

ii

Czech Technical University in Prague

Faculty of Electrical Engineering

Department of Cyberneticks

Bachelor’s Project

Distributed Server for the Game ‘Minecraft’

Tomáš Heřman

Supervisor: Ing. Miroslav Uller

Study Programme: Software technologies and Management, Bachelor programme

Field of Study: Intelligent systems

May 21, 2012

iv

v

Aknowledgements

I would like to thank to the following people and communities for help with my thesis:

• Mr. Miroslav Uller for valuable comments and guidance

• Everyone from Minecraft Coalition Wiki [1] for writing a great documentation of
Minecarft protocol

• Everyone from #mcdevs channel at <irc.freenode.net> for help with debugging
and understanding of Minecraft protocol

• Mr. Victor Klang and everyone from Typesafe for creating Akka framework and for
all the help they provided to me via mailing list

irc.freenode.net

vi

viii

Abstract

Goal of this thesis is to explore how functional programming and Actor model can help
us write concurrent software more easily. To do that, I will implement server for game
Minecraft, which uses Actor model and concepts from functional programming provided by
Scala programming language in order to deal with concurrency. I will also evaluate used
techniques and compare my implementation to the official server.

Abstrakt

Cílem této práce je prozkoumat, jak může funkcionální programování a Aktor model zjednodušit
návrh a implementaci souběžných programů. Implementuji server pro hru Minecraft, na
kterém demonstruji použití Aktor modelu a konceptů z funkcionálního programování, dos-
tupných v programovacím jazyce Scala. Svoji implementaci porovnám s oficiálním serverem
a zhodnotím použité techniky a technologie.

ix

x

Contents

1 Introduction 1

2 Minecraft 3

2.1 What is Minecraft . 3
2.1.1 Overview . 3
2.1.2 Maps . 3
2.1.3 Blocks and Items . 4
2.1.4 Monsters & health . 5
2.1.5 Redstone . 6
2.1.6 Nether . 7
2.1.7 Goals of the game . 7
2.1.8 Creative mode . 7
2.1.9 Adventure maps . 7

2.2 Extensions . 8
2.2.1 Tekkit mod . 8
2.2.2 Computercraft . 8
2.2.3 Other extensions . 8

3 Goals 9

3.1 Motivation . 9
3.1.1 Server-related goals . 9
3.1.2 Minecraft related goals . 10

3.2 List summary of goals . 10

4 Scala 13

4.1 Why Scala? . 13
4.2 JVM . 13
4.3 Quick Scala overview . 14
4.4 Object oriented features . 14

4.4.1 Traits . 14
4.4.2 Objects . 15
4.4.3 Classes . 15

4.5 Functional and exotic features . 15
4.5.1 Pattern matching . 15
4.5.2 Vars and Vals . 15

xi

xii CONTENTS

4.5.3 First class functions . 15
4.5.4 Case classes . 16
4.5.5 Collection API . 16

4.6 Weaknesses . 16
4.7 Example usage of case classes and first class functions 17

5 Actor model 19

5.1 The free lunch is over . 19
5.2 Problems with conventional models of concurrency 19

5.2.1 Threads are expensive . 20
5.2.2 Thread-based concurrency is hard . 20

5.3 Actor model overview . 20
5.4 Fundamental concepts . 20
5.5 Enter Akka . 21

5.5.1 Actors . 22
5.5.2 Remote access . 22
5.5.3 Fault tolerance . 22

6 Design and implementation 25

6.1 Minecraft . 25
6.1.1 Data types . 25
6.1.2 Metadata field . 26

6.2 Design of Specus . 26
6.2.1 API and implementation . 26
6.2.2 Server . 27
6.2.3 Node . 28

6.3 Plugin system . 28
6.3.1 General design . 28
6.3.2 Implementation . 29
6.3.3 Communication among plugins . 29
6.3.4 Stats . 30
6.3.5 HTTP frontend . 30
6.3.6 Minecraft . 30

6.4 IO & Clients . 31
6.5 Tools . 31

6.5.1 Redis . 31
6.5.2 Netty . 32

7 Testing and conclusion 35

7.1 Comparison to official server . 35
7.2 Testing . 36
7.3 Review of design . 36
7.4 Review of used tools . 37

7.4.1 Scala . 37
7.4.2 Akka . 37
7.4.3 Redis and Netty . 38

CONTENTS xiii

7.5 Room for improvement and new features . 38
7.6 Conclusion . 38

A Installation guide 43

B Content of attached CD 45

xiv CONTENTS

List of Figures

2.1 Model of Notre Dame cathedral built in Minecraft. Taken from [5] 4
2.2 Example of Minecraft crafting system, wooden pickaxe being made from 2

planks of wood and 3 wooden blocks . 5

6.1 Diagram of Specus architecture. 27
6.2 Diagram of request-response processing. 28

xv

xvi LIST OF FIGURES

List of Tables

2.1 Redstone energy triggers . 6
2.2 Redstone energy consumers . 6

6.1 Minecraft metadata types . 26

xvii

xviii LIST OF TABLES

Chapter 1

Introduction

Nowadays, people seem to be relying more and more on remote services and applications
which store data or even entire business logic on a server, while providing only a thin client for
the user to interact with. That puts a lot of responsibility on the creators of such applications
to create a quality, highly available service, that can be trusted to work correctly.

This work is aimed at presenting my own experience with writing one such server using
very modern techniques and tools in order to create architecture, that is easy to reason about,
maintain and extend. I will be implementing a subset of business logic for Minecraft[2] game,
which should be demanding enough to prove the points I am making further in the paper.

1

2 CHAPTER 1. INTRODUCTION

Chapter 2

Minecraft

In this chapter I will provide a brief overview of what Minecraft is and some of its most
important concepts. I hope that, after reading this chapter, the reader will agree that
Minecraft is quite interesting game with a lot of potential.

2.1 What is Minecraft

2.1.1 Overview

Minecraft is a indie game developed by Markus Presson[3] and Mojang[4] which was pub-
lished in 2011. It’s a open world game, in which players are placed in a world made of blocks.
These blocks can be mined and used as a building material.

Players use these blocks to build various items or structures. For example, there has been
successful attempts to build USS Enterprise, Taj Mahal, Eiffel Tower, Notre Dame cathedral
and basically anything one could imagine.

2.1.2 Maps

When a game of Minecraft is started, the player may choose to generate a new map. This is
done using map generator, with random initial seed (player may also choose to use specific
seed). When the game starts, Minecraft server generates a small area around player. As the
player moves around the map, more and more parts of the map are generated when needed.

Maps in Minecraft are made of blocks. To organize these blocks, maps are split into so
called chunks. These chunks are 16 blocks wide, 16 blocks deep and 128 blocks high [6].
When a client connects to server, server sends the map using these chunks.

Maps can be very large. There is a hard limit of 256 blocks on the height of the map. The
depth and length of the map, however, has a soft limit of 232 (because of limits of integers in
Java) (if player moves further then that, the map chunks starts to get overwritten). Which
means that there can be up to 22⇤32+8 blocks per map. Even if every block was represented
by 1 byte, it can be quite challenge to represent such large object efficiently.

3

4 CHAPTER 2. MINECRAFT

Figure 2.1: Model of Notre Dame cathedral built in Minecraft. Taken from [5]

2.1.3 Blocks and Items

There is a number of different blocks in Minecraft. Among the most common ones there is
dirt, stone, sand and gravel. There are also trees, which can be broken down into wood.
There are rare blocks, such as coal, iron, gold and diamond. Each of these blocks has various
properties and uses.

When mining, player can use either bare hands or craft an item that would aid him.
There is a lot of items player can craft in Minecraft, but the basic ones are axe, shovel, hoe
and pickaxe. Each of these can be made from either wood, stone, gold, iron or diamond
which determines its quality. Items are crafted by placing blocks into 2x2 or 3x3 matrix into
different shapes, which determines the item to be crafted [7].

Tools described above are useful for increasing efficiency of gathering blocks. For example
iron pickaxe can crack stone a lot faster then wooden pickaxe. Some of the blocks can’t even
be gathered without good enough tool. Diamond block, for instance, requires at least iron
pickaxe.

There are other items player can craft, though. For example, player can create a furnace,
which uses coal blocks as fuel and can smelt ore into bars as well as cook food from raw
meat that can be gathered from sheep, cows or pigs. It can also “cook” sand block into glass
or cobble stone into smooth stone.

Minecraft also supports alternative forms of transportation with boats or mine carts,
which can be placed upon rails in order to move faster between locations. Rails make use of
so called Redstone energy, which is described below.

In order to protect himself, player can create and equip armor and weapons in either
leather, gold, iron or diamond quality. There are 4 types of armor: helmet, chest piece,
trousers and boots. Among weapons there is only sword and bow and arrows. Armor

2.1. WHAT IS MINECRAFT 5

Figure 2.2: Example of Minecraft crafting system, wooden pickaxe being made from 2 planks
of wood and 3 wooden blocks

reduces damage taken from monsters while weapons increase players damage to monsters
and fauna of Minecraft worlds.

2.1.4 Monsters & health

Every player has 10 hearts that symbolize his health. Every heart can be either full, half
empty(also known as half full) or empty. When all hearts are empty, player dies and is either
re spawned, or in case that player plays on hardcore mode the entire world is deleted and all
game content is lost.

