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Abstract

This work focuses on multi-agent solution of bin packing problem. Firstly the ar-
chitecture of multi-agent solver with three types of agents is defined and from this
architecture an abstract algorithm is generated. The actual optimization process con-
sists of three parts: allocation, delegation and negotiation. The proposed model was
applied to the solution of one-dimensional, two-dimensional and three-dimensional
version of bin packing problem. No additional restrictions were taken into account.
Various optimization techniques have been used in the negotiations - from simple
heuristics through the application of exact algorithms to ILP optimization of related
sub-problems. The results demonstrate that some implementations are able to com-
pete with the best current solutions either by the quality of solutions, or by compu-
tation time.

(Tato práce se zaměřuje na multi-agentní řešení Bin Packing Problemu. Nejprve je
popsána architektura multi-agentního solveru jež definuje tři typy agentů a z ní je
poté odvozen abstraktní algoritmus. Samotný optimalizační proces sestává ze tří
částí: alokace, delegace a vyjednávání. Navrhnutý model byl aplikován na řešení
jedno-dimenzionální, dvou-dimenzionální a tří-dimenzionální verze Bin Packing
Problemu. žádná přídavná omezení nebyla brána v úvahu. Různé optimalizační
techniky byly využity v rámci vyjednávání - od jednoduchých heuristik přes aplikaci
exaktního algoritmu až po ILP optimlizaci dílčích podproblémů. Dosažené výsledky
ukazují, že některé implementace jsou schopné konkurovat nejlepším současným
řešením bud’ podle kvality řešení, nebo podle výpočetního času.)
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1 INTRODUCTION

Bin Packing Problem (BPP) belongs to standard optimization problems. It is a com-
binatorial NP-hard problem where objects of different volumes are supposed to be
packed into a minimal number of bins (can be called also containers). Although
the original definition is about one-dimensional bins and items many other multi-
dimensional and multi-constrained derived versions of BPP have been emerging all
the time. It is because the problem can be found in different forms almost every-
where not only in the area of packing but also in e.g. cutting (cutting shapes out of
sheets of metal, plastic etc.). Since even the simplest variant of BPP is still NP-hard,
optimal solutions can not be found for all instances in a polynomial time. Many ap-
proaches to finding the best possible solution of such problem in a reasonable time
exist. One of the approaches is based on multi-agent planning which is performed
in a multi-agent environment.

Bin packing problem can be described in terms of multi-object optimization and
therefore it fits into a multi-agent environment. In that environment multiple agents
are coordinating and competing to optimize their partial plans that compose a global
plan which represents the solution of the optimization problem. This text describes
how bin packing problem can be adapted to multi-agent environment and how a
multi-agent solver can be used to solve different dimensions variants of BPP. Success
of implementations is assessed by evaluating on benchmark data and comparing to
state-of-the-art best known solutions.

In the rest of this chapter the problem is addressed more in detail including impor-
tant variants and related problems which have been encountered. Most of the prin-
ciples are integrated in the final implementation. The implementation is addressed
in Chapter 2. It does not contain any implementation details but rather general ideas
described by mathematical expressions or in pseudo-code. The actual implementa-
tion with source code can be found on the attached CD (Appendix A). Chapter 3
contains a description of experiments on benchmark data with a discussion of the
obtained results which follows in Chapter 4. The final chapter also contains outlook
on future work reflecting the gained results.
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1.1 Bin Packing Problem

In this section the basic principles and concepts of the subject of this paper – bin
packing problem are presented. Main focus is on simple heuristic algorithms and
approaches because their general concepts are very important for the implementa-
tion of the multi-agent solver. Its allocation and negotiation model counts with a
non-complex, quick way of solving related sub problems. The quality of the result
is then achieved thanks to the diversity of the multi-agent model. In consequence it
means that the literature may be old-dated as new heuristic approaches have not ap-
peared recently. Complex or meta-heuristic (including genetic) algorithms are briefly
discussed.

The classical version of the Bin Packing Problem is defined as follows:

Given a bin size V and a list a1, . . . , an of sizes of the items to pack, find an integer B
and a B− partition S1

⋃
. . .

⋃
SB of {1, . . . , n} such that ∑

i∈Sk

ai ≤ V for all k = 1, . . . , B.

The mathematical foundation of bin packing began in the early 70’s. It appeared to
be an extremely rich research area: it soon turned out that this simple model could
be used for a variety of different practical problems, ranging from a large number
of cutting stock applications to packing trucks with a given weight limit, assigning
commercials to station breaks in television programming, or allocating memory in
computers [6].

Nowadays the term bin packing encapsulates many derived specific problems which
can be classified in many different ways. The simplest categorizing of the bin pack-
ing problem is according to the spatial dimension – from one-dimensional to three-
dimensional. They can moreover contain any other constraints (item rotation, for-
bidden positions etc.) and weighting (corresponds to Knapsack problem). This work
takes into consideration only spatial and item rotation constraints. In the rest of the
text I abbreviate the different types of the bin packing problem as dDBPP where d
represents the spatial dimension (for instance 1DBPP).

Not many approaches that deal with pure Bin Packing Problem using multi-agent
principles exist. The research is more shifted to more specific variants as in [1] which
combine container loading algorithms with agent-based simulation to optimize vari-
ous aspects in relation to the cargo - such as stability and fragility - or vehicle routing
problem (VRP) in [18] or [22].
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1.1.1 Upper and lower bounds

Research of the bin packing problem includes examination of general guarantees and
bounds on best/worst case behavior which can be expected and can also be used in
algorithms.

One of these bounds is the lower bound1 of the optimal solution – it tries to estimate
the optimal solution when it is not known, or can’t be proved. It can be then used as
a starting point of optimization algorithms. A lower bound function for bin packing
takes a problem instance and efficiently computes a lower bound on the minimum
number of bins needed. If we find a solution that uses the same number of bins as
the lower bound, then we know that the solution is optimal, and we can terminate
the search [8]. The computation of lower bounds can be very simple (ratio of sum
of items’ volumes and the container’s volume) or more complex. We want to have
as good estimation as possible because the better starting value we have the better
computation time we can achieve.

Worst case performance is a proof of how good the algorithm is in a worst case.
It is usually compared with optimal value of the instance - OPT(I). It is good for
comparing different approaches. Although these values are usually proved only for
simple algorithms and problems, it can be important for us anyway, because the
approaches (heuristics) can be adopted or combined in various ways to solve more
sophisticated problems and the complexity is multiplied in those situations.

1.1.2 One-dimensional bin packing problem

In the classical version of the 1DBPP one is given a list L = (a1, . . . , an) of items (or
elements) and an infinite supply of bins with capacity C. A function s(ai) gives the
size of item ai, and satisfies 0 < s(ai) ≤ C, 1 ≤ i ≤ n. The problem is to pack the
items into a minimum number of bins under the constraint that the sum of the sizes
of the items in each bin is no greater than C. In simpler terms, a set of numbers
is to be partitioned into a minimum number of blocks subject to a sum constraint
common to each block [6].

The 1DBPP algorithms can be divided into on-line and off-line. In the case of on-line
algorithms, items are packed in the order they are encountered while going through
the given list L (the list containing all items). The bin in which an item is packed
is chosen without knowledge of other items not yet encountered in L. These algo-
rithms are the only ones that can be used in certain situations, where the items to be
packed arrive in sequence and have to be assigned to a bin as soon as they arrive.
Off-line algorithms, on the other hand, have complete information about the entire

1Lower bound in terms of minimization, upper bound as to maximization.
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list throughout the packing process [6]. In my work I use both principles, but I don’t
explicitly distinguish them as I don’t find it important in the context of the assign-
ment and in general the principles are related as the off-line algorithms include the
on-line part, only sort the list L of items in desired order in the preprocessing phase.

The most famous simple heuristic algorithms are described below.

• Next-Fit (NF) – The item is packed next to the previous item. If it does not fit
to the bin, new one is open and the item is packed there.

• First-Fit (FF) – The item is packed to the first open bin it fits into. If there is no
such bin, new one is open and the item is packed there.

• Best-Fit (BF) – The item is packed into the open bin with the largest content it
fits into. If there is no such bin, new one is open and the item is packed there.

• First-Fit-Decreasing (FFD) – The off-line version of FF, where the items are
firstly sort in non-increasing order.

• Best-Fit-Decreasing (BFD) – The off-line version of BF, where the items are
firstly sort in non-increasing order. On average, BFD performs slightly better
than FFD.

Table 1.1 contains comparison of the above mentioned algorithms as to complexity
and worst case performance ratio (APR).

Heuristic algorithm Time complexity Worst case performance ratio (APR)

Next-Fit (NF) O(n) 2 ·OPT(I)

First-Fit (FF) O(n · log(n)) 17
10 ·OPT(I)

Best-Fit (BF) O(n · log(n)) 17
10 ·OPT(I)

First-Fit-Decreasing (FFD) O(n · log(n)) 11
9 ·OPT(I)

Best-Fit-Decreasing (BFD) O(n · log(n)) 11
9 ·OPT(I)

Table 1.1: 1DBPP algorithms comparison.

The heuristics were improved many times (according to [6] Refined First-Fit De-
creasing, Modified First-Fit Decreasing, Best Two-Fit etc.), but they are usually very
complicated, have worse time complexity and the benefit as better APR is not that
significant. Other approaches are Martello and Toth algorithm (see [11] – algorithm
for finding optimal solution), better-fit heuristic (see [3]), randomized and genetic
algorithms. The simplest case of 1DBPP without any other constraints is not com-
monly extensively studied nowadays as the old algorithms are sufficient for real
applications.
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1.1.3 Two-dimensional bin packing problem

The 2DBPP seeks to pack a set R of n rectangles with dimensions wi · hi into identical
larger rectangular bins with dimensions W · H using the fewest bins possible [17].
The problem is the two-dimensional extension of the classic (one-dimensional) Bin
Packing Problem and is one of the most studied problem in the so called Cutting &
Packing category [9].

According to [9] there are 4 classes of the problem which originated from two of the
most common requirements:

• the orientation of the items and

• the guillotine cutting (items must be obtained through a sequence of edge-to-
edge cuts parallel to the edges of the bin – see Figure 1.1).

The classes are:

• 2BP/O/G: the items are oriented (O), and guillotine cutting (G) is required;

• 2BP/R/G: the items may be rotated by 90‘ (R) and guillotine cutting is required;

• 2BP/O/F: the items are oriented and cutting is free (F);

• 2BP/R/F: the items may be rotated by 90‘ and cutting is free.

Figure 1.1: A Non-Guillotine Pattern. Right: A Guillotine Pattern ([17]).

