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Abstract
e aim o this thesis is to evaluate per ormance and usability o selected Arti cial

Immune Systems (AIS) on the problem o classi cation and automatic processing o
loosely structured ree-text medical records. A ter a review on the state-o -the-art AIS
algorithms, we have selected and implemented Arti cial Immune Recognition System
(AIRS) and Negative Selection Algorithm (NSA) algorithms as representatives. A -
ter preliminary testing and behaviour study we have altered the algorithms to t pro-
vided datasets using (among others) modi ed distance metric based on the Damerau-
-Levenshtein distance. On the datasets sized 22 000 and 1 500 000 words, we have ob-
tained the ollowing best classi cation accuracy: 78.17 %, 65.80 % respectively or the
AIRS and 81.22 %, 64.49 % respectively or the NSA.

Abstrakt
Cílem této práce je užití vybraných algoritmů skupiny Umělých imunitních systémů
(AIS) ke klasi kaci volně strukturovaného textu z oboru biomedicíny. Po posouzení
a zhodnocení algoritmů skupiny AIS byly jako reprezentativní algoritmy vybrányUmělý
imunitní rozpoznávací systém (AIRS) a Algoritmus negativní selekce (NSA). Po před-
běžném testování těchto algoritmů na jednoduchých reálných a umělých datech byly
původní algoritmy pozměněny tak, aby byly schopny klasi kace volně strukturovaného
textu, mimo jiné za použití vzdálenostní metriky založené na Damerauově Levenshtei-
nově vzdálenosti. Na množinách dat o velikostech 22 000 slov a 1 500 000 slov dosáhl al-
goritmus AIRS nejlepší klasi kační přesnosti 78,17 % a 65,80 %, algoritmusNSA 81,22 %
a 64,49 %.
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1 Introduction

1.1 Aim of this work
We have divided the work into the ollowing goals which have to be achieved.

Goal specification

1) Literature study
Weneed to study relevant and use ul publications concerning AIS and ree-text

pattern mining approaches, as well as string distance metrics.
2) Selection of 2 algorithms

Based on 1), we need to select two representative algorithms, which will be
implemented, analysed and used.

3) Implementation
We need to design and implement modular and well-arranged ramework in

order to make algorithm diagnostic, testing and text analysis possible.
4) Preliminary testing

We need to make preliminary tests in order to see, how these algorithms be-
have on simple datasets. ese tests need to be made on both real and arti cially
created datasets.

5) Biomedical data preprocessing and class assignment
We need to preprocess the biomedical data in order to normalize them and in

order to create and assign arti cially created classes to them, as we are provided
with text records only, with no annotation whatsoever.

6) Algorithm performance evaluation
We need to evaluate the per ormance o the adapted algorithms on a real bio-

medical data in order to study their behaviour and to nd optimal paramaters.
7) Large scale testing and comparison

In the end, we need to compare per ormance o the algorithms on very large
real biomedical datasets and compare it with per ormance o a non-AIS algo-
rithm.

1.2 What is an Artificial Immune System?
An Arti cial Immune System is generally a biologically inspired problem-solving algo-
rithm. It’s inspiration comes rom the mammalian immune system, strictly speaking
rom it’s generalisation abilities (see chapter 2). ese algorithms usually solve clas-
si cation and optimisation problems, but there are also several algorithms orm this
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branch, which are used or intrusion detection. Optimisation algorithms search or
optimal states in unctions ( or instance, travelling salesman problem, SAT problem,
knapsack problem etc.), whereas classi cation algorithms classi y their inputs, based on
example inputs presented to them be ore ( or instance, several shapes are presented to
hypothetical algorithm along with their respective labels (classes) and then an unknown
shape is presented to this algorithm. It’s job is to say, o what class that shape most likely
is).

1.3 Brief history of AIS[12]

e origins o AIS has its roots in the early theoretical immunology work o J. Doyne
Farmer, Alan Perelson and Francisco Varela, with a key work being by Farmer, Packard
and Perelson[11]. ese works investigated a number o theoretical immune network
models proposed to describe the maintenance o immune memory. ilst controver-
sial rom an immunological perspective, these models began to give rise to an interest
rom the computing community. e most in uential people at crossing the divide be-
tween computing and immunology in the early days were Hugues Bersini and Stephanie
Forrest. It is air to say that some o the early work by Bersini was very well rooted in
immunology, and this is also true o the early work by Forrest. It was these works that
ormed the basis o a solid oundation or the area o AIS. In the case o Bersini, he
concentrated on the immune network theory, examining how the immune system main-
tained its memory and how one might build models and algorithms mimicing that prop-
erty. With regards to Forrest, her work was ocussed on computer security (in particular
network intrusion detection) paying attention to the abilty o the immune systems to
discriminate between sel and non-sel . ese works ormed the basis o a great deal o
urther research by the community on the application o immune inspired techniques to
computer security. Due to a growing amount o work conducted on AIS, the Interna-
tional Con erence on Arti cial Immune Systems (ICARIS) con erence series has been
started in 2002.



2 Understanding the Immune System
In [7], Dasgupta and Nino thoroughly describe how human immune system works, how
cleverly and almost per ectly it has been designed by the nature and nally, how com-
puter scientists can utilize the ideas, on which it is based. In the ollowing paragraphs,
the basic principles are mentioned, as they are crucial or understanding, how AIS work.

According to [7], living organisms, such as human bodies, need to resist ham ul e ects
o a biological environment, they live in. e resistivity to biological entities is provided
by an immune system, which is three-layered. Physical barriers (such as mucousmembrane)
represent the rst layer o de ence. e second layer, called an innate (also non-speci c)
immune system, is supposed to destroy antigens (antigen means entity harm ul to the
body, such as bacteria, viruses etc.), which shows certain molecular structure, known
to the body. Finally, the third layer o immunity is called an adaptive (also speci c)
immune system, which is supposed to destroy antigens, which are recognised rom past
attacks. is layer (third) clearly disposes o certain recognition abilities, thus it becomes
particularly important or this work.

2.1 Adaptive Immune System
Adaptive immune system o human body shows two major abilities—memory and adap-
tivity. It is capable to rememer the pattern, which detected an antigen (we say an antibody
matched an antigen), improve it and reuse it in a later exposure to the same or similar
antigen. Cells called lymphocytes represent antibodies in a human immune system. ese
lymphocytes are o several kinds—generealy two—T cells and B cells.

Antibody→ antigen matching
B-lymphocytes have protein called BCR (B-Cell Receptor—immunoglobulin) on their
sur ace, that can bind to another cell on a molecular basis. en the binding between
a B-lymphocyte and an antigen is tight enough (we say, the a nity is high), the B-
-lymphocyte is said to be stimulated. en stimulated, the matched cell is probably
an antigen, thus an immune reaction is started. Firstly it’s somatic hypermutation.

Antigens

Antibody

Antigen

Antigen-binding site

g. 1 — B-Cell Receptors and molecular binding[wikimedia commons]



e Use AIS in Biomedical In ormation Retrieval

Somatic Hypermutation
en an antigen is bound by an antibody’s BCR, the antibody starts to clone itsel (clone

rate depends on the rate o stimulation), whereas the clones undergo a process o muta-
tion, where their BCR’s are slightly altered. A ter this, they test their a nity to the
antibody and then they clone and mutate again (with various rates depending on their
a nity). Products o this process, which show low a nity or they’re not stimulated at
all, are disposed. On the other side, cells, that have the highest a nity at all, are cloned
and kept or uture encounters.

Clonal Selection Mechanism
ile B-lymphocytes mature in spleen, using mechanics, that are unimportant or this

work, T-lymphocytes mature in ymus, where they undergo (among others) the pro-
cess called Negative selection. In this process, various sel -cells (body cells) are presented
to T-lymphocytes. en a T-lymphocyte matches any o the sel -cells, it is disposed,
otherwise, it is kept, cloned and mutated. By the end o this process, only 2 % o T-
lymphocytes will have satis ed the criteria.

g. 2 — Depiction o the Clonal Selection and the Somatic Hypermutation[wikimedia commons]



3 Artificial Immune Systems
ere are many algorithms derived rom the original works by Farmer, Packard and

Perelson[11], but generally they all belong to our groups, each being inspired by a spe-
ci c immunological theory:

Clonal Selection Algorithms (namely AIRS[4], Immunos, CSA[19])
Negative Selection Algorithms (namely NSA[1])
Dendritic Cell Algorithms (namely DCA[20])
Immune Network Algorithms (namely AINE[21], optAInet[22])

e other classi cation is:

B-Cell Inspired Algorithms (namely AIRS)
T-Cell Inspired Algorithms (namely NSA)

Because B-Cell inspired algorithms and T-Cell inspired algorithms share very little in
their operation principles, the AIRS and the NSA were chosen to be the two algorithms,
which are studied in this thesis. Namely AIRS and NSA are completely di erent—AIRS
can work with multiple classes, whereas NSA is purely a binary classi er. AIRS uses
the k-nearest-neighbour algorithm as it’s matching unction, whereas NSA uses radius
thresholdmatching. AIRS tries to cover the sel -space, whereas NSA tries to do the exact
opposite—cover the non-sel space.

3.1 Artificial Immune Recognition System (AIRS)
AIRS uses a training set to build a pool o memory cells, which should properly match
a cell, which is unknown to the system during training.

Training set Memory cells

Clone rate

Mutation rate

Stimulation threshold

Resource limit

K-nn

AIRS algorithm

 
g. 3 — Basic AIRS algorithm scheme (input, output, parametes)
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e arti cial cell is an object (or generally a data structure), which contains a data carrier,
that carries the data it should represent, a class label (with no in ormation in case o an
unknown cell). Every arti cial cell must also store and provide the in ormation about
its stimulation and about the amount o resources (see (5)) it claims.
In gure 4, a basic scheme o the AIRS is shown.

Firstly, let us de ne the domain d on which the AIRS will classi y (in d, there are data
sepated to n classes). Let the memory cell pool MCP be the list o cells, that will be the
output o AIRS and let the distance unction be the mapping f : (a, b) → d, where a
and b are cells and d ∈ R. Let clonerate ∈ R, mutrate ∈ R be the input parameters o
AIRS, that control rates o cloning and mutation and let maxres ∈ N (N = {1, 2, ...}) be
the maximal ammount o resorces, that all cells can posses (explained below, see (5)).