There is also a food counter, which represents how well fed the player is. If the bar is full,
player automatically regenerates health if he has not taken any damage in recent history.
This is to prevent health regeneration while fighting enemies.

Plenty of opportunities to lose health are implemented in Minecraft. Player looses health
when dropping from high enough edge, while being under water for too long or while standing
in fire or lava.

The most common cause of health loss, however, are monsters [8]. Monsters spawn in
the places where there is no light available. Light can come either from sun, torches, fire or
lava. There is a number of monsters in Minecraft:

• Zombie
Slow melee monster that deals quite a lot of damage, when killed drops meat that can
be cooked and eaten.

• Skeleton
Shoots arrows, when killed drops arrows or bones.

• Creeper
Very quiet monster which creeps up on player and explodes when in proximity of player.
Makes sizzling noise before detonation.

• Spider
Melee creature, which only attacks player during night or when attacked.

6 CHAPTER 2. MINECRAFT

• Silverfish
Melee creature spawning from blocks which look exactly the same as stone blocks in
randomly generated fortresses and dungeons.

• Enderman
Melee creature that can teleport, but attacks player only if player looks at it first.
Otherwise it’s not hostile.

2.1.5 Redstone

Redstone[9] is one of the most interesting features of Minecraft. Redstone is a rare ore that
can be found deep in the ground. When mined, it produces several Redstone crystals.

These crystals can be either used for crafting, or laid on other blocks. Player can use
these to create kind of a wire made of the Redstone crystals. The wiring acts like a carrier of
logical values. By default, the value transmitted by the wire is 0. It can be changed, though.
In Minecraft community, this is usually called Redstone energy and the state in which logical
0 is transmitted via wire is considered lack of Redstone energy.

There is a couple of ways how to send logical 1 via Redstone wire:

Table 2.1: Redstone energy triggers

Item Description
Redstone torch Sends 1 permanently
Button Sends 1 as impulse
Leaver Sends 1 as long as the leaver is activated
Pressure pad Sends 1 as long as something is on the pad

There are also items that can ‘consume’ Redstone energy in order to perform action (non
exhaustive table):

Table 2.2: Redstone energy consumers

Item Action
Door Open while 1 is transmitted
TNT Triggers explosion once 1 is transmitted
Note block Emits sound once per 0 to 1 value change
Dispenser Dispenses object once per 0 to 1 value change

Using these tools, Minecraft users were able to create some very impressive structures.
There is for example a calculator implementation, song playing machines or even games
created with Redstone infrastructure.

Other than that, Redstone circuits are often used in adventure maps for creating puzzles
and challenges. Typical example of Redstone usage would be asking player to find a button,

2.1. WHAT IS MINECRAFT 7

in order to open doors into next part of the map. It can also be used for creating traps, by
wiring TNT or dispensers with arrows to pressure pads.

2.1.6 Nether

Nether is an alternative map which is available to players via portals. Portal is a 5 blocks
high and 4 blocks wide frame with 3 blocks high and 2 blocks wide space inside made of
obsidian, which is lit using flint and tinder. Obsidian is a block that is created by pouring
water over lava blocks.

It symbolizes kind of an evil realm with some unique resources, but overall is not overly
interesting. The portal system, however, is used quite often in adventure maps.

2.1.7 Goals of the game

Minecraft is very open-ended game, so there is no real ending to the game. The only formal
ending to the game requires player to find one of many randomly generated underground
fortresses, build a portal inside and go through. There the player will find a dragon, which
he must slay. However, once that is done and credits have passed, the game can still be
played.

More often than not, though, players don’t even bother with this quest and play the
game only for the joy of building interesting structures. Game usually ends when player gets
bored. Unless player plays on hardcore mode, which automatically deletes the world upon
players first death.

2.1.8 Creative mode

Creative mode was added to Minecraft in order to make it easier for people to create impres-
sive structures. Those people may not want to necessarily deal with all the stuff Minecraft
contains, such as monsters, inventory management, mining blocks and so on.

In creative mode [10], player has access to infinite resources from within his inventory.
He can also destroy any block with 1 hit and is allowed to fly. He also takes no damage and
spawning of monsters is disabled.

Player may choose to play in creative mode when starting a new game. There are
extensions, however, that allow player to switch creative mode on and off at will.

2.1.9 Adventure maps

One of the reasons Minecraft got so popular were maps made by players, which usually
contain a story, quests and riddles for player to go through.

Adventure map is a regular map, which usually contains additional document which
describes the story, rules of the map (usually forbids player to destroy any blocks) etc.
Adventure maps heavily utilize the redstone wiring for creating “scripted” events.

8 CHAPTER 2. MINECRAFT

2.2 Extensions

As one might imagine, Minecraft would be a very good platform and engine to build on.
Unfortunately, there is no API for players to build upon. Players still managed to reverse
engineer the code, though, in order to create plugins and extensions for the game. And they
really managed to make some amazing plugins. In this part, I will mention few of the most
interesting extensions.

2.2.1 Tekkit mod

Tekkit[11] is a collection of multiple extensions, which adds concept of the electrical power
to the game (among other things). It adds randomly generated pools of oil into the maps,
which can be gathered, processed to fuel and used in electrical engines to power machines.
There is a lot of machines that consume electricity, but the most interesting one is a quarry,
which automatically mines selected area.

There are other ways to gather electricity, though. There are for example nuclear reactors,
which players can build. They need to be cooled down, however, or they will explode and
contaminate area with radiation.

2.2.2 Computercraft

Another very interesting extension is Computercraft[12]. It adds programmable robots into
the game. Robots are programmed via in-game terminal using embedded LUA1 programming
language (added by the extension).

There are for example mining probes, which can be programmed to search for given
materials, mine only those and return them to the owner. It can also be used for password
protecting doors. It can be even used to implement a text-based RPG (in-game terminals
are text-only and Computercraft doesn’t include any tools for creating graphical UI).

2.2.3 Other extensions

There is a great number of extensions. Just to quickly mention a few others, there is
an extension that adds mini map for players. There is an extension that adds GPS-like
navigation and ability to create points of interest. There are extensions that add new items,
enemies or blocks and so on.

1
www.lua.org

Chapter 3

Goals

In this part of the paper I will talk about goals of the project I will be working on. In the
first part, I will reason about why I chose the goals the way I chose them, while in the second
part I will provide a brief summary of the goals in form of a list.

3.1 Motivation

I wanted to make this project a learning experience, which affected a lot of the decisions
about which technologies to use as well as what subset of functionality described in the part
about Minecraft to implemented.

The reader would hopefully agree that while Minecraft is based on quite simple ideas, it
is still a complex universe with a lot of details to implement. I wanted to focus mainly on
basics, which I thought at the time would be most important for further development in the
future.

3.1.1 Server-related goals

The main focus of this project is the server infrastructure, which I hoped would be very
independent of Minecraft itself. If the goals of this work are fulfilled, the resulting Specus
(that is how i named the project, it means ‘cave’ in Latin, which i thought was appropriate)
server could be used for any other game or project easily.

• Simplicity
I wanted the server infrastructure to be very simple to use and simple to reason about,
because as I learned in my previous projects, building concurrent systems with net-
working IO can be quite difficult to get right. In order to achieve that, I used Scala
programming language, which is said to have great support for concurrent program-
ming.
I also decided to use Actor pattern, which seemed very interesting and very natural to
use when dealing with concurrency.
I also wanted to abstract away all the IO operations and the lower level mechanics of
the server. I didn’t want to deal with buffers, sockets or channels when working on
business logic.

9

10 CHAPTER 3. GOALS

• Extensibility
From the description of Minecraft above, I hope it is clear to the reader how important,
fun and interesting are the Minecraft extensions. That is why I wanted my server to
be built with extensions in mind from the start.
I wanted its extension system to be powerful enough to be able to implement entire
Minecraft business logic as extension (extensions are called Plugins later in the text
and in the code).
I wanted plugin programmers to be able to express dependencies on other plugins, as
it’s very common case that a plugin wants to extend or cooperate with functionality
provided by other plugins.

• Distributivity
I wanted my server to be able to spread the workload into multiple machines, because
Minecraft itself has quite big problems with the workload. As mentioned above, map
can contain up to 2(32+32+8) blocks, so I felt it was important to be able to save all
these data into remote database (or cluster of databases).

3.1.2 Minecraft related goals

Because I felt like I chose quite ambitious goals for the server architecture, I decided to keep
it simple with the actual logic implementation and treat the Minecraft business logic as a
proof of concept. I decided, for now, to implement just the creative mode described above.
That allowed me to skip the implementation of inventory management and monsters, which
would take a lot of time.

I also decided to not implement any complicated map generator. I implemented a very
simple one for testing purposes which generates simple flat stone world.

I decided not to implement in-game maps, signs and items that required any special
handling.

I wanted to implement map streaming and on-the-fly map generation, map updates when
player makes a change and persistent player position (position of a player is persisted between
sessions).

While that is not very impressive set of features, it should provide and test all the
important features of the server architecture.

