

ii

iv

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

Master’s Thesis

Agent-based Model of Parcel Logistics

Bc. Jiří Starý

Supervisor: Ing. Michal Jakob, Ph.D.

Study Programme: Open Informatics

Field of Study: Artificial Intelligence

May 10, 2012

iv

v

Aknowledgements
I would like to thank my mentor for a great motivation and support. Mr. Jakob, who was
relentlessly pushing me forward for the entire time, my family, friends and all the people
that supported me, while I was writing this thesis. Without you, most of this would never
be possible.

vi

viii

Abstract

The purpose of this work is to leverage the agent-based modeling onto the process of par-
cel delivery. First, some related works are shown, while also describing the benefits of
agent-based modeling. A groundwork for the the task is laid, when it is defined formally
as a constraint optimization problem. An allocation algorithm based on the definition is
formed. The model of the problem is built and described. The implementation is constructed
over an event-based agent simulation platform for the urban environment, AgentPolis. In-
side, the vehicles move on a graph representation of the streets. Using the A* planner and
with the estimated distance as a cost, they compete for the deliveries. Later, on the city
of Prague, several allocation strategies are attempted, while an insight into the interactions
between agents is gained and the results discussed. Two variants of the allocation algorithm
were measured, each performing better under different conditions and metrics.

Abstrakt

Tato práce se zabývá využitím agentního modelování při doručování balíků. Nejprve jsou
popsány související práce a výhody tohoto přístupu. Základem ke specifikaci této úlohy bylo
zvoleno formální definování problému, jako problému s omezujícími podmínkami. Pomocí
této definice je vytvořen alokační algoritmus. Vzniká model systému, který je popsán a im-
plementován. Tato implementaci je postavena na událostmi řízené simulační platformě pro
modelování městského prostředí, AgentPolis. V ní vozidla využívají grafové reprezentace
ulic. V této reprezentaci soutěží o zakázky s využitím plánovače A* a pomocí jejich ocenění
přibližnou vzdáleností. Na mapě Prahy je poté vyzkoušeno několik alokačních strategií, dá-
vajících nahlédnout do fungování systému, a diskutovány výsledky. Dvě varianty alokačního
algoritmu byly změřeny, každá vhodnější pro jiné podmínky a metriky.

ix

x

Contents

1 Introduction 1
1.1 Outline . 2

2 Background and related work 3
2.1 Overview of existing approaches for cargo delivery 3

2.1.1 Area division . 3
2.1.2 Assignment and scheduling . 4
2.1.3 Meta-heuristics . 4

2.2 Agent-based modeling . 5

3 Problem formalization 7
3.1 Objective function . 8
3.2 Solution representation . 9
3.3 Notation . 11
3.4 Metrics . 11

4 Allocation algorithm 13
4.1 Agent interaction . 13
4.2 Evaluation of deliveries by insertion heuristic 14
4.3 Allocation . 15

5 Simulation model 17
5.1 Agents . 17
5.2 Agent interaction . 18
5.3 Agent actions . 18
5.4 Pseudo algorithms . 18
5.5 Environment model . 20

6 Implementation 23
6.1 Platform . 23

6.1.1 Visualization . 23
6.2 Environment . 24

6.2.1 Communication protocol . 24
6.2.2 Sensors . 24
6.2.3 Dispatcher implementation . 25
6.2.4 Vehicle implementation . 26

xi

xii CONTENTS

6.2.5 Map . 27
6.3 Producing results . 27

6.3.1 Launcher . 28

7 Experiments 29
7.1 Experiment setting . 29

7.1.1 Scenario parameters . 29
7.2 Experiment results . 30

7.2.1 System throughput measurement . 31
7.2.2 Bidding with real distance . 32

7.3 Simulation run details . 34
7.4 Summary . 38

8 Conclusion 41
8.1 Future work . 42

A List of abbreviations 45

B User manual 47
B.1 Simulation . 47

B.1.1 Google Earth . 47
B.1.2 Output . 48

B.2 Launcher . 48
B.2.1 Launcher.config . 48
B.2.2 Config.groovy . 49
B.2.3 Output . 49

C Contents of the enclosed CD 51

List of Figures

4.1 Interaction between vehicle and dispatcher . 14

5.1 Vehicle lifecycle . 19
5.2 Deliveries diagram . 20
5.3 Class diagram of interactions . 21
5.4 Environment diagram . 21

6.1 Visualization, on the left using Swing, behind in Google Earth 24
6.2 Planning delivery path in real time . 26

7.1 Increasing amount of vehicles in experiment with an insufficient throughput.
Simulation: 1h, warehouses :2, capacity: 20, delivery frequency:10s, fully loaded 31

7.2 Increasing amount of vehicles in experiment with an insufficient throughput.
Simulation: 1h, warehouses :2, capacity: 20, delivery frequency:10s, fully loaded 32

7.3 Finding optimal amount of vehicles by delivery time for several delivery fre-
quencies. Simulation:1 h, warehouses :2, capacity: 20, not fully loaded 34

7.4 Correlation between amount of warehouses and distance 34
7.5 Correlation between amount of warehouses and time 35
7.6 No influence of capacity in a system with low amount of deliveries and unfilled

vehicles . 35
7.7 Significant difference in delivery time with increase of capacity in a system

with low amount of deliveries and fully loaded vehicles 36
7.8 Mileage saved by the use of vehicles with higher capacity 36
7.9 No influence of capacity in a system with high amount of deliveries and un-

filled vehicles . 37
7.10 Influence of capacity in a system with high amount of deliveries and fully

loaded vehicles . 38
7.11 Agent interaction by the number of messages sent 39

B.1 Google Earth screenshot . 48

xiii

xiv LIST OF FIGURES

List of Tables

7.1 Table comparing results for two different simulation durations 33
7.2 Performance with the real distance bidding. 33
7.3 Performance for different simulation runs. 37

xv

xvi LIST OF TABLES

Chapter 1

Introduction

The delivery of goods is inextricably linked to the image of a living, bustling city as a blood
running through its veins. From bringing goods to the shops, same day e-shop client delivery
to small point-to-point couriers deliveries, it is an overall important aspect of each city which
generates a significant portion of the city traffic.

Each delivery agency might utilize a variety of means of transportation, differing by
speed, freight capacity and fuel consumption. Ranging from large vans up to single man-
powered bicycles, all these means are employed to strike a complex balance among delivery
time, service cost and environmental concerns. The desired goals are higher efficiency and
better fleet management [13]. In a traditional sense, orders are placed by clients to a central-
ized office, which then sorts information by hand using teams of skilled operators and passes
it on. Courier deliveries aren’t often assigned to a single vehicle, more common approach
is to notify all available vehicles in the near vicinity including freelance drivers. They then
independently decide if accepting the delivery is feasible for them. The key competitive
point is the efficiency of the runs. Moreover, scheduling in this field has some additional
difficulties. Some amount of fairness has to be established to decrease the number of drivers
with low order placement, otherwise their satisfaction with the job would plummet down in
short order. Apart from the driver’s psychology, other dynamically changing factors include
traffic congestions, creation or disappearance of standing orders, vehicle malfunction etc.
[8], which makes the whole area notoriously difficult to manage efficiently. In case of express
deliveries or supply chain cargo, consignments are heavily bundled and gathered at local
departments from where they are distributed to the local area.

In this paper a stress will be put onto deliveries in a large or medium sized cities shipped
from a small set of warehouses to different locations, which is common to e-shops for example,
or other logistics when goods should be delivered on short notice and planning of deliveries
cannot be efficiently set beforehand. It was a great technological boom including GPS,
RFID devices and cloud computing that tracks demands, vehicles and parcels in real time,
that introduced this type of agile delivery. Dispatching is THE crucial task for the whole
courier company and its proper application can result in great improvements in its efficiency
and customer comfort, as the same day delivery begins to emerge as the new standard and
companies will be hard pressed to decrease the delivery time.

When seeking new ways to tackle urban challenges, an agent-based modeling seems to be
the ideal tool for the task at hand. With it, we should be able to build a model of a delivery

1

2 CHAPTER 1. INTRODUCTION

system to help us grasp the issue and gain a clearer insight into complex relationships in
this field.

1.1 Outline

This work on parcel logistics is divided into 8 chapters. You are now reading an Introduction
in the first chapter. In the second chapter, existing approaches for a parcel logistics are
discussed and benefits of agent-based modeling are laid out. In the third chapter, a formal
definition of the problem is set, including a definition of the result with several metrics
to measure its quality. The next chapter is dedicated to the structure of an allocation
algorithm built on the formal definition. With the existence of an algorithm, it is possible
to analyze the model of a delivery environment including agent behaviour in chapter 5.
The sixth chapter describes the implementation details of the model, while also mentioning
the AgentPolis platform onto which it was built. Experiments with the deliveries on the map
of Prague are the contents of the ensuing chapter, comparing several settings of the allocation
algorithm, speculating about the ideal vehicle count and other important parameters. In
the last chapter, the conclusions are drawn and the possibilities of a future work are drafted.