Firstly, the system is initialised with one sample cell rom every class. en a random
antigen cell c is generated over a domain d. en every cell ci in amemory cell poolMCP
is stimulated by c—that means, or every i ∈ MCP a distance distance = f(c, i) is mea-
sured, where f is a cell distance unction (in two-dimensional domain o real numbers it
may be euclidean distance). en the a nity is calculated as a relative distance

affinity = distance/max distance, (1)

where max distance is maximal possible distance o two cells in the current domain.
en the rate o stimulation is calculated logically as

stimulation = 1− affinity. (2)

en, the most stimulated cell cbest is compared with presented antigen c—i there’s no
match in class, the antigen cell is added straight into the memory cell pool. I there
is a match in class and i the antigen c is not equal to antibody cbest (i.e. the stimula-
tion is not exactly 1), then Arti cial Recognition Ball (ARB) pool is created. ARB pool is
initialised by cloning k clones o cbest, where k is

k = stimulation(cbest) · clonerate ·mutrate (3)

In addition, every clone undergoes amutation be ore its entry to the ARB pool. is pro-
cedure mimics somatic hypermutation mentioned in chapter 2. e mutation procedure
itsel is exactly the same as it is in genetic algorithms—a random alteration to prevent the
system deadlock at local extreme. e more stimulated is the cell, the more substantial
the mutation is (to maintain convergency).

A ter initialising, the ARB pool needs to be re ned, because it contains too many
inviable cells. Entire pool is stimulated and then the mean stimulation is calculated or
every loop o re ning procedure:

meanstim =

∑
c∈ARB(stimulation(c))

size(ARB)
(4)

I a mean stimulation threshold (one o input parameters) is met, then the best cell ccand
rom ARB pool is selected and claimed a candidate cell.
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I it is not met, cells in ARB pool must mutate again to reach the threshold criterion. To
maintain convergency, each cell c in ARB pool has an amount o resources given as:

resources(c) = stimulation(c) · clonerate (5)

where clonerate is a system input parameter. Another input parameter is a maximal
amount o resources maxres ‘taken’ by the system. Each loop, the weakest cells (i.e.
cells ‘taking’ the lowest amounts o resources) are being disposed until the threshold
criterion is met. en the threshold criterion is met, ccand o ARB pool is selected as
a candidate and the rest o ARB pool is disposed.

en ccand is compared with cbest. I ccand has better stimulation, it is added to the
memory cell pool. is whole training procedure repeats or numpatterns ∈ N steps,
where numpatterns is an input parameter.

e classi cation itsel is then stimulating the memory cell pool with the given anti-
gen. A ter the memory cell pool is stimulated, then the class-carrying cell is selected
using k-nearest-neighbour algorithm.

Pseudocode
e ollowing pseudocode (syntax explained in Appendix II) describes the most impor-

tant parts o the algorithm.

Procedure: Train System
Input: stimthresh, mutrate, clonerate, maxres, TRS, knn
Output: memcells

memcells := initmemcells(TRS)
for(Cell c in TRS)
stimulate(memcells, c)
bestmatch := getMostStimulated(memcells)
if(bestmatch=c)
continue

fi
if(not label(bestmatch)=label(c))
add(memcells, newcell(data(c), label(c)))

else if(stimulation(bestmatch)<1)
pool := createARBpool(c, bestmatch, clonerate, mutrate)
candidate := refineARBpool(pool, c, stimthresh, clonerate,...

...maxres)
addifbetter(memcells, candidate, bestmatch)

fi
end

Procedure: createARBpool
Input: c, bestmatch, clonerate, mutrate
Output: pool
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add(pool, newcell(data(bestmatch), label(bestmatch)))
clonecount := round(stimulation(bestmatch)*clonerate*mutrate)

for(i:=0, i<clonecount, i++)
cell := newcell(data(bestmatch), label(bestmatch))
add(pool, mutateCell(cell, bestmatch))

end

Procedure refineARBpool
Input: pool, p, stimthresh, clonerate, mutrate
Output: candidate

meanstim:=0
do

stimulate(pool, p)
competition(pool, clonerate, maxres)
candidate := biggeststim(pool)
sumstim := 0
for(o in pool)
sumstim :+= stimulation(o)

end
meanstim := sumstim/size(pool)
if(meanstim>stimthresh)
actpoolsize:=size(pool)
for(i:=0, i<actpoolsize, i++)
cell := newcell(data(get(pool, i)), label(get(pool, i)))
setStimulation(cell, stimulation(get(pool, i)))
cell2 := mutateStimulatedCell(cell)
if(cell2 sameas cell)
decrement(i), continue

fi
add(pool, cell2);

end
fi

while(meanstim < stimthresh)

3.2 AIRS Implementation Test
In order to test correctness, the AIRS was rst run on a domain o two dimensional
vectors (X and Y coordinates), where classes represent certain space (area). Random
points are generated using discrete uni orm distribution over the area and the goal is to
determine which points belong to their respective spaces. e only in ormation about
the problem provided to the algorithm is the training set.

Graphic capabilities o Java were used to graphically illustrate the results. In g.5, the
red circles are the test instances (antigens), the blue ones are the memory cells (antibod-
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ies) and the lines between them are the results o 1-nn. e green line denotes wrong
classi cation.

g. 4 — AIRS sample run on domain o 2D vectors

e upper right quadrant represents one class and the lower two quadrants represent
the second.

e time complexity o AIRS (training phase) on this problem can be approximated
by the unction (1/(20 · 103)) · n2, whereas the time complexity o testing phase is lin-
ear. During this test, AIRS parameter were set as ollows: threshold=0.9, antibody
count=200, mutrate=2, clonerate=10, maxres=50, knn=1. Machine speci cation is de-
scribed in Appendix C.

tab. 1 — AIRS time complexity sample table
Dataset size(n) 10 100 1000 2000 5000 10000 25000 50000
Training [ms] 0 5 60 235 1305 5082 32053 126397

Testing 200 [ms] 3 5 20 40 97 195 553 1136
(1/(20 · 103)) · n2 0 0 50 200 1250 5000 31250 125000
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3.3 Negative Selection Algorithm
e Negative Selection Algorithm is a T-Cell inspired algorithm, designed or binary

classi cation. e principle o NSA is di erent rom that o AIRS. Firstly, the NSA
iterates the training set and groups the instances labeled SELF together (i.e. creates
a sel -set). en it generates more or less random cells (antibodies) and matches them
against the sel -set. e matching process itsel is di erent rom that o AIRS. Instead o
using k-nn, thematching radius is used (i.e. only cells that are less or equally distant rom
the cell than a given actor are matched). I the antibody matches any cell in the sel -set,
it ails its mission (because it is supposed not to mach SELF cells) and it is disposed. I
it does not match anything, it is kept as an antibody, because there is a chance, that it
would match an unknown (and there ore NON SELF) cell.

Training set Lymphocyte cells

Antibody count

Matching factor

NSA algorithm

g. 5 — Basic NSA algorithm scheme (input, output, parameters)

NSA takes two parameters: Matching actor ∈ < 0, 1 >, which is the above mentioned
maximalmatching distance and Antibody count∈ N, which denotes, howmany antibodies
should be created.

Pseudocode
e ollowing pseudocode (syntax explained in Appendix II) describes the most impor-

tant parts o the algorithm.

Procedure: Train System
Input: TRS, size, factor
Output: antibodies

selfset := createSelfSet(TRS)
antibodies := generateAntibodies(selfset, size, factor)

Procedure: createSelfSet
Input: TRS
Output: selfset
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for(cell in TRS)
if(isSelf(cell))

add(selfset, cell)
fi

end

Procedure: generateAntibodies
Input: selfset, size, factor
Output: antibodies

while(1)
if(immuneReaction(selfset, p = randomAntibody(domain)...
..., factor)==NULL)

count++
add(antibodies, p)
if(count=size)

break;
fi

fi
end

Procedure: immuneReaction
Input: set, stimulus, factor
Output: matched_antibody

matched_antibody:=null

for(cell in set)
if(match(cell, stimulus, factor))

matched_antibody:=cell
break

fi
end

3.4 NSA Implementation Test
In order to test correctness, theNSAwas rst run on a domain o two dimensional vectors
(X and Y coordinates), where classes represent certain space (area). Random points
are generated using the discrete uni orm distribution over the area and the goal is to
determine which points belong to their respective spaces. e only in ormation about
the problem provided to the algorithm is the training set.

Again, the Java graphics were used to illustrate the results ( g. 6). e red circles are
the test instances (antigens), the blue ones are the antibodies and the blue circles around
the antibodies represent their matching actor.



e Use AIS in Biomedical In ormation Retrieval

g. 6 — NSA sample run on domain o 2D vectors

e settings or this test were ollowing: factor=0.05, count=50.

3.5 Parallelisation capabilities
In [10], Andrew Watkins and Jon Timmis, the creators o AIRS, explore parallelisation
capabilities o AIRS. ey had inspired themselves in human immune system and it’s
natural parallelisation, which is clearly it’s dominant eature. ey think, that i the AIRS
itsel is inspired in human immune system, it should contain parallelisation capabilities
somehow naturally.

ey propose dividing training phase into several processes (each process should own
a part o the training set), running AIRS on them independently and then merge nal
memory cell pools. e question is raised, that i the training set is divided (there ore
cell interaction during training is disturbed), shall the results remain the same?

e answer is no. ey show, that classi cation accuracy drops a little with every
additional processor, as the cell interaction rate lowers. Also, there is a signi cant in-
crease in the nal memory cell pool size. ey propose solving this problem by using
a nity-based merging (practically it is well known resource competition).

en applying the a nity-based merging, the classi cation accuracy remains a bit
lower (95.86 %/62 cells on 1 processor, 94.86 %/88 cells on 24 processors), but the run-
time is signi cantly decreased.