3.2 List summary of goals

Following is the brief summary of the goals mentioned above in form of a list:

• server architecture requirements

– implemented in Scala
– extensive usage of Actor model
– extensible via plugins

⇤ must be able to express dependencies on given plugin and its version

3.2. LIST SUMMARY OF GOALS 11

⇤ must be powerful enough to be able to express entire Minecraft logic
– IO and socket networking abstracted away
– state moved from local variables into remote database

• Minecraft functionality requirements

– player position persistence
– on-the-fly map generation
– map streaming
– map updates by player
– implemented as plugin
– must store all the state in a remote database

12 CHAPTER 3. GOALS

Chapter 4

Scala

In this chapter, I will try to explain why I chose to use Scala[13] language for implement-
ing Specus, discuss strengths of Scala compared to other alternatives and provide a quick
overview of the most useful features which I used in Specus. In the last part of this chap-
ter, I will discuss some of the weaknesses of Scala and describe an example of how I used
mentioned features.

4.1 Why Scala?

There were several reasons which led me to choose Scala for Specus implementation. First of
all, I wanted to make this project a learning experience. And ever since I took Haskell/Lisp
class, I was interested in functional programing. I think that functional programming will
become more popular and more desired skill to have in years to come, due to the increasing
demand on correct and concurrent software. I am also quite experienced with Java language
and various Java libraries, which are easy to use from Scala. Scala also provides very good
support for functional programming while still preserving many concepts from object oriented
programming. So it seemed like a natural choice to choose Scala.

4.2 JVM

Scala source is compiled into JVM bytecode. That means that any Scala projects automati-
cally benefits from all the effort people have put into optimizing JVM as well as features that
speed up computations during runtime. JVM programs are, obviously, platform independent
(as long as Java Runtime Environment is available for given platform), so one gets platform
independence for free.

There also exists a number of great and mature tools and libraries written and compiled
for JVM platform, which can be very easily used while working with Scala. For example
one could use a Proguard [14] program to minimize the jar produced by Scala compiler by
removing the unused classes from libraries and compiled code.

13

14 CHAPTER 4. SCALA

4.3 Quick Scala overview

Scala was designed by Martin Odersky and his team at ÉCOLE POLYTECHNIQUE FÉDÉRALE
DE LAUSANNE [15]. The name stands for Scalable language, which describes the language
rather well. Please note, that Scalable language is not meant in a sense of horizontal/vertical
scalability (Scala is as good as any language in that sense of a the word), but authors rather
meant it in a sense that the language features scale with the experience of user [16]. In
Scala, it is relatively easy to design libraries that appear to be language features. For exam-
ple the new try with resource statement added in JDK7 [17] could be implemented in Scala
on library level very easily [18].

Scala is a rather unique mix of object oriented concepts and functional programming
concepts with very powerful standard library, which contains, among other things:

• rich collection framework with both mutable and persistent implementations

• parallel collections (collections, whose methods are processed in multiple threads)

• parser combinators (library for simple writing of powerful parsers)

• wrappers around many of JDK features for more Scala-like usage

4.4 Object oriented features

Much like in Java, code in Scala is organized using constructs from object oriented program-
ing. In Scala, there are 3 basic entities: Classes, Objects and Traits. Following is the brief
overview of each of the entities.

4.4.1 Traits

In Scala, traits are kind of an mix between Java interfaces and abstract classes. Traits can
define methods, which can be either left abstract (trait only defines the header of the method,
implementation is left to the user) or can contain implementation as well. Traits can not
only define methods, but fields as well, although its recommended to use methods, which
can be later overwritten by vals (described below).

Traits can extend 0 or more traits. Trait can also declare it’s dependency on other entity.
For example, we can have a trait ChatSocket with method pullChatData() which returns ar-
ray of bytes and we want to create trait ChatFormatter with method printableChatData()
functionality which uses pullChatData() and creates formatted string. That means we need
to make sure that both of these traits are mixed into same object. We could define the traits
like so:

trait ChatSocket { def pullChatData(): Array[Byte] = ... }

trait ChatFormatter { self: ChatSocket => def printableChatData() = ... }

Now whenever we create object which extends ChatFormatter, we need to also extend
ChatSocket or the code will not compile.

4.5. FUNCTIONAL AND EXOTIC FEATURES 15

4.4.2 Objects

In Scala there is entity called object, which is basically a class that is guaranteed to be only
present once in a JVM. Its Java equivalent would be class that is created using Singleton
pattern.

Objects can extend traits, but nothing can extend objects. Objects don’t have construc-
tors. Every method on object is “static”, which is why objects are commonly used as what is
called “companion objects” to classes. Companion objects usually contain factory methods
as well as other useful functions for given class.

4.4.3 Classes

Classes are very similar to classes from languages like Java. They have constructors, can
extend a class and implement 0 or more traits.

4.5 Functional and exotic features

Unlike Java, Scala supports a vast set of features usually available in functional languages,
as well as other useful concepts. Here I will briefly introduce some of the interesting concepts
and at the end of the chapter I will try to show example of an interesting application of these
concepts.

4.5.1 Pattern matching

One of the features I liked most about Haskell was pattern matching. One can think of
pattern matching as about more powerful version of switch/case statements [19].

User defines a sequence of patterns and callbacks that are called when pattern matches.
Patterns are tried in order in which they were defined.

Scala implements this feature by using entities called extractors. Extractors are functions
named unapply, that are applied to input and return either Some(value) or None. If the
extractor return Some, it is considered to match the input. Otherwise the next extractor is
tried.

4.5.2 Vars and Vals

Scala has two types of fields: vals and vars. Vals are fields that are guaranteed to be assigned
only once and never changed. Vars on the other hand can be changed just like a regular Java
variable. It is considered good practice to always use vals, unless it’s necessary to use var.

4.5.3 First class functions

In Scala, functions are first class citizens. That means, in Scala one can treat functions like
any other datatype. Function can be stored in variable, it can be passed around and created
on demand. Functions can return new functions and so on.

16 CHAPTER 4. SCALA

Scala compiler creates a Java class for every first class function (methods of objects are
created as regular Java methods of objects), so basically storing and passing function becomes
simply storing and passing of a reference to the created object. This created class has an
apply([argument-list]) method generated, which represents the function invocation. In
Scala there is a syntactic sugar for invoking apply([argument-list]) methods by simply
calling ([argument-list]) on the object. For example a([argument-list]) is translated to
a.apply([argument-list]). This means that it’s really easy to even create objects/classes
that can be used as functions, by simply defining apply([argument-list]) method.

4.5.4 Case classes

Case classes are quite interesting feature of Scala. They are defined using case keyword, like
so: case class X([constructor-arguments]). For example, lets say we want to create a
class representing a point in 3D space. Case class could look like so: case class Point3d(x:
Int, y: Int, z:Int).

For such class, Scala compiler will generate a few very useful methods. First of all, a
reasonable toString, equals and hashCode methods are generated, which use constructor
parameters to compare equality and to generate hash code. A companion objects with
factory method and extractor methods are generated for given case class as well. Compiler
also generates methods that allow user to access the fields in order they were declared in
constructor. This might not seem like a very interesting feature but it is used to great success
in Specus and is described below.

It’s important to note that constructor parameters of case classes can be accessed (as
fields) and are immutable.

4.5.5 Collection API

Scala has very impressive set of collections. It has common data structures - list, vector,
stack, queue, map, set and possibly even more [20]. All of these are available in multiple
versions. When not specified otherwise, data structures are available as so called “persistent
data structures”. Persistent data structure is a data structure, that when altered creates
what seems like a new instance of data structure with altered content. Original instance
remains unchanged. Operations on persistent data structures use clever tricks and structure
sharing in order to achieve similar complexities as their mutable versions.

Scala also has mutable versions of data structures. Those are the equivalents of data
structures that can be found in most languages.

Very interesting feature of Scala standard library are parallel data structures. Those are
persistent data structures, but the interesting thing about them is that methods defined on
them like filter, map etc are executed using multiple threads.

4.6 Weaknesses

As with most tools, there are trade-offs when using Scala. In this part of the paper I will
talk about some of the negatives I encountered when using Scala.

4.7. EXAMPLE USAGE OF CASE CLASSES AND FIRST CLASS FUNCTIONS 17

First of all, Scala is quite a new technology, so the tool support is not as advanced as for
example for Java, but it is getting better. I used IntelliJ Idea IDE with Scala plugin when
developing Specus and it was reasonably pleasant experience. It supports basic refactoring,
code completion as well as error highlighting. However, it sometimes reports error in a code
that is perfectly correct.

The more important issue with Scala is the naming of all the generated code by Scala
compiler. It can sometimes be difficult to figure out when and why exceptions are being
thrown, especially because it’s common to use so called “one liners” quite often when dealing
with collections, which condense quite a lot of logic into 1 line of code and are usually littered
with anonymous functions. Every time we use anonymous function, Scala compiler generates
a class representing that function and gives it some generic name. It uses the classpath to
package in which the function is defined followed by $ followed by some arbitrary text to
guarantee uniqueness of the name. For example for function in val f in object o defined like
so: object o { val f = () => throw new Exception() }

and invoked:
o.f()
will return following stack trace:
Java.lang.Exception

at o$$anonfun$1.apply(<console>:7)
at o$$anonfun$1.apply(<console>:7)

One can see how the stack traces could get very unreadable very fast. Luckily, after a
while I didn’t find this to be a big deal but it was definitely a challenge early on.

