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Abstract
ɤe aim oЗ this thesis is to evaluate perЗormance and usability oЗ selected Artiɐcial
Immune Systems (AIS) on the problem oЗ classiɐcation and automatic processing oЗ
loosely structured Зree-text medical records. AЗter a review on the state-oЗ-the-art AIS
algorithms, we have selected and implemented Artiɐcial Immune Recognition System
(AIRS) and Negative Selection Algorithm (NSA) algorithms as representatives. AЗ-
ter preliminary testing and behaviour study we have altered the algorithms to ɐt pro-
vided datasets using (among others) modiɐed distance metric based on the Damerau-
-Levenshtein distance. On the datasets sized 22 000 and 1 500 000 words, we have ob-
tained the Зollowing best classiɐcation accuracy: 78.17 %, 65.80 % respectively Зor the
AIRS and 81.22 %, 64.49 % respectively Зor the NSA.

Abstrakt
Cílem této práce je užití vybraných algoritmů skupiny Umělých imunitních systémů
(AIS) ke klasiɐkaci volně strukturovaného textu z oboru biomedicíny. Po posouzení
a zhodnocení algoritmů skupiny AIS byly jako reprezentativní algoritmy vybrányUmělý
imunitní rozpoznávací systém (AIRS) a Algoritmus negativní selekce (NSA). Po před-
běžném testování těchto algoritmů na jednoduchých reálných a umělých datech byly
původní algoritmy pozměněny tak, aby byly schopny klasiɐkace volně strukturovaného
textu, mimo jiné za použití vzdálenostní metriky založené na Damerauově Levenshtei-
nově vzdálenosti. Na množinách dat o velikostech 22 000 slov a 1 500 000 slov dosáhl al-
goritmus AIRS nejlepší klasiɐkační přesnosti 78,17 % a 65,80 %, algoritmusNSA 81,22 %
a 64,49 %.
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1 Introduction

1.1 Aim of this work
We have divided the work into the Зollowing goals which have to be achieved.

Goal specification

1) Literature study
Weneed to study relevant and useЗul publications concerning AIS and Зree-text

pattern mining approaches, as well as string distance metrics.
2) Selection of 2 algorithms

Based on 1), we need to select two representative algorithms, which will be
implemented, analysed and used.

3) Implementation
We need to design and implement modular and well-arranged Зramework in

order to make algorithm diagnostic, testing and text analysis possible.
4) Preliminary testing

We need to make preliminary tests in order to see, how these algorithms be-
have on simple datasets. ɤese tests need to be made on both real and artiɐcially
created datasets.

5) Biomedical data preprocessing and class assignment
We need to preprocess the biomedical data in order to normalize them and in

order to create and assign artiɐcially created classes to them, as we are provided
with text records only, with no annotation whatsoever.

6) Algorithm performance evaluation
We need to evaluate the perЗormance oЗ the adapted algorithms on a real bio-

medical data in order to study their behaviour and to ɐnd optimal paramaters.
7) Large scale testing and comparison

In the end, we need to compare perЗormance oЗ the algorithms on very large
real biomedical datasets and compare it with perЗormance oЗ a non-AIS algo-
rithm.

1.2 What is an Artificial Immune System?
An Artiɐcial Immune System is generally a biologically inspired problem-solving algo-
rithm. It’s inspiration comes Зrom the mammalian immune system, strictly speaking
Зrom it’s generalisation abilities (see chapter 2). ɤese algorithms usually solve clas-
siɐcation and optimisation problems, but there are also several algorithms Зorm this
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ɤe Use ɜ AIS in Biomedical InЙormation Retrieval

branch, which are used Зor intrusion detection. Optimisation algorithms search Зor
optimal states in Зunctions (Зor instance, travelling salesman problem, SAT problem,
knapsack problem etc.), whereas classiɐcation algorithms classiЗy their inputs, based on
example inputs presented to them beЗore (Зor instance, several shapes are presented to
hypothetical algorithm along with their respective labels (classes) and then an unknown
shape is presented to this algorithm. It’s job is to say, oЗ what class that shape most likely
is).

1.3 Brief history of AIS[12]

ɤe origins oЗ AIS has its roots in the early theoretical immunology work oЗ J. Doyne
Farmer, Alan Perelson and Francisco Varela, with a key work being by Farmer, Packard
and Perelson[11]. ɤese works investigated a number oЗ theoretical immune network
models proposed to describe the maintenance oЗ immune memory. ɥilst controver-
sial Зrom an immunological perspective, these models began to give rise to an interest
Зrom the computing community. ɤe most inɓuential people at crossing the divide be-
tween computing and immunology in the early days were Hugues Bersini and Stephanie
Forrest. It is Зair to say that some oЗ the early work by Bersini was very well rooted in
immunology, and this is also true oЗ the early work by Forrest. It was these works that
Зormed the basis oЗ a solid Зoundation Зor the area oЗ AIS. In the case oЗ Bersini, he
concentrated on the immune network theory, examining how the immune system main-
tained its memory and how one might build models and algorithms mimicing that prop-
erty. With regards to Forrest, her work was Зocussed on computer security (in particular
network intrusion detection) paying attention to the abilty oЗ the immune systems to
discriminate between selЗ and non-selЗ. ɤese works Зormed the basis oЗ a great deal oЗ
Зurther research by the community on the application oЗ immune inspired techniques to
computer security. Due to a growing amount oЗ work conducted on AIS, the Interna-
tional ConЗerence on Artiɐcial Immune Systems (ICARIS) conЗerence series has been
started in 2002.

ıĴ



2 Understanding the Immune System
In [7], Dasgupta and Nino thoroughly describe how human immune system works, how
cleverly and almost perЗectly it has been designed by the nature and ɐnally, how com-
puter scientists can utilize the ideas, on which it is based. In the Зollowing paragraphs,
the basic principles are mentioned, as they are crucial Зor understanding, how AIS work.

According to [7], living organisms, such as human bodies, need to resist hamЗul eɍects
oЗ a biological environment, they live in. ɤe resistivity to biological entities is provided
by an immune system, which is three-layered. Physical barriers (such as mucousmembrane)
represent the ɐrst layer oЗ deЗence. ɤe second layer, called an innate (also non-speciɐc)
immune system, is supposed to destroy antigens (antigen means entity harmЗul to the
body, such as bacteria, viruses etc.), which shows certain molecular structure, known
to the body. Finally, the third layer oЗ immunity is called an adaptive (also speciɐc)
immune system, which is supposed to destroy antigens, which are recognised Зrom past
attacks. ɤis layer (third) clearly disposes oЗ certain recognition abilities, thus it becomes
particularly important Зor this work.

2.1 Adaptive Immune System
Adaptive immune system oЗ human body shows two major abilities—memory and adap-
tivity. It is capable to rememer the pattern, which detected an antigen (we say an antibody
matched an antigen), improve it and reuse it in a later exposure to the same or similar
antigen. Cells called lymphocytes represent antibodies in a human immune system. ɤese
lymphocytes are oЗ several kinds—generealy two—T cells and B cells.

Antibody→ antigen matching
B-lymphocytes have protein called BCR (B-Cell Receptor—immunoglobulin) on their
surЗace, that can bind to another cell on a molecular basis. ɥen the binding between
a B-lymphocyte and an antigen is tight enough (we say, the aɗnity is high), the B-
-lymphocyte is said to be stimulated. ɥen stimulated, the matched cell is probably
an antigen, thus an immune reaction is started. Firstly it’s somatic hypermutation.

Antigens

Antibody

Antigen

Antigen-binding site

ɐg. 1 — B-Cell Receptors and molecular binding[wikimedia commons]
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Somatic Hypermutation
ɥen an antigen is bound by an antibody’s BCR, the antibody starts to clone itselЗ (clone
rate depends on the rate oЗ stimulation), whereas the clones undergo a process oЗ muta-
tion, where their BCR’s are slightly altered. AЗter this, they test their aɗnity to the
antibody and then they clone and mutate again (with various rates depending on their
aɗnity). Products oЗ this process, which show low aɗnity or they’re not stimulated at
all, are disposed. On the other side, cells, that have the highest aɗnity at all, are cloned
and kept Зor Зuture encounters.

Clonal Selection Mechanism
ɥile B-lymphocytes mature in spleen, using mechanics, that are unimportant Зor this
work, T-lymphocytes mature in ɤymus, where they undergo (among others) the pro-
cess called Negative selection. In this process, various selЗ-cells (body cells) are presented
to T-lymphocytes. ɥen a T-lymphocyte matches any oЗ the selЗ-cells, it is disposed,
otherwise, it is kept, cloned and mutated. By the end oЗ this process, only 2 % oЗ T-
lymphocytes will have satisɐed the criteria.

ɐg. 2 — Depiction oЙ the Clonal Selection and the Somatic Hypermutation[wikimedia commons]
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3 Artificial Immune Systems
ɤere are many algorithms derived Зrom the original works by Farmer, Packard and
Perelson[11], but generally they all belong to Зour groups, each being inspired by a spe-
ciɐc immunological theory:

Clonal Selection Algorithms (namely AIRS[4], Immunos, CSA[19])
Negative Selection Algorithms (namely NSA[1])
Dendritic Cell Algorithms (namely DCA[20])
Immune Network Algorithms (namely AINE[21], optAInet[22])

ɤe other classiɐcation is:

B-Cell Inspired Algorithms (namely AIRS)
T-Cell Inspired Algorithms (namely NSA)

Because B-Cell inspired algorithms and T-Cell inspired algorithms share very little in
their operation principles, the AIRS and the NSA were chosen to be the two algorithms,
which are studied in this thesis. Namely AIRS and NSA are completely diɍerent—AIRS
can work with multiple classes, whereas NSA is purely a binary classiɐer. AIRS uses
the k-nearest-neighbour algorithm as it’s matching Зunction, whereas NSA uses radius
thresholdmatching. AIRS tries to cover the selЗ-space, whereas NSA tries to do the exact
opposite—cover the non-selЗ space.

3.1 Artificial Immune Recognition System (AIRS)
AIRS uses a training set to build a pool oЗ memory cells, which should properly match
a cell, which is unknown to the system during training.

Training set Memory cells

Clone rate

Mutation rate

Stimulation threshold

Resource limit

K-nn

AIRS algorithm

 
ɐg. 3 — Basic AIRS algorithm scheme (input, output, parametes)
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ɤeartiɐcial cell is an object (or generally a data structure), which contains a data carrier,
that carries the data it should represent, a class label (with no inЗormation in case oЗ an
unknown cell). Every artiɐcial cell must also store and provide the inЗormation about
its stimulation and about the amount oЗ resources (see (5)) it claims.
In ɐgure 4, a basic scheme oЗ the AIRS is shown.

Firstly, let us deɐne the domain d on which the AIRS will classiЗy (in d, there are data
sepated to n classes). Let the memory cell pool MCP be the list oЗ cells, that will be the
output oЗ AIRS and let the distance Зunction be the mapping f : (a, b) → d, where a
and b are cells and d ∈ R. Let clonerate ∈ R, mutrate ∈ R be the input parameters oЗ
AIRS, that control rates oЗ cloning and mutation and let maxres ∈ N (N = {1, 2, ...}) be
the maximal ammount oЗ resorces, that all cells can posses (explained below, see (5)).

