy the pattern.

2.1.3.2 Fundamental

The fundamental analysis is a di�erent approach. It suppose, that the price re�ects the value
of the asset. If the value changes, the asset becomes mispriced and trading these mispriced
assets can produce gain. The evaluation tries to use all the available information including
newspaper articles, situation of competing assets or global economical mood.

The fundamental analysis has two main problems. The �rst one is how to obtain all
the relevant information as soon as possible. And the second problem is how to predict the
impact of that information.

CHAPTER 2. BACKGROUND 7

2.2 Systems for Algorithmic Trading

A system for algorithmic trading is a machine taking all available relevant information,
processing it and producing trading operations for the market. Common input data contains
market data like price, volume or even individual bids. This data can be further accompanied
by news feeds, weather forecasts, advises issued by specialised companies or anything other
which might have in�uence on the price and can be processed by a computer. The output
operations are usually Buy/Sell commands frequently extended by Stop-Loss values or price
restrictions.

There is a large number of methods how to get Buy/Sell commands using the historical
input data. Some of them do not produce these commands directly, but they are trying to
estimate the market's future value or direction and then apply some strategy to extract the
commands. This can be useful for the learning process. The rest of the section contains
the most widely used methods for single time-series analysis. The analysis of multiple time-
series is covered only brie�y in selected parts. A short overview of algorithms created using
di�erent classi�cation [Zhang and Zhou, 2004] is available. There is also a more detailed
work concentrating on the data-mining approach [Zemke, 2003].

2.2.1 Historical Methods

Few decades ago, when the algorithmic trading was a new idea, the situation on world's
markets looked di�erently. The traders used the computer mostly for displaying time series
together with indicators. The indicators are mathematical transformations of one or more
time series to one or more di�erent time series. The average short-term trader had one
or more strategies which were tested on the past data and which were producing Buy/Sell
commands later executed by a human or a machine.

Usual strategies back then were based on searching simple patterns or watching for spe-
ci�c indicator values [Elder, 1992]. An example of a pattern can be the one called Head &
Shoulders 2.1a. It can predict the market's changing direction [Langager and Murphy, 2010].
An example of indicator-based system can be the 2 Moving Average Cross system 2.1b. It
is based on two moving averages with di�erent lengths. When the shorter moving average
is above the longer moving average, the value is about to increase and vice versa [Derrick,
2010]. Some of these simple methods are used by traders and analysts even these days.

2.2.2 Econometric Models

This group includes all the mathematical models like ARMA, ARIMA, GARCH and many
others. The name of a model is derived from its building blocks. For example the ARMA
model is build from two parts. The AR stands for Auto Regressive and the MA part stands
for Moving Average. Generally, these models are trying to disassemble the complex mar-
ket movements to noise and several simple mathematically de�nable movements. All these
models allow to estimate the future price based on previously learnt parameters. According
to the amount of published books and articles on the topic, these models are quite popular
and produce great results so we cannot just pretend they do not exists [Brockwell and Davis,
1996][Palma, 2006]. But they are so heavily used and researched that we decided to leave
these models to more economically-based investigators and concentrate on di�erent ones.

CHAPTER 2. BACKGROUND 8

(a) A Head & Shoulders pattern example (b) A Moving Average example

Figure 2.1: Examples of simple strategies based on patterns or indicators

2.2.3 Neural Networks, Genetic Algorithms, Clustering, Support Vector

Machines

Neural networks together with Genetic Algorithms are powerful weapons capable of solving
many di�erent problems in many di�erent areas. They are especially useful when solving
complex recognition or relational problems or when there is no better idea how to approach
a problem. In case of the �nancial time-series they are used for both modelling the data or
joining several simple models to a more advanced and powerful one.

Both Clustering and Support Vector Machines can be used to separate input data to dif-
ferent groups. These methods are heavily dependent on good data preprocessing. Clustering
has generally a little lower performance on �nancial time-series because it is more susceptible
to noise.

All the methods in this subsection are the subject of a di�erent thesis [Grafnetr, 2011]
and therefore they will not be further investigated here.

2.2.4 Relational Data Mining

Relational data mining is a branch of data mining searching for dependencies between data
and revealing hidden rules and structure. It is a little younger method compared to instance-
based learning and currently is being dynamically evolved. The cornerstone of this method
is a rule which is generally an implication in �rst order logic. The FOL gives this method
more expression power than the standard decision trees have. The rules can reveal a new
fact about instances:

isFather(x, y) ∧ isWoman(y)⇒ isDaughter(y, x)

or categorize an instance:

hasFourLegs(x) ∧ ¬isRobot(x)⇒ isAnimal(y, x)

CHAPTER 2. BACKGROUND 9

or make assumptions for the future:

price(t) > price(t− 1) ∧ volume(t) > volume(t− 1)⇒ price(t+ 1) > price(t)

or be any other type of a meaningful implication. Similar sign of all the algorithms is that
they are trying to discover the simplest possible meaningful rules. However, the measures of
simplicity and meaningfulness may vary between di�erent algorithms.

Relational data mining wasn't very popular in the past, because of its complexity. His-
torical approaches were based on exhaustive search, therefore dependent on the size of the
possible implications space, which is exponential to the number of predicates and logical
operations allowed in one rule.

Nowadays, relational data mining is used for di�erent purposes all across data mining
area. Best results were achieved on biological datasets. However, relational-based methods
are becoming more popular in time series analysis. They have several advantages against
traditional methods. The result is human-friendly, because all the rules can be directly
analysed and interpreted. This can be useful when adjusting the algorithm to �t the time
series or when extracting deeper knowledge. The opposite example are neural networks,
which are acting as a black-box and they are hard to understand without additional analysing
method.

2.2.4.1 FOIL and MMDR

One of the �rst well documented RDM experiments on �nancial time series were performed
using FOIL and MMDR algorithms [Kovalerchuk and Vityaev, 2000].

The FOIL is based on generating clauses in DNF containing only positive examples.
The algorithm uses heuristic depending on information gain of a predicate together with the
branch and bound method. It also contains a stop criterion, which helps to avoid creating
complicated rules containing small amount of examples. This leads to higher resistance to
noise.

The MMDR algorithm incorporates additional improvements over the FOIL such as
typed predicates, additional user-de�ned constraints or initial hypothesis (partial, possibly
incorrect rule given by the user). In addition, the rules in MMDR are probabilistic. That
means not all the rules have to be completely true, but they have to stay within some
statistical signi�cance limits. All these improvements are further reducing the search space
and reducing the noise impact (especially the probabilistic part).

Tests in the above work were realized using price prediction and simulated trading on
S&P 500. The learning part was 1985-1994 and validation (trading) was 1995-1998. Both
algorithms were learnt to predict the next day price direction. The algorithm was given more
information in addition to the S&P 500 's price:

• weekday

• �rst and second di�erences between prices

There are two tables (2.1 and 2.2) comparing FOIL and MMDR with di�erent methods.
It can be seen that MMDR algorithm outperformed all other algorithms in both com-

parisons. Also it is obvious that the few di�erences between MMDR and FOCL have a great

CHAPTER 2. BACKGROUND 10

Method 1995-1996 1997-1998 1995-1998
Neural Network 68% 57% 62%
Decision Tree 67% 60% 64%
MMDR 78% 85% 82%
FOIL 51% 45% 48%

Table 2.1: ILP Comparison: Percent of correct "up" and "down" estimates.

Method 1995-1996 1997-1998 1995-1998
Adaptive Linear 21.9% 18.3% 20.1%
MMDR 26.7% 43.9% 35.3%
Buy and Hold 30.4% 20.6% 25.5%
Neural Network 18.9% 16.1% 17.5%

Table 2.2: ILP Comparison: Gain per year in simulated trading.

impact on the performance. It is slightly discomforting that MMDR was the only active al-
gorithm which was better than the passive Buy and Hold strategy (buy stock �rst day, hold
it the whole time, sell last day). However, the comparison itself depends on many factors
including the chosen time series and methods variants and parameters. It is quite possible
that a group of neural networks learned by an advanced algorithm can outperform MMDR
on a di�erent time series. But MMDR de�nitely seems to be a great tool for �nancial time
series analysis.

2.2.4.2 ILP

Another good example of usage is training an ILP strategy for trading USD-DEM daily
closing value [Badea, 2000]. At �rst, each instance of training data was classi�ed using a
threshold method and marked with none, one or two of the following labels: buy, sell, not
buy, not sell. This is a slightly di�erent approach than in the previous example, because
the strategy is learned directly (there is no up and down prediction). It is also important to
mention that not only the turnaround points were marked as buy and sell, but the turnaround
neighbourhood was marked as well. This is because the turnaround point itself is di�cult
to spot without the surrounding part of the data series.

After this the ILP rules were learned using Prolog. Besides the data series itself, other
computed series were fed to the learning algorithm:

• moving average crossover system

• RSI oscillator system

• ADX system triggered by crossing a threshold after two successive up movements

• stochastic SlowK-SlowD crossover system

• stochastic oscillator system

CHAPTER 2. BACKGROUND 11

All these measures were computed for 5, 10, 15, 25, 40 and 65 days intervals.

The resulting strategy was able to perform simulated trading with 80% pro�tability
compared to an over-optimized moving average crossover system. It also discovers 25-30%
of trading opportunities. Author himself felt optimistic about the result of his initial exper-
iment, but no further work was found.

2.2.4.3 Conclusion

We were unable to �nd any more up-to-date information about �nancial time series and
relational data mining or inductive logic programming. This is slightly puzzling, as they
seem to be used and evolved in almost every other area. This can be caused by two extremes.
Either they are inapplicable and no author wants to publish an unsuccessful work or they
perform very well and the successful research is kept private.

2.2.5 Markov models

Markov Models are being used in a wide range of applications because of their simplicity and
robustness. There are many attempts to analyse �nancial time series data, however each of
the authors performs test on a di�erent time series and compares with di�erent algorithms
with varying parameters. This makes it hard to compare the new test results with the old
ones. Because of the autonomous trading systems, the market responsiveness is much higher
nowadays and algorithms working in previous decades might be useless today. To make the
situation even worse, often the parameters of algorithms used for comparison are completely
missing.

2.2.5.1 Basic Markov Model

The Markov Model (MM) is a structure, where observations are converted into discrete
states. The probability that some state will be the next state depends only on the current
state (in case of prediction to the future). If we want to predict data using this model, we
have to make the values discrete.

Test using this particular model was performed e.g. by Constantine P. Papageorgiou
[Papageorgiou, 1997]. He used MM to predict the direction of the CHF/USD exchange rate.
The data were preprocessed to log ratios between consecutive prices

rt = ln(
pt

pt − 1
)

and afterwards mapped to 9 discrete values using a logarithm and a histogram.

To incorporate history into the model, each state is represented by 3 consecutive values.
Otherwise, the model would take into account only a previous di�erence while predicting.
The test data were from 1985 to 1991 and prediction was successful in 60-65% of the test
samples. However, trading agent based on this model would not generate pro�t if transaction
fees are taken into account. It was also not so accurate in detecting reversals (the points,
where the trend changes). On the other hand the model is easy to learn and easy to predict,
with both operations incredibly fast compared to other, more complicated models.

CHAPTER 2. BACKGROUND 12

2.2.5.2 Hidden Markov Model

Another kind of a MM tested on �nancial time series analysis is a Hidden Markov Model
(HMM). It consist of discrete hidden states and discrete values. There are transition proba-
bilities between the hidden states and emission probabilities from a hidden state to a value.
The main di�erence against the MM are the hidden states, which are a kind of the model's
memory.

This approach was recently tested by Bicego, Grosso and Otranto [Bigeco et al., 2008],
who were trying to predict market direction in the next step. They chose to transform �nan-
cial time series into sequences of up and downs and train two HMM's, one per each direction.
When predicting, the model which better �t the actual data was the one determining the
direction estimate. Uncertain sequences were �ltered out by the following formula:

|log(p+)− log(p−)| < θ

,where θ is a threshold, p+ is the probability that a sequence was generated by up model
and p− is the probability that a sequence was generated by down model.

The performance of this approach was tested on 5 indexes with di�erent risks from time
interval (30.11.1995-5.2.2001). The part before June 1998 was used to train models, the rest
was used for testing. The method showed almost optimal performance and without di�cul-
ties outperformed both - a single HMM and Polynomial Local Trends used for comparison
purposes.

We ought investigate this model more closely, because the demonstrated prediction power
seems to be astonishing. The 'but' we are likely to be missing is perhaps hidden in the
mechanism that rejects the uncertain sequences and therefore increases the performance by
virtually reducing the test data.

The very same approach was examined later and compared to the C-Support Vector
Classi�cation with RBF kernel function [Park et al., 2009] on SAMSUNG, POSCO and
Hyundai Heavy Industry stock in KOSPI 100. The obtained results again spoke in favor of
the HMM model. However, the prediction accuracy was 55% ± 5, which is much less than
in the previous test.

On the other hand, there are recent sources claiming that a SVM is able to outperform
the HMM [Rao and Hong, 2010]. But in the study, several SVM kernels were tested,
additional input from news sources was used and its parameters were carefully learned. We
can only surmise what would have happened if a more advanced form of the HMM was used
or additional news data were given as input to the HMM.

2.2.5.3 Hidden Semi-Markov Model

An extension to the standard HMM tested in �nance is a Hidden semi-Markov Models
(HSMM) [Bulla and Bulla, 2006]. These models have zero transition probabilities between
the same states. Instead, they contain a survivor function de�ning the probability of the
model remaining in the current state in future steps. This particular extension breaks the
Markovian Property of the model, because the future state becomes dependent on more than
one past state. However, it is easier to model a di�erent sojourn function than a standard
geometrical one. HSMMs are widely used on biological-based data or in speech recognition.

CHAPTER 2. BACKGROUND 13

There were three di�erent sojourn functions tested: (negative binomial sojourn time
distribution, normal conditional distribution and conditional t distribution). The evaluation
data were 1987-2005 sector indices from STOXX Ltd. preprocessed as log ratios between
consequent values. According to various statistical parameters the winner of the test was the
normal conditional distribution model. However, we cannot compare the result with others,
because no value was given for successful direction prediction ratio, which all the other tests
so far were using.

2.2.5.4 Hybrid Approaches

Certain researchers �nd the Hidden Markov Model, even with extensions far too limiting and
are expanding the �eld by combining the HMM with other algorithms. A good example of
this approach is the ANN-GA-HMM-WA model [Hassan et al., 2007]. Brie�y summarized,
it is a model, where the daily price statistical values (open, high, low and close) serve as
an input. They are fed to a Neural Network which is an input for a Hidden Markov Model.
The HMM is initialized by a Genetic Algorithm for better convergence and then learned
as usual. The output of the HMM is used to measure similarity between instances. The
most similar instances are then used to estimate the future value using time-based weighting
(older values are considered to be less important). The tests were performed on 2003-2005
stocks of Apple Computer Inc., IBM Corporation and Dell Inc. The results have shown
that the ANN-GA-HMM-WA is better than a previously tested Hidden Markov Model with
Interpolation and that the results are comparable to the ARIMA method. This may not
seem to be a great achievement, but the authors have pointed out that their method does
not require analysis (regime analysis, seasonality test) before forecasting.

2.2.5.5 Mixture Hidden Markov Model

TheMixture Hidden Markov Model (MHMM) will be mentioned brie�y, as we have not found
a comparison to another model. However, the idea seems to be worth mentioning. The dif-
ference between MHMM and HMM is an additional time-constant parameter a�ecting both
the transition and the emission probabilities. The model is then learned using multiple time
series, however each of the series can have di�erent time-constant parameter distribution.

This particular approach was tested on daily Asian stock market values [Dias et al.,
2010]. The individual series were at �rst separated into two di�erent clusters based on
statistical parameters (eg. curtosis) of each of the time-series. Then the parameters MHMM
were learned assuming the series in each cluster have the same distribution of time-constant
parameter. According to the results, the model was predicting values better than a model
having a di�erent time-constant parameter distribution for each time series. The only thing
missing here is the direct comparison of results to another approach.

2.2.5.6 Hierarchical Markov Models

Both Hierarchical Markov Models and Layered Markov Models are in fact restricted Hidden
Markov Models (it is possible to create HMM with identical characteristics from both of
them). The restriction itself allows to learn a special case of the more complicated model

CHAPTER 2. BACKGROUND 14

using a smaller amount of data. They also su�er less from over-�tting. The main area of usage
used to be speech recognition, where the input signal hierarchy has a logical explanation. The
low part of the model represents phonemes, higher part represents words and even higher
part represents sequences of words. Similar representation can be found even in �nance,
where the hierarchical levels can represent behaviour in horizons of di�erent lengths.

Recent and well-documented tests of Hierarchical Markov Models can be found in Jour-
nal of Applied Econometrics [Geweke and Amisano, 2011]. The models were compared on
the daily closing price of S&P 500 stock and one-year bonds. According to this study, the
two level Hierarchical Markov Normal Model performs similarly to t-GARCH model, which
performs better than Markov Normal Models (Hidden Markov Models using normal distri-
bution). There were also other models, such as GARCH, EGARCH or Stochastic Vector,
but their results were far behind the HMNM. The authors also claim reasonable learning
times even for large models. They were able to learn the m1 = m2 = 6 HMNM model on
10 years of data in 40 minutes, where the mx is the number of hidden states in xth layer.

2.2.5.7 Conclusion

It can be seen that the family of Markov Models is quite large, widely used and easy to
combine with other methods. We de�nitely did not include all possible combinations. The
models can be also combined e.g. with wavelets [Ferrer and Brun, 2000], dynamic time
warping [Oates et al., 2001] and many other algorithms. The obtained results are compara-
ble to conventional autoregressive models. Thanks to the fact that these models are easily
extensible, it is possible to add additional knowledge to the model and signi�cantly improve
the results. We think this group of models is worth further investigation as it is widely used
in other areas and its popularity among researchers in the time series analysis is rising.

2.3 Text Mining Integration

Textual information is one of the commonly used background knowledge types for the �nan-
cial time-series. There is a huge number of publicly available text data sources ranging from
news and annual reports of companies to Twitter statuses and blog articles. Each source
of textual data has its own speci�c pros and cons. For example, the news can be slower
than internet social networks, whereas social networks incline to provide subjective or wrong
information. The uno�cial sources also produce more sarcasm, which can be misinterpreted
by machines.

The goal of text mining is to extract relevant information from the text data and trans-
form it into a form suitable for machine processing. The machine friendly form is then usually
further processed and advises about the future direction of time-series are produced. The
following part of this section covers several basic methods to analyse text and incorporate
results to the prediction algorithm. The subsections are organized from the simple methods
to the more advanced ones and de�nitely do not constitute a complete list. There is another
publication containing a list of prediction systems based on text analysis [Mittermayer and
Knolmayer, 2007]. Their study contains a well arranged comparison chart. However, some
approaches are missing completely.

CHAPTER 2. BACKGROUND 15

2.3.1 Article Frequency

The easiest way to incorporate news into a time-series predictor is to use the number of
relevant articles as a feature. The idea behind this is that if there is something about to
happen (either good or bad), there will be an increased number of articles. This may seem too
simple to work, but according to the tests, adding the number of articles from Google News
containing prede�ned keywords increased the prediction accuracy of 11 stock's directions
by 0.03 in average [Rao and Hong, 2010]. And the prediction rate of the index S&P 500
was improved from 0.53 to 0.7. It is necessary to point out that for some time series this
enrichment of the input data was counter-productive. But this might be caused by a wrong
set of keywords or a small testing sample.