4.7 Example usage of case classes and first class functions

In this part of the paper I will talk about what I thought was quite interesting usage of the
features described above. First I will explain what I was trying to build and why and then
I will go into details of implementation.

Minecraft clients communicate with server using TCP connection. There are about 70
different types of “packets” (by packets i mean logical packets, as TCP is stream service so
there are no real packets visible to user) that are being sent over the wire. There are many
different ways to implement such mechanism, but the way I chose to do it is to create a
case class for every different kind of packet which would represent the fields of packet and a
codec, which knows how to take the instance of given packet and encode it into a byte array
which can be sent via TCP and read by client. It also knows how to read a byte array and
parse it into the given packet case class.

Most naive, but in some languages the only solution would be simply creating codecs by
hand and copy-pasting the encoding code in. One might think that it would be possible to
use Java reflection API [21] to figure out what the type of value are the fields of given packet
and parse/encode them accordingly.

And that does work fine for parsing - Java reflection gives us the tools to obtain con-
structor of given class. From that constructor, we can figure out all it’s parameters as well as
their types (we can get class object of the parameters) and it gives us a method to program-
matically invoke the constructor with array of Object values that are used as constructor

18 CHAPTER 4. SCALA

parameters. Thus providing us with enough power to create generic parser that would figure
out how to parse packet just from it’s constructor.

The real problem is with encoding the packet. While we can get all declared fields of
given class, those fields are given in no particular order [22]. We could of course use tricks
like annotations to establish the order of fields, but that would introduce more boilerplate
and in the end would make our code more confusing.

Luckily, as described above, case classes provide API for users to access constructor fields
in order in which they were defined.

So now we have a way to get types of constructor parameters of given class and we know
how to access those fields in order they were defined in. All we need now is some kind of
mapping between type of class and a function that would be able to parse and encode that
type. But that should be easy, because as described above, functions are first class entities.
We can simply create Map from Class object to (_ <: Any, ChannelBuffer) => Unit for
encoding (function that takes anything and channel buffer, into which we encode the packet
and returns nothing) and Map from Class to (ChannelBuffer) => Any (function that takes
channel buffer and returns anything) for decoding.

Above solution has a problem, still. It operates with Any, which basically means we lose
all type safety, For example we could put into our map mapping from class of Int to function
that returns String. We can’t make the type constraints on map any stronger, because we
couldn’t add all the data types into it, obviously. What we can do is create an API which
would use Scala generics and made sure that functions have proper headers and add it to
our maps for us.

def addType[A](enc:(A)=>ChannelBuffer,dec:(ChannelBuffer)=>A)

The method signature above symbolizes how such API could look like. The method takes
two functions, one called enc which takes argument of type A and returns ChannelBuffer
and function called dec, which takes ChannelBuffer and returns type A.

Basically, using approach described above, I was able to save myself writing about 60
classes full of boilerplate code, in which it would be very easy to make errors. I still had to
implement some codecs by hand, as Minecraft API is not designed very well, though.

Chapter 5

Actor model

In this chapter, I will discuss why one should care about concurrency, I will take a look
at conventional models of concurrent computations on Java Virtual Machine (JVM) and
problems that goes along with them. Then I will talk about fundamental concepts of Actor
model followed by more detailed description of Akka - my toolkit of choice for actor systems
on JVM platform.

5.1 The free lunch is over

“The free lunch is over” is an article written by Herb Sutter that appeared in Dr.Dobb’s
journal in 2005 [23]. It talks about the end of an era, in which software is getting faster
simply by the fact that the hardware in getting faster. He argues, that while historically
companies like AMD or Intel focused on increasing the clock speed of CPUs, it is no longer
possible, due to physical limitations. So instead what these companies are doing in order to
increase power of their products is adding more cores onto the chips.

That means, that in order to harness the power of this new hardware, we need to approach
the craft of writing software in a different way. We need to focus on concurrency and we
need to focus on creating tools that will make writing concurrent software easier.

5.2 Problems with conventional models of concurrency

Probably the most common concurrency entity used today in programming are threads.
Concept of thread comes from operating systems and kind of leaks through into program-
ming language libraries. Thread allows us to execute code concurrently with very little
(programming) effort. For example, in Java programming language, all we need to do is
to create instance of class extending java.lang.Thread and implement the public void
run() method. Threads are very convenient that way.

However, there are some very important drawbacks of doing concurrency this way.

19

20 CHAPTER 5. ACTOR MODEL

5.2.1 Threads are expensive

Because of the way threads work, there is non-trivial amount of work to be done when
thread is created. A stack has to be allocated for every new thread (default size is 512kB on
JVM) and a number of system calls needs to be made (JVM uses platform specific threads).
Generally, creating new threads is considered expensive.

What this means, is that one shouldn’t create threads dynamically, every time a con-
current execution is required. Common approach instead is creating a number of threads
ahead of time and reusing them (this pattern is sometimes called thread pool). While this is
reasonable option, this add a nontrivial complexity to the application and basically means
that threads don’t scale (we are limited by the number of threads in thread pool).

5.2.2 Thread-based concurrency is hard

Threads can be used to a reasonable level of success in some programs. Especially programs
that use threads for processing operations that don’t need to communicate between each
other nor share same resources (for example web servers, build tools etc). Threads then
serve as sort of a cheaper processes.

However when dealing with shared resources and shared state, threads become really
hard to use. Because threads share memory heap, it is very hard to keep data consistency
and because threads can use all the resources on the heap, deadlocks can occur very easily
and it is not a trivial exercise to eliminate all the bugs that can come from such model [24].

5.3 Actor model overview

Actor model is a model of computation, designed to deal with problems in a highly concur-
rent, asynchronous and fault tolerant fashion. It was first published by Carl Hewitt in 1973
[25]. Actor model is widely used in systems where reliability, availability, scalability and
concurrency are important features. And as the number of cores per processors continue to
increase, it is reasonable to expect that the demand for tools that promise easier handling
of concurrency will increase as well.

Probably the most popular actor implementation today - the Erlang OTP framework,
has been used in many software projects and services. Here is a few examples of Erlang
applications:

• nosql databases: CouchDB[26], Riak[27]

• message queues: RabbitMQ[28]

• web servers: YAWS[29]

5.4 Fundamental concepts

In actor model, computation is processed using Actors. By Actor we mean an entity which
can:

5.5. ENTER AKKA 21

• send asynchroneous messages to other actors (sender doesn’t wait on reply from the
receiver)

• receive messages from other actors

• create new actors

• change it’s behavior dynamically

Every actor has an inbox, into which system queues messages sent to given actor. Actor
processes messages one at a time. When thinking about actor, it helps to imagine it as a
kind of lightweight thread (all actors in the system run at the same time), which is very
cheap to maintain, create and destroy.

Computation is then split into series of operations that are executed by different actors.
Results of those operations are then sent around via messages. It is important to note that
there can be many instances of given actor type. It is therefore important to design system
in such a way that actors don’t affect each other (for example by holding locks).

For example, let’s say we want to create a service that writes logging data into a log file.
We could easily create a function in every actor that opens a file, appends the log message
and closes the file. That would be problematic, though, because multiple actors might want
to write at the same time. We could use locks, to make sure that only 1 write is being issued
at a time. However, that would be very inefficient, because essentially only 1 actor in the
system would be allowed to run at a time, while other actors would wait for the resource to
become available. What we could do instead, is make another actor (lets call it logger), that
would hold the reference to our log file and every time an actor would write into the log file,
it would send the log message into the logger, which would handle the actual write. Please
note that there is no need for locking with this approach. Even if two actors try to write at
the same time, it only means that two messages are sent, and actor model guarantees that
messages are processed sequentially and only 1 message is processed at a time.

This approach might look similar to object oriented programming, where we create a
wrapper around a resource to encapsulate the details of the implementation (such as locking).
But it’s important to remember, that the messages in Actor model are asynchronous. Which
means that actor just sends the message and doesn’t wait on response, it just keeps working.

Another important property of actors is that they are very cheap to create (In Akka,
overhead for creating an actor is only about 600 bytes). This allows system to generate
actors when needed, for example, we could have a web server, that generates a new actor on
demand for every incoming connection.

5.5 Enter Akka

Every actor model implementation is a little different from others. For example, just for Scala
programming languages, there are 4 different implementations as far as i know (Lift actors,
Scala Actors from standard library, Scalaz actors and Akka actors). I decided to use Akka
actors [30], because they come as part of a great library and support remote communication
between JVMs, which saved me a lot of work. Akka actors also support Erlang-like fault
tolerance and ask kind of messaging, which is described below.

22 CHAPTER 5. ACTOR MODEL

5.5.1 Actors

In Akka, actor can be created by simply extending Actor trait and implementing a receive
method. In this method user maps different kind of messages to functions for processing
given message. It’s important to note, that Akka actors don’t support any kind of scanning
of the inbox (some implementations allow for example checking the length of inbox etc.)

Inside every actor, a self variable is present, containing the important information about
state of an actor. For example, one can obtain ActorRef(described below) to sender actor
during message processing.