Chapter 2

Background and related work

In this chapter a selection from the numerous approaches commonly taken when solving
parcel logistics or similar problems is presented. The existing approaches are divided into
3 sections. First encompasses the possibilities of dividing the concerned area in which
deliveries take place, second is more focused on tackling the dynamical part of the problem
and the last talks about the use of meta-heuristics. In the end, some benefits of the agent-
based modeling are highlighted.

2.1 Overview of existing approaches for cargo delivery

2.1.1 Area division

When covering a large area (city) it is not an uncommon approach to divide it into several
regions or clusters. The reasonings behind this cut is thus: Couriers move only in designated
area and packages can be bundled when going in the same direction. Moreover idle runs
while they move empty or from distant location are minimized as the length of trips is
shortened. Each area typically has assigned its own fleet of couriers. In the real-life scenarios,
the system should react in some way if high transportational demand drains the whole area
empty of couriers, or on the other hand all couriers aggregate in too small location and
create too hard competition for each other, so some way of predicting future orders can be
useful. The key point is how and where the packets should be transfered from one courier
to another. Several division proposed here: [14]

Hub logistics

Resembling a way the more traditional logistic deliveries operate (express service), the pack-
ages are transfered to a central Hub and then moved according to destination coordinates.
There may be only one central hub in a high order volumes area surrounded by a several
less desired destinations, or a solitary hub for each region. It is argued that the introduction
of hubs should increase bundling of packages. However deliveries of cargo might be delayed
when waiting for more packages going in same direction and rerouting at each hub.

3

4 CHAPTER 2. BACKGROUND AND RELATED WORK

Fixed exchange points

A city is divided into a several clusters, depending on the amount of cargo and each one
is assigned its own fleet of couriers. The cluster borders contains a fixed points, where the
cargo is exchanged between couriers.

2.1.2 Assignment and scheduling

Time slicing approach

The time during the day is sliced into a several periods and new orders are not considered,
until the new time period is reached. Thus the dynamic element of the problem is removed.
However, the price for this decision is a delay in dispatching orders and possible loss of
better fleet schedules. The main benefit in the application being the savings in the terms of
computational time.

Adaptive scheduling approach

Can be used for this type of scheduling in the real time. Considering that a schedule
already exist and it is not necessary to reschedule the whole roster, merely to incorporate
the changing events as they occur. The ssignment of orders to the couriers is delayed and
can be re-assigned before the pick-up point is reached, if overall performance is increased.

2.1.3 Meta-heuristics

Because of the complex nature of the problem posed, it is in practice often useful to use
some of smart set of meta-heuristics. The dynamic nature of the problem not only makes
the finding of the (closely) optimal solutions costly, but their net value measured at the given
time changes as new events occur. So, it is a prudent standpoint to expect changes in vehicle
routes and allow flexible planning by use of heuristics, allowing sub-optimal paths that are
more amenable to change, or by keeping a list of possibilities. When generalized to non-
specific routing and delivery problem, the selection of a suitable heuristic depends on the
dynamicity of the problem. That being defined [17] as tuple of rate of change and its urgency.
The latter being the time between announcement of a change and its manifestation.

• tabu search [12]
is a kind of local search that evades the repetition and local minima by banning the
same or similar solutions for a short period of time. The usual application is by
branching possible future paths. As adding new orders change only some of them,
a significant portion of time is saved.

• variable neigbourhood search [17]
for the problem a set of arbitrary neigbourhood structures is generated, and each is
pondered successively - usually by some black-box search procedure - to determine if
the solution has improved. The neigbourhoods are traversed successively in order of
their closeness until some stop criterion is met.

2.2. AGENT-BASED MODELING 5

• double horizon heuristic [16]
manages the problem with respect to the two goals. The short term, which usually
means minimizing the distance traveled and corresponds to the solution of the static
variant of the problem. The long term goal, which is to maintain routes in a state
when change can be easy incorporated in the schedule. This goal usually works with
a notion of slack time, that allows insertion of new tasks.

• ant colony
Inspired by the ant pheromone trail, a positive feed-back loop that favours past suc-
cessful solutions is made. Usually a heuristic is computed for the chosen move and
added with a bonus for each time the move was used in the past.

• genetic algorithms [17]
collection of the plans valid at an event horizon is kept and improved solutions are
sought using traditional genetic operators.

• cheapest insertion [16]
starting from a valid plan, new delivery locations are inserted to a position that causes
minimal cost increase.

2.2 Agent-based modeling

The ability to model a complex system is a key to gaining deeper understanding of the prob-
lem and its possible solutions.

Agent-based modeling is a process of looking into a system from its constituent parts
[10]. By describing the elements on a microscopical scale, higher and more complex patterns
emerge. This kind of modeling usually exploit the fact, that the whole is greater than just
the sum of its parts and the interactions do matter.

In ABM these smallest particles are called agents. They each act as an independent
individual, defined by its own behaviour rules. By means of interaction between each other
and the environment, the model of the system surfaces. Using this decentralized model one
may change its parameters and observe changes in global system behaviour without a prior
knowledge about the global system [7]. This approach is especially useful when dealing with
problems that cannot be easily or efficiently described by top-down approach with simplified
or averaged number and relations.

Ubiquitous mindset more than technology as one can look on handful of problems from
afore-said perspective.

6 CHAPTER 2. BACKGROUND AND RELATED WORK

Chapter 3

Problem formalization

For the purpose of modeling an ensuing version of the dynamic pickup and delivery problem
is considered. Given a set of warehouses in a city plan an efficient route for each delivery
that optimizes a given criterion is sought. This efficiency might be defined using one of
these metrics: Delivery time, distance traveled, fairness...etc. On the other hand, a delivery
destination can be any location inside the city. Every item, that has to reach its destination,
has a homogeneous size and will be transported by a member of homogeneous fleet, which
has a limited load capacity. Access to the cargo or loading order is disregarded. Vehicles
initially start their journey in a single depot, while the new orders are ceaselessly being
created in all warehouses and vehicles might be reassigned during deliveries. All orders
must be served.

In a single time instant t the problem can be formulated as a triple P t:

P t = (V,Da, Dn) (3.1)

V - vehicles, Da - assigned deliveries, Dn - new (unassigned) deliveries

where Da = {d1, .., da} are all deliveries already assigned to a vehicle and Dn = {d′1, .., d′n∗}
represents new deliveries to be allocated to a vehicle.

Having individual vehicle positions defined in an euclidean space by a function λ,

V = (v1, ..., vk) (3.2)

λ : V → R2 (3.3)

each can be assigned a set of deliveries, using assignment function A matching a delivery
d with a vehicle v,

A : Da → V (3.4)

while the last set Dn consist of new deliveries, that waits to be processed. When the delivery
is delivered, it is removed from list of assigned and no longer of any concern.

Let us consider each pickup and delivery location for a single delivery as a node in
directed graph, with regards to fact, that each pickup must precede its delivery (precedence
constraint 3.13). Each order carries information when it was placed. Moreover consider only

7

8 CHAPTER 3. PROBLEM FORMALIZATION

orders that are already present in the source location at the given time. Consider delivery
as a

D = {(ls, ld, d, t∗)|ls 6= ld, (ls, ld ∈ R2), d ∈ N, t∗ ∈ R} (3.5)

Where ls is a source location and ld is a destination location, d is demand - number repre-
senting type of goods to be transfered and t∗ is the time when the order was made. Each
node in the graph has defined coordinates in the euclidean space and each arc contains
a description of its cost (distance).

xij = {(ls, ld, c)|ls, ld ∈ R2, c ∈ R}, (3.6)

3.1 Objective function

At a time t, it is possible to formulate multiple traveling salesman problem (mTSP) over
available delivery nodes {da|(va, da) ∈ Da, va ∈ {1, .., k}} ∪ Dn for m vehicles currently at
a warehouse, because for the pickup and delivery locations that exists in same time, the
problem is reduced to afore-said mTSP [16]. Hence visiting multiple nodes representing
loading multiple items in a warehouse should have zero-cost link when the vehicle is not
required to wait.

Problem formulation based on mTSP [9].

minimize
n∑

i=1

n∑
j=1

cij

m∑
k=1

xijk (3.7)

Minimize cost visited locations where: k - vehicle index, i - source index, j - destination
index, xijk - if vehicle k visits location i before j, cij - cost of traveling between i and j, n
number of deliveries, m number of vehicles

s.t
n∑

i=1

m∑
k=1

xijk = 1, j = 1..n (3.8)

Each location is visited by just one vehicle:

n∑
i=1

xipk −
n∑

j=1

xpjk = 0, k = 1..m, p = 1..n (3.9)

When vehicle enters in a location, then it must leave from the same location: p intermediate
location index

n∑
j=1

x1jk = 1, k = 1..m (3.10)

Each vehicle is used exactly once.

ui − uj + n
m∑

k=1

xijk <= n− 1, i 6= j = 2..n (3.11)

3.2. SOLUTION REPRESENTATION 9

ui - order of location i in tour

xijk ∈ {0, 1}, i, j = 1..n, k = 1..m (3.12)

k - vehicle index, i - source index, j - destination index, xijk - if vehicle k visits location i
before j, n number of deliveries, m number of vehicles

In other words, the problem can be viewed as a set of multiple traveling salesman prob-
lems, where each is valid for a short period of time. The calculated path can change between
different instances, but it is the actual path that is traveled, which is important and should
be optimized. In reality, actual solution to the problem as defined below, is an open path
and a schedule for leaving each location(vehicles are allowed to wait), which can efficiently
solve the mTSP, that will be only fully known in the future, when part of the distance has
been already traveled. This basic formulation ensures each location is visited just once and
by a single vehicle only. Schedule is represented as a node labeling B, where arrival time to
the nodes (locations) by each vehicle is stored.

