Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

BACHELOR PROJECT ASSIGNMENT

Student: Michal Frdlik
Study programme: Software Engineering and Management
Specialisation: Intelligent Systems

Title of Bachelor Project: The Use of Artificial Immune Systems in Biomedical Information
Retrieval

Guidelines:

1. Perform study of the problematic using relevant literature.

2. Implement at least two AlS algorithms inspired by immune system. Target the problem
of free text pattern mining (classification/clustering).

3. Evaluate performance of the algorithm using the data provided.

4. Compare the performance with one non-AlS algorithm.

5. The implementation should be multithreaded (intended for grid computing).

Bibliography/Sources:

[1] De Castro, L. N.: Fundamentals of Natural Computing; Chapman & Hall/CRC New York,
2006.

[2] De Castro, L.N and Von Zuben, F. (2001). "aiNET: An Artificial Immune Network for Data
Analysis", in Data Mining: A Heuristic Approach. Abbas, H.; Sarker, R. and Newton, C.
(Eds). Idea Group Publishing.

Bachelor Project Supervisor: Ing. Miroslav Bursa

Valid until: the end of the winter semester of academic year 2012/2013

Y

prof. Ing. Vfdimir Marik, DrSc.
Head of Department

P8,

Prague, November 30, 2011

Ceské vysoké uéeni technické v Praze
Fakulta elektrotechnicka

Katedra kybernetiky

ZADANiIi BAKALARSKE PRACE

Student: Michal Frdlik
Studijni program: Softwarové technologie a management
Obor: Inteligentni systémy

Nazev tématu: Vyuziti umélych imunnich systému pro ziskavani medicinskych informaci

Pokyny pro vypracovani:

1. Provedte studium odborné literatury tykajici se zminovaného problému.

2. Naimplementujte alespon dva vybrané algoritmy inspirované imunitnim systémem. Cilem je
klasifikace a shlukovani elementu ve volném textu.

3. Vyhodnotte Uuspésnost algoritmu na zadanych datech.

4. Dle ¢asovych moznosti srovnejte s jednim algoritmem, ktery nepatfi do skupiny imunitnich.

5. Implementace bude vicevlaknova (spousténi na gridu).

Seznam odborné literatury:

[1] De Castro, L. N.: Fundamentals of Natural Computing; Chapman & Hall/CRC New York,
2006.

[2] De Castro, L.N and Von Zuben, F. (2001). "aiNET: An Artificial Inmune Network for Data
Analysis", in Data Mining: A Heuristic Approach. Abbas, H.; Sarker, R. and Newton, C.
(Eds). Idea Group Publishing.

Vedouci bakalarské prace: Ing. Miroslav Bursa

Platnost zadani: do konce zimniho semestru 2012/2013

5 g

prof. Ing. Vladimir Mafik, DrSc.
vedouci katedry

t?}gi TEQ,
N\

rot,
Y geNroteg,

Q| i) &

V Praze dne 30. 11. 2011

Bachelor’s Thesis

The use of Artificial Immune Systems
in Biomedical Information Retrieval

Czech Technical University in Prague
Faculty of Electrical Engineering
Department of Cybernetics

Michal Frdlik

Supervisor: Ing. Miroslav Bursa

Field of study: Software Technologies and Management, Intelligent Systems

May 2012

il

Acknowledgements

I would like to express my gratitude to my supervisor, Ing. Miroslav Bursa, for his
support, professional guidance and for the time he spent reading and correcting this
thesis when it was far from being finished and in the times thereafter.

iil

v

Statement

I hereby state, that I have completed this thesis on my own and I have properly specified
all the information sources used, according to the Guideline about observance of the

ethic principles concerning university theses.

In Prague, 9" May, 2012 ... VoV b A sty -l
Michal Frdlik

vi

Abstract

The aim of this thesis is to evaluate performance and usability of selected Artificial
Immune Systems (AIS) on the problem of classification and automatic processing of
loosely structured free-text medical records. After a review on the state-of-the-art AIS
algorithms, we have selected and implemented Artificial Immune Recognition System
(AIRS) and Negative Selection Algorithm (NSA) algorithms as representatives. Af-
ter preliminary testing and behaviour study we have altered the algorithms to fit pro-
vided datasets using (among others) modified distance metric based on the Damerau-
-Levenshtein distance. On the datasets sized 22 000 and 1 500 000 words, we have ob-
tained the following best classification accuracy: 78.17 %, 65.80 % respectively for the
AIRS and 81.22 %, 64.49 % respectively for the NSA.

Abstrakt

Cilem této prace je uziti vybranych algoritmt skupiny Umélych imunitnich systému
(AIS) ke klasifikaci volné strukturovaného textu z oboru biomediciny. Po posouzeni
a zhodnoceni algoritmii skupiny AIS byly jako reprezentativni algoritmy vybrany Umély
imunitni rozpoznavaci systém (AIRS) a Algoritmus negativni selekce (NSA). Po pred-
bézném testovani téchto algoritmti na jednoduchych realnych a umélych datech byly
pivodni algoritmy pozménény tak, aby byly schopny klasifikace volné strukturovaného
textu, mimo jiné za pouziti vzdalenostni metriky zalozené na Damerauové Levenshtei-
nov¢ vzdalenosti. Na mnozinach dat o velikostech 22 000 slov a 1 500 000 slov dosahl al-
goritmus AIRS nejlepsi klasifika¢ni presnosti 78,17 % a 65,80 %, algoritmus NSA 81,22 %
264,49 %.

vii

viil

Table of contents

.Introductiono Lo 0oL 13
1. Aimofthiswork oo 13
Goal specificationo 13

2. What is an Artificial Immune System? 13
3. Briefhistory of AIS[12] Lo 14

. Understanding the Immune System 15
1. Adaptive Immune Systemo 15
Antibody —> antigen matchingo 15
Somatic Hypermutation 0o 16
Clonal Selection Mechanism 16

. Artificial Immune Systems 00000000 17
1. Artificial Immune Recognition System (AIRS) 17
Pseudocodeo 19

2. AIRS Implementation Testo 20
3. Negative Selection Algorithm 22
Pseudocodeo oo 22

4. NSA Implementation Test e e 23
5. Parallelisation capabilities 24

. Preliminary testing Lo 25
1. Datasets 25
Gaussian dataset L0 e e 25
Irisdataseto 25
Test methodology 26

2. Testing AIRSo 26
3. Testing NSA 28
Test methodology 28
Antibody counto oL 28
Matching factoro 28

4. Optimising parameters for given datasets 29
Results e 31

5. Comparison Lo 32

. Biomedicaldatao Lo 0 oL 33
1. Data charactero 33
2. Classification Strategyo 33
Cluster analysis 0o 33
Word frequency analysiso 33

3. Distance measuremento 34
Hamming distance oo 35
Levenshtein distance o0 35
Damerau-Levenshtein distance 35

X

The cosine similarityo 36

The product distance L Lo 36

4. Word modifiers encoding 37
5. Similar word identification and frequency merging 38
6. Uniquewordlist 39
7. Unimportant data removal 39
8. Class generation 39
9. Class identifier object Lo oo 40
. AIRS for biomedicaldata00 0 oo 41
1. Classification strategyo 41
The binary counter and sentence based distance approach 41
The 1-0f-k counter and word based distance approach 41

2. Algorithm variationo 42
3.Testingo 43
Test methodology 43
Testresultso 43
Real classification performance00 48
Optimisation of input parameter values 49
Resultso 49

. NSA for biomedicaldata 0000 51
1. Definitions e 51
Information source L .00 oo e 51
Markov chaino 51
Markov information sourceo 51

2. Classification Strategyo 51
3.Testing e e e 52
Testresultso 56
Real classification performanceo 56
Optimisation of input parameter values 57
Results oo 57

. Final results (on both datasets) 59
1. Less complex dataset (22 ooowords) 59
Settingso e e e e e e 59
Algorithm settings Lo 59
Results oL 59

2. More complex dataset (1500 000 words) 61
Preprocess Lo oo 61
Results oo 61
Parameters oL oL oo 62
.Conclusion Lo e 63
1. Goals to achievements mappingo 63
2. Work not declared in goals Lo 64
Algorithm alterationo 64
Product distance00 64
Genetic Algorithm Parameter Selector 64

3. Final conclusion e e e e e e 64

AL Statistics o e e e e e e e e e e e 66

1. Meanvalue Lo 66
2. Mediano 66
3. Variance Lo Lo e e 66
4. Standard deviationo L L 66
5. String Markov information source example 67
6. Boxplot Lo 68
7. Multiple data series ploto 68
B. Pseudocodesyntax 69
C. Machine specificationo L0000 69
D. DVD directory and file structureo 70
References Lo L e 72

X1

xii

1 Introduction

1.1 Aim of this work

We have divided the work into the following goals which have to be achieved.

Goal specification

1)

2)

3)

4)

5)

6)

7)

Literature study

We need to study relevant and useful publications concerning AIS and free-text
pattern mining approaches, as well as string distance metrics.

Selection of 2 algorithms

Based on 1), we need to select two representative algorithms, which will be
implemented, analysed and used.

Implementation

We need to design and implement modular and well-arranged framework in
order to make algorithm diagnostic, testing and text analysis possible.

Preliminary testing

We need to make preliminary tests in order to see, how these algorithms be-
have on simple datasets. These tests need to be made on both real and artificially
created datasets.

Biomedical data preprocessing and class assignment

We need to preprocess the biomedical data in order to normalize them and in
order to create and assign artificially created classes to them, as we are provided
with text records only, with no annotation whatsoever.

Algorithm performance evaluation

We need to evaluate the performance of the adapted algorithms on a real bio-
medical data in order to study their behaviour and to find optimal paramaters.
Large scale testing and comparison

In the end, we need to compare performance of the algorithms on very large
real biomedical datasets and compare it with performance of a non-AIS algo-
rithm.

1.2 What is an Artificial Immune System?

An Artificial Immune System is generally a biologically inspired problem-solving algo-
rithm. It’s inspiration comes from the mammalian immune system, strictly speaking
from it’s generalisation abilities (see chapter 2). These algorithms usually solve clas-
sification and optimisation problems, but there are also several algorithms form this

13

The Use of ALS in Biomedical Information Retrieval

branch, which are used for intrusion detection. Optimisation algorithms search for
optimal states in functions (for instance, travelling salesman problem, SAT problem,
knapsack problem etc.), whereas classification algorithms classify their inputs, based on
example inputs presented to them before (for instance, several shapes are presented to
hypothetical algorithm along with their respective labels (classes) and then an unknown
shape is presented to this algorithm. It’s job is to say, of what class that shape most likely

is).
1.3 Brief history of AlSus

The origins of AIS has its roots in the early theoretical immunology work of J. Doyne
Farmer, Alan Perelson and Francisco Varela, with a key work being by Farmer, Packard
and Perelson'!l. These works investigated a number of theoretical immune network
models proposed to describe the maintenance of immune memory. Whilst controver-
sial from an immunological perspective, these models began to give rise to an interest
from the computing community. The most influential people at crossing the divide be-
tween computing and immunology in the early days were Hugues Bersini and Stephanie
Forrest. It is fair to say that some of the early work by Bersini was very well rooted in
immunology, and this is also true of the early work by Forrest. It was these works that
formed the basis of a solid foundation for the area of AIS. In the case of Bersini, he
concentrated on the immune network theory, examining how the immune system main-
tained its memory and how one might build models and algorithms mimicing that prop-
erty. With regards to Forrest, her work was focussed on computer security (in particular
network intrusion detection) paying attention to the abilty of the immune systems to
discriminate between self and non-self. These works formed the basis of a great deal of
further research by the community on the application of immune inspired techniques to
computer security. Due to a growing amount of work conducted on AIS, the Interna-
tional Conference on Artificial Immune Systems (ICARIS) conference series has been
started in 2002.

14

2 Understanding the Immune System

In [7], Dasgupta and Nino thoroughly describe how human immune system works, how
cleverly and almost perfectly it has been designed by the nature and finally, how com-
puter scientists can utilize the ideas, on which it is based. In the following paragraphs,
the basic principles are mentioned, as they are crucial for understanding, how AIS work.

According to [7], living organisms, such as human bodies, need to resist hamful effects
of a biological environment, they live in. The resistivity to biological entities is provided
by an immune system, which is three-layered. Physical barriers (such as mucous membrane)
represent the first layer of defence. The second layer, called an innate (also non-specific)
immune system, is supposed to destroy antigens (antigen means entity harmful to the
body, such as bacteria, viruses etc.), which shows certain molecular structure, known
to the body. Finally, the third layer of immunity is called an adaptive (also specific)
immune system, which is supposed to destroy antigens, which are recognised from past
attacks. This layer (third) clearly disposes of certain recognition abilities, thus it becomes
particularly important for this work.

2.1 Adaptive Immune System

Adaptive immune system of human body shows two major abilities—memory and adap-
tivity. It is capable to rememer the pattern, which detected an antigen (we say an antibody
matched an antigen), improve it and reuse it in a later exposure to the same or similar
antigen. Cells called lymphocytes represent antibodies in a human immune system. These
lymphocytes are of several kinds—generealy two—7 cells and B cells.