We can then instantiate the actor by calling the factory method actorOf. By calling
this method, the user only get instance of class ActorRef [31]. That instance represents the
actor in the system, but does not contain the actor. This is so that the state of the actor can
never be compromised, because user can never get reference to the actual actor. ActorRef
supports methods ! (pronounced bang) and ? (pronounced ask).

The bang method represent a simple ‘fire and forget’ kind of messaging, while the ask
method creates a Future object, which has hooks into which user can insert callback methods
to be called when the Future is completed. This approach eliminates the need of blocking
and waiting until the receiving actor reads and responses to our message.

The ActorRef instance is completely thread safe, can be passed around in messages and
can even be serialized and sent via network to different JVM and will still refer to the original
actor.

5.5.2 Remote access

Akka also supports remote actors. Thanks to the properties of ActorRef described above,
one can run Akka systems in multiple JVMs and simply by sending ActorRef around one
is able to communicate with remote actors using the standard actor semantics (! and ?
methods).

Akka actors can also be registered by string name in so called “actor repository”, from
which one can withdraw them remotely. For example in Specus, there is an actor registered
in the server under name that is know to nodes. What that means, is that when a node is
booted up, it can get a reference to the registered server actor and begin communication.

5.5.3 Fault tolerance

In order to achieve fault tolerance, a supervision scheme is implemented. Conventional
programming methodology deals with error using ‘defensive programming’. Basically, pro-
grammer is trying to check input data for all possible inconsistencies and only when all tests
pass, data are allowed to be further processed.

On the other hand, Akka accepts the fact that things will go wrong, so instead of trying
to catch all the invalid cases, it encourages programmers to embrace the failure, and focus
on recovery from failure [32]. Every time an exception is thrown in Actor, it gets restarted.
By that it’s meant that the new, fresh instance of Actor is created and injected into system
in such a manner that all the ActorRefs to the original actor are valid and point to the newly
created actor. Actor can implement life cycle methods like preRestart and postRestart in

5.5. ENTER AKKA 23

order to do save it’s state and do anything that needs to be done. The message causing
the failure is not processed again, however rest of the mailbox with unprocessed messages is
reused for the new actor.

In addition to that, Actors can be assigned into tree-like structures where every node can
have at most 1 supervisor and can supervise 0 or more actors. When actor is about to fail
and is being restarted, a message is sent to the supervisor, so that it can decide what to do.
It can decide whether he wants to restart just the failing actor, or all the actors he oversees
(it can sometimes be useful).

24 CHAPTER 5. ACTOR MODEL

Chapter 6

Design and implementation

In this chapter, I will discuss the relevant information about Minecraft and it’s architecture
needed in order to write a server. Then I will describe design choices I made when designing
Specus and talk about libraries and technologies I used for implementation of Specus.

6.1 Minecraft

Minecraft uses client - server architecture for multiplayer support. 1 client can be connected
to only 1 server. Minecraft clients communicate with server using TCP protocol. Data are
formatted into logical packets. There is a number of different packet formats[33]. Every
packet is prefixed with unsigned byte which indicates the type of packet, which ultimately
determines how the rest of stream should be parsed.

Because Minecraft is still being developed, there are usually some changes in protocol
and packet types when versions change. At the time of writing this thesis, Minecraft version
is 1.1.

6.1.1 Data types

For the most part, Minecraft packets consists of only few well-defined data types. Some
packets however use ad-hoc formatted data structures. Following is the list of packet type
commonly used in protocol[33]:

• integer fields - signed numbers using two’s complement encoding

– byte: 1 byte long, -128 to 127
– short: 2 bytes long, -32768 to 32767
– int: 4 bytes long, -2147483648 to 2147483647
– long: 8 bytes long, -9223372036854775808 to 9223372036854775807

• decimal number fields

– float: 4 bytes long, range compatible with Java float

25

26 CHAPTER 6. DESIGN AND IMPLEMENTATION

– double: 8 bytes long, range compatible with Java double

• string field: UCS-2 encoded string, prefixed with short (as described above) which
signalizes the length of the string

• metadata field: described below

6.1.2 Metadata field

Metadata[34] is a format introduced by Minecraft in order to efficiently (space wise) encode
and decode triplets of data (identifier of piece of data, data type and value itself) of variable
length. Every triplet begins with a byte. Top 3 bits (0xE0 mask) of the byte encode the
data type of value while the bottom 5 bits (mask 0x1F) encode the id of entity. The value
itself depends on the data type and is parsed accordingly. If the byte value is 127 (0xFF),
it means that there are no more data in metadata. The type of data that can be stored in
metadata are:

Table 6.1: Minecraft metadata types

top bits datatype
0x000 byte
0x001 short
0x010 int
0x011 float
0x100 string
0x101 short, byte, short
0x110 int, int, int

6.2 Design of Specus

When designing Specus, I focused mostly on flexibility and extensibility. It should also be
possible to distribute the workload on multiple computers. Minecraft client is built to be
connected to 1 server. So i decided to split Specus into multiple parts. There is the server,
which is the only part of the Specus that clients can see and there are worker nodes, which
are the parts of the system that do the actual work.

6.2.1 API and implementation

Because Specus was designed to be very extensible, it was important to split both server
and node projects into two. API and actual implementation. API contains all the stuff that
needed to be available for plugins while implementation contains the mechanisms that are
not useful to plugins. Also, because node and server communicate together, i decided to
create another project, called common api, which contains classes that are needed by both.

It contains for example plugin system API (described below), it contains metadata for-
mat, it contains Packet super class that all packets need to extend and so on.

6.2. DESIGN OF SPECUS 27

Figure 6.1: Diagram of Specus architecture.

6.2.2 Server

The only job of server is to accept new clients, read and parse data into Packet case classes
and send them to nodes. It also knows how to encode Packet data from case classes and
write them into TCP connection. Process of parsing and encoding is further described in
chapter about Scala. It also knows how to send a message to any given node and it accepts
messages from nodes.

If a new clients connects to the server, a new unique id is generated for the client. That
id is only thing any other component of the system needs to know in order to be write to the
client connection. The generated id is valid until the connection closed or server shutdown,
whichever happens to happen first.

When TCP data arrive to the server, first byte is read. It is then checked, whether any
codec is registered for given byte (remember, every packet type is prefixed with id byte). If a
codec is found, rest of the received data is given to that codec for parsing and new instance
of packet message is created by chosen codec. That message is then sent, along with id of a
client, to one of the connected nodes.

When one of the nodes wants to write a packet message to client, it simply sends
WriteRequest message, which contains id of client and instance of packet and server will
handle the writing for them. Therefore, nodes doesn’t need to know anything about actual
parsing or encoding packets, which makes it a lot easier to implement nodes, as it only deals
with regular Scala (case) classes.

If a connection is closed, server simply removes the id of client from it’s internals and
sends a notification to a random node, so that it can clean up after the user.

28 CHAPTER 6. DESIGN AND IMPLEMENTATION

6.2.3 Node

All the actual business logic is done in nodes. Nodes are independent JVMs running node
code and are connected using remote actors described in the ‘Actor’ part of the paper. When
a node machine is started, a message is sent to the server upon which server adds the node
to the set of available nodes and starts sending messages to it.

In nodes, message processing should be done either in stateless fashion, or the state
should be persisted in some sort of database as the messages are sent randomly to the nodes.
In order to do that, I use Redis database (which is described below).

Figure 6.2: Diagram of request-response processing.

Node plugins can contain so called processors. A processor is a class that can consume
a packet and somehow process it. Each packet can be processed by multiple processors and
they are not processed in any particular order. Processors also need to be able to provide
a sequence of all the packets they are able to process so that packets are only sent to the
processors that actually know how to use them, thus reducing the overhead compared to
scenario where all packets are sent to all processes.

6.3 Plugin system

In this subsection I will talk about general design of plugin system implemented in Specus,
then I will overview all the implementation details. At the end I will talk about 3 different
plugins I implemented as proof-of-concept.

6.3.1 General design

As described above, Specus aims for maximal extensibility. That’s why it has been designed
to be very plugin friendly from the very beginning. By itself, Specus contains only basic
functionality related to generic packet parsing, plugin loading and communication between
server and nodes. Everything else is implemented in plugins, including entire Minecraft logic.

Much like Specus itself, plugins too are meant to be separated into two parts. Server
part and node part. In server part, plugins can declare packets and codecs for those packets.
They can also register for receiving different kinds of messages which indicate what events
are happening in the system.

On the other hand, node part of the plugin usually consists of an Actor, or system of
Actors, that are registered for different types of Packets parsed by server part of plugin.

6.3. PLUGIN SYSTEM 29

Plugin is basically just a jar file which contains a plugin descriptor on predefined class
path. Plugin descriptor is a simple file containing a JSON1 encoded information about plugin,
such as its dependencies, it’s version, plugin identifier (string representation of plugin, usually
same as the Java package in which the code of plugin is placed), author of the plugin and
most importantly the entry point class. It is kept inside the jar file in order to make the
handling of plugins as simple as possible. Plugin is expected to communicate with the system
using messages (as described in Actor part of this paper).

