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Motion Planning for Formations of Mobile

Robots
and Unmanned Aerial Vehicles

Department of Cybernetics

Supervisor: Ing. Vojtěch Vonásek
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Abstract

This thesis deals with the motion planning for formations of robots and helicopters,
where the task is to find a feasible (and possibly optimal) trajectory for all the enti-
ties of the formations. A Model Predictive Control (MPC) approach is used to find
the optimal trajectories considering the kinematics constraints of the formations.
The optimization is defined as a problem of Sequential Quadratic Programming
(SQP), which need considerable amount of time to solve. To speed up the opti-
mization, it is useful to provide an feasible initial solution for the SQP solver. We
propose to use the sampling-based motion planning techniques like Rapidly Ex-
ploring Random trees (RRT), for this task. The advantage of the RRT approach
is, that the kinematics motion constraints are considered during construction of
the initial trajectory. This helps the SQP solver to find the trajectory in a less
amount of time.

Abstrakt

Diplomová práce se zabývá plánováńım pohybu pro formace robot̊u a he-
likoptér, jehož účelem je nalézt uskutečnitelnou (a pokud možno optimálńı)
trajektorii pro veškeré entity formace. Model Prediktivńıho ř́ızeńı “Mod-
ele Predictive Control” (MPC) je použit k nalezeńı optimálńı trajektorie
uvažuj́ıćı kinematická omezeńı formace. Optimalizace je definována jako
problém Sekvenčńıho kvadratického Programováńı “Sequential Quadratic
Programming” (SQP), které vyžaduje značné množstv́ı času k nalezeńı
řešeńı. Aby byla tato optimalizace urychlena je vhodné inicializovat SQP
proveditelným řešeńım. Pro tuto úlohu zde předkládáme vzorkovaćı tech-
niky plánováńı pohybu jako jsou Rychle náhodně rostoućı stromy “Rapidly
Exploring Random Trees” (RRT). Výhodou RRT př́ıstupu je, že kinemat-
ická omezeńı jsou uvažována při konstrukci inicializačńı trajektorie. To
může pomoci SQP k nalezeńı trajektorie v kratš́ım čase.
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Chapter 1

Introduction

Formations of mobile robots are becoming more interesting in these days. The
formations are groups of mobile robots, which try to establish a predefined ge-
ometric shape while solving a given task. A contribution of robot formations is
studied in these days, especially how to make diverse activities easier. The ap-
plications of mobile robot formations can be found in various areas like search
& rescue missions [33], airport snow shoveling [9, 29] or load transportation [36].
The Figure 1.1 shows an example of the snow shoveling task in an experimental
laboratory environment.

Figure 1.1: Example of autonomous snow shoveling in a laboratory environment.

One of the crucial tasks in the area of the mobile robot formations is the
motion planning. The motion planning deals with finding a feasible trajectory for
the individual robots in the formation from a given initial location to a desired
goal region. As the robots have to keep the predefined distances in the formation,
these constraints have to be considered in the motion planning. To decrease the
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energy consumption of the robots, it is required to a find optimal trajectories
for the robots, rather than non-optimal ones. Finding the optimal trajectories
however requires considerable amount of time, which is not preferable for real time
applications. One of the approach to speedup finding the optimal trajectories is
using a suitable and feasible initial solution for the optimization technique. This
is studied in the presented thesis.

To find the initial solution, we employ sampling-based motion planning meth-
ods, which are widely used in robotics. After the initial trajectory is obtained
from the sampling-based planner, it is passed to the optimization process. As the
Model Predictive Control (MPC) is used for the optimization, the trajectories can
be found in both static and dynamic environments.

Map

Motion model

Collision
system

RRT/PRM

MPC→SQP

driving

LeaderProblem

?

?

?
?

?
?

Formation

Figure 1.2: The hierarchy of the motion planning task for formation of mobile
robots.

This thesis is extension of our previous work [38], where the sampling-based
methods (Rapidly exploring Random Tree) for motion planning of a single robot
were studied. On the base of these knowledge the direction of interest was aimed
to the motion planning of mobile robots formations. The Figure 1.2 shows the
combination of used “modules” as a system suitable for the task of motion planning
of mobile robots formations. Particular parts of the system were designed and
implemented into a framework.

First window Problem shows input parameters of the motion planning process,
where an initial position, a goal position and a map is known. The task of the
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system is to find motions for the individual robots in the formation from the
initial position to the goal position. The map is used in the collision system
for a Motion model to prevent a crash with the obstacles in the environment.
All of those basic blocks are used to create an initial trajectory for a single robot
by the RRT/PRM module. Next, the trajectory is used for Leader motion
optimization, and this optimized trajectory is used for Formation driving. For
the formation driving, a combination of Leader-Follower [6] approach and MPC is
employed. Hence, only a one trajectory for the leader robot needs to be provided
by the motion planning module (RRT/PRM).

1.1 Organization of the Thesis

The thesis is organized in the following way. In the next section, the used notation
and specification of the used robots is described. The methods for finding the
initial trajectories for a single robot are described in the Chapter 3. The main
part of this chapter deals with sampling-based methods, which are suitable to
find the trajectories for robots considering their motion constraints. To use these
method for finding a trajectories for the whole formation, the Leader-Follower
approach is employed, which is described in the Chapter 4. The problem of finding
optimal trajectories for the whole formation under the Leader-Follower approach
is described in the chapter 5.
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Chapter 2

Motion preliminaries

The thesis deals with motion planning of formations of mobile robots. For this
purpose, we need to define the models of the used robots, as well as the notation of
configuration space, which is used in Chapter 3 to explain sampling-based motion
planning methods.

2.1 Configuration space

The Configuration space is an abstraction space, also know as a C-space or simply
C [22], which is frequently used in path planning of complex robots with many
degrees of freedom (DOF). The dimension of C is equal to the number of DOFs of
the robot. In this thesis, we use car-like robots moving in the plane, which can be
described by a configuration q ∈ C, where q = (x, y, φ)T . Then C = R2 × S1 which
means that the configuration space is composed from a translations x, y ∈ R and
a rotation φ ∈ 〈−π, π) = S.

The obstacles define the obstacle region, where the robots cannot move

Cobst ⊆ C. (2.1)

For its definition is necessary to know a world W . In this world an obstacle
O ⊂ W and a rigid body robot A ⊂ W are contained. The robot occupy the world
in configuration q ∈ C which implies that A(q) ⊂ W . Then the obstacle region
can be expressed as

Cobst = {q ∈ C|A(q) ∩ O 6= ∅}. (2.2)

On the other side a free space is another part of the configuration space in
which the robot is not in a collision with any obstacle and it is denoted as

Cfree = C\Cobst. (2.3)
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If the C is a topological space and Cobst is a closed set, this is subsequent of that
the O and A is closed set, then the Cfree is open space. This definition implies
every configuration of robot arbitrarily close to an obstacle until it is in Cfree. If
the robot is close enough to an obstacle, it means A touches O

int(O) ∩ int(A(q)) = ∅ ⇔ O ∩A(q) 6= ∅, (2.4)

where int(O) means the interior of the set O, then q ∈ Cobst.
A motion of a robot in the world W can be computed as a path in the corre-

sponding C-space [21]. The method which find the trajectories directly using the
configuration space are more general, and usually they can solve motion planning
for various robotic systems. However, the configuration space in not known in
advance — it needs to be constructed in order to find a path in it. While the
configuration space can be built for simple robots with low DOFs by a brute force
(checking all possible states of robots and classifying them as free or non-free),
this approach cannot be used for more complex systems. As the dimension of
the configuration space grows exponentially with the number of DOFs, a different
technique has to be used to find a path in that space. This is solved in sampling-
based motion planning methods, which try to cover the Cfree by random samples.
These methods are described in the Chapter 3.

