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Abstract

The goal of this project is to propose and implement parallel path planning algorithm re-
�ecting state-of-the-art methods.

The motivation is utilization of modern multicore computers for this task, commonly
solved by a serial approach. This work describes main ideas and methods of the paralleliza-
tion, where each thread attempts to expand most promising nodes.

There was implemented a generic framework in Java� for parallel planning/space explo-
ration, deploying two parallel search concepts: hash-distributed (HDA*), and work-stealing
(PA*).

A serial planner for plane's trajectory has been extended to run in this framework.
The empirical results have shown that the original task can run faster in parallel. Prop-

erties and issues of each approach were discussed.

Abstrakt

Cílem projektu je navrhnout a implementovat algoritmus pro paralelní plánování na základ¥
moderních metod.

Motivací je vyuºití vícejádrových po£íta£· ke zpracování úloh, které jsou dnes obvykle
°e²eny seriov¥. Tato práce popisuje hlavní my²lenky a metody paralelizace, která spo£ívá v
prohledávání nejslibn¥j²ích uzl· ve více vláknech.

Byl vytvo°en obecný framework v jazyce Java� pro paralelní plánování, resp.
prohledávání prostoru, fungujucící podle dvou moºných princip·: rozd¥lení prostoru ha²ovací
funkcí (HDA*), a soupe°ení o uzly (PA*).

Na základ¥ t¥chto my²lenek byl roz²í°en p·vodní seriový plánova£ trasy letadla tak, aby
pracoval paraleln¥.

Výsledky byly experimentáln¥ porovnány a ukázaly, ºe úloha °e²ená paralelním
plánováním pracuje rychleji neº p·vodní seriová. Dále byly diskutovány vlastnosti a prob-
lematika jednotlivých p°ístup·.
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Chapter 1

Introduction

1.1 Motivation

Modern computers do not increase its computing power by speeding up clock rate anymore
but by adding more cores, allowing programs to run in more threads. That challenges to
run complex tasks parallelly in many threads and thus requires fundamental algorithms to
consider this.

State space exploration tasks require vast CPU and memory resources and the runtime
directly depends on these (as in any dynamic programming tasks). Therefore planning is
convenient candidate to exploit parallelism of multi-core machines.

1.2 Objectives

The aim is to propose and implement parallel extension of A* algorithm, based on the state
of the art methods, for �ight trajectory path planning. The idea is that more threads can
explore more states in the same time. It is required to distribute the states among them in
a way that a) doesn't have much overhead; b) and makes the search end faster. This is met
by Hash Distributed A* (HDA*) that divides the search space by a quick hash function. A
suitable solution, concerning discussed aspects, is to be proposed and implemented.

The objective is to show that the implementation makes use of the additional threads
provided, and reduces the time needed for the execution.

1.3 Overview

In this work there is described the background of the solved task, its properties and issues
(Chapter 2). Further there are introduced main principles of state-of-the-art methods for
parallelisation (3). Next, there is chosen and analysed approach for implementation, and
basic framework is de�ned with its fundamental functionality (4).

The implementation is went through, including low-level details of critical spots (5).
The implementation is abstract and it is explained how to interpret any search task to
accommodate given framework for a speci�c usage.

1



2 CHAPTER 1. INTRODUCTION

Finally it is described how the path planning is implemented. There was also a 15-Puzzle
search task implemented to compare the nature of these domains.

The experimental results introduce testing tasks and their properties (6). Methodology
for collecting statistically relevant results is described, and collected data are visualized in
graphs, to be easily compared across approaches and search domains.

Observed relationships are then discussed and explained according to the nature of solved
tasks (7). The search instances are compared for its suitability for parallelisation.

Final chapter contains concluding remarks and proposes topics of further work (8).



Chapter 2

Background

2.1 Path Planning

Generally path planning is exploring a state space that can be described as a graph of
adjacent nodes (states). Edges of the graph represent basic agent's movements. When the
goal in the graph is reached these edges form the desired complex path.