Entry point class contains additional information required for running the plugin. By
default, it can contain an entry point Actor class, which is instantiated when the plugin is
loaded and into which the system messages are send. It can also contain a list of classes,
which the particular plugin is interested in. Only those messages would be sent to Actor.
Because the plugin API is designed to be reused in both server and node, user of the API
can define contents of entry point class as she wishes. For example, in server sub project the
entry point contains list of packets and codecs for packets. On the other hand in node code
the entry point contains processors for packets.

It is important to note that all the plugin jars must be added to classpath when the user
of plugin API is started.

6.3.2 Implementation

In common API, there is abstract class SimplePluginManager through which all the plugin
loading is done. It contains method bootupPlugins which takes a File, which represents
directory containing plugins. First it attempts to parse plugin descriptor from each .jar file it
finds in plugin directory. If everything goes well, we now have a set of all plugin descriptors
which contain plugin version and it’s dependencies, which means we can now validate that
all dependencies are either fulfilled or there is something missing.

Once all the dependencies are checked, entry point classes are instantiated and all the
entry point Actors are created and registered for messages they are interested in (as defined
in entry point class).

After that a user defined postDependencyCheck method is invoked, which could do any-
thing that needs to be done. For example, in node part of Specus, this is where Minecraft
maps are generated in advance. In server part this is where we can for example sent de-
pendencies to the plugin (if plugin needs some). When this method returns, plugins are
considered ready for work. If at any point an error occurs, the whole server shuts down as
it makes no sense trying to recover from these errors.

6.3.3 Communication among plugins

It is very important for a plugin system to support very easy communication among plugins.
That is because a plugin can use functionality already implemented by others.

As mentioned above, in plugin descriptor there is a field specifying plugin identifier.
This is used to obtain reference from Plugin Manager, which is passed to plugin during
initialization phase. Plugin Manager should always have the correct reference available, as

1
www.json.org

30 CHAPTER 6. DESIGN AND IMPLEMENTATION

the plugin system already verified that all plugin dependencies are available at this point.
The received reference is simple ActorRef, as specified in Actor part of this paper, which
allows user to simply send messages to it.

6.3.4 Stats

Stats was first plugin I implemented in Specus. I needed a way to track connected users
when debugging the server and later I added a feature that collected all the packets sent and
received by server per client.

The way it is implemented is quite simple. System broadcasts messages when a new
client is (dis)connected and when a packet is sent or received. Stats plugin waits for these
messages and updates its state accordingly. It contains a counter of connected clients and
a map containing list of all sent and received classes of packets per user. This map is a
immutable persistent data structure, so when other plugin ask for this data, it can be very
efficiently sent (basically it just sends a reference to the map) to it without worrying about
someone mutating it and thus destroying the consistency of data.

6.3.5 HTTP frontend

For a while, the println approach of displaying information from stats plugin was ok. But
later I decided I needed something more readable. So I created HTTP frontend plugin. Its
sole purpose is to display information gathered by stats plugin.

It uses Jetty [35] embedded http server which listens on port 9090. When a new http
request is issued to that port for / resource, it sends message to the stats plugin for most
up-to-date data and returns them formatted for easier reading. It should go without saying
that this kind of display is a lot easier to read than looking for text in log files of the server.

Also, the plan was to make full featured administration interface using this plugin, which
is very possible, but due to time constraints I was not able to implement this feature.

6.3.6 Minecraft

And last but not at all least, the Minecraft plugin. This plugin contains everything that is
specific to Minecraft. The plugin itself is split into 3 parts:

• Common API
Common API is the part of the project that defines all the different packets that can
be sent or received by client. It was required to put these into separate jar, so that they
can be easily reused. Also, if there was another plugin that would want to enhance
functionality of Minecraft plugin, or simply just invoke its own action when some of
the packets defined by Minecraft is received, this would be the jar to use.

• Server
In a server part of the plugin, there are definitions of all the codecs for each packet
defined in common api. Now, most of these codecs are using generic codec described
Scala chapter. However, some of the packets use fields that are unique to them so I
didn’t feel necessity to add their encoding and decoding functions into generic codec
and decided to implement their codecs by hand.

6.4. IO & CLIENTS 31

• Node
Node part of the plugin is where all the Minecraft logic is implemented. Basically,
there is 1 actor created per packet which handles all the processing that needs to be
done for given packet. Classes of these actors are then extracted from the plugin and
instantiated in the server, thus giving server the control over them.

As it turned out, it was quite simple to implement Minecraft functionality in Specus.
I think that for the most part, it was thanks to the usage of Actors. It is simple to
reason about a system once we break it down into message passing between entities
that don’t depend on each other. It is also due to the fact that Minecraft the game is
not very complicated, especially considering the goals i chose. But that is ok, as the
main purpose of this paper and this project was to get familiar with Actor systems,
Scala and learning how to write an extensible server.

6.4 IO & Clients

In order to create a simple to use system, it is important to create right abstractions of
IO operations and entities. In Specus, every connected client is represented by SessionID.
SessionId is a simple token, that is passed around when message is read or being sent. This
token is created when a new client connects and is associated with Session object.

Session object is abstraction, which knows how to write objects to connection with client
and how to close the connection. These objects are stored in SessionManager and should
never be visible to anyone else. When server needs to write some data into a connection, it
should ask SessionManager by passing it a SessionId and data to be written.

What this means is that any part of the system doesn’t need to know anything about how
actual the IO is performed. It only needs a SessionId and data to be written. SessionId
tokens are immutable and serializable, so they can be easily passed around.

Description of how actual IO is implemented can be found below.

6.5 Tools

6.5.1 Redis

Redis [36] is a high performance key-value database that is used in Specus. Unlike most of
key-value databases, it supports a number of different value types[37]:

• string: A binary safe string type, which can be used for storing binary data with
efficient random access. In Specus it is used for storing Minecraft map chunks.

• hash: A hash map type, which is optimized for storing multiple key-value pairs. It is
used for storing data about clients in Specus.

• set: A typical set data structure, used to store client IDs in specus.

• sorted set: A typical set, except sorted.

32 CHAPTER 6. DESIGN AND IMPLEMENTATION

• list: a linked list data structure.

It is used to store state, so that it can always be accessed from any node. It uses Scala-redis
library, which is unfortunately synchronous. However, thanks to Akka actors it was very
easy to wrap the synchronous client into an Actor to create asynchronous interface.

6.5.2 Netty

Netty [38] is high performance library for network IO. It’s abstraction over Java io function-
ality, which supports both TCP and UDP. In Specus, it is configured to use asynchronous
processing using non blocking nio functionality. It uses 3 main components:

• specus encoder

• specus decoder

• specus handler

Netty gets these components on start up and uses them transparently when they are
needed. User doesn’t have to deal with those, he simply writes and read objects from the
channel. Both encoder and decoder use Codec Repository when looking up codecs for
packet encoding and decoding. Codecs are loaded on start up from server plugins.

• Specus Encoder
Specus encoder is a class that takes an object and using the getClass method looks
up an appropriate codec for the class. It then uses the codec to encode the object into
an array of bytes.

• Specus Decoder
Specus decoder works similarly to Specus encoder, except it looks up codecs by byte
identifier (every packet type in Minecraft protocol is prefixed by id byte). Obviously,
we assume that client always sends valid data. If it didn’t we wouldn’t be able to
recover from it anyway.

• Specus Handler
Specus handler contains callbacks which are invoked on certain events in the system.

– channelConnected
This event is invoked when a new client is connected to the server. Netty al-
lows user to set a so called attachment, which is available every time an event
is invoked on specific channel. I use this opportunity to create a new Session
and Session ID and then store the Session ID as an attachment. We also send
ClientConnected notification to the plugin system, in case some plugin is inter-
ested (for example Stats plugin).

– channelClosed
This event is invoked when a client connection is closed. We send notification to
both plugin system and to node, so that it can clean up after client and then we
destroy session associated with the client.

6.5. TOOLS 33

– writeRequest
This event is invoked when data are being written into the channel. We just use
this callback to sent notification to the plugin system.

– messageReceived
This event is invoked when a packet is parsed by Netty. We need to associate it
with the client somehow, so that we can respond to it. Luckily, we saved Session
ID as an attachment and we can withdraw it now. We sent the parsed packet and
session id to both plugin system (so that it can be registered by stats plugin) and
to node.

34 CHAPTER 6. DESIGN AND IMPLEMENTATION

Chapter 7

Testing and conclusion

In the last part of this thesis, I will try to compare my implementation of server with official
implementation and talk about how I tested the project specification. I will try to review
and judge decisions I made during the design phase of the project. I will review the tools
I used and talk about how well did they performed for the task. I will also propose new
features and improvements to be implemented in the future.

7.1 Comparison to official server

Unfortunately, official implementation of the Minecraft server is not open sourced and the
actual compiled jar is obfuscated, so there is little information available. We can still compare
the two in a few aspects, though.