2.2 Motion Model

Motion model describes how the robot moves according to a control input u ∈ U ,
where U is the set of all possible inputs. For example, the control inputs u for
differential-drive robots can be a velocity of left and right wheels. Motion of a
robot can be described by the differential equation

q̇ = f(q, u) (2.5)

as a two parameters function, where the first parameter is a position and the
second parameter is an input u ∈ U . By integration of equation (2.5), over the
time interval T , the final position of the robot is computed:

q(T ) = qinit +

∫ T

0

f(q, u)dt. (2.6)

The motion models are used in motion planning methods to find motions, which
are feasible for the robots. Moreover, planning methods considering the motion
models can provide control inputs to drive the robot along a planned path.
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2.2.1 Car-like robot motion model

The car-like robots are widely used in robotics. The robots are controlled by
forward speed v and steering angle ψ. The car-like robots move along trajectories
with curvature K = tanψ

L
, where L is the distance between front and rear wheels.

In this thesis, we assume, that the robots are controlled directly by velocity and
curvature, hence u = [v,K]. Configuration q of a robot is described by its position

in the configuration space q =
[
x y φ

]T ∈ C, where x and y denotes its position
in R2 and φ is heading angle from axis x. Motion of car-like mobile robots is

ẋ(t) = v(t) cosφ(t),

ẏ(t) = v(t) sinφ(t),

φ̇(t) = v(t)K(t).

(2.7)

All parameters in the previous equations are time depended. The robots are con-
trolled in discrete interval of length ∆t. During that timestep, the velocity and the
curvature are constant which allows to use analytically precomputed integration
to obtain the next state qn = [x, y, φ]T from initial state q0 = [x0, y0, φ0]

T , where

φ

(x, y)

x

y ψ

L

v

Figure 2.1: Car-like model
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φ = vT cosφ+ φ0

x =

 vT cosφ+ x0 for K = 0

1

K
[sin(vKT + φ0)− sinφ0] + x0 for K 6= 0

y =

 vT sinφ+ y0 for K = 0

1

K
[cos(vKT + φ0)− cosφ0]− y0 for K 6= 0

(2.8)

2.3 Collision detection

Important part of motion planning algorithms is a system for collision detection,
where the task is to report whether a given trajectory (or its part) collide with
an obstacle. Two types of collision detection can be realized: a) discrete and
b) continuous. In the discrete collision detection, the trajectory is discretized
and collisions are computed only in the discretized positions. The advantage of
this approach is, that is can be implemented for arbitrary types of robots and
obstacles. However, some collisions can be missed, if the discretization is too rough.
In the continuous collision detection, the collisions are computed analytically for
the whole trajectory. This approach is usually slower than the discrete collision
detection and often it requires to use only a predefined types of trajectories (e.g.
a circular ones) and/or limited types of obstacles (e.g. only boxes or circles).
However, the continuous detection can prevent cases visualized on Figure 2.2,
where discrete detection can fail.

To speed up the collision detection, we use box representation of the obstacles
and the robot is represented as a single circle with radius r. This allows to compute
analytically the collision detection, moreover, it allows to compute the distance
between the robot and the individual obstacles. This distance is used in the
optimization technique as one part of the objective function.
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Figure 2.2: Successful and unsuccessful collision detection. Collision free maneuver
(left). Discrete collision detection with low discretization step (middle). Discrete
collision detection with higher discretization step. Although the discrete states on
the trajectory are collision free, the trajectory goes through the wall (right).
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Chapter 3

Motion planning

In this chapter, motion planning algorithms in static environments will be pre-
sented. The task of the motion planning is to find a feasible trajectory or path for
a mobile robot from an initial position to a desired target region. A trajectory is
feasible, if a robot moving along it does not collide with the obstacles. The target
region can be defined as a point g ∈ C with a tolerance radius rg. Every point in
this region is a good solution, but better solution is closest to the point g.

In the motion planning problem, two terms describing the motion can be used:
path or trajectory. In this thesis both terms path and trajectory are used with
different meaning which can make difference between path planning and trajectory
planning. Differences between those two terms are the following.

Path is a sequence of points p = (q1, . . . , qn) where qi ∈ Cfree defining where the
robot should move. However, the path does not describe how it should move. The
path can be continuous or discrete. In this thesis, we use the discrete path. The
second important propery of the path is, that it can be found without considering
the motion model of the robot. Let consider Fig. 3.1(a). Such a path is feasible
for a point robot, however, it may not be traversable for a car-like robot with a
limited curvature.

Trajectory is a sequence t = (q1, u1, t1, . . . , qn, un, tn), which contains free con-
figurations qi ∈ Cfree and control inputs ui, which define how to move between the
confiugrations. Moreover, the trajectory is parametrized by a time ti to enable
controlling the robot.

The difference between the path and trajectory is visualized on Fig. 3.1(a) and
3.1(b).
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qgoal

qinit

(a) path

t1 t2
t3 t4

t5

t6
t7t8

t14t13t12
t11

t10

qgoal

qinit(t0)

(b) trajectory

Figure 3.1: Difference between path and trajectory. In thesis the path will be
marked as a straight line connecting two points together and the trajectory as a
curve with a direction marker.

The chapter is focused especially to the family of methods called randomized
planners or sampling based methods, which use random samples to searching the
configuration space. The main advantage of these methods is, that they are effi-
cient to solve motion planning in high dimensional space. Moreover, the motion
models of the robots can be considered in the methods. As a price for these ability
is that the methods cannot specify an absence of nonexistent solution. Another be-
havior of these algorithms is that they do not find optimal solution and a searched
solution needs to be further optimized. Despite these facts, the sampling based
methods have been successfully used in many application, as a motion planner for
autonomous cars, unmanned aerial vehicles (UAV) [7, 40] or planetary robots [18].

The motion planning methods can be also used outside robotics. For example
in Computer Aided Design (CAD), for testing as capability of assembling parts
of designed device as dis-assembling. Another example is virtual motion planning
for computer games and animation where the planning methods are used as for
actor animation or for camera motion. Last but not least interesting place is com-
putational biology, where the motion planning is used for protein folding and/or
protein docking, process important for drug design. Here, the problem of planning
is how to find a path for docking a small protein to a large one.
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3.1 Geometric methods

Firstly invented methods for the motion planning were purely geometric. These
methods was used for path planning in known polygonal environments. Usually,
the methods build a graph of free points in the environment called RoadMap, and
find a path in the roadmap using a graph-search algorithm. Altough the methods
can be easily implemented, they do not consider the motion model of the robots.
Thus, the provide path for the robots, not the trajectories. Despite these fact, the
geometric methods are widely used in robotics. For example, thay can be used to
find path in a virtual environment.