Firstly, the system is initialised with one sample cell Зrom every class. ɤen a random
antigen cell c is generated over a domain d. ɤen every cell ci in amemory cell poolMCP
is stimulated by c—that means, Зor every i ∈ MCP a distance distance = f(c, i) is mea-
sured, where f is a cell distance Зunction (in two-dimensional domain oЗ real numbers it
may be euclidean distance). ɤen the aɗnity is calculated as a relative distance

affinity = distance/max distance, (1)

where max distance is maximal possible distance oЗ two cells in the current domain.
ɤen the rate oЗ stimulation is calculated logically as

stimulation = 1− affinity. (2)

ɤen, the most stimulated cell cbest is compared with presented antigen c—iЗ there’s no
match in class, the antigen cell is added straight into the memory cell pool. IЗ there
is a match in class and iЗ the antigen c is not equal to antibody cbest (i.e. the stimula-
tion is not exactly 1), then Artiɐcial Recognition Ball (ARB) pool is created. ARB pool is
initialised by cloning k clones oЗ cbest, where k is

k = stimulation(cbest) · clonerate ·mutrate (3)

In addition, every clone undergoes amutation beЗore its entry to the ARB pool. ɤis pro-
cedure mimics somatic hypermutation mentioned in chapter 2. ɤe mutation procedure
itselЗ is exactly the same as it is in genetic algorithms—a random alteration to prevent the
system deadlock at local extreme. ɤe more stimulated is the cell, the more substantial
the mutation is (to maintain convergency).

AЗter initialising, the ARB pool needs to be reɐned, because it contains too many
inviable cells. Entire pool is stimulated and then the mean stimulation is calculated Зor
every loop oЗ reɐning procedure:

meanstim =

∑
c∈ARB(stimulation(c))

size(ARB)
(4)

IЗ a mean stimulation threshold (one oЗ input parameters) is met, then the best cell ccand
Зrom ARB pool is selected and claimed a candidate cell.
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IЗ it is not met, cells in ARB pool must mutate again to reach the threshold criterion. To
maintain convergency, each cell c in ARB pool has an amount oЗ resources given as:

resources(c) = stimulation(c) · clonerate (5)

where clonerate is a system input parameter. Another input parameter is a maximal
amount oЗ resources maxres ‘taken’ by the system. Each loop, the weakest cells (i.e.
cells ‘taking’ the lowest amounts oЗ resources) are being disposed until the threshold
criterion is met. ɥen the threshold criterion is met, ccand oЗ ARB pool is selected as
a candidate and the rest oЗ ARB pool is disposed.

ɤen ccand is compared with cbest. IЗ ccand has better stimulation, it is added to the
memory cell pool. ɤis whole training procedure repeats Зor numpatterns ∈ N steps,
where numpatterns is an input parameter.

ɤe classiɐcation itselЗ is then stimulating the memory cell pool with the given anti-
gen. AЗter the memory cell pool is stimulated, then the class-carrying cell is selected
using k-nearest-neighbour algorithm.

Pseudocode
ɤe Зollowing pseudocode (syntax explained in Appendix II) describes the most impor-
tant parts oЗ the algorithm.

Procedure: Train System
Input: stimthresh, mutrate, clonerate, maxres, TRS, knn
Output: memcells

memcells := initmemcells(TRS)
for(Cell c in TRS)
stimulate(memcells, c)
bestmatch := getMostStimulated(memcells)
if(bestmatch=c)
continue

fi
if(not label(bestmatch)=label(c))
add(memcells, newcell(data(c), label(c)))

else if(stimulation(bestmatch)<1)
pool := createARBpool(c, bestmatch, clonerate, mutrate)
candidate := refineARBpool(pool, c, stimthresh, clonerate,...

...maxres)
addifbetter(memcells, candidate, bestmatch)

fi
end

Procedure: createARBpool
Input: c, bestmatch, clonerate, mutrate
Output: pool
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add(pool, newcell(data(bestmatch), label(bestmatch)))
clonecount := round(stimulation(bestmatch)*clonerate*mutrate)

for(i:=0, i<clonecount, i++)
cell := newcell(data(bestmatch), label(bestmatch))
add(pool, mutateCell(cell, bestmatch))

end

Procedure refineARBpool
Input: pool, p, stimthresh, clonerate, mutrate
Output: candidate

meanstim:=0
do

stimulate(pool, p)
competition(pool, clonerate, maxres)
candidate := biggeststim(pool)
sumstim := 0
for(o in pool)
sumstim :+= stimulation(o)

end
meanstim := sumstim/size(pool)
if(meanstim>stimthresh)
actpoolsize:=size(pool)
for(i:=0, i<actpoolsize, i++)
cell := newcell(data(get(pool, i)), label(get(pool, i)))
setStimulation(cell, stimulation(get(pool, i)))
cell2 := mutateStimulatedCell(cell)
if(cell2 sameas cell)
decrement(i), continue

fi
add(pool, cell2);

end
fi

while(meanstim < stimthresh)

3.2 AIRS Implementation Test
In order to test correctness, the AIRS was ɐrst run on a domain oЗ two dimensional
vectors (X and Y coordinates), where classes represent certain space (area). Random
points are generated using discrete uniЗorm distribution over the area and the goal is to
determine which points belong to their respective spaces. ɤe only inЗormation about
the problem provided to the algorithm is the training set.

Graphic capabilities oЗ Java were used to graphically illustrate the results. In ɐg.5, the
red circles are the test instances (antigens), the blue ones are the memory cells (antibod-
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ies) and the lines between them are the results oЗ 1-nn. ɤe green line denotes wrong
classiɐcation.

ɐg. 4 — AIRS sample run on domain oЙ 2D vectors

ɤe upper right quadrant represents one class and the lower two quadrants represent
the second.

ɤe time complexity oЗ AIRS (training phase) on this problem can be approximated
by the Зunction (1/(20 · 103)) · n2, whereas the time complexity oЗ testing phase is lin-
ear. During this test, AIRS parameter were set as Зollows: threshold=0.9, antibody
count=200, mutrate=2, clonerate=10, maxres=50, knn=1. Machine speciɐcation is de-
scribed in Appendix C.

tab. 1 — AIRS time complexity sample table
Dataset size(n) 10 100 1000 2000 5000 10000 25000 50000
Training [ms] 0 5 60 235 1305 5082 32053 126397

Testing 200 [ms] 3 5 20 40 97 195 553 1136
(1/(20 · 103)) · n2 0 0 50 200 1250 5000 31250 125000
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3.3 Negative Selection Algorithm
ɤe Negative Selection Algorithm is a T-Cell inspired algorithm, designed Зor binary
classiɐcation. ɤe principle oЗ NSA is diɍerent Зrom that oЗ AIRS. Firstly, the NSA
iterates the training set and groups the instances labeled SELF together (i.e. creates
a selЗ-set). ɤen it generates more or less random cells (antibodies) and matches them
against the selЗ-set. ɤematching process itselЗ is diɍerent Зrom that oЗ AIRS. Instead oЗ
using k-nn, thematching radius is used (i.e. only cells that are less or equally distant Зrom
the cell than a given Зactor are matched). IЗ the antibody matches any cell in the selЗ-set,
it Зails its mission (because it is supposed not to mach SELF cells) and it is disposed. IЗ
it does not match anything, it is kept as an antibody, because there is a chance, that it
would match an unknown (and thereЗore NON SELF) cell.

Training set Lymphocyte cells

Antibody count

Matching factor

NSA algorithm

ɐg. 5 — Basic NSA algorithm scheme (input, output, parameters)

NSA takes two parameters: Matching Йactor ∈ < 0, 1 >, which is the above mentioned
maximalmatching distance and Antibody count∈ N, which denotes, howmany antibodies
should be created.

Pseudocode
ɤe Зollowing pseudocode (syntax explained in Appendix II) describes the most impor-
tant parts oЗ the algorithm.

Procedure: Train System
Input: TRS, size, factor
Output: antibodies

selfset := createSelfSet(TRS)
antibodies := generateAntibodies(selfset, size, factor)

Procedure: createSelfSet
Input: TRS
Output: selfset
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for(cell in TRS)
if(isSelf(cell))

add(selfset, cell)
fi

end

Procedure: generateAntibodies
Input: selfset, size, factor
Output: antibodies

while(1)
if(immuneReaction(selfset, p = randomAntibody(domain)...
..., factor)==NULL)

count++
add(antibodies, p)
if(count=size)

break;
fi

fi
end

Procedure: immuneReaction
Input: set, stimulus, factor
Output: matched_antibody

matched_antibody:=null

for(cell in set)
if(match(cell, stimulus, factor))

matched_antibody:=cell
break

fi
end

3.4 NSA Implementation Test
In order to test correctness, theNSAwas ɐrst run on a domain oЗ two dimensional vectors
(X and Y coordinates), where classes represent certain space (area). Random points
are generated using the discrete uniЗorm distribution over the area and the goal is to
determine which points belong to their respective spaces. ɤe only inЗormation about
the problem provided to the algorithm is the training set.

Again, the Java graphics were used to illustrate the results (ɐg. 6). ɤe red circles are
the test instances (antigens), the blue ones are the antibodies and the blue circles around
the antibodies represent their matching Зactor.
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ɐg. 6 — NSA sample run on domain oЙ 2D vectors

ɤe settings Зor this test were Зollowing: factor=0.05, count=50.

3.5 Parallelisation capabilities
In [10], Andrew Watkins and Jon Timmis, the creators oЗ AIRS, explore parallelisation
capabilities oЗ AIRS. ɤey had inspired themselves in human immune system and it’s
natural parallelisation, which is clearly it’s dominant Зeature. ɤey think, that iЗ the AIRS
itselЗ is inspired in human immune system, it should contain parallelisation capabilities
somehow naturally.

ɤey propose dividing training phase into several processes (each process should own
a part oЗ the training set), running AIRS on them independently and then merge ɐnal
memory cell pools. ɤe question is raised, that iЗ the training set is divided (thereЗore
cell interaction during training is disturbed), shall the results remain the same?

ɤe answer is no. ɤey show, that classiɐcation accuracy drops a little with every
additional processor, as the cell interaction rate lowers. Also, there is a signiɐcant in-
crease in the ɐnal memory cell pool size. ɤey propose solving this problem by using
aɗnity-based merging (practically it is well known resource competition).

ɥen applying the aɗnity-based merging, the classiɐcation accuracy remains a bit
lower (95.86 %/62 cells on 1 processor, 94.86 %/88 cells on 24 processors), but the run-
time is signiɐcantly decreased.
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4 Preliminary testing

4.1 Datasets
Gaussian dataset
For the purpose oЗ thorough testing, a simple two dimensional dataset was deɐned. In
this dataset, points are generated by a random number generator with the normal prob-
ability distribution (see Appendix A), where class A has distribution N(0, 0.2) and class
B N(0.5, 0.2). Figure 8 visualises the dataset in the Cartesian plane.