Even thought this model is rather simple, it is clearly capable of improving the prediction
power. It can be easily extended to accept di�erent kinds of text-data sources. Another
strong side is its immunity to the article duplicity, because it is likely that the same amount
of duplicated articles will be present in both the learning and the validating phase. The
disadvantage is that the model does not predict the direction of a movement. It only says
that something might go on in the near future.

2.3.2 Sentiment Analysis

Another easy to integrate method is to make use of sentiment analysis libraries. These li-
braries use complex classi�ers which were learnt on large databases of textual data classi�ed
by people. Depending on the type of library, the usual output is a measure of objectivity,
positivity or di�erent mood factors. Some libraries however provide only an interface and the
learning data has to be provided by the user. This allows everybody to learn his own clas-
si�ers, however sometimes additional algorithm parameters are needed and their estimation
can take a signi�cant amount of time.

The following article analysing in�uence of public mood on Dow Jones Industrial Average
can serve as an example application [Bollen et al., 2010]. The public mood was extracted
from twitter feeds assuming the majority of the tweets was written by US citizens. There
were two di�erent systems used for the extraction. The Opinion Finder, which measures
only the positivity/negativity of the mood. Second one, the Google-Pro�le of Mood States
outputs six di�erent values for each text document. Their names are Calm, Alert, Sure,
Vital, Kind and Happy.

The �nal experiment was performed on the DJIA from February 28, 2008 to Dec 19,
2008 using a �ve neuron Self-organizing Fuzzy Neural Network. The inputs were the DJIA
values three days back accompanied with di�erent combinations of sentiment indicators,
also with a three-day history. As can be seen from the results 2.3, the network itself (I)
performs the same as a network enriched by the Opinion Finder values(IOF). So in this
case the Opinion Finder is useless. However, adding the Calm value alone (IC) leads to a
signi�cant improvement in the up-down direction prediction and combination of Calm and
Happy (IC,H) has the smallest prediction error. It is worth mentioning that according to
additional tests the in�uence of mood was classi�ed as non-linear.

CHAPTER 2. BACKGROUND 16

Evaluation I IOF IC IC,A IC,S IC,V IC,K IC,H

MAPE (%) 1.94 1.95 1.83 2.03 2.13 2.05 1.85 1.79
Direction (%) 73.3 73.3 86.7 60.0 46.7 60.0 73.3 80.0

Table 2.3: MAPE and direction accuracy of DJIA prediction using Twitter, Sentiment Anal-
ysis and SOFNN.

2.3.3 Word Frequency

Word frequency analysis uses counts of di�erent words in each text document as a feature.
The most common approach is to create a term-document table, divide all the documents
to di�erent categories according to their believed impact on the time-series and then learn
some classi�er. Later, the classi�er is used to predict the impact of newly arrived text data.
The used classi�er and term weighting function may di�er, but combination of SVM and
TF-IDF weighting scheme is quite common.

It is possible to signi�cantly improve the results using several preprocessing techniques.
Good examples of these techniques are: removing punctuation, converting to a lower case
form, removing numbers, removing email addresses, removing stop-words or stemming. The
stop-words are short words without meaning like "the", "are" or "of". Stemming is a process
of converting words to the corresponding base form (eg. transformation from "beautifully"
to "beautiful") and unifying the synonyms (e.g. changing "lift" to "elevator" or "color" to
"colour").

An example application of the word frequency approach is a system proposed in the
article The Predicting Power of Textual Information on Financial Markets [Fung et al.,
2005]. News articles were classi�ed to the classes "up" and "down" according to the actual
direction of the market. In order to eliminate noise, the whole time-series was approximated
by linear segments using an iterative Split & Merge algorithm. Sometimes, a document is
not aligned to the actual trend, but to a window of trends [Lavrenko et al., 2000] and then
the document can belong to more than one group. After the classi�cation was completed,
the term-document table was constructed and rare terms appearing in less than 10% of
documents were dropped. The resulting table was weighted using the TF-IDF and then
a hyperplane maximizing the margin between the positive and the negative examples was
found (it is basically what SVM does even though it was solved using a di�erent method).

The results of the system are summarized in the table 2.4. Sadly, it is not clear what
exactly has been traded and how long the simulation takes, so the return values are almost
useless. It can be seen from the hit ratio that the model predicts values 3 to 5 days ahead
the best. It is understandable why the 7 days prediction based on articles does not work
well. However, it is not clear, why the prediction 1 day ahead performs so poorly. It might
be caused by the time-series approximation algorithm (in case the approximated series is
used for validation too) or by the high level of noise (in case the original series is used).

2.3.4 AZFinText System

The AZFinText is an experimental system evaluating the performance of three di�erent
text preprocessing methods [Schumaker and Chen, 2009]. The �rst preprocessing method

CHAPTER 2. BACKGROUND 17

1 day 3 days 5 days 7 days
up/down 51.8% 61.6% 65.4% 55.7%
return 6.58 15.06 21.49 7.22
deviation 1.47 3.400 4.135 3.791

Table 2.4: The up/down hit percentage, accumulated return and standard deviation of the
return for di�erent delay periods of the system proposed by Fung, Yu and Lam.

consists of typical steps like stop-words removal and stemming. The second approach �lters
out everything but Noun Phrases, i.e. only nouns, pronouns and related words (usually
adjectives) are taken into account. The third method is based on the second one, but each
word is classi�ed into one of prede�ned categories (eg. location, organization . . .).

The prediction time is intra-day, namely the stock value after 20 minutes is estimated.
There were four di�erent prediction models tested. The �rst one was named Regression and
used extrapolated linear regression of the 60 minutes period before an article's publication.
The second one was named M1 and used nothing but the text data. It was present solely
for comparison to previous works. The third model was named M2 and in addition to the
text data it used stock value at the time an article arrives. The last one was called M3 and
in addition to the test data it also used the value of the linear regression. For learning all
these models the SVM algorithm was used.

The results were evaluated on the S&P500 from Oct. 26 to Nov. 28, 2005. Three di�erent
criteria were used: the mean squared error (MSE) (table: 2.5), direction accuracy (table: 2.6)
and simulated trading (table: 2.7). It can be seen that the model M2 outperforms all other
models on average. From the text-processing point of view, the winner is the Noun Phrases
model. Combined with the model M2 it dominates all other combinations with a single
exception in simulated trading. It is possible that further reducing the feature set brings
some advantages whereas complicating the models with additional classi�cations increases
complexity and prevents the model to be fully learned.

MSE Regress M1 M2 M3
Bag of Words 0.07279 930.87 0.04422 0.12605
Noun Phrases 0.07279 863.50 0.04887 0.17944
Named Entities 0.07065 741.83 0.03407 0.07711
Average 0.07212 848.15 0.04261 0.12893

Table 2.5: AZFinText: Closeness Results

2.3.5 NewsCat

The NewsCat is a prototype using a hand-crafted list of features in addition to the traditional
bag of words approach [Mittermayer and Knolmayer, 2006]. The list of features contains
selected words ("up", "down"), phrases("formal investigation", "sales climb") and tuples
("reduction" NEAR "�nancial guidance", "approve" NEAR "share buyback") which are

CHAPTER 2. BACKGROUND 18

Directional Accuracy Regress M1 M2 M3
Bag of Words 54.8% 52.4% 57.0% 57.0%
Noun Phrases 54.8% 56.4% 58.0% 56.9%
Named Entities 54.2% 55.0% 56.4% 56.7%
Average 54.6% 54.6% 57.1% 56.9%

Table 2.6: AZFinText: Directional Accuracy Results

Simulated Trading Regress M1 M2 M3
Bag of Words -1.81% -0.34% 1.59% 0.98%
Noun Phrases -1.81% 0.62% 2.57% 1.17%
Named Entities -2.26% -0.47% 2.02% 2.97%
Average -1.95% -0.05% 2.06% 1.67%

Table 2.7: AZFinText: Simulated Trading Engine Results

believed to have an impact on the market. After the preprocessing steps, the features
from the list are merged with those from the bag of words and a Naive Bayes classi�er is
learnt. The classi�er distinguishes between four groups named quite descriptively: "GOOD",
"BAD", "NEUTRAL" and "UNCLEAR". The additional group "UNCLEAR" was de�ned
for articles which cause a signi�cant move of the price - but which returns in less than 15
minutes to the original value.

Data were evaluated on 15-second intervals of the S&P 500 stocks from April 1 to De-
cember 31. News were obtained from the PRNewswire archives and contained additional
metadata like the companies mentioned in each article or the category of the article. Dur-
ing the testing, distinct feature �ltering algorithms, document representations and learning
algorithms were evaluated. The best tested con�guration achieved 83% accuracy in article
classi�cation. The average pro�t of a simulated transaction was 0.21 which gives a total
pro�t of 70 for all 335 transaction performed. After changing the exit strategy from 1%
pro�t to a more conservative value of 0.5% and addition of -2% stop-loss, the average pro�t
per transaction increased to 0.28. Even though the simulated trading ignores transaction
fees, slippage and other volatility issues, the results obtained are quite encouraging.

2.4 Other Used Algorithms

2.4.1 SVM Classi�er

The main idea of a Support Vector Machine classi�er is to �t a maximum margin hyperplane
through the feature space separating the instances of one class from the instances of another
class [Karatzoglou et al., 2006]. A new instance can be classi�ed using the model just by
computing the side of the hyperplane the instance is on. The algorithm is known to work
well even for problems with large dimensionality and it was successfully used for news articles
classi�cation before [Mittermayer and Knolmayer, 2007].

CHAPTER 2. BACKGROUND 19

Because not all the data can be separated by a hyperplane directly, the SVM imple-
mentations are often featuring multiple kernels. The kernel transforms the input data to a
di�erent space and then the transformed data is separated by a hyperplane. Common kernel
functions are a Radial Basis Function or a polynomial function.

Another limitation of the SVM is that one model can separate data into only two cate-
gories. The workaround is to create multiple models and decide the category from individual
results. The �rst option is to create a separate model for each pair and the category with
most positive results is the winning one. The second possibility is to a create model for
each category versus rest of the categories, taking the best score as the winner. The second
approach can be faster for a larger number of categories while the �rst mentioned method is
considered to be more robust.

2.4.2 Naive Bayesian Classi�er

The Naive Bayesian classi�er is one of the simplest classi�ers known. Despite it's simplicity,
it is known to work well on problems with a large multidimensional space [Russell and Norvig,
2003] and it is successfully used as a cornerstone of many e-mail spam �lters.

The classi�er is based on the following expression:

class(f1, . . . , fn) = argmax
c

P (c) ∗
n∏

i=1

P (fi|c)

where c is a class and fi is an observed feature. The beauty of the classi�er lies in the
simplicity of both the learning and the validation. The learning process is basically counting
of examples, while the validation is selecting a largest product.

The only drawback is the independence assumption. The classi�er is the optimal one
only if the features are independent of each other. This can be barely expected in any real
world problem. Luckily, the classi�er often works even for problems with dependent features,
but it just might not be the optimal one.

Chapter 3

Design

Thirty to forty years ago, most

�nancial decisions were fairly simple.

Scott Cook

20

CHAPTER 3. DESIGN 21

3.1 Simplifying Assumptions

Because the market itself is a very complex system, we would like to make a couple of
simplifying assumptions. There is actually no price on the market, but a large amount of
bids, which are the individual buy/sell o�ers. The bid can be de�ned by di�erent ways,
but the amount and the price are present almost always. The buying and selling bids are
processed by the market's algorithm, paired and executed. There is more than one way how
the pairing algorithm can be de�ned, but we will ignore that fact.

As we will focus on trading in intervals of days, we will make quite usual assumptions
that there is only one price and that there is always enough liquidity. The price gap can be
simulated later by using the slippage during trading performance evaluation. The liquidity
itself will be completely ignored as it is very unlikely that it will be an issue during usual
market operation, if dealing with daily trades of common stocks.

We are also lucky to be designing just a prototype so we don't have to care as much
about the e�ciency of our computations as the real-word trading applications do. Also, the
daily trading has to cope with a much lower volume of information than the high-frequency
trading. We will further decrease the amount of information by focusing solely on a narrow
sample of stocks. So even a system with minor ine�ciencies will remain computationally
feasible.

3.2 Text Integration

The text integration and analysis process is following the usual pattern (�gure: 3.1). The
input in form of textual data is preprocessed and transformed to the feature set. These
features are further classi�ed using a classi�er and corresponding time series data.

The features are then split into train and test data. The train data is used to learn a
model. The learnt model tries to classify the test data and then the result is compared.

The only drawback of this approach is that the initial data classi�cation works with all
the data. So if it uses, for example, the standard deviation, then the older data are in fact
classi�ed with the knowledge of the new data. Therefore, a future-independent classi�er has
to be used, otherwise the results are biased and have to be interpreted carefully.

Text Model

FeaturesPreprocessing

Train

Test Validation

PredictionTime SeriesClassifier

Figure 3.1: Textual Data Analysis Flow

The diagram displays individual testing iterations. There will be another set of data
used solely for �nal validation purposes.

CHAPTER 3. DESIGN 22

3.2.1 Text Sources

There are many relevant publicly available data sources. They can be categorized into two
main groups. The �rst group is made of o�cial sources and mostly includes news articles
and reports released by the companies themselves. The news are supposed to be the most
objective source of information, however there can be a problem with release times. Even
though there are specialized news feeds aggregating information about traded companies,
there has to be someone to actually write the article and release it. Likewise, the reports
released by every company tend to present a better state than the company is actually
in. However, commonly included numbers about historical sales and pro�ts are hard to
manipulate and constitute relevant information.

The second group consists of all the rest of the textual information on the internet
including blogs, discussion boards and even social networks statuses. These informations can
be personally biased and contain computer-unfriendly language constructions like sarcasm
or slang words. However, when averaged, they can provide "public mood" about a given
topic [Bollen et al., 2010] and sometimes they can be faster than the conventional news.

However, for our research we have chosen the more traditional source of information, the
news. One of the reasons was the availability of the historical data. It is hard to search for
old blog posts and download them automatically, whereas we know there are some publicly
accessible news sources containing the data we need.

3.2.1.1 News Sources

The following possibilities were found while searching for free news sources. There are many
paid services providing data in computer-friendly format. Sometimes they even provide
estimated impact values on time series, but we want to stay free of charges.

Reuters [Reuters, 2011] The Reuters claims to have exactly what we are looking for. They
provide a searchable news API with tagged entities. Therefore, it would be easy to
�nd relevant articles. However, they were not accepting new accounts for registration.

Wikinews [Wikinews, 2011] The Wikinews is a wiki news server, that means everyone can
edit or add a historical event. However it is more focused on global news and therefore
not completely targeting our needs.

iHackerNews [iHackerNews.com, 2011] iHackerNews even provides option for downloading
the whole database of news. But the database contains mostly technology news, which
is only a subset of the news we are interested in.

USA Today [USA Today, 2011] The USA Today is almost ful�lling our needs. It is free,
capable of search and returns the set of organizations mentioned in an article. The
only drawback it has is its restricted capacity. The API is limited to 1000 calls per
day (one call returns 10 articles), so downloading several years worth of news would
take a long time. Also, the response contains only a link to a web page with the full
article.

CHAPTER 3. DESIGN 23

NY Times [NY Times, 2011] The NY Times API features similar functionality as the USA
Today API, but they impose only 10 000 queries-per-day limitation their API. The rest
is the same.

Eventually we decided to use the NY Times API, even though they do not provide the
article content directly. We assumed it won't be so hard to download the text from their
web servers and they have a good range of API features including search, summaries and
tagged article organizations. The API produces the output serialized as a JSON object,
which is good, because most programming languages have JSON support included or at
least available as a library.

3.2.2 Article Preprocessing

The very �rst step of the article preprocessing was duplicates removal. Some of the articles
have been downloaded multiple times because they were related to multiple subjects we
were interested in. The duplicates often lead to presence of an identical example in both the
learning and the testing set, which makes results useless.

Also, we would like to allow �ltering of the articles based on various features like category,
length or date. Removing irrelevant articles from the learning set can signi�cantly improve
the model quality.

3.2.3 Feature Extraction

As mentioned before, we have decided to use the Bag of Words representation in our model
because more sophisticated models often need large amount of data to train.

The designed system is required to allow traditional text feature extraction concepts such
as stemming, transforming to lower case and removing punctuation, stopwords or previously
speci�ed words.

We would also like our bag of words to allow removing of infrequent words or words with
no e�ect on the result (equally distributed in all the categories). The removal of records
leads to smaller dimensionality, which often improves the performance.

The last requirement is to allow tf-idf weighting as it seems to work out for most of our
predecessors.

3.2.4 Classi�cation

The classi�cation is one of the hardest parts. It usually incorporates matching the article
release date against the stock price trend. However, the trend detection is a tricky part,
because the prices are known to contain a signi�cant amount of noise. An article might even
be related to multiple subjects and it is not easy to decide which one, if any, is the relevant
one. And, of course, there is the danger that the article is commenting on some past event,
having no impact at all.

We will simplify the problem by partially ignoring the dangers mentioned above and
use a simple threshold category detection based on the relative price change at a given day.
Hopefully, the noise will be �ltered by the model and the result will be satisfying. Otherwise,
we might change the strategy and try to �nd another classi�cation algorithm.

CHAPTER 3. DESIGN 24

3.2.5 Models

Because our features are in fact counts of individual words in the articles, we will deal with
a large feature space. Therefore, our model has to withstand that dimensionality problem.

We would like to allow testing using either SVM or Naive Bayes classi�ers as they both
meet our requirements.

3.2.6 Validation

The validation process has to be capable to use both the Window Validation and the Cross
Validation. The Window Validation re�ects the reality more closely, since during newer data
validation just the older data are used for learning. On the other hand, the Cross Validation
is more likely to provide better results with a smaller amount of data.

The performance will be measured by calculating the amount of misclassi�ed items from
the validation set.

3.3 Time-Series Analysis

The time-series analysis sticks to a widely used data analysis pattern (�gure: 3.2). The
data is preprocessed and transformed into a set of features. These features are split into
two independent parts forming the training and the testing set. The training set is used
as a learning data for a HMM model. The test set is then analysed by the model and
future values are predicted. The predicted values are compared with the real values and
assumptions about the model quality are extracted.

Data HMM

FeaturesPreprocessing

Train

Test Validation

Prediction

Figure 3.2: Time-Series Analysis Flow

In addition to the train and test data, there will be, of course, a validation set. The
validation set will be never used before the �nal validation, which will con�rm or disprove
the performance estimates.

3.3.1 Time-Series sources

We tried to obtain free historical intra-day data. However, it turns out that generally only
two of these properties can be picked. Free daily data was considered to be the best option,
because it further reduced the amount of data to process and allows us to freely obtain a

CHAPTER 3. DESIGN 25

su�cient amount of such data. Without historical data it would be impossible to learn and
test our models.

The two most widely used services for free data are Google Finance [Google, 2011] and
Yahoo! Finance [Yahoo!, 2011]. Both companies provide almost identical services. They
both have free daily price history for all the common stocks from major US markets. In the
end, the Yahoo was chosen because it has longer �nancial services tradition.

3.3.2 Features

The features will be created from the historical price values. However, the raw form of the
data is not suitable for modelling and therefore preprocessing will be applied. The relative
di�erence calculation will be the �rst one. Instead of the price itself, it re�ects the change.

rdi =
xi − xi−t

xi

Because the values have a wide spread we will try two approaches to reduce it. The �rst
one is to cut o� values beyond some threshold and the second one is to use logarithm of the
relative di�erence.