For search algorithms we observe following features:

� Completeness That means whether the algorithm �nds a solution where there is any.

� Optimality That the path found has the lowest path cost among all solutions. [9]

To avoid in�nite loop it is necessary to check for duplicate states already visited and
expanded (unless the search space is a tree � has no cycles). That is a complication in a
continuous search space where it is possible to �t into any ε-neighborhood (ε > 0) of a state
in�nite number of another states.

Number of generated states grows exponentially because each state has as many succes-
sors (expansions) as is the number of available actions. Even though modern computers have
enough memory to store huge state spaces but the main problem is to quickly �nd solution
in it because the generation of states takes considerable time. And further time it takes to
organise them.

Especially in continuous search space it is necessary to involve various tricks to reduce
memory and time requirements for the search to end and still remain as complete and optimal
as possible. The complication is that continuous space provides an in�nite diversity of actions
(e.g. step in any direction and of any length) and in�nite number of possible states.

2.2 BFS

Best-�rst search (BFS) is a graph exploring algorithm that maintains two sets, open and
closed. It chooses to explore a state S from the open set that has lowest score according to
ordering function f(S), S is moved into the closed set. If S is not goal its successors are
generated and inserted into the open set unless contained in the closed set already.

3



4 CHAPTER 2. BACKGROUND

2.2.1 A*

A* is a BFS where f = g + h (path cost + heuristics estimate). A* is a popular algorithm
because it is complete and optimal when consistent heuristics is provided. [2] In path�nding
is usually used euclidean distance.

2.3 AgentFly

AgentFly[11] is a multi-agent platform for simulation of air tra�c that integrates features like
collision avoidance, cooperative negotiation. It respects given aircraft's properties (BADA
- Base of Aircraft Data[7]) and the planning uses maneuvers respective to current aircraft -
e.g. minimum turn radius, maximum ascend and descend, speed, acceleration.

2.3.1 AgentFly path planner

There currently exists serial AA* (Accelerated A* ) path planner that uses adaptive step size
depending on state's distance to the nearest obstacle [12]. There is a test for direct visibility
to the goal performed for each state, allowing the search to quickly reach the goal in vast
open spaces. This reduces number of visited states by the search and thus memory and time
requirements. The heuristics is direct distance to the goal.

2.4 Parallelism

While A* is a serial (nonparallel) algorithm it cannot be used on multicore machines as
is. The issue is that the search task is not possible to be fairly divided into parts for each
thread to run autonomously because the state graph is not known before and is explored
dynamically. Very often it is also in�nite.

2.4.1 Overhead

Synchronization The synchronization overhead is the idle time wasted at synchronization
points when some threads have to wait for others due to locking.

Search When expanding states in parallel, more states get expanded than would be required
by serial search (explained in 4.4).

Communication Time spent by manipulation with states (e.g. forwarding to other thread)
that wouldn't be done in serial search.

Time Time overhead is caused by expensive (or excess) I/O operations.

It is not uncommon that some parallel approach performs worse than serial due to these
factors.



Chapter 3

State of the Art

3.1 PA*

The simplest parallel modi�cation of A* is based on work stealing [6]. There is one CLOSED
and one OPEN set. The basic A* algorithm is run n-times (A Centralized Parallel Search
Strategy).

� This strategy has not much redundant search over A*.
� On the other side, the issue could be very frequent locking resulting in huge synchro-
nization overhead and the approach could lead to serial-like performance.

3.2 HDA*

In HDA* (Hash Distributed A*) each thread owns a partition of the search space. The
partitioning is done by a hash function k on the state [5].

Each thread T has its own CLOSED and OPEN set. The �A* inside T� then selects
highest priority state for expansion from its local OPEN set. Expanded state S is then sent
to other thread according to k(S).

Each thread has a message queue, for receiving states from other threads, that is asyn-
chronous and thus non-blocking.

Before T selects new state to expand it checks its message queue. Then for each received
state S' it checks for duplicates in the local CLOSED set and accordingly inserts S' into
OPEN set.