ɐg. 7 — Gaussian dataset visualisation in the Carthesian plane

Iris dataset
ɤe Зamous Iris dataset (introduced by Sir Rondal Aylmer Fisher in 1936) contains 150
samples Зrom three species oЗ the Iris ɓowers (Setosa, Virginica and Versicolor, ɐg. 8),
which grow in Gaspé Peninsula, Canada. ɤe dataset has Зour dimensions—each sam-
ple carries inЗormation about petal length, petal width, sepal length and sepal width in
centimeters.
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Following picture (ɐg. 8) shows a photo oЗ an Iris Versicolor ɓower in bloom with dis-
tinction oЗ its sepal and petal.

ɐg. 8 — Iris Versicolor ɓower[wikimedia commons]

Test methodology
In Зollowing tests, a dependency oЗ classiɐcation accuracy on algorithm parameters is
observed. Assuming parameters a, b and c, when testing a, then b and c are ɐxed on
given value.

ɤe dataset is randomized and split in halЗ. One halЗ is declared the train set and the
second one the test set, and the algorithm is run on these. ɤis process is repeated 100
times and the ɐnal result is declared an average oЗ the 100 values.

4.2 Testing AIRS
ɥen testing AIRS, the values oЗ aɗnity threshold, clonerate, mutrate, maxres and knn
were changed, and the results were observed. On both Gaussian and Iris dataset, there
were no signiɐcant diɍerences in the classiɐcation accuracy Зor diɍerent values oЗ aɗn-
ity threshold, clonerate, mutrate and maxres, but there were signiɐcant diɍerences Зor
diɍerent values oЗ knn.

ɥen the parameter values are ɐxed, they are Зollowing: stimthresh=0.9, knn=3,
mutation rate=2, clone rate=10.
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ɐg. 9 — Dependency oЙ classiɐcation accuracy (gauss) on stimulation threshold

ɐg. 10 — Dependency oЙ classiɐcation accuracy (gauss) on knn (boxplot)

ɐg. 11 — Dependency oЙ classiɐcation accuracy (iris) on knn (boxplot)
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Knn parameter seems to be very dataset-speciɐc. On the Gaussian dataset it seems, the
bigger knn the better accuracy, but on the Iris dataset, the best value seems to be 3. ɤis
preЗerence was observed also when these datasets were tested inWeka (soЗtware available
online: http://www.cs.waikato.ac.nz/ml/weka/) implementation oЗ AIRS.

4.3 Testing NSA
ɥen the NSA was tested, all oЗ its parameters seemed to matter essentially. ɥen the
parameter values are ɐxed, they are Зollowing: antibodies=250, matching factor=1.

Test methodology
ɤe methodology is the same as in 4.2 (AIRS).

Antibody count

ɐg. 12 — Dependency oЙ classiɐcation accuracy (gauss) on antibody count (boxplot)

ɤebigger is antibody count, the bigger accuracy. ɤis result makes sense, becausemore
antibodies cover more space and thereЗore match more non-selЗ cells. On the other side,
antibody count is also a parameter oЗ algorithm’s time complexity Зunction (which is
linear), so bigger count oЗ antibodies will cause worse perЗormance.

Matching factor
Testing dependency oЗ classiɐcation accuracy on NSA matching Зactor yielded very ob-
vious results. ɥen matching Зactor is too small or too big, classiɐcation is inaccurate,
because nothing or everything is matched, respectively. ɤis Зactor also seems to be
dataset-speciɐc (Зor the Gaussian dataset, bigger values oЗ this parameter made algo-
rithm perЗorm better).
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ɐg. 13 — Dependency oЙ classiɐcation accuracy (gauss) on matching Йactor (boxplot)

:noteBoxplot at x=2.5 is not an error (notches are not bound by quartiles, see Appendix A).

4.4 Optimising parameters for given datasets
A simple genetic algorithm (GA[24]) was used to determine suboptimal parameter val-
ues oЗ AIRS and NSA. A genetic algorithm is a heuristic algorithm used Зor state-space
search inspired in the evolution theory and the theory oЗ natural selection. Basic genetic
algorithm has several phases:

1) Initial population generation
2) Fitness evaluation
3) Selection
4) Recombination (also called crossover)
5) Mutation
6) Altering/Renewing current population

During (1), an initial population is created randomly or semi-randomly (there are situ-
ations, when a GA needs to be directed via adding viable individuals to the initial pop-
ulation). During (2), a ɐtness Зunction is evaluated Зor every individual in a current
population. A ɐtness Зunction is a Зunction, which computes viability oЗ an individ-
ual (its proximity to an optimal state). During (3), usually two individuals are selected
based on a given rule (Зor instance, the roulette selection—every individual takes an area
in a virtual roulette wheel relative to its ɐtness). ɤe selection rule must not be deter-
ministic and must have non-zero probability oЗ choosing non-viable individual. ɤe two
selected individuals are then recombined (4). During recombination, genotypes (state
representations) oЗ the two selected individuals are mixed based on a recombination rule
(usually one-way or two-way crossover). ɤe result oЗ this process are two or more new
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individuals, which then undergo a process oЗ mutation (5). A Зollowing process oЗ alter-
ing/renewing the current population may vary along with diɍerent evolution strategies.
In one oЗ these strategies, the entire new population is created using the selection, re-
combination and mutation on the old population. Another strategy is to generate only
n new individuals using the selection, recombination and mutation and replace them
with n least viable individuals in the current population. ɤe second method is used in
this thesis. Following diagrams show (ɐg. 14, 15, 16), how mean population ɐtness and
best ɐtness varied with number oЗ generations simulated.

ɐg. 14 — Dependency oЙ ɐtness on number oЙ generations (AIRS, gauss)

ɐg. 15 — Dependency oЙ ɐtness on number oЙ generations (AIRS, iris)
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ɐg. 16 — Dependency oЙ ɐtness on number oЙ generations (NSA, gauss)

Results
ɤe Зollowing table (tab. 2) shows the results oЗ testing AIRS and NSA with parametrs,
which were optimised by a genetic algorithm

tab. 2 — Result oЙ testing AIRS and NSA with optimised parameters

Algorithm/Dataset mean acc. [%] stimthresh knn maxres m.factor antibodies

AIRS/Iris 96.453 0.357 6 62 — —
AIRS/Gauss 95.456 0.435 7 160 — —
NSA/Gauss 85.15 — — — 1.481 254
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4.5 Comparison
Parameter settings obtained Зrom GA (4.4) were used Зor ɐnal comparison (ɐg. 17)

ɐg. 17 — Comparison between AIRS and NSA (gauss)

In any test perЗormed on both AIRS and NSA, the worst results oЗ AIRS were always
better than the best results oЗ NSA.
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5 Biomedical data
In medical Зacilities, there are databases, which are maintained by Зacility personnel,
such as doctors and nurses. ɤese databases contain various texts, which may be medi-
cine prescriptions, patient diagnosis, birth progess, applied treatment etc. ɤese texts
contain vast amount oЗ typos, because they are oЗten typed in hurry, and Зor sure, they
are not in the Зorm, that would make data mining easy, although there is a need oЗ ex-
tracting certain inЗormation Зrom these sources.

5.1 Data character
Provided datasets contain large ammount oЗ natural language strings, where most oЗ the
words are medical terms, not commonly used in general verbal communication, such as
speciɐcation oЗ diagnose or applied treatment.

ɤe dataset records have no classes attached to them, so there is no chance to ap-
ply conventional classiɐcation methods on the raw data. In addition, there are many
arteЗacts in the strings, such as multiple times repeated space, case inhomogeneity and
diacritic.

5.2 Classification strategy
For there are no classes corresponding to the strings in our dataset, we must construct
them artiɐcially, so they will show a direct linkage to the data. We would like to analyse
the text and separate the words, that carry the biggest inЗormation value. ɤere are
several methods to extract these:

Cluster analysis
Cluster analysis separates the data to several groups, in which instances Зorm clusters
(they are near by one another). Illustrative method oЗ cluster analysis is the minimum
spanning tree method. ɤis method creates a minimum spanning tree in the data graph
(spanning tree is such Зactor oЗ a graph, that is a tree, and minimum spanning tree
is a spanning tree with minimal cost among all possible spanning trees) and removes
n longest edges Зrom it, thereby separating the data graph into a Зorest consisting oЗ
n + 1 components. Every component then represents a data cluster, that could be used
to assign a class to the instances in it. ɤere are several algorithms designed to solve
this problem—namely Jarník-Prim’s algorithm[15], Kruskal’s algorithm[16] and Borůvka’s
algorithm[17]. Basic version oЗ Jarník-Prim’s algorithm, which was used Зor minimum
spanning tree generation in this thesis, uses vertex adjacency matrix on a complete graph.
Time complexity oЗ this method is O(n2), where n is edge count. ɤis method was re-
jected—its complexity makes it unusable Зor very large datasets.

Word frequency analysis
Frequency analysis computes a Зrequency oЗ every word in a dataset and returns a com-
plete dataset histogram. Based on the histogram, we can select several words with highest
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Зrequencies and declare them important (oЗ course we must exclude high Зrequency nat-
ural language words, which are unimportant, such as prepositions). ɤis can be done
in a linear time by using a hash table. A hash table is a one-dimensional associative array
that uses a hash Зunction to match a key to it’s corresponding value.

ɤis method was accepted, because oЗ its low complexity and good perЗormance.

tab. 3 — Time complexity oЙ MST and FA sample table

Samples 100 200 300 400 500 600 700 800 900 1000

MST Time[ms] 459 1716 3775 7044 10781 17796 20853 27295 34752 42794
FA Time[ms] ~ 0 ~ 0 ~ 0 1 1 2 2 2 3 3

200 400 600 800 1000
Samples

10000

20000

30000

40000

Time@msD

Quadratic curve

Data spline curve

ɐg. 18 — MST time complexity

5.3 Distance measurement
ɤere are many algorithms, that measure distance between strings. Each is suitable Зor
a diɍerent ɐeld oЗ use. To choose a metric, that satisɐes our needs in this problem, we
need to speciЗy requirements Зor that metric. ɤese are:

Distance must be low between correctly typed and mistyped words
Distance must be big between completely diɍerent words (in terms oЗ their mean-
ing)

Most widely known group oЗ string metrics are edit distances. Edit distance oЗ strings
A and B is a number oЗ edit operations needed to transЗorm A into B. List oЗ allowable edit
operations diɍers with particular algorithms. ɤree most used edit distance algorithms
are:

Hamming distance

ĳĴ



ĵ. Biomedical data

Levenshtein distance[18]
Damerau-Levenshtein distance[18]

Hamming distance
Let A and B be strings oЗ equal length, and let charAt(S, x) be a Зunction mapping char-
acter indexes x oЗ string S to their respective characters. Also let same(x, y) be a Зunc-
tion that is 1 when characters x and y are not the same and 0 when they are the same.
ɤen Hamming distance dham =

∑length(A)
x=0 same(charAt(A, x), charAt(B, x)). Simply, it

counts indexes, at which two strings are diɍerent. Algorithm has linear runtime.

Levenshtein distance
Levenshtein distance oЗ string A and B is a number oЗ insertions, deletions and substitu-
tions used to transЗorm A into B. Algorithm has time complexity O(n ∗m), where n and
m are lengths oЗ compared strings.