Bik ≤ Bjk,∀i, j, k (3.13)

Bjk −Bik − tij ≥M ∗ (xijk − 1) (3.14)

k - vehicle index, M - large positive integer,

Bik - arrival time of vehicle k at location i

Precedence constraint 3.13 forces vehicle visit time of source location Bi to precede Bj

delivery time for each item. Note that the inequity 3.14 allows vehicle to wait at given
location as well as specifying the minimal travel time tij between locations.

One other constraint remains to be added. Adding a vehicle capacity (which is sometimes
ignored in literature) to the equations changes the nature of mTSP to very closely related
capacity VRP (vehicle routing problem) also based on mTSP.

Qik −Qjk − 1 ≥M ∗ (xijk − 1) (3.15)

0 ≤ Qik ≤ C,∀i, j, k (3.16)

k - vehicle index, Qik - capacity of vehicle k at location i, C - vehicle maximal capacity

Adding variable Q representing current goods in a vehicle at each location and restricting
its maximal capacity. The equation 3.15 describes homogeneous size of the deliveries.

3.2 Solution representation

A solution is an assignment of locations and time schedule to each vehicle that should
be visited in the future. It is considered valid, if it respects vehicle capacity, precedence
constraint and minimal travel times between locations. Including time t0 is useful to indicate
ordering and validity of the solutions.

10 CHAPTER 3. PROBLEM FORMALIZATION

((x111, ..., xnnk,), (B11, ..., Bnk), (t0)) (3.17)

xijk - if vehicle k visits node i before j , Bik - arrival time of vehicle k at i

t0 - time when solution was generated, n - number of deliveries

3.3. NOTATION 11

3.3 Notation

Description of variables used in the formal definition.

a assignment of delivery to vehicle
Bik time when location i was visited by vehicle k
C maximum capacity of each vehicle
cij traveling distance from i to j
Da set of assigned deliveries
Dn set of unassigned deliveries
i location index
j location index
k vehicle index
m number of vehicles
M large positive integer
n number of assigned deliveries (number of locations/2)
Qik payload of vehicle k at location i
t current time, e.g. time when problem is computed
t∗ time of order creation
ui node(location) potential, indicates order in tour
xijk whether vehicle k visits location i before j

3.4 Metrics

Obtained solutions, while satisfying all defined constraints, will be also evaluated using
these additional metrics. Minimizing function as specified in equation 3.7 define us, what
we want to optimize, but for a measurement of slightly different aspects, without the need
of changing the problem formulation, following metrics are introduced:

Mileage

Metric minimizing mileage is important, because it conveys the information about one of
primary cost factor of transportation - fuel consumption. Average distance traveled per
delivery is used as it can better measure cost-efficiency in a transportation company.

1
n

n∑
i=1

n∑
j=1

cij

m∑
k=1

xijk (3.18)

n - number of deliveries, m - number of vehicles,

xijk - if vehicle k visits node i before j, cij - cost of traveling between i and j

12 CHAPTER 3. PROBLEM FORMALIZATION

Average delivery time

On the other hand, delivery time is the principal indicator of customer satisfaction with the
service. Averaging time between creation of each delivery and the moment of reaching its
destination is used.

1
n

n∑
i=1

(Bjk − t∗i) (3.19)

n - number of deliveries, Bjk - delivery time at location j by vehicle k,

t∗i - order i creation time,

Chapter 4

Allocation algorithm

In this chapter a detailed description of an algorithm, that is capable of solving the problem
emerges from the formal description gained in the previous chapter. Deliveries, representing
the input in such an algorithm, have to be transformed into a sequence of places to be visited
and times, when they should arrive. Because of the multi-agent aspect of the approach taken,
the algorithm, as well as the knowledge of the outcome will be distributed. Its formation
will be based on agent interaction.

4.1 Agent interaction

Manners of the interaction are usually called protocols. The protocol will be closely linked
with what was previously defined as an assignment function. Using a communication pro-
tocol, deliveries will be economically allocated to the best suited vehicles for their delivery.
The one chosen for its versatile characteristic is a variation on the Contract net protocol
[19]. That can be described in terms of 3 actions:

• The initiator sends out a call for proposals

• Each participant reviews it and bids on the feasible ones accordingly.

• The initiator chooses the best bid, which marks the participant, that is awarded
the contract, while all other bids are rejected.

In principle any agent could act as initiator, be it a dispatcher or a vehicle, so agents can
re-negotiate deliveries between themselves later on, but for simplicity, only the dispatcher
is granted this role. Each participant contains a value function prescribing its interest in
delivery. It could be set to minimize a range of different settings, including the best average
time or shortest mileage, even having dissimilar preferences in each agent depending on
the cost parameter used [15].

However in this case, the distance traveled, as gained by the cheapest insertion heuris-
tics, will be used to estimate the cost of adding a new delivery. While the other metrics
will be used ex-post to compare the quality of the solution, this will be the primary variable

13

14 CHAPTER 4. ALLOCATION ALGORITHM

minimized in accordance to the formal definition. When the cost is computed by the par-
ticipant, it is announced to the initiator as an agent’s bid. After a prescribed period of time
contract ownership is awarded to the winner.

In practice, any accepted contract may change the optimal paths of several vehicles.
There exists some strategies [18] for promoting change between agents consisting of im-
provement or re-negotiation of older contracts. For example: After a new order is accepted,
agent may re-negotiate its deliveries, that are delayed due to this new order and pass them
on to the other agents. Using some of these strategies could be a good idea for future work.

Figure 4.1: Interaction between vehicle and dispatcher

4.2 Evaluation of deliveries by insertion heuristic

Future path of the vehicle is not computed exactly, but estimated using insertion heuristic.
Deliveries are progressively inserted into existing path in any possible position. Of these,
only the best place in projected path is sought, so that the additional cost (accounted for
by the new delivery) is minimized.

The algorithm makes use of another of the agent’s features, his memory. Here, it stores
two important information. First, the location of the closest warehouse, which is updated
beforehand as the vehicle moves. Second, a sequence of valid bids, representing agent’s
interest in each delivery. Here the order is not arbitrary, but marks a deliberated preference
in visiting each of the delivery locations. Naturally, it relies on the warehouse selection.
For this reason, the evaluation is performed only when the vehicle does not move. Agent
retains a set of known deliveries. When new request for evaluation is issued, this set is
consulted first. If the delivery is not previously known, a bid is created by seeking an ideal
position among memorized older bids.

• Bid by euclidean distance
Distance between any two points is approximated as an Euclidean distance by the lat-
itude and longitude of the appropriate graph nodes.

4.3. ALLOCATION 15

• Bid by real distance
Is a more precise, but resource intensive approach, where the distance between any
possible points is sought as a sum of distances on the shortest path in underlying map
graph.

Of the two described approaches above, which were both implemented, the first one
was used, because it is much faster. If a delivery is known, a bid for it has already been
computed and it is skipped. However that does not mean it’s value is fixed. When a new
bid is inserted in the middle of a sequence, the ensuing bids must have their values updated
to reflect the delay in delivery.

4.3 Allocation

The crux of the allocation is a dispatcher’s table, which stores the valid bids. According to
the assignment type, the deliveries are distributed between vehicle bidders.

By one delivery

For each delivery in allocation table, the bids are assessed independently and vehicle with
the cheapest bid is chosen.

By full vehicle

When the allocation table contains enough entries, a single vehicle is chosen. To ensure that
the cost is minimal, bids that represents last delivery of every vehicle are compared and
the cheapest vehicle is chosen.

Ensure delivery

However these approaches do not guarantee that every delivery can reach its destination,
as would be the case, if a single distant destination was never served, in favour of newly
created deliveries close-by. To rectify this situation, a possibility to halt announcement of
new deliveries to vehicles, until prior cargo was served, is added into algorithm.

16 CHAPTER 4. ALLOCATION ALGORITHM

Chapter 5

Simulation model

This chapter describes the simulation model, agents appearing in allocation algorithm and
the environment, in which they act. The agent behaviour is described in terms of actions
and interactions needed to fulfill their role.