4 Preliminary testing

4.1 Datasets
Gaussian dataset
For the purpose o thorough testing, a simple two dimensional dataset was de ned. In
this dataset, points are generated by a random number generator with the normal prob-
ability distribution (see Appendix A), where class A has distribution N(0, 0.2) and class
B N(0.5, 0.2). Figure 8 visualises the dataset in the Cartesian plane.

g. 7 — Gaussian dataset visualisation in the Carthesian plane

Iris dataset
e amous Iris dataset (introduced by Sir Rondal Aylmer Fisher in 1936) contains 150

samples rom three species o the Iris owers (Setosa, Virginica and Versicolor, g. 8),
which grow in Gaspé Peninsula, Canada. e dataset has our dimensions—each sam-
ple carries in ormation about petal length, petal width, sepal length and sepal width in
centimeters.
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Following picture ( g. 8) shows a photo o an Iris Versicolor ower in bloom with dis-
tinction o its sepal and petal.

g. 8 — Iris Versicolor ower[wikimedia commons]

Test methodology
In ollowing tests, a dependency o classi cation accuracy on algorithm parameters is
observed. Assuming parameters a, b and c, when testing a, then b and c are xed on
given value.

e dataset is randomized and split in hal . One hal is declared the train set and the
second one the test set, and the algorithm is run on these. is process is repeated 100
times and the nal result is declared an average o the 100 values.

4.2 Testing AIRS
en testing AIRS, the values o a nity threshold, clonerate, mutrate, maxres and knn

were changed, and the results were observed. On both Gaussian and Iris dataset, there
were no signi cant di erences in the classi cation accuracy or di erent values o a n-
ity threshold, clonerate, mutrate and maxres, but there were signi cant di erences or
di erent values o knn.

en the parameter values are xed, they are ollowing: stimthresh=0.9, knn=3,
mutation rate=2, clone rate=10.
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g. 9 — Dependency o classi cation accuracy (gauss) on stimulation threshold

g. 10 — Dependency o classi cation accuracy (gauss) on knn (boxplot)

g. 11 — Dependency o classi cation accuracy (iris) on knn (boxplot)
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Knn parameter seems to be very dataset-speci c. On the Gaussian dataset it seems, the
bigger knn the better accuracy, but on the Iris dataset, the best value seems to be 3. is
pre erence was observed also when these datasets were tested inWeka (so tware available
online: http://www.cs.waikato.ac.nz/ml/weka/) implementation o AIRS.

4.3 Testing NSA
en the NSA was tested, all o its parameters seemed to matter essentially. en the

parameter values are xed, they are ollowing: antibodies=250, matching factor=1.

Test methodology
e methodology is the same as in 4.2 (AIRS).

Antibody count

g. 12 — Dependency o classi cation accuracy (gauss) on antibody count (boxplot)

e bigger is antibody count, the bigger accuracy. is result makes sense, becausemore
antibodies cover more space and there ore match more non-sel cells. On the other side,
antibody count is also a parameter o algorithm’s time complexity unction (which is
linear), so bigger count o antibodies will cause worse per ormance.

Matching factor
Testing dependency o classi cation accuracy on NSA matching actor yielded very ob-
vious results. en matching actor is too small or too big, classi cation is inaccurate,
because nothing or everything is matched, respectively. is actor also seems to be
dataset-speci c ( or the Gaussian dataset, bigger values o this parameter made algo-
rithm per orm better).
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g. 13 — Dependency o classi cation accuracy (gauss) on matching actor (boxplot)

:noteBoxplot at x=2.5 is not an error (notches are not bound by quartiles, see Appendix A).

4.4 Optimising parameters for given datasets
A simple genetic algorithm (GA[24]) was used to determine suboptimal parameter val-
ues o AIRS and NSA. A genetic algorithm is a heuristic algorithm used or state-space
search inspired in the evolution theory and the theory o natural selection. Basic genetic
algorithm has several phases:

1) Initial population generation
2) Fitness evaluation
3) Selection
4) Recombination (also called crossover)
5) Mutation
6) Altering/Renewing current population

During (1), an initial population is created randomly or semi-randomly (there are situ-
ations, when a GA needs to be directed via adding viable individuals to the initial pop-
ulation). During (2), a tness unction is evaluated or every individual in a current
population. A tness unction is a unction, which computes viability o an individ-
ual (its proximity to an optimal state). During (3), usually two individuals are selected
based on a given rule ( or instance, the roulette selection—every individual takes an area
in a virtual roulette wheel relative to its tness). e selection rule must not be deter-
ministic and must have non-zero probability o choosing non-viable individual. e two
selected individuals are then recombined (4). During recombination, genotypes (state
representations) o the two selected individuals are mixed based on a recombination rule
(usually one-way or two-way crossover). e result o this process are two or more new
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individuals, which then undergo a process o mutation (5). A ollowing process o alter-
ing/renewing the current population may vary along with di erent evolution strategies.
In one o these strategies, the entire new population is created using the selection, re-
combination and mutation on the old population. Another strategy is to generate only
n new individuals using the selection, recombination and mutation and replace them
with n least viable individuals in the current population. e second method is used in
this thesis. Following diagrams show ( g. 14, 15, 16), how mean population tness and
best tness varied with number o generations simulated.

g. 14 — Dependency o tness on number o generations (AIRS, gauss)

g. 15 — Dependency o tness on number o generations (AIRS, iris)
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g. 16 — Dependency o tness on number o generations (NSA, gauss)

Results
e ollowing table (tab. 2) shows the results o testing AIRS and NSA with parametrs,

which were optimised by a genetic algorithm

tab. 2 — Result o testing AIRS and NSA with optimised parameters

Algorithm/Dataset mean acc. [%] stimthresh knn maxres m.factor antibodies

AIRS/Iris 96.453 0.357 6 62 — —
AIRS/Gauss 95.456 0.435 7 160 — —
NSA/Gauss 85.15 — — — 1.481 254
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4.5 Comparison
Parameter settings obtained rom GA (4.4) were used or nal comparison ( g. 17)

g. 17 — Comparison between AIRS and NSA (gauss)

In any test per ormed on both AIRS and NSA, the worst results o AIRS were always
better than the best results o NSA.



5 Biomedical data
In medical acilities, there are databases, which are maintained by acility personnel,
such as doctors and nurses. ese databases contain various texts, which may be medi-
cine prescriptions, patient diagnosis, birth progess, applied treatment etc. ese texts
contain vast amount o typos, because they are o ten typed in hurry, and or sure, they
are not in the orm, that would make data mining easy, although there is a need o ex-
tracting certain in ormation rom these sources.

5.1 Data character
Provided datasets contain large ammount o natural language strings, where most o the
words are medical terms, not commonly used in general verbal communication, such as
speci cation o diagnose or applied treatment.

e dataset records have no classes attached to them, so there is no chance to ap-
ply conventional classi cation methods on the raw data. In addition, there are many
arte acts in the strings, such as multiple times repeated space, case inhomogeneity and
diacritic.

5.2 Classification strategy
For there are no classes corresponding to the strings in our dataset, we must construct
them arti cially, so they will show a direct linkage to the data. We would like to analyse
the text and separate the words, that carry the biggest in ormation value. ere are
several methods to extract these:

Cluster analysis
Cluster analysis separates the data to several groups, in which instances orm clusters
(they are near by one another). Illustrative method o cluster analysis is the minimum
spanning tree method. is method creates a minimum spanning tree in the data graph
(spanning tree is such actor o a graph, that is a tree, and minimum spanning tree
is a spanning tree with minimal cost among all possible spanning trees) and removes
n longest edges rom it, thereby separating the data graph into a orest consisting o
n + 1 components. Every component then represents a data cluster, that could be used
to assign a class to the instances in it. ere are several algorithms designed to solve
this problem—namely Jarník-Prim’s algorithm[15], Kruskal’s algorithm[16] and Borůvka’s
algorithm[17]. Basic version o Jarník-Prim’s algorithm, which was used or minimum
spanning tree generation in this thesis, uses vertex adjacency matrix on a complete graph.
Time complexity o this method is O(n2), where n is edge count. is method was re-
jected—its complexity makes it unusable or very large datasets.

Word frequency analysis
Frequency analysis computes a requency o every word in a dataset and returns a com-
plete dataset histogram. Based on the histogram, we can select several words with highest
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requencies and declare them important (o course we must exclude high requency nat-
ural language words, which are unimportant, such as prepositions). is can be done
in a linear time by using a hash table. A hash table is a one-dimensional associative array
that uses a hash unction to match a key to it’s corresponding value.

is method was accepted, because o its low complexity and good per ormance.

tab. 3 — Time complexity o MST and FA sample table

Samples 100 200 300 400 500 600 700 800 900 1000

MST Time[ms] 459 1716 3775 7044 10781 17796 20853 27295 34752 42794
FA Time[ms] ~ 0 ~ 0 ~ 0 1 1 2 2 2 3 3

200 400 600 800 1000
Samples

10000

20000

30000

40000

Time@msD

Quadratic curve

Data spline curve

g. 18 — MST time complexity

5.3 Distance measurement
ere are many algorithms, that measure distance between strings. Each is suitable or

a di erent eld o use. To choose a metric, that satis es our needs in this problem, we
need to speci y requirements or that metric. ese are:

Distance must be low between correctly typed and mistyped words
Distance must be big between completely di erent words (in terms o their mean-
ing)

Most widely known group o string metrics are edit distances. Edit distance o strings
A and B is a number o edit operations needed to trans orm A into B. List o allowable edit
operations di ers with particular algorithms. ree most used edit distance algorithms
are:

Hamming distance
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Levenshtein distance[18]
Damerau-Levenshtein distance[18]

Hamming distance
Let A and B be strings o equal length, and let charAt(S, x) be a unction mapping char-
acter indexes x o string S to their respective characters. Also let same(x, y) be a unc-
tion that is 1 when characters x and y are not the same and 0 when they are the same.

en Hamming distance dham =
∑length(A)

x=0 same(charAt(A, x), charAt(B, x)). Simply, it
counts indexes, at which two strings are di erent. Algorithm has linear runtime.

Levenshtein distance
Levenshtein distance o string A and B is a number o insertions, deletions and substitu-
tions used to trans orm A into B. Algorithm has time complexity O(n ∗m), where n and
m are lengths o compared strings.

Damerau-Levenshtein distance
Damerau-Levenshtein distance o string A and B is a number o insertions deletions,
substitutions and transpositions used to trans orm A into B. Algorithm has time com-
plexity O(n ∗m), where n and m are lengths o compared strings.