Visibility graph First candidate of these methods is designed on principle of
building a graph with shortest distance of planed path. The graph is built by
connecting all visible corners of obstacles together. Building a graph in polygonal
environment can be obtained in O(n2) [39]. Further path planning from an initial
position to the goal position can by found by Dijkstra’s algorithm. The example
of a visibility graph is depicted on Fig. 3.2.

A disadvantage of this method is, that the planned path is too close to the
obstacles. To find paths for a circular robots, the Visibility graph can be computed
on a enlarged map. The enlarged map can be obtained by computing Minkowski
sum of the map and the circle representing the robot.

Voronoi diagram Opposite to the Visibility graph the Voronoi diagram is built
in such way, that the planned path is in maximal distance to the obstacles. Once,
the diagram is built, the path planning can be provided also by Dijkstra’s algo-
rithm. The example of the Voronoi diagram is depicted on Fig. 3.2.

Figure 3.2: Example of Visibility graph (left) and Voronoi diagram in a map. The
resulting path between two states is depicted in red.
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3.2 Probabilistic Road-Map

Sampling-based method called PRM (Probabilistic Road-Map) was introduced
by Kavraki in [16]. The method belongs to the family called Randomized Path
Planners (RPP) which use random samples to create a path from an initial to a
goal position. Principle of the PRM method is that the free configuration space
Cfree is covered by the random samples which create a set Qrand ⊂ Cfree. Samples
in this set Qrand are connected to a graph (Road-Map). Connection that passes
through the obstacle space Cobst are excluded using a discrete collision detection
algorithm. For the collision detection, libraries like Rapid [8] and Solid [37] are
often used. This step can be computationaly intensive, which can slow down the
performance of the method.

The graph (Road-Map) obtained by this method is prepared for the path plan-
ning by a graph algorithm. As an example the Dijkstra’s graph search algorithm
can be used for such a path finding.

This kind of motion planning requires a static environment. Hence, the Road-
Map is built only in the beginning of the planning. Another planning is provided
so that the nearest suitable samples are searched in the graph, this means that
the connection between the initial position and its nearest samples in graph is
provided and all the same for the goal position. Necessity of rebuilding the graph
is needed only in the environment with changes. Thats why this method is not
useful in dynamically changing environments.

The performance of the PRM method can be descreased in environment con-
taining narrow passages. A narrow passage is a such part of the environment,
which is significantly smaller than the other parts. The example of a narrow pas-
sage is depicted on Fig. 3.5. To prepare a roadmap which can provide path through
the passage, several samples has to be placed into the passage. However, as the
samples are generated randomly in the whole configuration space, the probability
of placing samples in the small passage is low. Hence, the PRM method ofter fail
on such types of environment.

Gaussian Sampler To increase the performance of the PRM algorithm on maps
with narrow passages, several methods have been proposed. An improvement of
the standard PRM method is based on choosing samples for building the Road-
Map with density of Gaussian probabilistic distribution around the obstacles [5].
It means that large open regions in the configuration space are not widely sampled
and samples are focused to the space around obstacles, which also increases the
chance to put samples into a narrow passage. Therefore the number of samples
for finding a path is smaller in comparison with standard PRM which use uni-
form sampling method. This method can improve the path planning especially in
environments with narrow passages. On the other hand, its performance can be

14



(a) Environment (b) Sampled space

(c) Built Road-Map (d) Planned path

Figure 3.3: The process of building of PRM is figured here in a know environ-
ment (a). Firstly the environment is sampled (b) and collision states (orange
points) are excluded. Next the Road-Map is built by connecting free samples
(green points) (c). Finally the path planning can be provided by a graph algo-
rithm (d). The initial qinit and the goal position are connected to its nearest
position in Road-Map.

worse on environments without obstacles (e.g. large planar rooms). The number
of wasted samples can by payed by higher computational cost. For this reason
a combination of the original PRM sampling and the Gaussian sampling [5] was
proposed.
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Randomized Bridge Builder Another improvement of the PRM method using
hybrid sampling strategies was introduced by Sun in article [34]. This method use
so called Bridge-Test and then, method called Randomized Bridge Builder (RBB)
is run. The Bridge-Test is a method where the collisional sample x ∈ C is searched
first. The next step is to search another collisional sample x′ ∈ C with distance
d to x, where d is computed from Gaussian distribution function. Finally the
middle sample q ∈ C is searched in half between x and x′. If the middle sample
q is collision free, it can be added to the Road-Map. This is why the most of the
samples are added to narrow passages and also into corners of the configuration
space C. The best behavior of this method is in combination with uniform sampling
which searches solution with minimum samples in short time.

The presented PRM methods provide good results in high dimensional configu-
ration space. However, the PRM-based methods are primarily designed for a path
planning, and they needs another boosting if the trajectory planning is required.
This is typicaly solved a by two-phase approach: first, a path is found using the
PRM method and then, the trajectory is computed from the path. While this ap-
proach is suitable for simple differential-drive robots, it cannot be used for robots
withing a formation. The reason is, that motion of the robots in the formation is
constrained by the shape of the formation as well as by the kinematics of the in-
dividual robots. As the PRM does not considred these constraints, it can produce
such a path, which cannot be physically followed by the robots.

Different sampling-based approach to find trajectories for the robots in a for-
mation is described in the next section.

3.3 Rapidly-exploring Random Trees

The rapidly Exploring Random Trees (RRT) method was created by Steven M.
LaValle in 1998 [20]. The method is widely used under the shortcut RRT or
RDT with meaning Rapidly-exploring Dense Trees. Main idea of this method is to
build a tree of feasible configurations q ∈ Cfree from an initial position qinit ∈ Cfree
through the free configuration space until the goal region is reached. The process of
building the tree is simple and it is listed in Algorithm 1. For a better imagination
the interesting points of building the tree can be seen on Figure 3.4. At the
beginning of algorithm, the root of the tree is created in the initial position qinit.
Then, a random sample qrand is generated which is used for tree growing. If the
tree is grown by state qbest, the distance δ between qbest and qgoal is measured as
shown a line 5 of Algorithm 1. Whenever the measured distance is smaller than
chosen ε, the searching is complete and solution can be returned.

The way how to grow a tree is mentioned in Algorithm 2. Firstly, the nearest
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ε qrand

qnear

qbest

qinit

δ(qbest,
qrand)

Figure 3.4: Interesting points within a process of building the RRT. A gray colored
points represent another expansion from the nearest state qnear, but its distance
to the random state qrand is grater than distance to qbest.