Antibody - antigen matching

B-lymphocytes have protein called BCR (B-Cell Receptor—immunoglobulin) on their
surface, that can bind to another cell on a molecular basis. When the binding between
a B-lymphocyte and an antigen is tight enough (we say, the affinity is high), the B-
-lymphocyte is said to be stimulated. When stimulated, the matched cell is probably
an antigen, thus an immune reaction is started. Firstly it’s somatic hypermutation.

Antigen
Q&Amigen-binding site &

fig. 1 — B-Cell Receptors and molecular binding'vikimedia commons]

15

The Use of ALS in Biomedical Information Retrieval

Somatic Hypermutation

When an antigen is bound by an antibody’s BCR, the antibody starts to clone itself (clone
rate depends on the rate of stimulation), whereas the clones undergo a process of muta-
tion, where their BCR’s are slightly altered. After this, they test their affinity to the
antibody and then they clone and mutate again (with various rates depending on their
affinity). Products of this process, which show low affinity or they’re not stimulated at
all, are disposed. On the other side, cells, that have the highest affinity at all, are cloned
and kept for future encounters.

Clonal Selection Mechanism

While B-lymphocytes mature in spleen, using mechanics, that are unimportant for this
work, T-lymphocytes mature in Thymus, where they undergo (among others) the pro-
cess called Negative selection. In this process, various self-cells (body cells) are presented
to T-lymphocytes. When a T-lymphocyte matches any of the self-cells, it is disposed,
otherwise, it is kept, cloned and mutated. By the end of this process, only 2 % of T-
lymphocytes will have satisfied the criteria.

fig. 2 — Depiction of the Clonal Selection and the Somatic HypermutationiFimedia commons]

16

3 Artificial Immune Systems

There are many algorithms derived from the original works by Farmer, Packard and
Perelson!'), but generally they all belong to four groups, each being inspired by a spe-
cific immunological theory:

= Clonal Selection Algorithms (namely AIRS™, Immunos, CSA!))
» Negative Selection Algorithms (namely NSAI')

» Dendritic Cell Algorithms (namely DCA®)

» Immune Network Algorithms (namely AINE?!, optAlnet??)

The other classification is:

= B-Cell Inspired Algorithms (namely AIRS)
= T-Cell Inspired Algorithms (namely NSA)

Because B-Cell inspired algorithms and T-Cell inspired algorithms share very little in
their operation principles, the AIRS and the NSA were chosen to be the two algorithms,
which are studied in this thesis. Namely AIRS and NSA are completely different—AIRS
can work with multiple classes, whereas NSA is purely a binary classifier. AIRS uses
the k-nearest-neighbour algorithm as it’s matching function, whereas NSA uses radius
threshold matching. AIRS tries to cover the self-space, whereas NSA tries to do the exact
opposite—cover the non-self space.

3.1 Artificial Immune Recognition System (AIRS)

AIRS uses a training set to build a pool of memory cells, which should properly match
a cell, which is unknown to the system during training.

Stimulation threshold

Mutation rate
| | Resource limit
Clone rate

1t

Training set Memory cells
g —

AIRS algorithm

!

K-nn
fig. 3 — Basic AIRS algorithm scheme (input, output, parametes)

17

The Use of ALS in Biomedical Information Retrieval

The artificial cell is an object (or generally a data structure), which contains a data carrier,
that carries the data it should represent, a class label (with no information in case of an
unknown cell). Every artificial cell must also store and provide the information about
its stimulation and about the amount of resources (see (5)) it claims.

In figure 4, a basic scheme of the AIRS is shown.

Firstly, let us define the domain d on which the AIRS will classify (in d, there are data
sepated to n classes). Let the memory cell pool MCP be the list of cells, that will be the
output of AIRS and let the distance function be the mapping f : (a,b) — d, where a
and b are cells and d € R. Let clonerate € R, mutrate € R be the input parameters of
AIRS, that control rates of cloning and mutation and let maxres € N (N = {1,2,...}) be
the maximal ammount of resorces, that all cells can posses (explained below, see (5)).

Firstly, the system is initialised with one sample cell from every class. Then a random
antigen cell cis generated over a domain d. Then every cell ¢; in a memory cell pool M CP
is stimulated by c—that means, for every ¢ € M CP a distance distance = f(c, i) is mea-
sured, where f is a cell distance function (in two-dimensional domain of real numbers it
may be euclidean distance). Then the affinity is calculated as a relative distance

affinity = distance/max_distance, (1)

where max_distance is maximal possible distance of two cells in the current domain.
Then the rate of stimulation is calculated logically as

stimulation = 1 — affinity. (2)

Then, the most stimulated cell ¢, is compared with presented antigen c¢—if there’s no
match in class, the antigen cell is added straight into the memory cell pool. If there
is a match in class and if the antigen ¢ is not equal to antibody cy.s: (i.e. the stimula-
tion is not exactly 1), then Artificial Recognition Ball (ARB) pool is created. ARB pool is
initialised by cloning % clones of c.s:, where k is

k = stimulation(cpest) - clonerate - mutrate (3)

In addition, every clone undergoes a mutation before its entry to the ARB pool. This pro-
cedure mimics somatic hypermutation mentioned in chapter 2. The mutation procedure
itself is exactly the same as it is in genetic algorithms—a random alteration to prevent the
system deadlock at local extreme. The more stimulated is the cell, the more substantial
the mutation is (to maintain convergency).

After initialising, the ARB pool needs to be refined, because it contains too many
inviable cells. Entire pool is stimulated and then the mean stimulation is calculated for
every loop of refining procedure:

> ccarp(stimulation(c))

tim =
fmeanstum size(ARB)

(4)

If a mean stimulation threshold (one of input parameters) is met, then the best cell ccana
from ARB pool is selected and claimed a candidate cell.

18

3. Artificial Immune Systems

If it is not met, cells in ARB pool must mutate again to reach the threshold criterion. To
maintain convergency, each cell ¢ in ARB pool has an amount of resources given as:

resources(c) = stimulation(c) - clonerate (5)

where clonerate is a system input parameter. Another input parameter is a maximal
amount of resources mazres ‘taken’ by the system. Each loop, the weakest cells (i.e.
cells ‘taking’ the lowest amounts of resources) are being disposed until the threshold
criterion is met. When the threshold criterion is met, c..nq of ARB pool is selected as
a candidate and the rest of ARB pool is disposed.

Then ccqnq is compared with cpese. If coana has better stimulation, it is added to the
memory cell pool. This whole training procedure repeats for numpatterns € N steps,
where numpatterns is an input parameter.

The classification itself is then stimulating the memory cell pool with the given anti-
gen. After the memory cell pool is stimulated, then the class-carrying cell is selected
using k-nearest-neighbour algorithm.

Pseudocode

The following pseudocode (syntax explained in Appendix II) describes the most impor-
tant parts of the algorithm.

Procedure: Train System
Input: stimthresh, mutrate, clonerate, maxres, TRS, knn
Output: memcells

memcells := initmemcells(TRS)
for(Cell c in TRS)
stimulate(memcells, c)
bestmatch := getMostStimulated(memcells)
if(bestmatch=c)
continue
fi
if(not label(bestmatch)=1abel(c))
add(memcells, newcell(data(c), label(c)))
else if(stimulation(bestmatch)<1)

pool := createARBpool(c, bestmatch, clonerate, mutrate)
candidate := refineARBpool(pool, c, stimthresh, clonerate,...
.. .maxres)
addifbetter(memcells, candidate, bestmatch)
fi

end

Procedure: createARBpool
Input: c, bestmatch, clonerate, mutrate
Output: pool

19

The Use of ALS in Biomedical Information Retrieval

add(pool, newcell(data(bestmatch), label(bestmatch)))
clonecount := round(stimulation(bestmatch)*clonerate*mutrate)

for(i:=0, i<clonecount, i++)
cell := newcell(data(bestmatch), label(bestmatch))
add(pool, mutateCell(cell, bestmatch))

end

Procedure refineARBpool
Input: pool, p, stimthresh, clonerate, mutrate
Output: candidate

meanstim:=0
do
stimulate(pool, p)
competition(pool, clonerate, maxres)
candidate := biggeststim(pool)
sumstim := @
for(o in pool)
sumstim :+= stimulation(o)
end
meanstim := sumstim/size(pool)
if(meanstim>stimthresh)
actpoolsize:=size(pool)
for(i:=0, i<actpoolsize, i++)
cell := newcell(data(get(pool, i)), label(get(pool, i)))
setStimulation(cell, stimulation(get(pool, i)))
cell2 := mutateStimulatedCell(cell)
if(cell2 sameas cell)
decrement(i), continue
fi
add(pool, cell2);
end
fi
while(meanstim < stimthresh)

3.2 AIRS Implementation Test

In order to test correctness, the AIRS was first run on a domain of two dimensional
vectors (X and Y coordinates), where classes represent certain space (area). Random
points are generated using discrete uniform distribution over the area and the goal is to
determine which points belong to their respective spaces. The only information about
the problem provided to the algorithm is the training set.

Graphic capabilities of Java were used to graphically illustrate the results. In fig.5, the
red circles are the test instances (antigens), the blue ones are the memory cells (antibod-

20

3. Artificial Immune Systems

ies) and the lines between them are the results of 1-nn. The green line denotes wrong
classification.

Sig. 4 — AIRS sample run on domain of 2D vectors

The upper right quadrant represents one class and the lower two quadrants represent
the second.

The time complexity of AIRS (training phase) on this problem can be approximated
by the function (1/(20 - 10%)) - n?, whereas the time complexity of testing phase is lin-
ear. During this test, AIRS parameter were set as follows: threshold=0.9, antibody
count=200, mutrate=2, clonerate=10, maxres=50, knn=1. Machine specification is de-
scribed in Appendix C.

tab. 1 — AIRS time complexity sample table

Dataset size(n) 10 100 1000 2000 5000 10000 25000 50000

Training[ms] 0 5 60 235 1305 5082 32053 126397
Testing 200 [ms] 3 5 20 40 97 195 553 1136
(1/(20-10°)-nY 0 0 50 200 1250 5000 31250 125000

21

The Use of ALS in Biomedical Information Retrieval

3.3 Negative Selection Algorithm

The Negative Selection Algorithm is a T-Cell inspired algorithm, designed for binary
classification. The principle of NSA is different from that of AIRS. Firstly, the NSA
iterates the training set and groups the instances labeled SELF together (i.e. creates
a self-set). Then it generates more or less random cells (antibodies) and matches them
against the self-set. The matching process itself is different from that of AIRS. Instead of
using k-nn, the matching radius is used (i.e. only cells that are less or equally distant from
the cell than a given factor are matched). If the antibody matches any cell in the self-set,
it fails its mission (because it is supposed not to mach SELF cells) and it is disposed. If
it does not match anything, it is kept as an antibody, because there is a chance, that it
would match an unknown (and therefore NON SELF) cell.

Matching factor

I
Antibody count

1

Training set . Lymphocyte cells
o NSA algorithm '

fig. 5 — Basic NSA algorithm scheme (input, output, parameters)

NSA takes two parameters: Matching factor € < 0,1 >, which is the above mentioned
maximal matching distance and Antibody count € N, which denotes, how many antibodies
should be created.

Pseudocode

The following pseudocode (syntax explained in Appendix IT) describes the most impor-
tant parts of the algorithm.

Procedure: Train System
Input: TRS, size, factor
Output: antibodies

selfset := createSelfSet(TRS)
antibodies := generateAntibodies(selfset, size, factor)

Procedure: createSelfSet
Input: TRS
Output: selfset

22

3. Artificial Immune Systems

for(cell in TRS)
if(isSelf(cell))
add(selfset, cell)
fi
end

Procedure: generateAntibodies
Input: selfset, size, factor
Output: antibodies

while(1)
if(immuneReaction(selfset, p = randomAntibody(domain)...
., factor)==NULL)
count++
add(antibodies, p)
if(count=size)
break;
fi
fi
end

Procedure: immuneReaction
Input: set, stimulus, factor
Output: matched_antibody

matched_antibody:=null

for(cell in set)
if(match(cell, stimulus, factor))
matched_antibody:=cell
break
fi
end

3.4 NSA Implementation Test

In order to test correctness, the NSA was first run on a domain of two dimensional vectors
(X and Y coordinates), where classes represent certain space (area). Random points
are generated using the discrete uniform distribution over the area and the goal is to
determine which points belong to their respective spaces. The only information about
the problem provided to the algorithm is the training set.

Again, the Java graphics were used to illustrate the results (fig. 6). The red circles are
the test instances (antigens), the blue ones are the antibodies and the blue circles around
the antibodies represent their matching factor.

23

The Use of ALS in Biomedical Information Retrieval

Jfig. 6 — NSA sample run on domain of 2D vectors

The settings for this test were following: factor=0.05, count=50.