Two most common words o the rst o the provided dataset are “mesocain” and
“epiduralni”. Dataset also contains these words with various typos, such as “mesocian”,
“mescain” or “peiduralni”. Selected distance metrics show ollowing results:

tab. 4 — Hamming distance test chart

mesocain mesocian mescain epiduralni peiduralni

mesocain 0 2 5 10 9
mesocian 0 4 9 8
mescain 0 10 9

epiduralni 0 2
peiduralni 0

tab. 5 — Levenshtein distance test chart

mesocain mesocian mescain epiduralni peiduralni

mesocain 0 2 1 8 7
mesocian 0 3 8 7
mescain 0 8 7

epiduralni 0 2
peiduralni 0
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tab. 6 — Damerau-Levenshtein distance test chart

mesocain mesocian mescain epiduralni peiduralni

mesocain 0 1 1 8 7
mesocian 0 2 8 7
mescain 0 8 7

epiduralni 0 1
peiduralni 0

Hamming distance seems to penalise totally di erent words very much, but it is com-
pletely insensitive to words, that are completely the same, but shi ted. For that reason,
it is inaccurate and unusable or our problem.

On the other side, Levenshtein distance takes shi t as only one operation and there ore
it is sensitive to words, that are the same, but shi ted. It penalises completely di erent
words less than Hamming distance, but the di erence is not considerably big.

Without a question, the Damerau-Levenshtein distance per orms the best among the
metrics mentioned above. It shares the sensitivity o the Levenshtein distance and in
addition, it can detect the most common kind o typos—character transpositions. ere-
ore the Damerau-Levenshtein is a potent candidate distance metric.

e distance, that these algorithms compute, is absolute and there ore unnormalised.
For our purposes, we need normalised distance on range <0,1>. To scale an aboslute
distance, we need to determine maximal possible distance between two strings (which
is called normalised a nity denominator in this thesis, because an absolute distance is
divided by this number). I A is a string o length len(A) and B is a string o length
len(B), then we declare strings Ad and Bd o lengths len(A) and len(B), respectively. We
call these strings the dummy strings, when a stringmetric considers them 100% di erent.
Normalised a nity denominator is then equal to the distance between them.

The cosine similarity
e cosine similarity (see (6)) is a vector distance metric, that computes the cosine o an

angle between two vectors. I the vectors point the same direction, angle between them
is 0, there ore their cosine similarity is 1. In algebra, an angle between two vectors is
their dot product divided by the product o their magnitudes. And because all strings
are character arrays and there ore vectors, the cosine similarity can be also applied on
them.

cos(θ) =
A ·B

||A|| · ||B||
=

∑n
i=1Ai ×Bi√∑n

i=1A
2
i ×

√∑n
i=1B

2
i

(6)

The product distance
e product distance is a distance, that was designed especially or the purposes o this

thesis, because there was a need or a new metric, that would take into account several
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actors described in the ollowing paragraphs. It has so ar the best per ormance when
used or similar word identi cation during preprocessing and when used as a distance
metric in AIRS and NSA algorithms. It is basically a Damerau-Levenshtein distance cor-
rected by a cosine similarity coe cient and a cosine correction coe cient. Pseudocode
ollows.

Procedure Proddist
Input: String A, String B
Output: product_distance

List X = SPLIT(A,” ”), List Y = SPLIT(B, ” ”);
For(i:=0,i<Length(Y), i++)
If(Y[i] is element of X) ...
and If(Y[i] is a part of another word)
x_length+=Length(Y[i])

For(i:=0, i<Length(X), i++)
If(X[i] is element of Y) ...
and If(X[i] is a part of another word)
y_length+=Length(X[i])

occurrence_ratio_x = x_length/length(A);
occurrence_ratio_y = y_length/length(B);
occurrence_ratio = max(occurrence_ratio_x,...

occurrence_ratio_y) or 0 if (0,0);
cosine_correction = 1 - occurrence_ratio;
cs = cosineSimilarity(X,Y);
product_distance = cs * cosine_correction * normDLSD(A,B);

e goal o this distance metric was primarily to detect typos which originated rom
not typing a space between words, like “some word” and “someword”. According to
Damerau-Levenshtein metric, the distance between these words is 0.11, but according to
product distance, it is 0. is is a good property when comparing sentences, but it also
proved to be good when comparing words—it detects pre xes and su xes and provides
a distance bonus in the orm o cosine correction coe cient. For example “mesocain”
and “mesocainu” are 0.11 units distant according to Dam.-Lev., but only 0.012 units
distant according to product distance, because “mesocain” (length 8) is present as a sep-
arate word in the rst string and as a part o a word “mesocainu” (length 8) in the second
string, thus the correction is (1-(8/9)) = 0.11 (11 % o the original distance).

5.4 Word modifiers encoding
Because there are many quanti ers and quali ers in the dataset, that bind to certain
words, it would be an error to do a requency analysis be ore connecting modi ers to
the words, they are bound to. We read a data rom a con guration le to determine,
which words are units, which words are negative modi ers and o which type they are
(pre x—appearing be ore a word, or post x—appearing a ter a word). e con gura-
tion le contains the ollowing in ormation:
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List o units ( or instance: ml, mg, %)
List o words bound to units ( or instance: drugs)
List o pre x negations ( or instance: bez[CZE] (no[GBE]))
List o post x negations ( or instance: nebyla[CZE] (unused[GBE]))
De ault binding

en a unit is ound in a string, the algorithm searches or a word bound to it one step
to the le t and one step to the right o the word. I such word (or a very similar word,
based on Damerau-Levenshtein distance) exists, the unit is connected to it using this
convention: “boundword(!10mg)”. Normalised distance is optimised to penalise words
containing “(!”, so “boundword(!10mg)” and “boundword” will be considered distant.

is signi cantly increases sensitivity. I such word does not exist, quantity is bound
to the rst le t word when de ault binding is set to le t and to the rst right word when
de ault binding is set to right. en there are no le t words, the quantity is bound to
the rst right word and vice versa.

en a negative modi er is ound, it is bound to the le t or to the right according to
its type and connected to it using this convention: “boundword(!NEG)”. Normalised
distance is again optimised to penalise words containing “(!NEG)”. Example ollows.

Be ore:
celk anestezie 1% mesocain
bez xylocainu

A ter:
celk anestezie mesocain(!1%)
xylocainu(!NEG)

5.5 Similar word identification and frequencymerging
A result o a requency analysis is a list o String-Double pairs. Strings in these paris
represent words and doubles represent their requencies. Properly typed words and their
typos are counted separately, so we need to merge them to get their real requencies.

In this process, the list is iterated rom its start. Every word is then compared to all
unprocessed words using the product distance and i they are similar enough (i.e. dis-
tance is lower than a preset threshold), their requencies are added and they are declared
one word. Example ollows.

Be ore:
kratkodoba celkova anestezie u man lyze xylocain
mesocain(!1%) xylocain epiduralni analgezie
xyloxain spray
epiduralni analgezie pri porodu meoscain(!1%)
mezocain(!1%) epidural

A ter:
epiduralni, 3
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mesocain(!1%), 3
analgezie, 2
xylocain, 2
spray, 1
...
u, 1

5.6 Unique wordlist
Because there are many duplicate words in the String-Double pair list (result o a re-
quency analysis), they are removed by converting the list into a set and back to the list.

e overridden method equals() o String-Double pair compares the equality o the
string part and there ore the inner Java ramework routines causes duplicate records to
be disposed when converting list to set.

5.7 Unimportant data removal
e con guration le contains list o words, which are unimportant or the classi cation

(such as prepositions). In this process they are all removed. In addition, words, which
have lower normalised requency than the dispose rate (a preset parameter) are removed
too.

Be ore:
epiduralni, 3
mesocain(!1%), 3
analgezie, 2
xylocain, 2
spray, 1
...
u, 1

A ter:
epiduralni, 3
mesocain(!1%), 3
analgezie, 2
xylocain, 2
//— for example, dispose rate creates dividing line here
spray, 1 // <– removed for having lower rate than the dispose rate
u, 1 // <– removed for being a preposition

5.8 Class generation
A ter all the previous processes has taken place, the list o important words contains
words, which will be declared important. A string o the same length as the length o
the wordlist is created. Every character o this class string will be either 0 or 1 i a word
romwordlist, that is assigned to this character’s index, is absent or present in the dataset
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record, respectively. For instance, i the words are A B C D, then ollowing records will
have ollowing class assignment:

(A B C D) –> (1 1 1 1)
(A H H C) –> (1 0 1 0)
(F G) –> (0 0 0 0)

en every record in a dataset is processed based on absence and presence o important
words (with a given dissimilarity tolerance) and it is assigned a class.

e Class Identi er object, which is able to translate class strings to their meanings
and vice versa is then created and stored, because it will serve as a necessary class in or-
mation or classi ers.

5.9 Class identifier object
By preprocessing and identi ying the records, we gain a class identi er object, which is
provided to the classi cation algorithm. It contains the list o all the important words
and a method, which assigns a bit string to corresponding words, there ore the class
identi er object creates a link between the class and the data and it is also able to translate
a class string to an appropriate data string and vice versa.

Raw dataset Normalised & classified

Identification threshold

Dispose rate

Preprocessing
algorithm

dataset

g. 19 — Preprocess algorithm scheme

e algorithm takes Dispose rate ∈ R (see 5.7) and Identi cation threshold ∈ R (see 5.5) as
its parameters.
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6.1 Classification strategy
The binary counter and sentence based distance approach

e rst tested approach was naïve. It assumed, that i there is a class string, that consists
o k independent values, each having n possible values, there is nk total possible classes
in the system, although, the vast majority o them is unused. ere ore, there was an
exponential relation between count o the important words and the train/test runtime.

In this approach, the memory cell pool was initialised with one cell or every class.
For instance, with 14 important words in a dataset o 1000 records, the cell pool was
initialised with 16384 cells which apparently resulted in poor data reduction rate. Expo-
nential runtime also made algorithm impossible to nish ( or instance, even 70 detected
important words would make the algorithm run ten times longer than the age o the
universe).

Beside this, the classi cation method was inaccurate. e longer the record was, the
worse was the distance resolution and the worse was the ability to detect minor dissimi-
larities in the strings.

The -of-k counter and word based distance approach
e second tested (and actual) approach signi cantly improves the results. It assumes,

that i there is a class string, that consists o k independent values, each having n possible
values, then we can think o the value as o a vector. For instance, the string 0001000
is a vector in Z7

2 : (0, 0, 0, 1, 0, 0, 0). We can de ne a linear space V o binary vectors o
length k and search or a basis o that space, which gives us a set o vectors, whose linear
hull is again a vector space V , thus any possible vector o V can be created by a linear
combination o the basis vectors[23]. e basis o such space is:

... 1 0 0 ...