Damerau-Levenshtein distance
Damerau-Levenshtein distance oЗ string A and B is a number oЗ insertions deletions,
substitutions and transpositions used to transЗorm A into B. Algorithm has time com-
plexity O(n ∗m), where n and m are lengths oЗ compared strings.

Two most common words oЗ the ɐrst oЗ the provided dataset are “mesocain” and
“epiduralni”. Dataset also contains these words with various typos, such as “mesocian”,
“mescain” or “peiduralni”. Selected distance metrics show Зollowing results:

tab. 4 — Hamming distance test chart

mesocain mesocian mescain epiduralni peiduralni

mesocain 0 2 5 10 9
mesocian 0 4 9 8
mescain 0 10 9

epiduralni 0 2
peiduralni 0

tab. 5 — Levenshtein distance test chart

mesocain mesocian mescain epiduralni peiduralni

mesocain 0 2 1 8 7
mesocian 0 3 8 7
mescain 0 8 7

epiduralni 0 2
peiduralni 0
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tab. 6 — Damerau-Levenshtein distance test chart

mesocain mesocian mescain epiduralni peiduralni

mesocain 0 1 1 8 7
mesocian 0 2 8 7
mescain 0 8 7

epiduralni 0 1
peiduralni 0

Hamming distance seems to penalise totally diɍerent words very much, but it is com-
pletely insensitive to words, that are completely the same, but shiЗted. For that reason,
it is inaccurate and unusable Зor our problem.

On the other side, Levenshtein distance takes shiЗt as only one operation and thereЗore
it is sensitive to words, that are the same, but shiЗted. It penalises completely diɍerent
words less than Hamming distance, but the diɍerence is not considerably big.

Without a question, the Damerau-Levenshtein distance perЗorms the best among the
metrics mentioned above. It shares the sensitivity oЗ the Levenshtein distance and in
addition, it can detect the most common kind oЗ typos—character transpositions. ɤere-
Зore the Damerau-Levenshtein is a potent candidate distance metric.

ɤe distance, that these algorithms compute, is absolute and thereЗore unnormalised.
For our purposes, we need normalised distance on range <0,1>. To scale an aboslute
distance, we need to determine maximal possible distance between two strings (which
is called normalised aɗnity denominator in this thesis, because an absolute distance is
divided by this number). IЗ A is a string oЗ length len(A) and B is a string oЗ length
len(B), then we declare strings Ad and Bd oЗ lengths len(A) and len(B), respectively. We
call these strings the dummy strings, when a stringmetric considers them 100% diɍerent.
Normalised aɗnity denominator is then equal to the distance between them.

The cosine similarity
ɤe cosine similarity (see (6)) is a vector distance metric, that computes the cosine oЗ an
angle between two vectors. IЗ the vectors point the same direction, angle between them
is 0, thereЗore their cosine similarity is 1. In algebra, an angle between two vectors is
their dot product divided by the product oЗ their magnitudes. And because all strings
are character arrays and thereЗore vectors, the cosine similarity can be also applied on
them.

cos(θ) =
A ·B

||A|| · ||B||
=

∑n
i=1Ai ×Bi√∑n

i=1A
2
i ×

√∑n
i=1B

2
i

(6)

The product distance
ɤe product distance is a distance, that was designed especially Зor the purposes oЗ this
thesis, because there was a need Зor a new metric, that would take into account several
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Зactors described in the Зollowing paragraphs. It has so Зar the best perЗormance when
used Зor similar word identiɐcation during preprocessing and when used as a distance
metric in AIRS and NSA algorithms. It is basically a Damerau-Levenshtein distance cor-
rected by a cosine similarity coeɗcient and a cosine correction coeɗcient. Pseudocode
Зollows.

Procedure Proddist
Input: String A, String B
Output: product_distance

List X = SPLIT(A,” ”), List Y = SPLIT(B, ” ”);
For(i:=0,i<Length(Y), i++)
If(Y[i] is element of X) ...
and If(Y[i] is a part of another word)
x_length+=Length(Y[i])

For(i:=0, i<Length(X), i++)
If(X[i] is element of Y) ...
and If(X[i] is a part of another word)
y_length+=Length(X[i])

occurrence_ratio_x = x_length/length(A);
occurrence_ratio_y = y_length/length(B);
occurrence_ratio = max(occurrence_ratio_x,...

occurrence_ratio_y) or 0 if (0,0);
cosine_correction = 1 - occurrence_ratio;
cs = cosineSimilarity(X,Y);
product_distance = cs * cosine_correction * normDLSD(A,B);

ɤe goal oЗ this distance metric was primarily to detect typos which originated Зrom
not typing a space between words, like “some word” and “someword”. According to
Damerau-Levenshtein metric, the distance between these words is 0.11, but according to
product distance, it is 0. ɤis is a good property when comparing sentences, but it also
proved to be good when comparing words—it detects preɐxes and suɗxes and provides
a distance bonus in the Зorm oЗ cosine correction coeɗcient. For example “mesocain”
and “mesocainu” are 0.11 units distant according to Dam.-Lev., but only 0.012 units
distant according to product distance, because “mesocain” (length 8) is present as a sep-
arate word in the ɐrst string and as a part oЗ a word “mesocainu” (length 8) in the second
string, thus the correction is (1-(8/9)) = 0.11 (11 % oЗ the original distance).

5.4 Word modifiers encoding
Because there are many quantiɐers and qualiɐers in the dataset, that bind to certain
words, it would be an error to do a Зrequency analysis beЗore connecting modiɐers to
the words, they are bound to. We read a data Зrom a conɐguration ɐle to determine,
which words are units, which words are negative modiɐers and oЗ which type they are
(preɐx—appearing beЗore a word, or postɐx—appearing aЗter a word). ɤe conɐgura-
tion ɐle contains the Зollowing inЗormation:
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List oЗ units (Зor instance: ml, mg, %)
List oЗ words bound to units (Зor instance: drugs)
List oЗ preɐx negations (Зor instance: bez[CZE] (no[GBE]))
List oЗ postɐx negations (Зor instance: nebyla[CZE] (unused[GBE]))
DeЗault binding

ɥen a unit is Зound in a string, the algorithm searches Зor a word bound to it one step
to the leЗt and one step to the right oЗ the word. IЗ such word (or a very similar word,
based on Damerau-Levenshtein distance) exists, the unit is connected to it using this
convention: “boundword(!10mg)”. Normalised distance is optimised to penalise words
containing “(!”, so “boundword(!10mg)” and “boundword” will be considered distant.
ɤis signiɐcantly increases sensitivity. IЗ such word does not exist, quantity is bound
to the ɐrst leЗt word when deЗault binding is set to leЗt and to the ɐrst right word when
deЗault binding is set to right. ɥen there are no leЗt words, the quantity is bound to
the ɐrst right word and vice versa.

ɥen a negative modiɐer is Зound, it is bound to the leЗt or to the right according to
its type and connected to it using this convention: “boundword(!NEG)”. Normalised
distance is again optimised to penalise words containing “(!NEG)”. Example Зollows.

BeЗore:
celk anestezie 1% mesocain
bez xylocainu

AЗter:
celk anestezie mesocain(!1%)
xylocainu(!NEG)

5.5 Similar word identification and frequencymerging
A result oЗ a Зrequency analysis is a list oЗ String-Double pairs. Strings in these paris
represent words and doubles represent their Зrequencies. Properly typed words and their
typos are counted separately, so we need to merge them to get their real Зrequencies.

In this process, the list is iterated Зrom its start. Every word is then compared to all
unprocessed words using the product distance and iЗ they are similar enough (i.e. dis-
tance is lower than a preset threshold), their Зrequencies are added and they are declared
one word. Example Зollows.

BeЗore:
kratkodoba celkova anestezie u man lyze xylocain
mesocain(!1%) xylocain epiduralni analgezie
xyloxain spray
epiduralni analgezie pri porodu meoscain(!1%)
mezocain(!1%) epidural

AЗter:
epiduralni, 3
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mesocain(!1%), 3
analgezie, 2
xylocain, 2
spray, 1
...
u, 1

5.6 Unique wordlist
Because there are many duplicate words in the String-Double pair list (result oЗ a Зre-
quency analysis), they are removed by converting the list into a set and back to the list.
ɤe overridden method equals() oЗ String-Double pair compares the equality oЗ the
string part and thereЗore the inner Java Зramework routines causes duplicate records to
be disposed when converting list to set.

5.7 Unimportant data removal
ɤe conɐguration ɐle contains list oЗ words, which are unimportant Зor the classiɐcation
(such as prepositions). In this process they are all removed. In addition, words, which
have lower normalised Зrequency than the dispose rate (a preset parameter) are removed
too.

BeЗore:
epiduralni, 3
mesocain(!1%), 3
analgezie, 2
xylocain, 2
spray, 1
...
u, 1

AЗter:
epiduralni, 3
mesocain(!1%), 3
analgezie, 2
xylocain, 2
//— for example, dispose rate creates dividing line here
spray, 1 // <– removed for having lower rate than the dispose rate
u, 1 // <– removed for being a preposition

5.8 Class generation
AЗter all the previous processes has taken place, the list oЗ important words contains
words, which will be declared important. A string oЗ the same length as the length oЗ
the wordlist is created. Every character oЗ this class string will be either 0 or 1 iЗ a word
Зromwordlist, that is assigned to this character’s index, is absent or present in the dataset
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record, respectively. For instance, iЗ the words are A B C D, then Зollowing records will
have Зollowing class assignment:

(A B C D) –> (1 1 1 1)
(A H H C) –> (1 0 1 0)
(F G) –> (0 0 0 0)

ɤen every record in a dataset is processed based on absence and presence oЗ important
words (with a given dissimilarity tolerance) and it is assigned a class.

ɤe Class Identiɐer object, which is able to translate class strings to their meanings
and vice versa is then created and stored, because it will serve as a necessary class inЗor-
mation Зor classiɐers.

5.9 Class identifier object
By preprocessing and identiЗying the records, we gain a class identiɐer object, which is
provided to the classiɐcation algorithm. It contains the list oЗ all the important words
and a method, which assigns a bit string to corresponding words, thereЗore the class
identiɐer object creates a link between the class and the data and it is also able to translate
a class string to an appropriate data string and vice versa.

Raw dataset Normalised & classified

Identification threshold

Dispose rate

Preprocessing
algorithm

dataset

ɐg. 19 — Preprocess algorithm scheme

ɤe algorithm takes Dispose rate ∈ R (see 5.7) and Identiɐcation threshold ∈ R (see 5.5) as
its parameters.
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6.1 Classification strategy
The binary counter and sentence based distance approach
ɤeɐrst tested approach was naïve. It assumed, that iЗ there is a class string, that consists
oЗ k independent values, each having n possible values, there is nk total possible classes
in the system, although, the vast majority oЗ them is unused. ɤereЗore, there was an
exponential relation between count oЗ the important words and the train/test runtime.