Algorithm 1: RRT

Input: Initial position qinit, Goal Position qgoal.
Output: Output trajectory

1 T = Initialize the tree T with root qinit
2 for i = 0 to max do
3 qrand = create random state
4 qbest = grow the tree T toward a qrand
5 if qbest ∧ δ(qbest, qgoal) < ε then
6 return extract an solution from the tree T

7 return ∅

Algorithm 2: Grow Tree

Input: Tree T , random state qrand
Output: Best state to random state qrand

1 qnear = find the nearest neighbor of a qrand in the tree T
2 qbest = pick control (qnear, qrand)
3 if qbest then
4 T → add point qbest to the tree T
5 return qbest

6 return ∅

neighbor qnear of the random state qrand is searched. The nearest state qnear is
used for further expansion, which gives the best state qbest. When the expansion
succeed, the best state qbest is added to the tree. For picking the control that
expand the nearest state qnear to the best state qbest is used in Algorithm 3. For
the expansion of the tree, all control inputs U are used: each control input ui ∈ U ,
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i = 1, 2, . . . , n, is tried for expansion of nearest state qnear. This process creates the
new set of reachable states. From this set, only the one with the shortest distance
to qrand is selected and marked as a qbest.

Algorithm 3: Pick control

Input: Near state qnear, random state qrand
Output: Best state qbest or ∅

1 dmin = δ(qnear, qrand)
2 foreach u ∈ U do
3 q = expand qnear by u
4 if q is in collision then
5 continue

6 d = δ(q, qrand)
7 if d < dmin then
8 dmin = d
9 qbest = q

10 if qbest was found then
11 return qbest

12 return ∅

For the expansion it is needed to know how to expand the state using an input
u. This is solved by using motion model of the robot. The motion model can be
implemented as mathematical expressions or in a numerical way like a physical
simulator. Each method has their advantages and disadvantages. For example,
the motion of a modular robot on a rough surface can be so complex, that is
impossible to get a sufficient solution of the mathematical expression; in such a
case, the motion can be simulated. On the other side, mathematical expression
could be more precise and fast for simple robots, like for differential drives or
car-likes. During the expansion, we use the discrete motion model (2.8).

The collision detection in the newly reached states has to be performed to
discard the unfeasible motions. Similarly to the PRM, this is done using the
dicrete collision detection.

The basic RRT algorithm is easy to implement and simple for using with dif-
ferent types of robots, which could be simple or complex to control, like mobile
robots, robotic manipulators, drones or 3D objects. The main advantage of the
RRT method is that a returned solution is sequence of control inputs, which could
be applied to the robot directly in specific time. Also the motion planning can be
provided in complex environments. On the other hand, the method can be slow
in complex environments, especially in the environments containing narrow pas-
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sages. The slowness in these environments is caused by frequent collision checking,
and also by wasting lots of samples in useless parts of environment. For this rea-
son, different improvements were proposed by adding a heuristic to the standard
method.

Goal Bias One of improvements that should speedup the standard method is the
technique using for boosting growth of the tree toward the goal qgoal. The principle
of the technique is to switch the random sample qrand to the goal position qgoal in
each k-iteration of the RRT method. Instead of switching every k-iteration, it is
better to do the substitution with a certain probability which maintain a principle
of randomness [25]. When the environment between an initial position qinit and the
goal position qgoal contains few obstacles, the output trajectory should be searched
in short time.

The modification can achieve better solution in many cases. However, its per-
formance can be worse in environments containing complex obstacles. The example
can be environment known as a bug trap which is shown on Figure 3.5. The envi-
ronment contains a narrow passage, but goal bias tries to grow the tree toward a
goal position qgoal which is opposite to the narrow passage. This decreases a chance
of finding a solution, because the goal bias attracts the tree over the obstacle.

NP
qinit qgoal

Figure 3.5: Example of a Bug Trap. The NP denote the narrow passage.

Goal Zooming Better results can return a method which is an extension of
the Goal Bias. A sticking behind obstacles is tried to remove by the following
heuristic. The principle of the technique is to select a random sample qrand from
a region around goal position qgoal with radius which changes over the time [25].
The region size is controlled by nearest sample in the tree to the goal qgoal in every
iteration, which has an effect that the tree is focused to the goal qgoal as the RRT
grow near to it.
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By adding this region, the modification should achieve better solution either
in environments with lots of obstacles. Similarly to Goal bias, the Goal zooming
can fail to solve the Bug Trap problem.

RRT-Bidirectional Another modification of the standard RRT technique is
called RRT-Bidirectional, which uses two growing trees. One is rooted in the
initial configuration qinit and the second one has root at the goal position qgoal.
Both trees are growing until the connection between them can be provided. It
occurs when one state in the first tree has a neighbor in the second tree near than
a predefined tolerance ε. The predefined tolerance ε should be small, near to zero,
which increases the searching time. Motivation for the bidirectional method was
environments with narrow passages where the previously described methods fails.

ε

qgoal

qinit

Figure 3.6: The principle of the RRT-Bidirectional. One tree grows from an
initial position qinit (blue points) and the second tree grows from a goal position
qgoal (green points). If the expanded state (red point) has a nearest neighbor
(orange point) from second tree with shortest distance than ε, the both trees can
be connected.

The technique was firstly mentioned by LaValle and Kuffner in article [24]. The
principle of method proposed in this article is following. First, the random state
qrand is generated and the first tree attempts to grown towards it with a state qi.
If the growing is successful, the nearest state is searched in a second tree toward
to the state qi with distance smaller than chosen ε. If such a state exists in the
second tree, the output trajectory is searched. If not, a second tree with the root
at qgoal is attempted to grow by state qg. On success, the nearest state in the first
tree is searched with the distance smaller than ε. If the nearest state exists, the
output path is found. Otherwise, the technique continues again by generating new
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random sample qrand.
A little different principle of the bidirectional trees growing was proposed by

Kalisiak in thesis [14]. The random state qrand is generated and toward it the
first tree TA is attempted to grow. If a state qa extending the tree TA exists, the
second tree TB is attempted to grow toward qa. If the extending state qb exists,
the distance δ between qa and qb is measured. If the distance is smaller than a
predefined ε < δ the resulting trajectory is provided. Otherwise, the trees TA and
TB are switched and the searching continues by generating new random sample
qrand.

The disadvantage of this method is in the process of connecting the trees.
Whether the motion planning is provided for a nonholonomic kinodynamic robot,
a link of the trees needn’t satisfying a constraint of the robot. This disadvantage
can be removed by an approximation function applied to the link.

RRT-Connect The next modification was proposed by Kuffner and LaValle in
article [17]. Principle of the method is in generating the random sample qrand and
toward to it is grown until the target region is reached or the random sample qrand
is reached or the tree cannot be more expanded. If the target region is not reached,
the method continues by generating the new random sample qrand. The method
quickly searches the space, therefore reaching a solution in short time is supposed.
Better behavior of the method is assumed in environment with a smaller number
of obstacles or without obstacles.

ε

qrand

qnear
qinit

Figure 3.7: Principle of method RRT Connect. If the nearest point qnear (orange
point) is searched, the following expansion (red points) is provided until the random
point (green point) is searched or the collision with obstacles has occurred.