3.3.3 Models

Our weapon of choice will be Hidden Markov Models. As we will be dealing with time series,
we will use the Homogeneous variant of the model, which has all the transition probabilities
constant during the time.

The individual states will be represented using a Gaussian distribution and the whole
model will be learned using an unsupervised learning method. Our model has to be capable
of random initialization and prediction of future values.

We would also like to support Higher Order models and Stationary models.

3.3.4 Validation

During the validation process of a HMM, the Window Validation will be used to simulate
the real world scenario. The amount of training data should be su�cient and hopefully the
same chunking algorithm will be used for both the text and the time series data.

The comparison will be performed using three di�erent indicators. The �rst one will be
the Logarithmic Likelihood, which is used as a measure of how much a model re�ects the
data. We will further divide the value by the length of the data to allow better comparison
of models representing di�erent time intervals. The advantage is that this measure can be
easily computed. On the other hand, it does not exactly measure the quality of the model for
trading purposes. The model might be providing a wrong value, but as long as the direction
is right we do not care. Being aware of the previously mentioned drawback, the measure will
be used primarily for estimating the right number of hidden states rather than for comparing
di�erent models to each other.

The second value for comparison will be the future direction estimate. The direction
estimate is more likely to re�ect the real world usage, because the direction of a future

CHAPTER 3. DESIGN 26

movement is more important for us than the movement itself. However, the direction estimate
also does not measure exactly what we need. It assigns the same weight to errors of all sizes.
In case of trading, a small error (incorrectly predicted direction of a small change) is barely
noticeable whereas a large one can be expensive.

The last performance indicator will be the simulated trading pro�t. The simulated
trading is the closest measure to the real world application. However, it has some drawbacks.
It might be more vulnerable to the noise. Also the performance depends on both the model
and the trading strategy. Therefore a good model can be degraded by a poor strategy and
a great strategy can have positive impact on otherwise a lousy model.

The dependence on the strategy will be partially eliminated by using exactly the same
strategies for all the models. We would like to have two strategies. One dependent on the
future value and another dependent on the probability of the future value direction.

Chapter 4

Implementation

Even a mistake may turn out to be the

one thing necessary to a worthwhile

achievement.

Henry Ford

27

CHAPTER 4. IMPLEMENTATION 28

4.1 Implementation Environment

There is always the possibility to implement everything by yourself, but using existing appli-
cations or libraries can speed up the development and it can be desirable in the prototyping
phase. It is possible that the result will have higher computational demands than a one-
purpose optimized code and that the libraries become a little restricting on functionality.
However, the initial boost in the development speed can be priceless.

There are plenty of data-mining applications and scripting languages for prototyping.
Among them we choose the following three.

4.1.1 Matlab

The Matlab [MATLAB, 2009] is a commercial software developed by the MathWorks com-
pany. It was designed for scienti�c computation and it can be equipped with additional
packages further extending the possible usages. It is capable of all the necessary mathemat-
ical operations and possibilities of data visualization are quite extensive.

Although the graphical interface itself and a lot of its functionality is written in Java, the
core computation functions are written in C, C++ or Fortran, which has a positive impact
on the computational performance.

In addition, the Matlab is heavily used in computer vision courses, so we are familiar
with it.

4.1.2 R

The R [R Development Core Team, 2011] programming language is an open source im-
plementation of the S programming language designed especially for data processing and
scienti�c tasks. The core functionality includes various classi�cation, regression and visuali-
sation methods and can be further extended using packages. Most of the publicly available
packages are stored in the CRAN [CRAN, 2011] repository and can be easily downloaded
and used in a couple of seconds.

Most of the R functionality is written in the R programming language itself, with the
exception of the computationally-intensive parts. Those are written in C or Fortran, similarly
to the Matlab language. Some of the extensions are designed to communicate with other
languages, so it is not a problem to call a Java or a C# function from the R code.

4.1.3 RapidMiner

The RapidMiner [Mierswa et al., 2006] is a Java application designed for data analysis. The
system contains a lot of common classi�ers, validation methods and visualisation tools. Also,
it can be easily extended using pieces of Java code or modules connecting to third party
languages.

A nice feature of the environment is that the whole process can be easily created using
a graphical interface. It is su�cient to connect boxes representing operations by links repre-
senting the data �ow 4.1b. The creation of the system is so fast that it is possible to learn a
neural network model on your dataset using cross-validation in less than ten minutes after
the software is installed.

CHAPTER 4. IMPLEMENTATION 29

(a) A Matlab screen example (b) Example usage of the RapidMiner

Figure 4.1: Examples of application candidates

4.1.4 Conclusion

Even though the usage of the RapidMiner was very tempting, in the end theR language was
chosen as the main development platform. The decision was made for two reasons:

The R is widely used for statistical purposes in both the academic and the commercial
sphere. As a result, the additional packages seem to contain all the necessary analysis tools
required to complete this work. This does not seem to be true for the RapidMiner, which
does not contain a suitable extension for Markov Chains.

The second reason was curiosity. The research sources are full of articles about R and
its successful applications, while our experience with it is virtually non-existent. Taking a
deep breath and diving in to the world of R is the fastest way how to get some experience
and form a professional opinion.

4.2 System Design

The optimal way would be to write a custom data-mining package for R and then use its
capabilities in separate testing scripts. However, due to missing experience with creation
of such packages, a less sophisticated way was chosen. Instead of packages, a set of �les
containing individual methods was created.

4.2.1 Directory Structure

To bring an order to the number of R scripts a directory structure was designed. The root
framework directory contains the following subdirectories:

output tables and graphs created by the framework are stored here

packages additional packages not present on the CRAN

data_cache a cache storing precomputed models for validation scripts

CHAPTER 4. IMPLEMENTATION 30

modules holds R scripts containing the framework functions (subsubsection 4.2.1.1)

chunks holds R scripts with individual tests and visualisations (subsubsection 4.2.1.2)

saves manually saved workspaces with intermediate results

In addition to these directories, the root directory contains two scripts. The init.R script
loads all the required libraries to the memory and initializes all the functions and variables
used internally in the framework. And the install.R installs all the required libraries from
the CRAN and the local storage.

4.2.1.1 Modules

The modules are separate �les, each containing functions dedicated to a speci�c area.

init_data.R loads information about series and articles

init_fun.R common methods not belonging to a separate �le

init_hmm.R additional methods compatible with depmixS4 package

init_chunks.R data splitting methods for the window and the cross- validations

init_series.R loading and downloading of series

init_text.R loads all the text related �les

init_text_bayes.R custom implementation of the Naive Bayes compatible with tm pack-
age

init_text_categorizing.R text categorizing methods

init_text_corpus.R corpus preparation and loading methods

init_text_features.R text tf-idf and weighting

4.2.1.2 Chunks

The chunks are scripts dedicated to speci�c tasks. Most of them are evaluating some test
scenario and producing graphs and tables. Following chunks are available for text mining:

dataseries_category_item_counts.R produces text categorization statistics

dataseries_time_alignment.R compares price movement near articles

text_base_process.R initializes the testing corpus

text_base_process_validation.R initializes the validation corpus

text_shift_one.R tests text classi�cation of single entity

CHAPTER 4. IMPLEMENTATION 31

text_shift_one_validation.R validates single entity classi�cation

text_shift_separate.R test classi�cation of multiple entities

text_shift_together.R tests classi�cation of multiple entities together

And following chunks are present for HMM evaluation:

hmm_regression_separate.R learns a HMM with speci�ed parameters for each of the
series and outputs a summary

hmm_regression_together.R learns one HMM from all the series and outputs a sum-
mary

hmm_regression_validation.R performs a validation of the most successful models us-
ing a validation data

series_graph.R produces a simple graph of the data series

4.3 Article Retrieval

As there is no direct way to obtain an article from the NY Times API using R, a custom
application for the news retrieval was written (There is a single package capable of receiving
news from the NY Times Newswire API, but it allows only one month of historical data).
The application was named NY Downloader and it was completely written in the C# pro-
gramming language using Visual Studio 2010. It allows a user to search articles by di�erent
parameters and download them using a given number of download workers. The application
itself also takes care of the daily and secondly limits imposed by the New York Times on
free users.

4.3.1 Output Data

The data storage format is an array of JSON objects similar to those returned by the NY
Times API, but with two additional text properties. The �rst one is called "full_html" and
contains the HTML obtained from the URI de�ned in the API. The second one is called
"full_text" and holds the relevant part of the text data obtained from the HTML.

The following �elds and facets are requested from the NY Times API : "abstract", "au-
thor", "body", "byline", "classi�ers_facet", "column_facet", "date", "des_facet", "desk_facet",
"geo_facet", "material_type_facet", "nytd_byline", "nytd_des_facet", "nytd_geo_facet",
"nytd_org_facet", "nytd_per_facet", "nytd_section_facet", "nytd_title", "org_facet",
"per_facet", "source_facet", "title", "url" and "word_count". They contain the URI of
the article and a lot of useful information about the article itself. Although not all are impor-
tant, the "abstract" can be used in the future for extracting the most important information
and "org_facet" contains the names of organizations mentioned by the article. However, not
all articles contain all the �elds and it is up to further processing to check their presence.

The Json.NET library was used for all the data manipulation [Newton-King, 2011]. It
allows to bind the obtained JSON to a LINQ object, modify and write it. The writing itself
is done continuously during the download, so there is no memory consumption overhead.

CHAPTER 4. IMPLEMENTATION 32

4.3.2 Text Extraction

The response of the NY Times API contains only a link to a web page where the text of
the article can be seen. The "pagewanted=all" parameter was appended to the URI before
downloading, because it eliminates problems with paging. Using the "for print" version of an
article was also considered, but it leads to problems with a di�erent style and to occasionally
receiving a log-in page.

After the download, the relevant part of the article was found and searched. At �rst, both
the SgmlReader [mindtouch, 2010] and the Html Agility Pack [Mourier et al., 2011] libraries
were used to transform the HTML document into the XML one and then the text part was
extracted using XPath. However, the transformation does not work correctly for neither of
the libraries and the output was often damaged. This behaviour was the reason to put the
"full_html" property into the stored JSON objects, because it makes repeated improving of
the text extracting algorithm possible without constantly querying the NY Times servers.

The �nal prototype uses the Html Agility Pack 's inner representation together with a
XPath query for text extraction directly from the HTML. The XPath itself is a bit compli-
cated, because the NY Times are using di�erent templates for distinct time ranges and news
categories:

"(// div [conta in s (@class , ' text ') or conta in s (@class , ' capt ion ')
or conta in s (@class , ' body ') or conta in s (@class , ' a r t i c l e ') or
conta in s (@id , ' a r t i c l e ')] // p) | (// nyt_text //p) | (// div [

conta in s (@id , ' capt ion ')]) | (// div [conta in s (@class , ' legend ')
] / div) "

Listing 4.1: XPath expression for the text extraction

4.4 Text Processing

4.5 Article Preprocessing

Because the articles were downloaded separately for each company, it occurred many times
that the same article was present in �les belonging to multiple companies. The �rst step of
preprocessing was the removal of duplicates. They were identi�ed by the combination of the
date and the title of the article.

The text preprocessing is implemented using �lter functions. Each of the functions
modi�es an article in some way and it might or might not be applied depending on a speci�c
scenario.

Entities : Removes all the HTML entities.

Lines : Removes all the line endings.

Punctuation : Removes all the punctuation marks.

Numbers : Removes all the number characters.

CHAPTER 4. IMPLEMENTATION 33

Lower : Makes the text lower case.

Stopwords : Removes all the stopwords like "the", "about" or "be".

Whitespace : All the whitespace characters are replaced by a single space.

Tag : Appends the word category at the end of each word.

Majority of these functions is a part of the tm R package [Feinerer, 2011], which has been
used for the text data analysis. The exceptions are the Entities, which has been implemented
by us and the Tag function, which is a part of the openNLP [Feinerer and Hornik, 2010]
package.

The transformation from articles to the bag of words representation is also a part of the
tm package. The bag of words is represented as a sparse matrix.

4.6 Data Series Processing

A code capable of learning and validating a Markov Model was required for our analysis.
An option was modifying a source enclosed in a publication called Hidden Markov Models
for Time Series [Zucchini and MacDonald, 2009]. The code snippets from the book are
well documented and easily extensible. But using a custom written code slightly increases a
chance of an error, so we decided to look for a library leaving the custom code as a back-up
option.

4.6.1 Libraries Available

The search revealed that there are �ve HMM focused libraries on the CRAN. An article
comparing all or a subset of these libraries was not found, therefore we are forced to create
a short summary ourselves.

4.6.1.1 depmixS4: Dependent Mixture Models

The package seems to be easy to use and is capable of multivariate time-series approximation
[Visser and Speekenbrink, 2010]. Furthermore, the constraints for transition probabilities
can be set, which allows to simulate more complicated Markov Models. It is also easily
extensible, so usage of a custom distribution is possible. According to the documentation,
the �t function is capable of optimizing a model for a set of series. This package seems to
meet our requirements.

4.6.1.2 HMM: Hidden Markov Models

This package can handle basic HMM models with discrete time and space [Himmelmann,
2010]. The advantage of this package seems to be the simplicity of usage, because it contains
only a few methods for model creation, parameters estimation and probability computation.
The disadvantage is again the simplicity, because the amount of features is signi�cantly
smaller than in the previous library.

CHAPTER 4. IMPLEMENTATION 34

4.6.1.3 msm: Multi-state Markov and hidden Markov models in continuous
time

The package is capable of handling both the discrete and continuous time-series [Jackson,
2011]. Unlike the previous packages, this one also allows to specify series-speci�c and time-
speci�c covariates and much more. In fact, the complexity of the package is so enormous
that it may be hard to use.

4.6.1.4 HiddenMarkov: Hidden Markov Models

Another library capable of creating and �tting Markov models [Harte, 2011]. It allows to use
di�erent distributions for representing continuous-time observations and features the usual
set of learning and validation functions. This package is currently under development, so
methods described in its documentation may change and further functionality is promised
to be available in the future.

4.6.1.5 rEMM: Extensible Markov Model

This library actually does something a little di�erent than what was expected after reading
the name [Hahsler and Dunham, 2010]. However, it is possible to build a Markov model -
based trading system using this library, therefore it is mentioned here. Basically, it feeds
values from the threshold nearest neighbour algorithm to a �rst order Markov model, which
uses them as states. After the learning, the model is capable of predicting future states
based on the transition probabilities.

4.6.1.6 Conclusion

Finally, we decided to go with the depmixS4 package, which provided most of the required
functionality and was claimed to be easily extensible. In addition, it featured an optimized
C -based likelihood computation, which can save up precious computing time.

4.6.2 Usage and Modi�cations

The basic usage of the library is simple [Visser and Speekenbrink, 2010]. For example, the
following piece of code creates a HMM model with states based on a Gaussian distribution
and then estimates its parameters:

R> mod <− depmix (rt ~ 1 , data = speed , n s t a t e s = 2 ,
+ family = gaussian ())
R> fm <− f i t (mod)

Listing 4.2: Example of HMM �tting using depmixS4

However, the library itself does not support higher order or stationary HMMs, neither
some kind of smoothing. As a response to this insu�ciency, we have created the wrapper
function hmm_�t_custom and the original EM algorithm was improved to support all the
requested features.

CHAPTER 4. IMPLEMENTATION 35

4.6.2.1 Value Prediction and Con�dence

So far, the usage of distribution families is limited to theGaussian() andMultinomial("identity").
The limitation itself is not imposed by the depmixS4 library or the improved learning al-
gorithm, but by the validation itself. Because the library does not provide a function for
predicting the future we were forced to write it ourselves. Two separate functions were
created to address this task.

The �rst one is called hmm_predict and makes it possible to predict future observations.
The function actually returns the most probable future observations X∗ such that:

X∗i = argmax
x

P (Oi = x|O1:i−t = X1:i−t,M)

for a given model M , observations X and a time shift t. To accomplish this, the hidden
state probability distributions for each state are computed using the Forward-Backward al-
gorithm. Then the time shift is performed by multiplying the state distribution probabilities
by the transition matrix. Finally, an assumption about a future observation is made. For
the Gaussian distributions, the weighted mean is returned to minimize the square error. For
the multinomial distribution, the most probable discrete state is returned.

Technically, using the weighted mean for the Gaussian distribution is not correct. Because
in the simulated trading we do not care about the square of the error, but rather about the
error itself. Sadly, minimizing the plain error can result in multiple equally good solutions.

This is the reason a second function called hmm_con�dence was introduced. It is capable
of processing queries about the future value. The probability that a future observation will be
in a given interval is returned for a Gaussian distribution. The multinomial distribution can
be questioned about the probability of a state combination. More precisely, for a vector of
weights w corresponding to discrete observations, a time shift t, a modelM and observations
X it returns probabilities C such that:

Ci =

|S|∑
j=1

wj ∗ P (Oi = Sj |X1:i−t,M)

where S is a set of states. The method uses the identical computation trick as the
previous one. The only di�erence is the last step where the probabilities of the query are
computed from the most probable future state distribution.

4.6.2.2 Scaling

The values used for learning the models were so small that the �oating point operation
precision was a problem during model �tting. Therefore, the input values are transformed
so that they have a mean value of 0 and a variance 1.

After the learning is completed, the Gaussian distributions corresponding to hidden states
are transformed using an inverse transformation to match the original data. The second
option would be to leave the model as it was learnt and transform the validation data. But
this approach might lead to confusion in case of validation and would be less straightforward
for trading strategies, because the code removing the normalisation would have to be present
on multiple di�erent places.

CHAPTER 4. IMPLEMENTATION 36

4.6.2.3 Higher Order Models

Higher order model HMM s are transformed to a corresponding �rst order HMM. Thanks
to this transformation the evaluation algorithm can remain exactly the same as for the
�rst order models and the learning has been just slightly modi�ed. It is obvious that this
simpli�cation leads to a signi�cant loss in both the CPU and the memory consumptions.
However, it is possible to optimize the corresponding parts of the code later.

The easiest way to explain the transformation is to use an example. Suppose we would like
to have a two state second order HMM with states a and b. The model can be parametrized
as follows:

initialstates :P (S1 = a)

secondstates :P (S2 = a|S1 = a)

P (S2 = a|S1 = b)

transitions :P (Si = a|Si−1 = a, Si−2 = a)

P (Si = a|Si−1 = a, Si−2 = b)

P (Si = a|Si−1 = b, Si−2 = a)

P (Si = a|Si−1 = b, Si−2 = b)

emissions :P (Xi = x|Si = a)

P (Xi = x|Si = b)

The �rst step in a transformation to a �rst order HMM is to replace the states with a
crossproduct of the states (aa, ab, ba, bb). And then following restrictions are imposed on
the model:

transitions :P (Si = ba|Si−1 = aa) = 0

P (Si = bb|Si−1 = aa) = 0

P (Si = aa|Si−1 = ab) = 0

P (Si = ab|Si−1 = ab) = 0

P (Si = ba|Si−1 = ba) = 0

P (Si = bb|Si−1 = ba) = 0

P (Si = aa|Si−1 = bb) = 0

P (Si = ab|Si−1 = bb) = 0

emissions :P (Xi = x|Si = aa) = P (Xi = x|Si = ba)

P (Xi = x|Si = ab) = P (Xi = x|Si = bb)

The transformation to an even higher order is similar. The disadvantage is a high sparsity
of the matrix.