The most important is the choice of a hash function k so that all threads have approx-
imately equal amount of work (states) assigned, and each thread has opportunity to reach
the goal (e.g. no thread searches unpromising partition of the search space).

3.3 PBNF

Parallel Best-NBlock-First unlike previous methods builds an abstract graph of nodes called
nblocks that contain states from original domain [1]. If two states are successors in the

5



6 CHAPTER 3. STATE OF THE ART

original domain than their nblocks are successors in the abstract graph too. Each nblock
has its own open and closed list (like in A*).

Nblocks themselves are organised in a priority queue according to their best open node.

Thread acquires a free (not locked and any of its successors locked) nblock with highest
priority and locks it. Then it could expand its nodes and insert into appropriate nblock.

No synchronization is needed except for acquiring an nblock.



Chapter 4

Analysis

The path �nding algorithm is to be used for planning trajectory of UAVs in A-globe [10]
framework (AgentFly project). This requires the implementation to be programmed in Java.
The search space is continuous. There exists a serial planner based on A*.

For parallelisation it is necessary to divide the search space so that every thread can
explore its local scope. That can be done by a hash function that assigns a state to a thread
according to its coordinates.

PBNF's main advantage is to reduce locking-related overhead. A graph of scopes is
created according to their adjacency. While that is not trivial in continuous space, because
the rules for adjacency cannot be done quickly (while in combinatorial problems this could be
promising approach) and the resulting graph would be too fuzzy because some maneuvers can
be extended to even nonadjacent (physically) scopes (e.g. long straight maneuver), PBNF
is not considered in this work.

4.1 HDA*

HDA* was chosen because of its similarity to A* (serial BFS), and there is the only necessity
to provide a hashing function.

The idea is that more threads can process more nodes in the same time that serial A*
needs to process only one state. On the other hand, the speedup is reduced by search
overhead (suboptimal nodes are processed) and communication overhead.

Each worker owns its de�ned portion of the search space, which is determined by the hash
function. This allows checking for duplicates in the worker's closed set, because duplicate
state always arrives to the same scope.

Generated states are sent as asynchronous messages to appropriate workers (determined
by hash function), there is no need for synchronization. Each worker, before fetching the
best state from open set, handles received states. It is checked for presence in closed set
and a) inserts the received into local open set; b) or discards it, in case it has been already
processed. Figure 4.1 shows the path of newly generated node (solid lines) to its destination
worker's open set.

7
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Worker #m
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process best node

open set
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m10

hash function

generate
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Figure 4.1: Manipulation with generated nodes in HDA*

4.2 PA*

There are possible slight modi�cations of location of structures that allow the search to
proceed according to PA* approach:

� When the closed set is stored as a global structure (shared by all workers),

� and the open set is also shared structure. The generated states are inserted, without
regard to the hashing, in the moment they are generated (this makes some synchro-
nization overhead).

Furthermore, when only the closed set is shared, there is possible to distribute states from
continuous space where two states' equality is implemented as similarity. This reduces some
search overhead of HDA* in such domains.

The sharing is done by passing references to the global sets, that are given to the work-
ers, instead of creating new sets. The operation of a single worker is similar to serial A*
(Figure 4.2).

While there is no asynchronous transfer of the states, the open set is required to be
thread-safe. This is done by synchronization, and that is the bottleneck of PA*, causing the
search run serially in a very concurrent environment.
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serial Best First Search

process best node
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Figure 4.2: Manipulation with generated nodes in A*

4.3 Master-Worker

The search is provided by a master (as a Java method call). The master performs initializa-
tion (5.3.2.1) � main task is to spawn workers, each into separate thread. Then the master
waits for the workers to end and collects the result.

When an exception occurs in a worker the master has to stop other workers and throw
the exception into the main (calling) thread.

4.4 Optimality

While A* is guaranteed to �nd optimal solution when consistent (monotone) heuristics is
provided [2], that doesn't account for any parallel approach.

The issues are

� When each thread searches de�ned portion of the search space, then it ignores other
states/paths leading to its portion. That means it has to expect from other threads to
provide better1 instaces (duplicates) of any local state anytime.