This modification can be used in conjunction with the RRT-Bidirectional method.
Kalisiak in his thesis [14] specifies three variants of this conjunction, RRTConExt,
RRTConCon and RRTExtCon, where the Con denotes the connection presented
RRT-Connect and Ext denote the extension presented in Algorithm 1. Previously
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presented the RRT-Bidirectional method should be named as RRTExtEXt under
this notation

RRT-Blossom The previously presented method extends the tree only by one
state at each iteration. However, situations where other expanded states can
contribute to better covering the space also exists. Such an improvement was
presented by Kalisiak in [15]. The tree is not grown only by the best state qbest,
but other states are also added. The name of the method is derived from from a
flood-filling behavior, that the blossom of flower can remind. The tree growing is
controlled by regressive condition which is defined by following equation

∃q ∈ T | δ(q, qleaf ) < δ(qparent, qleaf ), (3.1)

where T is the searched tree, and δ is the distance metrics, Euclidean for example.
Thus only the states which do not contribute to searching the space are excluded. A
problem can occur, if the planing for the nonholonomic robot is provided, because
of dynamic constraints of robot. Distance between expanded states can be so
short that only the first expanded state can be added to the tree. Therefore
the method can serve only as assumption for more general method presented in
following paragraph.

RRT-BlossomVF Strategies that improve RRT-Blossom method by adding the
viability attributes to the states and edges are called RRT-BlossomVF, which
means the RRT-Blossom with Viability Focus, and it was presented by Kalisiak
in [13, 14]. The mentioned attributes of viability are {untried, dormant, live,
dead} and the transition between them can be seen on Figure 3.8. At the beginning
the states and edges are labeled as untried. After the expansion, the collision
states are labeled as dead just as edges that make a connection with their parents.
Collision free states are signed by the condition of regression (3.1), where suitable
states are signed as live and unsatisfactory states are not excluded, but labeled
as dormants. For further expansion are used only this states, which are labeled
as live. For completeness of method is necessary to say, that the propagation of
states is needed. After labeling the state, the propagation is done from the leaf to
the root through the tree. It means, that the edge that is connected to dormant

sample is labeled as a dormant too. If all edges going from state are labeled as
dormant or dead respectively, then the state is also labeled as dormant or dead

respectively.
During this propagation two types of deadlock can occur. First one, if all states

are dead, means that planner cannot find solution between initial position qinit and
goal position qgoal. The seconds case means that all nodes are labeled as dormant.
If the tree is in this type of deadlock, for further expansion the dormant states
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Figure 3.8: Transition diagram between attributes of viability. Picture was adapted
from [14].

are used either. This allows to the tree expand the states that was excluded by
regression.

From previously presented methods only this one can say that the solution of
motion planning don’t exists. Main advantage of this method is that can reuse
states that was firstly signed as unneeded which could be a contribution for finding
a solution in environments with narrow passages. Method could be used as an
improvement of the original RRT method or for improvement of the Bidirectional
RRT method. A disadvantage could be the required amount of memory used for
storing information about the states and edges, which could be problem for motion
planning of robots with lot of DOF.

RRT-Path The crucial property of the RRT method is the way of exploration
the configuration space. This exploration is caused by the nearest-neighbor rule,
where the randomly generated states attract the tree toward unexplored regions.
However, in certain situation, the exploration is not prefered. To suppres the ex-
ploration and to boost the tree gowing along a predefined path, a method called
RRT-Path was proposed in [39]. This method use a precomputed guideline and
the tree is grown near this path. As a initialization guideline for the tree grow-
ing can be used algorithm introduced in Sections 3.1 or 3.2 [39]. Guideline does
not accomplish with dynamic constraints of robot, only must be collision free.
Holonomicity of the robot is accomplished by the tree growing around this path.

Guideline is provided to the method as a sequence of points pi ∈ P , where
i = 1, 2, . . . , n. Methods works as a standard RRT technique with the goal bias
improvement, but instead of switching goal position qgoal as a random sample
qrand, the points pi from path are used. Points are selected sequentially as they are
reached. Figure 3.9 shows a possible situation of motion planning by this method.
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ε
qgoal

qinit

Figure 3.9: Principle scheme of method RRT Path. The tree (red points) is grown
around guide path (green points).

3.4 Conclusion

In this chapter, we have presented several methods for find both path and trajecto-
ries for a mobile robot. For purpose of motion planning of mobile robot formations,
where the motions of the individual robots are constrained, it seems suitable to
use the RRT method.

The RRT method considers the motion model of the robots, moreover, it pro-
vides the trajectory including the control inputs. Such a trajectory can be used to
directly control the robots. However, as the RRT provides path only for one robot,
another approach has to be used to find trajectories also for the other robots in
the formation. This is described in the next chapter.
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Chapter 4

Formations of mobile robots

Formations of mobile robots are one of the hot topics in robotics. A wide variety
of robotics applications, where the networks of mobile robots should be used,
is studied by scientists for theirs high potential of facilitation works commonly
preformed by human as well as dangerous applications too risk for human. Account
of such domains can imply search and rescue missions, 3D cooperative mapping,
agricultural coverage task, surveillance, security patrols or team of robotic vehicles
intended to by fielded as a scout unit by the army [1]. Another applications where
formations should be used are traffic control, satellite clustering or harvesting.
Furthermore the dangerous applications, where robots reduce the need for human
presence, such as the cleanup of toxic waste, nuclear power plant decommissioning,
extra-planetary exploration [28].

Certain complex environments of missions may require a different robotic ca-
pabilities. In this applications, a mixture of heterogeneous robots can actually be
easier or cheaper. An article [12] describes how the cybernetics science and robots
are used for this form of amusement. Using of formations in this area doesn’t
require special capabilities of robots, therefore their deployment should be easy.

The shape of formation often plays its role during process of investigation. For
this purpose researches frequently consider four shapes of formation, namely line,
column, diamond, and wedge, where the robots travel in shape of latter “V”. These
shapes are used especially for their strategical appearance in the previously men-
tioned applications. The shape also plays role during investigations of different
methods for controlling and stabilization of the formations. For this purpose, sev-
eral approaches with different principle were invented. A division can be provided
into two groups according to relation between the individual robots. The first
set of methods can be called centralized, which means that one robot is denoted
as leader used for driving whole formation to the target region. Other robots
only follow the leader according to the relative position to the leader. Methods
that use this scenario are Behavior-based method, Neural Networks and Leader-
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Follower concept which is used for formation control in this work. The second
set of methods are decentralized, where the robots work individually as pursuing
to hold a predefined position in formation. Approaches using this behavior are
Virtual Structure and Potential field method. The advantage of this approach is
their independence on robot leader that can fails and thus the operation success
of whole formation is aborted.

Firstly mentioned Behavior-based method is inspired from formations be-
havior in the nature, like flocking and schooling of animals [1]. Animals living in
groups have better chance to forage a food and to maximize the chance of detecting
predators by combination of their sensors. This inspiration could similarly benefit
in robotic research. Simple behaviors like collision avoidance, aggregation and dis-
persion can be combined to create a flocking behavior for group of mobile robots.
Position of the robots in the formation could be maintained relative to a leader or
their neighbors. Therefore, the method is on the edge between decentralized and
centralized behavior of the system.