... 0 1 0 ...

... 0 0 1 ...

Due to this assumption, the classi er is only able to identi y single words, but rom the
words it is able to construct a sentence. It can split the test sentence into words and then
classi y them separately. Using a linear combination it can construct the nal class in
ollowing manner:

VR = c1 ⊙ (V1)⊕ c2 ⊙ (V2)⊕ ...⊕ ck ⊙ (Vk) (7)

where ci is 0 i word i is classi ed as not present and 1 i classi ed as present, operator
⊙ is a logic multiplication and operator ⊕ is a logic addition (in other domains, these
operators will have equivalent unctions (multiplication and addition)). For instance,
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let important words be A, B, C and D and the test sentence “A E F C G”. First o all, we
split the sentence and classi y each word separately:

A - matched word 1, c1=1
E - no match
F - no match
C - matched word 3, c3=1
G - no match

CLASS = 1⊙ (1000)⊕ 0⊙ (0100)⊕ 1⊙ (0010)⊕ 0⊙ (0001) = 1010 (8)

Hence, AIRS only needs k cells to initialise pool. is is a proo , that this approach is
ar more e cient than the sentence based one (which needs 2k).

6.2 Algorithm variation
e algorithm itsel remains basically the same as the original one except or someminor

changes. Unlike the original algorithm, this variation needs two additional parameres—
—similarity threshold and class identi er object. During initialisation, the algorithm lls
the memory pool with the initial antibodies speci ed in 2.1.1 and then makes a copy o
the memory pool.

Training set Memory cells

Clone rate

Mutation rate

Stimulation threshold

Resource limit

K-nn

Similarity Threshold

Class identifier

AIRS algorithm

variant

g. 20 — AIRS algorithm variant scheme

During the training, every record is split into words and then every word is compared
with the words in the initial pool (the copy, which I mentioned in the paragraph above).
I the lowest measured distance is lower than or equal to the similarity threshold, then
the particular word is processed by the training algorithm o AIRS (described in 3.1).

A ter the training phase is complete, the memory cell pool is lled with the important
words and their variations, which were deemed important by the algorithm. is process
signi cantly increases the probability o matching mistyped words to their respective
classes.
During the testing, every record is split into words and then every word is classi ed
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separately. I the lowest measured distance is greater than the similarity threshold, then
the particular word is disposed. I the distance is lower than or equal to the similarity
threshold, then the class label o the best-matching antibody is added with the nal class
using a logic OR unction.

6.3 Testing
During the testing, several dependencies were observed between stimulation threshold,
knn, similarity threshold (independent variables) and accuracy, convergency ault rate,
memory cell count and time complexity (dependent variables). e Convergency ault
rate is a new parameter, that indicates how many ARB pools weren’t able to mutate and
achieve given mean stimulation a ter 100 mutation cycles. It happens because the mu-
tation unction is not parametric. Memory cell count indicates, how many memory cells
were trained and used and it is de acto the memory complexity.

Test methodology
Following tests were run on the rst 1000 samples o the simpler o the two datasets.
Every time a value o some parameter was tested, the dataset was randomized and split
in hal . One hal was declared the train set and the second one the test set, and the
algorithm was run on these. is process was repeated 10 times and the nal result was
declared an average o the 10 values. Preprocess parameters were: id threshold=0.330,
dispose rate=0.025, pro le used: lesscmplx.profile (see Appendix D).

Test results
During testing an individual parameter, other parameters were xed at one value. In
g. 21, we can see relative steadiness o accuracy throughout all measured stimulation

threshold values. ile at values greater than 0.7, the convergency ault rate starts to
grow, indicating that with givenmutation unction, reaching given stimulation threshold
is getting more di cult.

In g. 22, we can see the actual memory complexity unction with stimulation thresh-
old as its parameter. e higher the stimulation threshold is, the more memory cells will
be created.

In g. 23, we can see the actual time complexity unctionwith stimulation threshold as
its parameter. en there is more iterations o mutation needed to reach the stimulation
threshold, the more time the algorithm will consume.

In gs. 24–26, we can see, that the algorithm could be the most accurate somewhere
between 0.3 and 0.35 (o similarity threshold), but it cannot be said or sure, because we
do not know, i there are or are not multiple relations with the arguments, which were
xed during the test. Nevertheless, that higher values o similarity threshold result in

bigger convergency ault rate and excessive memory and time complexity.
In g. 27 and 28, we can see, that the most accurate value o knn could be 1. Values

bigger than 1 could lead to enormous decrease o per ormance.
e suboptimal parameters o this algorithm or this dataset are computed using a ge-

netic algorithm in urther sections o this chapter (Optimisation o input parameter val-
ues.)
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g. 21 — Dependency o accuracy on stimulation threshold

g. 22 — Dependency o memory cell count on stimulation threshold
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g. 23 — Dependency o runtime on stimulation threshold

g. 24 —Dependency o accuracy on similarity threshold
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g. 25 — Dependency o memory cell count on similarity threshold

g. 26 — Dependency o runtime on similarity threshold
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g. 27 —Dependency o accuracy on knn

g. 28 — Dependency o memory cell count on knn
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Real classification performance
e real classi cation per ormance is better than the accuracy shown in the above dia-

grams could imply, because the classes o the strings are arti cially created and are not
precise nor real. As it can be seen in the ollowing listing, the Preprocessing algorithm
mademanymistakes, which were repaired by AIRS and there ore the classes don’t match
theoretically, but it is de acto a good classi cation.

mesocain(!1%): 530.0
epiduralni: 441.0
lok: 278.0
amp: 236.0
analgezie: 221.0
celkova: 134.0
xylocain: 113.0
mesocainu: 110.0
anestezie: 99.0
l: 68.0
loc: 66.0
amp(!1%): 62.0
spray: 50.0
1(!10ml): 34.0
There are 14 significant words.

AIRS
DATASET: C:\biodata\mensi.data, 1 dimensions.
TRAINING SET is 1/2 of DATASET
INCORRECT: 1 amp mesocain != amp mesocainu SHOULD BE mesocain(!1%) amp mesocainu
CORRECT: epifuralni analgezie = epiduralni analgezie
CORRECT: 1 amp mesocain(!1%) = mesocain(!1%) amp
CORRECT: mesocain(!1%) 1 amp 2x = mesocain(!1%) amp
INCORRECT: mesocain(!1%) epiduralni anealgezie != mesocain(!1%) epiduralni analgezie SHOULD BE mesocain(!1%) epiduralni analgezie anestezie
CORRECT: mezokain(!1%) = mesocain(!1%)
CORRECT: epiduralni analgezie dr robotkova = epiduralni analgezie
INCORRECT: l % mesocain 1 amp lok != lok amp mesocainu l SHOULD BE mesocain(!1%) lok amp mesocainu l
CORRECT: epid analg mesocain(!1%) = mesocain(!1%) analgezie
CORRECT: remifentanyl mesocain(!1%) = mesocain(!1%)
CORRECT: amp(!1%) msocain lokalne = lok mesocainu amp(!1%)
CORRECT: mesocain(!1%) amp = mesocain(!1%) amp
CORRECT: epiduralni analgezie xylocain = epiduralni analgezie xylocain
INCORRECT: xylocai spray != xylocain spray SHOULD BE xylocain loc spray
INCORRECT: 1amp mesocainu(!1%) != mesocain(!1%) amp SHOULD BE mesocain(!1%) amp mesocainu
CORRECT: epiduralni lokalni mesocaine = epiduralni lok mesocainu
CORRECT: u porodu epiduralni celkova u s c = epiduralni celkova
CORRECT: 1 amp mem i v = amp
CORRECT: 1 amp(!1%) mesoain = mesocainu amp(!1%)
CORRECT: lok mesokain = lok mesocainu
INCORRECT: lokalni lo % xylocain != lok xylocain loc SHOULD BE lok xylocain l loc
CORRECT: mezocain(!1%) epiduralni = mesocain(!1%) epiduralni
INCORRECT: epiduralni analgezie mesocain 1 amp != epiduralni amp analgezie mesocainu SHOULD BE mesocain(!1%) epiduralni amp analgezie