Most of greedy algorithms can be classified in two families: One phase algorithms
which directly pack the items into the finite bins and two-phase algorithms that start
by packing the items into a strip (bin having width W and infinite height). In the
second phase, the strip solution is used to construct a packing into finite bins.
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Basic approach to dealing with bin/strip packing is to pack items into so-called
shelves. It means that the placed items form levels which define horizontal con-
straints and are put on each other. Three classical strategies for the shelf packing
have been derived from famous algorithms for the one-dimensional case (see Sub-
section 1.1.2). In each case, the items are initially sorted by non-increasing height
and packed in the corresponding sequence. Let j denote the current item, and s the
last created shelf [9]:

• Next-Fit Decreasing Height (NFDH) strategy: item j is packed left justified on
shelf s, if it fits. Otherwise, a new shelf is created, and j is packed left justified
into it;

• First-Fit Decreasing Height (FFDH) strategy: item j is packed left justified on
the first shelf where it fits, if any. If no shelf can accommodate j, a new shelf is
initialized as in NFDH;

• Best-Fit Decreasing Height (BFDH) strategy: item j is packed left justified on
that shelf, among those where it fits, for which the unused horizontal space
is a minimum. If no shelf can accommodate j, a new shelf is initialized as in
NFDH.

The strategies are illustrated on the Figure 1.2.

Figure 1.2: Shelf packing strategies [9].

The Table 1.2 contains comparison of the above mentioned algorithms as to complex-
ity and worst case performance ratio (APR) in terms of strip packing (OPT represents
the minimal possible height of the strip). A reader can compare the table with the
Table 1.1 to notice a similarity with 1DBPP.

More sophisticated approaches of constructing shelves are:

• FC (Floor Ceiling) - items can be put also on the ceiling of a shelf. Refer to
Figure 1.3.
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Heuristic algorithm Time complexity Worst case performance ratio (APR)

NFDH O(n · log(n)) 2 ·OPT(I) + 1

FFDH O(n · log(n)) 17
10 ·OPT(I) + 1

BFDH O(n · log(n)) 17
10 ·OPT(I) + 1

Table 1.2: Strip packing algorithms.

• KP (Knapsack Packing) – contains knapsack sub-problem where each item has
its profit defined as its area (wi · hi). The tallest item is chosen and creates a shelf
– the goal of the sub-problem is to add other items to the shelf according to the
knapsack problem optimization. As knapsack problem also belongs to NP-
hard problems, we get outside the polynomial time complexity, however the
sub-problem is usually so small that it is solved very quickly with an optimal
solution.

Figure 1.3: Floor ceiling algorithm [9].

When the shelves are prepared, next step is to arrange them into bins. At the first
sight it looks like 1DBPP and actually it is – we can use any exact or heuristic algo-
rithm to solve the 1DBPP.

The simplest two-phase algorithms use a heuristic 1DBPP strategy to fulfill bins with
shelves i.e. one-dimensional items of certain height. Two most famous two-phase
algorithms are listed below.

• Hybrid First-Fit (HFF) – Introduced by [5]. Uses FFDH for shelves con-
struction and FFD (first fit decreasing) as 1DBPP approach. The APR is
17
8 ·OPT(I) + 5.

• Finite Best-Strip (FBS) – Introduced by [2]. Uses BFDH for shelves construc-
tion and BFD (best fit decreasing) as 1DBPP approach.

One of features of shelf-based algorithms is the guillotine cuttability and it can solve
problem in 2BP/*/G (except of shelves constructed by FC if it is not explicitly en-
sured).



8 CHAPTER 1. INTRODUCTION

One-phase algorithms construct bins directly. They can be shelf-based – the items
are placed in shelves, but contrary to two-phase algorithms, the shelves are being
created continuously inside the bins. However one-phase algorithms are generally
worse than two-phase algorithms. The second type are non-shelf algorithms which
place items to the whole space of bins – one of them is Alternate Directions (AD) –
for basic understanding see Figure 1.4.

Figure 1.4: Alternate Direction algorithm [9].

Experiments on benchmark data (for more details look at [9]) shows that KP, FC and
AD provide similar results’ quality.

1.1.4 Three-dimensional bin packing problem

The 3DBPP packs a set R of n rectangles with dimensions wi · hi · di into identical
larger rectangular bins with dimensions W · H · D using the fewest bins possible.

As it is not common to take care about guillotine constraint in as in 2DBPP (it has not
such practical usage) only orientation constraint is taken into account when distin-
guishing 3DBPP classes – they are 3DBPP/O and 3BP/F. In benchmarks, however,
the 3DBPP/O version is preferred.

Heuristics for this problem are usually derived from those for 2DBPP but are not
very successful. An exact algorithm for 3DBPP that uses shelves and 1DBPP sub-
problem solving is introduced in [10]. It is composed from two-levels - in the first
level the items are assigned to bins without specifying their actual position, while a
specialized algorithm is used to test whether a subset of items can be placed inside
a single bin and to determine the placing when the answer is positive.

The most popular variant of the problem which has the most useful application is
container loading which is discussed in the next Subsection 1.1.5.
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1.1.5 Container loading

Container Loading Problem (CLP) is a special case of 3DBPP where the goal is not to
pack all items into the smallest number of containers, but we take into consideration
only one container (typically with dimension reflecting industrial standards) and
we want to maximize its used volume. This problem is very practically oriented
and tries to satisfy real world constraints which logistic companies face. Much of the
recent work has moved away from pure knapsack or bin-packing formulations of the
container loading problem and has paid increasing attention to various additional
factors which may affect the task in practice. Orientation constraints on individual
types of cargo and container weight capacity limits represent simple examples of
such factors. Other problem definitions include the weight distribution within a
container as a critical factor and forms aspects of cargo stability which have been
explicitly considered in several approaches as attributes of solution quality [1].

The existing 3D-CLP methods are based on different heuristic packing approaches
that determine the structure of generated packing plans (cf. [16]):

1. Wall building approach The container is filled by vertical cuboid layers
("walls") that mostly follow along the longest side of the container.

2. Stack building approach The boxes are packed in a suitable manner in stacks,
which are themselves arranged on the floor of the container in a way that saves
the most space. Characteristic of this approach is that the stacks do not them-
selves form walls as defined before.

3. Horizontal layer building approach The container is filled from bottom to top
through horizontal layers that are each intended to cover the largest possible
part of the (flat) load surface underneath.

4. Block building approach The container is filled with cuboid blocks that mostly
contain only boxes of a single type with the same spatial orientation. The ap-
proach is related to approach (3), but the main motive here is to fill the largest
possible sub-spaces of the container without internal losses.

5. Guillotine cutting approach This approach is based on a slicing tree represen-
tation of a packing plan. Each slicing tree corresponds to a successive segmen-
tation of the container into smaller pieces by means of guillotine cuts, whereby
the leaves correspond to the boxes to be packed.

One of the features of the container loading is that it usually tries to deal with same
type of boxes. Naturally it is more convenient to place such boxes beside each other
as they don’t waste the space – critical condition while maximizing the utilized
space. Forming columns or layers (further referenced as block of boxes - only one
box can also form a block) from those boxes is a typical task of CLP. See Figure 1.5.
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Figure 1.5: Different blocks of boxes (layers) in CLP. What is missing - only one box
can also form a block.

Important part of CLP algorithms is how to deal with unused space – let call it free
space. Classical approach was to split the free space (while new item is being placed)
to disjoint parallelepiped spaces (for instance in [13, 20]). [14] introduced concept of
maximal spaces where the empty remaining space is split to parallelepiped non-
disjoint spaces. This approach seems to be quite successful and produces better so-
lutions. You can see maximal spaces on Figure 1.6.

Figure 1.6: Maximal free spaces [14].

Based on layers and maximal spaces a constructive algorithm was proposed in [14].
The algorithm finds a good admissible solution which can be then improved by vari-
ous techniques – GRASP in [13] or VNS (Variable Neighborhood Search) in [15]. The
constructive algorithm’s skeleton is captured in Algorithm 1.

The skeleton contains some points - for instance choosing the free maximal space, the
block of boxes – which can be implemented variously according to different heuris-
tics. It has an important impact on algorithm’s behavior, results and efficiency. Dif-
ferent approaches are discussed in Section 2.5 which describes the final implemen-
tation. Many of the approaches are adopted from [14].

CLP differs from 3DBPP in items’ rotation possibilities. While in 3DBPP/F items
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Input : Container dimension C, set of boxes {b1, ..., bm}, numbers of boxes Ni.
Output: Boxes’ positions.

function solve (C, {b1, ..., bm}, Ni) begin
S← {C} ; // The set of free maximal spaces

B← {b1, ..., bm} ; // The set of boxes still to be packed

Qi ← Ni ; // Number of boxes of type i to be packed

while any box is packed do
chosenSpace← chooseFreeSpace (S);
chosenBlockO f Boxes← chooseBlockOfBoxes (chosenSpace, B, Qi);
putBoxesToSpace (chosenSpace, chosenBlockO f Boxes);
update free spaces;

end
end

Algorithm 1: CLP constructive algorithm.

can be rotated in all possible directions and 3DBPP/O can’t be rotated anyway CLP
reflects logistic demands - items may be restricted to be rotated in vertical direction,
but they can be freely rotated horizontally. Benchmark data for CLP contains these
constraints.

1.2 Multi-agent solver

In the work, paradigms of multi-agent planning and multi-agent solver are sup-
posed to be used. In this section principles of a solver introduced in [19] are de-
scribed.

First, we define the multi-agent problem from [19] as:

"Task decomposition and allocation to the number of autonomous agents, where the allocation
is based on individual agents commitments to the joint solution using private constraints and
motivation."

In simplified words it means that a complex problem is divided into smaller sub-
problems, these are solved by individual computational units – agents and the re-
sults are then composed into the final solution. The agents use communication (more
precisely task delegation or negotiation) to improve their partial solutions (plans).

The main objective function of multi-agent problem is defined as maximization of
agents’ social welfare:
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sw = ∑
a∈A

ua (1.2.1)

where A = a1, . . . , an is a population of agents and ua is the utility of agent a. After
deriving the final objective function of the multi-agent solver is [19]

∑
t∈T

cost(t, a) (1.2.2)

where cost(t, a) is the cost of the agent a to perform the task t.

According to [19] the abstract multi-agent solver architecture is defined as a compo-
sition of three types of agents (followed by Figure 1.7)

• Task Agent for pre-processing of the problem. This agent should use a domain
specific heuristic, generic ordering strategy or randomized ordering method.

• Allocation Agent for problem decomposition into tasks and delegation of the
tasks to Resource Agents. This agent maintains task allocation and result syn-
thesis. This agent’s strategies and algorithms are domain-independent.