The learning itself was intended to be performed using parameter restriction. However,
it was discovered that restricting the parameters makes the learning process incredibly slow

CHAPTER 4. IMPLEMENTATION 37

as the direct optimization is used instead of the Baum-Welch algorithm. In the end, the
learning method of the library was appropriately modi�ed to support these simulated higher
order HMMs.

Restricting the transition parameters to zero was not a problem. If the zeros are appro-
priately placed during the initial parameter estimation, they will never disappear during the
learning process.

The emission probabilities are estimated together for each group of states and then
assigned to each member. This does not produce computation overhead during the learning
process, but the validation could be further improved. This is because during validation, the
response of each state is computed separately even though they will be the same for states
belonging to one group.

4.6.2.4 Stationary Models

Stationary models have initial probabilities equal to the stationary distribution of the transi-
tion probabilities. To achieve this a slightly dirty approach was chosen. The model is learned
using the usual EM algorithm (Baum-Welch), but after each iteration the initial state prob-
abilities distribution is replaced by a stationary distribution of the transition matrix. We
are aware that this technique is not perfect, but it is simple and the di�erence should not
be large especially if dealing with rather a long time series.

4.6.2.5 Smoothing

The smoothing is implemented in a similar way as the stationariness mentioned before. A
speci�ed amount of Laplacian smoothing is added to the initial and the transition probabil-
ities after each iteration. This makes all these distributions more uniform, which decreases
the likelihood of the training data. But it also eliminates the no transition at all problem
during validation and it might improve the likelihood of the validation data.

4.6.2.6 Weights

The original learning algorithm did not support weighting inputs, so the appropriate modi-
�cations have been added to our improved version. As the ability of weighting the inputs is
quite common in case of the Baum-Welch algorithm, it would be a waste of time to further
comment it [Moss, 2008].

4.6.3 Naive Bayes

A custom implementation of the Naive Bayes classi�cation is used. Our version is compatible
with the representation of the tm package and as the input a corpus or a term-document
matrix can be used for both learning and validation.

The inner mechanism exploits the following fact that

log(
∏
i

xi) =
∑
i

log(xi)

CHAPTER 4. IMPLEMENTATION 38

.
Therefore, logarithm values for the model can be precomputed and the whole process

of computing classi�cation probabilities can be expressed as a matrix multiplication. The
classi�cation itself is just a selection of the most probable classi�cation.

4.6.4 SVM

Again, after a short research it was obvious that there are a couple of libraries capable of
solving various SVM tasks. The selection itself is based on the Journal of Statistical Software
[Karatzoglou et al., 2006], which compares four libraries:

• kernlab: ksvn [Karatzoglou et al., 2004]

• e1071: libsvm [Dimitriadou et al., 2011]

• klaR: lightSVM [Weihs et al., 2005]

• svmpath [Hastie, 2009]

The svmpath library was rejected, because it is not suitable for large datasets. The ksvn
also has speed issues and in addition requires a separate installation of the library (free for
non-commercial usage), so it was not chosen either.

The two remaining packages have the core parts written in C++. Both the libraries
have a similar set of features allowing to perform the classi�cation and regression tasks using
multiple kernels. Even though the ksvm library has more built-in kernel functions, the libsvm
was used in our implementation. The reasons were the computation performance and the
ability to work with sparse matrices.

There are also two more SVM implementations for R not covered by the article. The
�rst is called shogun, but it is no longer present on CRAN. However, it can be downloaded
and compiled manually. The second is called penalizedSVM [Becker et al., 2010] and allows
penalisation of attribute weights. As this feature is not required by our design, we will stick
to the libsvm library.

4.6.5 Simulated Trading

There are several R packages dealing with simulated trading. However, they are hard to
use as they require speci�cation of the trading rules in some abstract way, creation of a
portfolio object and the evaluation is done by calling a speci�ed sequence of functions.
These functions maintain some internal states hidden from the user in their environment,
which makes the calls sequence-dependent and a lot of mistakes can be introduced by not
cleaning that environment. Moreover, the evaluation is really slow and it took a lot of time
to get compatible versions together.

That why we decided to stick to our custom evaluation function, which is really simple.
Our strategy provides a vector containing "0" for no trade, "1" for buy and "-1" for sell short.
During the evaluation, we just multiply the vector with relative di�erence changes and sum it
up. It is equivalent to spending exactly the same amount of money every evening and selling
the stock on the evening after. This is not realistic as the market fees are completely ignored

CHAPTER 4. IMPLEMENTATION 39

and holding stock for several days has been decomposed to multiple buy/sell operations.
However, the evaluation is fast and precise enough for our needs.

Our strategies are pretty simple functions. We just call the hmm_predict or hmm_con�dence
(subsubsection 4.6.2.1) function and compare the results with some threshold. If the result
is larger than the threshold, then the stock is bought. If short trading is allowed, another
lookup is made and if the prediction is smaller than negation of the threshold, the stock is
bought short.

4.7 Other Software Tools

Following software tools were used during the thesis creation:

• RStudio: R editor [RStudio, 2011]

• Texmaker: LATEX editor [Brachet, 2011]

• UMLet: UML drawing tool [UMLet, 2011]

CHAPTER 4. IMPLEMENTATION 40

Figure 4.2: Screenshot of the NY Downloader's user interface. The GUI contains several
controls for restricting the retrieved articles. More advanced searching can be achieved using
the 'Search' and 'Uri' �elds.

Chapter 5

Testing and Results

One machine can do the work of �fty

ordinary men. No machine can do the

work of one extraordinary man.

Elbert Hubbard

41

CHAPTER 5. TESTING AND RESULTS 42

5.1 Data Selection

The number of time-series we can choose from is huge, but we are constrained by the number
of news articles available. Therefore, currently the best choice we can make is to leave futures
or currency trading behind as there is a large number of relevant articles and focus on stock
exchanges.

Many of the previous researches focused on the index S&P 500, taking into account all
the available news for all the companies present in this index. However, using the S&P 500
to measure impact on a particular company does not seem to be the right way, because the
companies are grouped and weighted according to the market capitalization. Therefore, the
index will hold still if the price of some less important company changes and the index will
most probably change if some generally good news article appears, slightly changing the
values of all the components. As a result, the articles categorized according to the S&P 500
will measure the general economical mood rather than impact on an individual company.

In order to select companies with a su�cient amount of news information, all the Business
and Technology articles between years 2000 and 2010 were downloaded and organizations
present in their org_facet were analysed. As we plan to investigate whether the article
classi�cation of one company can improve the prediction performance for another company,
we want the companies to be from the same area of business. According to our results,
the companies producing the largest amount of news were software companies (table: D.1).
After this, the software companies not present on the market were �ltered out and we ended
up with the following list:

• Amazon.com Inc.

• AOL Inc.

• Apple Inc.

• eBay Inc.

• Electronic Arts Inc.

• Google Inc.

• Microsoft Corp.

• Yahoo! Inc.

5.2 Text Analysis

Tuning of model parameters was performed on news articles from years 2000 to 2010. The
articles between January and November 2011 were left for validation.

5.2.1 News Articles Characteristics

Before creating and testing the language models, two simple tests were performed on the
data. We hoped they would help us to get some additional insight into the data itself.

CHAPTER 5. TESTING AND RESULTS 43

5.2.1.1 Time Alignment

The �rst of the tests was performed on all the text data available. The relative change r(t)
of closing values x was computed for two di�erent day spans t = {1; 3}.

ri(t) =
xi − xi−t

xi

After this, the news articles were aligned to the corresponding time series relative changes
in such a way that the article release date was corresponding to the second day of a time
span. In other words, the t = 1 relative change was the same, while the t = 3 relative change
was shifted by 2 days. If the article was released during a weekend, then the article was
aligned to the next Monday.

r′i(t) = ri+t−1(t)

The last step was calculation of the standard deviation of the data. As the relative change
is distributed symmetrically (the mean of relative change is almost equal to 0), the standard
deviation can be considered a measure of how much is the market likely to change after an
article is released.

0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

0.
09

−10 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12

Time Shift in Days

S
ta

nd
ar

d
D

ev
ia

tio
n

of
 R

el
at

iv
e

D
iff

er
en

ce

3 Days Difference
1 Day Difference

Figure 5.1: The standard deviation of a relative di�erence for days relative to the article's
release date

It can be seen from the �gure 5.1 that the average article impact is the greatest at the
day of the release and the day before. The day after the release, the market is becoming more
stable and after approximately four days it starts recovering to its previous �uctuation. The
E�cient Market Hypothesis, which states that all the known information is being re�ected
by the market immediately, could serve as an explanation of this behavior. It is also very
likely that some news articles are re�ected by the market prior to its release by a news portal.

CHAPTER 5. TESTING AND RESULTS 44

5.2.1.2 Article Distributions

The second simple test of the text-data focused on the distribution of up-down direction
among the article's organizations and categories. A threshold value of relative change 0.05
of a 3 day di�erence was chosen to classify an article into one of the in�uence categories:
"positive", "negative", "none" or "unknown" if required data was missing. The choice of
the threshold value was based on the relative change distribution of all the time-series,
therefore more stable stocks can be a bit misclassi�ed and have more weight in the "none"
category. The 3 days di�erence was chosen over 1 day di�erence with the intention of partially
eliminating the noise.

Partial results from the analysis are in the table (table: D.2). It was hoped that the
values of the "none" column could be used to decide which categories are relevant (the more
"none" values, the less importance) and which time shift is the best. The "none +1" is the
desired one (because it predicts the future behaviour), whereas the "none -1" was expected
to give the most relevant results (high "none" value in less relevant columns).

The expectations were not completely ful�lled. The level of noise has to be high, since
the values, especially the ones related to groups with a small article count can be surprising.
For instance, the AOL highest value in the "none" column is rather suspicious as well as the
low "none" value of "Week in Review". However, the high "none" values of "Obituaries"
and "Home and Garden" are quite a pleasant surprise.

As for the time shift, the most reasonable column seems to be the "none". Both the
"none +1" and "none -1" have rows with suspicious values like "Theater" or "Education".
Also unanticipated was the measure of impact of the "New York and Region", "Corrections"
and "Arts" categories, because our expectation was much lower.

5.2.2 Parameters Tuning

After the initial data check, it was time to try out our model. The data was separated into
the training part dedicated for parameter tuning and the validation part for the �nal model
validation. The training part was from year 2000 to year 2009 while the range from 2010 to
2011 was left for the validation purposes. The parameters were tuned using the eight fold
Window Validation method.

5.2.2.1 Base Model

At �rst, we decided to try a model containing all the common preprocessing steps. The term
count was reduced to 15% and only the most frequent terms were kept. A SVM with a linear
kernel was used as the classi�cation algorithm. The tests were performed only for Microsoft,
Google, Yahoo and Apple data as these companies had the largest number of articles. All
the companies were analysed separately.

The features were extracted using a simple threshold algorithm into four categories:
"positive examples", "negative examples", "neutral examples" and "unknown examples".
Unknown examples were those with a date that could not be matched with a relative change
of the price. Positive were articles with the corresponding relative change greater than 1/2

CHAPTER 5. TESTING AND RESULTS 45

Timeshift RelDi�1 Test -2 Test -1 Test 0 Test 1
Learn -2 0.306 0.323 0.337 0.310
Learn -1 0.403 0.403 0.399 0.374
Learn 0 0.306 0.357 0.336 0.350
Learn 1 0.291 0.293 0.344 0.327

(a) Relative Di�erence 1

Timeshift RelDi�5 Test -2 Test -1 Test 0 Test 1
Learn -2 0.289 0.328 0.328 0.293
Learn -1 0.310 0.361 0.337 0.306
Learn 0 0.322 0.339 0.370 0.341
Learn 1 0.352 0.352 0.339 0.346

(b) Relative Di�erence 5

Table 5.1: Correctly classi�ed Yahoo articles for relative di�erences 1 and 5 days using a
SVM model.

of the average relative change. Negative articles were determined similarly and the rest were
the neutral examples.

We also decided to introduce a time-shifting parameter allowing slight time delays be-
tween articles and the related time-series. The underlying idea was that the articles might
be already known to traders a day or two in advance.

In addition, a relative di�erence of 1, 3 and 5 days was tested. They represented a
di�erent trade-o�s between the value precision and noise.

The most successful model was a Yahoo! model with 1 day relative di�erence. It scored
40% probability of correct classi�cations (table: 5.1a). The second best model was again
a Yahoo model. It was the one with relative di�erence of 5 days (table: 5.1b). One can
notice that short horizon tends to work mostly for previous day and long horizon mostly for
diagonal.

5.2.2.2 Data Filtering

The following test was devised to decide if it is better to keep all the articles or �lter them
in some way. We kept just the articles labelled as Business or Technology. Even thought
there was a slight performance improvement in some cases, the �ltering was mostly harmful
(table: 5.2a). So even articles not related to business or technology might have an impact
on the classi�cation quality.

We further tried to �lter out all the articles containing more than one company. It is quite
di�cult to decide the major company an article is actually about, so it seemed like a good
idea to remove these problematic articles. However, a dramatic decrease in classi�cation
quality was experienced (table: 5.2b), so we abandoned the idea of �ltering for now.

CHAPTER 5. TESTING AND RESULTS 46

Timeshift RelDi�1 Test -2 Test -1 Test 0 Test 1
Learn -2 0.3851 0.3346 0.3741 0.3806
Learn -1 0.3891 0.3955 0.3848 0.3588
Learn 0 0.3676 0.3130 0.3239 0.3134
Learn 1 0.3417 0.2869 0.3111 0.3024

(a) Technology Business Filtering

Timeshift RelDi�1 Test -2 Test -1 Test 0 Test 1
Learn -2 0.2862 0.3534 0.3035 0.3044
Learn -1 0.3105 0.3707 0.2951 0.4164
Learn 0 0.3259 0.4258 0.3749 0.3436
Learn 1 0.2866 0.3357 0.3357 0.3025

(b) Unique Filtering

Table 5.2: Correctly classi�ed Yahoo articles using a SVM model with di�erent �ltering.

Timeshift RelDi�5 Test -2 Test -1 Test 0 Test 1
Learn -2 0.370 0.357 0.3547 0.329
Learn -1 0.360 0.316 0.331 0.304
Learn 0 0.365 0.324 0.375 0.334
Learn 1 0.352 0.311 0.347 0.298

Table 5.3: Correctly classi�ed Yahoo articles using the Naive Bayes model and relative
di�erence 5.

5.2.2.3 Naive Bayes

The following test was designed to compare the Naive Bayesian model to the previous
models. The test was performed with the smoothing parameter equal to 1.

The obtained results were consistent with the results of tests performed by others. The
Naive Bayes was outperformed by SVM. As usually, counter examples can be found, but in
most cases the SVM provided better and more stable results (table: 5.3).

5.2.2.4 Term Weighting

Commonly used approach is the Term Frequency - Inverse Document Frequency weighting.
We have decided to investigate how it would work in our case.

The resulting performance again did not beat our base model. It looks like every modi-
�cation to our base model makes things only worse.

5.2.2.5 Together / Alone

The 'together' test tried to learn one model for categorizing all the examples. However,
this approach didn't work as expected (table: 5.5). The performance was even lower. The

CHAPTER 5. TESTING AND RESULTS 47

Timeshift RelDi�1 Test -2 Test -1 Test 0 Test 1
Learn -2 0.303 0.318 0.291 0.340
Learn -1 0.365 0.345 0.342 0.338
Learn 0 0.310 0.348 0.306 0.303
Learn 1 0.350 0.318 0.298 0.328

(a) Technology Business Filtering

Timeshift RelDi�5 Test -2 Test -1 Test 0 Test 1
Learn -2 0.337 0.378 0.319 0.301
Learn -1 0.357 0.347 0.334 0.326
Learn 0 0.296 0.352 0.357 0.293
Learn 1 0.339 0.367 0.296 0.332

(b) Unique Filtering

Table 5.4: Correctly classi�ed Yahoo articles using SVM model with di�erent �ltering.

Together RelDi�5 Test -2 Test -1 Test 0 Test 1
Learn -2 0.341 0.348 0.343 0.341
Learn -1 0.326 0.331 0.328 0.330
Learn 0 0.329 0.329 0.323 0.337
Learn 1 0.326 0.342 0.342 0.335

Table 5.5: Correctly classi�ed Yahoo articles using Naive Bayes model and relative di�erence
5.

possible cause might be a di�erent set of signi�cant words for each company and/or wrong
initial article classi�cation.

5.2.2.6 Term Reduction

The last model alteration was tuning of the term reduction parameter. Lower values of this
parameter mean lower total number of terms and therefore lower dimensionality. As usual,
excessively low number would lead to oversimpli�cation and therefore poor results and an
overly high number would include even insigni�cant terms, which lowers the performance
too.

Values ranging from 5% to 30% with were tried. The results however were deeply volatile
and even the closest members (10%, 20%) had produced completely di�erent results (ta-
ble: 5.6). Therefore, it is likely that the performance of the best model so far is caused
mostly by coincidence.

5.2.3 Validation

The validation was performed using data from years 2010 and 2011. It was an interest-
ing coincidence that we ended up with a model identical to the initial estimate. All the

CHAPTER 5. TESTING AND RESULTS 48

Timeshift RelDi�1 Test -2 Test -1 Test 0 Test 1
Learn -2 0.2871 0.3020 0.3294 0.3336
Learn -1 0.3401 0.3420 0.3800 0.3693
Learn 0 0.3568 0.3249 0.3589 0.3126
Learn 1 0.2936 0.2995 0.3333 0.3565

(a) Term Reduced to 10%

Timeshift RelDi�1 Test -2 Test -1 Test 0 Test 1
Learn -2 0.2870 0.3210 0.3062 0.3272
Learn -1 0.2975 0.2869 0.2786 0.3377
Learn 0 0.2998 0.2660 0.2976 0.3251
Learn 1 0.2703 0.2875 0.2978 0.2956

(b) Term Reduced to 20%

Table 5.6: Correctly classi�ed Yahoo articles after a term reduction. The SVM model was
used.

Timeshift RelDi�1 Test -2 Test -1 Test 0 Test 1
Learn -2 0.2500 0.0625 0.1875 0.6875
Learn -1 0.1250 0.2500 0.2500 0.5000
Learn 0 0.3750 0.3125 0.5000 0.3750
Learn 1 0.4375 0.5000 0.5000 0.3125

Table 5.7: Validation of article classi�cation using the best model found. It is a SVM based
model with the term count reduced to 15% and without any additional weighting or �ltering.

improvements of the carefully chosen initial model were in fact harmful.

The �nal classi�cation performance was 50% of correct answers for a nearly homogeneous
distribution of three categories (table: 5.7). The only problem is that even though two years
of data were left for validation purposes, the amount of articles was rather small. Therefore,
additional tests have to be repeated in the future to con�rm or reject this result.

We will also try to further investigate the problem. Our weak point is likely to be in
the article selection, classi�cation or both of them. We will try to identify a better way of
�ltering out irrelevant articles. Also switching the classi�cation problem for a regression one
might bring a new light into the problem and help us to better understand it.

The good news is that the capabilities of our framework were not entirely examined and
we can continue in testing.

The missing test results are stored on enclosed DVD (Appendix E).

CHAPTER 5. TESTING AND RESULTS 49

5.3 Markov Models

Similarly to the text analysis, the data was also separated into the learning and the validation
set, but because of a small mistake the learning set was enlarged to an interval December 1999
to January 2011. The mistake was discovered after all testing was �nished and repeating the
whole process with the previously intended interval would be impossible before the deadline.
Therefore, only February 2011 to November 2011 was left as the validation data.