� When all threads search the same (whole) search space, they necessarily expand subop-
timal paths. That is because 1st thread takes the best state and meanwhile it processes
it the nth thread takes nth-best state. That breaks the basic A* idea and can generate
some state earlier than it would be generated from some better predecessor.

That requires to compare new states against closed set (5.1.3.1) instead of just checking
presence. That results in increased time overhead (2.4.1).

1having lower g � reached by a shorter path from the start
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Also the termination condition updates: The search is �nished when all threads' best
states in open set are not better than the best goal found2. This result in search overhead

(2.4.1).

4.5 Interface

Here it is described how I de�ned the minimal requirements for a programmer to implement
if one wants to use BFS.

Following pseudocode describes A*'s operation.
1 f unc t i on A*(start,goal)

2 c l o s e d s e t := empty s e t
3 openset := { s t a r t }
4

5 while openset i s not empty
6 cur rent := the node in openset having the lowest f value

7 if current = goal

8 return cur rent
9

10 remove cur rent from openset
11 add cur rent to c l o s e d s e t
12 for each neighbor in neighbor_nodes(current)

13 i f neighbor in c l o s e d s e t
14 continue

15

16 i f neighbor not in openset
17 add neighbor to openset
18

19 return f a i l u r e

Listing 4.1: A* pseudocode

There are highlighted fragments that are inputs for the A* search, some of them are functions.
It is clear that we need to provide

1. initial state (start)

2. comparator for states (�nding best node from openset)

3. expansion function (neighbor_nodes(current))

4. goal (description of desired state)

5. equality test for checking presence in sets

And HDA* adds up

6. hash function for distributing states

I tried to keep these requirements as general as possible. So there is no need to expose
any heuristics score or goal state instance. Instead a way to compare two states and test for
a goal, respectively, is required.

2For single-worker con�guration this is equivalent to the standard A* termination condition, because A*
selects always the best node for processing, so there are no better nodes implicitly.



Chapter 5

Implementation

The main part of this chapter describes a generic search approach that can be used for any
state exploring task. The AgentFly planning is implemented afterwards on top of this core.

5.1 Best First Search

Serial BFS algorithm was described in 2.2 and 4.5. BFS.java is its abstract implementation.
Its features are also used (inherited) in parallel classes.

The basic Java interface would look like

1 public abstract class BFS<T> implements Comparator<T>
2 {
3 f ina l public T f ind (T s t a r t ) ;
4 public abstract int compare (T state1 , T s t a t e 2 ) ;
5 protected abstract I t e r ab l e <T> expand (T s t a t e ) ;
6 protected abstract boolean i sGoa l (T s t a t e ) ;
7 }

The usage for a speci�c implementation Impl for states of type StateType is

1 class Impl extends BFS<StateType> {
2 . . . // implementat ion o f methods r e qu i r ed
3 }
4 StateType s t a r t = . . . ;
5 StateType goa l = new Impl ( ) . f i nd ( s t a r t ) ;

It is obvious, that the

1. initial state is a parameter of �nd() call

2. comparator for states is the class Impl itself (implements Comparator<StateType>)

3. expansion function is part of Impl's body

4. goal test is Impl's predicate method (isGoal(StateType))

5. equality test is implemented as equals(Object) on the state.

11



12 CHAPTER 5. IMPLEMENTATION

The goal state (isGoal(s)==true) is returned from the �nd() call. When the search exhausts
all reachable states and goal is not found, then NULL is returned.

All further described con�gurations and extensions are optional and are not required to

be implemented for basic BFS (A*).

5.1.1 Detachment from the state's properties

Even in serial search it was necessary to calculate state's hashCode for use in closed set
implemented as a HashMap for fast access. To make this independent on the state's type
there can be found following code:

1 public abstract class BFS<T> implements Comparator<T>
2 {
3 . . .
4 protected int hashCode (T s t a t e )
5 {
6 return s t a t e . hashCode ( ) ;
7 }
8

9 protected boolean equa l s (T state1 , Object s t a t e 2 )
10 {
11 return s t a t e 1 . equa l s ( s t a t e 2 ) ;
12 }
13 . . .
14 }

These are proxy methods1 to the original state.