Potential field is well known motion planning method for mobile robots.
An enhancement for motion planning of mobile robots formations was presented
in [2]. The approach is inspired by the way molecules “snap” into place as they
form crystals. This is provided by attachment site of each robot which can attract
other robots in the formation. The collision avoidance is kept as a repulsion
energy around the obstacles. For motion planning of whole formation is used
social potential, a potential function that respects other robots in the formation.

Another decentralized method is the Virtual structure, where the robots are
forming in a virtual rigid structure. Robot’s position in the structure is relative
to the body of the virtual structure and the points representing robot position in
structure are fixed [35]. Therefore the method does not require leader selection.
If the virtual body is moving, points keep their position respect to the reference
frame. In [35], the Virtual Structure (VS) is defined as a collection of elements
(robots) which maintain a (semi) rigid geometric relationship to each other and
to a frame of reference. Robots formed in VS with their position in space still
have some DOFs in varying their orientations. For motion of a whole formation,
first the virtual body is created — the positions of the robots withing the struc-
ture are defined. This step is followed by moving with virtual structure to a new
desired position. After that the fitting each robot to a desired point in VS is com-
puted and finally the motion with forward velocity and angular velocity computed
from desired trajectories is realized. These steps are provided in loop. The main
advantage of this approach is that robots precisely keep the formation.

A method that needs the selection of a leader robot is based on the Neural
Networks principle [11]. The leader is a key robot and only one which knows the
path to the goal. Other robots track the leader and for maintaining the formation
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a neural network is used. In the formation, each robot is distinguished by different
color and equipped with a camera for tracking the other robots. Every robot
has its color unique and thus the method is inappropriately for formations with
large amount of entities. The method is neither proper for miscellaneous shapes
of formation.

Finally, a leader robot is used in the Leader-Follower concept. Here, the
leader moves along its trajectory toward the goal position. The leader is tracked
by the followers, which try to maintain their position in formation relatively to
the leader [6]. The advantage of this approach is the capability of forming miscel-
laneous shapes of formation. Moreover, it can be mathematically proved, that the
formations controlled by the Leader-Follower approach will converge to the target
region [31].

This is why we chose this method for controlling the motion of the formation.
This concept will used for a static formation in the following Section 4.1. Last
Section 4.3 extends the concept of robotic formation with drones.

4.1 Static formations

The Leader-follower concept was chosen as an appropriate method for forma-
tion driving. The previously presented sampling based motion planning meth-
ods (Chapter 3) can be used with an advantage for the trajectory initialization.
This concept is also suitable for optimization of motion which will be used with
advantage in next Chapter 5.

The presented description of the formation is based on works [3, 4, 29, 31]. All
of these works use the same model of motion like the one described in Section 2.2.1.

The formation consists of several robots Ai, where i ∈ {1, . . . , nr, L} (the
letter L signs the leader robot). Here, it is assumed that a trajectory T =
[xL(t), yL(t), φL(t), vL(t), KL(t)] of the leader robot is known, where xL, yL, φL de-
note the position of the leader and vL(t), KL(t) are the control inputs. The tra-
jectory is parametrized by time t, where the control inputs changes. But instead
of using the time is more convenient to use the control as a function of distance
dL(t). This can be simply provided by velocity integration over the time:

dL(t) =

∫ t

0

vL(τ)dτ. (4.1)

Consequently, the geometry of the trajectory can be simply computed indepen-
dently on the velocity.

A shape of the formation is described by vector
[
pi qi

]T
in curvilinear system

and their meaning can be seen in Figure 4.1. Reason for using the curvilinear
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coordinate system rather than rectilinear coordinate system is based on accommo-
dation the nonholonomic constrain of the robots tracking the leaders trajectory [3].

p
q

(a) KL = 0

p
q

(b) KL 6= 0

Figure 4.1: Parameters of formation (a). Formation while turning (b). The posi-
tion of followers (green) is defined relative to the leader (red).

For a static formations, the parameters pi and qi are constants. A leaders
trajectory is defined as sequence of control inputs, therefore control inputs for the
individual followers can be easily computed as

vi(si) = vL(dL) (1− qiKL(si)) (4.2)

Ki(si) =
KL(si)

1− qiKL(si)
, (4.3)

where si = dL + pi. This, together with the equation (2.7) defines a motion model
for the followers.

The motion of the robots is constrained, hence the control inputs are valid
under conditions:

vi,min ≤ vi ≤ vi,max

Ki,min ≤ Ki ≤ Ki,max

(4.4)

Whenever the formation is composed from heterogeneous robots with different
motion constraints, the leader must consider all of the constraints. The set of
constraints of the leader’s trajectory is:
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KL,min = max
i=1,...,nr,L

(
Ki,min

1 + qiKi,min

)
KL,max = min

i=1,...,nr,L

(
Ki,max

1 + qiKi,max

)
vL,min = max

i=1,...,nr,L

(
vi,min

1 + qiKL

)
vL,max = min

i=1,...,nr,L

(
vi,max

1 + qiKL

)
(4.5)

To compute a position of a follower in the rectangular coordinate system (global
position), the following equation can be used:

xi = xL(si)− qi(si) sin(φL(si)),

yi = yL(si) + qi(si) cos(φL(si)),

φi = φL(si).

(4.6)

4.2 Dynamic formations

An environment often contains narrow passages too strait for a whole formation.
Therefore, a dynamic behavior of the formation is required. Its means, that the
formation can change the shape during a process of going through the narrow
passage.

Opposite the static formation in dynamic formation, the parameters of the for-

mation function are function of time
[
pi(t) qi(t)

]T
, which means that the shape

of formation can be changed for each robot individually. As for the static forma-
tion can be time recomputed to distance by equation (4.1). Then the position of
individual follower can be expressed as

si(t) = dL(t) + pi(t) (4.7)

where pi(t) can change through the time now.
Before recomputing trajectory for every i-th follower is necessary to determine

all of the following quantities

si(t), qi(si),
dqi
dsi

(si),
d2qi
ds2i

(si) (4.8)

Therefore the maneuver should be relatively simple, to easy determining these
quantities. The control inputs for follower then can be computed by following
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equations

vi = SQvL(dL)

Ki =
S

Q

KL +

(1− qiKL)
d2qi
ds2i

+KL

(
dqi
dsi

)2

Q2

 (4.9)

with

S = sign(1− qiKL) (4.10)

Q =

√(
dqi
dsi

)2

+ (1− qiKL)2 (4.11)

When the reference curvature is KL is zero, the equation (4.9) should be sim-
plify to a form

Ki =

d2qi
ds2i(

1 +

(
dqi
dsi

)2
) 3

2

(4.12)

These equation determines that the maneuver will be continuous, but also the
limitation of control (4.2) inputs must be observe.

4.3 Drone extension

Extending the formations driven by the Leader-Follower concept about UAVs (Un-
manned aerial vehicles) like quadrocopters, is relatively simple. First, the motion
model of the drone must be defined, but for simplicity the model of motion can
be same as for car-like robot (2.7), only the variable z should be added as

ż(t) = l(t) (4.13)

where l means lift. Further, the boundaries value for optimization should be added

lmin ≤ l(t) ≤ lmax (4.14)

Another parameter of this extension is relative position to leader described by a

vector
[
pi qi hi

]T
. The hi = 0 for all ground robots; hi > 0 for the drones.