All the tests were performed using the sliding window validation. This simulated the
fact that we are not aware of the future. More precisely, 8 chunks of the same length were
created from the data. The very �rst 3 chunks were used to learn the model and 4th used for
evaluation in the �rst iteration. Then the window moved, 4 chunks were used for learning
and 5th one for evaluation. As a result, there were a total of 5 evaluations, which were later
averaged to create the �nal value.

5.3.1 Parameters Tuning

All these models have one Gaussian distribution representing a hidden state. The learning
process has a randomized initialization and 50 iterations of the EM algorithm. The number
of hidden states is up to 11, because larger models are likely to be over�tted and the learning
takes too long.

5.3.1.1 Relative/Logarithmic Di�erence

This test is supposed to determine, whether a relative di�erence is preferable in raw form
or its logarithm. It is believed that the conversion to logarithmic scale can have a positive
impact on the performance, because of lower sensitivity to extreme jumps.

The likelihood test (table: 5.2) has no clear winner, because the curves are rather similar.
It can only be said that the model with the logarithmic data input has a bit smoother curves.
As for the number of hidden states, both the curves start with a steep improvement and
then they remain around the same value with the maximum near 7 states. However, it is
better to keep things simple, so the best results are expected for 3 state models. They have
a similar likelihood as the 7 state ones and a signi�cantly smaller amount of parameters to
estimate.

It can be also seen that the real maximum might be a bit further, if the AOL data is
omitted. The AOL likelihood curve has a lot of noise in it, because it is short (just a year of
data).

The direction test does not have a clear winner either (�gure: 5.3). It can be seen that
Microsoft and Apple are the only companies where prediction works. An interesting fact is
that taking the exact opposite value for AOL would result in almost 60% of correct answers.

For the relative di�erence the best estimating model is the one featuring 1 hidden state.
This is equivalent to one Gaussian distribution and therefore the value predicted is in fact
the mean of the learning data.

According to the results of the trading simulations the preferred trading method is the
Con�dence Threshold (table: 5.8). The Simple Threshold (table: 5.9) method has just one
comparable income. It is a Logarithmic Di�erence based model with 11 states.

CHAPTER 5. TESTING AND RESULTS 50

●

●
● ● ● ● ● ● ● ● ●

1 2 3 4 5 6 7 8 9 10 11

2.
0

2.
2

2.
4

2.
6

2.
8

Number of States

Lo
g

Li
ke

lih
oo

d

● Average
AMZN
AOL
AAPL
EBAY
ERTS
GOOG
MSFT
YHOO

(a) Relative Di�erence

●

●
● ● ● ● ● ● ● ● ●

1 2 3 4 5 6 7 8 9 10 11

2.
0

2.
2

2.
4

2.
6

2.
8

Number of States

Lo
g

Li
ke

lih
oo

d

● Average
AMZN
AOL
AAPL
EBAY
ERTS
GOOG
MSFT
YHOO

(b) Logarithmic Di�erence

Figure 5.2: Simple HMM models logarithmic likelihood. The image shows the average
logarithmic likelihood of the testing data. The values are plotted individually for each series
and also together as a weighted average.

●
●

●
● ● ● ●

●

●
● ●

1 2 3 4 5 6 7 8 9 10 11

0.
40

0.
42

0.
44

0.
46

0.
48

0.
50

0.
52

Number of States

D
ire

ci
on

 M
at

ch

● Average
AMZN
AOL
AAPL
EBAY
ERTS
GOOG
MSFT
YHOO

(a) Relative Di�erence

●
● ● ● ● ● ●

● ● ● ●

1 2 3 4 5 6 7 8 9 10 11

0.
42

0.
44

0.
46

0.
48

0.
50

0.
52

Number of States

D
ire

ci
on

 M
at

ch

● Average
AMZN
AOL
AAPL
EBAY
ERTS
GOOG
MSFT
YHOO

(b) Logarithmic Di�erence

Figure 5.3: The �gure shows simple HMM models direction prediction. The image displays
the probability that the model correctly determines the future direction of the time series.

There are two con�gurations with a daily average pro�t exceeding 0.05%, which is more
than 12% a year. They are both a Relative Di�erence HMM equipped with the Con�dence
Threshold trading strategy. Even though the 8 state model has better performance, the 3
state model (�gure: 5.4) seems to be the preferable one as it has smoother lines. Also the

CHAPTER 5. TESTING AND RESULTS 51

States 0 1e-04 3e-04 0.001 0.003 0.01 0.03 0.1 0.3
1 0.049 0.054 0.025 0.060 −0.079 −0.070 −0.007 0.000 0.000
2 0.273 0.267 0.263 0.289 0.403 0.329 0.012 0.000 0.000
3 0.513 0.513 0.507 0.452 0.453 0.436 0.036 −0.007 0.000
4 0.485 0.487 0.504 0.489 0.495 0.335 0.012 0.000 −0.004
5 0.495 0.496 0.505 0.415 0.457 0.368 0.074 0.000 −0.004
6 0.346 0.358 0.392 0.437 0.497 0.323 0.005 −0.009 −0.004
7 0.288 0.309 0.349 0.417 0.416 0.433 0.093 −0.005 −0.004
8 0.512 0.494 0.512 0.513 0.532 0.348 0.017 −0.013 −0.004
9 0.276 0.281 0.249 0.261 0.326 0.413 0.010 −0.007 −0.004
10 0.298 0.290 0.294 0.288 0.343 0.314 0.060 −0.010 −0.006
11 0.386 0.366 0.360 0.368 0.394 0.230 0.025 0.007 −0.004

(a) Relative Di�erence

States 0 1e-04 3e-04 0.001 0.003 0.01 0.03 0.1 0.3
1 −0.129 −0.129 −0.067 −0.108 −0.134 −0.075 −0.007 0.000 0.000
2 0.461 0.451 0.443 0.246 0.208 0.100 −0.018 0.000 0.000
3 0.457 0.469 0.464 0.478 0.383 0.271 −0.014 −0.007 0.000
4 0.402 0.409 0.377 0.397 0.438 0.242 −0.010 −0.007 0.000
5 0.438 0.438 0.443 0.335 0.377 0.210 0.047 −0.003 −0.004
6 0.299 0.313 0.301 0.420 0.328 0.169 −0.006 −0.007 −0.004
7 0.378 0.377 0.398 0.410 0.353 0.253 −0.048 −0.002 −0.004
8 0.398 0.390 0.396 0.431 0.401 0.380 0.041 −0.010 −0.004
9 0.401 0.374 0.347 0.343 0.309 0.309 −0.001 0.007 −0.006
10 0.329 0.364 0.278 0.300 0.237 0.158 −0.045 −0.005 0.000
11 0.337 0.322 0.336 0.319 0.352 0.283 0.038 0.002 −0.006

(b) Logarithmic Di�erence

Table 5.8: The table contains average daily pro�t for the con�dence-based strategy. The val-
ues are increased 1000 times to avoid leading zeros. The columns are representing con�dence
thresholds while the rows are representing the number of hidden states of the model.

success of the 8 state model is mostly caused by a great improvement in AOL time series,
which is short and noisy.

5.3.1.2 Learning Together

This model tries to learn from all the time series together and then evaluate on all the
time series together. The idea is that more data series equals more information. And more
information usually results in a better model. The only problem might be the di�erence of
time series. If the series contains di�erently behaving groups, the future model might be
useless.

The Logarithmic Likelihood test does not reveal any new knowledge and therefore the
results are omitted. Inquiring readers might �nd directories containing all the graphs and
tables on the enclosed DVD (Appendix E).

CHAPTER 5. TESTING AND RESULTS 52

States 0 1e-05 3e-05 1e-04 3e-04 0.001 0.003 0.01 0.03
1 0.049 0.045 0.025 0.060 −0.079 −0.040 0.000 0.000 0.000
2 0.168 0.162 0.154 0.071 0.101 0.258 0.073 0.001 0.000
3 0.204 0.215 0.219 0.223 0.336 0.392 0.081 0.000 0.000
4 0.178 0.172 0.199 0.223 0.264 0.283 0.071 −0.004 0.000
5 0.276 0.295 0.265 0.326 0.318 0.302 0.100 −0.004 0.000
6 0.332 0.364 0.371 0.354 0.377 0.292 0.114 −0.003 0.000
7 0.258 0.247 0.219 0.269 0.246 0.254 0.178 −0.004 0.000
8 0.316 0.304 0.293 0.282 0.338 0.259 0.118 −0.003 −0.002
9 0.157 0.173 0.155 0.111 0.164 0.243 0.125 −0.005 0.000
10 0.310 0.314 0.306 0.321 0.308 0.280 0.088 −0.001 0.000
11 0.294 0.287 0.261 0.290 0.259 0.326 0.157 −0.004 0.000

(a) Relative Di�erence

States 0 1e-05 3e-05 1e-04 3e-04 0.001 0.003 0.01 0.03
1 −0.129 −0.129 −0.067 −0.108 −0.140 −0.064 0.000 0.000 0.000
2 0.298 0.312 0.284 0.289 0.177 0.182 −0.016 0.000 0.000
3 0.277 0.277 0.271 0.260 0.271 0.330 −0.010 0.000 0.000
4 0.146 0.147 0.153 0.134 0.136 0.305 −0.016 0.000 0.000
5 0.110 0.101 0.117 0.170 0.154 0.218 0.064 −0.004 0.000
6 0.102 0.092 0.093 0.106 0.239 0.281 0.006 0.000 0.000
7 0.284 0.295 0.308 0.309 0.197 0.188 −0.019 −0.002 0.000
8 0.368 0.361 0.360 0.341 0.287 0.264 −0.008 −0.002 −0.002
9 0.385 0.376 0.383 0.356 0.204 0.110 0.012 −0.008 0.000
10 0.395 0.401 0.389 0.373 0.231 0.127 −0.054 −0.005 0.000
11 0.444 0.433 0.455 0.444 0.328 0.215 0.078 −0.008 0.000

(b) Logarithmic Di�erence

Table 5.9: The table contains average daily pro�t for the threshold-based strategy. The values
are increased 1000 times to avoid leading zeros. The columns are representing predicted value
thresholds while the rows are representing the number of hidden states of the model.

The performance of the direction test seems to be improved. The Relative Di�erence
based HMM learnt all together is the �rst discovered model with average prediction near
51% (�gure: 5.5a). It is not much, but it is better than previous models.

The trading is also slightly improved (tables: D.4, D.3). The average income of Relative
Di�erence based 3 states HMM with Simple Threshold strategy is 0.00068, which is approxi-
mately 17% per year. It is also the �rst model which does not produce loss on any individual
series (�gure: 5.5b).

Generally, the learning together seems to have more advantages than disadvantages, but
it surely depends on the selection of the individual series to be joined.

CHAPTER 5. TESTING AND RESULTS 53

● ● ● ● ●

●

●
● ●

0 1e−04 0.001 0.01 0.03 0.1 0.3

−
5e

−
04

0e
+

00
5e

−
04

1e
−

03

Confidence

A
ve

ra
ge

 D
ai

ly
 P

ro
fit

● Average
AMZN
AOL
AAPL
EBAY
ERTS
GOOG
MSFT
YHOO

(a) 8 State Relative Di�erence HMM

● ● ●
● ● ●

●
● ●

0 1e−04 0.001 0.01 0.03 0.1 0.3

−
5e

−
04

0e
+

00
5e

−
04

1e
−

03

Confidence

A
ve

ra
ge

 D
ai

ly
 P

ro
fit

● Average
AMZN
AOL
AAPL
EBAY
ERTS
GOOG
MSFT
YHOO

(b) 3 State Relative Di�erence HMM

Figure 5.4: The performance of the best trading models so far. They are both HMMs
based on a Relative Di�erence with the Con�dence based trading strategy. The vertical axis
represents the average daily income and the horizontal one represents the threshold of the
trading strategy.

● ● ● ● ● ● ● ● ● ● ●●

● ●
● ●

●
● ● ●

● ●

1 2 3 4 5 6 7 8 9 10 11

0.
46

0.
48

0.
50

0.
52

0.
54

Number of States

D
ire

ci
on

 M
at

ch

● Average
AMZN
AOL
AAPL
EBAY
ERTS
GOOG
MSFT
YHOO

(a) Direction Accuracy

● ● ●
● ●

●

●

● ●

0 1e−05 1e−04 0.001 0.01 0.03

0.
00

00
0.

00
05

0.
00

10
0.

00
15

0.
00

20

Threshold

A
ve

ra
ge

 D
ai

ly
 P

ro
fit

● Average
AMZN
AOL
AAPL
EBAY
ERTS
GOOG
MSFT
YHOO

(b) 3 States Simple Threshold Trading

Figure 5.5: The �gures are showing performance of Relative Di�erence based HMM which
is learnt from all the series together.

5.3.1.3 Window Length

The window length test is supposed to determine the impact of shortening the window on
model qualities. It can be seen that shortening the learning window actually degrades the

CHAPTER 5. TESTING AND RESULTS 54

performance of the model (tables: D.5, D.6). The assumed cause is the loss of some learning
information.

The only exception is a window with length 1, which makes a slight improvement in
at least the Separate learning method (table: D.5c). The improvement is mostly noticeable
for a higher number of states, so it is either a noise or a complicated behaviour. Maybe it
might be a good idea to introduce history weighting to the models or combine a short term
separately learnt model with a long term together learnt model.

5.3.1.4 Stationariness

The stationary HMMs are those, which initial state distribution is the same as the stationary
distribution of the transition probabilities. These models are widely used in in�nite time
series analysis as they are eliminating the initial noise created by choosing a starting point.
In our case it might be better to take as the initial state distribution for testing the state
distribution at the end of the learning data.

Because of the length of the testing windows the parameter is expected to a�ect just a
few state distributions from the very beginning of the test data. So the total impact should
be small.

The results of the stationary tests con�rm the hypothesis about a small impact. It is
slightly surprising that almost all the average incomes are actually a bit lower (table: D.7).
It might be caused by the learning method or noise in the data.

5.3.1.5 Smoothing

Smoothing might be helpful in the �ght against noise or low amount of data. But excessive
amount of smoothing can hide relevant information from the model. The smoothing test is
supposed to determine what is the right amount of smoothing for our purposes.

The smoothing a�ects only initial and transition probabilities and leaves the Gaussian
distributions una�ected. It is expected that models with a higher number of states will be
a�ected more than the ones with a lower number of states, because the transition probabilities
of the smaller models are already pretty close to the uniform distribution.

The smoothing test was performed for values 0.1, 1, 10 and 100. According to the results
the smoothing is not such a good idea. Even the lowest value lowers the performance a bit,
while values of 10 and more lead to really poor results (table: D.8). It is possible that there is
some magical tiny value increasing the performance, but it is unlikely to improve the results
signi�cantly.

5.3.1.6 Cropping

The cropping of large values can be useful in case some values in a time series are almost alone
in completely di�erent scale. Those values might be caused by an unpredictable external
in�uence or noise and their re�ection in a model might be contrapositive. On the other hand
too much cropping might cause a loss of relevant information.

The test was performed with values 0.1, 0.2 and 0.4 which were chosen based on the
Relative Di�erence values distribution. The results have con�rmed that it is a good idea

CHAPTER 5. TESTING AND RESULTS 55

to crop at least the most extreme values (table: D.9). But too much cropping signi�cantly
reduced the performance.

5.3.1.7 Higher Order HMMs

Higher order models are supposed to be a specialized tool for particular cases. They allow
to learn a more complicated model on a smaller amount of data by imposing restrictions.
All the success depends on how much the data behaves according to the model.

Two kinds of these models were tried, the second order HMM and the third order HMM.
Both models in fact do not ful�l the Markovian Property as the future state depends on the
previous two or three, but they can be transformed in a way that the property is preserved.

Sadly, the Higher Order HMM s failed our expectations and performed very poorly on
the test data (tables: D.10, D.11). The best model is a third order 4 state HMM and has
performance similar to the simple 3 state model. Taking into account the computational
di�culties, it does not seem to be worthwhile using such complicated models.

5.3.1.8 Combined Models

The combinations of previously mentioned modi�cations are likely to result in even better
models. However, to try them all would require a lot of a processor time. Therefore, just a
chosen subset of combinations is tested. The subset is made up mostly from combinations
of previously successful models.

The results are not as promising as we had hoped. The combined models barely beat
their single upgraded predecessors (table: D.12). The rest can be found on enclosed DVD
(Appendix E).

5.3.2 Validation

As has been said before, validation is performed on data between February 2011 and Novem-
ber 2011. The validation dataset is small compared to the learning one. One of the reasons
were the newspapers full of the worldwide crisis and it would have been misleading to learn
on regular data and validate on the crisis data.

5.3.2.1 Final Models

Final models were selected among the most successful tested models. It was one from each
category which seems to do a good job and two from the �nal combined category (table: 5.10).
Secondary selection criterion was the di�erence from previously selected models, as testing
two exactly same models is not likely to reveal anything new.

5.3.2.2 Results

The results were below our expectations. There was only one model which actually made
a pro�t. It was the 11 state HMM learnt on a short (one year) period of data of all series

CHAPTER 5. TESTING AND RESULTS 56

N
am

e

O
rd
er

St
at
es

V
ar
ia
bl
e

L
im

it

T
og
et
he
r

St
at
io
na
ry

Sm
oo
th
in
g

T
ra
de

T
yp

e

T
ra
de

T
hr
es
ho
ld

Simple 1 3 RelDi�1 0 False False 0 conf 0
Together 1 3 RelDi�1 0 True False 0 thresh 0
Short 1 11 RelDi�1 260 False False 0 conf 0
Crop 1 3 RelDi�1_crop0.4 0 False False 0 conf 0
Ord 3 2 4 Di�Log1 260 True False 0 thresh 0
Stationary 1 3 Di�Log1 0 True True 0 thresh 0.001
Ord 2 2 3 Di�Log1 260 True True 0 conf 0

Table 5.10: The parameters of the models for �nal validation. Limit is the number of days
the model was learnt from.

together (table: 5.11). Even though it the had highest score during the testing process, it
was still a surprise.

It is quite possible, that the winning model's performance is just a matter of luck. After
a closer investigation (�gure: 5.6), it was discovered that large part of the pro�t was caused
by correctly predicting the fall of the AOL. Without the AOL the model barely outperforms
the Buy and Hold strategy. In addition, it has to be taken into account that the simulation
was performed without fees a slippage, so the real world performance would be even lower.

Model Direction Trade Test Trade Validate
Simple 0.499 0.513 −1.095
Together 0.488 0.680 −1.208
Short 0.503 0.717 0.637
Crop 0.502 0.686 −1.157
Ord 3 0.480 0.587 −0.434
Stationary 0.486 0.696 −0.686
Ord 2 0.477 0.511 −1.479

Table 5.11: The parameters of the models for �nal validation.

The other models performed so badly that they were outperformed even by the Buy and
Hold strategy (�gure: 5.7). It is a open question if performing the validation several times
using a smaller window would improve the performance.

5.3.2.3 Distribution Fitness

In order to investigate the cause of the poor performance of HMM s, another test was per-
formed. The goal of the test was to decide how much of the data are corresponding to
the individual states of the HMM. Because a wrong distribution family could be one of the
causes.

CHAPTER 5. TESTING AND RESULTS 57

0 50 100 150 200

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Trading History of Short

Time

P
ro

fit

Average
AMZN
AOL
AAPL
EBAY
ERTS
GOOG
MSFT
YHOO

Model
Buy and Hold

Figure 5.6: Examples of application candidates

0 50 100 150 200

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1
0.