It is useful when it is found out that equals should be di�erent/complicated/cached etc
to override them according to the implementation needs.

5.1.2 ClosedSet, OpenSet

These are interfaces based on speci�c needs of the search and can ba also custom-provided
by the programmer (will be shown later).

1 public stat ic interface BFS. ClosedSet<T>
2 {
3 public void add (T obj ) ;
4 public T get (T obj ) ;
5 }
6

7 public stat ic interface BFS. OpenSet<T> extends BFS. ClosedSet<T>
8 {
9 public T peekTheBest ( ) ;
10 public T pol lTheBest ( ) ;
11 public boolean isEmpty ( ) ;
12 }

There exists basic implementation in the class that is suitable for most cases.

1Their use is in default BFS implementation enforced by using BFS<T>.StateHolder wrapper



5.1. BEST FIRST SEARCH 13

The ClosedSet is backed by a HashMap (and respects proxy methods for equals() and
hashCode(), see 5.1.1) to provide constant-time performance2.

The OpenSet has a HashMap as in ClosedSet and a PriorityQueue to provide theBest() and
isEmpty() methods. The peekTheBest() method has constant-time performance and O(log(n))
performance for modi�cation methods3.

Custom implementations can be provided by overriding following methods
1 protected ClosedSet<T> crea teC lo s edSe t ( ) ;
2 protected OpenSet<T> createOpenSet ( ) ;

5.1.3 Con�guration

The BFS class has a protected BFS.Con�guration con�g property. The Con�guration class has
only property boolean checkClosedSetIfBetter.

Con�guration properties are to be set in constructor:
1 class Impl extends BFS<StateType> {
2 public Impl ( )
3 {
4 this . c on f i g . someDirect ive = true/ fa l se ;
5 // OR
6 this . c on f i g = SOME_CONFIGURATION_INSTANCE;
7 }
8 }

5.1.3.1 Checking closed set

When a new state s is generated it is checked whether closed set already contains such a
state (that has equal hashCode(s) and equals(s ,closedSet .get(s))).

(a) When the closed set doesn't contain s, s is inserted into open set for inspection.
(b) When the closed set contains state equal to s then one of the following actions is

taken

(b1) if checkClosedSetIfBetter = false (default) then s is discarded
(b2) if checkClosedSetIfBetter = true then s is inserted into open set only if s is better

than s′ (where s′ ← closedSet.get(s)), otherwise is discarded

This behaviour is required when

� the heuristics used for organising open set is not consistent
� or the expansion is done in parallel 4.4

otherwise the search wouldn't be optimal.
The reason for this is that a state S is guaranteed to be accessed by an optimal path on

the graph only when the heuristics is consistent (Triangle inequality) [2]. Otherwise S could
be accessed prematurely due to confusing (defective, non-consistent) heuristics.

2HashMap (Java Platform SE 6). <http://docs.oracle.com/javase/6/docs/api/java/util/HashMap.

html>. [Online; accessed 9. 4. 2012]
3PriorityQueue (Java Platform SE 6). <http://docs.oracle.com/javase/6/docs/api/java/util/

PriorityQueue.html>. [Online; accessed 9. 4. 2012]

http://docs.oracle.com/javase/6/docs/api/java/util/HashMap.html
http://docs.oracle.com/javase/6/docs/api/java/util/HashMap.html
http://docs.oracle.com/javase/6/docs/api/java/util/PriorityQueue.html
http://docs.oracle.com/javase/6/docs/api/java/util/PriorityQueue.html
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5.1.4 Search interrupt - Timeout

Because the search could be a) in�nite (e.g. the reachable search space is unbounded and
the goal is unreachable) or b) time-critical (required to end within given time period), there
is way to terminate the search:

1 public T f ind (T s ta r t , BFS . In te r ruptTes t i n t e r r up t ) throws

Inter ruptedExcept ion

where the InterruptTest is an interface

1 public stat ic interface In te r ruptTes t
2 {
3 public boolean doEnd ( ) ;
4 }

When the doEnd() method returns true the BFS.�nd() immediately throws an
InterruptedException.