3.5 Parallelisation capabilities

In [10], Andrew Watkins and Jon Timmis, the creators of AIRS, explore parallelisation
capabilities of AIRS. They had inspired themselves in human immune system and it’s
natural parallelisation, which is clearly it’s dominant feature. They think, that if the ATRS
itself is inspired in human immune system, it should contain parallelisation capabilities
somehow naturally.

They propose dividing training phase into several processes (each process should own
a part of the training set), running AIRS on them independently and then merge final
memory cell pools. The question is raised, that if the training set is divided (therefore
cell interaction during training is disturbed), shall the results remain the same?

The answer is no. They show, that classification accuracy drops a little with every
additional processor, as the cell interaction rate lowers. Also, there is a significant in-
crease in the final memory cell pool size. They propose solving this problem by using
affinity-based merging (practically it is well known resource competition).

When applying the affinity-based merging, the classification accuracy remains a bit
lower (95.86 %/62 cells on 1 processor, 94.86 % /88 cells on 24 processors), but the run-
time is significantly decreased.

24

4 Preliminary testing

4.1 Datasets

Gaussian dataset

For the purpose of thorough testing, a simple two dimensional dataset was defined. In
this dataset, points are generated by a random number generator with the normal prob-
ability distribution (see Appendix A), where class A has distribution N(0, 0.2) and class
B N(0.5, 0.2). Figure 8 visualises the dataset in the Cartesian plane.

12 T | T | T T T . T T
: : : S :
1__ *-ﬂ
noak...... *
gk SRR ‘ B he,
Ok :1.,
et
) IR 0 v v
‘?*t to A Ly To
Ok -ee ;...+..¢...,¢; :
E+* “:%; :-i
|:|.2 +.‘#+ . '%‘
. : -
Ok T SRR 5
OBk s * SO
05 i a

i I i I i I i
08 06 -04 02 1l 0.2 0.4 0B 0.9 1 1.2
JSig. 7— Gaussian dataset visualisation in the Carthesian plane

Iris dataset

The famous Iris dataset (introduced by Sir Rondal Aylmer Fisher in 1936) contains 150
samples from three species of the Iris flowers (Setosa, Virginica and Versicolor, fig. 8),
which grow in Gaspé Peninsula, Canada. The dataset has four dimensions—each sam-
ple carries information about petal length, petal width, sepal length and sepal width in
centimeters.

25

The Use of ALS in Biomedical Information Retrieval

Following picture (fig. 8) shows a photo of an Iris Versicolor flower in bloom with dis-
tinction of its sepal and petal.

Sfig. 8 — Iris Versicolor flower!wikimedia commons]

Test methodology

In following tests, a dependency of classification accuracy on algorithm parameters is
observed. Assuming parameters a, b and ¢, when testing a, then b and ¢ are fixed on
given value.

The dataset is randomized and split in half. One half is declared the train set and the
second one the test set, and the algorithm is run on these. This process is repeated 100
times and the final result is declared an average of the 100 values.

4.2 Testing AIRS

When testing AIRS, the values of affinity threshold, clonerate, mutrate, maxres and knn
were changed, and the results were observed. On both Gaussian and Iris dataset, there
were no significant differences in the classification accuracy for different values of affin-
ity threshold, clonerate, mutrate and maxres, but there were significant differences for
different values of knn.

When the parameter values are fixed, they are following: stimthresh=0.9, knn=3,
mutation rate=2, clone rate=10.

26

4. Preliminary testing

100 — , ! ! . , !
93

96

=

a4l
a2

a0

ACCUracy

88
BB : i ; 1

[T e 4

a2l L e R e [T < mean |4

a0 i i i i i T T
0.1 0z 0.3 0.4 0s 0.6 07 08 09
stimulation threshold

fig. 9 — Dependency of classification accuracy (gauss) on stimulation threshold

100

95 F 1

wr I T E_'_ E_'_
at iy 530 0 T
ik R
2 = ¥

| + +
a0k |
-

S 1

classification accuracy

86 1

g4 1

82r 1

ao

1 3 [7 9
knn value

Jfig. 10 — Dependency of classification accuracy (gauss) on knn (boxplot)

100 T
| — - —_ —_
98 I ' | I | J
I I | I I
sl I E I I |
oy 94 I E E |
[}
@ |
3 92t | | | | i
& | : | | |
5 wmf | — I ! [
T 1 + I . |
L - H - + E
o + + + —
T o8h + + + E
+ + +
o4+ + i
82t g
80
1 3 5 7 9
knn value

Sfig. 11 — Dependency of classification accuracy (iris) on knn (boxplot)

27

The Use of ALS in Biomedical Information Retrieval

Knn parameter seems to be very dataset-specific. On the Gaussian dataset it seems, the
bigger knn the better accuracy, but on the Iris dataset, the best value seems to be 3. This
preference was observed also when these datasets were tested in Weka (software available
online: http://www.cs.waikato.ac.nz/ml/weka/) implementation of AIRS.

4.3 Testing NSA

When the NSA was tested, all of its parameters seemed to matter essentially. When the
parameter values are fixed, they are following: antibodies=250, matching factor=1.

Test methodology
The methodology is the same as in 4.2 (AIRS).

Antibody count

100

ACCUracy

40

100 250 a0 1000
antibodies

fig. 12 — Dependency of classification accuracy (gauss) on antibody count (boxplot)

The bigger is antibody count, the bigger accuracy. This result makes sense, because more
antibodies cover more space and therefore match more non-self cells. On the other side,
antibody count is also a parameter of algorithm’s time complexity function (which is
linear), so bigger count of antibodies will cause worse performance.

Matching factor

Testing dependency of classification accuracy on NSA matching factor yielded very ob-
vious results. When matching factor is too small or too big, classification is inaccurate,
because nothing or everything is matched, respectively. This factor also seems to be
dataset-specific (for the Gaussian dataset, bigger values of this parameter made algo-
rithm perform better).

28

4. Preliminary testing

100

- T3 % _____ %l _____ 556

Bk A [USSR S
| | _-L_
| |
3 R
S Ok T TR o ¥ ¢ i
= I I
: +
ED _+ - I_ B L R R PR P FEEEE (EEEEE T .
T : +
=0 _g_l B D SR RS]
40
01 02 03 04 07a 1 25 3

matching factor

JSig. 13 — Dependency of classification accuracy (gauss) on matching factor (boxplot)

Boxplot at x=2.5 is not an error (notches are not bound by quartiles, see Appendix A).

4.4 Optimising parameters for given datasets

A simple genetic algorithm (GAR*) was used to determine suboptimal parameter val-
ues of AIRS and NSA. A genetic algorithm is a heuristic algorithm used for state-space
search inspired in the evolution theory and the theory of natural selection. Basic genetic
algorithm has several phases:

1) Initial population generation

2) Fitness evaluation

3) Selection

4) Recombination (also called crossover)
5) Mutation

6) Altering/Renewing current population

During (1), an initial population is created randomly or semi-randomly (there are situ-
ations, when a GA needs to be directed via adding viable individuals to the initial pop-
ulation). During (2), a fitness function is evaluated for every individual in a current
population. A fitness function is a function, which computes viability of an individ-
ual (its proximity to an optimal state). During (3), usually two individuals are selected
based on a given rule (for instance, the roulette selection—every individual takes an area
in a virtual roulette wheel relative to its fitness). The selection rule must not be deter-
ministic and must have non-zero probability of choosing non-viable individual. The two
selected individuals are then recombined (4). During recombination, genotypes (state
representations) of the two selected individuals are mixed based on a recombination rule
(usually one-way or two-way crossover). The result of this process are two or more new

29

;note

The Use of ALS in Biomedical Information Retrieval

individuals, which then undergo a process of mutation (5). A following process of alter-
ing/renewing the current population may vary along with different evolution strategies.
In one of these strategies, the entire new population is created using the selection, re-
combination and mutation on the old population. Another strategy is to generate only
n new individuals using the selection, recombination and mutation and replace them
with n least viable individuals in the current population. The second method is used in
this thesis. Following diagrams show (fig. 14, 15, 16), how mean population fitness and
best fitness varied with number of generations simulated.

100 T T T T T T T T T

95+ :

B # mean population fitness

a7 L * bhest fithess in population | |

95 :

95

accuracy

a4

93+ 1

92r :

a1t :

QD 1 1 1 1 1 1 1 1 1
1} 20 40 60 g0 100 1200 140 160 180 200

generations

Sfig. 14 — Dependency of fitness on number of generations (AIRS, gauss)

100 T T T T T T T T T

98 :

#r * mean population fitness

g7l * best fithess in population ||

96

95+ :

accuracy

g4t .

93+ :

a2t E

91 :

90 1 1 1 1 1 1 1 1 1
0 20 40 G0 g0 100 1200 140 160 180 200

generations

Sfig. 15 — Dependency of fitness on number of generations (AIRS, iris)

30

4. Preliminary testing

1':":' T 1 1 1 1 1 1 T 1

5

¥ mean population fithess

a0 . .
best fitness in population

85

80

ACCUTacy

74

70

B&

ED 1 | | | | | | 1 |
a 20 40 B0 80 mo 1200 140 180 180 200

generations
Jfig. 16 — Dependency of fitness on number of generations (NSA, gauss)

Results

The following table (tab. 2) shows the results of testing AIRS and NSA with parametrs,
which were optimised by a genetic algorithm

tab. 2 — Result of testing AIRS and NSA with optimised parameters

Algorithm/Dataset H mean acc. [%] stimthresh‘knn‘maxres‘m.factor‘ antibodies

AIRS/Iris 96.453 0.357| 6 62 — —
AIRS/Gauss 95.456 0.435| 7 160 — —
NSA/Gauss 85.15 - - — 1.481 254

31

The Use of ALS in Biomedical Information Retrieval

4.5 Comparison

Parameter settings obtained from GA (4.4) were used for final comparison (fig. 17)

100
e _
== OO [T _
e
1 | _
O _
=
%
e = T P _
()
()
(143
BB R T .. —
ol g ... |
Bad b T _
B : .. _
—
a0 =+
1 2

1-MNSA 2-AIRS
Sfig. 17 — Comparison between AIRS and NSA (gauss)

In any test performed on both AIRS and NSA, the worst results of AIRS were always
better than the best results of NSA.

32

5 Biomedical data

In medical facilities, there are databases, which are maintained by facility personnel,
such as doctors and nurses. These databases contain various texts, which may be medi-
cine prescriptions, patient diagnosis, birth progess, applied treatment etc. These texts
contain vast amount of typos, because they are often typed in hurry, and for sure, they
are not in the form, that would make data mining easy, although there is a need of ex-
tracting certain information from these sources.

5.1 Data character

Provided datasets contain large ammount of natural language strings, where most of the
words are medical terms, not commonly used in general verbal communication, such as
specification of diagnose or applied treatment.

The dataset records have no classes attached to them, so there is no chance to ap-
ply conventional classification methods on the raw data. In addition, there are many
artefacts in the strings, such as multiple times repeated space, case inhomogeneity and
diacritic.

5.2 Classification strategy

For there are no classes corresponding to the strings in our dataset, we must construct
them artificially, so they will show a direct linkage to the data. We would like to analyse
the text and separate the words, that carry the biggest information value. There are
several methods to extract these:

Cluster analysis

Cluster analysis separates the data to several groups, in which instances form clusters
(they are near by one another). Illustrative method of cluster analysis is the minimum
spanning tree method. This method creates a minimum spanning tree in the data graph
(spanning tree is such factor of a graph, that is a tree, and minimum spanning tree
is a spanning tree with minimal cost among all possible spanning trees) and removes
n longest edges from it, thereby separating the data graph into a forest consisting of
n + 1 components. Every component then represents a data cluster, that could be used
to assign a class to the instances in it. There are several algorithms designed to solve
this problem—namely Jarnik-Prim’s algorithm!'®, Kruskal’s algorithm!'° and Bortivka’s
algorithm!!"l. Basic version of Jarnik-Prim’s algorithm, which was used for minimum
spanning tree generation in this thesis, uses vertex adjacency matrix on a complete graph.
Time complexity of this method is O(n?), where n is edge count. This method was re-
jected—its complexity makes it unusable for very large datasets.

Word frequency analysis

Frequency analysis computes a frequency of every word in a dataset and returns a com-
plete dataset Aistogram. Based on the histogram, we can select several words with highest

33

The Use of ALS in Biomedical Information Retrieval

frequencies and declare them important (of course we must exclude high frequency nat-
ural language words, which are unimportant, such as prepositions). This can be done
in a linear time by using a hash table. A hash table is a one-dimensional associative array
that uses a hash function to match a key to it’s corresponding value.