2

Trading History Together Ord 2

Time

P
ro

fit

Average
Simple
Together
Short
Crop
Ord 3
Stationary
Ord 2

Model
Buy and Hold

Figure 5.7: Trading Performance of Models During Validation

For each state of the HMM a histogram of data weighted by the probability that a par-

CHAPTER 5. TESTING AND RESULTS 58

ticular record corresponds to the state was constructed. And then the Gaussian distribution
corresponding to the state parameters was created for comparison.

−0.10 0.00 0.10

0
10

20
30

40

Values of State 1

RelDiff1

P
ro

ba
bi

lit
y

−0.10 0.00 0.10

0
5

10
15

20

Values of State 2

RelDiff1
P

ro
ba

bi
lit

y

−0.10 0.00 0.10

0
2

4
6

8
10

14

Values of State 3

RelDiff1

P
ro

ba
bi

lit
y

Figure 5.8: Figure displays Google values distributions for the individual states of the "Sim-
ple" HMM. The green line is a Gaussian approximation of that data used by the state.

All the results were mostly similar and in most cases the Gaussian distribution seemed
to be an acceptable approximation (�gure: 5.8). However, we have noticed that especially
the models with a lower number of states did something di�erent that what was expected.
Instead of creating states according to the increasing and decreasing trends they converged
to distributions with very similar mean and di�erent deviation. Therefore a good direction
advise cannot be expected using these models.

The cause of this behavior might be a random initialization process, which just assigns
the data among the states using random weights from a uniform distribution. The result of
this approach is in most cases a group of very similar distributions. Perhaps adjusting the
random initialization process would lead to better results.

Chapter 6

Future Work

Never put o� till tomorrow, what you

can do the day after tomorrow.

Mark Twain

59

CHAPTER 6. FUTURE WORK 60

Despite an enormous e�ort, there are many unanswered questions left and many ideas
waiting to be implemented and tested. The following part of the text will revise the most
signi�cant ones.

• Try out di�erent time scales. We can only guess if machines will ever outsmart people,
but they are de�nitely capable of fast and precise decisions. We are not bound to days
and many computer based systems trade in fractions of a second. There has to be a
reason for this.

• Improve the algorithm categorizing text articles. We believe that a better initial clas-
si�cation will lead to a more consistent model and accurate results. This point is
partially connected with the previous one as data with a higher frequency are more
likely to correctly reveal the impact of an article.

• We would also like to connect more models together. Generally, the most successful
algorithms are created by combining a bunch of smaller ones [Net�ix, 2011].

• Another goal is to closely interconnect the text analysis with the technical analysis.
This could be achieved by combining the outputs, but sometimes providing an algo-
rithm with additional input data improves the performance even more.

• Also, the trading evaluation will have to be improved. The used trading simulation sys-
tem is great for initial estimations, yet the real result will be a�ected by the transaction
price and slippage.

• An automatized parameter tuning solution will be also very handy. Designing and
running all the tests by hand takes a lot of time, which could be invested in a much
better way.

• The scalability has to be improved in the future as well. It is known that the amount
of data can have considerably larger impact on performance than the model itself. For
example, increasing the amount of learning data 100 times made a mediocre algorithm
for word meaning classi�cation outperform the best known algorithm with the original
smaller dataset [Russell and Norvig, 2003].

The ideas mentioned above are de�nitely not a complete list of possibilities. It is very
likely that everyone would like to expand the work in a di�erent direction, as the possibilities
are almost unbounded. And the hardest part is that in most cases answering one question
reveals a couple of previously unthought-of ones.

Chapter 7

Conclusion

It is human nature to think wisely and

act in an absurd fashion.

Anatole France

61

CHAPTER 7. CONCLUSION 62

This thesis �rst provided a theoretical background for the topic of �nancial markets as
a whole, together with a selective overview of existing research into various approaches.
The area is under heavy development and the machine learning techniques used in di�erent
domains are being quickly adapted.

The rest of the work was dedicated to the design, implementation and testing of our own
machine learning systems for prediction of market movements.

The design process has been successfully completed using the knowledge obtained during
the research. Being new to the �eld we have mostly adhered to the traditional and well-
documented approaches to obtain a reference point for our future research.

The implementation part has been completed using the R programming language and
its wide collection of publicly available libraries. Nevertheless, some of the libraries were
modi�ed to �t our speci�c needs. Certain areas had to be implemented by us entirely and
incorporated into the existing framework. This includes: custom input weighting, stationary
and higher order models support, state transitions smoothing, text weighting and others.
This has given us even deeper insight into functioning and behaviour of the individual meth-
ods.

The testing phase involved a implementation of a testing framework combined with sev-
eral libraries. Testing con�rmed the indispensableness of the validation data, which turned
initial great results into ordinary ones. Such results cannot be considered on par with those
from the state of the art solutions. However, all known comparable endeavours either used
intraday or deeply historical data, which can have a signi�cant positive in�uence on the
results.

Finally, we would like to point out that the process of making this thesis was valuable
in many directions. We have learned that a seemingly straightforward task such as design-
ing, implementing and testing of two models can be extended into unanticipated size by
incompatible libraries, insu�cient documentation, unfamiliar programming languages and
so forth.

However, we did achieve what we had set out for this thesis and we now have a certain
level of knowledge of the area, several working models and an objective evaluation of their
results.

We hope to take advantage of the obtained knowledge in the future and further improve
the designed system. But it is clear that no further improvement can be achieved without
dutifully repeating the "think, create, test, observe" cycle.

Bibliography

L. Badea. Learning trading rules with inductive logic programming. In Proceedings of the
11th European Conference on Machine Learning, ECML '00, pages 39�46, London, UK,
2000. Springer-Verlag. ISBN 3-540-67602-3.

N. Becker, W. Werft, and A. Benner. penalizedSVM: Feature Selection SVM using penalty
functions, 2010. URL <http://CRAN.R-project.org/package=penalizedSVM>. R pack-
age version 1.1.

M. Bigeco, E. Grosso, and E. Otranto. Recognizing and forecasting the sign of �nancial local
trends using hidden markov models. Working Paper CRENoS 200803, Centre for North
South Economic Research, University of Cagliari and Sassari, Sardinia, 03 2008.

J. Bollen, H. Mao, and X.-J. Zeng. Twitter mood predicts the stock market. CoRR,
abs/1010.3003, 2010.

P. Brachet. Textmaker, 2011. URL <http://www.xm1math.net/texmaker/>.

P. J. Brockwell and R. A. Davis. Introduction to Time Series and Forecasting. Springer,
New York, 1996.

J. Bulla and I. Bulla. Stylized facts of �nancial time series and hidden semi-markov models.
Comput. Stat. Data Anal., 51:2192�2209, December 2006. ISSN 0167-9473. doi: 10.1016/
j.csda.2006.07.021.

CRAN. The comprehensive r archive network, 2011. URL <http://http://cran.
r-project.org/>.

J. Derrick. A golden cross for the s&p 500 index, 2010. URL <http://www.
gold-speculator.com/us-global-investors/40936-golden-cross-s-p-500-index.

html>.

J. G. Dias, J. K. Vermunt, and S. Ramos. Mixture Hidden Markov Models in Finance
Research, pages 451�+. 2010. doi: 10.1007/978-3-642-01044-6_41.

E. Dimitriadou, K. Hornik, F. Leisch, D. Meyer, , and A. Weingessel. e1071: Misc Functions
of the Department of Statistics (e1071), TU Wien, 2011. URL <http://CRAN.R-project.
org/package=e1071>. R package version 1.5-25.

A. Elder. Trading for a Living: Psychology Trading Tactics Money Management. John
Wiley & Sons Inc., 1992. ISBN 0-471-59224-2.

63

http://CRAN.R-project.org/package=penalizedSVM
http://www.xm1math.net/texmaker/
http://http://cran.r-project.org/
http://http://cran.r-project.org/
http://www.gold-speculator.com/us-global-investors/40936-golden-cross-s-p-500-index.html
http://www.gold-speculator.com/us-global-investors/40936-golden-cross-s-p-500-index.html
http://www.gold-speculator.com/us-global-investors/40936-golden-cross-s-p-500-index.html
http://CRAN.R-project.org/package=e1071
http://CRAN.R-project.org/package=e1071

BIBLIOGRAPHY 64

I. Feinerer. tm: Text Mining Package, 2011. URL <http://www.jstatsoft.org/v25/
i05/>. R package version 0.5-6.

I. Feinerer and K. Hornik. openNLP: openNLP Interface, 2010. URL <http://CRAN.
R-project.org/package=openNLP>. R package version 0.0-8.

A. G. Ferrer and M. B. Brun. Forecasting OECD industrial turning points using unobserved
components models with business survey data. International Journal of Forecasting, 16
(2):207�227, 2000.

G. P. C. Fung, J. X. Yu, and H. Lu. The predicting power of textual information on �nancial
markets, 2005.

J. Geweke and G. Amisano. Hierarchical markov normal mixture models with applications
to �nancial asset returns. Journal of Applied Econometrics, 26(1):1�29, 2011. ISSN 1099-
1255.

Google. Google �nance, 2011. URL <http://www.google.com/finance>.

L. Grafnetr. An environment for testing �nancial series predictors and learning such predic-
tors with arti�cial neural networks. Master's thesis, Czech Technical University, 2011.

M. Hahsler and M. H. Dunham. remm: Extensible markov model for data stream clustering
in R. Journal of Statistical Software, 35(5):1�31, 2010. URL <http://www.jstatsoft.
org/v35/i05/>.

D. Harte. HiddenMarkov: Hidden Markov Models. Statistics Research Associates, Welling-
ton, 2011. URL <http://cran.at.r-project.org/web/packages/HiddenMarkov>. R
package version 1.4-4.

M. R. Hassan, B. Nath, and M. Kirley. A fusion model of hmm, ann and ga for stock
market forecasting. Expert Syst. Appl., 33:171�180, July 2007. ISSN 0957-4174. doi:
10.1016/j.eswa.2006.04.007.

T. Hastie. svmpath: svmpath: the SVM Path algorithm, 2009. URL <http://CRAN.
R-project.org/package=svmpath>. R package version 0.93.

D. L. Himmelmann. HMM: HMM - Hidden Markov Models, 2010. URL <http://CRAN.
R-project.org/package=HMM>. R package version 1.0 (Scienti�c Software Development
www.linhi.com).

iHackerNews.com. iHackerNews.com api, 2011. URL <http://api.ihackernews.com/>.

C. H. Jackson. Multi-state models for panel data: The msm package for R. Journal of
Statistical Software, 38(8):1�29, 2011. URL <http://www.jstatsoft.org/v38/i08/>.

A. Karatzoglou, A. Smola, K. Hornik, and A. Zeileis. kernlab � an S4 package for kernel
methods in R. Journal of Statistical Software, 11(9):1�20, 2004. URL <http://www.
jstatsoft.org/v11/i09/>.

http://www.jstatsoft.org/v25/i05/
http://www.jstatsoft.org/v25/i05/
http://CRAN.R-project.org/package=openNLP
http://CRAN.R-project.org/package=openNLP
http://www.google.com/finance
http://www.jstatsoft.org/v35/i05/
http://www.jstatsoft.org/v35/i05/
http://cran.at.r-project.org/web/packages/HiddenMarkov
http://CRAN.R-project.org/package=svmpath
http://CRAN.R-project.org/package=svmpath
http://CRAN.R-project.org/package=HMM
http://CRAN.R-project.org/package=HMM
http://api.ihackernews.com/
http://www.jstatsoft.org/v38/i08/
http://www.jstatsoft.org/v11/i09/
http://www.jstatsoft.org/v11/i09/

BIBLIOGRAPHY 65

A. Karatzoglou, D. Meyer, and K. Hornik. Support vector machines in r. Journal of Statistical
Software, 15(9):1�28, 4 2006. ISSN 1548-7660. URL <http://www.jstatsoft.org/v15/
i09>.

B. Kovalerchuk and E. Vityaev. Data mining in �nance: advances in relational and hybrid
methods. Kluwer Academic Publishers, Norwell, MA, USA, 2000. ISBN 0-7923-7804-0.

C. Langager and C. Murphy. Analyzing chart patterns: Head and shoulders, 2010. URL
<http://www.investopedia.com/university/charts/charts2.asp>.

V. Lavrenko, M. Schmill, D. Lawrie, P. Ogilvie, D. Jensen, and J. Allan. Language models for
�nancial news recommendation. In In Proceedings of the Ninth International Conference
on Information and Knowledge Management, pages 389�396. ACM Press, 2000.

MATLAB. version 7.8.0 (R2009a). The MathWorks Inc., Natick, Massachusetts, 2009.

I. Mierswa, M. Wurst, R. Klinkenberg, M. Scholz, and T. Euler. Yale: Rapid proto-
typing for complex data mining tasks. In L. Ungar, M. Craven, D. Gunopulos, and
T. Eliassi-Rad, editors, KDD '06: Proceedings of the 12th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining, pages 935�940, New York,
NY, USA, August 2006. ACM. ISBN 1-59593-339-5. doi: http://doi.acm.org/10.1145/
1150402.1150531. URL <http://rapid-i.com/component/option,com_docman/task,
doc_download/gid,25/Itemid,62/>.

mindtouch. SqmlReader - C# library, 2010. URL <http://developer.mindtouch.com/
en/docs/SgmlReader>.

M.-A. Mittermayer and G. F. Knolmayer. Newscats: A news categorization and trading
system. In ICDM '06: Proceedings of the Sixth International Conference on Data Mining,
pages 1002�1007, Washington, DC, USA, 2006. IEEE Computer Society. ISBN 0-7695-
2701-9. doi: http://dx.doi.org/10.1109/ICDM.2006.115. URL <http://portal.acm.
org/citation.cfm?id=1193291>.

M.-A. M. Mittermayer and G. F. Knolmayer. Text mining systems for predicting mar-
ket response to news. Proceedings of the IADIS European Conference Data Min-
ing 2007, 2007. URL <hhttp://www2.ie.iwi.unibe.ch/publikationen/berichte/
resource/WP-184.pdf>.

L. Moss. Example of the baum-welch algorithm, 2008. URL <http://www.indiana.edu/
~iulg/moss/hmmcalculations.pdf>.

S. Mourier, J. Klawiter, and Jesse. Html Agility Pack - C# library, 2011. URL <http:
//htmlagilitypack.codeplex.com/>.

Net�ix. Net�ix prize, 2011. URL <http://www.netflixprize.com/>.

J. Newton-King. Json.NET - C# library, 2011. URL <http://json.codeplex.com/>.

NY Times. NY Times api, 2011. URL <http://developer.nytimes.com/docs/article_
search_api>.

http://www.jstatsoft.org/v15/i09
http://www.jstatsoft.org/v15/i09
http://www.investopedia.com/university/charts/charts2.asp
http://rapid-i.com/component/option,com_docman/task,doc_download/gid,25/Itemid,62/
http://rapid-i.com/component/option,com_docman/task,doc_download/gid,25/Itemid,62/
http://developer.mindtouch.com/en/docs/SgmlReader
http://developer.mindtouch.com/en/docs/SgmlReader
http://portal.acm.org/citation.cfm?id=1193291
http://portal.acm.org/citation.cfm?id=1193291
hhttp://www2.ie.iwi.unibe.ch/publikationen/berichte/resource/WP-184.pdf
hhttp://www2.ie.iwi.unibe.ch/publikationen/berichte/resource/WP-184.pdf
http://www.indiana.edu/~iulg/moss/hmmcalculations.pdf
http://www.indiana.edu/~iulg/moss/hmmcalculations.pdf
http://htmlagilitypack.codeplex.com/
http://htmlagilitypack.codeplex.com/
http://www.netflixprize.com/
http://json.codeplex.com/
http://developer.nytimes.com/docs/article_search_api
http://developer.nytimes.com/docs/article_search_api

BIBLIOGRAPHY 66

T. Oates, L. Firoiu, and P. Cohen. Using dynamic time warping to bootstrap hmm-based
clustering of time series. In R. Sun and C. Giles, editors, Sequence Learning, volume 1828
of Lecture Notes in Computer Science, pages 35�52. Springer Berlin Heidelberg, 2001.

W. Palma. Long-Memory Time Series: Theory and Methods. Wiley, 2006.

C. P. Papageorgiou. High frequency time series analysis and prediction using markov models.
In in Proceedings of the conference on Computational Intelligence for Financial Engineer-
ing, pages 182�185, 1997.

S.-H. Park, J.-H. Lee, J.-W. Song, and T.-S. Park. Forecasting change directions for �nancial
time series using hidden markov model. In Proceedings of the 4th International Conference
on Rough Sets and Knowledge Technology, RSKT '09, pages 184�191, Berlin, Heidelberg,
2009. Springer-Verlag. ISBN 978-3-642-02961-5.

R Development Core Team. R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria, 2011. URL <http://www.
R-project.org/>. ISBN 3-900051-07-0.

S. Rao and J. Hong. Analysis of hidden markov models and support vector machines in �nan-
cial applications. Master's thesis, EECS Department, University of California, Berkeley,
May 2010.

Reuters. Reuters Spotlight, 2011. URL <http://spotlight.reuters.com>.

RStudio. RStudio 0.94, 2011. URL <http://rstudio.org/>.

S. J. Russell and P. Norvig. Arti�cial Intelligence: A Modern Approach. Pearson Education,
2003. ISBN 0137903952. URL <http://portal.acm.org/citation.cfm?id=773294>.

F. Salmon and J. Stokes. Algorithms take control of wall street, 2010. URL <http://www.
wired.com/magazine/2010/12/ff_ai_flashtrading/all/1>.

R. P. Schumaker and H. Chen. Textual analysis of stock market prediction using breaking
�nancial news: The az�n text system. ACM Trans. Inf. Syst., 27:12:1�12:19, March
2009. ISSN 1046-8188. doi: http://doi.acm.org/10.1145/1462198.1462204. URL <http:
//doi.acm.org/10.1145/1462198.1462204>.

N. Times. New york times: The article search api documentation, 2011. URL <http:
//developer.nytimes.com/docs/read/article_search_api>.

UMLet. UMLet 11.3, 2011. URL <http://www.umlet.com/>.

USA Today. USA Today developers guide, 2011. URL <http://developer.usatoday.com/
docs/read/articles>.

I. Visser and M. Speekenbrink. depmixs4: An r package for hidden markov models. Journal of
Statistical Software, 36(7):1�21, 8 2010. ISSN 1548-7660. URL <http://www.jstatsoft.
org/v36/i07>.

http://www.R-project.org/
http://www.R-project.org/
http://spotlight.reuters.com
http://rstudio.org/
http://portal.acm.org/citation.cfm?id=773294
http://www.wired.com/magazine/2010/12/ff_ai_flashtrading/all/1
http://www.wired.com/magazine/2010/12/ff_ai_flashtrading/all/1
http://doi.acm.org/10.1145/1462198.1462204
http://doi.acm.org/10.1145/1462198.1462204
http://developer.nytimes.com/docs/read/article_search_api
http://developer.nytimes.com/docs/read/article_search_api
http://www.umlet.com/
http://developer.usatoday.com/docs/read/articles
http://developer.usatoday.com/docs/read/articles
http://www.jstatsoft.org/v36/i07
http://www.jstatsoft.org/v36/i07

BIBLIOGRAPHY 67

C. Weihs, U. Ligges, K. Luebke, and N. Raabe. klar analyzing german business cycles. In
D. Baier, R. Decker, and L. Schmidt-Thieme, editors, Data Analysis and Decision Support,
pages 335�343, Berlin, 2005. Springer-Verlag.