In this approach, the memory cell pool was initialised with one cell Зor every class.
For instance, with 14 important words in a dataset oЗ 1000 records, the cell pool was
initialised with 16384 cells which apparently resulted in poor data reduction rate. Expo-
nential runtime also made algorithm impossible to ɐnish (Зor instance, even 70 detected
important words would make the algorithm run ten times longer than the age oЗ the
universe).

Beside this, the classiɐcation method was inaccurate. ɤe longer the record was, the
worse was the distance resolution and the worse was the ability to detect minor dissimi-
larities in the strings.

The -of-k counter and word based distance approach
ɤe second tested (and actual) approach signiɐcantly improves the results. It assumes,
that iЗ there is a class string, that consists oЗ k independent values, each having n possible
values, then we can think oЗ the value as oЗ a vector. For instance, the string 0001000
is a vector in Z7

2 : (0, 0, 0, 1, 0, 0, 0). We can deɐne a linear space V oЗ binary vectors oЗ
length k and search Зor a basis oЗ that space, which gives us a set oЗ vectors, whose linear
hull is again a vector space V , thus any possible vector oЗ V can be created by a linear
combination oЗ the basis vectors[23]. ɤe basis oЗ such space is:

... 1 0 0 ...

... 0 1 0 ...

... 0 0 1 ...

Due to this assumption, the classiɐer is only able to identiЗy single words, but Зrom the
words it is able to construct a sentence. It can split the test sentence into words and then
classiЗy them separately. Using a linear combination it can construct the ɐnal class in
Зollowing manner:

VR = c1 ⊙ (V1)⊕ c2 ⊙ (V2)⊕ ...⊕ ck ⊙ (Vk) (7)

where ci is 0 iЗ word i is classiɐed as not present and 1 iЗ classiɐed as present, operator
⊙ is a logic multiplication and operator ⊕ is a logic addition (in other domains, these
operators will have equivalent Зunctions (multiplication and addition)). For instance,
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let important words be A, B, C and D and the test sentence “A E F C G”. First oЗ all, we
split the sentence and classiЗy each word separately:

A - matched word 1, c1=1
E - no match
F - no match
C - matched word 3, c3=1
G - no match

CLASS = 1⊙ (1000)⊕ 0⊙ (0100)⊕ 1⊙ (0010)⊕ 0⊙ (0001) = 1010 (8)

Hence, AIRS only needs k cells to initialise pool. ɤis is a prooЗ, that this approach is
Зar more eɗcient than the sentence based one (which needs 2k).

6.2 Algorithm variation
ɤe algorithm itselЗ remains basically the same as the original one except Зor someminor
changes. Unlike the original algorithm, this variation needs two additional parameres—
—similarity threshold and class identiɐer object. During initialisation, the algorithm ɐlls
the memory pool with the initial antibodies speciɐed in 2.1.1 and then makes a copy oЗ
the memory pool.

Training set Memory cells

Clone rate

Mutation rate

Stimulation threshold

Resource limit

K-nn

Similarity Threshold

Class identifier

AIRS algorithm

variant

ɐg. 20 — AIRS algorithm variant scheme

During the training, every record is split into words and then every word is compared
with the words in the initial pool (the copy, which I mentioned in the paragraph above).
IЗ the lowest measured distance is lower than or equal to the similarity threshold, then
the particular word is processed by the training algorithm oЗ AIRS (described in 3.1).

AЗter the training phase is complete, the memory cell pool is ɐlled with the important
words and their variations, which were deemed important by the algorithm. ɤis process
signiɐcantly increases the probability oЗ matching mistyped words to their respective
classes.
During the testing, every record is split into words and then every word is classiɐed
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separately. IЗ the lowest measured distance is greater than the similarity threshold, then
the particular word is disposed. IЗ the distance is lower than or equal to the similarity
threshold, then the class label oЗ the best-matching antibody is added with the ɐnal class
using a logic OR Зunction.

6.3 Testing
During the testing, several dependencies were observed between stimulation threshold,
knn, similarity threshold (independent variables) and accuracy, convergency Зault rate,
memory cell count and time complexity (dependent variables). ɤe Convergency Йault
rate is a new parameter, that indicates how many ARB pools weren’t able to mutate and
achieve given mean stimulation aЗter 100 mutation cycles. It happens because the mu-
tation Зunction is not parametric. Memory cell count indicates, how many memory cells
were trained and used and it is de Зacto the memory complexity.

Test methodology
Following tests were run on the ɐrst 1000 samples oЗ the simpler oЗ the two datasets.
Every time a value oЗ some parameter was tested, the dataset was randomized and split
in halЗ. One halЗ was declared the train set and the second one the test set, and the
algorithm was run on these. ɤis process was repeated 10 times and the ɐnal result was
declared an average oЗ the 10 values. Preprocess parameters were: id threshold=0.330,
dispose rate=0.025, proɐle used: lesscmplx.profile (see Appendix D).

Test results
During testing an individual parameter, other parameters were ɐxed at one value. In
ɐg. 21, we can see relative steadiness oЗ accuracy throughout all measured stimulation
threshold values. ɥile at values greater than 0.7, the convergency Зault rate starts to
grow, indicating that with givenmutation Зunction, reaching given stimulation threshold
is getting more diɗcult.

In ɐg. 22, we can see the actual memory complexity Зunction with stimulation thresh-
old as its parameter. ɤe higher the stimulation threshold is, the more memory cells will
be created.

In ɐg. 23, we can see the actual time complexity Зunctionwith stimulation threshold as
its parameter. ɥen there is more iterations oЗ mutation needed to reach the stimulation
threshold, the more time the algorithm will consume.

In ɐgs. 24–26, we can see, that the algorithm could be the most accurate somewhere
between 0.3 and 0.35 (oЗ similarity threshold), but it cannot be said Зor sure, because we
do not know, iЗ there are or are not multiple relations with the arguments, which were
ɐxed during the test. Nevertheless, that higher values oЗ similarity threshold result in
bigger convergency Зault rate and excessive memory and time complexity.

In ɐg. 27 and 28, we can see, that the most accurate value oЗ knn could be 1. Values
bigger than 1 could lead to enormous decrease oЗ perЗormance.

ɤe suboptimal parameters oЗ this algorithm Зor this dataset are computed using a ge-
netic algorithm in Зurther sections oЗ this chapter (Optimisation oЗ input parameter val-
ues.)
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ɐg. 21 — Dependency oЙ accuracy on stimulation threshold

ɐg. 22 — Dependency oЙ memory cell count on stimulation threshold
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ɐg. 23 — Dependency oЙ runtime on stimulation threshold

ɐg. 24 —Dependency oЙ accuracy on similarity threshold
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ɐg. 25 — Dependency oЙ memory cell count on similarity threshold

ɐg. 26 — Dependency oЙ runtime on similarity threshold
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ɐg. 27 —Dependency oЙ accuracy on knn

ɐg. 28 — Dependency oЙ memory cell count on knn
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Real classification performance
ɤe real classiɐcation perЗormance is better than the accuracy shown in the above dia-
grams could imply, because the classes oЗ the strings are artiɐcially created and are not
precise nor real. As it can be seen in the Зollowing listing, the Preprocessing algorithm
mademanymistakes, which were repaired by AIRS and thereЗore the classes don’t match
theoretically, but it is de Зacto a good classiɐcation.

mesocain(!1%): 530.0
epiduralni: 441.0
lok: 278.0
amp: 236.0
analgezie: 221.0
celkova: 134.0
xylocain: 113.0
mesocainu: 110.0
anestezie: 99.0
l: 68.0
loc: 66.0
amp(!1%): 62.0
spray: 50.0
1(!10ml): 34.0
There are 14 significant words.

AIRS
DATASET: C:\biodata\mensi.data, 1 dimensions.
TRAINING SET is 1/2 of DATASET
INCORRECT: 1 amp mesocain != amp mesocainu SHOULD BE mesocain(!1%) amp mesocainu
CORRECT: epifuralni analgezie = epiduralni analgezie
CORRECT: 1 amp mesocain(!1%) = mesocain(!1%) amp
CORRECT: mesocain(!1%) 1 amp 2x = mesocain(!1%) amp
INCORRECT: mesocain(!1%) epiduralni anealgezie != mesocain(!1%) epiduralni analgezie SHOULD BE mesocain(!1%) epiduralni analgezie anestezie
CORRECT: mezokain(!1%) = mesocain(!1%)
CORRECT: epiduralni analgezie dr robotkova = epiduralni analgezie
INCORRECT: l % mesocain 1 amp lok != lok amp mesocainu l SHOULD BE mesocain(!1%) lok amp mesocainu l
CORRECT: epid analg mesocain(!1%) = mesocain(!1%) analgezie
CORRECT: remifentanyl mesocain(!1%) = mesocain(!1%)
CORRECT: amp(!1%) msocain lokalne = lok mesocainu amp(!1%)
CORRECT: mesocain(!1%) amp = mesocain(!1%) amp
CORRECT: epiduralni analgezie xylocain = epiduralni analgezie xylocain
INCORRECT: xylocai spray != xylocain spray SHOULD BE xylocain loc spray
INCORRECT: 1amp mesocainu(!1%) != mesocain(!1%) amp SHOULD BE mesocain(!1%) amp mesocainu
CORRECT: epiduralni lokalni mesocaine = epiduralni lok mesocainu
CORRECT: u porodu epiduralni celkova u s c = epiduralni celkova
CORRECT: 1 amp mem i v = amp
CORRECT: 1 amp(!1%) mesoain = mesocainu amp(!1%)
CORRECT: lok mesokain = lok mesocainu
INCORRECT: lokalni lo % xylocain != lok xylocain loc SHOULD BE lok xylocain l loc
CORRECT: mezocain(!1%) epiduralni = mesocain(!1%) epiduralni
INCORRECT: epiduralni analgezie mesocain 1 amp != epiduralni amp analgezie mesocainu SHOULD BE mesocain(!1%) epiduralni amp analgezie