This method was accepted, because of its low complexity and good performance.

tab. 3 — Time complexity of MST and FA sample table
Samples | 100| 200/ 300| 400| 500| 600 700| 800| 900| 1000

MST Time[ms]| 459 | 1716 |3775|7044|10781 | 17796 | 20853 | 27295 | 34752 | 42794
FA Time[ms] | ~0| ~0| ~0| 1 1 2 2 2 3 3
Time[ms]
40 000:’ — Data spline curve
I ---Quadratic curve
30000]
20000}
10000
L "/‘/'//
—— L Samples
200 400 600 800 1000

Jfig. 18 — MST time complexity

5.3 Distance measurement

There are many algorithms, that measure distance between strings. Each is suitable for
a different field of use. To choose a metric, that satisfies our needs in this problem, we
need to specify requirements for that metric. These are:

= Distance must be low between correctly typed and mistyped words
= Distance must be big between completely different words (in terms of their mean-
ing)
Most widely known group of string metrics are edit distances. Edit distance of strings
A and B is a number of edit operations needed to transform A into B. List of allowable edit
operations differs with particular algorithms. Three most used edit distance algorithms
are:

= Hamming distance

34

5. Biomedical data

« Levenshtein distance!*®!

» Damerau-Levenshtein distance!*®

Hamming distance

Let A and B be strings of equal length, and let char At(S, x) be a function mapping char-
acter indexes z of string S to their respective characters. Also let same(x,y) be a func-
tion that is 1 when characters « and y are not the same and 0 when they are the same.
Then Hamming distance dpq,, = ijgth(A) same(char At(A, z), char At(B, x)). Simply, it

counts indexes, at which two strings are different. Algorithm has linear runtime.

Levenshtein distance

Levenshtein distance of string A and B is a number of insertions, deletions and substitu-
tions used to transform A into B. Algorithm has time complexity O(n * m), where n and
m are lengths of compared strings.

Damerau-Levenshtein distance

Damerau-Levenshtein distance of string A and B is a number of insertions deletions,
substitutions and transpositions used to transform A into B. Algorithm has time com-
plexity O(n = m), where n and m are lengths of compared strings.
Two most common words of the first of the provided dataset are “mesocain” and
« . .9 . . . « . 2
epiduralni”. Dataset also contains these words with various typos, such as “mesocian”,
“mescain” or “peiduralni”. Selected distance metrics show following results:

tab. 4 — Hamming distance test chart

mesocain mesocian mescain epiduralni peiduralni

mesocain 0 2 5 10 9
mesocian 0 4 9 8

mescain 0 10 9
epiduralni 0 2
peiduralni 0

tab. 5 — Levenshtein distance test chart

mesocain mesocian mescain epiduralni peiduralni

mesocain 0 2 1 8 7
mesocian 0 3 8 7

mescain 0 8 7
epiduralni 0 2
peiduralni 0

35

The Use of ALS in Biomedical Information Retrieval

tab. 6 — Damerau-Levenshtein distance test chart

‘mesocain mesocian mescain epiduralni peiduralni

mesocain 0 1 1 8 7
mesocian 0 2 8 7

mescain 0 8 7
epiduralni 0 1
peiduralni 0

Hamming distance seems to penalise totally different words very much, but it is com-
pletely insensitive to words, that are completely the same, but shifted. For that reason,
it is inaccurate and unusable for our problem.

On the other side, Levenshtein distance takes shift as only one operation and therefore
it is sensitive to words, that are the same, but shifted. It penalises completely different
words less than Hamming distance, but the difference is not considerably big.

Without a question, the Damerau-Levenshtein distance performs the best among the
metrics mentioned above. It shares the sensitivity of the Levenshtein distance and in
addition, it can detect the most common kind of typos—character transpositions. There-
fore the Damerau-Levenshtein is a potent candidate distance metric.

The distance, that these algorithms compute, is absolute and therefore unnormalised.
For our purposes, we need normalised distance on range <0,1>. To scale an aboslute
distance, we need to determine maximal possible distance between two strings (which
is called normalised affinity denominator in this thesis, because an absolute distance is
divided by this number). If A is a string of length len(A) and B is a string of length
len(B), then we declare strings Ad and Bd of lengths len(A) and len(B), respectively. We
call these strings the dummy strings, when a string metric considers them 100% different.
Normalised affinity denominator is then equal to the distance between them.

The cosine similarity

The cosine similarity (see (6)) is a vector distance metric, that computes the cosine of an
angle between two vectors. If the vectors point the same direction, angle between them
is 0, therefore their cosine similarity is 1. In algebra, an angle between two vectors is
their dot product divided by the product of their magnitudes. And because all strings
are character arrays and therefore vectors, the cosine similarity can be also applied on
them.

A-B zyzlAiXBi

JAI-UIBI /T, A7 x /L, B

The product distance

cos(0) = (6)

The product distance is a distance, that was designed especially for the purposes of this
thesis, because there was a need for a new metric, that would take into account several

36

5. Biomedical data

factors described in the following paragraphs. It has so far the best performance when
used for similar word identification during preprocessing and when used as a distance
metric in AIRS and NSA algorithms. It is basically a Damerau-Levenshtein distance cor-
rected by a cosine similarity coefficient and a cosine correction coefficient. Pseudocode
follows.

Procedure Proddist
Input: String A, String B
Output: product _distance

List X = SPLIT(A,”), List Y = SPLIT(B, ” *);
For(i:=0,i<Length(Y), i++)
If(Y[i] is element of X) ...
and If(Y[i] is a part of another word)
x_length+=Length(Y[i])
For(i:=0, i<Length(X), i++)
If(X[i] is element of Y) ...
and If(X[i] is a part of another word)
y_length+=Length(X[i])
occurrence_ratio_x = x_length/length(A);
occurrence_ratio_y = y_length/length(B);
occurrence_ratio = max(occurrence_ratio_x,...
occurrence_ratio y) or @ if (0,0);
cosine_correction = 1 - occurrence_ratio;
cs = cosineSimilarity(X,Y);
product_distance = cs * cosine correction * normDLSD(A,B);

The goal of this distance metric was primarily to detect typos which originated from
not typing a space between words, like “some word” and “someword”. According to
Damerau-Levenshtein metric, the distance between these words is 0.11, but according to
product distance, it is 0. This is a good property when comparing sentences, but it also
proved to be good when comparing words—it detects prefixes and suffixes and provides
a distance bonus in the form of cosine correction coefficient. For example “mesocain”
and “mesocainu” are 0.11 units distant according to Dam.-Lev., but only 0.012 units
distant according to product distance, because “mesocain” (length 8) is present as a sep-
arate word in the first string and as a part of a word “mesocainu” (length 8) in the second
string, thus the correction is (1-(8/9)) = 0.11 (11 % of the original distance).

5.4 Word modifiers encoding

Because there are many quantifiers and qualifiers in the dataset, that bind to certain
words, it would be an error to do a frequency analysis before connecting modifiers to
the words, they are bound to. We read a data from a configuration file to determine,
which words are units, which words are negative modifiers and of which type they are
(prefix—appearing before a word, or postfix—appearing after a word). The configura-
tion file contains the following information:

37

The Use of ALS in Biomedical Information Retrieval

= List of units (for instance: ml, mg, %)

» List of words bound to units (for instance: drugs)

= List of prefix negations (for instance: bez;czr) (nojcgr)))

= List of postfix negations (for instance: nebyla|czg) (unused|cgg)))
= Default binding

When a unit is found in a string, the algorithm searches for a word bound to it one step
to the left and one step to the right of the word. If such word (or a very similar word,
based on Damerau-Levenshtein distance) exists, the unit is connected to it using this
convention: “boundword(!10mg)”. Normalised distance is optimised to penalise words
containing “(!”, so “boundword(!10mg)” and “boundword” will be considered distant.
This significantly increases sensitivity. If such word does not exist, quantity is bound
to the first left word when default binding is set to left and to the first right word when
default binding is set to right. When there are no left words, the quantity is bound to
the first right word and vice versa.

When a negative modifier is found, it is bound to the left or to the right according to
its type and connected to it using this convention: “boundword(!NEG)”. Normalised
distance is again optimised to penalise words containing “(!NEG)”. Example follows.

Before:
celk anestezie 1% mesocain
bez xylocainu

After:
celk anestezie mesocain(!1%)
xylocainu(!NEG)

5.5 Similar word identification and frequency merging

A result of a frequency analysis is a list of String-Double pairs. Strings in these paris
represent words and doubles represent their frequencies. Properly typed words and their
typos are counted separately, so we need to merge them to get their real frequencies.

In this process, the list is iterated from its start. Every word is then compared to all
unprocessed words using the product distance and if they are similar enough (i.e. dis-
tance is lower than a preset threshold), their frequencies are added and they are declared
one word. Example follows.

Before:
kratkodoba celkova anestezie u man lyze xylocain
mesocain(!1%) xylocain epiduralni analgezie
xyloxain spray
epiduralni analgezie pri porodu meoscain(!1%)
mezocain(!1%) epidural

After:
epiduralni, 3

5. Biomedical data

mesocain(!1%), 3
analgezie, 2
xylocain, 2
spray, 1

0 1
5.6 Unique wordlist

Because there are many duplicate words in the String-Double pair list (result of a fre-
quency analysis), they are removed by converting the list into a set and back to the list.
The overridden method equals() of String-Double pair compares the equality of the
string part and therefore the inner Java framework routines causes duplicate records to
be disposed when converting list to set.

5.7 Unimportant data removal

The configuration file contains list of words, which are unimportant for the classification
(such as prepositions). In this process they are all removed. In addition, words, which
have lower normalised frequency than the dispose rate (a preset parameter) are removed
too.

Before:
epiduralni, 3
mesocain(!1%), 3
analgezie, 2
xylocain, 2
spray, 1

u, 1
After:
epiduralni, 3
mesocain(!1%), 3
analgezie, 2
xylocain, 2
//— for example, dispose rate creates dividing line here

spray, 1 // <- removed for having lower rate than the dispose rate
u, 1 // <- removed for being a preposition

5.8 Class generation

After all the previous processes has taken place, the list of important words contains
words, which will be declared important. A string of the same length as the length of
the wordlist is created. Every character of this class string will be either 0 or 1 if a word
from wordlist, that is assigned to this character’s index, is absent or present in the dataset

39

The Use of ALS in Biomedical Information Retrieval

record, respectively. For instance, if the words are A B C D, then following records will
have following class assignment:

(ABCD) ->(1111)
(AHHC) -> (101 0)
(F G) -> (0 @ 0 0)

Then every record in a dataset is processed based on absence and presence of important
words (with a given dissimilarity tolerance) and it is assigned a class.

The Class Identifier object, which is able to translate class strings to their meanings
and vice versa is then created and stored, because it will serve as a necessary class infor-
mation for classifiers.

5.9 Class identifier object

By preprocessing and identifying the records, we gain a class identifier object, which is
provided to the classification algorithm. It contains the list of all the important words
and a method, which assigns a bit string to corresponding words, therefore the class
identifier object creates a link between the class and the data and it is also able to translate
a class string to an appropriate data string and vice versa.

Dispose rate

Identification threshold

1

Raw dataset Preprocessin Normalised & classified
— P . g dataset
algorithm

Sig. 19 — Preprocess algorithm scheme

The algorithm takes Dispose rate € R (see 5.7) and Identification threshold € R (see 5.5) as
its parameters.

40

6 AIRS for biomedical data

6.1 Classification strategy

The binary counter and sentence based distance approach

The first tested approach was naive. It assumed, that if there is a class string, that consists
of k independent values, each having n possible values, there is n* total possible classes
in the system, although, the vast majority of them is unused. Therefore, there was an
exponential relation between count of the important words and the train/test runtime.

In this approach, the memory cell pool was initialised with one cell for every class.
For instance, with 14 important words in a dataset of 1000 records, the cell pool was
initialised with 16384 cells which apparently resulted in poor data reduction rate. Expo-
nential runtime also made algorithm impossible to finish (for instance, even 70 detected
important words would make the algorithm run ten times longer than the age of the
universe).

Beside this, the classification method was inaccurate. The longer the record was, the
worse was the distance resolution and the worse was the ability to detect minor dissimi-
larities in the strings.

The 1-of-k counter and word based distance approach

The second tested (and actual) approach significantly improves the results. It assumes,
that if there is a class string, that consists of k independent values, each having n possible
values, then we can think of the value as of a vector. For instance, the string 0001000
is a vector in Z : (0,0,0,1,0,0,0). We can define a linear space V of binary vectors of
length £ and search for a basis of that space, which gives us a set of vectors, whose linear
hull is again a vector space V, thus any possible vector of V' can be created by a linear
combination of the basis vectors??). The basis of such space is:

..100...
..010...
..001..

Due to this assumption, the classifier is only able to identify single words, but from the
words it is able to construct a sentence. It can split the test sentence into words and then
classify them separately. Using a linear combination it can construct the final class in
following manner:

VR:Cl®(V1)@CQ@(VQ)@...@CkQ(Vk) (7)

where ¢; is 0 if word i is classified as not present and 1 if classified as present, operator
© is a logic multiplication and operator @ is a logic addition (in other domains, these
operators will have equivalent functions (multiplication and addition)). For instance,

41

The Use of ALS in Biomedical Information Retrieval

let important words be A, B, C and D and the test sentence “A E F C G”. First of all, we
split the sentence and classify each word separately:

A - matched word 1, ¢;=1

E - no match
F - no match
C - matched word 3, c3=1
G - no match
CLASS =16 (1000) & 0 ® (0100) & 1 ® (0010) & 0 ® (0001) = 1010 (8)

Hence, AIRS only needs k cells to initialise pool. This is a proof, that this approach is
far more efficient than the sentence based one (which needs 2’“).