Wikinews. Wikinews, 2011. URL <http://en.wikinews.org/>.

Yahoo! Yahoo! �nance, 2011. URL <http://finance.yahoo.com/>.

S. Zemke. Data mining for prediction. �nancial series case, doctoral thesis, the royal, 2003.

D. Zhang and L. Zhou. Discovering golden nuggets: data mining in �nancial application.
Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on,
34(4):513�522, 2004. doi: 10.1109/TSMCC.2004.829279. URL <http://dx.doi.org/10.
1109/TSMCC.2004.829279>.

W. Zucchini and I. L. MacDonald. Hidden Markov Models for Time Series - An Introduction
Using R. Chapman & Hall /CRC, 2009. ISBN 978-1-58488-573-3.

http://en.wikinews.org/
http://finance.yahoo.com/
http://dx.doi.org/10.1109/TSMCC.2004.829279
http://dx.doi.org/10.1109/TSMCC.2004.829279

Appendix A

List of Abbreviations

68

APPENDIX A. LIST OF ABBREVIATIONS 69

ANN arti�cial neural network (the same meaning as NN)

API application programming interface

CRAN comprehensive R archive network

DNF disjunctive normal form

DJIA Dow Jones Industrial Average

GA genetic algorithm

GUI graphical user interface

HMM hidden Markov model

HTML hypertext markup language

HMNM hierarchical Markov normal model

HSMM hidden semi-Markov model

IDF inverse document frequency

ILP inductive logic programming

MAPE mean absolute percentage error

MM Markov model

MNM Markov normal model

MHMM mixture hidden Markov model

MSE mean square error

NN neural network

RBF radial basis function

SOFNN self-organizing fuzzy neural network

SVM support vector machine

TF term frequency

UI user interface

URI uniform resource identi�er

USA United States of America

WA weighted average

XML extensible markup language

Appendix B

NY Downloader User Guide

70

APPENDIX B. NY DOWNLOADER USER GUIDE 71

B.1 Installation

The application does no require installation at all. It can be directly run from arbitrary
directory supposing that the current user has reading permission there. The only requirement
is the presence of the .NET 4 framework runtime.

B.2 Usage

As can be seen the user interface B.1 is simple. The only thing the user has to actually �ll in
is the personal API Key which can be obtained from NY Times website [NY Times, 2011]
free of charge. Without it the application won't work correctly.

B.2.1 Basic Download

To obtain a news articles just select a date range, target �le and hit the download button. For
advanced usage visit the NY Times article search API website [Times, 2011] and discover
the supported range queries.

Figure B.1: Screenshot of the NY Downloader's user interface after startup.

http://www.microsoft.com/download/en/details.aspx?id=17851

Appendix C

Validation Framework User Guide

72

APPENDIX C. VALIDATION FRAMEWORK USER GUIDE 73

C.1 Installation

To install the framework follow these instructions:

1. Download and install the R. [R Development Core Team, 2011]

2. Copy a content of the "/src/R/" directory to a writeable location.

3. Make the target location your R working directory.

4. Run "install.R" script to install required libraries.

5. Edit the paths in "init.R" �le to re�ect the data locations.

6. Run "init.R" script to load the framework.

7. The framework is up and ready.

C.2 Usage

To see how it works just select a �le from "/src/R/chunks/" subdirectory and have a fun.

You can of course make use of the framework functions and make your own validation
script. The already present ones might serve as a good starting point.

Appendix D

Additional Plots and Tables

74

APPENDIX D. ADDITIONAL PLOTS AND TABLES 75

Company Name Number of Articles
GOOGLE INC 1782
MICROSOFT CORP 1426
FEDERAL RESERVE SYSTEM 1092
EUROPEAN UNION 1054
SECURITIES AND EXCHANGE COMMISSION 1026
APPLE INC 904
GENERAL MOTORS CORP 694
YAHOO INC 659
YOUTUBE.COM 474
SONY CORP 444
FORD MOTOR CO 443
TREASURY DEPARTMENT 436
HEWLETT-PACKARD CO 434
FACEBOOK.COM 422
FOOD AND DRUG ADMINISTRATION 398
CITIGROUP INC 393
JUSTICE DEPARTMENT 390
WAL-MART STORES INC 372
TOYOTA MOTOR CORP 358
INTEL CORP 355
VERIZON COMMUNICATIONS 336
MYSPACE.COM 327
YOUTUBE 316
GOLDMAN SACHS GROUP 315
NEW YORK TIMES 310
DISNEY, WALT, CO 309
AMERICAN INTERNATIONAL GROUP 307
AT&T CORP 305
NBC UNIVERSAL 305
AMAZON.COM INC 301
HOUSE OF REPRESENTATIVES 295
COMMERCE DEPARTMENT 294
CHRYSLER LLC 294
CBS CORP 292
SENATE 289
BOEING CO 282
LABOR DEPARTMENT 282
FEDERAL COMMUNICATIONS COMMISSION 281
APPLE COMPUTER INC 280
DELL INC 273
MICROSOFT CORPORATION 270
TIME WARNER INC 266
EUROPEAN COMMISSION 258
NEWS CORP 257
NATIONAL BROADCASTING CO 250
MORGAN STANLEY 242
BANK OF AMERICA CORP 241
AIRBUS INDUSTRIE 240
INTERNATIONAL BUSINESS MACHINES CORP 234
UBS AG 230

Table D.1: Number of articles related to given subject from year 2000 to 2010.

APPENDIX D. ADDITIONAL PLOTS AND TABLES 76

Category Unknown Known Pos None -1 None None +1 Neg
MSFT 65 2285 0.31 0.40 0.40 0.40 0.29
YHOO 34 1220 0.32 0.31 0.33 0.32 0.35
GOOG 136 1196 0.28 0.44 0.44 0.47 0.28
AAPL 23 572 0.35 0.35 0.35 0.36 0.29
AMZN 14 451 0.40 0.26 0.23 0.26 0.37
EBAY 2 381 0.33 0.30 0.30 0.29 0.37
ERTS 6 274 0.31 0.29 0.31 0.35 0.38
AOL 94 25 0.28 0.24 0.40 0.36 0.32

Business 304 5155 0.32 0.37 0.37 0.38 0.31
Technology 290 4833 0.32 0.36 0.37 0.38 0.31
Books 7 248 0.36 0.34 0.33 0.37 0.31
Opinion 13 234 0.31 0.33 0.34 0.33 0.35
Front Page 15 227 0.26 0.39 0.38 0.40 0.36
Arts 2 207 0.38 0.34 0.34 0.41 0.28
U.S. 5 144 0.31 0.41 0.44 0.40 0.25
New York and Region 10 134 0.36 0.26 0.27 0.26 0.37
Movies 6 103 0.22 0.43 0.47 0.47 0.31
Corrections 11 87 0.36 0.23 0.25 0.24 0.39
Health 3 70 0.27 0.35 0.39 0.28 0.34
Education 2 60 0.23 0.36 0.42 0.36 0.35
Magazine 1 58 0.36 0.36 0.41 0.36 0.22
World 4 54 0.28 0.40 0.43 0.46 0.30
Week in Review 1 43 0.40 0.39 0.23 0.30 0.37
Washington 3 41 0.32 0.48 0.46 0.49 0.22
Science 1 38 0.34 0.41 0.55 0.41 0.11
Style 5 29 0.28 0.41 0.45 0.41 0.28
Unknown 1 29 0.17 0.40 0.52 0.37 0.31
Sports 2 25 0.28 0.33 0.36 0.44 0.36
Travel 0 20 0.00 0.25 0.35 0.25 0.65
Theater 0 7 0.29 0.29 0.43 0.29 0.29
Obituaries 0 5 0.00 0.80 0.80 0.80 0.20
Home and Garden 1 4 0.25 0.40 0.75 0.60 0.00
Real Estate 0 3 0.00 0.33 1.00 0.67 0.00
Dining and Wine 0 2 0.00 1.00 0.50 0.00 0.50
Automobiles 0 2 0.50 0.50 0.50 0.50 0.00
Editors' Notes 1 2 0.50 0.50 0.50 0.50 0.00
Paid Death Notices 0 2 1.00 0.00 0.00 0.00 0.00
Job Market 0 1 0.00 0.00 0.00 −− 1.00

Table D.2: The �rst two numerical columns are showing the number of Known and Unknown
(unclassi�ed) articles. The rest of the table shows ratio of Positive/Neutral/Negative articles
in each group. The columns "None -1" and "None +1" are Neutral ratios for previous or
consequent day. The upper part of the table contains organizations while the lower holds
article categories.

APPENDIX D. ADDITIONAL PLOTS AND TABLES 77

States 0 1e-04 3e-04 0.001 0.003 0.01 0.03 0.1 0.3
1 −0.095 −0.095 −0.095 −0.095 −0.095 −0.150 0.000 0.000 0.000
2 0.588 0.584 0.598 0.582 0.573 0.574 0.000 0.000 0.000
3 0.635 0.649 0.659 0.666 0.623 0.548 0.089 0.000 0.000
4 0.546 0.543 0.545 0.529 0.488 0.448 0.074 0.000 0.000
5 0.419 0.421 0.399 0.400 0.514 0.241 0.081 0.000 0.000
6 0.482 0.470 0.467 0.491 0.537 0.468 0.078 0.000 0.000
7 0.472 0.473 0.462 0.461 0.457 0.372 0.090 0.000 0.000
8 0.454 0.467 0.460 0.490 0.417 0.370 0.051 0.000 0.000
9 0.462 0.458 0.462 0.465 0.427 0.302 0.050 0.000 0.000
10 0.454 0.453 0.447 0.453 0.387 0.489 0.056 0.000 0.000
11 0.409 0.402 0.418 0.417 0.394 0.287 0.028 0.000 0.000

(a) Relative Di�erence

States 0 1e-04 3e-04 0.001 0.003 0.01 0.03 0.1 0.3
1 −0.349 −0.349 −0.277 −0.429 −0.150 0.000 0.000 0.000 0.000
2 0.625 0.633 0.642 0.655 0.554 0.350 0.000 0.000 0.000
3 0.591 0.598 0.582 0.606 0.589 0.538 0.000 0.000 0.000
4 0.512 0.514 0.537 0.533 0.560 0.513 0.000 0.000 0.000
5 0.530 0.536 0.555 0.541 0.516 0.331 0.000 0.000 0.000
6 0.463 0.448 0.461 0.492 0.440 0.262 0.000 0.000 0.000
7 0.476 0.464 0.459 0.448 0.476 0.318 0.000 0.000 0.000
8 0.597 0.598 0.574 0.541 0.478 0.564 0.000 0.000 0.000
9 0.490 0.484 0.476 0.453 0.371 0.434 −0.013 0.000 0.000
10 0.424 0.427 0.436 0.444 0.333 0.350 0.000 0.000 0.000
11 0.548 0.537 0.534 0.530 0.479 0.378 −0.009 0.000 0.000

(b) Logarithmic Di�erence

Table D.3: The table contains average daily pro�t for con�dence based strategy for model
learnt on all the series together. The values are increased 1000 times to avoid leading zeros.
The columns are representing con�dence thresholds while the rows are representing numbers
of hidden states of the model.

APPENDIX D. ADDITIONAL PLOTS AND TABLES 78

States 0 1e-05 3e-05 1e-04 3e-04 0.001 0.003 0.01 0.03
1 −0.095 −0.095 −0.095 −0.095 −0.095 −0.150 0.000 0.000 0.000
2 0.584 0.572 0.590 0.589 0.504 0.264 0.109 0.000 0.000
3 0.680 0.680 0.668 0.635 0.630 0.313 0.156 0.000 0.000
4 0.509 0.524 0.521 0.553 0.572 0.209 0.191 0.000 0.000
5 0.603 0.597 0.575 0.528 0.508 0.230 0.152 0.000 0.000
6 0.531 0.533 0.523 0.511 0.546 0.196 0.192 0.000 0.000
7 0.441 0.452 0.454 0.455 0.492 0.180 0.211 0.000 0.000
8 0.489 0.484 0.494 0.466 0.494 0.182 0.251 0.000 0.000
9 0.544 0.549 0.543 0.529 0.477 0.183 0.255 0.000 0.000
10 0.474 0.470 0.466 0.450 0.429 0.200 0.243 −0.003 0.000
11 0.521 0.516 0.533 0.520 0.410 0.161 0.200 0.000 0.000

(a) Relative Di�erence

States 0 1e-05 3e-05 1e-04 3e-04 0.001 0.003 0.01 0.03
1 −0.349 −0.349 −0.277 −0.429 −0.150 0.000 0.000 0.000 0.000
2 0.579 0.571 0.582 0.626 0.570 0.126 0.000 0.000 0.000
3 0.622 0.622 0.632 0.668 0.622 0.420 −0.005 0.000 0.000
4 0.506 0.495 0.498 0.515 0.533 0.327 −0.010 0.000 0.000
5 0.511 0.513 0.527 0.527 0.541 0.460 −0.012 0.000 0.000
6 0.486 0.482 0.471 0.476 0.501 0.356 −0.010 0.000 0.000
7 0.521 0.522 0.514 0.490 0.494 0.358 0.001 0.000 0.000
8 0.580 0.576 0.572 0.565 0.573 0.394 −0.004 0.000 0.000
9 0.451 0.459 0.456 0.458 0.498 0.317 −0.001 0.000 0.000
10 0.442 0.436 0.436 0.426 0.483 0.313 −0.002 0.000 0.000
11 0.615 0.632 0.637 0.632 0.583 0.316 −0.001 0.000 0.000

(b) Logarithmic Di�erence

Table D.4: The table contains average daily pro�t for threshold based strategy for model
learnt on all the series together. The values are increased 1000 times to avoid leading zeros.
The columns are representing con�dence thresholds while the rows are representing numbers
of hidden states of the model.

APPENDIX D. ADDITIONAL PLOTS AND TABLES 79

States 0 1e-04 3e-04 0.001 0.003 0.01 0.03 0.1 0.3
1 −0.512 −0.507 −0.507 −0.445 −0.313 −0.117 −0.014 0.000 0.000
2 −0.293 −0.294 −0.283 −0.228 −0.147 −0.075 0.020 0.000 0.000
3 0.103 0.074 0.035 0.057 0.116 0.072 0.016 −0.004 0.000
4 0.176 0.172 0.196 0.220 0.202 0.179 −0.051 −0.002 −0.004
5 0.358 0.387 0.392 0.363 0.284 0.173 −0.042 −0.005 −0.004
6 0.161 0.149 0.154 0.186 0.144 0.108 −0.018 −0.004 0.000
7 0.093 0.074 0.104 0.119 0.146 0.137 −0.035 −0.007 −0.004
8 0.197 0.208 0.174 0.219 0.175 0.168 −0.091 0.001 −0.004
9 0.055 0.068 0.124 0.200 0.156 0.180 −0.010 0.003 −0.004
10 −0.041 −0.031 −0.041 0.058 0.102 0.201 −0.100 −0.003 −0.004
11 0.113 0.107 0.083 0.109 0.068 0.170 −0.033 0.007 −0.010

(a) 4 Chunks in a Window

States 0 1e-04 3e-04 0.001 0.003 0.01 0.03 0.1 0.3
1 0.170 0.170 0.172 0.172 0.164 −0.063 0.011 0.000 0.000
2 0.310 0.319 0.340 0.288 0.343 0.261 0.251 0.004 0.000
3 0.094 0.093 0.092 0.062 0.135 0.303 0.281 0.008 0.006
4 −0.121 −0.094 −0.088 −0.061 0.062 0.203 0.265 0.004 0.000
5 −0.083 −0.078 −0.078 −0.026 0.100 0.141 0.217 0.008 0.002
6 0.033 0.048 0.013 0.024 0.143 0.287 0.236 0.006 −0.005
7 0.043 0.033 0.043 0.037 0.090 0.281 0.286 −0.007 −0.009
8 0.180 0.170 0.187 0.218 0.259 0.415 0.292 0.000 0.004
9 0.258 0.237 0.241 0.291 0.371 0.411 0.232 0.005 0.008
10 0.207 0.192 0.194 0.227 0.303 0.328 0.363 0.009 0.004
11 0.300 0.291 0.275 0.308 0.362 0.400 0.390 0.031 0.002

(b) 2 Chunks in a Window

States 0 1e-04 3e-04 0.001 0.003 0.01 0.03 0.1 0.3
1 0.300 0.300 0.300 0.290 0.328 0.214 0.060 0.000 0.000
2 0.490 0.491 0.498 0.489 0.540 0.351 0.134 0.012 0.000
3 0.361 0.373 0.369 0.346 0.285 0.269 0.191 −0.004 0.000
4 0.437 0.430 0.427 0.415 0.410 0.347 0.197 0.042 −0.004
5 0.519 0.520 0.524 0.522 0.488 0.442 0.230 0.028 −0.005
6 0.631 0.627 0.629 0.642 0.582 0.560 0.330 0.035 −0.021
7 0.635 0.636 0.628 0.649 0.604 0.545 0.272 0.029 −0.011
8 0.555 0.571 0.570 0.585 0.577 0.607 0.320 −0.028 −0.031
9 0.596 0.613 0.594 0.568 0.520 0.507 0.308 0.052 −0.005
10 0.570 0.577 0.572 0.592 0.590 0.577 0.211 0.095 0.010
11 0.717 0.714 0.702 0.701 0.666 0.553 0.336 0.047 −0.001

(c) 1 Chunk in a Window

Table D.5: The table contains average daily pro�t of Relative Di�erence with con�dence
based strategy for di�erent windows sizes. The values are increased 1000 times to avoid
leading zeros. The columns are representing con�dence thresholds while the rows are repre-
senting numbers of hidden states of the model.