mesocainu
CORRECT: 1amp(!1%) mesokain = mesocainu amp(!1%)
CORRECT: celkova revize dd po porodu = celkova
INCORRECT: epiduralni analgesie l % mesocain != epiduralni analgezie mesocainu l SHOULD BE mesocain(!1%) epiduralni analgezie mesocainu l
CORRECT: celkova manualni lyze a revize = celkova
CORRECT: celkova anestezie = celkova anestezie
CORRECT: revize hrdla delozniho v zrcadlech sine vulnere =
CORRECT: lokalni l % mesocian = lok mesocainu l
INCORRECT: mesocain lok(!1%) != mesocainu SHOULD BE mesocain(!1%) mesocainu
CORRECT: epiduralni analgezie 1 amp mesocain(!1%) = mesocain(!1%) epiduralni amp analgezie
CORRECT: % mezokain 1 amp = amp
INCORRECT: epiduralni xylocain(!1%) mesocain != mesocain(!1%) epiduralni mesocainu SHOULD BE mesocain(!1%) epiduralni xylocain mesocainu
CORRECT: lokalni mesocain(!1%) epiduralni = mesocain(!1%) epiduralni lok
CORRECT: 1(!10ml) % mesocainu xylokain = xylocain mesocainu 1(!10ml)
CORRECT: epiduralni loc(!10ml) (!1%) mesocainu loc = epiduralni mesocainu loc amp(!1%) 1(!10ml)
CORRECT: traumacel pulv =
CORRECT: mesocain(!1%) epiduralni analgesie dr mala = mesocain(!1%) epiduralni analgezie
CORRECT: mesocain(!1%) 2 amp i v = mesocain(!1%) amp
CORRECT: mesocain(!1%) dolsin(!50mg) i v = mesocain(!1%)
CORRECT: 1 amp(!10%) mesocainu = mesocainu amp(!1%)
CORRECT: epiduralni alalgezie = epiduralni analgezie
INCORRECT: 1(!10ml) % mesocain lokalne != lok mesocainu 1(!10ml) SHOULD BE mesocain(!1%) lok mesocainu 1(!10ml)
INCORRECT: epiduralni a lokalni l % mesocain != epiduralni lok mesocainu l SHOULD BE mesocain(!1%) epiduralni lok mesocainu l
CORRECT: mesocain(!1%) 1 amp lokalne = mesocain(!1%) lok amp
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CORRECT: mezocan(!1%) loc = mesocain(!1%) loc
CORRECT: epiduralni xylocaine spray = epiduralni xylocain spray
CORRECT: epiduralni analgezie = epiduralni analgezie
CORRECT: eda lokalne xylocaine = lok xylocain
CORRECT: lokalni(!1%) mesocaim 1amp = amp mesocainu
CORRECT: 1 amp mesocain(!1%) xylocain sprej = mesocain(!1%) amp xylocain
CORRECT: lokalni mesocaine xylocaine spray = lok xylocain mesocainu spray
CORRECT: analgesia epiduralis ca = epiduralni analgezie
CORRECT: 1 amp mesocaun(!1%) = mesocain(!1%) amp
CORRECT: 2 amp mesocain(!1%) = mesocain(!1%) amp
CORRECT: mesokain(!1%) loc = mesocain(!1%) loc
CORRECT: epiduralni dr stoudek = epiduralni
CORRECT: epiduralni analgezie lokalne mesocain(!1%) = mesocain(!1%) epiduralni lok analgezie
INCORRECT: mesocain l % lok != lok mesocainu l SHOULD BE mesocain(!1%) lok mesocainu l
CORRECT: mesocain(!1%) xylocaine = mesocain(!1%) xylocain
CORRECT: mesocain(!1%) epiduralni analg dr slezak = mesocain(!1%) epiduralni analgezie
INCORRECT: xylocain(!1%) != mesocain(!1%) SHOULD BE mesocain(!1%) xylocain
CORRECT: epidur analgesie celkova = epiduralni analgezie celkova
CORRECT: celkova dr krikava = celkova
CORRECT: epiduralni celkova = epiduralni celkova
INCORRECT: mesocain(!1%) 1 amp xylocain(!10%) != mesocain(!1%) amp SHOULD BE mesocain(!1%) amp xylocain
CORRECT: epiduralni u poodu dr gbelcova mesocain(!1%) = mesocain(!1%) epiduralni
CORRECT: epiduralni analgezie kratkodoba celkova pri ml = epiduralni analgezie celkova l
CORRECT: epiduralni an(!10ml) mesocain(!1%) local = mesocain(!1%) epiduralni loc 1(!10ml)
INCORRECT: l % mesocain != mesocainu l SHOULD BE mesocain(!1%) mesocainu l
INCORRECT: mesocain amp local != amp mesocainu loc SHOULD BE mesocain(!1%) amp mesocainu loc
INCORRECT: lokalne l % mesocain != lok mesocainu l SHOULD BE mesocain(!1%) lok mesocainu l
CORRECT: epiduralni u s c v celkove = epiduralni celkova
INCORRECT: epiduralni analgezie 1 amp mesocain lok != epiduralni lok amp analgezie mesocainu SHOULD BE mesocain(!1%) epiduralni lok amp

analgezie mesocainu
CORRECT: epiduralni analgesie dr zborilova mesocain(!1%) = mesocain(!1%) epiduralni analgezie
CORRECT: eipduralni analgezie i anestezie = epiduralni analgezie anestezie
CORRECT: mesocain(!1%)(!30ml) = mesocain(!1%)
INCORRECT: mesocain amp != amp mesocainu SHOULD BE mesocain(!1%) amp mesocainu
CORRECT: epiduralni analg a cekova anest = epiduralni analgezie celkova anestezie
CORRECT: epiduralni analg % mezokain lok = epiduralni lok analgezie
CORRECT: epiduralni anaalgesie = epiduralni analgezie
INCORRECT: xyloxain(!10%) != mesocain(!1%) SHOULD BE
CORRECT: epidural celkova pri man lyze revizi = epiduralni celkova
INCORRECT: lokalni mesocain != lok mesocainu SHOULD BE mesocain(!1%) lok mesocainu
CORRECT: mezocain(!1%) epidural = mesocain(!1%) epiduralni
CORRECT: epiduralni lokalne mesocaine = epiduralni lok mesocainu
CORRECT: mesoacin(!1%) = mesocain(!1%)
INCORRECT: epiduralni analgezie 1amp mesocain loc != epiduralni amp analgezie mesocainu loc SHOULD BE mesocain(!1%) epiduralni amp analgezie

mesocainu loc
CORRECT: mesocain(!1%) za porodu epiduralni dr gbelcova = mesocain(!1%) epiduralni
CORRECT: xylocain = xylocain
CORRECT: spinalni an =
CORRECT: episiotomie suttura chirlac =
CORRECT: mesocain(!10%) 1 amp = mesocain(!1%) amp

(In this listing, CORRECT: A=B means that, dataset record A and AIRS determined class
B are inmatch. INCORRECT: A!=B SHOULD BE Cmeans that dataset record A has artiɐcially
created “real” class C (translated to natural language using class identiɐer object) and
not AIRS determined class B).

Optimisation of input parameter values
As in 4.4, a simple genetic algorithmwas used to determine suboptimal parameter values
Зor this algorithm and dataset. Diagram in ɐg. 29 shows how mean population ɐtness
and best ɐtness varied with number oЗ generations simulated.

Results

AIRS on Less complex biomedical data: stimulation threshold=0.330, knn=1
– Accuracy: mean 84.486 % on 100 randomly selected 1:1 percentage splits
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ɐg. 29 — Dependency oЙ ɐtness on number oЙ generations (AIRS variant)
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7 NSA for biomedical data
ɥile changes made in AIRS in order to make it able to classiЗy biomedical data were
more-or-less simple, such changes made in NSA were severe and they resulted in a new
algorithm, that uses several instances oЗ original NSA. All changes are described in the
Зollowing chapters.

7.1 Definitions
Information source
ɤe InЗormation source[14] is a probability model oЗ a device, which produces messages
consisting oЗ characters oЗ a ɐnite alphabet Γ. ɤere are 3 basic types oЗ inЗormation
sources:

a random variable (one character long message)
a random vector (n characters long message)
a random process (inɐnite character count)

Markov chain
ɤe Markov chain[14] is a mathematical model oЗ a ɐnite automaton with vertex tran-
sition probabilities on its edges. Transition Зrom state A to state B has a probability
EDGE(A,B) where EDGE(x, y) is a Зunction that maps vertex pairs to the value oЗ their
mutual edge.

Markov information source
ɤe Markov inЗormation source[14] is a stationary Markov chain (a stochastic process).
In this thesis, the Markov chain is deɐned on a ɐnite alphabet, that consist oЗ all pairs oЗ
english letters. ɤe transition matrix is built by Зrequency analysing a corpus text, where
empirical Зrequencies oЗ transitions between letter pairs are converted to probabilities.
(ɤorough example is provided in A.5.)

7.2 Classification strategy
ɤe NSA is a binary classiɐer, thereЗore it cannot be used directly. However, n classes
can be simpliɐed to just two classes—the selЗ class in the ɐrst group and all the other
classes in the second group. ɤen the algorithm can distinguish between one class and
the others.

In order to make the algorithm be able to classiЗy all the n classes, we must create
separate antibody pools, each Зor one class. Each antibody pool must contain a baseset
oЗ antibodies (one instance Зrom every non-selЗ class). IЗ they had not have these base
sets, the algorithm would not yield satisЗying results no matter how good the antibody
generation process would be. Each oЗ the pools matches all classes but one. ɤere are
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now several possible result oЗ classiɐcation:

1) exactly one oЗ n pools does not match an atigen
2) k oЗ n pools does not match an antigen, k ̸= n
3) n oЗ n pools does not match an antigen

IЗ exactly one pool p0 does not match an antigen ca (1), then it means, that every other
pools pk, k ̸= 0 had antibodies Зor the antigen ca, so it must be an important word and iЗ
only p0 does not have antibodies Зor it, it means, that most probably the selЗ class oЗ p0
is the class oЗ ca.

IЗ k oЗ n pools do not match an antigen ca (2), then it means, that there are n−k other
pools, that matched the antigen ca , so it probably is an important word, but it cannot
be decided which one oЗ k (it is similar to both).

IЗ no pool matches an antigen ca (3), then it means, that it is not an important word.
ɤese specialized antibody pools may (or may not) be improved by addition oЗ more
antibodies, generated by various mechanisms. One oЗ the mechanisms is mutation, i.e.
antibodies mutate and they are being checked against their selЗ class (when they are too
similar to their selЗ class, they are disposed). ɤe other mechanism which may improve
perЗormance is the addition oЗ antibodies generated by a Markov inЗormation source.
ɤe advantage oЗ such antibodies is that Markov chain generates antibodies, that have
nearly the same probability distribution as the corpus text, so they will cover the impor-
tant areas and not the unimportant areas, rather than pure random antibody generator,
which tries to cover the whole non-selЗ space.

Training set Lymphocyte cells

Antibody count

Matching factor
Class identifier

Number of mutations

Number of Markov antibodies

NSA algorithm

variant

Markov information source

ɐg. 30 — NSA algorithm variant scheme

As it can be seen in the above schematic (ɐg. 30), the algorithm takes several parameters,
all being explained in the above paragraphs (chapter 7) and in chapter 3.3.

7.3 Testing
During testing, several dependencies were observed between NSA input parameters, ac-
curacy and time complexity. ɤe method used is the same as in 6.3.
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ɐg. 31 — Dependency oЙ accuracy on matching Йactor (NSA variant)

ɐg. 32 — Dependency oЙ time complexity on matching Йactor (NSA variant)
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ɐg. 33 — Dependency oЙ accuracy on Markov antibody count (NSA variant)

ɐg. 34 — Dependency oЙ time complexity on Markov antibody count (NSA variant)
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ɐg. 35 — Dependency oЙ accuracy on mutated antibodies (NSA variant)

ɐg. 36 — Dependency oЙ time complexity on mutated antibodies (NSA variant)
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Test results
In ɐg. 31, we can see how classiɐcation accuracy changes with matching Зactor. We can
see a point around 0.3 (oЗ matching Зactor), which could make algorithm yield the best
results. In ɐg. 32 we can see, that grater matching Зactor causes shorter runtime.

In ɐg. 33 and 34, we can see, that addition oЗ antibodies created by a Markov chain
causes decrease in accuracy an increase in runtime, thus it should always stay at zero
when used with this dataset.