5.1 Agents

A first step is to determine what is an agent. Then it is necessary to describe it by the means
of its actions and interactions. From an object-oriented perspective we have 4 entities. There
is a vehicle, a delivery dispatcher, a warehouse and a delivery. I have selected the vehicle
and the dispatcher to act as agents for the following reasons. Single dispatcher is a single
point that announces all unassigned and newly created deliveries from every warehouse to
vehicle agents, that actively choose which delivery to accept. Why not choose warehouse
as an agent and let it assign deliveries to passive vehicles, that just execute the assigned
deliveries? Having vehicles as the decisive agents brings out better flexibility and possibility
for future extension, when vehicles ponder additional constraints. When receiving a new
order, the vehicle can actively choose the closest warehouse on its track and add it to
the path.

Dispatcher

Dispatcher will handle deliveries from all warehouses and his job will be solely to inform
mobile agents. When a new order is received, all vehicles are notified. Each vehicle will then
respond with its estimated delivery cost. If no one is interested in delivery, it is re-announced
by the dispatcher, in future also with increased priority [14].

Vehicle

Vehicle may load any cargo, up to its maximal capacity. When accepting new order, appro-
priate goods that fulfill delivery requirements is chosen from closest warehouse in relation
to the vehicle. Euclidean distance is used. It is up to the vehicle to decide, when to visit
a warehouse again, but serving all loaded deliveries first is obligatory, before it is allowed to
bid again.

17

18 CHAPTER 5. SIMULATION MODEL

5.2 Agent interaction

Represent the means agents communicate with each other. In the model, it is restricted
to the same interaction, as prescribed by the Contract net protocol in previous chapter, as
there are no other agents present.

• announce
announce new deliveries to all vehicles

• bid
vehicle bids on known unassigned deliveries.

• contracts
announce to all vehicles which deliveries they have won

5.3 Agent actions

Action is a method, that have an impact on the environment, a way agent can interact with
its surroundings. Actions and activities usualy form the lifecycle of the agent, a repeated
behaviour, describing how the agent reacts in different situations.

Dispatcher actions

Does not have any actions, as he does not directly interact with the environment, commu-
nication with vehicles is not considered an action.

Vehicle actions

During its lifecycle a vehicle performs several sets of actions. From moving to warehouse,
loading goods, reaching destination and unloading. By accepting a contract, a vehicle makes
a promise of performing these actions.

• load
load deliveries

• move
move to a (delivery/warehouse) location

• unload
unload delivery

5.4 Pseudo algorithms

A behaviour of the agents can be described by the following pseudo-code.

5.4. PSEUDO ALGORITHMS 19

Figure 5.1: Vehicle lifecycle

Vehicle

while(true)
D:= announce()
for (d: D)

bid(d)
end
C := contracts()
move(findWarehouse())
load(C)
for(d: C)

move(d)
unload(d)

end
end

20 CHAPTER 5. SIMULATION MODEL

Figure 5.2: Deliveries diagram

Dispatcher

while(true)
D := D + getNewDeliveries()
for (d: D)

announce(d)
end
D_a := contracts()
D := D \ D_a

end

5.5 Environment model

A model of the environment consist of a street graph and agents. During analysis, it became
apparent that vehicle should be modeled not as a single entity, but as a driver agent, that
stores bids and plans in his memory, and physical representation of the vehicle that moves on
the graph. The graph is made of street nodes, while some of them may represent a warehouse
or a delivery point. In our case all warehouses have unlimited supplies of goods and a vehicle
always chooses the closest one.

5.5. ENVIRONMENT MODEL 21

Figure 5.3: Class diagram of interactions

Figure 5.4: Environment diagram

22 CHAPTER 5. SIMULATION MODEL

Chapter 6

Implementation

The reviewed problem will be modeled on an agent-based platform named AgentPolis[5].
A suitable-sized city will be selected in the next chapter to show some tangible results.
The platform enables agent movement and communication by processing discrete events.
Implemented or extended parts can be categorized in 3 sections: a specialized simulation
environment, the visualization and an application launcher.

6.1 Platform

The programming platform used for the simulation contains several stacked-up projects
running Java SE. At the bottom lies a general event-based platform Alite [6]. Its core concept
is a priority event queue, that sort events in order of execution time. From there, events
are taken one by one and processed by a single thread. Upon it lies AgentPolis, extending
the general framework in the terms of urban simulation. Key concepts like agent’s lifecycle,
actions and sensors are defined here. While implementing the delivery environment, one
other project based on AgentPolis was used. From PublicTransportation, several activities
were reused, mainly concerning vehicle movement and basic definition of a vehicle.

6.1.1 Visualization

Platform provides two distinctly different visualization options. Internal, written using
java Swing and external in collaboration with Google Earth[1]. First one is implicit and
required only registering the agent type, when simulation scenario is created. It was used for
debugging and only the moving entities - agents - are shown. Second option is preferred and
was used for visualization of vehicles, as well as warehouses and delivery points. It required
an additional work in wrapping data in entities, that can be shown in GoogleEarth, as well
as linking them with appropriate updaters, that periodically refresh position of said entities
shown in the application. Wrapper class was called ABuildingUpdateGEFactory as it was
based on code used for buildings visualization, which fitted well the purpose.

23

24 CHAPTER 6. IMPLEMENTATION

Figure 6.1: Visualization, on the left using Swing, behind in Google Earth

6.2 Environment

6.2.1 Communication protocol

Modified version of the communication protocol used in publictransport demo example[4]
is used. The original protocol allowed only communication between two agents based on
agent’s id, which I found limiting. Now, messages can be sent either by agent’s id or the agent
registers for a message classname and listens for any message of that type (broadcast).
A class was created for every agent type (vehicle and dispatcher). An enumeration describes
each state of agent. Dispatcher (announcing new deliveries, awarding contracts), Vehicle
(bidding).

6.2.2 Sensors

The information from the environment are not accessible directly, but any kind of knowledge
is gained only through sensors, given to agents at the moment of their creation.

Position sensor

The position sensors provided a vital information about location of vehicles in the environ-
ment. They were reused from the AgentPolis platform in two different ways. Passively, as
in case of the AgentPositionSensor, when the vehicle driver agent queried its position in

6.2. ENVIRONMENT 25

the specific sections of the vehicle’s lifecycle to determine his relation to the closest ware-
house. Actively, as in case of VehiclePostionAction, when the vehicle was issued to unload
the goods as soon the delivery location is reached.

Mileage sensor

A new sensor, which was built around the VehiclePositionAction. It is triggered whenever
a vehicle changes its position. It compares current position with the previous one and adds
the distance between these neighbouring points (taken from the street graph). The total
distance traveled since the sensor was created - in meters (the unit of underlying graph) -
is then stored in its inner variable. The sensor can be queried for this value on demand.

6.2.3 Dispatcher implementation

Dispatcher was implemented as an agent with a simple lifecycle of periodical reannouncement
of deliveries and sending contracts. Creating new deliveries using the ADeliveryFactory class
was in the end moved out of the agent class, instead a callback, that is called for each new
delivery is present.

Announcing deliveries

As soon as a new delivery is created, it is announced to all vehicles using this callback, unless
ensure delivery is true and number of unassigned deliveries is above capacity. Afterwards,
if the delivery is not assigned to a vehicle, it is reannounced again, after the given timeout
using a callback from event queue. The unannounced deliveries are backed by a map, that
keeps the order of insertion.

Awarding contracts

The bids are stored in a two-dimensional table, indexed by delivery id and vehicle id.
The value of a vehicle’s bid is replaced, if a new one bid is received. Depending on the dis-
patcher settings, a delivery is awarded to the lowest bid in the table or the cheapest row.
Cost of the row is determined by the vehicle’s most expensive (last bid in the row), if it
should be loaded full. If any assignment is successful, the table of bids is cleared and will
be filled again, when the remaining deliveries are reannounced. That concludes the bidding
cycle.

This was a primary reason, why ensure delivery configuration option was implemented
very simply by limiting announcement of new deliveries. More gradual process would require
a complete redesign of bidding process. The dispatcher’s allocation table allows for updating
a bid before contracts are assigned repeatedly, but the table in vehicles does not. It would
not have been easily compatible with insertion heuristic, as this depends on previously
computed path fragments. Joint benefit is also a much faster simulation run with high
amount of deliveries.

26 CHAPTER 6. IMPLEMENTATION

6.2.4 Vehicle implementation

Vehicle was implemented by its physical representation in a class called Truck, extending
basic vehicle representation by the list of deliveries. Then a driver agent was added, to
govern over the planning of its movement and evaluation of the deliveries. These two were
bound into one lifecycle activity 5.1, which means that the driver cannot leave his vehicle.

To keep a clear design concept, the lifecycle is only concerned with the vehicle and
delivery movement and a new interface BidStrategy was introduced to contain the logic for
the evaluation of deliveries in the bidding process.

Driver memory

Memory is used to store parts of the future plans and issued bids. Primary purpose is to share
the information and serve as a kind of interface between vehicle lifecycle and BidStrategy
class. The agent keeps 3 lists of deliveries in his memory. The list of current bids, the list of
contracted deliveries and the list of deliveries on board. After a bid was won, the delivery
moves from first list to the second, when it is loaded to the last, and when its delivered it
is removed completely.