6.2 Algorithm variation

The algorithm itself remains basically the same as the original one except for some minor
changes. Unlike the original algorithm, this variation needs two additional parameres—
—similarity threshold and class identifier object. During initialisation, the algorithm fills
the memory pool with the initial antibodies specified in 2.1.1 and then makes a copy of
the memory pool.

Stimulation threshold

Mutation rate
| | Resource limit

Ry

Training set AIRS algorithm Memory cells
—] —

variant

Similarity Threshold

Class identifier K-nn

Sig. 20 — AIRS algorithm variant scheme

During the training, every record is split into words and then every word is compared
with the words in the initial pool (the copy, which I mentioned in the paragraph above).
If the lowest measured distance is lower than or equal to the similarity threshold, then
the particular word is processed by the training algorithm of AIRS (described in 3.1).

After the training phase is complete, the memory cell pool is filled with the important
words and their variations, which were deemed important by the algorithm. This process
significantly increases the probability of matching mistyped words to their respective
classes.

During the testing, every record is split into words and then every word is classified

42

6. AIRS for biomedical data

separately. If the lowest measured distance is greater than the similarity threshold, then
the particular word is disposed. If the distance is lower than or equal to the similarity
threshold, then the class label of the best-matching antibody is added with the final class
using a logic OR function.

6.3 Testing

During the testing, several dependencies were observed between stimulation threshold,
knn, similarity threshold (independent variables) and accuracy, convergency fault rate,
memory cell count and time complexity (dependent variables). The Convergency fault
rate is a new parameter, that indicates how many ARB pools weren’t able to mutate and
achieve given mean stimulation after 100 mutation cycles. It happens because the mu-
tation function is not parametric. Memory cell count indicates, how many memory cells
were trained and used and it is de facto the memory complexity.

Test methodology

Following tests were run on the first 1000 samples of the simpler of the two datasets.
Every time a value of some parameter was tested, the dataset was randomized and split
in half. One half was declared the train set and the second one the test set, and the
algorithm was run on these. This process was repeated 10 times and the final result was
declared an average of the 10 values. Preprocess parameters were: id_threshold=0.330,
dispose rate=0.025, profile used: lesscmplx.profile (see Appendix D).

Test results

During testing an individual parameter, other parameters were fixed at one value. In
fig. 21, we can see relative steadiness of accuracy throughout all measured stimulation
threshold values. While at values greater than 0.7, the convergency fault rate starts to
grow, indicating that with given mutation function, reaching given stimulation threshold
is getting more difficult.

In fig. 22, we can see the actual memory complexity function with stimulation thresh-
old as its parameter. The higher the stimulation threshold is, the more memory cells will
be created.

In fig. 23, we can see the actual time complexity function with stimulation threshold as
its parameter. When there is more iterations of mutation needed to reach the stimulation
threshold, the more time the algorithm will consume.

In figs. 24-26, we can see, that the algorithm could be the most accurate somewhere
between 0.3 and 0.35 (of similarity threshold), but it cannot be said for sure, because we
do not know, if there are or are not multiple relations with the arguments, which were
fixed during the test. Nevertheless, that higher values of similarity threshold result in
bigger convergency fault rate and excessive memory and time complexity.

In fig. 27 and 28, we can see, that the most accurate value of knn could be 1. Values
bigger than 1 could lead to enormous decrease of performance.

The suboptimal parameters of this algorithm for this dataset are computed using a ge-
netic algorithm in further sections of this chapter (Optimisation of input parameter val-
ues.)

43

The Use of ALS in Biomedical Information Retrieval

100 T T T T T T T T

2 accuracy

+ stdev f
S0k T P L e i
2 convergency fault rate : : : :

accuracy

td : : : :
A0 k- : 5 E\T : B T e b e o
gk A
0k _r’_

Ta] SRR e }f 4

0 s FA ——— P
0
stimulation threshald

Sig. 21 — Dependency of accuracy on stimulation threshold

100 T T T T T T T T

o0k i

80F--------) memarycens

Fin] P ’_ Stde"—'

BOE-oeee i
]| O i

L PN SO O S S s LT
A0 | ; § : | : e

gk SRR SR SR SO @f S i

@ﬂ"@ @H_@,Hﬁ___@w@f

T O

rernary cells count

1ok i

0 i i i a i i i i
] 0.1 0.2 0.3 04 05 0B 07 n.e n.g
stimulation threshald

Sig. 22 — Dependency of memory cell count on stimulation threshold

44

6. AIRS for biomedical data

time [ms]

18000

16000

14000

12000

10000

B000

BO00

4000

2000

accuracy

100

80

50

Fill

B0

50

40

30

20

1o

1] 0.1 0z 0.3 0.4 05 0.6 07 0.8 0.9

2 train time

+ stdev : : : : !

O testtime | : f !
stdey ' : :

T
-
1

0 0.1 02 0.3 0.4 0.5 06 0.7 0.8 09

stimulation threshold

Sig. 23 — Dependency of runtime on stimulation threshold

TSR NS ORI S)| © accuracy
: : : e stdev
SREERRER RS foe R D - 2 conwvergency fault rate |-

: : : i : stdew
Lo SR ,@/ B ST FETIEPIRE IO e

similarity threshold

JSig. 24 —Dependency of accuracy on similarity threshold

45

The Use of ALS in Biomedical Information Retrieval

time [ms]

300 ; T ! T ! T ! T !

D 1 1 1
1l 0.1 0.2 0.3 0.4 0.5 06 0.7 0.8 ns

280k @/

MOk | _
A

mernory cells count
oy
(]
T
™
I

: : W 2 memory cells
(?_@_@.—-@—@ : + stdev

sirnilarity threshold

Jig. 25 — Dependency of memory cell count on similarity threshold

18000

16000

14000

12000

10000

5000

BO00

4000

2000

! 5 ! ! ! ! ! 7
e waintme}
: + stdey 5
| o esme e
: stdey : /%‘H:
E{ | :

R
oy
\.r
&
|
&
&

1 i I i
a 0.1 0.z 0.3 0.4 0.5 0.6 a7z n.s na
similarity threshold

JSig. 26 — Dependency of runtime on similarity threshold

46

6. AIRS for biomedical data

accuracy

remary cells count

100

T T T | T T T
9|:| ... -
1 TR T U S SO ST PUTTRIN 4
T T L TRt PR ERPRE: STRRRITS 4
accuracy]
stdev]

convergency fault rate
stdew |
............... .\._
Qe I Y 1 m 1 o _L_Ih__d_ i
1 2 3 4] 6 7 5] |
knn
JSfig. 27 —Dependency of accuracy on knn

1DD T T T | T T T
9|:| ... -
8|:| .. .
I ST P T I T R -
BOk---e--- T memory cells .. .

: — — —stdev

I:I | | 1 I 1 1 |

1 2 3 4 5 G 7 g |
knn

JSig. 28 — Dependency of memory cell count on knn

47

The Use of ALS in Biomedical Information Retrieval

Real classification performance

The real classification performance is better than the accuracy shown in the above dia-
grams could imply, because the classes of the strings are artificially created and are not
precise nor real. As it can be seen in the following listing, the Preprocessing algorithm
made many mistakes, which were repaired by AIRS and therefore the classes don’t match
theoretically, but it is de facto a good classification.

mesocain(!1%): 530.0
epiduralni: 441.0
lok: 278.@

amp: 236.0
analgezie: 221.0
celkova: 134.0
xylocain: 113.0
mesocainu: 110.0
anestezie: 99.0

1: 68.0

loc: 66.0

amp(!1%): 62.0
spray: 50.0
1(!116ml): 34.0
There are 14 significant words.

AIRS

DATASET: C:\biodata\mensi.data, 1 dimensions.

TRAINING SET is 1/2 of DATASET

INCORRECT: 1 amp mesocain != amp mesocainu SHOULD BE mesocain(!1%) amp mesocainu

CORRECT: epifuralni analgezie = epiduralni analgezie

CORRECT: 1 amp mesocain(!1%) = mesocain(!1%) amp

CORRECT: mesocain(!1%) 1 amp 2x = mesocain(!1%) amp

INCORRECT: mesocain(!1%) epiduralni anealgezie != mesocain(!1%) epiduralni analgezie SHOULD BE mesocain(!1%) epiduralni analgezie anestezie
CORRECT: mezokain(!1%) = mesocain(!1%)

CORRECT: epiduralni analgezie dr robotkova = epiduralni analgezie

INCORRECT: 1 % mesocain 1 amp lok != lok amp mesocainu 1 SHOULD BE mesocain(!1%) lok amp mesocainu 1
CORRECT: epid analg mesocain(!1%) = mesocain(!1%) analgezie

CORRECT: remifentanyl mesocain(!1%) = mesocain(!1%)

CORRECT: amp(!1%) msocain lokalne = lok mesocainu amp(!1%)

CORRECT: mesocain(!1%) amp = mesocain(!1%) amp

CORRECT: epiduralni analgezie xylocain = epiduralni analgezie xylocain
INCORRECT: xylocai spray != xylocain spray SHOULD BE xylocain loc spray
INCORRECT: lamp mesocainu(!1%) != mesocain(!1%) amp SHOULD BE mesocain(!1%) amp mesocainu

CORRECT: epiduralni lokalni mesocaine = epiduralni lok mesocainu
CORRECT: u porodu epiduralni celkova u s ¢ = epiduralni celkova
CORRECT: 1 amp mem i v = amp

CORRECT: 1 amp(!1%) mesoain = mesocainu amp(!1%)

CORRECT: lok mesokain = lok mesocainu

INCORRECT: lokalni lo % xylocain != lok xylocain loc SHOULD BE lok xylocain 1 loc

CORRECT: mezocain(!1%) epiduralni = mesocain(!1%) epiduralni

INCORRECT: epiduralni analgezie mesocain 1 amp != epiduralni amp analgezie mesocainu SHOULD BE mesocain(!1%) epiduralni amp analgezie
mesocainu

CORRECT: lamp(!1%) mesokain = mesocainu amp(!1%)

CORRECT: celkova revize dd po porodu = celkova

INCORRECT: epiduralni analgesie 1 % mesocain != epiduralni analgezie mesocainu 1 SHOULD BE mesocain(!1%) epiduralni analgezie mesocainu 1

CORRECT: celkova manualni lyze a revize = celkova

CORRECT: celkova anestezie = celkova anestezie

CORRECT: revize hrdla delozniho v zrcadlech sine vulnere =

CORRECT: lokalni 1 % mesocian = lok mesocainu 1

INCORRECT: mesocain lok(!1%) != mesocainu SHOULD BE mesocain(!1%) mesocainu

CORRECT: epiduralni analgezie 1 amp mesocain(!1%) = mesocain(!1%) epiduralni amp analgezie

CORRECT: % mezokain 1 amp = amp

INCORRECT: epiduralni xylocain(!1%) mesocain != mesocain(!1%) epiduralni mesocainu SHOULD BE mesocain(!1%) epiduralni xylocain mesocainu

CORRECT: lokalni mesocain(!1%) epiduralni = mesocain(!1%) epiduralni lok

CORRECT: 1(!1@ml) % mesocainu xylokain = xylocain mesocainu 1(!1eml)

CORRECT: epiduralni loc(!16ml) (!1%) mesocainu loc = epiduralni mesocainu loc amp(!1%) 1(!1eml)
CORRECT: traumacel pulv =

CORRECT: mesocain(!1%) epiduralni analgesie dr mala = mesocain(!1%) epiduralni analgezie
CORRECT: mesocain(!1%) 2 amp i v = mesocain(!1%) amp

CORRECT: mesocain(!1%) dolsin(!5@mg) i v = mesocain(!1%)

CORRECT: 1 amp(!10%) mesocainu = mesocainu amp(!1%)

CORRECT: epiduralni alalgezie = epiduralni analgezie
INCORRECT: 1(!1@ml) % mesocain lokalne != lok mesocainu 1(!1@ml) SHOULD BE mesocain(!1%) lok mesocainu 1(!1@eml)
INCORRECT: epiduralni a lokalni 1 % mesocain != epiduralni lok mesocainu 1 SHOULD BE mesocain(!1%) epiduralni lok mesocainu 1

CORRECT: mesocain(!1%) 1 amp lokalne = mesocain(!1%) lok amp

48

6.