For the most common case � time limiting, there is a BFS.InterruptTimeout class that will
end the search after speci�ed timeout in milliseconds elapses since the InterruptTimeout

object creation.

1 try{
2 long nTimeoutMil l i s = 1000 ; // 1000ms = 1s
3 BFS. In te r ruptTes t i n t e r r up t = new BFS. InterruptTimeout ( nTimeoutMil l i s ) ;
4 T goa l = BFSImpl . f i nd ( s ta r t , i n t e r r up t ) ; // won ' t run longer than 1 s
5 . . . // search ended prope r l y
6 }catch ( Inter ruptedExcept ion ex ) {
7 . . . // t imeout exp i r ed
8 }

This approach allows to interrupt the search on the basis of any di�erent signal, for
example:

1 BFS. In te r ruptTes t i n t e r r up t = new BFS. In te r ruptTes t ( )
2 {
3 public boolean doEnd ( )
4 { // when p lane crashes t h e r e i s no need to p lan path anymore
5 return hasPlaneCrashed ( ) ;
6 }
7 }

5.1.5 Listeners

The BFS class can register listeners for one event � end of execution.

1 public void addExecut ionFin i shedLi s tener ( Act i onL i s t ene r l i s t e n t e r )

The listener's actionPerformed() is called when search exits. Either a goal is found or goal is
not found (5.1) or the search is interrupted (5.1.4).

In this moment it is expected to do a cleanup of resources used for the purpose of the
search.
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It is recommended way to dynamically4 register code that releases some expensive-to-
create objects to their pool in the moment of their creation. E.g. huge array in open/closed
set, database connections etc.

5.1.6 Statistics

The BFS class has several properties begining log . . . for statistics of the search. They can
be accessed by getters.

logOpenProcessed

count of states processed in main A* loop (tested for goal, expanded, ...)
logGenerated

count of all states returned by expand()
logGeneratedOpenReplaces

nodes that have been generated, were already contained the openset, and were re-
inserted

logGeneratedBetterAlreadyInOpen

nodes that have been generated, were already contained the openset, and were thrown
away

logGeneratedCloseReplaces

nodes that have been generated, were found in closed (but with worse score), and were
re-insterted into open (5.1.3.1 - when con�gured not to check closed set this will be 0)

logGeneratedAlreadyInClose

generated nodes found in close that were thrown away for this fact
logRuntimeMillis

wall time in milliseconds (available after execution �nishes)

5.2 AgentFly Path Planner

The serial planner's (2.3.1) code was separated into methods to �t the interface already
described in this chapter; the open and closed sets were reimplemented and some other
minor modi�cations were done to allow concurrency. This allows to run the same code in
parallel (PBFS, described further).

5.3 Parallel Implementation

For parallelization I chose approach described in [5]. The main idea is to provide an asyn-
chronous queue for each thread that is used to deliver states expanded by other threads.

Destination thread for a state is to be determined by a hash function k(S).

Each thread's loop is extended:

4considered it is not known in advance whether some object will be created or instances are created
dynamically
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1. While state queue of this thread is not empty: for each state check whether its duplicate
is in closed set5 and appropriately insert into local open set.

2. Process best state from open set . . . (as in BFS 4.5). New states S1..Sn are asyn-
chronously sent to their threads' queues according to k(Si).

5.3.1 Implementation with regard to BFS

I required the extension from BFS to PBFS (parallel best �rst search) to be implemented in
Java as e�ortlessly as possible. Therefore PBFS extends BFS.

The only method that must be implemented extra is clone(), the reason is described later
in 5.3.2.2.

PBFS also introduces constructor with one integer parameter - number of threads to run.
When created using nonparametric constructor then Runtime.getRuntime().availableProcessors()

is used.