Bidding

Vehicle can bid, if it is waiting in a warehouse, or after the last delivery is served, to ensure
bid validity. In any case, it has stopped and it is not moving. The bids are stored in a map
in agent’s memory. Reannouncing same deliveries has no effect, their values are cached until
a contract is received and all bids are cleared.

Figure 6.2: Planning delivery path in real time

Planning delivery path

When contracted deliveries are received, the deliveries are sorted according to the order
computed at the bidding time. Even if some deliveries were bidded, but not contracted,
their removal should not matter, according to the Triangle postulate. Then a trip on the
graph for the first delivery is computed and vehicle starts moving. After each stop, a new
trip is computed, until all deliveries are served.

6.3. PRODUCING RESULTS 27

For a planning of the delivery path, an A* planner implementation with an Euclidean
heuristic is used. A* algorithm with an admissible heuristic (such as Euclidean) is guaran-
teed to find the shortest path in a graph. A heuristic in this case serves only to speed up
the finding of the solution.

6.2.5 Map

The interaction with the map is fully handled by the AgentPolis platform. It enables loading
of any OpenStretMap[2] of reasonable size. Because usually a selection from *.osm file or
files is cut out to form the map, implying that only a part of the real map will be used,
the simulation must handle gracefully any problems arising from its imperfect foundations.
Commonly, on the edge of a simulation map, a small amount of roads, that are not connected
with the rest, may appear. If a vehicle is sent to an unreachable destination, this incident
is logged and vehicle continues with the next delivery. In case of an unreachable warehouse,
the vehicle in question blacklists this warehouse and continues using others. If any vehicle
has no reachable warehouse, the simulation is halted with an error. For details on the map
selection see Experiments.

Warehouse nodes

Warehouse nodes are created as a random selection of nodes. An initialization
task inside the platform is used to select them, after underlying graph has been
loaded. It is assumed that they do not change during the run of the simulation.

Delivery points

Delivery points are randomly chosen nodes of the graph, serving as a destination
for the delivery. Their selection is done on purely non-deterministic basis from
all available graph nodes. The frequency of their creating is governed by a con-

figuration parameter, that determines maximum time instant before a new one must be
created. Possible future extension would be to allow cyclically change this option on-the-fly
for more dynamic delivery environment.

These special nodes are thin wrappers around graph nodes, for the time being kept in
a separate data storage, because they contain additional information, that is not directly
relevant for the path planning process. Furthermore, it does not contain relevant information
for every node, only a small portion, which has this addition thin wrapper. They are used
for locating the closest warehouse and may contain some visualization information.

6.3 Producing results

The simulation output is a log file of events. Not all events are interesting and only those,
that were chosen for their informative value are stored in a csv file by an event processor.
In the case of parcel delivery, two types of events were specified for logging. Those pertaining
to the state of a delivery - new, assigned, loaded, delivered - and those regarding the position
of the vehicles. For more clarity, the vehicle events are used only on places of interest,

28 CHAPTER 6. IMPLEMENTATION

which are basically 2 kinds of waypoints - warehouses and delivery points. For debugging,
an AgentPolis vehicle event could be used, showing movement between any 2 points, but
for a practical use is too verbose.

To understand how metrics are built from the logged events, firstly the parameters of
afore-said events are of concern.

The purpose of vehicle events is to show the information about vehicles, in this case focus
is placed on the mileage traveled by each vehicle. Delivery events on the other hand, track
alteration of the delivery states in time. Some though was given to minimize the amount of
rows generated, and finally, due to assignment and load delivery action, in events, the de-
liveries are referred by the list of ids. In other event states this convention is upheld too, to
keep the consistency.

6.3.1 Launcher

In a single simulation run metrics (3.4) are not produced, but for convenience are included
into my simulation launcher. This small standalone java application periodically executes
simulation for a given number of iterations and configurations. The configurations are
created as a Cartesian product of all possible values in launcher.config. Resulting metrics
are computed from the simulation output and represents a new line in the overall results.
If an error occurs in the simulation, no data are written for this run.

For the average mileage per delivery metric, a map is used, where the total distance
traveled by each vehicle is stored. This value is updated as the log file is read row by row.
Gradually, the number of delivery items created and delivered is counted. Finally, the total
mileage of all vehicles is divided by the number of finished deliveries. This metric does not
account for the number of vehicles used.

For the average delivery time metric, 2 maps are used for the creation and delivery times,
with the delivery id as a key. After that, a sum of the time differences is determined, then
divided by the number of delivered items. If no deliveries were served, the result is set to 0.
This metric omits deliveries, that has not yet reached its destinations.

In the resulting file, a scenario configuration is written, as well as the mentioned metrics
and number of items generated/delivered.

Chapter 7

Experiments

After the model was implemented and its behaviour tested on a few small random scenarios,
a more rationalized approach in conducting the experiments had to be taken. Here, the ob-
servations are outlined, as well as the consequent behavior of the model based on different
parameters provided.

7.1 Experiment setting

All experiments were conducted on an OpenStreetMap of Prague [11], bounded by a rect-
angle of latlon coordinates 49.936, 14.215, 50.191, 14.725. Moreover, the map was further
filtered to contain only the pure street information by the means of Osmosis[3] program.

osmosis --rx file=input.osm --bounding-box top=50.191 left=14.215 bottom=49.936
right=14.725 completeWays=true --used-node --wx input_all.osm

osmosis --rx file=input_all.osm --tf accept-ways highway=motorway,motorway_link,
trunk,trunk_link,primary,primary_link,secondary,secondary_link --used-node
--wx prague_highway.osm

Each experiment was executed 10 times to cope with a randomness factor, given by
the random location of warehouses and deliveries. An error caused by a short duration of
the simulation and this randomness was estimated. Following issues were looked upon: How
the behaviour of the allocation algorithm changes based upon throughput of the system.
The correlation between number of vehicles and warehouses on one hand and average delivery
time and mileage on the other. The comparation of allocation algorithms and the influence
of a simulation duration. The metrics (average delivery time and mileage per delivery) used
are defined in the section 3.4.

7.1.1 Scenario parameters

Apart from the two simulation parameters

29

30 CHAPTER 7. EXPERIMENTS

• agentMoveSpeedInkmph

• simulationDurationInMilisec

the model of parcel logistics contains numerous parameters, a subset, that was deemed
important, was used in the ensuing experiments.

• deliveryFrequency

• ensureDelivery

• numberOfVehicles

• vehicleCapacity

• vehicleFullLoad

• warehouseCount

Parameters that were kept constant:

• reannounceFrequency

• vehicleLocationHome

7.2 Experiment results

Warehouses

The importance of having more warehouses increases with the introduction of new vehicles.
It is clearly shown that the major change is between 1 and 2 warehouses, while after that,
the change is not so apparent at the first glance.

Vehicles

The key question regarding vehicles in this delivery model, is how to determine a closely
optimal amount of vehicles, while regarding the actual simulation configuration. If we look
from the average delivery time perspective, we search for a point where adding new vehicles
has no significant benefit. Demonstrated on a single example (7.3): 10 vehicles is sufficient
for the delivery frequency of 100s, 50 vehicles are enough for the frequency of 20s. Notice
the linear reduction of the lines in the middle. They are over the throughput of the system
and deliveries are generated faster than delivered. Increasing the generation frequency causes
new deliveries to be passed on later, until a sufficient amount of vehicles is available, then
the delivery time is nearly constant.

7.2. EXPERIMENT RESULTS 31

Figure 7.1: Increasing amount of vehicles in experiment with an insufficient throughput.
Simulation: 1h, warehouses :2, capacity: 20, delivery frequency:10s, fully loaded

7.2.1 System throughput measurement

System throughput is the ability of the allocation algorithm to assign deliveries in certain
quantity and transport them to a given location.

I have looked upon the system from two different angles, first when amount of deliveries
in the system is low, and vehicles are not fully utilized. Then with the over-abundance of
deliveries.

Low amount of deliveries

Increasing the vehicle capacity or count has no effect on the performance of the allocation
algorithm, if vehicles are permitted to leave only partially loaded (7.6). However, if vehicles
are forced to wait for a full load, then there can be seen a drastic increase of the delivery
time (about 50% in this case 7.7), while savings on the mileage are only about 20% (7.8).
Unsurprisingly, making the changes on the vehicle count does not matter, as a small amount
of vehicles is needed to cover all deliveries.

High amount of deliveries

Vehicle capacity on the partially loaded vehicles has no effect. However, if the vehicles
must be filled completely, the influence of capacity can shift both ways, even if this change
may not be very significant. This is, because increasing the load capacity of an insufficient
amount of vehicle helps faster delivery, while having a lot of vehicles with lower capacity
causes more concurrent deliveries by more vehicles, than if their capacity was augmented.