In ɐg. 35 and 36, we can see, that addition oЗ antibodies created by the process oЗ
mutation does not change accuracy, but only increases runtime, thus it should also stay
at zero.

Real classification performance
As in 6.3, the real classiɐcation perЗormance is better than the accuracy shown above
could imply Зor the same reason (artiɐcially created classes are not precise nor real).

530.0
epiduralni: 441.0
lok: 278.0
amp: 236.0
analgezie: 221.0
celkova: 134.0
xylocain: 113.0
mesocainu: 110.0
anestezie: 99.0
l: 68.0
loc: 66.0
amp(!1%): 62.0
spray: 50.0
1(!10ml): 34.0
There are 14 significant words.

CORRECT: epirudalni analgezie i anestezie = epiduralni analgezie anestezie
CORRECT: mezokain(!1%) epiduralni analgezie = mesocain(!1%) epiduralni analgezie
INCORRECT: epiduralni analgezie mesocain 1 amp != epiduralni amp analgezie SHOULD BE mesocain(!1%) epiduralni amp analgezie mesocainu
CORRECT: mesocain(!10ml)(!1%) 2 amp = amp
CORRECT: epidural celkova u vykonu = epiduralni celkova
CORRECT: epiduralni analgesie anestezie = epiduralni analgezie anestezie
CORRECT: celkova kratkodoba anestezie manualni lyze = celkova anestezie
CORRECT: epidural analg(!1%) mezokain lok = epiduralni lok
CORRECT: xylocaine(!10%) lokalne = lok xylocain
CORRECT: mesocain(!1%) lokalne = mesocain(!1%) lok
CORRECT: epiduralni analgesie dr stoudek mesocain(!1%) = mesocain(!1%) epiduralni analgezie
CORRECT: celkova narkóza = celkova
CORRECT: epiduralni anagesie mesocain(!1%) = mesocain(!1%) epiduralni analgezie
CORRECT: epiduralni analg mecosain(!1%) = mesocain(!1%) epiduralni analgezie
CORRECT: remifentanyl za porodu celkova anestezie u sc = celkova anestezie
CORRECT: epiduralni analgezie(!10ml) (!1%) mesocainu = epiduralni analgezie mesocainu amp(!1%)
CORRECT: %(!10ml) mesocainu i v = mesocainu 1(!10ml)
CORRECT: kratkodoba celkova anestezie u man lyze = celkova anestezie
CORRECT: xyloxain spray = xylocain spray
INCORRECT: epidural mesocain l % != epiduralni l SHOULD BE mesocain(!1%) epiduralni mesocainu l
CORRECT: 1 amp(!1%) mesocainu lokalne = lok mesocainu amp(!1%)
CORRECT: celkova anestezie rcui = celkova anestezie
CORRECT: epiduralni 1˘meoscain = epiduralni
CORRECT: mesocain(!1%) 1amp xylocaine = mesocain(!1%) amp xylocain
CORRECT: epiduralni anagezie = epiduralni analgezie
CORRECT: celkova u vykonu = celkova
CORRECT: xylocaine spray lok = lok xylocain spray
CORRECT: epidural(!10ml) (!1%) mesocainu xylocain spray = xylocain mesocainu amp(!1%) spray
CORRECT: lokalni 2 amp mesocain(!1%) = mesocain(!1%) lok amp
CORRECT: 1(!10ml) % mesocainu xylokain = xylocain mesocainu 1(!10ml)
INCORRECT: xylocai spray != spray SHOULD BE xylocain loc spray
CORRECT: epiduralni dr frncikova = epiduralni
CORRECT: mesocain(!1%) lokalne(!10ml) = mesocain(!1%)
INCORRECT: lokalni mesocain 1amp(!1%) != lok amp(!1%) SHOULD BE mesocain(!1%) lok mesocainu amp(!1%)
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INCORRECT: epiduralni mesocain 1 amp(!1%) != epiduralni amp(!1%) SHOULD BE mesocain(!1%) epiduralni mesocainu amp(!1%)
INCORRECT: mesocain(!1%) epiduralni anealgezie != mesocain(!1%) epiduralni SHOULD BE mesocain(!1%) epiduralni analgezie anestezie
CORRECT: anetestezie(!INV) =
CORRECT: xylocaine lok = lok xylocain
CORRECT: mecocain(!1%) 2 amp i v = mesocain(!1%) amp
CORRECT: mesokain(!1%) epiduralni = mesocain(!1%) epiduralni
INCORRECT: mesocain 2 amp(!1%) analgesia epiduralis != epiduralni analgezie amp(!1%) SHOULD BE mesocain(!1%) epiduralni analgezie mesocainu

amp(!1%)
INCORRECT: m(!1%) mesocain != amp(!1%) SHOULD BE mesocain(!1%) mesocainu amp(!1%)
CORRECT: epiduralni anesteie = epiduralni anestezie
CORRECT: 1 amp mesocain(!1%) = mesocain(!1%) amp
CORRECT: spinalni an =
CORRECT: mesocian(!1%) 1 amp lok = mesocain(!1%) lok amp
CORRECT: epiduralni analg anestezie = epiduralni analgezie anestezie
CORRECT: xylocaine 1 amp mesocain(!1%) = mesocain(!1%) amp xylocain

(In this listing, CORRECT: A=B means that, dataset record A and NSA determined class
B are inmatch. INCORRECT: A!=B SHOULD BE Cmeans that dataset record A has artiɐcially
created “real” class C (translated to natural language using class identiɐer object) and
not AIRS determined class B).

Optimisation of input parameter values
As in 4.4, a simple genetic algorithmwas used to determine suboptimal parameter values
Зor this algorithm and dataset. Diagram in ɐg. 37 shows how mean population ɐtness
and best ɐtness varied with number oЗ generations simulated.

ɐg. 37 — Dependency oЙ ɐtness on number oЙ generations (NSA variant)

Results

NSA on Less complex biomedical data: matching Зactor=0.303
– Accuracy: mean 75.894 % on 100 randomly selected 1:1 percentage splits
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8 Final results (on both datasets)
In this chapter, both AIRS and NSA are used Зor classiɐcation oЗ the entire less complex
dataset (which was also used in testing) and oЗ part oЗ a more complex dataset, which
is signiɐcantly greater and has signiɐcantly greater word-stock. Also, two variants oЗ
KNN algorithm were used in order to compare AIS to a member oЗ non-AIS classiɐca-
tion algorithms group. ɤe ɐrst variant is the classic KNN (only 1-nn was used, because
more-nn was proved not to yield good results in 6.3) with no data reduction. ɤe sec-
ond variant oЗ KNN does not use training at all and it might not be called KNN at all,
because a Class identiɐer object is provided to it in order to create a ɐnal pool oЗ words.
Classiɐcation itselЗ, in this second variant, Зollows that oЗ the variant AIRS (section 6,
i.e. 1-oЗ-n approach).

8.1 Less complex dataset (22 000 words)
Optimised parameters used Зor this test are speciɐed in 6.3.

Settings
Preprocess parameters were set manually to the value, at which the algorithm yielded
satisЗactory important words (parameter optimisation cannot be done in this situation).

Preprocess parameters: Similarity threshold: 0.33, Dispose rate: 0.005
Detected important words: 13

Algorithm settings

AIRS Parameters
similarity threshold=0.330, stimulation threshold=0.7, knn=1, mu-

trate=2, clonerate=5.
NSA Parameters

matching factor=0.303, Markov antibodies=0, mutated antibodies=0
KNN (original) has no parameters (except k, which is stated above to be 1).
KNN’ (modiɐed) has no parameters (except k, which is stated above to be 1).

Results
In the results and in ɐg. 38, it can be seen, that the results oЗ NSA are actually better than
the results oЗ AIRS on the whole dataset. Such result was not expected, because on the
ɐrst 1000 records, AIRS always perЗormed better. In the end, the variant NSA algorithm
seems more ɓexible Зor this problem than the variant AIRS. It can also be seen, that the
modiɐed KNN algorithm outperЗormed the other ones.
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tab. 7 — Results on less complex biomedical dataset

AIRS NSA KNN KNN’
Average train time [s] 5.000 0.005 0.001 <0.001
Average test time [s] 2.800 6.500 127.8 1.127
Mean accuracy [%] 78.17 81.22 60.64 82.48
Median oЗ accuracy [%] 77.88 81.27 60.59 82.52
Best-so-Зar accuracy [%] 81.68 83.60 63.51 83.54
Standard deviation [%] 1.59 0.68 1.23 0.50
0.05 quantile [%] 75.92 80.14 58.53 81.61
0.25 quantile [%] 76.85 80.72 59.73 82.12
0.75 quantile [%] 79.56 81.61 61.59 82.83
0.95 quantile [%] 80.82 82.23 62.62 83.25

ɐg. 38 — Comparison oЙ algorithms on entire less complex biomedical dataset
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8.2 More complex dataset (1 500 000 words)
For instance, single dataset record looks like:

partus inductus in grav hebd 38 liquorrhoea amnialis praecox praesen-
tatio occipitis funiculus umbilicalis circum collum fetus semel diabetes
mellitus gestationis matris th prostin 0 5x2 mg ea amp iv analgesia epidu-
ralis oxytocin i v ifpo episiotomia mediolateralis sut chirlac mem 1 amp
iv dr kurecova sps dr huser hsps, 1111101011001001010110111010

Because oЗ the complexity oЗ the dataset and low optimisation oЗ the code, it was not
possible to process the whole dataset (with 500 MB heap space). ɤe problem was in
abundant usage oЗ java Strings which are extremely slow Зor very large strings. Because
oЗ the same thing, it was not possible to test the original KNN algorithm (it has no data
reduction).

Preprocess
Preprocess parameters were set manually to the value, at which the algorithm yielded
satisЗactory important words (parameter optimisation cannot be done in this situation).

Preprocess parameters: Similarity threshold: 0.33, Dispose rate: 0.25
Detected important words: 28

Results
In the results and in ɐg. 39, it can be seen, that AIRS perЗorms better than NSA and
KNN is slightly better than both oЗ them.

tab. 8 — Results on more complex biomedical dataset

AIRS NSA KNN’
Average train time [s] 7.940 0.018 <0.001
Average test time [s] 9.210 107.0 4.300
Mean accuracy [%] 65.80 64.49 66.28
Median oЗ accuracy [%] 65.90 64.40 66.40
Best-so-Зar accuracy [%] 70.00 68.00 70.20
Standard deviation [%] 1.55 1.44 1.32
0.05 quantile [%] 63.40 62.20 64.20
0.25 quantile [%] 64.90 63.40 65.50
0.75 quantile [%] 66.70 65.60 67.10
0.95 quantile [%] 68.30 67.40 68.30
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Parameters

AIRS Parameters
similarity threshold=0.330, stimulation threshold=0.7, knn=1, mu-

trate=2, clonerate=5.
NSA Parameters

matching factor=0.303, Markov antibodies=0, mutated antibodies=0
KNN’ (modiɐed) has no parameters (except k, which is stated above to be 1).