mesocainu
CORRECT: 1amp(!1%) mesokain = mesocainu amp(!1%)
CORRECT: celkova revize dd po porodu = celkova
INCORRECT: epiduralni analgesie l % mesocain != epiduralni analgezie mesocainu l SHOULD BE mesocain(!1%) epiduralni analgezie mesocainu l
CORRECT: celkova manualni lyze a revize = celkova
CORRECT: celkova anestezie = celkova anestezie
CORRECT: revize hrdla delozniho v zrcadlech sine vulnere =
CORRECT: lokalni l % mesocian = lok mesocainu l
INCORRECT: mesocain lok(!1%) != mesocainu SHOULD BE mesocain(!1%) mesocainu
CORRECT: epiduralni analgezie 1 amp mesocain(!1%) = mesocain(!1%) epiduralni amp analgezie
CORRECT: % mezokain 1 amp = amp
INCORRECT: epiduralni xylocain(!1%) mesocain != mesocain(!1%) epiduralni mesocainu SHOULD BE mesocain(!1%) epiduralni xylocain mesocainu
CORRECT: lokalni mesocain(!1%) epiduralni = mesocain(!1%) epiduralni lok
CORRECT: 1(!10ml) % mesocainu xylokain = xylocain mesocainu 1(!10ml)
CORRECT: epiduralni loc(!10ml) (!1%) mesocainu loc = epiduralni mesocainu loc amp(!1%) 1(!10ml)
CORRECT: traumacel pulv =
CORRECT: mesocain(!1%) epiduralni analgesie dr mala = mesocain(!1%) epiduralni analgezie
CORRECT: mesocain(!1%) 2 amp i v = mesocain(!1%) amp
CORRECT: mesocain(!1%) dolsin(!50mg) i v = mesocain(!1%)
CORRECT: 1 amp(!10%) mesocainu = mesocainu amp(!1%)
CORRECT: epiduralni alalgezie = epiduralni analgezie
INCORRECT: 1(!10ml) % mesocain lokalne != lok mesocainu 1(!10ml) SHOULD BE mesocain(!1%) lok mesocainu 1(!10ml)
INCORRECT: epiduralni a lokalni l % mesocain != epiduralni lok mesocainu l SHOULD BE mesocain(!1%) epiduralni lok mesocainu l
CORRECT: mesocain(!1%) 1 amp lokalne = mesocain(!1%) lok amp
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CORRECT: mezocan(!1%) loc = mesocain(!1%) loc
CORRECT: epiduralni xylocaine spray = epiduralni xylocain spray
CORRECT: epiduralni analgezie = epiduralni analgezie
CORRECT: eda lokalne xylocaine = lok xylocain
CORRECT: lokalni(!1%) mesocaim 1amp = amp mesocainu
CORRECT: 1 amp mesocain(!1%) xylocain sprej = mesocain(!1%) amp xylocain
CORRECT: lokalni mesocaine xylocaine spray = lok xylocain mesocainu spray
CORRECT: analgesia epiduralis ca = epiduralni analgezie
CORRECT: 1 amp mesocaun(!1%) = mesocain(!1%) amp
CORRECT: 2 amp mesocain(!1%) = mesocain(!1%) amp
CORRECT: mesokain(!1%) loc = mesocain(!1%) loc
CORRECT: epiduralni dr stoudek = epiduralni
CORRECT: epiduralni analgezie lokalne mesocain(!1%) = mesocain(!1%) epiduralni lok analgezie
INCORRECT: mesocain l % lok != lok mesocainu l SHOULD BE mesocain(!1%) lok mesocainu l
CORRECT: mesocain(!1%) xylocaine = mesocain(!1%) xylocain
CORRECT: mesocain(!1%) epiduralni analg dr slezak = mesocain(!1%) epiduralni analgezie
INCORRECT: xylocain(!1%) != mesocain(!1%) SHOULD BE mesocain(!1%) xylocain
CORRECT: epidur analgesie celkova = epiduralni analgezie celkova
CORRECT: celkova dr krikava = celkova
CORRECT: epiduralni celkova = epiduralni celkova
INCORRECT: mesocain(!1%) 1 amp xylocain(!10%) != mesocain(!1%) amp SHOULD BE mesocain(!1%) amp xylocain
CORRECT: epiduralni u poodu dr gbelcova mesocain(!1%) = mesocain(!1%) epiduralni
CORRECT: epiduralni analgezie kratkodoba celkova pri ml = epiduralni analgezie celkova l
CORRECT: epiduralni an(!10ml) mesocain(!1%) local = mesocain(!1%) epiduralni loc 1(!10ml)
INCORRECT: l % mesocain != mesocainu l SHOULD BE mesocain(!1%) mesocainu l
INCORRECT: mesocain amp local != amp mesocainu loc SHOULD BE mesocain(!1%) amp mesocainu loc
INCORRECT: lokalne l % mesocain != lok mesocainu l SHOULD BE mesocain(!1%) lok mesocainu l
CORRECT: epiduralni u s c v celkove = epiduralni celkova
INCORRECT: epiduralni analgezie 1 amp mesocain lok != epiduralni lok amp analgezie mesocainu SHOULD BE mesocain(!1%) epiduralni lok amp

analgezie mesocainu
CORRECT: epiduralni analgesie dr zborilova mesocain(!1%) = mesocain(!1%) epiduralni analgezie
CORRECT: eipduralni analgezie i anestezie = epiduralni analgezie anestezie
CORRECT: mesocain(!1%)(!30ml) = mesocain(!1%)
INCORRECT: mesocain amp != amp mesocainu SHOULD BE mesocain(!1%) amp mesocainu
CORRECT: epiduralni analg a cekova anest = epiduralni analgezie celkova anestezie
CORRECT: epiduralni analg % mezokain lok = epiduralni lok analgezie
CORRECT: epiduralni anaalgesie = epiduralni analgezie
INCORRECT: xyloxain(!10%) != mesocain(!1%) SHOULD BE
CORRECT: epidural celkova pri man lyze revizi = epiduralni celkova
INCORRECT: lokalni mesocain != lok mesocainu SHOULD BE mesocain(!1%) lok mesocainu
CORRECT: mezocain(!1%) epidural = mesocain(!1%) epiduralni
CORRECT: epiduralni lokalne mesocaine = epiduralni lok mesocainu
CORRECT: mesoacin(!1%) = mesocain(!1%)
INCORRECT: epiduralni analgezie 1amp mesocain loc != epiduralni amp analgezie mesocainu loc SHOULD BE mesocain(!1%) epiduralni amp analgezie

mesocainu loc
CORRECT: mesocain(!1%) za porodu epiduralni dr gbelcova = mesocain(!1%) epiduralni
CORRECT: xylocain = xylocain
CORRECT: spinalni an =
CORRECT: episiotomie suttura chirlac =
CORRECT: mesocain(!10%) 1 amp = mesocain(!1%) amp

(In this listing, CORRECT: A=B means that, dataset record A and AIRS determined class
B are inmatch. INCORRECT: A!=B SHOULD BE Cmeans that dataset record A has arti cially
created “real” class C (translated to natural language using class identi er object) and
not AIRS determined class B).

Optimisation of input parameter values
As in 4.4, a simple genetic algorithmwas used to determine suboptimal parameter values
or this algorithm and dataset. Diagram in g. 29 shows how mean population tness
and best tness varied with number o generations simulated.

Results

AIRS on Less complex biomedical data: stimulation threshold=0.330, knn=1
– Accuracy: mean 84.486 % on 100 randomly selected 1:1 percentage splits
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g. 29 — Dependency o tness on number o generations (AIRS variant)



7 NSA for biomedical data
ile changes made in AIRS in order to make it able to classi y biomedical data were

more-or-less simple, such changes made in NSA were severe and they resulted in a new
algorithm, that uses several instances o original NSA. All changes are described in the
ollowing chapters.

7.1 Definitions
Information source

e In ormation source[14] is a probability model o a device, which produces messages
consisting o characters o a nite alphabet Γ. ere are 3 basic types o in ormation
sources:

a random variable (one character long message)
a random vector (n characters long message)
a random process (in nite character count)

Markov chain
e Markov chain[14] is a mathematical model o a nite automaton with vertex tran-

sition probabilities on its edges. Transition rom state A to state B has a probability
EDGE(A,B) where EDGE(x, y) is a unction that maps vertex pairs to the value o their
mutual edge.

Markov information source
e Markov in ormation source[14] is a stationary Markov chain (a stochastic process).

In this thesis, the Markov chain is de ned on a nite alphabet, that consist o all pairs o
english letters. e transition matrix is built by requency analysing a corpus text, where
empirical requencies o transitions between letter pairs are converted to probabilities.
( orough example is provided in A.5.)

7.2 Classification strategy
e NSA is a binary classi er, there ore it cannot be used directly. However, n classes

can be simpli ed to just two classes—the sel class in the rst group and all the other
classes in the second group. en the algorithm can distinguish between one class and
the others.

In order to make the algorithm be able to classi y all the n classes, we must create
separate antibody pools, each or one class. Each antibody pool must contain a baseset
o antibodies (one instance rom every non-sel class). I they had not have these base
sets, the algorithm would not yield satis ying results no matter how good the antibody
generation process would be. Each o the pools matches all classes but one. ere are
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now several possible result o classi cation:

1) exactly one o n pools does not match an atigen
2) k o n pools does not match an antigen, k ̸= n
3) n o n pools does not match an antigen

I exactly one pool p0 does not match an antigen ca (1), then it means, that every other
pools pk, k ̸= 0 had antibodies or the antigen ca, so it must be an important word and i
only p0 does not have antibodies or it, it means, that most probably the sel class o p0
is the class o ca.

I k o n pools do not match an antigen ca (2), then it means, that there are n−k other
pools, that matched the antigen ca , so it probably is an important word, but it cannot
be decided which one o k (it is similar to both).

I no pool matches an antigen ca (3), then it means, that it is not an important word.
ese specialized antibody pools may (or may not) be improved by addition o more

antibodies, generated by various mechanisms. One o the mechanisms is mutation, i.e.
antibodies mutate and they are being checked against their sel class (when they are too
similar to their sel class, they are disposed). e other mechanism which may improve
per ormance is the addition o antibodies generated by a Markov in ormation source.

e advantage o such antibodies is that Markov chain generates antibodies, that have
nearly the same probability distribution as the corpus text, so they will cover the impor-
tant areas and not the unimportant areas, rather than pure random antibody generator,
which tries to cover the whole non-sel space.

Training set Lymphocyte cells

Antibody count

Matching factor
Class identifier

Number of mutations

Number of Markov antibodies

NSA algorithm

variant

Markov information source

g. 30 — NSA algorithm variant scheme

As it can be seen in the above schematic ( g. 30), the algorithm takes several parameters,
all being explained in the above paragraphs (chapter 7) and in chapter 3.3.

7.3 Testing
During testing, several dependencies were observed between NSA input parameters, ac-
curacy and time complexity. e method used is the same as in 6.3.
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g. 31 — Dependency o accuracy on matching actor (NSA variant)

g. 32 — Dependency o time complexity on matching actor (NSA variant)
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g. 33 — Dependency o accuracy on Markov antibody count (NSA variant)

g. 34 — Dependency o time complexity on Markov antibody count (NSA variant)
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g. 35 — Dependency o accuracy on mutated antibodies (NSA variant)

g. 36 — Dependency o time complexity on mutated antibodies (NSA variant)
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Test results
In g. 31, we can see how classi cation accuracy changes with matching actor. We can
see a point around 0.3 (o matching actor), which could make algorithm yield the best
results. In g. 32 we can see, that grater matching actor causes shorter runtime.

In g. 33 and 34, we can see, that addition o antibodies created by a Markov chain
causes decrease in accuracy an increase in runtime, thus it should always stay at zero
when used with this dataset.

In g. 35 and 36, we can see, that addition o antibodies created by the process o
mutation does not change accuracy, but only increases runtime, thus it should also stay
at zero.

Real classification performance
As in 6.3, the real classi cation per ormance is better than the accuracy shown above
could imply or the same reason (arti cially created classes are not precise nor real).

530.0
epiduralni: 441.0
lok: 278.0
amp: 236.0
analgezie: 221.0
celkova: 134.0
xylocain: 113.0
mesocainu: 110.0
anestezie: 99.0
l: 68.0
loc: 66.0
amp(!1%): 62.0
spray: 50.0
1(!10ml): 34.0
There are 14 significant words.