• Resource Agent for individual case-specific resource planning. In case of fur-
ther decomposition, the task is handed over to another Task Agent.

Figure 1.7: Multi-agent solver architecture [19].
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Multi-agent solver consists of a number of interacting resource agents – each having
an ability to maintain his individual plan of assigned tasks. These agents are coor-
dinated by allocation agent. The whole plan of the problem is then a fusion of such
partial plans. In the domains where the optimization/planning problem can be de-
composed into independent task the multi-agent approach shows its benefits. Such
a task can be allocated and executed by different agents with low or no influence on
each other [19].

The architecture and the representation of the multi-agent problem, which is han-
dled by a set of resource agents in the lowest level, naturally allow us to use paral-
lelization (i.e. distributed system) to solve such problems.

1.2.1 Abstract Algorithm

The abstract algorithm representing the presented multi-agent solver minimizing
objective function defined by Equation 1.2.2 is captured by Algorithm 2. According
to the abstract architecture denoted in Figure 1.7 it contains three phases [19]:

• The first phase of the function solve is task pre-processing provided by the
Task Agent. The ordering heuristic represents case-specific sorting of the tasks
to increase the solver’s efficiency in the particular domain. In some cases the
ordering has no influence, but in others it may provide significant improve-
ment especially in domains with stronger task dependencies.

• The second phase is iteration over all tasks and allocation (allocateAll) per-
formed by the Allocation Agent minimizing the insertion cost computed by
Resource Agents. As a part of this iteration, the dynamic improvement (dele-
gateAll) based on cooperation of Allocation Agent and all Resource Agents may
take place – the improvement strategy is applied to every Resource Agent after
allocation of each task (see below for the description of improvement strate-
gies).

• The third phase of the solve function is the final improvement (negotiateAll) of
the solution. After allocation of all tasks the improvement strategy is executed
by all Resource Agents.

The algorithm is based on local optimization of a single task insertion and sub-
sequent improvement. Each iteration of the algorithm provides a greedy (order-
dependent) task allocation supported by locally-optimized solution of resources uti-
lization (which can be seen from global point of view as hill-climbing search). The
algorithm does not use any backtracking mechanism or exhaustive search of the state
space. It has a significant impact on the algorithm’s computational complexity but
it is susceptible to finding locally efficient solution only. The global solution quality
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is improved by execution of incremental version of improvement strategies - the im-
provement runs as long as the solution is being improved [19]. If the solution can not
be found for all tasks, the number of agents is increased and the process is repeated2.

The main methods of the second and third phases are:

• Allocate – the allocation agent allocates an unallocated task t ∈ T to a resource
agent (tries to choose the best agent according to a predefined heuristic) – min-
imizing cost(t, a).

• Delegate - it encapsulates the process in which an agent ai delegates task t to
an agent aj. It should satisfy the improvement condition:

costremove(t, ai)− costinsert(t, aj) > 0 (1.2.3)

.

It appeared to be an effective optimization tool in terms of dynamic improve-
ment.

The delegate method as well as its concrete implementations is clearly defined
in [19]. The Delegate All strategy of the delegate method (refer to [19]) is in-
cluded in the final implementation.

• Negotiate – the negotiate method is used in final improvement. It can simply
call the delegate method, but it is better to define the final improvement method
in a different way. In Bin Packing it is more clear, because if you examine the
above mentioned delegate method, you will find out that it is not suitable as the
final improvement because few free space remains in the fulfilled bins after the
phase 2.

For the bin packing problem swap method which deals with swapping of tasks
between two agents was introduced. It is described in the chapter of imple-
mentation.

The method contains also remaining tasks as a parameter and the agents can
use it in the negotiation process.

Except the delegation and swapping, other improvement strategies are implemented
and will be discussed in this work. In the further text I use the term delegation while
talking about dynamic improvement and negotiation to encapsulate final improve-
ment methods.

In [19] the resource agents’ insertion and removal estimations of single task are in-
troduced as a kind of a resource planning heuristics. The functions are:

2There is usually implemented a cache mechanism that helps to reuse the partial plans of the
previous set of agents which can save the computation time.
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Input : Set of tasks T, set of Resource Agents R
Output: T allocated on R and local plans on Resource Agents exist

function solve (T, R) begin
apply ordering heuristic on T; // Phase 1

allocateAll (T, R); // Phase 2

while allocation of any t : T successful do // remaining tasks

negotiateAll (R, T); // Phase 3

allocate (t, R);
end

end

function allocateAll (t, R) begin
forall the t : T do

allocate (t, R);
if allocation successful then

remove t from T else mark t as not allocated and continue;
end
delegateAll (R); // Phase 2 - dynamic improvement

end
end

function allocate (t, R) begin
forall the a : R do

find winner with the lowest costestI(t, a);
end
if winner is found then

assign t to the winner;
end

end

function delegateAll (R) begin
while delegated do

forall the a : R do delegate (a, R)
end

end

function negotiateAll (R, T) begin
while negotiated do

forall the a : R do negotiate (a, R, T)
end

end

Algorithm 2: The abstract algorithm of the multi-agent solver.
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• Insertion estimation costestI(t, a) - the estimation of the cost of the task inser-
tion. It represents the increase of the agent’s cost function caused by undertak-
ing the task t.

• Insertion costinsert(t, a) - the real cost of the task insertion. This value is deter-
mined by adding a new task t to the plan of the agent a in the current state. It is
the result of the particular resource planning algorithm of the resource agent.

The allocation is based on the determination of the winner agent – the resource agent
with the lowest insertion estimation cost of the task t:

winner = argmin
a∈A

costestI(t, a) (1.2.4)

The opposite functions used by improvement strategies are:

• Removal estimation costestR(t, a) - the estimation of the cost of the task re-
moval. It represents the decrease of the agent’s cost function caused by drop-
ping the task t.

• Removal costremove(t, a) - the real cost of the task removal. This value is deter-
mined by removing the task t from the plan of agent a in the current state. It is
the result of the particular resource planning algorithm of the resource agent.

Later it turned out that the removal cost and negotiation based on difference between
insertion and removal cost is not completely suitable for for all of the presented
multi-agent implementations of the bin packing problem. So it can be omitted in
some cases and the introduced model is used on a more abstract level.

1.2.2 Complexity analysis

The worst complexity of the abstract algorithm is upper-bounded by

O(n · log(n) + n · (Oalloc + m ·Odelegate) + m ·Onegotiate) (1.2.5)

where n denotes the number of tasks and m is the number of resource agents. Each
addend represents a phase of the algorithm’s basic model. The n · log(n) part repre-
sents the ordering heuristic and corresponds to the complexity of standard sorting
algorithms. The n · Oalloc part is the complexity of the allocation with the dynamic
improvement and the last part is about the final improvement phase. For simplifi-
cation of the complexity analysis we assume only one iteration of while loop while
performing improvement methods.
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The improvement part can be further decomposed as

Odelegate = m · f idelegate(
n
m
) (1.2.6)

Onegotiate = m · f inegotiate(
n
m
) (1.2.7)

where n
m is the average number of tasks allocated to a particular resource agent and

f i( n
m ) is the factor representing the complexity of the implemented agents‘ improve-

ment strategy. It describes more precisely the fact that each agent tries to negotiate
(e.g. delegate all his tasks) with all other m agents to improve the overall solution.

After that slight concretization of the improvement strategy we get the final com-
plexity:

O(n ·Oalloc + n ·m2 · f idelegate(
n
m
) + m2 · f inegotiate(

n
m
)) (1.2.8)

If we don’t include the dynamic improvement we get

O(n ·Oalloc + m2 · f inegotiate(
n
m
)) (1.2.9)

It could be decomposed even more while taking into account principles described
in [19], but in relation to the rest of this work, the Expression 1.2.8 is the least admissi-
bly general representation of the complexity and concrete adjustments are discussed
in related sections. In general, the allocation, delegation and negotiation time complex-
ities can vary depending on an implementation of the abstract model. However, the
solver should solve problems in a polynomial time, hence ensuring the polynomial
complexity of each of the parts is crucial.





2 IMPLEMENTATION

This chapter contains all details about the multi-agent solver for bin packing prob-
lem. The ideas are presented more or less chronologically. It means that the or-
der of included sections and subsections reflects how the work evolved over time.
All of the BPP spatial variants are adapted to the multi-agent solver introduced in
Section 1.2 starting with the 1DBPP over shelf-based 2D/3D packing to the univer-
sal multi-dimensional packing based on container loading volume optimization de-
scribed in Subsection 1.1.5. As stated in Section 1.1 no other constraints except of
the spatial and rotation restrictions were taken into account in terms of Bin Packing
Problem.

In the sections some results are referenced for a discussion over implementation de-
tails. However all gained results as well as benchmark data descriptions comprise
the Chapter 3 and Appendix A.

The key task of the work was to adapt the bin packing problem to multi-agent
paradigms. There are two suitable approaches to this problem. The first approach is
to treat items (boxes) as agents and the negotiation would be based on finding the
best place in any of bins for the agents. This approach can be seen for instance in [1].
However more natural seems to be an implementation of bins as agents. Moreover
it fits better to the multi-agent solver abstract model described in Section 1.2 because
the tasks’ description and the allocation and negotiation principles can be handled bet-
ter by assigning them to items than in case of placing agents into a space as in the
first approach.

Main difficulties occur when evaluating the quality of task allocation – as introduced
in [19] – an agent tries to delegate its task to other agent where it would have a
better value. But it is not easy to determine such value when placing items in multi-
dimensional space. That is the reason why the abstract model of multi-agent solver
from [19] is kept more general and estimateRemove value is left out in Algorithm 2.
However it is used in some of the others introduced implementations based on one-
dimensional space optimization.

Another limitation of the original solver was its delegate method. The method is to-
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gether with dynamic improvement a part of final improving strategies and its goal
is to delegate a task (or all tasks) from an agent i to an agent j in such way that
global solution is closer to optimum. The problem is that it is not very efficient in
final improvement as all bins’ capacities are nearly full and not much free space ex-
ists to delegate any task to somewhere else. Furthermore when we use BFD for the
allocation – after non-increasing ordering as preprocessing – there is nearly no such
optimization possible, because large items are allocated first. It led me to separate
dynamic and final improvement strategy which can now represent different func-
tionality. In ILP based 1DBPP solver the delegate is omitted and the negotiate is re-
defined into ILP optimization, in the heuristic 1DBPP solver and in shelves creation
sub-solver (see Section 2.3) a more suitable swap method which tries to swap the
items between agents is introduced and in universal multi-dimensional solver im-
plementation (Section 2.5) the negotiate simply reallocates all items of chosen agents
together with remaining items trying to find better volume ratio of the agents.