AIRS for biomedical data

CORRECT:
CORRECT:
CORRECT:
CORRECT:
CORRECT:
CORRECT:
CORRECT:
CORRECT:
CORRECT:
CORRECT:
CORRECT:

mezocan(!1%) loc = mesocain(!1%) loc
epiduralni xylocaine spray = epidural
epiduralni analgezie = epiduralni ana
eda lokalne xylocaine = lok xylocain
lokalni(!1%) mesocaim lamp = amp meso:
1 amp mesocain(!1%) xylocain sprej =
lokalni mesocaine xylocaine spray =1
analgesia epiduralis ca = epiduralni
1 amp mesocaun(!1%) = mesocain(!1%) a
2 amp mesocain(!1%) = mesocain(!1%) ai
mesokain(!1%) loc = mesocain(!1%) loc
CORRECT: epiduralni dr stoudek = epiduralni
CORRECT: epiduralni analgezie lokalne mesocain(
INCORRECT: mesocain 1 % lok != lok mesocainu 1
CORRECT: mesocain(!1%) xylocaine = mesocain(!1
CORRECT: mesocain(!1%) epiduralni analg dr slez
INCORRECT: xylocain(!1%) != mesocain(!1%) SHO
CORRECT: epidur analgesie celkova = epiduralni
CORRECT: celkova dr krikava = celkova
CORRECT: epiduralni celkova = epiduralni celko
INCORRECT: mesocain(!1%) 1 amp xylocain(!10%)
CORRECT: epiduralni u poodu dr gbelcova mesocai
CORRECT: epiduralni analgezie kratkodoba celkov
CORRECT: epiduralni an(!1@ml) mesocain(!1%) loc
INCORRECT: 1 % mesocain != mesocainu 1 SHOULD
INCORRECT: mesocain amp local
INCORRECT: lokalne 1 % mesocain
CORRECT: epiduralni u s c v celkove = epidural
INCORRECT: epiduralni analgezie 1 amp mesocain
analgezie mesocainu
CORRECT: epiduralni analgesie dr zborilova meso
CORRECT: eipduralni analgezie i anestezie = ep
CORRECT: mesocain(!1%)(!3@ml) = mesocain(!1%)
INCORRECT: mesocain amp != amp mesocainu SHOU!
CORRECT: epiduralni analg a cekova anest = epi
CORRECT: epiduralni analg % mezokain lok = epi
CORRECT: epiduralni anaalgesie = epiduralni an
INCORRECT: xyloxain(!1@%) != mesocain(!1%) SH
CORRECT: epidural celkova pri man lyze revizi
INCORRECT: lokalni mesocain != lok mesocainu

!= amp mesocainu
!= lok mesocai

ni xylocain spray
lgezie

cainu

mesocain(!1%) amp xylocain
ok xylocain mesocainu spray
analgezie

mp

mp

11%) = mesocain(!1%) epiduralni lok analgezie
SHOULD BE mesocain(!1%) lok mesocainu 1

%) xylocain

ak = mesocain(!1%) epiduralni analgezie

ULD BE mesocain(!1%) xylocain

analgezie celkova

va

I= mesocain(!1%) amp SHOULD BE mesocain(!1%) amp xylocain

n(!1%) = mesocain(!1%) epiduralni
a pri ml = epiduralni analgezie celkova 1
al = mesocain(!1%) epiduralni loc 1(!1@ml)
BE mesocain(!1%) mesocainu 1
loc
nu 1 SHOULD BE mesocain(!1%) lok mesocainu 1
ni celkova
lok

cain(!1%) =
iduralni analgezie anestezie

LD BE mesocain(!1%) amp mesocainu
duralni analgezie celkova anestezie
duralni lok analgezie

algezie

OULD BE

= epiduralni celkova

SHOULD BE mesocain(!1%) lok mesocainu

CORRECT: mezocain(!1%) epidural = mesocain(!1%) epiduralni

CORRECT: epiduralni lokalne mesocaine =
CORRECT: mesoacin(!1%) = mesocain(!1%)

epidur

INCORRECT: epiduralni analgezie lamp mesocain loc

mesocainu loc
CORRECT:
CORRECT:
CORRECT:
CORRECT:
CORRECT:

mesocain(!1%) za porodu epiduralni dr
xylocain = xylocain

spinalni an =

episiotomie suttura chirlac =
mesocain(!10%) 1 amp = mesocain(!1%)

alni lok mesocainu
I= epiduralni amp analgezie mesocainu loc

gbelcova = mesocain(!1%) epiduralni

amp

SHOULD BE mesocain(!1%) amp mesocainu loc

!= epiduralni lok amp analgezie mesocainu

mesocain(!1%) epiduralni analgezie

SHOULD BE mesocain(!1%) epiduralni lok amp

SHOULD BE mesocain(!1%) epiduralni amp analgezie

(In this listing, CORRECT: A=B means that, dataset record A and AIRS determined class
Barein match. INCORRECT: A!=B SHOULD BE C means that dataset record A has artificially
created “real” class C (translated to natural language using class identifier object) and

not AIRS determined class B).

Optimisation of input parameter values

Asin 4.4, a simple genetic algorithm was used to determine suboptimal parameter values
for this algorithm and dataset. Diagram in fig. 29 shows how mean population fitness
and best fitness varied with number of generations simulated.

Results

= AIRS on Less complex biomedical data: stimulation threshold=0.330, knn=1
— Accuracy: mean 84.486 % on 100 randomly selected 1:1 percentage splits

49

The Use of ALS in Biomedical Information Retrieval

100 T T T T T T T T T

B0 f

f0r

H
gt # mean population fithess |
x # hest fitness in population

50 [1

accuracy

20 .

D 1 1 1 1 1 1 1 1 1
a 20 40 =] 80 100 120 140 180 180 200

generations

Jfig. 29 — Dependency of fitness on number of generations (AIRS variant)

50

7 NSA for biomedical data

While changes made in AIRS in order to make it able to classify biomedical data were
more-or-less simple, such changes made in NSA were severe and they resulted in a new
algorithm, that uses several instances of original NSA. All changes are described in the
following chapters.

7.1 Definitions

Information source

The Information source*¥ is a probability model of a device, which produces messages
consisting of characters of a finite alphabet I'. There are 3 basic types of information
sources:

= a random variable (one character long message)
= a random vector (n characters long message)
= a random process (infinite character count)

Markov chain

The Markov chain'¥ is a mathematical model of a finite automaton with vertex tran-
sition probabilities on its edges. Transition from state A to state B has a probability
EDGE(A, B) where EDGE(z,y) is a function that maps vertex pairs to the value of their
mutual edge.

Markov information source

The Markov information source!'” is a stationary Markov chain (a stochastic process).
In this thesis, the Markov chain is defined on a finite alphabet, that consist of all pairs of
english letters. The transition matrix is built by frequency analysing a corpus text, where
empirical frequencies of transitions between letter pairs are converted to probabilities.
(Thorough example is provided in A.5.)

7.2 Classification strategy

The NSA is a binary classifier, therefore it cannot be used directly. However, n classes
can be simplified to just two classes—the self class in the first group and all the other
classes in the second group. Then the algorithm can distinguish between one class and
the others.

In order to make the algorithm be able to classify all the n classes, we must create
separate antibody pools, each for one class. Each antibody pool must contain a baseset
of antibodies (one instance from every non-self class). If they had not have these base
sets, the algorithm would not yield satisfying results no matter how good the antibody
generation process would be. Each of the pools matches all classes but one. There are

51

The Use of ALS in Biomedical Information Retrieval

now several possible result of classification:

1) exactly one of n pools does not match an atigen
2) k of n pools does not match an antigen, k # n
3) n of n pools does not match an antigen

If exactly one pool p, does not match an antigen ¢, (1), then it means, that every other
pools pg, k # 0 had antibodies for the antigen ¢,, so it must be an important word and if
only p, does not have antibodies for it, it means, that most probably the self class of p,
is the class of ¢,.

If k of n pools do not match an antigen ¢, (2), then it means, that there are n — k other
pools, that matched the antigen ¢, , so it probably is an important word, but it cannot
be decided which one of k (it is similar to both).

If no pool matches an antigen c, (3), then it means, that it is not an important word.
These specialized antibody pools may (or may not) be improved by addition of more
antibodies, generated by various mechanisms. One of the mechanisms is mutation, i.e.
antibodies mutate and they are being checked against their self class (when they are too
similar to their self class, they are disposed). The other mechanism which may improve
performance is the addition of antibodies generated by a Markov information source.
The advantage of such antibodies is that Markov chain generates antibodies, that have
nearly the same probability distribution as the corpus text, so they will cover the impor-
tant areas and not the unimportant areas, rather than pure random antibody generator,
which tries to cover the whole non-self space.

Matching factor
Class identifier
Antibody count

H

Traini t NSA algorithm Lymphocyte cells
raining se g {

variant

T T Markov information source

Number of mutations
Number of Markov antibodies
Sig. 30 — NSA algorithm variant scheme

As it can be seen in the above schematic (fig. 30), the algorithm takes several parameters,
all being explained in the above paragraphs (chapter 7) and in chapter 3.3.

/.3 Testing

During testing, several dependencies were observed between NSA input parameters, ac-
curacy and time complexity. The method used is the same as in 6.3.

52

7. NSA for biomedical data

100 ! ! ! ! ! ; ! ! !

g k- - _

80 F-------) al:cural:y .

SEE ¢ stden

accuracy
i

I i 1 1 I
0.1 0.z 0.3 0.4 0.5 0.6 0.7 0.8 09
matching factor

fig. 31 — Dependency of accuracy on matching factor (NSA variant)

3000 ! : T 5 T T T ! 5

: 2 train time : :
: 5 : + stdev 5 : :

EEDD [P, e R EERETR e e I .
(: 2 test time : : :

stoew

time [ms]

1500 k- SRR b EQ 4
oo k- L e { _

ook e L SRR L b .?@‘.}*

matching factaor

fig. 32 — Dependency of time complexity on matching factor (NSA variant)

53

The Use of ALS in Biomedical Information Retrieval

100 ; ! ; ! ! ! ! ; !

(= 5] T

Bg@ﬂ_hh%%% o
] ﬁ% h%““‘—“——§___h_,___;)

BOE--- -

S0k

accuracy

C] SRS . g T T o sswcr |1

a0 * stdev.

10k

i 1 1
1l 5 10 15 20 25 30 35 40 45 a0
rarkov antibodies present

Jfig. 33 — Dependency of accuracy on Markov antibody count (NSA variant)

18000 ; ; ! ! ! ; ! ! !

O traintime |

+ stoew

O testtime |
stdew

16000

14000

12000k

oo k-

time [ms]

goo0 k- T
good ke SRR L Lo ,-{-}"” T
Aooo k- F_,_Hffr”_';

o000 T RN

NSRS SRS SR VAN SIS S
5 10 15 20 25 30 35 40 45 a0
markov antibodies present

fig. 34 — Dependency of time complexity on Markov antibody count (NSA variant)

54

7. NSA for biomedical data

100 ! ' ; ! ! ! ! ; !

0k L

accuracy

A0k v stdev .

Wk
0k

me.-

i I i I I . i
0 5 10 15 20 25 30 35 40 45 a0
rnutated cells present

fig. 35 — Dependency of accuracy on mutated antibodies (NSA variant)

18000 ! ; ! ! ! !) ! !

2 train time |

+ stdew

O testtime |
stdew

16000

14000

o000k

ooo0 k-

time [ms]

goon k- B
BOOO b L Lo G PUU __,@.,—F‘—
ok L L BT T AR - S

000 - o

' ORGSR SRLD VRIS SR S
1] & 10 15 20 25 30 35 40 45 50
mutated cells present

fig. 36 — Dependency of time complexity on mutated antibodies (NSA variant)

55

The Use of ALS in Biomedical Information Retrieval

Test results

In fig. 31, we can see how classification accuracy changes with matching factor. We can
see a point around 0.3 (of matching factor), which could make algorithm yield the best
results. In fig. 32 we can see, that grater matching factor causes shorter runtime.

In fig. 33 and 34, we can see, that addition of antibodies created by a Markov chain
causes decrease in accuracy an increase in runtime, thus it should always stay at zero
when used with this dataset.

In fig. 35 and 36, we can see, that addition of antibodies created by the process of
mutation does not change accuracy, but only increases runtime, thus it should also stay
at zero.

Real classification performance

As in 6.3, the real classification performance is better than the accuracy shown above
could imply for the same reason (artificially created classes are not precise nor real).

530.0

epiduralni: 441.0
lok: 278.0

amp: 236.0
analgezie: 221.0
celkova: 134.0
xylocain: 113.0
mesocainu: 110.0
anestezie: 99.0
1: 68.0

loc: 66.0
amp(!1%): 62.0
spray: 50.0
1(!1eml): 34.0
There are 14 significant words.