It is known, that official implementation uses file system as storage of the map fragments.
My implementation uses Redis database, which stores data in memory and only flushes them
to disk after certain period of time. While the locally stored map has its advantages, such as
speed and simplicity, it would be very hard to create distributed server using such approach
because we would need to either synchronize files between nodes or split the map chunks to
different servers. Synchronization would add a lot of additional traffic and complexity while
splitting chunks would make for a very vulnerable design. If one server would have failed,
entire part of map would become unavailable. Also, it would be very hard to coordinate
events that happened on the edges where the map would have been split. Imagine an
explosion - event which affects blocks in a radius from epicenter. If it happened on the edge
of the map, we would not only need to update blocks on the part of the map where the
explosion was triggered, we would also need to notify the neighbor server about event.

With Redis, we get the map synchronization for free. Redis can work in a cluster (ex-
perimental feature as of now) and from users point of view, we just write into a single node
instance, but in the background Redis will automatically update all the instances in the
cluster.

A great advantage of Specus over official implementation is the design with extensions
in mind. While there is unofficial and successful Bukkit project [39] which aims to provide
API for plugin creation for the official server, I can only imagine how hard people had to
work to reverse engineer official server in order to provide such API. On the other hand,

35

36 CHAPTER 7. TESTING AND CONCLUSION

entire Minecraft is implemented as plugin in Specus and thanks to the design of the plugin
architecture, user extensions can not only add their own packets and behaviors, but also
hook callbacks on packets from any other plugin and thus allowing extensions to cooperate
with each other.

7.2 Testing

Testing was quite a big problem during this project. Obviously, I was able to use common
techniques of testing, such as unit testing and integration testing during the development
of Specus platform and architecture, but testing of complete server with Minecraft plugin
could not be automated and had to be done by hand.

As one might suspect, there is no command line client for Minecraft (that I am aware
of) that would allow for some sort of automated testing. So I would have to write my own
client in order to test it properly, which would by itself probably take as much time as the
entire server implementation.

Another fact that made testing hard was the fact that Minecraft is paid game and I
owned only one copy. Minecraft is also quite resource heavy. On my desktop machine, I
almost ran out of memory on a very lightweight system (ArchLinux with XMonad desktop
environment, which by itself uses only about 4% of memory) while having 1 copy of Minecraft
client running, 1 server instance, 1 node instance, 1 instance of Redis database, IntelliJ IDE
and Simple build tool1 so testing with multiple client instances would be impossible with
the machinery I had available.

So the actual testing was done using my experience and knowledge of what the server
was supposed to do. While not very clean or academical, it was unfortunately only possible
solution considering the time constraints.

7.3 Review of design

Minecraft itself is still under heavy development and its creators don’t really seem to care
about breaking backward compatibility and don’t mind introducing new packet types, mod-
ifying old ones or even adding or removing new data types. While that was a little annoying,
it gave me a chance to test the flexibility of the designed architecture.

I am happy to say, that I think i did a good job with the architecture design. For example,
when a format of LoginPacket was changed in a patch, all I had to do was to update the
packet definition in Minecraft plugin and code handling the packet and I was done. Smart
codec described in the Design and Implementation part of the paper took care of all the low
level encoding and decoding.

1
Build tool for Scala projects.

7.4. REVIEW OF USED TOOLS 37

7.4 Review of used tools

7.4.1 Scala

I have to say, I am very happy I chose Scala as programming language for this project. While
there were some downsides to it which I will address below, the overall experience was very
pleasant.

Thanks to the functional style of coding, I didn’t manage to find almost any bugs in most
of the code during unit testing. That is, in my opinion, due to the fact that in functional
programming one writes a lot of functions that focus on one thing only, with no side effects.
That kind of code is easy to reason about and easy to get right. In Scala, one also almost
never writes any looping code (for example for iterating over collections), which eliminates
a whole set of bugs that can one introduce to system. Also, thanks to Scala powerful type
system, i had to use type casting only once (in implementation of type codec), and compiler
caught a lot of errors during compile time.

Unfortunately, I managed to run into a compiler bug once which compiled source code
into a byte code that would throw InitializationException upon invocation. I wasn’t
able to find the reason for the exception so I had to rewrite code in different fashion.

I got a chance to test how well Scala works with libraries designed for Java when using
Netty library. I had no problems using it. The code looks comparable to Scala code. On the
other hand, one has to pay attention to the fact that Java libraries usually are written using
mutable objects, so it requires more attention to keep track of all the possible thread-unsafe
entities.

7.4.2 Akka

Akka is a very impressive piece of software. The only thing I don’t like about the way they
implemented the Actors is that user loses a great deal of type safety. Any Actor can be
accessed only through ActorRef, which gives no indication of the type of an Actor.

It would be nice if there was some way to determine the instance of an actor or at least
be able to check what types of messages can Actor processes. The reason it can’t be done in
Akka is the fact that Akka actors can dynamically change their behavior and change which
and how the messages are processed.

On the other hand, that is probably the “necessary evil” of Actor pattern. Like Viktor
Klang (CTO of TypeSafe, company behind Akka) said on his twitter account: “To me,
Actor behaviors are islands of statically typed tranquility in a vast, chaotic ocean of dynamic
message delivery.” 2

Other than that, I had no problems with Akka. I used more concepts from the framework,
for example I used TransactionalMap to track mapping between SessionID and Netty
Channels. TransactionalMap is basically a persistent immutable map which also implements
interface of mutable map. It uses AtomicRef to store map internally and guarantees that
the update method is atomic and can be safely called from multiple threads at once.

2
https://twitter.com/#!/viktorklang/status/197788489083924481

38 CHAPTER 7. TESTING AND CONCLUSION

I also used Future objects, which take a function and execute it in different thread. It
has very useful API, which allows user to execute a number of different Futures and then
invoke different function when all those functions are done. This is used for example when
streaming the map chunks to player for the first time. We create requests for sending the
map chunks in a future, then we wait until they are all finished and then we send player the
instruction to spawn.

7.4.3 Redis and Netty

I had no problems using Redis nor Netty. I must say I was very impressed with the simplicity
of both of their APIs. Netty especially provides a very easy to use API which doesn’t bother
user with the low level implementation details of networking and threading that goes along
with it.

7.5 Room for improvement and new features

Of course, there is plenty of work to be done in order to improve the current implementation.
As far as the new features go, I would like to see web admin implemented using the

HttpFrontned plugin. Also finishing the Minecraft implementation would be desired.
One of the more interesting thing that would be nice to implement would be a DSL3 for

Redis communication, that would abstract away the fact that the entire communication is
done using Future monads. As of now, most of the Minecraft node is plagued with map and
flatMap calls.

7.6 Conclusion

Overall, I think the Specus project was a success. While it is not at all ready for production
and there is still a lot of work to be done, it proved to me that Actor pattern in combination
with functional programming can be used. To me, the time spent to learn these quite new
technologies was definitely worth it.

3
domain specific language

Bibliography

[1] Minecraft Coalition wiki contributors. Minecraft coalition wikipedia. <http://www.
wiki.vg>, May 2012.

[2] Minecraft wiki contributors. Minecraft homepage. <http://minecraft.net>, May
2012.

[3] Marcus Presson. Homepage of Marcus Presson, creator of minecraft. <http://www.
mojang.com/notch/>, May 2012.

[4] Mojang. Mojang - company behind minecraft. <www.mojang.com>, May 2012.

[5] Notre Dame cathedral custom map. <http://www.minecraftforum.net/topic/
249194-notre-dame-de-paris-minecraft-cathedral-by-tombuilder/>, May 2012.

[6] Marcus Presson. Terrain generation part i. <http://notch.tumblr.com/post/
3746989361/terrain-generation-part-1>, March 2011.

[7] Minecraft wiki contributors. Minecraft - Crafting. <http://www.minecraftwiki.net/
wiki/Crafting>, May 2012.

[8] Minecraft wiki contributors. Minecraft - Monsters. <http://www.minecraftwiki.net/
wiki/Monsters>, May 2012.

[9] Minecraft wiki contributors. Minecraft - Redstone. <http://www.minecraftwiki.net/
wiki/Redstone_Circuits>, May 2012.

[10] Minecraft wiki contributors. Minecraft - Creative mode. <http://www.minecraftwiki.
net/wiki/Creative_Mode>, May 2012.

[11] Tekkit contributors. Tekkit - Minecraft plugin. <http://www.technicpack.net/
tekkit/>, May 2012.

[12] Computercraft wiki contributors. Computercraft - Minecraft plugin. <http://
computercraft.info>, May 2012.

[13] EPFL. Homepage of Scala Programming Language. <http://www.scala-lang.org>,
May 2012.

[14] Eric Lafortune. Proguard - software for jar minimalization and obfuscation. <http:
//proguard.sourceforge.org>, May 2012.