Detail description of parameters should be seen on Figure 4.2.
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Figure 4.2: Formation with drone
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Chapter 5

Optimization

Almost every motion planning process needs additional optimization to achieve
a motion that is less energetically consuming than the originally planned. The
optimization of the planned trajectory is provided from several aspects as a reduc-
tion of the time spent by a motion or assurance of the continual motion without
unnecessary breaking. Another criterion of the optimization could be a length of
the planned path or a distance to obstacles. A combination of more or less criteria
together during the process of enhancing is commonly used and thus the optimized
trajectory is smoother and preferable for a controller treatment.

When the motion planning is provided for nonholonomic robot, the optimized
trajectory must accomplish particular constraints of motion (for example the car-
like robot can not turn on the spot). But how the number of constraints and
other smoothing criteria grow, the speed of optimization decreases which is coun-
terproductive especially at applications with real robots. Suitable selection of the
initialization method, which computes the initial solution, can speed up the op-
timization. Therefore, the classical path planning approaches, presented in 3.1
are not proper as they not consider the motion model of robots and they do not
provide control inputs for the trajectory.

For this reason, the Rapidly Exploring Random Tree (RRT) method, presented
in section 3.3 is used for the initialization. The RRT method can quickly find a
feasible solution, either in difficult environments (containing narrow passages) or
for robots with many DOFs. Trajectories returned from sampling-based planners
are not optimal, however they returns feasible solution as a sequence of control
inputs. Therefore the feasibility of initialized solution should significantly boost
a speed-rate of optimization method.

A good choice of the optimization method and proper combination with the
motion planning initialization method is consequently a key part of design robot
motion process. Therefore the advantages of combination of RRT with Model
Predictive Control (MPC) optimization method is presented in this thesis. As
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the optimization part of the MPC, the Sequential Quadratic Programming SQP
is used.

The Section 5.1 brings introduction to Model Predictive Control, a method used
for trajectory optimization with receding horizon. This approach use for optimiza-
tion a Sequential Quadratic Programming method, introduced in Section 5.2. But
this method is time consuming and selecting a suitable library can significantly
speedup optimization loop. Therefore the Subsection 5.2.1 introduce the CFSQP
library.

5.1 Model Predictive Control

Model Predictive Control (MPC) is an optimization technique, which computes
trajectory starting from actual position of robots over the time (t0, t0 + N∆t),
where N denotes a control horizon and ∆t is a time between changing control
inputs [19]. Sometimes, the method can be found under name Receding Horizon
Control (RHC). The stability of the method using MPC is guaranteed by adding a
Lyapunov function to the cost function as the terminal-state penalty [31]. Receding
step is portion of computed control applied on the interval (t0, t0 + n∆t), where
the parameter n is the number of transition points applied in one receding step.
Process is then repeated on the interval (t0 + n∆t, t0 + N∆t + n∆t) as the finite
horizon moves by time steps n∆t. As the optimization process is called in a loop,
it allows to react to new situation, like the presence of new obstacles. Appropriate
optimization technique is Sequential Quadratic Programming for nonholonomic
robots presented in following section 5.2.

5.2 Sequential Quadratic Programming

One of the most effective numerical optimization method used for nonlinear con-
strained optimization is Sequential Quadratic Programming (SQP). This approach
generate steps by solving quadratic subproblems [27]. SQP approach is in a way
the generalization of Newton’s method for solving Nonlinear Optimization Prob-
lem (NLP). One disability of SQP is absented ability to overcome local extremes
in the cost function [31].

Planning loop needs to be quick as possible to respond for dynamic changes in
environment. The SQP approach can be time consuming and selection of suitable
implementation is important. In this thesis, we employ the CFSQP library [26].
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5.2.1 CFSQP

For Sequential Quadratic Programming optimization the CFSQP (C code for Fea-
sible Sequential Quadratic Programming) library [26] was used. Advantage in using
this library is that the objective and constrain function can be defined by the user.

The solver provides minimization of a general functions:

minimize max
i∈If
{fi(x)} (5.1)

where If = {1, . . . , nf} (If = ∅ if nf = 0) and X is the set of points x ∈ Rn

satisfying

bl ≤ x ≤ bu

gj(x) ≤ 0, j = 1, . . . , ni

gj(x) ≡ 〈cj−ni
, x〉 − dj−ni

≤ 0, j = ni + 1, . . . , ti

hj(x) = 0, j = 1, . . . , ni

hj(x) ≡ 〈aj−ne , x〉 − bj−ne = 0, j = ne + 1, . . . , te

where bl ∈ Rn and bu ∈ Rn define the lower and upper bounds for the variables,
fi : Rn → R, i = 1, . . . , nf is a smooth function to be optimized, gj : Rn → R, j =
1, . . . , ni are nonlinear and smooth inequality constraint functions, cj ∈ Rn, dj ∈
R, j = 1, . . . , ti− ni; hj : Rn → R, j = 1, . . . , ne are nonlinear and smooth equality
constraint functions and aj ∈ Rn, bj ∈ R, j = 1, . . . , te − ne.

The CFSQP can cope with problems including sequentially related objectives
and constraints, but this advantage is not needed for an optimization in these
work.

5.3 Objective function and constraints

The optimization of trajectories for a formation of mobile robots is divided into two
parts: a) the global trajectory is optimized for the leader in such way, that the
whole formation can proceeding, b) followers’ trajectories derived from leader’s
one are optimized within the short horizon. Both process of optimization need
different cost functions under different constraints.

For the purpose of optimization, the leader’s trajectory is described only by
the control inputs. Let ΩL denote the optimization vector, then ΩL = (v1, K1, t1,
v2, K2, t2, . . . , vN , KN , tN , . . . , vM , KM , tM), where M is the length of the trajectory
and (t1, . . . , tN) has constant time interval ∆t. Other parts of this long vector are
variable.
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5.3.1 Leader

The total time of the robot between actual position and target region is

tf − t = N∆t+
M∑

k=N+1

∆t(k) (5.2)

The cost function of the leader’s trajectory is given by equation

JL(ΩL,O) =
M∑

k=N+1

∆t(k) + α

n0∑
j=1

(
min

{
0,
δj(ΩL,O)− rs,L
δj(ΩL,O)− ra,L

})2

(5.3)

where δj(Ω,O) is the shortest distance between the trajectory Ω and the obstacle
j and n0 is the number of obstacles. The main course of the optimization of
the motion is to reach a desired goal region as soon as possible. This effort is
expressed in the first part of cost function. How the final solution is influenced by
the environment describe a second part of this function. The constant α estimates,
how much the second sum will be influencing the value of the cost function. A
higher α causes a longer trajectory with larger distance from obstacles. If the
distance to obstacles is large enough, then the cost function is not affected by
this sum. This behavior is produced by fraction, where the ration between safety
radius rs and collision avoidance radius ra is computed.