APPENDIX D. ADDITIONAL PLOTS AND TABLES 80

States 0 1e-05 3e-05 1e-04 3e-04 0.001 0.003 0.01 0.03
1 −0.654 −0.654 −0.502 −0.502 −0.502 −0.150 0.000 0.000 0.000
2 0.129 0.122 0.148 0.158 0.098 −0.188 0.002 0.000 0.000
3 0.317 0.299 0.274 0.318 0.237 0.009 0.000 0.000 0.000
4 0.279 0.277 0.284 0.338 0.323 0.105 −0.003 0.000 0.000
5 0.153 0.153 0.151 0.161 0.194 0.052 0.000 0.000 0.000
6 0.242 0.243 0.233 0.232 0.227 0.123 0.007 0.000 0.000
7 0.169 0.172 0.168 0.174 0.157 0.031 0.010 0.000 0.000
8 0.192 0.188 0.184 0.171 0.204 0.095 −0.010 0.000 0.000
9 0.275 0.266 0.265 0.277 0.276 0.222 0.007 −0.001 0.000
10 0.158 0.160 0.159 0.169 0.175 0.115 −0.005 −0.003 0.000
11 0.138 0.137 0.135 0.147 0.125 0.020 0.009 0.000 0.000

(a) 4 Chunks in a Window

States 0 1e-05 3e-05 1e-04 3e-04 0.001 0.003 0.01 0.03
1 −0.210 −0.210 −0.210 −0.210 −0.079 0.072 0.000 0.000 0.000
2 0.062 0.068 0.076 0.092 0.133 0.013 0.000 0.000 0.000
3 0.338 0.314 0.328 0.343 0.285 0.089 0.001 0.000 0.000
4 0.162 0.159 0.142 0.137 0.118 0.093 0.007 0.000 0.000
5 0.115 0.120 0.126 0.153 0.163 0.028 −0.001 0.000 0.000
6 0.125 0.104 0.083 0.197 0.160 0.005 0.004 0.000 0.000
7 0.153 0.154 0.155 0.156 0.228 0.025 0.002 0.000 0.000
8 0.157 0.166 0.163 0.144 0.144 0.027 −0.003 0.000 0.000
9 0.199 0.190 0.186 0.171 0.291 0.009 −0.007 0.000 0.000
10 0.145 0.144 0.144 0.161 0.205 0.013 −0.002 0.000 0.000
11 0.344 0.349 0.340 0.289 0.461 0.029 −0.020 0.000 0.000

(b) 2 Chunks in a Window

States 0 1e-05 3e-05 1e-04 3e-04 0.001 0.003 0.01 0.03
1 −0.210 −0.210 0.071 0.071 0.071 −0.003 0.000 0.000 0.000
2 0.390 0.412 0.409 0.469 0.411 0.341 0.001 0.000 0.000
3 0.540 0.538 0.534 0.549 0.477 0.322 0.000 0.000 0.000
4 0.508 0.507 0.508 0.534 0.571 0.319 −0.011 0.000 0.000
5 0.553 0.540 0.530 0.524 0.541 0.303 −0.010 0.000 0.000
6 0.457 0.452 0.491 0.544 0.613 0.321 −0.007 0.000 0.000
7 0.497 0.516 0.513 0.546 0.630 0.321 −0.010 0.000 0.000
8 0.500 0.518 0.523 0.530 0.539 0.323 −0.011 0.000 0.000
9 0.507 0.507 0.518 0.496 0.574 0.325 −0.008 0.000 0.000
10 0.572 0.581 0.559 0.514 0.587 0.324 −0.014 0.000 0.000
11 0.576 0.588 0.603 0.571 0.596 0.258 0.010 0.000 0.000

(c) 1 Chunk in a Window

Table D.6: The table contains average daily pro�t for threshold based strategy for di�erent
windows sizes learnt together. The values are increased 1000 times to avoid leading zeros.
The columns are representing con�dence thresholds while the rows are representing numbers
of hidden states of the model.

APPENDIX D. ADDITIONAL PLOTS AND TABLES 81

States 0 1e-04 3e-04 0.001 0.003 0.01 0.03 0.1 0.3
1 0.049 0.054 0.025 0.060 −0.079 −0.070 −0.007 0.000 0.000
2 0.277 0.265 0.267 0.304 0.322 0.316 −0.005 0.000 0.000
3 0.392 0.405 0.399 0.485 0.500 0.461 0.041 −0.003 0.000
4 0.415 0.408 0.378 0.379 0.433 0.439 0.009 0.003 0.000
5 0.326 0.323 0.311 0.365 0.417 0.398 0.010 −0.003 0.000
6 0.365 0.345 0.348 0.363 0.447 0.314 0.048 −0.004 0.000
7 0.292 0.297 0.268 0.313 0.345 0.335 0.020 −0.006 0.000
8 0.359 0.361 0.382 0.370 0.411 0.329 0.062 −0.010 −0.001
9 0.351 0.352 0.330 0.319 0.407 0.372 0.046 −0.002 −0.001
10 0.234 0.244 0.279 0.314 0.361 0.317 0.059 −0.001 0.000
11 0.353 0.353 0.341 0.367 0.347 0.307 0.020 −0.002 −0.001

Table D.7: The table contains average daily pro�t of stationary Relative Di�erence based
HMM with con�dence based strategy. The values are increased 1000 times to avoid leading
zeros. The columns are representing con�dence thresholds while the rows are representing
numbers of hidden states of the model.

APPENDIX D. ADDITIONAL PLOTS AND TABLES 82

States 0 1e-04 3e-04 0.001 0.003 0.01 0.03 0.1 0.3
1 0.049 0.054 0.025 0.060 −0.079 −0.070 −0.007 0.000 0.000
2 0.121 0.105 0.108 0.187 0.182 0.123 −0.014 0.000 0.000
3 0.087 0.082 0.109 0.108 0.144 0.257 −0.079 −0.018 0.000
4 0.072 0.071 0.074 0.075 0.055 0.049 0.196 −0.033 −0.009
5 0.086 0.086 0.086 0.092 0.072 0.017 0.014 −0.025 −0.017
6 −0.032 −0.032 −0.032 −0.032 −0.032 −0.036 0.004 0.098 −0.017
7 −0.030 −0.030 −0.030 −0.030 −0.030 −0.030 0.009 0.195 0.004
8 −0.030 −0.030 −0.030 −0.030 −0.030 −0.030 −0.030 0.044 −0.016
9 −0.030 −0.030 −0.030 −0.030 −0.030 −0.030 −0.030 −0.027 −0.070
10 −0.030 −0.030 −0.030 −0.030 −0.030 −0.030 −0.030 −0.031 0.092
11 −0.030 −0.030 −0.030 −0.030 −0.030 −0.030 −0.030 −0.030 0.088

(a) Smoothing 10

States 0 1e-04 3e-04 0.001 0.003 0.01 0.03 0.1 0.3
1 0.049 0.054 0.025 0.060 −0.079 −0.070 −0.007 0.000 0.000
2 0.294 0.302 0.302 0.307 0.378 0.340 0.016 0.000 0.000
3 0.495 0.451 0.469 0.453 0.417 0.382 0.010 0.000 0.000
4 0.392 0.361 0.313 0.337 0.328 0.370 −0.001 0.007 0.000
5 0.402 0.401 0.424 0.424 0.335 0.285 0.032 −0.021 0.000
6 0.291 0.307 0.288 0.240 0.266 0.201 0.064 −0.014 0.000
7 0.219 0.211 0.220 0.249 0.240 0.318 0.026 −0.018 0.000
8 0.269 0.265 0.281 0.287 0.359 0.291 0.036 −0.009 0.000
9 0.392 0.402 0.422 0.424 0.356 0.269 −0.009 0.016 −0.028
10 0.308 0.312 0.312 0.340 0.328 0.205 0.126 −0.017 −0.028
11 0.326 0.323 0.345 0.314 0.281 0.212 0.354 −0.019 −0.017

(b) Smoothing 1

States 0 1e-04 3e-04 0.001 0.003 0.01 0.03 0.1 0.3
1 0.049 0.054 0.025 0.060 −0.079 −0.070 −0.007 0.000 0.000
2 0.278 0.280 0.259 0.298 0.393 0.331 0.044 0.000 0.000
3 0.432 0.429 0.400 0.429 0.468 0.343 0.060 −0.007 0.000
4 0.412 0.416 0.402 0.384 0.428 0.392 0.047 −0.007 0.000
5 0.442 0.443 0.440 0.428 0.499 0.383 0.062 −0.010 0.000
6 0.276 0.302 0.297 0.334 0.385 0.278 0.025 −0.009 0.000
7 0.336 0.327 0.320 0.328 0.330 0.353 0.008 −0.008 0.000
8 0.509 0.477 0.511 0.499 0.383 0.298 0.095 −0.009 0.000
9 0.328 0.335 0.339 0.325 0.309 0.291 0.047 −0.008 0.000
10 0.312 0.328 0.328 0.347 0.358 0.247 0.005 −0.008 0.000
11 0.441 0.436 0.423 0.367 0.310 0.253 0.013 −0.010 0.000

(c) Smoothing 0.1

Table D.8: The table contains average daily pro�t for con�dence based strategy for di�erent
smoothing values. The model is Relative Di�erence based HMM. The values are increased
1000 times to avoid leading zeros. The columns are representing con�dence thresholds while
the rows are representing numbers of hidden states of the model.

APPENDIX D. ADDITIONAL PLOTS AND TABLES 83

States 0 1e-04 3e-04 0.001 0.003 0.01 0.03 0.1 0.3
1 0.119 0.124 0.095 0.095 0.069 −0.070 −0.007 0.000 0.000
2 0.467 0.455 0.453 0.452 0.470 0.359 0.058 0.000 0.000
3 0.686 0.685 0.674 0.617 0.517 0.475 0.058 −0.007 0.000
4 0.367 0.365 0.356 0.403 0.420 0.393 0.056 −0.004 0.000
5 0.251 0.261 0.303 0.341 0.330 0.440 0.033 −0.005 −0.004
6 0.321 0.320 0.314 0.295 0.331 0.351 0.021 −0.008 −0.004
7 0.441 0.445 0.469 0.511 0.520 0.431 0.043 −0.002 −0.004
8 0.362 0.370 0.371 0.374 0.351 0.376 0.055 −0.008 −0.004
9 0.420 0.420 0.396 0.350 0.439 0.349 0.069 −0.005 −0.004
10 0.271 0.268 0.276 0.337 0.350 0.283 0.053 −0.011 0.000
11 0.395 0.386 0.406 0.413 0.422 0.396 0.046 −0.008 −0.004

(a) Cropping 0.4

States 0 1e-04 3e-04 0.001 0.003 0.01 0.03 0.1 0.3
1 0.243 0.243 0.219 0.157 0.069 −0.070 −0.007 0.000 0.000
2 0.413 0.407 0.399 0.457 0.409 0.324 0.075 0.000 0.000
3 0.684 0.689 0.674 0.666 0.597 0.464 −0.008 −0.007 0.000
4 0.408 0.400 0.408 0.431 0.384 0.346 −0.044 −0.004 0.000
5 0.557 0.548 0.560 0.547 0.460 0.367 0.004 −0.005 0.000
6 0.449 0.415 0.409 0.376 0.422 0.312 −0.013 −0.009 −0.004
7 0.491 0.503 0.448 0.468 0.472 0.345 −0.037 −0.009 −0.004
8 0.401 0.378 0.391 0.453 0.455 0.390 0.014 −0.012 −0.006
9 0.349 0.344 0.394 0.381 0.392 0.339 −0.055 −0.007 −0.002
10 0.324 0.339 0.344 0.381 0.454 0.254 0.006 −0.008 −0.004
11 0.489 0.492 0.498 0.482 0.463 0.394 −0.049 −0.007 0.000

(b) Cropping 0.2

States 0 1e-04 3e-04 0.001 0.003 0.01 0.03 0.1 0.3
1 0.186 0.186 0.186 0.210 0.032 0.013 −0.007 0.000 0.000
2 0.389 0.389 0.412 0.372 0.364 0.386 0.005 0.000 0.000
3 0.262 0.257 0.259 0.280 0.402 0.233 0.030 −0.007 0.000
4 0.262 0.261 0.258 0.302 0.339 0.304 0.011 −0.008 0.000
5 0.291 0.279 0.272 0.318 0.409 0.297 −0.016 −0.005 0.000
6 0.205 0.207 0.239 0.266 0.316 0.137 −0.058 −0.006 0.000
7 0.150 0.165 0.192 0.245 0.322 0.296 0.015 −0.002 −0.006
8 0.196 0.181 0.196 0.180 0.094 0.204 −0.011 −0.009 −0.004
9 0.350 0.332 0.341 0.299 0.304 0.380 0.045 −0.015 −0.006
10 0.299 0.298 0.279 0.281 0.245 0.240 0.020 −0.006 0.000
11 0.227 0.223 0.239 0.241 0.237 0.181 0.022 −0.014 0.000

(c) Cropping 0.1

Table D.9: The table contains average daily pro�t for con�dence based strategy for di�erent
cropping values. The model is Relative Di�erence based HMM. The values are increased
1000 times to avoid leading zeros. The columns are representing con�dence thresholds while
the rows are representing numbers of hidden states of the model.

APPENDIX D. ADDITIONAL PLOTS AND TABLES 84

States 0 1e-05 3e-05 1e-04 3e-04 0.001 0.003 0.01 0.03
1 0.049 0.045 0.025 0.060 −0.079 −0.040 0.000 0.000 0.000
2 0.179 0.165 0.151 0.158 0.190 0.098 0.080 0.009 0.000
3 0.086 0.075 0.088 0.006 0.044 0.055 −0.059 −0.004 −0.005
4 0.056 0.049 0.058 0.086 0.179 0.228 0.022 −0.005 0.000

(a) Relative Di�erence - Simple Threshold

States 0 1e-04 3e-04 0.001 0.003 0.01 0.03 0.1 0.3
1 0.049 0.054 0.025 0.060 −0.079 −0.070 −0.007 0.000 0.000
2 0.107 0.118 0.154 0.153 0.305 0.307 −0.029 0.000 0.000
3 0.355 0.338 0.326 0.305 0.256 0.053 −0.076 −0.008 0.004
4 0.404 0.402 0.375 0.327 0.312 0.164 0.002 −0.018 −0.001

(b) Relative Di�erence - Con�dence Threshold

States 0 1e-05 3e-05 1e-04 3e-04 0.001 0.003 0.01 0.03
1 −0.129 −0.129 −0.067 −0.108 −0.140 −0.064 0.000 0.000 0.000
2 0.023 0.016 0.004 0.042 0.044 0.151 0.020 0.000 0.000
3 0.208 0.210 0.192 0.187 0.144 0.108 −0.032 −0.008 0.000
4 0.412 0.400 0.397 0.400 0.319 0.168 −0.028 −0.009 0.000

(c) Logarithmic Di�erence - Simple Threshold

States 0 1e-04 3e-04 0.001 0.003 0.01 0.03 0.1 0.3
1 −0.129 −0.129 −0.067 −0.108 −0.134 −0.075 −0.007 0.000 0.000
2 0.200 0.192 0.164 0.061 0.094 0.223 −0.026 0.000 0.000
3 0.408 0.409 0.406 0.395 0.332 0.066 −0.086 0.000 0.000
4 0.410 0.428 0.438 0.418 0.413 0.229 −0.053 −0.016 0.001

(d) Logarithmic Di�erence - Con�dence Threshold

Table D.10: The table contains average daily pro�t of 2nd order HMM s. The values are
increased 1000 times to avoid leading zeros. The columns are representing con�dence thresh-
olds while the rows are representing numbers of hidden states of the model.

APPENDIX D. ADDITIONAL PLOTS AND TABLES 85

States 0 1e-05 3e-05 1e-04 3e-04 0.001 0.003 0.01 0.03
1 0.049 0.045 0.025 0.060 −0.079 −0.040 0.000 0.000 0.000
2 0.117 0.120 0.120 0.134 0.237 0.082 0.086 0.029 0.000
3 −0.057 −0.106 −0.091 −0.060 0.000 0.114 −0.025 0.008 −0.002
4 0.080 0.091 0.093 0.139 0.133 0.143 0.024 −0.002 −0.002

(a) Relative Di�erence - Simple Threshold

States 0 1e-04 3e-04 0.001 0.003 0.01 0.03 0.1 0.3
1 0.049 0.054 0.025 0.060 −0.079 −0.070 −0.007 0.000 0.000
2 0.206 0.205 0.196 0.165 0.324 0.190 0.020 0.000 0.000
3 0.159 0.142 0.126 0.065 0.106 0.037 −0.013 −0.020 0.007
4 0.359 0.360 0.389 0.339 0.343 0.137 −0.062 −0.020 0.005

(b) Relative Di�erence - Con�dence Threshold

States 0 1e-05 3e-05 1e-04 3e-04 0.001 0.003 0.01 0.03
1 −0.129 −0.129 −0.067 −0.108 −0.140 −0.064 0.000 0.000 0.000
2 −0.041 −0.034 −0.025 0.054 −0.021 0.150 −0.007 0.002 0.003
3 0.167 0.120 0.159 0.177 0.257 0.016 0.013 0.007 0.003
4 0.578 0.587 0.547 0.504 0.401 0.227 −0.060 0.007 0.003

(c) Logarithmic Di�erence - Simple Threshold

States 0 1e-04 3e-04 0.001 0.003 0.01 0.03 0.1 0.3
1 −0.129 −0.129 −0.067 −0.108 −0.134 −0.075 −0.007 0.000 0.000
2 0.147 0.137 0.155 0.168 0.125 0.152 0.017 0.003 0.000
3 0.111 0.129 0.139 0.186 0.161 0.218 −0.070 −0.001 0.007
4 0.192 0.201 0.190 0.191 0.208 0.157 0.042 0.030 0.003

(d) Logarithmic Di�erence - Con�dence Threshold

Table D.11: The table contains average daily pro�t of 3rd order HMM s. The values are
increased 1000 times to avoid leading zeros. The columns are representing con�dence thresh-
olds while the rows are representing numbers of hidden states of the model.

APPENDIX D. ADDITIONAL PLOTS AND TABLES 86

States 0 1e-05 3e-05 1e-04 3e-04 0.001 0.003 0.01 0.03
1 −0.349 −0.349 −0.277 −0.429 −0.150 0.000 0.000 0.000 0.000
2 0.668 0.661 0.662 0.693 0.625 0.138 0.000 0.000 0.000
3 0.664 0.662 0.667 0.696 0.635 0.441 0.000 0.000 0.000
4 0.566 0.567 0.569 0.567 0.557 0.425 0.008 0.000 0.000
5 0.516 0.525 0.523 0.516 0.573 0.380 −0.004 0.000 0.000
6 0.538 0.534 0.528 0.510 0.551 0.356 −0.004 0.000 0.000
7 0.496 0.494 0.504 0.500 0.544 0.336 −0.001 0.000 0.000
8 0.519 0.516 0.514 0.495 0.505 0.273 0.000 0.000 0.000
9 0.475 0.477 0.485 0.489 0.536 0.461 0.000 0.000 0.000
10 0.499 0.505 0.505 0.518 0.536 0.342 0.000 0.000 0.000
11 0.527 0.530 0.515 0.540 0.576 0.353 0.000 0.000 0.000

(a) Stationary Logarithmic Di�erence based HMM learnt together with simple threshold strategy.

States 0 1e-05 3e-05 1e-04 3e-04 0.001 0.003 0.01 0.03
1 −0.210 −0.210 0.071 0.071 0.071 −0.003 0.000 0.000 0.000
2 0.507 0.489 0.489 0.484 0.430 0.280 0.001 0.000 0.000
3 0.506 0.511 0.493 0.460 0.405 0.322 −0.003 0.000 0.000
4 0.466 0.454 0.460 0.457 0.425 0.303 −0.003 0.000 0.000

(b) Stationary Logarithmic Di�erence based 2nd Order HMM learnt together using 1/8 window with
simple threshold strategy.

Table D.12: The table contains average daily pro�t of HMM s with combined improvements.
The values are increased 1000 times to avoid leading zeros. The columns are representing
con�dence thresholds while the rows are representing numbers of hidden states of the model.

Appendix E

DVD Content

87

APPENDIX E. DVD CONTENT 88

An attached DVD has following structure:
|-- index.html Project overview and links
|-- readme.txt Short info about �les
|-- bin Binaries of the NY Downloader
|-- data Data used for analysis
|-- src Source codes
| |-- NYDownloader Downloading Utility
| `-- R R scripts
`-- text Documentation

|-- zadrape1.pdf PDF output
`-- latex LATEX sources

|-- figures All the images including graphs
`-- tables All the tables

	Introduction
	Motivation
	Objectives
	Overview

	Background
	Markets
	Systems for Algorithmic Trading
	Text Mining Integration
	Other Used Algorithms

	Design
	Simplifying Assumptions
	Text Integration
	Time-Series Analysis

	Implementation
	Implementation Environment
	System Design
	Article Retrieval
	Text Processing
	Article Preprocessing
	Data Series Processing
	Other Software Tools

	Testing and Results
	Data Selection
	Text Analysis
	Markov Models

	Future Work
	Conclusion
	List of Abbreviations
	NY Downloader User Guide
	Installation
	Usage

	Validation Framework User Guide
	Installation
	Usage

	Additional Plots and Tables
	DVD Content