39

http://www.wiki.vg
http://www.wiki.vg
http://minecraft.net
http://www.mojang.com/notch/
http://www.mojang.com/notch/
www.mojang.com
http://www.minecraftforum.net/topic/249194-notre-dame-de-paris-minecraft-cathedral-by-tombuilder/
http://www.minecraftforum.net/topic/249194-notre-dame-de-paris-minecraft-cathedral-by-tombuilder/
http://notch.tumblr.com/post/3746989361/terrain-generation-part-1
http://notch.tumblr.com/post/3746989361/terrain-generation-part-1
http://www.minecraftwiki.net/wiki/Crafting
http://www.minecraftwiki.net/wiki/Crafting
http://www.minecraftwiki.net/wiki/Monsters
http://www.minecraftwiki.net/wiki/Monsters
http://www.minecraftwiki.net/wiki/Redstone_Circuits
http://www.minecraftwiki.net/wiki/Redstone_Circuits
http://www.minecraftwiki.net/wiki/Creative_Mode
http://www.minecraftwiki.net/wiki/Creative_Mode
http://www.technicpack.net/tekkit/
http://www.technicpack.net/tekkit/
http://computercraft.info
http://computercraft.info
http://www.scala-lang.org
http://proguard.sourceforge.org
http://proguard.sourceforge.org

40 BIBLIOGRAPHY

[15] EPFL. École polytechnique fédérale de lausanne. <http://epfl.ch/index.en.html>,
May 2012.

[16] Martin Odersky. Scala levels - expertise guide. <http://www.scala-lang.org/node/
8610>, January 2011.

[17] Oracle Inc. Java try-with-resources statement. <http://docs.oracle.com/javase/
tutorial/essential/exceptions/tryResourceClose.html>, May 2012.

[18] Josh Suereth. Scala ARM - Library for automatic resource management. <https:
//github.com/jsuereth/scala-arm>, May 2012.

[19] Michael Ruegg. Pattern Matching in Scala. Technical report, University of Applied
Sciences Rapperswil, 2009.

[20] Lex Spoon Martin Odersky. The Architecture of Scala collections. <http://
www.scala-lang.org/docu/files/collections-api/collections-impl.html>, De-
cember 2010.

[21] Oracle Inc. Java Reflection API documentation. <http://docs.oracle.com/Javase/
1.4.2/docs/api/java/lang/reflect/package-summary.html>, May 2012.

[22] Oracle Inc. Java Class API documentation. <http://docs.oracle.com/javase/1.3/
docs/api/Java/lang/Class.html>, May 2012.

[23] Herb Sutter. The free lunch is over. Dr. Dobb’s journal, 2005.

[24] Edward A. Lee. The Problem with Threads. Technical report, Electrical Engineering
and Computer Sciences University of California at Berkeley, 2006.

[25] Richard Steiger Carl Hewitt, Peter Bishop. A Universal Modular Actor Formalism for
Artificial Intelligence, 1973.

[26] The Apache Software Foundation. CouchDB - Actor based database. <http://
couchdb.apache.org/>, May 2012.

[27] Inc Basho Technologies. Riak - Actor based database. <http://wiki.basho.com/>,
May 2012.

[28] VMware. RabbitMQ - Actor based message queue. <http://www.rabbitmq.com/>,
May 2012.

[29] Yaws - actor based HTTP server. <http://yaws.hyber.org/>, May 2012.

[30] Typesafe Inc. Akka framework. <http://www.akka.io>, May 2012.

[31] Tyepsafe Inc. Akka actor documentation. <http://doc.akka.io/docs/akka/1.3/
scala/actors.html>, May 2012.

[32] Typesafe Inc. Akka fault tolerance documentation. <http://doc.akka.io/docs/akka/
1.3/scala/fault-tolerance.html>, May 2012.

http://epfl.ch/index.en.html
http://www.scala-lang.org/node/8610
http://www.scala-lang.org/node/8610
http://docs.oracle.com/javase/tutorial/essential/exceptions/tryResourceClose.html
http://docs.oracle.com/javase/tutorial/essential/exceptions/tryResourceClose.html
https://github.com/jsuereth/scala-arm
https://github.com/jsuereth/scala-arm
http://www.scala-lang.org/docu/files/collections-api/collections-impl.html
http://www.scala-lang.org/docu/files/collections-api/collections-impl.html
http://docs.oracle.com/Javase/1.4.2/docs/api/java/lang/reflect/package-summary.html
http://docs.oracle.com/Javase/1.4.2/docs/api/java/lang/reflect/package-summary.html
http://docs.oracle.com/javase/1.3/docs/api/Java/lang/Class.html
http://docs.oracle.com/javase/1.3/docs/api/Java/lang/Class.html
http://couchdb.apache.org/
http://couchdb.apache.org/
http://wiki.basho.com/
http://www.rabbitmq.com/
http://yaws.hyber.org/
http://www.akka.io
http://doc.akka.io/docs/akka/1.3/scala/actors.html
http://doc.akka.io/docs/akka/1.3/scala/actors.html
http://doc.akka.io/docs/akka/1.3/scala/fault-tolerance.html
http://doc.akka.io/docs/akka/1.3/scala/fault-tolerance.html

BIBLIOGRAPHY 41

[33] Minecraft Coalition wiki contributors. Minecraft protocol. <http://www.wiki.vg/
Protocol>, May 2012.

[34] Minecraft Coalition wiki contributors. Minecraft metadata format. <http://www.wiki.
vg/Entities>, May 2012.

[35] Jan Bartel. Embedding Jetty. <http://docs.codehaus.org/display/JETTY/
Embedding+Jetty>, June 2009.

[36] Redis datastore. <http://redis.io>, May 2012.

[37] Redis data types. <http://redis.io/topics/data-types-intro>, May 2012.

[38] The Netty project. Netty documentation. <http://www.jboss.org/netty>, May
2012.

[39] Bukkit contributors. API for plugin development of official Minecraft implementation.
<http://www.bukkit.org>, May 2012.

http://www.wiki.vg/Protocol
http://www.wiki.vg/Protocol
http://www.wiki.vg/Entities
http://www.wiki.vg/Entities
http://docs.codehaus.org/display/JETTY/Embedding+Jetty
http://docs.codehaus.org/display/JETTY/Embedding+Jetty
http://redis.io
http://redis.io/topics/data-types-intro
http://www.jboss.org/netty
http://www.bukkit.org

42 BIBLIOGRAPHY

Appendix A

Installation guide

In order to install Specus on your own system, you first need to install following dependencies:

• SBT - Simple build tool, version 0.10 or greater from https://github.com/harrah/xsbt

• Redis - Redis server must run on default port

Once one has those, he needs to compile the source code. To do this, please do the
following steps in order:

• go to specus directory, start sbt and type following commands:

– clean
– project server
– assembly
– project node
– assembly

• go to specus_stats directory, start sbt and type following commands:

– clean
– package

• go to specus_httpfrontend directory, start sbt and type following commands:

– clean
– assembly

• go to specus_minecraft directory, start sbt and type following commands:

– clean
– package

• go to specus_tools/run_with_plugins directory

43

https://github.com/harrah/xsbt

44 APPENDIX A. INSTALLATION GUIDE

• invoke ./copy.sh script

Now we should have all components ready to be started. To start specus, first invoke
./server.sh script, wait a few seconds for architecture to initialize and then start ./node.sh.
After a few seconds, server should be ready for connections.

By default, output from server and node is piped into server.log and node.log.
In case there is a problem with compiling projects, try deleting “˜/.ivy/cache” directory.

Unfortunately sometimes the dependencies are not resolved correctly.

Appendix B

Content of attached CD

Description of attached directories and important files from cd:

• hermato4-bp.pdf - copy of this paper

• docs - folder with ScalaDoc for specus and specus_minecraft projects

• specus - folder with project containing Specus server and node architecture

• specus_stats - project containing stats plugin

• specus_httpfrontend - project containing httpfrontend plugin

• specus_minecraft - project containing minecraft plugin

• specus_tools/sender - simple program I used for testing networking IO

• specus_tools/run_with_plugins - a directory prepared for running the Specus server

– node.sh and server.sh - scripts for starting up plugin or node
– copy.sh - script for gathering compiled resources and placing them into correct

directories

Each of the directories containing a project (everyone except specus_tools) follows the
following format:

• src - directory with source code

• project - directory with information about project

• project/Build.scala - description of project, dependencies and other information

• project/plugins.sbt - file with sbt plugins

45

	Introduction
	Minecraft
	What is Minecraft
	Overview
	Maps
	Blocks and Items
	Monsters & health
	Redstone
	Nether
	Goals of the game
	Creative mode
	Adventure maps

	Extensions
	Tekkit mod
	Computercraft
	Other extensions

	Goals
	Motivation
	Server-related goals
	Minecraft related goals

	List summary of goals

	Scala
	Why Scala?
	JVM
	Quick Scala overview
	Object oriented features
	Traits
	Objects
	Classes

	Functional and exotic features
	Pattern matching
	Vars and Vals
	First class functions
	Case classes
	Collection API

	Weaknesses
	Example usage of case classes and first class functions

	Actor model
	The free lunch is over
	Problems with conventional models of concurrency
	Threads are expensive
	Thread-based concurrency is hard

	Actor model overview
	Fundamental concepts
	Enter Akka
	Actors
	Remote access
	Fault tolerance

	Design and implementation
	Minecraft
	Data types
	Metadata field

	Design of Specus
	API and implementation
	Server
	Node

	Plugin system
	General design
	Implementation
	Communication among plugins
	Stats
	HTTP frontend
	Minecraft

	IO & Clients
	Tools
	Redis
	Netty

	Testing and conclusion
	Comparison to official server
	Testing
	Review of design
	Review of used tools
	Scala
	Akka
	Redis and Netty

	Room for improvement and new features
	Conclusion

	Installation guide
	Content of attached CD