If the precise final position is required, the another criterion to the cost function
(5.3) can be added

β||pd,L(M)− pL(M)||2. (5.4)

Again, the constant β says, how much this part influences the total value of the
cost function. An increase of β signifies that the accurate position is required.
On the other hand, if the achieving of target region is only needed the β constant
should be near to zero.

To distinguish between feasible and infeasible trajectories, additional constrains
have to be considered. The first one is the avoidance inequality constraint charac-
terizing collision avoidance criterion in environment.

gra,L(ΩL,O) = r2a,L − δ2j (ΩL,O), j ∈ {1, . . . , n0} (5.5)

This constraint work with static obstacles as well as with dynamic obstacles. Sec-
ond constraint ensures that the leader will enter the circular target region with
center CSF

and radius rSF
.

gSF
(ψL(M)) = ||pL(M)− CSF

|| − rSF
(5.6)
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Into the process of optimization the boundaries as maximal and minimal cur-
vature, maximal and minimal velocity and also minimal time step between states
must be considered.

bl ≡

 vmin
Kmin

∆tmin

 ≤
 v(k)
K(k)
∆t(k)

 ≤
 vmax
Kmax

∆tmax

 ≡ bu (5.7)

Boundary values are derived from kinematic constraints of formation as it is shown
in Section 4.1.

The optimization problem of finding trajectory ΩL for the leader is then defined
using objective function (5.3) and constraints (5.5) and (5.6).

5.3.2 Follower

After the leader’s trajectory is optimized, the trajectories for the individual fol-
lowers are optimized to. The cost function of the follower has a little different
composition as the whole trajectory is not considered.

Ji(Ωi) =
N∑
k=1

||(pd,i(k)− pi(k))||2 + α

n0∑
j=0

(
min

{
0,
δj(Ωi,O)− rs
δj(Ωi,O)− ra

})2

+ β
∑
j∈nn

(
min

{
0,
di,j(Ωi,Ω

◦
j)− rs, i

di,j(Ωi,Ω◦j)− ra,i

})2
(5.8)

where i is the number of the follower, δj(Ω,O) is the shortest distance between the
follower’s trajectory and j-th obstacle, δi,j(Ωi,Ωj) is the shorest distance between
the i-th follower and j-th follower moving on their trajectories. The first sum
describes a distance from desired position, the second sum describes distance to
the obstacles and the third sum is for collision avoidance between individual robots.

The first inequality constraint is identical with the leader’s one:

gra(Ωi,O) = r2a − δ(Ωi,O)2, j ∈ {1, . . . , n0} (5.9)

The second constraint is used for the collision avoidance between the individual
robots and obstacles, the static one as well as the dynamic one.

gra,i(Ωi,Ω
◦
j) = r2a,i − di,j(Ωi,Ω

◦
j)

2, j ∈ nn (5.10)

The optimization problem for the followers is then defined: find the trajectory
Ωi maximizing the objective function (5.8) subject to constraints (5.9) and (5.10).
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Chapter 6

Examples

The system for motion planning of the formations of mobile robots presented in the
previous chapters has been implemented into a framework. The implemented li-
brary allows to define new motion models of robots, as well as various optimization
criteria. The library is provided on the attached CD.

In this section, we will show screenshots from the planning process. The initial
position in the map is always qinit = (0.5, 1, 0) and a goal region is represented by
a red circle. The obstacles are highlighted by gray color. The motion planning was
provided in several tasks with different composition of obstacles. Every Figure 6.1–
6.7 show single independent run.

The Figure 6.1 shows how the tree with 0.8 s long edge looks like. The tree
is grown quickly and output trajectory is composed from several edges, therefore
the optimization could provide satisfying solution in short time.
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Figure 6.1: Example of RRT tree with 0.8 s long edge.
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Another example of the tree with 0.4 s long edge could be seen on Figure 6.2.
The searching of the environment is provided more precisely and output trajectory
contains more segments. Therefore the optimizer could spend amount of time by
smoothing. In comparison with the Figure 6.1, the trajectory is more complicated.
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Figure 6.2: Example of RRT tree with 0.4 s long edge.

The example where the motion planning is provided in environment containing
only border obstacle could be seen on Figure 6.3. The illustration shows that even
non-optimal RRT trajectory could be optimized to a suitable form.

A more complex environments are figured on 6.5 and 6.6. The formation needs
to perform a maneuver around obstacles in the middle of the space. This is pro-
vided with minimal energetic cost. The cost function of optimization method
ensure that obstacles will be avoided with enough security distance.

The Figure 6.6 shows solution in a map containing a narrow passage. Here, the
RRT is the most proper solution for initialization, because initialized trajectory is
suitable even in narrow passage.

Finally, the example of motion planning for a heterogeneous formation con-
sisting of three ground vehicles and one UAV is shown on Figure 6.7. The drone
is directly up to leader robot, and from top view their trajectories are identical.
Therefore, it can be seen that the drone needs to execute maneuver where the
obstacle is flown under.
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Figure 6.3: Environment without obstacles.
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Figure 6.4: Maneuver in corridor
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Figure 6.5: Obstacle avoidance
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Figure 6.6: The narrow passage problem.
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Figure 6.7: 3D formation including drone.
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Chapter 7

Conclusion

The presented thesis deals with motion planning of formations of mobile robots.
To find a motion for the formations, a Leader-Follower approach has been used.
In this approach, the trajectory of the formations is found only based on know
trajectory of the leader. It is thus suitable to plan the motion only for the leader
robot, which allows to employ wide variety of methods for solving the problem.

To find optimal trajectories for the robots in the formation, the Model Predic-
tive Control Approach has been employed. In this approach, the initial trajectory
is optimized and the robots move along it for a predefine time. After that, the
method computes the new optimization, possibly considering new situations, like
newly detected obstacles.

However, due to high computational burden of the used optimization method,
it is suitable to provide the MPC feasible trajectories. For this task, we use the
Rapidly Exploring Random Tree method. The method provides both positions
and control inputs of the trajectory. Moreover, it considers the motion model of
the robot, the provided trajectory is thus always feasible.

The main results of this thesis is the software library providing MPC control
of the formations. For this purpose of optimization the SQP library was need to
choose. As a suitable, the CFSQP library was selected, because the user can define
objective and constrain functions. The library further includes implementation of
the RRT algorithm, which is used for initialization of MPC. The library is designed
to solve both motion planning for homogeneous formations (all the robots are
same) and for heterogeneous formations (e.g., mobile robots with drones). The
library has been used during last two semesters in course A3M99PTO and for
several bachelor theses.
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Future Work

The framework is prepared for adding another motion planning techniques and
motion models. This allows to provide lots of different experiments where the
initialization techniques for different types of robot can bring interest conclusions.
In the future we would like expand this framework to real targets, to ensure the
suitability of selected approaches in real environment.
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Appendix A

CD content

The CD is attached to the printed version of this work containing the text of the
Thesis in a PDF format, source codes of thesis in LATEX format and source codes
of simulator. In following table the directory structure on the CD is described.

Directory / File Description

thesis.pdf the Diploma Thesis report in PDF format
doc Diploma Thesis source codes in LATEX format
framework The source code of an implemented framework without

CFSQP library

Table A.1: Directory structure on the CD
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