CORRECT: epirudalni analgezie i anestezie = epiduralni analgezie anestezie
CORRECT: mezokain(!1%) epiduralni analgezie = mesocain(!1%) epiduralni analgezie
INCORRECT: epiduralni analgezie mesocain 1 amp != epiduralni amp analgezie SHOULD BE mesocain(!1%) epiduralni amp analgezie mesocainu
CORRECT: mesocain(!10ml)(!1%) 2 amp = amp
CORRECT: epidural celkova u vykonu = epiduralni celkova
CORRECT: epiduralni analgesie anestezie = epiduralni analgezie anestezie
CORRECT: celkova kratkodoba anestezie manualni lyze = celkova anestezie
CORRECT: epidural analg(!1%) mezokain lok = epiduralni lok
CORRECT: xylocaine(!10%) lokalne = lok xylocain
CORRECT: mesocain(!1%) lokalne = mesocain(!1%) lok
CORRECT: epiduralni analgesie dr stoudek mesocain(!1%) = mesocain(!1%) epiduralni analgezie
CORRECT: celkova narkóza = celkova
CORRECT: epiduralni anagesie mesocain(!1%) = mesocain(!1%) epiduralni analgezie
CORRECT: epiduralni analg mecosain(!1%) = mesocain(!1%) epiduralni analgezie
CORRECT: remifentanyl za porodu celkova anestezie u sc = celkova anestezie
CORRECT: epiduralni analgezie(!10ml) (!1%) mesocainu = epiduralni analgezie mesocainu amp(!1%)
CORRECT: %(!10ml) mesocainu i v = mesocainu 1(!10ml)
CORRECT: kratkodoba celkova anestezie u man lyze = celkova anestezie
CORRECT: xyloxain spray = xylocain spray
INCORRECT: epidural mesocain l % != epiduralni l SHOULD BE mesocain(!1%) epiduralni mesocainu l
CORRECT: 1 amp(!1%) mesocainu lokalne = lok mesocainu amp(!1%)
CORRECT: celkova anestezie rcui = celkova anestezie
CORRECT: epiduralni 1˘meoscain = epiduralni
CORRECT: mesocain(!1%) 1amp xylocaine = mesocain(!1%) amp xylocain
CORRECT: epiduralni anagezie = epiduralni analgezie
CORRECT: celkova u vykonu = celkova
CORRECT: xylocaine spray lok = lok xylocain spray
CORRECT: epidural(!10ml) (!1%) mesocainu xylocain spray = xylocain mesocainu amp(!1%) spray
CORRECT: lokalni 2 amp mesocain(!1%) = mesocain(!1%) lok amp
CORRECT: 1(!10ml) % mesocainu xylokain = xylocain mesocainu 1(!10ml)
INCORRECT: xylocai spray != spray SHOULD BE xylocain loc spray
CORRECT: epiduralni dr frncikova = epiduralni
CORRECT: mesocain(!1%) lokalne(!10ml) = mesocain(!1%)
INCORRECT: lokalni mesocain 1amp(!1%) != lok amp(!1%) SHOULD BE mesocain(!1%) lok mesocainu amp(!1%)
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INCORRECT: epiduralni mesocain 1 amp(!1%) != epiduralni amp(!1%) SHOULD BE mesocain(!1%) epiduralni mesocainu amp(!1%)
INCORRECT: mesocain(!1%) epiduralni anealgezie != mesocain(!1%) epiduralni SHOULD BE mesocain(!1%) epiduralni analgezie anestezie
CORRECT: anetestezie(!INV) =
CORRECT: xylocaine lok = lok xylocain
CORRECT: mecocain(!1%) 2 amp i v = mesocain(!1%) amp
CORRECT: mesokain(!1%) epiduralni = mesocain(!1%) epiduralni
INCORRECT: mesocain 2 amp(!1%) analgesia epiduralis != epiduralni analgezie amp(!1%) SHOULD BE mesocain(!1%) epiduralni analgezie mesocainu

amp(!1%)
INCORRECT: m(!1%) mesocain != amp(!1%) SHOULD BE mesocain(!1%) mesocainu amp(!1%)
CORRECT: epiduralni anesteie = epiduralni anestezie
CORRECT: 1 amp mesocain(!1%) = mesocain(!1%) amp
CORRECT: spinalni an =
CORRECT: mesocian(!1%) 1 amp lok = mesocain(!1%) lok amp
CORRECT: epiduralni analg anestezie = epiduralni analgezie anestezie
CORRECT: xylocaine 1 amp mesocain(!1%) = mesocain(!1%) amp xylocain

(In this listing, CORRECT: A=B means that, dataset record A and NSA determined class
B are inmatch. INCORRECT: A!=B SHOULD BE Cmeans that dataset record A has arti cially
created “real” class C (translated to natural language using class identi er object) and
not AIRS determined class B).

Optimisation of input parameter values
As in 4.4, a simple genetic algorithmwas used to determine suboptimal parameter values
or this algorithm and dataset. Diagram in g. 37 shows how mean population tness
and best tness varied with number o generations simulated.

g. 37 — Dependency o tness on number o generations (NSA variant)

Results

NSA on Less complex biomedical data: matching actor=0.303
– Accuracy: mean 75.894 % on 100 randomly selected 1:1 percentage splits
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8 Final results (on both datasets)
In this chapter, both AIRS and NSA are used or classi cation o the entire less complex
dataset (which was also used in testing) and o part o a more complex dataset, which
is signi cantly greater and has signi cantly greater word-stock. Also, two variants o
KNN algorithm were used in order to compare AIS to a member o non-AIS classi ca-
tion algorithms group. e rst variant is the classic KNN (only 1-nn was used, because
more-nn was proved not to yield good results in 6.3) with no data reduction. e sec-
ond variant o KNN does not use training at all and it might not be called KNN at all,
because a Class identi er object is provided to it in order to create a nal pool o words.
Classi cation itsel , in this second variant, ollows that o the variant AIRS (section 6,
i.e. 1-o -n approach).

8.1 Less complex dataset (22 000 words)
Optimised parameters used or this test are speci ed in 6.3.

Settings
Preprocess parameters were set manually to the value, at which the algorithm yielded
satis actory important words (parameter optimisation cannot be done in this situation).

Preprocess parameters: Similarity threshold: 0.33, Dispose rate: 0.005
Detected important words: 13

Algorithm settings

AIRS Parameters
similarity threshold=0.330, stimulation threshold=0.7, knn=1, mu-

trate=2, clonerate=5.
NSA Parameters

matching factor=0.303, Markov antibodies=0, mutated antibodies=0
KNN (original) has no parameters (except k, which is stated above to be 1).
KNN’ (modi ed) has no parameters (except k, which is stated above to be 1).

Results
In the results and in g. 38, it can be seen, that the results o NSA are actually better than
the results o AIRS on the whole dataset. Such result was not expected, because on the
rst 1000 records, AIRS always per ormed better. In the end, the variant NSA algorithm

seems more exible or this problem than the variant AIRS. It can also be seen, that the
modi ed KNN algorithm outper ormed the other ones.
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tab. 7 — Results on less complex biomedical dataset

AIRS NSA KNN KNN’
Average train time [s] 5.000 0.005 0.001 <0.001
Average test time [s] 2.800 6.500 127.8 1.127
Mean accuracy [%] 78.17 81.22 60.64 82.48
Median o accuracy [%] 77.88 81.27 60.59 82.52
Best-so- ar accuracy [%] 81.68 83.60 63.51 83.54
Standard deviation [%] 1.59 0.68 1.23 0.50
0.05 quantile [%] 75.92 80.14 58.53 81.61
0.25 quantile [%] 76.85 80.72 59.73 82.12
0.75 quantile [%] 79.56 81.61 61.59 82.83
0.95 quantile [%] 80.82 82.23 62.62 83.25

g. 38 — Comparison o algorithms on entire less complex biomedical dataset
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8.2 More complex dataset (1 500 000 words)
For instance, single dataset record looks like:

partus inductus in grav hebd 38 liquorrhoea amnialis praecox praesen-
tatio occipitis funiculus umbilicalis circum collum fetus semel diabetes
mellitus gestationis matris th prostin 0 5x2 mg ea amp iv analgesia epidu-
ralis oxytocin i v ifpo episiotomia mediolateralis sut chirlac mem 1 amp
iv dr kurecova sps dr huser hsps, 1111101011001001010110111010

Because o the complexity o the dataset and low optimisation o the code, it was not
possible to process the whole dataset (with 500 MB heap space). e problem was in
abundant usage o java Strings which are extremely slow or very large strings. Because
o the same thing, it was not possible to test the original KNN algorithm (it has no data
reduction).

Preprocess
Preprocess parameters were set manually to the value, at which the algorithm yielded
satis actory important words (parameter optimisation cannot be done in this situation).

Preprocess parameters: Similarity threshold: 0.33, Dispose rate: 0.25
Detected important words: 28

Results
In the results and in g. 39, it can be seen, that AIRS per orms better than NSA and
KNN is slightly better than both o them.

tab. 8 — Results on more complex biomedical dataset

AIRS NSA KNN’
Average train time [s] 7.940 0.018 <0.001
Average test time [s] 9.210 107.0 4.300
Mean accuracy [%] 65.80 64.49 66.28
Median o accuracy [%] 65.90 64.40 66.40
Best-so- ar accuracy [%] 70.00 68.00 70.20
Standard deviation [%] 1.55 1.44 1.32
0.05 quantile [%] 63.40 62.20 64.20
0.25 quantile [%] 64.90 63.40 65.50
0.75 quantile [%] 66.70 65.60 67.10
0.95 quantile [%] 68.30 67.40 68.30
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Parameters

AIRS Parameters
similarity threshold=0.330, stimulation threshold=0.7, knn=1, mu-

trate=2, clonerate=5.
NSA Parameters

matching factor=0.303, Markov antibodies=0, mutated antibodies=0
KNN’ (modi ed) has no parameters (except k, which is stated above to be 1).

g. 39 — Comparison o algorithms on more complex biomedical dataset



9 Conclusion
e main aim o this work was to apply Arti cial Immune Systems on large and loosely

structured biomedical text datasets (i.e. biomedical datasets thereina ter) and evaluate
their per ormance. In this chapter, the goals declared in chapter 1.1 are mapped to
respective achievements.