32 CHAPTER 7. EXPERIMENTS

Figure 7.2: Increasing amount of vehicles in experiment with an insufficient throughput.
Simulation: 1h, warehouses :2, capacity: 20, delivery frequency:10s, fully loaded

Another interesting observation is, that in a system with enough deliveries, the average
delivery time and the average mileage are linearly dependent on each other(7.1). This holds
true, because vehicles are not required to wait and move without great delays.

Other potential problem with the metrics is, that they are simulation-time dependent,
in the case of delivery generation over-extension beyond the throughput of the system. This
may be an obvious fact, chiefly when put by a simpler example, but may cause difficulties
with comparing performance with different problem configurations. The table below shows
an example how generation of deliveries distorts the average delivery time based on simu-
lation duration. Because more deliveries are created than served, an increasing backlog of
deliveries is being queued and the delivery time is prolonged more and more.

Similar may be observed, when looking on the numbers of new deliveries and those, that
reach their destinations. Here, no small number of undelivered goods are those, that are on
board of vehicles when the simulation has ended. On the first glance, the ratio of delivered
to newly created goods may be increasing with longer simulation time, but if an absolute
number of undelivered goods is growing, the resulting metrics are still unstable for the same
reason.

On a more brighter note, numbers in the table for 100 vehicles (finally representing
a sufficient throughput - as seen on 7.3) - are very close, for both simulation times, showing
that the simulation time of only 1 hour can be quite accurate.(under 0.1 % difference for
the average distance .= 10meters, 9 % for the average delivery time .= 1min)

7.2.2 Bidding with real distance

In all our other experiments, the vehicles bidded on deliveries with an Euclidean distance
cost estimation of the path. Here, we look at what difference does it make, in terms of
additional distance traveled in the first case and computation effort in the second.

From the results in the table 7.2, it can be seen that with using a planner to compute the
real distance, the simulation can quickly became too obstinent to model in the real-time or

7.2. EXPERIMENT RESULTS 33

duration vehicles 10 20 50 100
1h avg delivery time 1487563ms 1235975ms 743768ms 598227ms

avg distance 12441m 14826m 18107m 18503m
avg no. of new 726 716 719 719

avg no. of delivered 165 267 492 593
2h avg delivery time 2893122ms 2222790ms 1014312ms 547957ms

avg distance 11878m 12903m 17298m 184938m
avg no. of new 1428 1442 1443 1435

avg no. of delivered 351 637 1132 1320

Table 7.1: Table comparing results for two different simulation durations

duration vehicle capa- full del. distance time new deli- real time
(ms) count city load freq. (m) (ms) vered taken

Euclidean
3600000 10 20 true 10 11910 1559334 721 147 00:00:09
7200000 100 20 true 10 17100 1832411 1446 798 00:01:09

Real distance
3600000 10 20 true 10 11766 1558308 718 146 00:21:59
7200000 100 20 true 10 N/A N/A N/A N/A 47:42:00*

Remaining parameters are Ensure delivery: true, warehouse count: 10
* value estimated from a 1/9 duration of a single iteration, all other values avg. of 10 iterations

Table 7.2: Performance with the real distance bidding.

34 CHAPTER 7. EXPERIMENTS

Figure 7.3: Finding optimal amount of vehicles by delivery time for several delivery frequen-
cies. Simulation:1 h, warehouses :2, capacity: 20, not fully loaded

Figure 7.4: Correlation between amount of warehouses and distance

even in a reasonable time-period. The expected benefit of reduced mileage is an insignificant
1% difference, which in the mentioned experiment is below a margin of the random noise
factors. Due to the cited computation complexity, larger experiments were not attempted
and henceforth, the exact road cost was deemed to be too demanding without significant
benefits, while the preference of the Euclidean distance was justified.

7.3 Simulation run details

All experiments were conducted on a personal laptop with a Intel Core2Duo T8300 processor
2,4 GHz with a 4GB memory and a 32-bit Windows 7 operating system.

All simulations were run with maximal simulation speed and without any visualization
by a simple launcher app, that spawns a new Java virtual machine for each run, to filter of

7.3. SIMULATION RUN DETAILS 35

Figure 7.5: Correlation between amount of warehouses and time

Figure 7.6: No influence of capacity in a system with low amount of deliveries and unfilled
vehicles

36 CHAPTER 7. EXPERIMENTS

Figure 7.7: Significant difference in delivery time with increase of capacity in a system with
low amount of deliveries and fully loaded vehicles

Figure 7.8: Mileage saved by the use of vehicles with higher capacity

possible influence of previous experiments, with the following vm arguments:

-Xms512m -Xmx512m

Memory

Memory is not an issue in this simulation, the largest portion is probably taken by the loaded
.osm map of Prague. It drops if a smaller map is used. The measured consumption (with-
out visualization) was roughly between 250-270 MB, depending on the exact configuration.
When running with a visualization, usage may peak to some higher values, but assigned 512
MB was always sufficient.

7.3. SIMULATION RUN DETAILS 37

Figure 7.9: No influence of capacity in a system with high amount of deliveries and unfilled
vehicles

duration vehicle capa- full del. ware- ensure new deli- real time
(ms) count city load freq. houses delivery vered taken

7200000 10 20 true 10 10 true 1428,2 340,8 00:00:11
7200000 100 20 true 10 10 true 1446,1 797,8 00:01:09
7200000 10 50 true 10 10 true 1449,8 358,3 00:00:27
7200000 100 50 true 10 10 true 1432,9 867,1 00:05:44
3600000 100 20 true 5 2 false 1431,3 666,7 01:51:41
3600000 10 20 true 5 2 false 1434,1 162,8 00:00:44
3600000 100 20 true 20 2 false 362,4 166,2 00:10:08
3600000 100 20 false 5 1 false 1430,7 820,7 00:08:08
86400000 20 20 false 20 10 false 8622,1 8100,6 00:10:51

Table 7.3: Performance for different simulation runs.

CPU

Usage vary and is dependent on many factors, most noticeably the speed of the delivery gen-
eration, the simulation duration, the capacity of vehicles and their count.The measurement
might be inaccurate, in the range of seconds by a small margin, as the numbers were not
taken from simulation logs, but additionally from the timestamp of the simulation’s result
file.

Values in the table were chosen to represent a wide range of scenarios very simply.
Usually the maximal and minimal values of the key attributes are present. First expected
behaviour, that was confirmed, is that allocating deliveries for a partially empty vehicle
is always faster, than in the case when fully loaded vehicles are required. This comes
from the fact, that vehicles in the latter allocation strategy have to asses more deliveries
in otherwise very similar conditions. This, combined with the expectation of more stable
times, is the reason, why majority of results in table 7.3 are fully loaded.

38 CHAPTER 7. EXPERIMENTS

Figure 7.10: Influence of capacity in a system with high amount of deliveries and fully loaded
vehicles

From the table is also apparent, when comparing first four lines, that increasing the ca-
pacity is more computationally intensive than adding new vehicles. Increasing a vehicle
count number is linear, when ensure delivery is true, but grows very quickly within the sce-
nario with high amount of deliveries (low delivery frequency). This brings us to what has
the most adverse effect on allocation performance. It is the number of unassigned deliveries,
or more precisely deliveries, that are offered to each vehicle.

Exchanged messages

From performance point of view, another insightful perspective to observe, may be the num-
ber of messages agents exchange between themselves. It could show us increase and decline
in the activity of the agents.

The number of messages sent together seems to grow linearly towards the vehicle count,
while the total amount of messages sent by all vehicles to dispatcher grows far more quickly,
than in the opposite direction. This corresponds to growing number of vehicles, that are
free to answer and place bids, as the full and moving vehicles do not respond. This example
intentionally show a case with low vehicle capacity. The dispatcher messages are less and
less frequent per a single delivery, because more and more of them are taken on the first
announcement, causing the number of messages sent by the dispatcher to grow more slowly.

7.4 Summary

It was verified that performing simulation in duration of only 1 hour was precise enough
to grant credible results. Most significant difference in warehouse count was seen between
1 and 2, while adding more had only a little impact. From performance-wise point of
view, the greatest influence was by the number of unassigned deliveries each vehicle had
to evaluate, after that was the vehicle capacity and the vehicle count as such. Limiting
the number of unassigned deliveries had serious impact on the of computation, bringing

7.4. SUMMARY 39

Figure 7.11: Agent interaction by the number of messages sent

a value previously nearly 2 hours to a 5-minute range. A great performance penalty with
almost no gain was seen, when using the real distance instead of the Euclidean in the bidding
process. Looking at the messages that agents sent each other, we saw a shifting trend
in the direction of the messages, while bulk of the messages, caused by the continuous
reannounced by the dispatcher, changed into the vehicle bidding messages, if their number
was augmented.

40 CHAPTER 7. EXPERIMENTS

Chapter 8

Conclusion

After becoming familiar with the concepts of agent-based modeling and some previous works
in parcel logistics domain, the formal definition was assembled and metrics for its evaluation
set. Agents in the domain were identified as a dispatcher and a vehicle.