2.1 Preprocessing

In the preprocessing phase, the tasks can be sorted according to a heuristic which
can improve the overall solving process. In [18] it is stated that ordering of the tasks
doesn’t have to have significant importance - as for VRP (Vehicle Routing Problem).
However for BPP it has. From basic observations, the average computation time is
lower when non-increasing strategy is used because less delegations and negotia-
tions are needed. In all other solver implementations non-increasing ordering strat-
egy - according to parameter which is optimized - is performed in preprocessing
phase and it is no more discussed.

2.2 Multi-agent solver for 1D Bin Packing Problem

The one-dimensional bin packing problem version is the simplest case of the bin
packing. The bins and the items have only one dimension and there is no need to
take care about a position in a bin where to put the item – one is straightforwardly
placed beside other and when an item is removed, the rest of the load can be imag-
inarily pushed to one side to make the free space maximal. This fact is very im-
portant because it causes the optimization space to be much smaller than in a more
dimensional setting. However, 1DBPP is still NP-hard. All phases that represents the
abstract Algorithm 2 as well as their concrete implementations are discussed below.
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2.2.1 Allocation

After the preprocessing we get the sorted list L of unallocated items and we first try
to allocate them among all resource agents. We can adapt the problem to the multi-
agent solver from Section 1.2 according to Equation 1.2.4 after defining the insertion
estimation costestI(t, a) function. This function reflects how convenient is to place the
task t inside the bin represented by the agent a. If one looks at the 1DBPP heuristics
described in Subsection 1.1.2 she can find out that the winner agent function can
handle the Best-Fit strategy - the best agent for the task t is the one that has the largest
content and the item fits into it. Therefore we can define the insertion estimation cost
as the amount of free space after adding the item (i.e. the smaller the better). If the
item does not fit in the bin, the function returns infinite cost:

costestI(t, a) =

{
C− (h(t) + uc), h(t) + uc ≤ C
∞ h(t) + uc > C

(2.2.1)

where C refers to the bin’s capacity, h(t) returns a size1 of the item represented by
the task t and uc is used capacity - already allocated space.

The solver’s abstract model also contains tasks pre-processing which sorts the tasks
before the allocation and delegation phases. If we sort the items in a non-increasing
order a Best-Fit Decreasing (BFD) comes out. Hence, after the allocation we have the
solution’s quality of 11

9 ·OPT(I) as stated in Table 1.1.

The time complexity of the allocation phase is n · m which is generally worse than
the BFD optimal implementation (n · log n). In general we don’t need to improve it.
First, we suppose quite small number of agents anyway as discussed in Section 1.2,
hence the complexity is sufficient. Second the following improvement strategies are
supposed to process in worse time complexity - in the context the quadratic behavior
in number of tasks can be treated as a lower bound of the overall solver’s complexity.

2.2.2 Delegation

The dynamic improvement phase (called delegation here) is handled by Delegate All
strategy as described in the original multi-agent solver in [19]. It tries to follow the
optimization condition written in Expression 1.2.3.

To suit the costestI function to perform BFD allocation strategy as well as ensuring
the optimization during improvement phase, the estimation functions are defined
as:

1It is labeled h(t) meaning height to be compatible with following multi-dimensional versions.
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costestI(t, a) =

{
(C− (h(t) + uc)) · h(t), h(t) + uc ≤ C
∞ h(t) + uc > C

(2.2.2)

costestR(t, a) = (C− uc) · h(t) (2.2.3)

This ensures that the items will be placed to the fullest bins in the allocation phase
and that it will optimize the solution according to the improvement conditions stated
in Expression 1.2.3 and Expression 2.2.4 in the improvement phase.

2.2.3 Negotiation

After the allocation phase the final improvement phase comes to optimize the agents’
load and try to allocate the rest of unallocated items into the predefined number of
bins. If it can’t be done, the number of agents (bins) must be increased. The begin-
ning of this chapter contains a discussion that delegation as the final improvement is
not fully efficient in bin packing because of insufficient free space in other bins after
allocation. Swapping of the items between the agents appears more suitable for this
task.

Swap method iterates through each agent and each of its tasks and tries to find other
task owned by a different agent to trade it. Every agent only tries to maximize its
own load – it means that it exchanges smaller items for larger. The improvement
condition is:

costestR(t, a)− costestI(tother, a) > 0 ∧ costestI(t, aother) 6= ∞ (2.2.4)

totherrepresents the task from the agent aother who negotiate with the agent a.

2.2.4 Algorithm

The template representing the abstract algorithm of the multi-agent solver (see Algo-
rithm 2) is used for its specific implementation. In this case, we only implement the
delegate and negotiate methods. The implementation of these methods is contained in
Algorithm 3.

The delegate method corresponds to the Delegate All strategy from [19] - every agent
tries to all reallocate all his tasks to other agents where they fit best - the winner
is found according to Equation 1.2.4 and Equation 2.2.2. In final improvement the
swap method is called where the agent tries to exchange its tasks for other tasks
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function allocate (t, R) begin
forall the a : R do

find winner with the lowest costestI(t, a);
end
if winner is found then

assign t to the winner;
end

end

function delegate (a, R) begin
forall the t : tasks of agent a do

forall the aother : R \ a do
find winner with the lowest costestI(t, aother);

end
end
if winner is found then

assign t to the winner;
end

end

function negotiate (a, R, T) begin
forall the t : tasks of agent a do

swap (t, R) ;
end

end

function swap (t, R) begin
forall the aother : R \ a do

forall the tother : tasks of agent aother do
find best task tother and aother to swap t↔ tother;

end
end
if tother found then

remove t from a and assign tother to a;
remove tother from aother and assign t to aother;

end
end

Algorithm 3: Basic implementation of Algorithm 2.
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such that it optimizes its load according to the improvement condition captured by
Expression 2.2.4. Equations 2.2.2 and 2.2.3 are used inside.

The time complexity of the algorithm comes from Expression 1.2.8. We can further
decompose

Oalloc = m (2.2.5)

because the costs estimation computation is trivial. While calculating f i( n
m ) we can

get to two possible branches - delegation or negotiation (swapping). We get

f idelegate(
n
m
) =

n
m
·m = n (2.2.6)

f inegotiate(
n
m
) =

n
m
·m · n

m
=

n2

m
(2.2.7)

After putting all together we get the final Expression 2.2.8 of the upper bound of
time complexity (we assume n > m):

O(n ·m + m2 · n + m · n2) = O(m2 · n + m · n2) = O(m · n2) (2.2.8)

2.2.5 ILP based negotiation

This implementation was designed to find better solutions - ideally the optimal so-
lutions. The basic idea is that we optimize many small sub-problems using ILP and
the overall solution comprised from those optimal plans can be optimal as well. It
can be easily adapted on the negotiation model - agents negotiate with each other to
optimally reload their content to enable not yet allocated items to be placed inside
one of them. The implementation of Algorithm 2 is captured in Algorithm 4.

function delegateAll (R) begin
// leave it blank

end

function negotiate (a, R, T) begin
forall the aother : R \ a do

optimizeILP (a, aother);
end

end

Algorithm 4: Implementation of abstract algorithm for ILP based negotiation.
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The optimizeILP method gets a set of bins (agents) as input and rearranges their load
such that free space of one of them (lets say the first in the set) is maximized - ideally
the free space of one of the agents after the optimization will be

sa1 = min( ∑
a∈A′

sa, Ca1) (2.2.9)

i.e. overall free space of the set of agents will move to the first agent (sa1). It enables
to allocate other not allocated items in that bin. The optimization sub-problem is
solved by an ILP solver and it is defined in Expression 2.2.10:

min ∑
t∈T′

allocatedt,a1 · h(t) such that (2.2.10)

∑
t∈T′

allocatedt,a · h(t) ≤ Ca, ∀a ∈ A′

∑
a∈A′

allocatedt,a = 1, ∀t ∈ T′

allocatedt,a ∈ {0, 1} , ∀a ∈ A′, ∀t ∈ T′

T′ is a set of all items got by unloading of all agents from the input set, allocatedt,a
is a boolean variable that represents that the task t is allocated in the agent a, h(t)
returns a size of the item t and Ca is the capacity of the agent a.

The whole negotiation part optimizes extensively and it is even able to iteratively
totally reorganize the already allocated items. Therefore dynamic improvement ap-
peared to be excessive and so the delegateAll method is left blank.

We must be aware that the ILP optimization part is NP-hard and so we get outside
the polynomial time. However the sub-problems are so small that the optimal partial
solutions are found very quickly.

2.2.6 Fitness based selection of agents

In the previous subsection an approach which optimizes the global solution by re-
arranging items between two agents was introduced. Basic case is to simply iterate
through all agents and run the optimization for every couple. However, the ILP
optimization (including problem definition creation) is not the cheapest in terms of
computation time and for many couples small or even no improvement is gained.
It is because one of them may be and usually is (nearly) full and the time is wasted
in that way. More convenient is to form these couples only from agents that are less
full. I took an inspiration from genetic algorithms and their selection principles. We
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can imagine that we have a population of agents and in every iteration we select two
random agents The ones with higher fitness function (defined in Equation 2.2.11)
are more likely to be chosen. According to what have been stated above the fitness
function reflects the free space:

f (a) = sa (2.2.11)

Altogether the more free space the agent have the more probable is that he will par-
ticipate in the negotiation process. In the implementation it means that the nego-
tiateAll method in Algorithm 2 is overwritten to ensure the selection (tournament
selection strategy is implemented). The pseudo-code of that corresponds to Algo-
rithm 4 with the addition captured in Algorithm 5.

function negotiateAll (R, T) begin
while optimization unsuccessful and counter < MAX_ATTEMPTS) do
{a1, ..., an} ← choose n agents according to tournament selection strategy;
optimizeILP ({a1, ..., an});

end
end

Algorithm 5: Selection of agents.

The optimizeILP as well as the ILP formula (see Equation 2.2.10) is defined generally
for any number of agents which opens new possibilities for the negotiation model.
Any number n of agents can be chosen to participate in the negotiation and results
show (see Section 3.1) that better solutions can be obtained with more than two ne-
gotiators in some benchmark instances. However there is no general benefit visible
and furthermore a big number of negotiators can bring a very long computation time
due to the ILP module.