9.1 Goals to achievements mapping
1) Literature study

Relevant and use ul publications concerning AIS were studied (chapters 2, 3).
2) Selection of 2 algorithms

Based on 1), two algorithms were selected, namely AIRS and NSA. ey were
selected, because they are di erent in the way they operate—AIRS can work with
multiple classes, whereas NSA is purely a binary classi er. AIRS uses the KNN
algorithms as it’s matching unction, whereas NSA uses radius threshold match-
ing. ARIS tries to cover the sel -space, whereas NSA tries to do the exact oppo-
site—cover the non-sel space.

3) Implementation
In order to make thorough testing and diagnostics possible, an appropriate

so tware rameworkwas built in the Java programming language. anks tomod-
ular structure and object oriented approach, the system is designed to be able to
easily support new algorithms and diagnostic eatures (detailed description o
the API is a part o the Javadoc documentation o the source code). e cur-
rent implementation supports 8 algorithms (NSA, variant NSA (adapted to bio-
medical data), AIRS, variant AIRS (adapted to biomedical data), KNN, variant
KNN (adapted to biomedical data), Immunos-1 and Clonalg), Microso t SQL
Database Manipulation Frontend, Preprocessing Frontend, Genetic Algorithm
Parameter Selection Frontend, CSV Manipulation Frontend, Pro le Manipula-
tion Frontend and Testing Frontend. e Testing Frontend generates MATLAB
compliant code and is currently able to automatically output boxplots and mul-
tiple data series plots. Resulting source code has 6983 lines o code in 49 les.

4) Preliminary testing
In order to see, how AIRS and NSA behave on simple datasets, preliminary

tests were made (chapter 4). Both AIRS and NSA algorithms were tested on
both real (Iris) and arti cially created (Gaussian) datasets and were compared to
one another. On these datasets, AIRS outper ormed NSA with rather promising
results (AIRS reached 96.45 % accuracy on the Iris dataset and 95.45 % on the
Gaussian dataset, while NSA reached 85.15 % accuracy on the Gaussian dataset).

5) Biomedical data preprocessing and class assignment
In order to normalize biomedical data and in order to create and assign arti -

icaly created claases to them, a text preprocessing algorithm was designed and



e Use AIS in Biomedical In ormation Retrieval

implemented (chapter 5). is algorithm automatically selects important words
based on their requencies using a new distance metric (Product distance, pro-
posed in 5.3).

6) Algorithm performance evaluation
In order to study behaviour o the modi ed algorithms, both o them were

tested on a sample subset o the less complex o the two biomedical datasets
(chapters 6.3 and 7.3).

7) Large scale testing and comparison
In the end, a per ormance comparison o the algorithms on very large datasets

wasmade and it was comparedwith per ormance o theKNNalgorithm (chap. 8).

tab. 9 — Results revision table

AIRS NSA KNN KNN’
Mean accuracy on less complex dataset [%] 78.17 81.22 60.64 82.48
Mean accuracy on more complex dataset [%] 65.80 64.49 — 66.28

9.2 Work not declared in goals
In addition to the speci ed goals (1.1), an additional work had to be done.

Algorithm alteration
In order to adapt AIRS andNSA to the biomedical datasets, we have non-trivially altered
the orginal algorithms to t them.

Product distance
In order to achieve better resolution in string comparison, a new distance metric was
proposed and implemented in chapter 5.3.

Genetic Algorithm Parameter Selector
In order to optimize parameter values o algorithms, a Genetic Algorithm Parameter
Selector was designed a implemented. is genetic algorithm uses metaheuristic (de-
scribed in 4.4) to provide suboptimal set o parameter values and it is able to output
MATLAB-encoded diagrams o mean and maximal tness.

9.3 Final conclusion
e main result o this work is a modular diagnostic and preprocessing ramework,

which supports easy implementation o new algorithms and unctionality. is rame-
work can and will also be used or other datasets o similar kind.
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Both AIRS and NSA were tested on real biomedial data and were proved usable or ree
text pattern mining problem, but their per ormance is rather average when compared
to the KNN algorithm. Nevertheless, their principle and the idea behind them makes
them viable or urther study and applications.
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Appendix A: Statistics
In this chapter, statistic terms used in this thesis are de ned and explained. Also, struc-
ture o various diagram types is described. Every in ormation in this chapter is taken
rom [13] unless stated otherwise.

A.1 Mean value
In this thesis, the mean value is equal to the unweighted average:

a =
1

n

n∑
i=1

ai (6)

e most signi cant property o so de ned mean is that i there are outliers in the selec-
tion, they will a ect the result greatly.

A.2 Median
e median o the sorted selection S is the very middle element o this selection. I the

selection has even length, then this selection’s median is the mean o the two middle
elements.

A.3 Variance
e variance is a mean quadratic deviation rom a mean value o a selection:

SA =
1

n− 1

n∑
i=1

(ai − an)
2 (7)

A.4 Standard deviation
e standard deviation is a mean deviation rom a mean value o a selection:

sA =

√√√√ 1

n− 1

n∑
i=1

(ai − an)
2 (8)
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A.5 String Markov information source example
Let the alphabet Γ be de ned as Γ = {a, b, c, ..., x, y, z} and let the corpus text be abcd-
eaxbycza. ere are ollowing transitions in the corpus text: a->b, b->c, c->d, d->e,
e->a, a->x, x->b, b->y, y->c, c->z, z->a.

A B
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Z

0.50.5

0.5

0.5

1

1

1

0.5

0.5

1

1

g. 40 — Graph o a sample Markov in ormation source

We can represent the transitions as a transition matrix or a graph ( g. 40). e in orma-
tion source can have a starting condition or may not. In case it has no starting condition,
any vertex can be picked. I a vertex is selected, a letter represented by it is attached to
an output. en a transition is made according to probabilities on edges and a new ver-
tex is selected and so on. For instance, assuming the source described above ( g. 40),
valid generated words include: abczabczabcz, xbycdexbcdea, abcdeaxbc and so on.

Markov in ormation source used in this thesis is not based on single letter but on
letter pairs (digrams), because they are more likely to mimic natural language when
given natural language corpus text. In english language, there are several very common
digrams, like th, er, is, st, ct, of, at and there are common transition rules,
or instance th is most likely ollowed by is, at or en, but not by of, although ho is also
airly common (i.e. when using single letters as an alphabet, probability o getting thof
is a product o transition probabilities between t->h, h->o and o->f, which is nonzero,
whereas when using digrams as an alphabet, probability o getting thof is a product o
transition probabilities between th->of and because such transition does not exist in
english language at all, it is zero).

en using trigrams as an alphabet, results are even better, but this variant needs
very large corpus text. One can also use whole dictionary as an alphabet and a very
large text source as a corpus text. . . then the Markov in ormation source gives sense ul
sentences as its output.
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A.6 Boxplot
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g. 41 — Boxplot description

A.7 Multiple data series plot

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

10

20

30

40

50

60

70

80

90

100

similarity threshold

a
c
c
u
ra

c
y

accuracy

stdev

convergency fault rate

stdev

mean value

stdev

spline curve

g. 42 — Multiple series plot description
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Appendix B: Pseudocode syntax
e pseudocode is a meta-language used to describe algorithms in such well-arranged

and abstract way, real languages would never achieve.

tab 6. — pseudocode
Syntax Meaning
a:=b b is assigned to a by value
a<=b b is assigned to a by re erence
a=b logic operation: a equal to b
a<b, a=<b logic operation: a less than, less or equal to b
a>b, a>=b logic operation: a greater than, greater or equal to b
a sameas b object comparison
if(condition), fi i clause
for(i, c, a), end c like or clause
do while, while, end other clauses
for(o in list) or each clause
function(params) function call
membervar(o) getter or membervar in object o
add(list,o) adds item to list
remove(list,o) removes item rom list
Procedure: Name unction declaration
Input: a, b, c input parameters or unction
Output: d single output parameter o unction

Commands can be separated either with new line or comma. Because the pseudocode
is not to be executed, commands and constructions not speci ed in this list are allowed
to be used as long as their meaning is trivial to understand.

Appendix C: Machine specification
All tests were run on the machine with ollowing parameters.

– Operating system: Microso t Windows 7 SP1, 32 bit instructions
– CPU: Intel Pentium Dual-Core T4200, 2 GHz clock rate
– Operating memory: 3GB

e ollowing development or other notable so tware was used.

– Java SE plat orm
– Mathworks Matlab ( aculty licence)
– Wol ram Mathematica ( aculty licence)
– X ETEX with plain ormat



e Use AIS in Biomedical In ormation Retrieval

– Storm Type Foundry type aces (personal licence)
– Enterprise Architect
– Microso t SQL Server 2008

AppendixD:DVDdirectory andfile structure

|–..
|–.
|–BT_SOURCE_CODE

|–BT
|–src

|–AIRS
| AIRS.java
| AIRSFillEngine.java
| CSF.java
| Pattern.java
| Point.java

|–CLASSIFIER
| ClassificationAlgorithm.java
| Test Java

|–GAParamSelection
| Instance.java
| ParamOperator.java
| ParamSelector.java

|–KNN
| Core.java
| KNN.java
| KNNFillEngine.java
| Pattern.java
| Point.java

|–NSA
| DT.java
| NSA.java
| NSAFillEngine.java
| Point.java
| SpecialisedAntibodyGoup.java

|–UTILITY
| CSV.java
| DATASET.java
| Distance.java
| Distance.java
| FillEngine.java
| MarkovChainSource.java
| MutableDouble.java
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| MutableInteger.java
| MutableNumber.java
| SortableBinaryString.java
| Statistics.java

|–bt
| Main.java

|–database
| BTDException.java
| BTDatabase.java
| Database.java

|–preprocess
| ClassIdentifier.java
| Identification.java
| SortableStringDoublePair.java
| TranslationException.java

|–profile
| ParsingException.java
| Profile.java
| ProfileException.java
| ProfileReader.java
| ProfileWriter.java
| SectionHeader.java

|–DATA
|–csv_datasets

| bcw.data
| gauss.data
| iris.data
| lesscmplx_processed.data
| morecmplx_processed.data
| wine.data

|–graphs
| graphs.rar

|–profiles
| lesscmplx.profile
| morecmplx.profile

|–TEX
| source.rar
| BT.pdf
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