Using a working model of parcel delivery in an urban area, the formalized problem of
parcel logistics was analyzed in the terms of agent-based modeling and several interesting
observations were gained. Two variants of an allocation algorithms were implemented on
the AgentPolis platform, with no clear winner, each more suited for a different situation.
Assigning deliveries by one and issuing vehicles without full load resulted in short delivery
times and excelled in environment with low delivery generation. Waiting for a full vehicle
load resulted in a significant savings in mileage of all vehicles, but generally at a greater loss
of delivery time, which is fine, if we focus on the cost of transportation only. The model
also allowed us to estimate an ideal count of vehicles and warehouses and to optimize
the transportation service.

Two major bottle-necks were dealt with, that at first prevented sufficient scaling of
the model. The speed of planning, that was proven crucial in delivery evaluation and
resulted in the replacement of A* planner with Euclidean distance approximation where
possible and the number of deliveries assessed by each vehicle. If the generation of deliveries
exceeded capacity of the transportation system by a significant margin, the computation was
slowed down significantly. Limiting the dispatching to the oldest portion of undelivered items
reverted computation time to the sane values with the added benefit of having a guarantee
that the items are delivered.

Agent-based modeling was shown as a good and viable approach on modeling parcel lo-
gistics, with the attainable application of its far-reaching possibilities. With having a model,
it can now grow and improve and be used for optimization of its parameters. A distance,
for example, with a realistic set of data could be used to determine the best position of
the warehouses in the city, given the exactly same time and distance metrics. The optimal
count of the vehicles with regards to their actual load in the real time can be considered.
With a slight deviation of purpose, such a model can be used even for a range of different
things than just a parcel logistics: for the fire brigades to dispatch the closest truck with
regards to a water source location, to assign volunteers to clear the snow in the city and salt
the roads from the nearest store.

41

42 CHAPTER 8. CONCLUSION

8.1 Future work

Future work and enhancements of the presented model may continue in many directions.
Several possibilities are drafted below:

• Movement
How the delivery model is impacted by gradual slowing down and stopping at des-
tinations, driver work shifts, dispensing of fuel at the petrol stations. Using a path
planning with auxiliary criteria - including congestion, other traffic, handling undeliv-
ered items, or time windows.

• Ensure delivery
A number of possibilities to improved the taken simple approach exists. To ensure
that a delivery reaches its destination requires a delivery time window, a dispatcher
capacity limiting announcing of new deliveries, or an order of deliveries modified by
the creation time - an aging process. The dispatcher could set a reward, increasing with
time, until the delivery is contracted. Another possibility could be a delivery aging
process, that would mean contracting done in several rounds with different costs, while
at least some of the oldest deliveries must be contracted.

• Agent interaction
Allow bidding when the vehicle moves and the closest warehouse changes. The vehicle
agents could negotiate between themselves, swapping some deliveries to improve their
paths. While in a depot, if more vehicles are waiting, only one would respond, while
the others will be “sleeping”.

• Delivery frequency
Dynamically changing the speed of the delivery generation to include peak hours to
form a cyclic period and generation of a small portion of deliveries known beforehand.

Bibliography

[1] Google Earth website, May 2012. <http://www.google.com/earth/index.html>.

[2] OpenStreetMap website, May 2012. <http://www.openstreetmap.org/>.

[3] Osmosis documentation, May 2012. <http://wiki.openstreetmap.org/wiki/
Osmosis>.

[4] Public Transport project, May 2012. <http://merle.felk.cvut.cz/redmine/
projects/agentpolis/wiki/Public_Transport>.

[5] AgentPolis simulation framework, May 2012. <http://merle.felk.cvut.cz/
redmine/projects/agentpolis/wiki>.

[6] AgentPolis Developer’s Guide and Alite description, May 2012. <http://merle.felk.
cvut.cz/redmine/projects/agentpolis/wiki/AgentPolis_Developers_Guide>.

[7] ANDREI BORSHCHEV, A. F. From System Dynamics and Discrete Event to
Practical Agent Based Modeling: Reasons, Techniques, Tools, 2004. <http:
//www.econ.iastate.edu/tesfatsi/systemdyndiscreteeventabmcompared.
borshchevfilippov04.pdf>.

[8] ANDREY GLASCHENKO, G. R. P. S. A. I. Multi-Agent Real Time Scheduling System
for Taxi Companies, 2009. <http://www.ifaamas.org/Proceedings/aamas09/pdf/
03_Industrial_Track/13_70_it.pdf>.

[9] BEKTAS, T. The multiple traveling salesman problem: an overview of formulations
and solution procedures, 2006. <http://www.sciencedirect.com/science/article/
pii/S0305048304001550>.

[10] BONABEAU, E. Agent-based modeling: Methods and techniques for simulating human
systems, 2001. <http://www.pnas.org/content/99/suppl.3/7280.long>.

[11] CLOUDMADE. Prague OpenStreetMap, December 2011. <http://downloads.
cloudmade.com/europe/eastern_europe/czech_republic/prague>.

[12] JABER JEMAI, K. M. A Neural-Tabu Search Heuristic for the Real Time
Vehicle Routing Problem, 2007. <http://www.springerlink.com/content/
g204l0t4j5th214r/>.

43

http://www.google.com/earth/index.html
http://www.openstreetmap.org/
http://wiki.openstreetmap.org/wiki/Osmosis
http://wiki.openstreetmap.org/wiki/Osmosis
http://merle.felk.cvut.cz/redmine/projects/agentpolis/wiki/Public_Transport
http://merle.felk.cvut.cz/redmine/projects/agentpolis/wiki/Public_Transport
http://merle.felk.cvut.cz/redmine/projects/agentpolis/wiki
http://merle.felk.cvut.cz/redmine/projects/agentpolis/wiki
http://merle.felk.cvut.cz/redmine/projects/agentpolis/wiki/AgentPolis_Developers_Guide
http://merle.felk.cvut.cz/redmine/projects/agentpolis/wiki/AgentPolis_Developers_Guide
http://www.econ.iastate.edu/tesfatsi/systemdyndiscreteeventabmcompared.borshchevfilippov04.pdf
http://www.econ.iastate.edu/tesfatsi/systemdyndiscreteeventabmcompared.borshchevfilippov04.pdf
http://www.econ.iastate.edu/tesfatsi/systemdyndiscreteeventabmcompared.borshchevfilippov04.pdf
http://www.ifaamas.org/Proceedings/aamas09/pdf/03_Industrial_Track/13_70_it.pdf
http://www.ifaamas.org/Proceedings/aamas09/pdf/03_Industrial_Track/13_70_it.pdf
http://www.sciencedirect.com/science/article/pii/S0305048304001550
http://www.sciencedirect.com/science/article/pii/S0305048304001550
http://www.pnas.org/content/99/suppl.3/7280.long
http://downloads.cloudmade.com/europe/eastern_europe/czech_republic/prague
http://downloads.cloudmade.com/europe/eastern_europe/czech_republic/prague
http://www.springerlink.com/content/g204l0t4j5th214r/
http://www.springerlink.com/content/g204l0t4j5th214r/

44 BIBLIOGRAPHY

[13] MAURIZIO BIELLIA, A. B. – ROSSIC, R. Trends in Models and Algorithms for
Fleet Management, 2011. <http://www.sciencedirect.com/science/article/pii/
S187704281101384X>.

[14] NICOLAS KNAAKA, B. P. S. K. An Agent-Based Simulation Tool for Modelling
Sustainable Logistics Systems, 2006. <http://www.iemss.org/iemss2006/papers/
s7/225_Page_2.pdf>.

[15] PAGE, B. Environmental Informatics for Sustainable Logistics, 2004.
<http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.104.4063&rep=
rep1&type=pdf>.

[16] SNEZANA MITROVIC-MINIC, G. L. R. K. Double-horizon based heuristics for
the dynamic pickup and delivery problem with time windows, 2004. <http://www.
sciencedirect.com/science/article/pii/S019126150300095X>.

[17] VICTOR PILLAC, A. M. C. G. Dynamic Vehicle Routing Problems: State Of The
Art and Prospects, 2010. <http://hal.archives-ouvertes.fr/hal-00623474/>.

[18] VOKŘÍNEK JIŘÍ, M. P. A. K. Agents Towards Vehicle Routing Problems,
2010. <http://www.ifaamas.org/Proceedings/aamas2010/pdf/01FullPapers/16_
03_FP_0805.pdf>.