The selection approach appeared to be very successful in some benchmark instances
(refer to Section 3.1) and sometimes it is able to find better solutions then the it-
erative ILP based negotiation model and even much faster. However not always.
The problem is that it contains randomization and so we can’t predict the behavior.
Sometimes it is able to find the optimal solution very quickly, but other time it does
not and it searches until maximum of allowed iterations is reached and new agent is
added. The MAX_ATTEMPTS constant must be set by the user and it is not easy to
determine this value. If we have enough time and we really want to try to find the
optimum, we can set it to a high value with the risk of very long computation time
without finding the optimal solution anyway.
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2.3 Two-phase multi-agent solver for 2DBPP

Many possibilities appeared when dealing with solving 2DBPP. Also an ILP ap-
proach as in 1DBPP came into consideration, but it turned out that it is not com-
putationally manageable because the problem is too complex to solve using ILP.
Therefore it is inappropriate in the multi-agent environment where the optimization
is processed many times. This section contains a description of how the multi-agent
solver was adjusted to solve 2DBPP inspired by two-phase shelf-based algorithms
described in Subsection 1.1.3. Different approach which can also deal with 3DBPP is
covered in Section 2.5

In terms of the final two-phase multi-agent implementation we have two separate
sub-solvers - each responsible for one phase. One solver for shelves creation and
any of the 1DBPP solvers from the previous Section 2.2 as the second. The main task
is thus to define a multi-agent solver for a preparation of shelves. These become
the input for the 1DBPP solver - each shelf then represents an one-dimensional item
with the height as its size.

2.3.1 Multi-agent solver for shelves

While talking about shelves items must be placed in a row of defined width so that
sum of their heights is minimized. If we imagine items as tasks and each shelf as an
agent we can define it as a multi-agent problem where each agent tries to delegate and
negotiate its tasks - items - to minimize its overall height which equals the maximal
height of the loaded items. The formal definition of the optimization problem is
(Equation 2.3.1):

min ∑
a∈A

max
t∈Ta

h(t) such that (2.3.1)

∑
t∈Ta

w(t) ≤ W, ∀a ∈ A

where h(t) and w(t) are height and width of the item t, W is the width of the bin, A
is a set of agents (bins) and Ta corresponds to a set of allocated items in the bin a.

In general there is no need to minimize the number of shelves - the minimal sum of
heights does not suppose the minimal number of shelves as can be seen on Figure 2.1.
In case a) the minimum sum of heights is reached, but not the minimum number of
agents. On the other hand in case b) the minimum possible number of agents is used,
but the sum of heights is worse than in the first case. Hence the width of the items is
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Figure 2.1: Minimal sum of heights of shelves.

not reflected in the the optimization phases but only height is. The exception being
the initialization, i.e. the initial number of agents is based on items’ width.

The optimization task (Expression 2.3.1) can be easily adapted on the implementa-
tion described by Algorithm 3 and Equation 1.2.4. Estimation costs must be defined
and they are as follows (Equations 2.3.2 and 2.3.3):

costestI(t, a) =

 max
t′∈Ta

⋃{t}h(t′)−max
t′∈Ta

h(t′), w(t) + uc ≤W

∞, w(t) + uc > W
(2.3.2)

costestR(t, a) = max
t′∈Ta

h(t′)− max
t′∈Ta\{t}

h(t′) (2.3.3)

h(t) and w(t) are height and width of an item t, W is width of the bin, uc is its used
space as to width and Ta is a set tasks allocated to agent a. In normal words estimate
add is a difference between maximal heights before and after the adding of the item
t, if it fits to its width and estimate remove cost returns a difference between maximal
heights before and after the removing of the item t. When a smaller item than the
highest in the bin is added it costs nothing on the other hand if an item which is
not the highest in the bin is removed no profit is gained. Only when the maximum
changes it is reflected in the costs.
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Figure 2.2: Three-phase optimization process.

2.4 Three-phase multi-agent solver for 3DBPP

Same reflection as for 2DBPP led to compose a joint three-phase multi-agent solver.
Each phase of such approach in fact reduces one dimension and so there is no reason
why 3DBPP couldn’t be solved in this way too. The task now is to reduce 3DBPP to
2DBPP and send it to any 2DBPP solver.

The overall optimization process realized by three-phase multi-agent model is illus-
trated in Figure 2.2. In the first level the agents negotiate about 3D items to create
so-called strips (two-dimensional alternative for shelves), these are then processed
by shelf-agents to produce shelves (phase 2) which are used in the third phase as
one-dimensional items and standard bin agents optimize their placing according to
1DBPP model.

The strips creation phase is very similar to the shelves creation in 2DBPP. The same
implementation is used except for a little modification of its estimation costs. Now
not only height but also width of strip needs to be optimized. In other words an area
of maximal height and maximal width is supposed to be minimized with respect to
depth constraint (Expression 2.4.1).

min ∑
a∈A

max
t∈Ta

h(t) ·max
t∈Ta

w(t) such that (2.4.1)

∑
t∈Ta

d(t) ≤ D, ∀a ∈ A

d(t) is depth of task t whereas D is depth of the container.
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Other values are same as in Expression 2.3.1. The estimate costs are derived similarly
to 2DBPP:

costestI(t, a) =


max

t′∈Ta
⋃{t} h(t′) · max

t′∈Ta
⋃{t}w(t′)

−max
t′∈Ta

h(t′) ·max
t′∈Ta

w(t′), d(t) + uc ≤W

∞, d(t) + uc > W

(2.4.2)

costestR(t, a) = max
t′∈Ta

h(t′) ·max
t′∈Ta

w(t′)− max
t′∈Ta\{t}

h(t′) · max
t′∈Ta\{t}

w(t′) (2.4.3)

The time complexity of all phases is the same as in Expression 2.2.8 with the dif-
ference in number of agents and items because it decreases after each phase. The
model is easy and is supposed to solve instances very quickly, however the solu-
tions quality may not be very high because much free space is wasted and it sums in
every level. The quality is expected to be much worse than for the same approach in
2DBPP.

2.5 Universal multi-dimensional Multi-agent solver

This implementation is independent of number of dimensions and can be freely used
for 2DBPP as well as for 3DBPPTheoretically for 1DBPP too, however probably it
wouldn’t perform very well because of exact placing which is ensured automatically
in 1DBPP and thus it is not optimal in that environment.. The idea is based on vol-
ume optimization - agents try to maximize their collective used volume to load all
the items according to Proposition 1.
Proposition 1. Collective optimization has bigger influence than individual.

It is not important to fully load one agent, but to spread the items between a set of
agents - two at minimum. This proposition is supported by Figure 2.3. In case a) the
first agent’s used volume is maximized, however the remaining load is bigger than
in case b). In such way the optimization can be distributed among pairs of agents
which are able to consume the load better than the individuals.

After allocation of tasks between agents, agents try to maximize sum of their volume
usage pair by pair which causes that sum of not allocated items volume is being
minimized until all items are loaded. This process is very suitable for the negotiation
phase of the multi-agent algorithm (Algorithm 2).

Heuristic based container loading algorithm which is mentioned in Subsection 1.1.5
and Algorithm 1 adapted for collective optimization was used as the volume us-
age maximization unit. The implementation of the CLP algorithm for individual
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Figure 2.3: Collective optimization against individual.

optimization is covered in the following Subsection 2.5.1, its adaptation to multi-
agent environment is then a part of Subsections 2.5.2 and 2.5.3 which deal with
the allocation and negotiation processes. The implementation of the universal multi-
dimensional algorithm is then captured in Algorithm 6.

2.5.1 Container loading algorithm implementation

The skeleton of the algorithm is in Algorithm 1. As stated in the related subsection
(Subsection 1.1.5) there are two points which can be implemented variously and has
an impact on algorithm’s behavior and results. In other words these points represent
heuristics of the algorithm. They are:

• choosing the free space (more precisely free maximal space, further called only
free space) where item will be put in and

• choosing the block of boxes (layers of identical boxes or the box itself).

Main heuristics are adopted from [14].

To choose a free space a measure of its distance to the container’s corner is used. For
every two points in Rn, a = (x11, . . . , x1n) and b = (x21, . . . , x2n), the distance d(a, b)
is defined as the vector of components |x11 − x21|, . . . , |x2n − x2n| ordered in non-
decreasing order. For instance, if a = (3, 3, 2) and b = (0, 5, 10), d(a, b, ) = (2, 3, 8).
For each new free space, the distance from every corner of the space to the corner
of the container nearest to it is computed and keep the minimum distance in the
lexicographical order:

d(S) = min{d(a, c), a vertex of S, c vertex of container C} (2.5.1)
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The free space and its corner with the minimum distance to any container’s corner, or
the volume of the space as a tie-breaker, is the place where the boxes will be packed.
The reason behind that decision is to first fill the corners of the container, then its
sides and finally the inner space [14]. The heuristic is further referenced as Nearest
Corner heuristic.

Once a free space has been chosen, a block of boxes is chosen. The block of boxes
means one box or putting more identical boxes beside each other to form a layer
(see Subsection 1.1.5 or Figure 1.5). Two criteria are considered to select the block of
boxes [14]:

• Best Volume - the block of boxes producing the largest increase in the objective
function. This is a greedy criterion in which the space is filled with the block
producing the largest increase in the volume occupied by boxes.

• Best Fit - the block of boxes which fits best into the free space. Distances from
each side of the block to each side of the free space are computed and ordered
in a vector in non-decreasing order. The block is chosen using again the lexico-
graphical order.

After adding a block of boxes free spaces must be update - to split spaces which are
affected and merge them when a subspace appears. Correct free space handling is a
critical part of the algorithm’s performance.

2.5.2 Allocation

The allocation phase could be implemented variously. The easiest approach is to fill
the containers one by one by the algorithm from previous Subsection 2.5.1. Another
possibility is to extend the algorithm to choose free spaces from all the agents - then
the boxes would be allocated among all agents. However, to meet the abstract Algo-
rithm 2 different implementation was chosen. Best Fit heuristic defined in previous
Subsection 2.5.1 is used in the costestI(t, a) value. Thus in every iteration a task (after
non-increasing pre-ordering) is allocated in the free space in which any block of the
box fits best. The selected free space represents the winner agent.

When non-increasing presorting of boxes is used, the preprocessing and allocation
process is actually similar to Best Fit Decreasing (BFD) algorithm for 1DBPP except
the specified Best Fit definition. Hence all that can be now designated as BFD in
multi-dimensional space.
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function delegateAll (R) begin
// leave it blank

end

function negotiate (a, R, T) begin
forall the aother : R \ a do

T′ ← T
⋃

tasks of {a, aother};
forall the boxHeuristic : de f inedHeuristics do

forall the s : free spaces of {a, aother} do
chosenSpace← best Nearest Corner free space s;

end
forall the box : T do

forall the blockO f Boxes of box that fits to chosenSpace do
chosenBlockO f Boxes← best acc. to boxHeuristic;

end
end
put chosenBlockO f Boxes to chosenSpace;
update free spaces;

end
preserve the allocation with max ∑

a′∈{a,aother}
Vused(a′);

end
end

Algorithm 6: Implementation of the universal multi-dimensional algorithm.
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2.5.3 Negotiation

The negotiation phase is the only improvement phase because the dynamic improve-
ment is omitted. The reason is that the negotiation is realized in a different way with-
out costestI and costestR computation and no reasonable delegation method was in-
vented. The problem is that the allocated boxes are usually being blocked up by
other boxes and when one is removed, no better free space, according to Best Fit
strategy (or any other), usually exists because the space just freed is naturally the
best fit. The optimization possibilities are thus limited in this case.