CORRECT: epirudalni analgezie i anestezie = epiduralni analgezie anestezie

CORRECT: mezokain(!1%) epiduralni analgezie = mesocain(!1%) epiduralni analgezie

INCORRECT: epiduralni analgezie mesocain 1 amp != epiduralni amp analgezie SHOULD BE mesocain(!1%) epiduralni amp analgezie mesocainu
CORRECT: mesocain(!1eml)(!1%) 2 amp = amp

CORRECT: epidural celkova u vykonu = epiduralni celkova

CORRECT: epiduralni analgesie anestezie = epiduralni analgezie anestezie

CORRECT: celkova kratkodoba anestezie manualni lyze = celkova anestezie

CORRECT: epidural analg(!1%) mezokain lok = epiduralni lok

CORRECT: xylocaine(!10%) lokalne = lok xylocain

CORRECT: mesocain(!1%) lokalne = mesocain(!1%) lok

CORRECT: epiduralni analgesie dr stoudek mesocain(!1%) = mesocain(!1%) epiduralni analgezie
CORRECT: celkova narkéza = celkova

CORRECT: epiduralni anagesie mesocain(!1%) = mesocain(!1%) epiduralni analgezie

CORRECT: epiduralni analg mecosain(!1%) = mesocain(!1%) epiduralni analgezie

CORRECT: remifentanyl za porodu celkova anestezie u sc = celkova anestezie

CORRECT: epiduralni analgezie(!1@ml) (!1%) mesocainu = epiduralni analgezie mesocainu amp(!1%)
CORRECT: %(!10ml) mesocainu i v = mesocainu 1(!1@ml)

CORRECT: kratkodoba celkova anestezie u man lyze = celkova anestezie

CORRECT: xyloxain spray = xylocain spray

INCORRECT: epidural mesocain 1 % != epiduralni 1 SHOULD BE mesocain(!1%) epiduralni mesocainu 1
CORRECT: 1 amp(!1%) mesocainu lokalne = lok mesocainu amp(!1%)

CORRECT: celkova anestezie rcui = celkova anestezie

CORRECT: epiduralni 1°meoscain = epiduralni

CORRECT: mesocain(!1%) lamp xylocaine = mesocain(!1%) amp xylocain

CORRECT: epiduralni anagezie = epiduralni analgezie

CORRECT: celkova u vykonu = celkova

CORRECT: xylocaine spray lok = lok xylocain spray

CORRECT: epidural(!1@eml) (!1%) mesocainu xylocain spray = xylocain mesocainu amp(!1%) spray
CORRECT: lokalni 2 amp mesocain(!1%) = mesocain(!1%) lok amp

CORRECT: 1(!1@ml) % mesocainu xylokain = xylocain mesocainu 1(!1@ml)

INCORRECT: xylocai spray != spray SHOULD BE xylocain loc spray

CORRECT: epiduralni dr frncikova = epiduralni

CORRECT: mesocain(!1%) lokalne(!1@ml) = mesocain(!1%)

INCORRECT: lokalni mesocain lamp(!1%) != lok amp(!1%) SHOULD BE mesocain(!1%) lok mesocainu amp(!1%)

56

7. NSA for biomedical data

INCORRECT: epiduralni mesocain 1 amp(!1%) != epiduralni amp(!1%) SHOULD BE mesocain(!1%) epiduralni mesocainu amp(!1%)

INCORRECT: mesocain(!1%) epiduralni anealgezie != mesocain(!1%) epiduralni SHOULD BE mesocain(!1%) epiduralni analgezie anestezie

CORRECT: anetestezie(!INV) =

CORRECT: xylocaine lok = lok xylocain

CORRECT: mecocain(!1%) 2 amp i v = mesocain(!1%) amp

CORRECT: mesokain(!1%) epiduralni = mesocain(!1%) epiduralni

INCORRECT: mesocain 2 amp(!1%) analgesia epiduralis != epiduralni analgezie amp(!1%) SHOULD BE mesocain(!1%) epiduralni analgezie mesocainu
amp(11%)

INCORRECT: m(!1%) mesocain != amp(!1%) SHOULD BE mesocain(!1%) mesocainu amp(!1%)

CORRECT: epiduralni anesteie = epiduralni anestezie

CORRECT: 1 amp mesocain(!1%) = mesocain(!1%) amp

CORRECT: spinalni an =

CORRECT: mesocian(!1%) 1 amp lok = mesocain(!1%) lok amp

CORRECT: epiduralni analg anestezie = epiduralni analgezie anestezie

CORRECT: xylocaine 1 amp mesocain(!1%) = mesocain(!1%) amp xylocain

(In this listing, CORRECT: A=B means that, dataset record A and NSA determined class
Bare in match. INCORRECT: A!=B SHOULD BE C means that dataset record A has artificially
created “real” class C (translated to natural language using class identifier object) and
not AIRS determined class B).

Optimisation of input parameter values

Asin 4.4, a simple genetic algorithm was used to determine suboptimal parameter values
for this algorithm and dataset. Diagram in fig. 37 shows how mean population fitness
and best fitness varied with number of generations simulated.

100 T T T T T T T T T

90 - B

80 -

70

B0 | * mean population fitness |
#* best fitness in population

a0

accuracy

40 |# 4

30

D 1 1 1 1 1 1 1 1 1
0 20 40 B0 g0 100 120 140 160 180 200

generations

fig. 37 — Dependency of fitness on number of generations (NSA variant)

Results

= NSA on Less complex biomedical data: matching factor=0.303
— Accuracy: mean 75.894 % on 100 randomly selected 1:1 percentage splits

57

lviii

8 Final results (on both datasets)

In this chapter, both AIRS and NSA are used for classification of the entire less complex
dataset (which was also used in testing) and of part of a more complex dataset, which
is significantly greater and has significantly greater word-stock. Also, two variants of
KNN algorithm were used in order to compare AIS to a member of non-AIS classifica-
tion algorithms group. The first variant is the classic KNN (only 1-nn was used, because
more-nn was proved not to yield good results in 6.3) with no data reduction. The sec-
ond variant of KNN does not use training at all and it might not be called KNN at all,
because a Class identifier object is provided to it in order to create a final pool of words.
Classification itself, in this second variant, follows that of the variant AIRS (section 6,
i.e. 1-of-n approach).

8.1 Less complex dataset (22 000 words)

Optimised parameters used for this test are specified in 6.3.

Settings
Preprocess parameters were set manually to the value, at which the algorithm yielded

satisfactory important words (parameter optimisation cannot be done in this situation).

» Preprocess parameters: Similarity threshold: 0.33, Dispose rate: 0.005
» Detected important words: 13

Algorithm settings

= AIRS Parameters

similarity threshold=0.330, stimulation threshold=0.7, knn=1, mu-
trate=2, clonerate=5.

= NSA Parameters
matching factor=0.303, Markov antibodies=0, mutated antibodies=0

» KNN (original) has no parameters (except k, which is stated above to be 1).
= KNN’ (modified) has no parameters (except k, which is stated above to be 1).

Results

In the results and in fig. 38, it can be seen, that the results of NSA are actually better than
the results of AIRS on the whole dataset. Such result was not expected, because on the
first 1000 records, AIRS always performed better. In the end, the variant NSA algorithm
seems more flexible for this problem than the variant AIRS. It can also be seen, that the
modified KNN algorithm outperformed the other ones.

59

The Use of ALS in Biomedical Information Retrieval

accuracy

100

95

80

85

80

75

710

55

B0

55

tab. 7 — Results on less complex biomedical dataset

| ATRS | NSA|KNN|KNN’|

Average train time [s] 5.000 | 0.005| 0.001 | <0.001
Average test time [s] 2.800| 6.500| 127.8| 1.127
Mean accuracy [%] 78.17 | 81.2260.64 | 82.48
Median of accuracy [%] | 77.88| 81.27 | 60.59 | 82.52
Best-so-far accuracy [%]| 81.68| 83.60| 63.51| 83.54
Standard deviation [%] | 1.59| 0.68| 1.23| 0.50

0.05 quantile [%] 75.92| 80.14| 58.53| 81.61
0.25 quantile [%] 76.85| 80.72| 59.73 | 82.12
0.75 quantile [%] 79.56 | 81.61| 61.59| 82.83
0.95 quantile [%] 80.82| 82.23| 62.62| 83.25

............................ $__
R T e - .]
T
... _
1 2 3 4

1-AIRS, 2-NSA, 3 - Original KNM, 4 - Modified KMM

JSig. 38 — Comparison of algorithms on entire less complex biomedical dataset

60

8. Final results (on both datasets)

8.2 More complex dataset (1 500 000 words)

For instance, single dataset record looks like:

partus inductus in grav hebd 38 liquorrhoea amnialis praecox praesen-
tatio_occipitis funiculus umbilicalis circum collum fetus semel diabetes
mellitus gestationis matris th prostin © 5x2 mg ea amp iv analgesia epidu-
ralis oxytocin i v ifpo episiotomia mediolateralis sut chirlac mem 1 amp
iv dr kurecova sps dr huser hsps, 1111101011001001010110111010

Because of the complexity of the dataset and low optimisation of the code, it was not
possible to process the whole dataset (with 500 MB heap space). The problem was in
abundant usage of java Strings which are extremely slow for very large strings. Because
of the same thing, it was not possible to test the original KNN algorithm (it has no data
reduction).

Preprocess

Preprocess parameters were set manually to the value, at which the algorithm yielded
satisfactory important words (parameter optimisation cannot be done in this situation).

» Preprocess parameters: Similarity threshold: 0.33, Dispose rate: 0.25
» Detected important words: 28

Results

In the results and in fig. 39, it can be seen, that AIRS performs better than NSA and
KNN is slightly better than both of them.

tab. 8 — Results on more complex biomedical dataset

| AIRS | NSA|RNN?

Average train time [s] 7.940 0.018| <0.001
Average test time [s] 9.210| 107.0| 4.300
Mean accuracy [%] 65.80|64.49 | 66.28
Median of accuracy [%] | 65.90| 64.40| 66.40
Best-so-far accuracy [%]| 70.00| 68.00| 70.20
Standard deviation [%] | 1.55| 1.44| 1.32

0.05 quantile [%] 63.40| 62.20| 64.20
0.25 quantile [%] 64.90| 63.40| 65.50
0.75 quantile [%] 66.70| 65.60| 67.10
0.95 quantile [%] 68.30| 67.40| 68.30

61

The Use of ALS in Biomedical Information Retrieval

Parameters

= AIRS Parameters

similarity threshold=0.330, stimulation threshold=0.7, knn=1, mu-
trate=2, clonerate=5.

= NSA Parameters
matching factor=0.303, Markov antibodies=0, mutated antibodies=0
= KNN’ (modified) has no parameters (except k, which is stated above to be 1).

100
L .
1 .
P T .
a'\- I .
b
o
% ?5 e e e e e e -
70
BA
B0
e

1-AIRS, 2- MNEA, 3 - Madified KNM

Sig. 39 — Comparison of algorithms on more complex biomedical dataset

62

9 Conclusion

The main aim of this work was to apply Artificial Immune Systems on large and loosely
structured biomedical text datasets (i.e. biomedical datasets thereinafter) and evaluate
their performance. In this chapter, the goals declared in chapter 1.1 are mapped to
respective achievements.

9.1 Goals to achievements mapping

1)

2)

3)

4)

5)

Literature study
Relevant and useful publications concerning AIS were studied (chapters 2, 3).
Selection of 2 algorithms

Based on 1), two algorithms were selected, namely AIRS and NSA. They were
selected, because they are different in the way they operate—AIRS can work with
multiple classes, whereas NSA is purely a binary classifier. AIRS uses the KNN
algorithms as it’s matching function, whereas NSA uses radius threshold match-
ing. ARIS tries to cover the self-space, whereas NSA tries to do the exact oppo-
site—cover the non-self space.

Implementation

In order to make thorough testing and diagnostics possible, an appropriate
software framework was built in the Java programming language. Thanks to mod-
ular structure and object oriented approach, the system is designed to be able to
easily support new algorithms and diagnostic features (detailed description of
the API is a part of the Javadoc documentation of the source code). The cur-
rent implementation supports 8 algorithms (NSA, variant NSA (adapted to bio-
medical data), AIRS, variant AIRS (adapted to biomedical data), KNN, variant
KNN (adapted to biomedical data), Immunos-1 and Clonalg), Microsoft SQL
Database Manipulation Frontend, Preprocessing Frontend, Genetic Algorithm
Parameter Selection Frontend, GSV Manipulation Frontend, Profile Manipula-
tion Frontend and Testing Frontend. The Testing Frontend generates MATLAB
compliant code and is currently able to automatically output boxplots and mul-
tiple data series plots. Resulting source code has 6983 lines of code in 49 files.

Preliminary testing

In order to see, how AIRS and NSA behave on simple datasets, preliminary
tests were made (chapter 4). Both AIRS and NSA algorithms were tested on
both real (Iris) and artificially created (Gaussian) datasets and were compared to
one another. On these datasets, AIRS outperformed NSA with rather promising
results (AIRS reached 96.45 % accuracy on the Iris dataset and 95.45 % on the
Gaussian dataset, while NSA reached 85.15 % accuracy on the Gaussian dataset).

Biomedical data preprocessing and class assignment

In order to normalize biomedical data and in order to create and assign artif-
icaly created claases to them, a text preprocessing algorithm was designed and

63

The Use of ALS in Biomedical Information Retrieval

implemented (chapter 5). This algorithm automatically selects important words
based on their frequencies using a new distance metric (Product distance, pro-
posed in 5.3).