[19] ZAFEER ALIBHAI, B. What is contract net interaction protocol, 2003. <http:
//www2.ensc.sfu.ca/research/iDEA/courses/files/Contractotocol1.pdf>.

http://www.sciencedirect.com/science/article/pii/S187704281101384X
http://www.sciencedirect.com/science/article/pii/S187704281101384X
http://www.iemss.org/iemss2006/papers/s7/225_Page_2.pdf
http://www.iemss.org/iemss2006/papers/s7/225_Page_2.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.104.4063&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.104.4063&rep=rep1&type=pdf
http://www.sciencedirect.com/science/article/pii/S019126150300095X
http://www.sciencedirect.com/science/article/pii/S019126150300095X
http://hal.archives-ouvertes.fr/hal-00623474/
http://www.ifaamas.org/Proceedings/aamas2010/pdf/01 Full Papers/16_03_FP_0805.pdf
http://www.ifaamas.org/Proceedings/aamas2010/pdf/01 Full Papers/16_03_FP_0805.pdf
http://www2.ensc.sfu.ca/research/iDEA/courses/files/Contractotocol1.pdf
http://www2.ensc.sfu.ca/research/iDEA/courses/files/Contractotocol1.pdf

Appendix A

List of abbreviations

ABM Agent-based modelling

CPU Central processing unit

csv Comma-separated values

GPS Global Positioning System

latlon Latitude and longitude

mTSP Multiple Traveling Salesman Problem

RFID Radio Frequency Identification

VRP Vehicle Routing Problem

45

46 APPENDIX A. LIST OF ABBREVIATIONS

Appendix B

User manual

This section describes file structure, configuration and usage of executable files in the project.
Two executable files are present, while Google Earth used for visualization has to be installed
separatedly. Their source codes can be found on the included cd or in the following reposi-
tories:

https://bitbucket.org/staryjir/diplomka
https://bitbucket.org/staryjir/diplomka-launcher

B.1 Simulation

To run a single simulation execute following command

java -jar parcellogistics-jar-with-dependencies.jar [experimentId][iterationId]

where experimentId is the number of the experiment to be executed and iterationId numbers
the execution’s iteration.

Appropriate directory /experiment/exp-[experimentId]/ contains definition of the sce-
nario to be executed. The result will be saved into /experiment/exp-[experimentId]/results
under iterationId directory.

B.1.1 Google Earth

To view a running simulation in Google Earth application, download and install it from here
[1]. Then before running the simulation turnOnGeneratingGELinks = true has to set in
the config settings (config.groovy) of correct experiment directory. After the simulation has
started just open a .kml file in Google Earth. With the attribute showGEDeliveryPoint
= false in the scenario settings (scenario.groovy) you can disable visualization of delivery
locations.

47

48 APPENDIX B. USER MANUAL

Figure B.1: Google Earth screenshot

B.1.2 Output

Output is the standard AgentPolis event log in a csv file, beginning with a timestamp in
milliseconds and the issuing agent name. For a description of events see the corresponding
section (6.3).

B.2 Launcher

Purpose of the launcher is an automated mass-execution of the simulation with different
parameters. The launcher creates directory structure and configuration of each experiment
based on its configuration. Every experiment is then executed. To run, just execute the
presented jar file. If run from the console, you can see the redirected standard output of the
simulation. Please note, that killing this process does not terminate the currently running
simulation.

java -jar parcellogistics-scripts-jar-with-dependencies.jar

B.2.1 Launcher.config

Contains all possible parameters used for creation of custom scenario. Multiple values are
separated by commas. Comments are allowed only on new lines. Please note that scenario
file (scenario.groovy) is created for a cartesian product of all possible configuration listed
here and executed iterationCount times.

• iterationCount
single number only: iterationCount = 10

B.2. LAUNCHER 49

• numberOfVehicles
number of vehicles in simulation: numberOfVehicles = 10,20

• vehicleCapacity
maximal number of deliveries in a vehicle: vehicleCapacity = 20, 50

• vehicleFullLoad
vehicle must be fully loaded lo leave warehouse: vehicleFullLoad = false,true

• ensureDelivery
halts announcing new deliveries until older are served: ensureDelivery = false,true

• deliveryFrequency
maximal time interval (in seconds!) that is allowed to pass before new delivery is
created. Random number between (0 - deliveryFrequency) is used for each new
delivery creation: deliveryFrequency = 20,100

• warehouseCount
number of warehouses on the map: warehouseCount = 10,20

B.2.2 Config.groovy

while running launcher it is adviced to disable visualization, so the simulation runs at full
speed. settings that disable visualization:

showEventViewer = false
showVisio = false
turnOnGeneratingGELinks = false
To change simulation duration for the whole set of simulations, simply change
simulationDurationInMilisec = 3600000
to any value in milliseconds. Speed of moving vehicles can be be also changed by modi-

fying the value of agentMoveSpeedInkmph .

B.2.3 Output

Apart from output of each simulation in results directory, an aggregated version in file
results.csv is created in home directory. Each line represents one execution (iteration) of
an experiment.

Outputted parameters are as follows: Simulation duration, vehicle count, vehicle capac-
ity, full load attribute, frequency of delivery generation, warehouse count, ensure delivery
attribute, average distance (m) per delivery metric, average delivery time (ms) metric, num-
ber of deliveries created during simulation, number of delivered items in simulation.

50 APPENDIX B. USER MANUAL

Appendix C

Contents of the enclosed CD

The enclosed cd contains executable binaries,results of all performed experiments, source
codes of both the java projects and this text. The directory structure is as follows:

.
|-- binaries
| |-- launcher -launcher binary and cfg
| | |-- experiments
| | | |-- config
| | | | |-- config.groovy
| | | | ‘-- launcher.config
| | | ‘-- data -map directory
| | | ‘-- prague.highway.osm
| | |-- parcel_logistics_script-0.0.1-SNAPSHOT-jar-with-dependencies.jar
| | ‘-- parcel_logistics_script-0.0.1-SNAPSHOT.jar
| ‘-- simulation -simulation binary and config
| |-- experiments
| | |-- data -map directory
| | |-- exp-1 -experiment sample
| | |-- exp-2
| | |-- exp-3
| | |-- exp-4
| | ‘-- exp-5
| |-- parcellogistics-1.0.0-jar-with-dependencies.jar - simulation binary
| ‘-- parcellogistics-1.0.0.jar
|-- readme.txt -readme & installation notes
|-- results -all simulation results
| |-- messages.ods -message count measurement
| |-- real bid - run1 -real distance bid cost
| |-- real bid - run2
| |-- results1-18.csv -results of all runs together
| |-- run1 -one run of a laucher
| |-- ...

51

52 APPENDIX C. CONTENTS OF THE ENCLOSED CD

| |-- run18
| | |-- config -laucher config for the run
| | | |-- config.groovy
| | | ‘-- launcher.config
| | |-- exp-0
| | | |-- config -definition of an experiment
| | | | |-- config.groovy
| | | | ‘-- scenario.groovy
| | | ‘-- results -results of 10 iteration
| | | |-- 0
| | | |-- ...
| | | ‘-- 9
| | | ‘-- logistic.csv -result of a single iteration
| | ‘-- results.csv -result of the laucher run
|-- sources
| |-- java -source codes of both projects
| | |-- parcel_logistics -simulation source codes
| | | |-- experiments
| | | | |-- data -map definitions
| | | | | |-- dejvice_highway.osm and extraction scripts
| | | | | |-- demo.osm
| | | | | |-- prague.highway-half.osm
| | | | | |-- prague.highway-original.osm
| | | | | |-- prague.highway.osm
| | | | | |-- prepare-highway-half.bat
| | | | | |-- prepare-highway.bat
| | | | | ‘-- prepare_data_dejvice.bat
| | | | |-- exp-1
| | | | |-- exp-2
| | | | |-- exp-3
| | | | |-- exp-4
| | | | ‘-- exp-5
| | | |-- pom.xml
| | |-- parcel_logistics_script -launcher source codes
| | | |-- experiments
| | | | |-- config
| | | | | |-- config.groovy
| | | | | ‘-- launcher.config
| | | | ‘-- data
| | | | ‘-- prague.highway.osm
| | | |-- pom.xml
| | | ‘-- src
| | ‘-- workspace.zip -eclipse workspace snapshot
| ‘-- text -sources for the text
| |-- csplainnat.bst
| |-- figures -images and figures

53

| |-- hyphen.tex
| |-- spreadsheet.ods -calculations for the graphs
| |-- stary-thesis-2012.tex -source for this text
| |-- thesis_reference.bib -references
| ‘-- zadani -scanned thesis assignment
|-- text
| ‘-- stary-thesis-2012.pdf -this text

2513 directories, 2439 files

	Introduction
	Outline

	Background and related work
	Overview of existing approaches for cargo delivery
	Area division
	Assignment and scheduling
	Meta-heuristics

	Agent-based modeling

	Problem formalization
	Objective function
	Solution representation
	Notation
	Metrics

	Allocation algorithm
	Agent interaction
	Evaluation of deliveries by insertion heuristic
	Allocation

	Simulation model
	Agents
	Agent interaction
	Agent actions
	Pseudo algorithms
	Environment model

	Implementation
	Platform
	Visualization

	Environment
	Communication protocol
	Sensors
	Dispatcher implementation
	Vehicle implementation
	Map

	Producing results
	Launcher

	Experiments
	Experiment setting
	Scenario parameters

	Experiment results
	System throughput measurement
	Bidding with real distance

	Simulation run details
	Summary

	Conclusion
	Future work

	List of abbreviations
	User manual
	Simulation
	Google Earth
	Output

	Launcher
	Launcher.config
	Config.groovy
	Output

	Contents of the enclosed CD