The method is using Algorithm 1 as described in Subsection 2.5.1 except that it is
extended to perform on a set of containers (agents). When a free space is selected
according to the nearest corner heuristic the best from all agents is chosen. Then
block of boxes are sought inside this space. No clear statement can be said about
which heuristic of choosing the block of boxes from the two introduced - Best Volume
and Best Fit - is better. Sometimes Best Fit is better sometimes Best Volume is better
depending on the set of input items. One can even invent many other heuristics and
it may bring the best result on certain instances. The best strategy is to run many
different heuristics on the same sub-problem and choose the best result. And that is
exactly how the optimization in this case works.

Every pair of the agents is negotiating by unloading all their boxes which are
then, together with the remaining (not allocated) items, reallocated between the two
agents in many ways according to various input heuristics. Each pair has an unique
set of boxes and so different heuristic can be successful in different negotiations. The
allocation with the best used volume of the two agents is preserved to other iter-
ations. In such way the volume of remaining boxes is being decreased while the
optimization is successful.

The implemented box choosing heuristics are:

• Best Fit - see Subsection 2.5.1

• Best Volume - see Subsection 2.5.1

• Randomized Best Volume - similar to Best Volume, but the block of boxes is
chosen randomly from n best (i.e. biggest that fit) blocks with probability

prbl =
V(bl)

∑ V(bl′)
bl′∈Bn

i.e. the probability corresponds to the volume ratio in the set of n best blocks.

A nice thing about this model is that one can add new heuristics and it can im-
prove the results’ quality (it can’t be worsened). Even not very good heuristic can
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bring some improvement because the negotiation is processed many times and so
the probability that it can find the best solution of a sub-problem is quite high. Good
randomization in box choosing is a challenge that could be realized in a future im-
provement of the algorithm.





3 EXPERIMENTS

In this chapter experiments and interesting results are discussed. Results on the
benchmark data serve us to assess and compare the introduced approaches. All
gained results can be found on the attached CD. Inside the chapter, results from
different tables are put together to see differences between algorithms or algorithms’
settings. I have chosen only some benchmark data instances - usually the biggest
where margins are more visible - or averages on the same data classes. To compare
the quality of solutions deviation from lower bound defined as:

ub− lb
lb

× 100[%] (3.0.1)

is used - ub is the solution found by a solver and lb represents the best1 lower bound
usually defined in articles from which the benchmark data originate. All experi-
ments have been run on a standard laptop with 3GB of RAM and 2,16GHz dual
core processor. The solver has been implemented as JAVA application with slight
performance optimization.

3.1 Experiments on 1DBPP

For evaluation of the multi-agent algorithm adapted on solving 1DBPP, benchmark
data from [7] were used. There are 2 classes of bin packing instances. The first class,
files binpack1 to binpack4 (problem identifiers beginning with u) consists of 120, 250,
500 or 1000 items of sizes uniformly distributed in (20,100) to be packed into bins of
size 150. The second class, files binpack5 to binpack8 (problem identifiers beginning
with t) consists of “triplets” of items from (25,50) to be packed into bins of size 100.

For the “uniform” class, the Best Known value is the one found by algorithm in the
[7]. Except for problems u120_08, u120_19, u250_07, u250_12 and u250_132, this is

1Usually many different computations of lower bounds exist and the best is the maximum of them.
2Four of them were proved as optimal by this multi-agent solution.
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also the smallest number of bins capable of accommodating all the items (i.e. the
lower bound), so the value is the proved optimum.

For the “triplets” class, the instances were constructed with a known global opti-
mum of n/3 bins, i.e. the guaranteed optimal solution has exactly three items per
bin. The “triplets” class contains decimals and a three items precisely sum to value
of 100. This is a special case and the multi-agent model is not suitable for finding
exact “triplets”. Only uniform class, which more naturally simulates real bin pack-
ing problems, was taken into account in benchmarking. The only experiment on
“triplets” shows that every time a solution worse by exactly 1 bin is found.

Table 3.1 displays results of impact of improvement strategies described in Section
2.2 on the 1DBPP biggest benchmark instances (binpack4). SolveNego represents full
heuristic algorithm (see Algorithm 3), SolveNoImpr is a variant where no improve-
ment methods are called and only allocation is performed - it corresponds to BFD
(see 1.1.2). SolveNoFinalImpr and SolveNoDynamicImpr represent cases in which no final
improvement is called and only dynamic improvement is performed and vice versa.
It shows that the dynamic improvement gives the best solution enhancement, but the
final improvement also plays its role and processed both the best results are gained.

Table 3.2 contains results of different settings of ILP based multi-agent solver, the
standard heuristic based implementation comparing to the best known solutions
when the benchmark data originated (see [7]). SolveNego represents basic heuristic
implementation (as in the previous measurement), SolveILPIter is a ILP based ne-
gotiation approach described in Subsection 2.2.5 and the last two column headers
contain variants of selection based ILP approach (see Subsection 2.2.6) where 2 or 3
agent are selected in terms of tournament selection strategy.

The heuristic approach is much faster in average and produces quite reasonable re-
sults. What is not seen in the table is that the ILP negotiation model with selection
mechanism can be very effective - it is able to find optimal solutions very quickly
(even faster then the heuristic approach), but very ineffective too - in cases when it
can’t find the optimum the MAX_ATTEMPTS value is reached and it can consume
very long time. Thus the variance of the computation time of this approach is very
high and the average value is meaningless (furthermore it depends on the value of
the MAX_ATTEMPTS constant). There is no big difference in results’ quality when
two or three agents are selected - it appears that selecting three agents could be ad-
vantageous for small instances, however it consumes much more time with larger
input data.
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Best Known SolveNoImpr SolveNoDynamicImpr SolveNoFinalImpr Solve

Instance # bins # bins time(s) # bins time(s) # bins time(s) # bins time(s)

u1000_00 399 403 0,14 401 2.28 400 3.09 399 5.51

u1000_01 406 411 0,07 408 1.49 406 3.18 406 5.64

u1000_02 411 416 0,06 413 1.82 412 3.17 411 5.65

u1000_03 411 416 0,05 414 1.51 414 3.38 412 5.89

u1000_04 397 402 0,04 400 1.51 398 3.33 398 6.00

u1000_05 399 404 0,04 402 1.80 400 3.18 400 5.98

u1000_06 395 399 0,03 397 1.20 395 3.14 395 5.40

u1000_07 404 408 0,16 406 1.22 404 3.33 404 5.94

u1000_08 399 404 0,02 402 2.04 400 3.32 399 5.91

u1000_09 397 404 0,02 401 1.60 400 3.43 398 6.58

u1000_10 400 404 0,01 402 1.36 400 3.36 400 6.07

u1000_11 401 405 0,01 404 1.69 401 3.45 401 5.89

u1000_12 393 398 0,02 395 1.31 393 3.43 393 5.65

u1000_13 396 401 0,02 399 3.62 397 3.54 396 5.89

u1000_14 394 400 0,02 397 1.41 395 3.46 395 5.99

u1000_15 402 408 0,02 405 1.40 404 3.70 403 6.21

u1000_16 404 407 0,01 406 1.36 404 3.67 404 6.03

u1000_17 404 409 0,02 406 0.98 406 3.34 405 6.49

u1000_18 399 403 0,01 401 1.12 399 3.45 399 6.10

u1000_19 400 406 0,02 402 2.78 402 3.50 400 6.00

400.55 405.4 0.04 403.05 1.67 401.5 3.37 400.9 5.94

Table 3.1: Comparison of the 1DBPP algorithm’s improvement strategies.

Best SolveNego SolveILPIter SolveILPSelect2 SolveILPSelect3

data /Obins /Obins %dev /Ot(s) /Obins %dev /Ot(s) /Obins %dev /Ot(s) /Obins %dev /Ot(s)

bp1 49.15 49.3 0.35 0.03 49.1 -0.1 1.09 49.05 -0.2 0.2* 49.05 -0.2 0.53*

bp2 101.7 101.95 0.34 0.15 101.8 0.1 13,75 101.8 0.1 11.08* 101.6 -0.1 74.82*

bp3 201.2 201.55 0.17 0.75 201.3 0.05 55.69 201.2 0 9.7* 201.35 0.07 21.88*

bp4 400.55 400.9 0.09 5.94 400.55 0 187.46 400.6 0.01 14.02* 400.85 0.07 108.3*

/Odev 0.24 0.04 0.03 0.035

Table 3.2: Comparison of the 1DBPP approaches.
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3.2 Experiments on 2DBPP

The goal is to assess the presented algorithms for 2DBPP test instances provided
by Berkey and Wang [2] and Martello and Vigo [12], consisting of ten classes of
problems. In each problem class there are 50 instances: 10 with 20 rectangles, 10
with 40 rectangles, 10 with 60 rectangles, 10 with 80 rectangles, and 10 with 100
rectangles. Items rotation is not allowed in the basic version. Problem classes I–VI
were proposed by Berkey and Wang [2], while classes VII–X are due to Martello and
Vigo [12].

The results gained on the benchmark data are presented in Table 3.3 for Berkey and
Wang instances and Table 3.4 for classes from Martello and Vigo. In the tables ap-
proaches for solving 2DBPP introduced in Section 2.3 and Section 2.5 are compared
to the best known solutions. The best known solutions were obtained from [21]. The
article was not available at the time of this work, however the results are accessible
on the project’s website and are said to be the state of the art because their Space
Defragmentation algorithm outperforms all leading meta-heuristic approaches by a
significant margin 3. All values are compared to lower bounds and the deviation is
presented. If the deviation is 0 the value is also the proved optimum.

Shel fNegoNego is the two phase multi-agent solver which uses only heuristic based
multi-agent sub-solvers to optimize the task. It is compared also to Shel fKpIlp where
the first phase - shelves creation - is provided by solving of Knapsack Problem (refer
to Subsection 1.1.3) defined as ILP program. The second phase is then when done
by the SolveILPIter from previous Section 3.1. Both phases are supposed to generate
better partial solutions4 than by Shel fNegoNego. Other combinations were tested too
- Shel fNegoIlp and Shel fKpNego - but the Shel fKpIlp produces naturally the best results
on average in shelf-based implementations.