6) Algorithm performance evaluation

In order to study behaviour of the modified algorithms, both of them were
tested on a sample subset of the less complex of the two biomedical datasets
(chapters 6.3 and 7.3).

7) Large scale testing and comparison

In the end, a performance comparison of the algorithms on very large datasets
was made and it was compared with performance of the KNN algorithm (chap. 8).

tab. 9 — Results revision table

| ATRS | NSA|KNN|KNN’]

78.17 | 81.22|60.64 | 82.48
65.80 | 64.49 66.28

Mean accuracy on less complex dataset [%]
Mean accuracy on more complex dataset [% |

9.2 Work not declared in goals

In addition to the specified goals (1.1), an additional work had to be done.

Algorithm alteration

In order to adapt AIRS and NSA to the biomedical datasets, we have non-trivially altered
the orginal algorithms to fit them.

Product distance

In order to achieve better resolution in string comparison, a new distance metric was
proposed and implemented in chapter 5.3.

Genetic Algorithm Parameter Selector

In order to optimize parameter values of algorithms, a Genetic Algorithm Parameter
Selector was designed a implemented. This genetic algorithm uses metaheuristic (de-
scribed in 4.4) to provide suboptimal set of parameter values and it is able to output
MATLAB-encoded diagrams of mean and maximal fitness.

9.3 Final conclusion

The main result of this work is a modular diagnostic and preprocessing framework,
which supports easy implementation of new algorithms and functionality. This frame-
work can and will also be used for other datasets of similar kind.

64

9. Conclusion

Both AIRS and NSA were tested on real biomedial data and were proved usable for free
text pattern mining problem, but their performance is rather average when compared
to the KNN algorithm. Nevertheless, their principle and the idea behind them makes
them viable for further study and applications.

The Use of ALS in Biomedical Information Retrieval

Appendix A: Statistics

In this chapter, statistic terms used in this thesis are defined and explained. Also, struc-
ture of various diagram types is described. Every information in this chapter is taken
from [13] unless stated otherwise.

A.1 Mean value

In this thesis, the mean value is equal to the unweighted average:

7= % zn: o (6)
=1

The most significant property of so defined mean is that if there are outliers in the selec-
tion, they will affect the result greatly.

A.2 Median

The median of the sorted selection S is the very middle element of this selection. If the
selection has even length, then this selection’s median is the mean of the two middle
elements.

A.3 Variance

The variance is a mean quadratic deviation from a mean value of a selection:

Sa= 2> (0 -)’ @

A.4 Standard deviation

The standard deviation is a mean deviation from a mean value of a selection:

sp= |1 > (0 -) (8)

66

1. Statistics

A.5 String Markov information source example

Let the alphabet I be defined as T' = {a,b,¢, ..., z,y, 2} and let the corpus text be abcd-
eaxbycza. There are following transitions in the corpus text: a->b, b->c, c->d, d->e,
e->a, a->x, x->b, b->y, y->c, c->z, z->a.

JSig. 40 — Graph of a sample Markov information source

We can represent the transitions as a transition matrix or a graph (fig. 40). The informa-
tion source can have a starting condition or may not. In case it has no starting condition,
any vertex can be picked. If a vertex is selected, a letter represented by it is attached to
an output. Then a transition is made according to probabilities on edges and a new ver-
tex is selected and so on. For instance, assuming the source described above (fig. 40),
valid generated words include: abczabczabcz, xbycdexbcdea, abcdeaxbc and so on.

Markov information source used in this thesis is not based on single letter but on
letter pairs (digrams), because they are more likely to mimic natural language when
given natural language corpus text. In english language, there are several very common
digrams, like th, er, is, st, ct, of, at and there are common transition rules,
for instance th is most likely followed by is, at or en, but not by of, although ho is also
fairly common (i.e. when using single letters as an alphabet, probability of getting thof
is a product of transition probabilities between t->h, h->oand o->f, which is nonzero,
whereas when using digrams as an alphabet, probability of getting thof is a product of
transition probabilities between th->of and because such transition does not exist in
english language at all, it is zero).

When using trigrams as an alphabet, results are even better, but this variant needs
very large corpus text. One can also use whole dictionary as an alphabet and a very
large text source as a corpus text. .. then the Markov information source gives senseful
sentences as its output.

The Use of ALS in Biomedical Information Retrieval

A.6 Boxplot

100

96

94+

88

|
|
|
Interquartile range (IQR) |
|
|

—— —> Q3+1.5IQR

=4

Y

1,58 IQR
L 1O8IRR

T

y 1

—1 3 QI-15IQR

‘—/‘+

outliers -

Median

Third quartile (Q3)

First quartile (Q1)

1

JSig. 41 — Boxplot description

A.7 Multiple data series plot

accuracy

100

80

60

50

40

301

201

10p

0.1

0.2

Sig. 42 — Multiple series plot description

accuracy
stdev

convergency fault rate

stdev

\\@@
\/

mean value <——§/ ®
\

spline curve

®
6 ,
- & @@\‘@/ g)
+stdev Pol g
_m /(:)-— @ L L L L
0.3 0.4 0.5 0.6 0.7 0.8 0.9

similarity threshold

68

3. Machine specification

Appendix B: Pseudocode syntax

The pseudocode is a meta-language used to describe algorithms in such well-arranged
and abstract way, real languages would never achieve.

Syntax

a:=b

a<=b

a=b

a<b, a=<b

a>b, a>=b

a sameas b
if(condition), fi
for(i, c, a), end
do while, while, end
for(o in list)
function(params)
membervar (o)
add(list,o)
remove(list,o)
Procedure: Name
Input: a, b, c
Output: d

tab 6. — pseudocode
Meaning

b is assigned to a by value

b is assigned to a by reference

logic operation: a equal to b

logic operation: a less than, less or equal to b
logic operation: a greater than, greater or equal to b
object comparison

if clause

c like for clause

other clauses

for each clause

function call

getter for membervar in object o

adds item to list

removes item from list

function declaration

input parameters for function

single output parameter of function

Commands can be separated either with new line or comma. Because the pseudocode
is not to be executed, commands and constructions not specified in this list are allowed
to be used as long as their meaning is trivial to understand.

Appendix C: Machine specification

All tests were run on the machine with following parameters.

— Operating system: Microsoft Windows 7 SP1, 32 bit instructions
— CPU: Intel Pentium Dual-Core T4200, 2 GHz clock rate
- Operating memory: 3GB

The following development or other notable software was used.

- Java SE platform

— Mathworks Matlab (faculty licence)

- Wolfram Mathematica (faculty licence)
— XATEX with plain format

The Use of ALS in Biomedical Information Retrieval

— Storm Type Foundry typefaces (personal licence)
— Enterprise Architect
— Microsoft SQL Server 2008

Appendix D: DVD directory and file structure

|-..
|-.
| -BT_SOURCE_CODE
| -BT
|-src
| -AIRS
| AIRS.java
| AIRSFillEngine.java
| CSF.java
| Pattern.java
| Point.java
| -CLASSIFIER
| ClassificationAlgorithm.java
| Test Java
| -GAParamSelection
| Instance.java
| ParamOperator.java
| ParamSelector.java

| Core.java

| KNN.java
KNNFillEngine.java
Pattern.java
Point.java

|

|

|

S

| DT.java

| NSA.java

| NSAFillEngine.java
| Point.java

| SpecialisedAntibodyGoup.java
T

|

|

|

|

|

|

|

CSV.java

DATASET. java
Distance.java
Distance.java
FillEngine.java
MarkovChainSource.java
MutableDouble. java

70

4. DVD directory and file structure

| -DATA

| MutableInteger.java
| MutableNumber.java
| SortableBinaryString.java
| Statistics.java
|-bt
| Main.java
| -database
| BTDException.java
| BTDatabase.java
| Database.java
| -preprocess
| ClassIdentifier.java
| Identification.java
| SortableStringDoublePair.java
| TranslationException.java
| -profile
| ParsingException.java
| Profile.java
| ProfileException.java
| ProfileReader.java
| ProfileWriter.java
| SectionHeader.java

| -csv_datasets

bcw.data

gauss.data

iris.data
lesscmplx_processed.data
morecmplx processed.data
wine.data

| -graphs

graphs.rar

| -profiles

| -TEX

lesscmplx.profile
morecmplx.profile

| source.rar
| BT.pdf

71

The Use of ALS in Biomedical Information Retrieval

References

[1] S. Forrestand A. S. Perelson and L. Allen and R. Cherukuri, “Self-Nonself Discrim-
ination in a Computer”, in Proceedings of the 1992 IEEE Symposium on Security and
Privacy, 1994.

[2] P. D’haeseleer, “An immunological approach to change detection: theoretical re-
sults”, in Proceedings of the 9th IEEE Computer Security Foundations Workshop, 1996.

[3] Andrew Watkins, Jon Timmis, and Lois Boggess. (2004). “Artificial Immune Recog-
nition System (AIRS): An Immune-Inspired Supervised Learning Algorithm”. Genetic
Programming and Evolvable Machines, 5 (3): 291-317, September 2004

[4] Andrew B. Watkins. (2001). “AIRS: A resource limited artificial immune classifier.”,
Master’s thesis, Mississippi State University, MS. USA., December 2001.

[5] Andrew Watkins and Jon Timmis. (2004). “Exploiting Parallelism Inherent in AIRS,
an Artificial Immune Classifier”. In Proceedings of the 3rd International Conference on
Artificial Immune Systems (ICARIS2004) held in Catania, Italy, 13-16 September, 2004.
Lecture Notes in Computer Science (LNCS), Number 3239. Edited by G. Nicosia, V.
Cutello, P. Bentley, and J. Timmis, pages 427-438. Springer. 2004.

[6] Kephart, J. O. (1994). “A biologically inspired immune system for computers”.
Proceedings of Artificial Life IV: The Fourth International Workshop on the Synthesis
and Simulation of Living Systems. MIT Press. pp. 130-139.

[7] Dasgupta, Dipankar; Nino, Fernando (2008). CRC Press. pp. 296. ISBN 978-1-
4200-6545-9.

[8] Jason Brownlee (2011). Clever Algorithms: Nature-Inspired Programming Recipes.
ISBN 978-1-4467-8506-5.

[9] Levenshtein distance. In Wikipedia. Retrieved October 10, 2011, from http://en.
wikipedia.org/wiki/Levenshtein_distance

[10] Andrew Watkins, Jon Timmis. (2004). “Exploiting Parallelism Inherent in AIRS,
an Artificial Immune Classifier”.

[11] Farmer, J. D., N. H. Packard and A. Perelson. “The Immune System, Adaptation,
and Machine Learning.” Physica D 22(1-3) (1986): 187-204.

[12] A Brief History of Artificial Immune Systems. AISWeb. 29 Aug. 2011 <http://www.
artificial-immune-systems.org/people-new.shtml>

[13] Navara M.: “Pravdépodobnost a matematicka statistika”, CVUT, Praha, 2007

72

4. DVD directory and file structure

[14] KroupaT.: Uvod do teorie informace: “Matematické zaklady komprese a digitalni
komunikace”, CVUT, Praha, Prosinec 2011

[15] V. Jarnik: “O jistém problému minimalnim (About a certain minimal problem)”,
Prace Moravské Prirodovédecké Spolec¢nosti, 6, 1930, pp. 57-63. (in Czech)

[16] Joseph. B. Kruskal: “On the Shortest Spanning Subtree of a Graph and the Trav-

eling Salesman Problem.” In: Proceedings of the American Mathematical Society, Vol
7, No. 1 (Feb, 1956), pp. 48-50

[17] Bortvka, Otakar: “O jistém problému minimalnim (About a certain minimal prob-
lem)” (in Czech, German summary). Prace mor. piirodovéd. spol. v Brné III 3, 1928:
37-58.

[18] Levenshtein V. I. (1966). “Binary codes capable of correcting deletions, insertions,
and reversals”. Soviet Physics Doklady 10: 707-10.

[19] de Castro, L. N.; Von Zuben, F. J. (2002). “Learning and Optimization Using the
Clonal Selection Principle”. IEEE Transactions on Evolutionary Computation, Special
Issue on Artificial Immune Systems (IEEE) 6 (3): 239-251.

[20] J. Greensmith and U. Aickelin and S. Cayzer, “Introducing dendritic cells as a
novel immune-inspired algorithm for anomaly detection”, in Proceedings of the Fourth
International Conference on Artificial Immune Systems (ICARIS 2005), 2005.

[21] T. Knight and J. Timmis, “AINE: An Immunological Approach to Data Mining”,
in First IEEE International Conference on Data Mining (ICDM’01), 2001.

[22] L.N.de Castro and J. Timmis, “An artificial immune network for multimodal func-
tion optimization”, in Proceedings of the 2002 Congress on Evolutionary Computation
(CEC’02), 2002.

[23] Petr Olsak. “Uvod do algebry, zejména linedrni”, FEL CVUT, Praha 2007, ISBN
978-80-01-03775-1

[24] David E Goldberg. “Genetic Algorithms in Search, Optimization and Machine
Learning”, Kluwer Academic Publishers, Boston, MA 2007.

73