ɐg. 39 — Comparison oЙ algorithms on more complex biomedical dataset
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9 Conclusion
ɤe main aim oЗ this work was to apply Artiɐcial Immune Systems on large and loosely
structured biomedical text datasets (i.e. biomedical datasets thereinaЗter) and evaluate
their perЗormance. In this chapter, the goals declared in chapter 1.1 are mapped to
respective achievements.

9.1 Goals to achievements mapping
1) Literature study

Relevant and useЗul publications concerning AIS were studied (chapters 2, 3).
2) Selection of 2 algorithms

Based on 1), two algorithms were selected, namely AIRS and NSA. ɤey were
selected, because they are diɍerent in the way they operate—AIRS can work with
multiple classes, whereas NSA is purely a binary classiɐer. AIRS uses the KNN
algorithms as it’s matching Зunction, whereas NSA uses radius threshold match-
ing. ARIS tries to cover the selЗ-space, whereas NSA tries to do the exact oppo-
site—cover the non-selЗ space.

3) Implementation
In order to make thorough testing and diagnostics possible, an appropriate

soЗtware Зrameworkwas built in the Java programming language. ɤanks tomod-
ular structure and object oriented approach, the system is designed to be able to
easily support new algorithms and diagnostic Зeatures (detailed description oЗ
the API is a part oЗ the Javadoc documentation oЗ the source code). ɤe cur-
rent implementation supports 8 algorithms (NSA, variant NSA (adapted to bio-
medical data), AIRS, variant AIRS (adapted to biomedical data), KNN, variant
KNN (adapted to biomedical data), Immunos-1 and Clonalg), MicrosoЗt SQL
Database Manipulation Frontend, Preprocessing Frontend, Genetic Algorithm
Parameter Selection Frontend, CSV Manipulation Frontend, Proɐle Manipula-
tion Frontend and Testing Frontend. ɤe Testing Frontend generates MATLAB
compliant code and is currently able to automatically output boxplots and mul-
tiple data series plots. Resulting source code has 6983 lines oЗ code in 49 ɐles.

4) Preliminary testing
In order to see, how AIRS and NSA behave on simple datasets, preliminary

tests were made (chapter 4). Both AIRS and NSA algorithms were tested on
both real (Iris) and artiɐcially created (Gaussian) datasets and were compared to
one another. On these datasets, AIRS outperЗormed NSA with rather promising
results (AIRS reached 96.45 % accuracy on the Iris dataset and 95.45 % on the
Gaussian dataset, while NSA reached 85.15 % accuracy on the Gaussian dataset).

5) Biomedical data preprocessing and class assignment
In order to normalize biomedical data and in order to create and assign artiЗ-

icaly created claases to them, a text preprocessing algorithm was designed and
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implemented (chapter 5). ɤis algorithm automatically selects important words
based on their Зrequencies using a new distance metric (Product distance, pro-
posed in 5.3).

6) Algorithm performance evaluation
In order to study behaviour oЗ the modiɐed algorithms, both oЗ them were

tested on a sample subset oЗ the less complex oЗ the two biomedical datasets
(chapters 6.3 and 7.3).

7) Large scale testing and comparison
In the end, a perЗormance comparison oЗ the algorithms on very large datasets

wasmade and it was comparedwith perЗormance oЗ theKNNalgorithm (chap. 8).

tab. 9 — Results revision table

AIRS NSA KNN KNN’
Mean accuracy on less complex dataset [%] 78.17 81.22 60.64 82.48
Mean accuracy on more complex dataset [%] 65.80 64.49 — 66.28

9.2 Work not declared in goals
In addition to the speciɐed goals (1.1), an additional work had to be done.

Algorithm alteration
In order to adapt AIRS andNSA to the biomedical datasets, we have non-trivially altered
the orginal algorithms to ɐt them.

Product distance
In order to achieve better resolution in string comparison, a new distance metric was
proposed and implemented in chapter 5.3.

Genetic Algorithm Parameter Selector
In order to optimize parameter values oЗ algorithms, a Genetic Algorithm Parameter
Selector was designed a implemented. ɤis genetic algorithm uses metaheuristic (de-
scribed in 4.4) to provide suboptimal set oЗ parameter values and it is able to output
MATLAB-encoded diagrams oЗ mean and maximal ɐtness.

9.3 Final conclusion
ɤe main result oЗ this work is a modular diagnostic and preprocessing Зramework,
which supports easy implementation oЗ new algorithms and Зunctionality. ɤis Зrame-
work can and will also be used Зor other datasets oЗ similar kind.
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Both AIRS and NSA were tested on real biomedial data and were proved usable Зor Зree
text pattern mining problem, but their perЗormance is rather average when compared
to the KNN algorithm. Nevertheless, their principle and the idea behind them makes
them viable Зor Зurther study and applications.
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Appendix A: Statistics
In this chapter, statistic terms used in this thesis are deɐned and explained. Also, struc-
ture oЗ various diagram types is described. Every inЗormation in this chapter is taken
Зrom [13] unless stated otherwise.

A.1 Mean value
In this thesis, the mean value is equal to the unweighted average:

a =
1

n

n∑
i=1

ai (6)

ɤe most signiɐcant property oЗ so deɐned mean is that iЗ there are outliers in the selec-
tion, they will aɍect the result greatly.

A.2 Median
ɤe median oЗ the sorted selection S is the very middle element oЗ this selection. IЗ the
selection has even length, then this selection’s median is the mean oЗ the two middle
elements.

A.3 Variance
ɤe variance is a mean quadratic deviation Зrom a mean value oЗ a selection:

SA =
1

n− 1

n∑
i=1

(ai − an)
2 (7)

A.4 Standard deviation
ɤe standard deviation is a mean deviation Зrom a mean value oЗ a selection:

sA =

√√√√ 1

n− 1

n∑
i=1

(ai − an)
2 (8)
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A.5 String Markov information source example
Let the alphabet Γ be deɐned as Γ = {a, b, c, ..., x, y, z} and let the corpus text be abcd-
eaxbycza. ɤere are Зollowing transitions in the corpus text: a->b, b->c, c->d, d->e,
e->a, a->x, x->b, b->y, y->c, c->z, z->a.

A B

C

D

EX

Y

Z

0.50.5

0.5

0.5

1

1

1

0.5

0.5

1

1

ɐg. 40 — Graph oЙ a sample Markov inЙormation source

We can represent the transitions as a transition matrix or a graph (ɐg. 40). ɤe inЗorma-
tion source can have a starting condition or may not. In case it has no starting condition,
any vertex can be picked. IЗ a vertex is selected, a letter represented by it is attached to
an output. ɤen a transition is made according to probabilities on edges and a new ver-
tex is selected and so on. For instance, assuming the source described above (ɐg. 40),
valid generated words include: abczabczabcz, xbycdexbcdea, abcdeaxbc and so on.

Markov inЗormation source used in this thesis is not based on single letter but on
letter pairs (digrams), because they are more likely to mimic natural language when
given natural language corpus text. In english language, there are several very common
digrams, like th, er, is, st, ct, of, at and there are common transition rules,
Зor instance th is most likely Зollowed by is, at or en, but not by of, although ho is also
Зairly common (i.e. when using single letters as an alphabet, probability oЗ getting thof
is a product oЗ transition probabilities between t->h, h->o and o->f, which is nonzero,
whereas when using digrams as an alphabet, probability oЗ getting thof is a product oЗ
transition probabilities between th->of and because such transition does not exist in
english language at all, it is zero).

ɥen using trigrams as an alphabet, results are even better, but this variant needs
very large corpus text. One can also use whole dictionary as an alphabet and a very
large text source as a corpus text. . . then the Markov inЗormation source gives senseЗul
sentences as its output.
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A.6 Boxplot
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ɐg. 41 — Boxplot description

A.7 Multiple data series plot
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ɐg. 42 — Multiple series plot description
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Appendix B: Pseudocode syntax
ɤe pseudocode is a meta-language used to describe algorithms in such well-arranged
and abstract way, real languages would never achieve.

tab 6. — pseudocode
Syntax Meaning
a:=b b is assigned to a by value
a<=b b is assigned to a by reЗerence
a=b logic operation: a equal to b
a<b, a=<b logic operation: a less than, less or equal to b
a>b, a>=b logic operation: a greater than, greater or equal to b
a sameas b object comparison
if(condition), fi iЗ clause
for(i, c, a), end c like Зor clause
do while, while, end other clauses
for(o in list) Зor each clause
function(params) function call
membervar(o) getter Зor membervar in object o
add(list,o) adds item to list
remove(list,o) removes item Зrom list
Procedure: Name Зunction declaration
Input: a, b, c input parameters Зor Зunction
Output: d single output parameter oЗ Зunction

Commands can be separated either with new line or comma. Because the pseudocode
is not to be executed, commands and constructions not speciɐed in this list are allowed
to be used as long as their meaning is trivial to understand.

Appendix C: Machine specification
All tests were run on the machine with Зollowing parameters.

– Operating system: MicrosoЗt Windows 7 SP1, 32 bit instructions
– CPU: Intel Pentium Dual-Core T4200, 2 GHz clock rate
– Operating memory: 3GB

ɤe Зollowing development or other notable soЗtware was used.

– Java SE platЗorm
– Mathworks Matlab (Зaculty licence)
– WolЗram Mathematica (Зaculty licence)
– X ETEX with plain Зormat

ĶĹ



ɤe Use ɜ AIS in Biomedical InЙormation Retrieval

– Storm Type Foundry typeЗaces (personal licence)
– Enterprise Architect
– MicrosoЗt SQL Server 2008

AppendixD:DVDdirectory andfile structure

|–..
|–.
|–BT_SOURCE_CODE

|–BT
|–src

|–AIRS
| AIRS.java
| AIRSFillEngine.java
| CSF.java
| Pattern.java
| Point.java

|–CLASSIFIER
| ClassificationAlgorithm.java
| Test Java

|–GAParamSelection
| Instance.java
| ParamOperator.java
| ParamSelector.java

|–KNN
| Core.java
| KNN.java
| KNNFillEngine.java
| Pattern.java
| Point.java

|–NSA
| DT.java
| NSA.java
| NSAFillEngine.java
| Point.java
| SpecialisedAntibodyGoup.java

|–UTILITY
| CSV.java
| DATASET.java
| Distance.java
| Distance.java
| FillEngine.java
| MarkovChainSource.java
| MutableDouble.java
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| MutableInteger.java
| MutableNumber.java
| SortableBinaryString.java
| Statistics.java

|–bt
| Main.java

|–database
| BTDException.java
| BTDatabase.java
| Database.java

|–preprocess
| ClassIdentifier.java
| Identification.java
| SortableStringDoublePair.java
| TranslationException.java

|–profile
| ParsingException.java
| Profile.java
| ProfileException.java
| ProfileReader.java
| ProfileWriter.java
| SectionHeader.java

|–DATA
|–csv_datasets

| bcw.data
| gauss.data
| iris.data
| lesscmplx_processed.data
| morecmplx_processed.data
| wine.data

|–graphs
| graphs.rar

|–profiles
| lesscmplx.profile
| morecmplx.profile

|–TEX
| source.rar
| BT.pdf
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