Universal represents the Universal multi-dimensional solver from Section 2.5. The
universal solver contains feature that builds block of boxes of same dimensions
which helps to use free space better. It was inspired by container loading which
benchmark data are structured differently and the same boxes are one of the prob-
lem’s supposition. However it is not in the bin packing benchmark instances. The
items are generated randomly and there are no (or very few) items of the same di-
mension. Thus the solver’s power is slightly weaken in the pure bin packing envi-
ronment. The second feature which is not used in benchmarking is items rotations
which is prohibited in basic version. It is the same in 3DBPP in Section 3.3.

3In other articles I found worse results so it is very probable.
4Both shelve creation implementations were compared as strip packing instances and KP per-

formed better than Sel fNego, however the results have not been recorded. The comparison of
SolveILPIter and SolveNego is in Table 3.2.
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LB Best Known Shel fNegoNego Shel fKpIlp Universal

Class n /Obins /Obins %dev /Obins %dev /Ot(s) /Obins %dev /Ot(s) /Obins %dev /Ot(s)

class1 20 7.1 7.1 0 7.7 8.45 0.02 7.5 5.63 0.05 7.1 0 0.29

40 13.4 13.4 0 14.2 5.97 0.04 13.9 3.73 0.13 13.4 0 0.35

60 19.7 20 1.52 21.1 7.11 0.04 20.6 4.57 0.06 20.1 2.03 0.79

80 27.4 27.5 0.37 28.8 5.11 0.04 28.5 4.01 0.18 27.5 0.37 1.91

100 31.7 31.7 0 33.8 6.62 0.05 33 4.1 0.21 31.8 0.32 2.14

/Odev 0.38 6.65 4.41 0.54

class2 20 1 1 0 1.4 40 0 1 0 0 1 0 0

40 1.9 1.9 0 2.1 10.52 0 2 5.26 0 2 5.26 0.03

60 2.5 2.5 0 3.1 24 0.01 2.8 12 0.01 2.6 4 0.07

80 3.1 3.1 0 4 29.03 0.01 3.3 6.45 0.02 3.3 6.45 0.16

100 3.9 3.9 0 4.9 25.64 0.01 4 2.5 0.02 4 2.5 0.23

/Odev 0 25.84 5.26 3.66

class3 20 5.1 5.1 0 5.6 9.8 0 5.4 5.9 0.01 5.2 1.96 0.05

40 9.2 9.3 1.09 10.1 9.78 0.01 10.1 9.78 0.03 9.6 4.35 0.29

60 13.6 13.9 2.21 15.2 11.76 0.02 14.7 8.1 0.06 14 2.94 0.81

80 18.7 18.9 1.07 20.4 9.1 0.02 20.2 8.02 0.13 19.1 2.14 1.89

100 22.1 22.3 0.91 23.9 8.14 0.05 23.8 7.69 0.22 22.7 2.71 3.26

/Odev 1.05 9.72 7.89 2.82

class4 20 1 1 0 1.2 20 0 1 0 0 1 0 0

40 1.9 1.9 0 2 5.26 0.01 2 5.26 0.01 1.9 0 0.03

60 2.3 2.5 8.7 2.9 26.1 0.01 2.7 17.39 0.02 2.5 8.7 0.12

80 3 3.2 6.67 3.9 30 0.01 3.4 13.33 0.04 3.3 10 0.27

100 3.7 3.7 0 4.4 18.92 0.02 4 8.11 0.04 3.8 2.7 0.44

/Odev 3.07 20.05 8.82 4.28

class5 20 6.5 6.5 0 6.9 6.15 0 6.7 3.08 0.01 6.6 1.54 0.09

40 11.9 11.9 0 12.4 4.2 0.01 12.5 4.2 0.04 11.9 0 0.42

60 17.9 18 0.56 18.6 3.91 0.01 18.9 5.59 0.2 18.1 1.11 1.45

80 24.1 24.7 2.49 25.6 6.22 0.04 25.7 6.64 0.3 24.7 2.49 3.1

100 27.9 28.1 0 30.1 7.89 0.05 29.8 6.81 0.4 28.6 2.51 5.58

/Odev 0.75 5.68 5.43 1.53

class6 20 1 1 0 1 0 0 1 0 0 1 0 0

40 1.5 1.6 6.67 2 33.33 0 2 33.33 0.01 1.9 26.67 0.05

60 2.1 2.1 0 2.5 19 0.01 2.3 9.52 0.02 2.2 4.76 0.12

80 3 3 0 3.1 3.33 0.02 3 0 0.04 3 0 0.23

100 3.2 3.4 6.25 3.9 21.9 0.02 3.5 9.38 0.06 3.5 9.38 0.72

/Odev 2.58 15.52 10.45 8.16

Table 3.3: Results on 2DBPP benchmark data Berkey and Wang class 1-6.
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LB Best Known Shel fNegoNego Shel fKpIlp Universal

File n /Obins /Obins %dev /Obins %dev /Ot(s) /Obins %dev /Ot(s) /Obins %dev /Ot(s)

class7 20 5.5 5.5 0 5.8 5.45 0 5.8 4.45 0 5.5 0 0.06

40 10.9 11.1 1.83 11.7 7.34 0.01 11.5 5.5 0.01 11.2 2.75 0.48

60 15.6 15.8 1.28 16.6 6.41 0.02 16.4 5.13 0.01 15.9 1.92 1.37

80 22.4 23.2 3.57 23.8 6.25 0.03 23.6 5.36 0.15 23.2 3.57 5.22

100 26.9 27.1 0.74 27.7 2.97 0.07 27.9 3.72 0.05 27.3 1.49 8.33

/Odev 1.49 5.69 5.03 1.95

class8 20 5.8 5.8 0 6.4 10.34 0 6.1 5.17 0.01 5.8 0 0.07

40 11.2 11.3 0.89 12.6 12.5 0 11.9 6.25 0.06 11.4 1.79 0.56

60 15.9 16.1 1.26 17.3 8.81 0.01 16.9 6.29 0.11 16.2 1.89 1.73

80 22.3 22.4 0.45 23.9 7.2 0.03 23.3 4.48 0.29 22.5 0.9 4.12

100 27.4 27.8 1.46 29.9 9.12 0.04 28.4 3.65 0.57 27.8 1.46 10.03

/Odev 0.81 9.59 5.17 1.21

class9 20 14.3 14.3 0 14.4 0.7 0 14.4 0.7 0.13 14.3 0 0.31

40 27.8 27.8 0 27.8 0 0.01 28 0.72 0.76 27.8 0 2.8

60 43.7 43.7 0 43.9 2.8 0.03 43.9 0.46 3.02 43.7 0 12.1

80 57.7 57.7 0 57.7 0 0.07 57.8 0.17 6.83 57.7 0 34.4

100 69.5 69.5 0 69.8 0.43 0.13 69.7 0.29 12.78 69.5 0 70

/Odev 0 0.32 0.47 0

class10 20 4.2 4.2 0 4.7 11.9 0 4.6 9.52 0.01 4.3 2.38 0.04

40 7.4 7.4 0 8.1 9.46 0 7.8 5.41 0.02 7.4 0 0.19

60 9.8 10 2.04 11.2 14.29 0.01 10.7 9.18 0.08 10.3 5.1 0.69

80 12.3 12.8 4.07 14.1 14.63 0.02 13.7 11.38 0.07 13 5.7 1.25

100 15.3 15.9 3.92 17.4 13.73 0.03 16.5 7.84 0.08 16.3 6.54 2.2

/Odev 2.01 12.8 8.67 3.94

Table 3.4: Results on 2DBPP benchmark data Martello and Vigo class 7-10.
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From results it can be said that shelf based approach with only heuristic realization
(Shel fNegoNego) does not produce very high-quality results. The reason is that loss of
optimality sums on each level - the result of the first are non-optimal shelves which
are then placed in a non-optimal way. On the other hand, shelf-based algorithms
are not supposed to be the best. Its strength is in its simplicity and in the meeting
the guillotine cutting requirement (see Subsection 1.1.3). Taken this into account
this the results are, except for some instances, quite reasonable in comparison to the
Shel fKpIlp, which represents one of the top shelf-based algorithm’s implementations,
and with very good solving time which could be more apparent on bigger instances.

The universal multi-dimensional solver performed well when time was not taken
as the main criterion. It is not able to compete with the state of the art best algo-
rithm [21], but the difference is not big. The solver can be, furthermore, easily en-
hanced by adding new reasonable box choosing heuristics. Only on some Berkey
and Wang instances with small number of bins the margin is more visible. It is be-
cause the negotiation is very limited or even suppressed in instances with 1 or 2 bins
as a solution and only allocation is responsible for the quality of the solution. The ap-
plication of heuristics on different items’ subsets - which is the optimization - does
not occur. These instances are generally not suitable for any multi-agent solver and
should be addressed by explicit algorithms like for container loading problem.

3.3 Experiments on 3DBPP

For the 3D Bin Packing Problem, 320 instances generated by Martello et. al. ([10])
were used. This set of instances consists of 8 classes each class further divided into
4 groups. Every group consists of 10 instances with same number of items - the
number of items per instance in the 4 groups are 50, 100, 150 and 200, respectively.
Rotations of items is prohibited. The dataset, beside lower bounds values, also con-
tains best known solutions which were probably achieved by the exact 3DBPP algo-
rithm presented in [10]. Because I did not found any other results on these datasets
I use it for comparison. Beside this, state-of-the-art best results were obtained from
a website of a project related to [21] as for 2DBPP. Results of the experiments are in
Table 3.5.

StripNegoNegoNego represents the three phase 3DBPP implementation with only
heuristic optimization (no ILP is used). And Universal is the universal multi-
dimensional solver this time applied on 3DBPP.

Same as for 2DBPP - the universal multi-dimensional solver performs well with
quite high computation time. The reason may be non-optimal implementation of
free space managing (cutting of unused free spaces could be a solution), or just too
complex algorithm inside negotiation process. More lightweight version of container
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LB Best Known 2003 Best Known StripNegoNegoNego Universal

Class n /Obins /Obins %dev /Obins %dev /Obins %dev /Ot(s) /Obins %dev /Ot(s)

class1 50 12.5 13.8 10.4 13.4 7.2 14.2 13.6 0.22 13.5 8 2.68

100 25.1 27.4 9.16 26.6 5.98 28.1 11.95 0.18 26.9 7.17 17.4

150 34.7 37.9 9.22 36.5 5.19 39.2 12.97 0.58 37 6.63 61.95

200 48.4 52.9 9.3 50.9 5.17 53.8 11.16 1.7 51.2 5.79 143.56

/Odev 9.52 5.88 12.42 6.9

class2 50 12.7 14.1 11.02 13.8 8.66 15.1 18.9 0.02 14.1 11.02 3.29

100 24.1 26.4 9.54 25.6 6.22 28.3 17.42 0.14 25.9 7.47 17.87

150 35.1 38.7 10.26 36.8 4.84 41.6 18.52 0.49 37.3 6.27 59.36

200 47.5 51 7.37 49.5 4.21 55.3 16.42 1.39 49.9 5.05 131.79

/Odev 9.55 5.98 17.82 7.45

class3 50 12.3 13.6 10.57 13.3 8.13 14.6 18.7 0.01 13.6 10.57 3.11

100 24.7 27.3 10.53 25.9 4.86 28.7 16.19 0.08 26.2 6.07 21.13

150 36 39.5 9.72 37.6 4.44 40.9 13.61 0.22 37.7 4.72 49.95

200 47.8 51.6 7.95 50.1 4.81 55.1 15.27 0.51 50.2 5.02 108.74

/Odev 9.69 5.56 15.94 6.6

class4 50 28.9 29.6 2.42 29.4 1.73 29.9 3.46 0.02 29.5 2.08 2.35

100 57.6 59.2 2.78 59 2.43 59.9 3.99 0.21 59 2.43 14.96

150 85.2 87.5 2.7 86.8 1.88 87.9 3.17 0.79 86.8 1.88 44.99

200 116.3 119.5 2.75 118.8 2.15 120.2 3.35 2.33 118.8 2.15 117.34

/Odev 2.66 2.05 3.49 2.13

class5 50 7.4 10 35.14 8.3 12.16 9.4 27.03 0.01 8.4 13.51 3.01

100 12.9 17.6 36.43 14.9 15.5 16.4 27.13 0.06 15.2 17.83 21.51

150 17.4 24 37.93 19.9 14.37 22.7 30.46 0.17 20.5 17.82 86.15

200 24.4 31.7 29.92 27.2 11.48 30.6 25.41 0.38 27.4 12.3 149.27

/Odev 34.85 13.38 27.51 15.36

class6 50 9.1 10.3 13.19 9.8 7.69 11.1 21.98 0.01 10 9.89 1.59

100 17.5 20.2 15.43 19 8.57 21.2 21.14 0.06 19.2 9.71 12.52

150 26.9 32.3 20.07 29.2 8.55 32.1 19.33 0.19 29.3 8.92 35.37

200 35 41.9 19.71 37.5 7.14 41.9 19.71 0.43 37.9 8.29 69.05

/Odev 17.1 7.99 20.54 9.2

class7 50 6.4 9.2 43.75 7.4 15.63 8.6 34.38 0.01 7.4 15.63 2.42

100 10.9 15.5 42.20 12.2 11.93 14.4 32.11 0.07 12.5 14.68 19.94

150 13.7 19.9 45.26 15.4 12.41 17.6 28.47 0.19 15.9 16.06 57.68

200 21 28.5 35.71 23.4 11.43 27.1 29.05 0.45 23.9 13.81 128.99

/Odev 41.73 12.85 31 15.04

class8 50 8.3 10.1 21.69 9.2 10.84 10.4 25.3 0.01 9.4 13.25 2.87

100 17.6 21.4 21.59 18.9 7.39 21 19.32 0.08 19.1 8.52 21.69

150 21.3 28.3 32.86 23.7 11.27 26.9 26.29 0.24 24.2 13.62 76.97

200 26.7 35 31.09 29.5 10.49 33.2 24.34 0.49 30 12.36 200.41

/Odev 26.81 10 23.81 11.94

Table 3.5: Results on 3DBPP benchmark data Martello and Vigo [10].
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loading optimization algorithm would speed up the multi-agent solver a lot. How-
ever the computation time is still tolerable and with respect to the results it is worth
using. Blocks of boxes as well as boxes rotation features are not applied in bench-
mark as stated in Section 3.2. In real versions of problems the solver could perform
even better.

As expected, the three-phase implementation is not very successful with respect to
quality of results, however its main strength is the computation time and in an envi-
ronment where solutions must be generated very quickly it is supposed to be useful.
The improvement of the approach would be better strips and shelves filling - e.g
similar to floor ceiling algorithm on Figure 1.3. However it is not easy to integrate it
into the allocation and negotiation model and it would cause problem-specific modifi-
cations of the abstract algorithm.





4 CONCLUSIONS AND OUTLOOK

This work presents an application of multi-agent solver architecture introduced
in [19] on well known Bin Packing Problem. Problematics of bin backing problem, its
variants (including container loading problem) as well as the multi-agent solver ar-
chitecture are examined in Chapter 1. Section 1.2 contains specification of the multi-
agent algorithm with separated dynamic and final improvement - delegation and ne-
gotiation - and their incremental version. Slight generalization of the algorithm that
allows to address problems differently without need of estimation removal cost - as
used in the universal multi-dimensional solver - is also explained.

Implementations of bin packing problems are discussed in Chapter 2. First, one-
dimensional bin packing problem (1DBPP) was addressed. After the simple heuristic
approach which defines estimation costs according to free space of bins optimized
version was introduced - the negotiation phase is performed by ILP optimization
which ensures that the sub-problems are solved optimally. To enhance the improve-
ment phase, fitness based selection of agents was adapted from genetic algorithm’s
principles.

Implementation of 2DBPP was inspired by shelf-based heuristic approach. Two-
phase multi-agent solver which firstly composes shelves using again optimization
based on estimation costs values minimizing the sum of heights and then uses the
solver for 1DBPP. The same procedure was adjusted to 3DBPP. It has three phases
each solvable by multi-agent solver with defined estimation costs minimizing values
in related dimensions.

Finally the universal multi-dimensional solver which was tested on 2DBPP as well
as on 3DBPP is discussed. It is based on collective volume optimization of couples
of agents as negotiation. The underlying optimization process is derived from con-
tainer loading algorithm of [14] using different heuristics. The best results are gained
when many different heuristics are used inside the negotiation because each heuristic
generates the best solutions on different subsets of items.

The experiments are covered in Chapter 3. Only basic version of bin packing prob-
lem was taken into account. No other constraints except dimensional and rotational



48 CHAPTER 4. CONCLUSIONS AND OUTLOOK

were taken into account. Furthermore, rotation of items is prohibited in benchmark
data so this feature as well as building blocks of same boxes is excessive in the final
implementation of the universal multi-dimensional solver with regards to testing.

In 1DBPP experiments the improvement strategies were compared and it was
proved that both phases - dynamic as well as final - are important in the optimiza-
tion process. ILP approach produced naturally better results but with worse compu-
tation time. The selection principles appeared to be successful, however they can be
ineffective too. The computation times can vary from milliseconds to tens or even
hundreds of seconds depending on iteration limits that are set. All instances except
one were proved as optimum (i.e. solutions equal to lower bounds were achieved)
which outperforms the exact algorithm of [7] from which benchmark data originates.
The heuristic approach generates slightly worse solutions but faster.

Experiments on 2DBPP revealed that the two-phase multi-agent approach can’t com-
pete with the best known solutions with regard to quality. The reason is that optimal-
ity is being lost in each of the levels and the losses are summed during the process.
However, again, the main strength could be in its computation time and in dynamic
environment where results must be generated very quickly it could be useful. The
same thing, according to gained results, can be said about the three-phase multi-
agent solver in 3DBPP.

The universal multi-dimensional solver performed well in 2DBPP benchmark in-
stances as well as in 3DBPP. The results are slightly worse then the state-of-the-art
best known solutions, but the deviation is small. Moreover, the solver can be easily
enhanced by adding new box choosing heuristics - the results then can’t be worsen,
but only improved. Good randomization in choosing box procedure would possibly
make the solver more powerful. The drawback of the implementation is the compu-
tation time which reaches more than 100 seconds per instance with 200 boxes. More
lightweight version of the volume optimization algorithm without or with better
free space handling would have to be included to speed up the solver. However one
could find the ratio of quality and time reasonable.

Future work could have two parts. In the first part the introduced implementations
could be improved trying to produce better solutions. Mainly shelves and strips op-
timization could be ensured different ways with differently defined estimation costs.
The universal multi-dimensional solver could be reimplemented to reduce compu-
tation times - either replace the volume optimization algorithm or trying to define
estimation costs and reuse the delegate and swap methods from one-dimensional
space implementation. However for the second case additional techniques in allo-
cation like shifting of allocated items or free space defragmentation would be prob-
ably needed which would make the problem even more complex. The interesting
challenge is also an application of the solver in the distributed environment where
each agent represents a computation unit (thread or process) and the whole solver
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acts as a distributed system. In implementations where the complexity of negotia-
tion method is higher than of the communication overhead (probably the universal
multi-dimensional solver) it could be beneficial.

The second branch of future work should contain adding more constraints to the
problem. In some cases it should be very easy, for instance in one-dimensional two-
constraint bin packing (the one-dimensional bin has together the capacity constraint
also an additional one e.g. weight constraint) one could use the basic 1DBPP model
adding the second constraint to the estimation costs resulting in sums or products.
In more complex cases the solution would not have to be so easy and additional
research would be needed.





A CD ATTACHMENT

The attached CD contains this data structure:

• data - benchmark data,

– 1dbpp - data from [7],

– 2dbpp - data from [2, 12],

– 3dbpp - data from [10],

– clp - container loading problem benchmark data from [4],

• results - results obtained from different implementations or configurations,

– 1dbpp - results gained by mas-1bpp,

– 2dbpp - results gained by mas-2bpp and mas-universal-bpp,

– 3dbpp - results gained by mas-3bpp and mas-universal-bpp,

– clp - results gained by CLP-constructive-algorithm,

– bestKnown - best known results from [21],

• text - source text of the final pdf,

– container_loading - text for container loading problem sub-project,

– mas_bpp - LYX sources of the final pdf,

• workspace - Eclipse JAVA workspace (can be imported to Eclipse) containing
standard Eclipse projects:

– 3D-vis-framework - framework for visualization boxes in a container us-
ing JME3 (JAVA based game engine),

– alite-mvn - a software toolkit helping with particular implementation
steps during construction of multi-agent systems,
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– CLP-constructive-algorithm - implementation of container loading algo-
rithm from [14],

– CLP-main - test of CLP-constructive-algorithm including visualization,

– mas-1bpp - multi-agent solver implementation for 1DBPP,

– mas-2bpp - two-phase multi-agent solver implementation for 2DBPP,

– mas-3bpp - three-phase multi-agent solver implementation for 3DBPP,

– mas-bpp-benchmarks - testing of all ma-solver implementations,

– ma-solver - abstract multi-agent solver,

– ma-solver-vrp - original multi-agent solver from [18] applied on VRP,

– mas-universal-bpp - the universal multi-dimensional solver implementa-
tion.

• horkyada_diploma_2012.pdf - the final pdf.
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