5.3.2 Master - Worker lifecycle

Further will be used terms

Master that is basically the object visible from the calling scope and it's �nd() provides the
result. It is instance of PBFS.

Worker is of type PBFSWorker and is spawned by master. Each worker is run in separate
thread and passes goal states to the master (PBFS.foundGoal()). Worker implements
Runnable interface.

5.3.2.1 Initialization

On the �nd() call on the master following actions are taken (in the master's thread):

1. For each i = 1..n an asynchronous queue (ConcurrentLinkedQueue<T>)waitingForOpen[i]

and (PBFSWorker<T>)workers[i] are created.6

2. For each i = 1..n is a new thread created. Worker workers[i ] is run in this thread.
3. Wait until all workers initialize (generally create open and closed set).
4. Give a start signal for workers to enter search loop.
5. Wait for the search to end.
6. Process exceptions (optional).
7. Return solution.

In Java it is:

5Described in 5.1.3.1, explained in 4.4
6n - number of threads
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1 public T f ind (T s ta r t , f ina l BFS. In te r ruptTes t i n t e r r up t ) throws

Inter ruptedExcept ion
2 {
3 . . .
4 currentBest = null ;
5 for ( int i = 0 ; i < numThreads ; i++)
6 {
7 waitingForOpen [ i ] = new ConcurrentLinkedQueue<T>() ;
8 PBFSWorker<T> worker = new PBFSWorker<T>(this , s t a r t , i n t e r rupt , i ) ;
9 workers [ i ] = worker ;
10 }
11 Thread [ ] threads = new Thread [ numThreads ] ;
12 for ( int i = 0 ; i < numThreads ; i++)
13 {
14 threads [ i ] = new Thread ( workers [ i ] , this . g e tC la s s ( ) . getSimpleName ( ) + " 

worker #" + i ) ;
15 threads [ i ] . s t a r t ( ) ;
16 }
17 i n i t S i g n a l . await ( ) ;
18 s t a r t S i g n a l . countDown ( ) ;
19 doneSignal . await ( ) ;
20 i f (m_throwable != null )
21 {
22 i f (m_throwable instanceof Inter ruptedExcept ion )
23 throw ( Inter ruptedExcept ion ) m_throwable ;
24 else

25 throw new RuntimeException (m_throwable ) ;
26 }
27 return currentBest ;
28 . . .
29 }

Listing 5.1: PBFS.�nd()

5.3.2.2 Master cloning

Worker has the A* loop inherited from BFS and most of other methods (especially for
manipulation with states) are proxies to the master or to master's clone.

1 public PBFSWorker(PBFS<T> master , T s ta r t , BFS . In te r ruptTes t in t e r rupt , int

index )
2 {
3 super ( ) ;
4 this . master = master ;
5 this . implementationClone = master . c l one ( ) ;
6 this . s t a r t = s t a r t ;
7 this . i n t e r r up t = in t e r r up t ;
8 this . index = index ;
9 this . c on f i g = this . master . c on f i g ;
10 }

Listing 5.2: PBFSWorker's constructor

Methods expand(T), isGoal(T), compare(T,T), hashCode(T), and equals(T,Object) are called on
the implementationClone.
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Reason for this is that when those method would be called on one instance of the master,
from any worker at any time, they would need to be thread safe7. With the cloning it is
necessary just to create clone of required parts and the methods' implementation remains
single thread.

In case the master is not needed to be cloned (is thread-safe), write

1 protected PBFS<T> clone ( )
2 {
3 return this ;
4 }

Then implementationClone==master for each worker.

5.3.3 Con�guration

In PBFS is con�guration of type PBFS.Con�guration extends BFS.Con�guration, having following
properties.

5.3.3.1 Sharing closed set

Depending on shareClosedSet value. When

false (default)

closed set is created for each worker.
true

all workers share the same closed set. Can be useful when a custom implementation is
provided such that doesn't use the same hashCode() (and equals(), consequently)8 as is
used for states distribution.

In both cases result of createClosedSet() call is used (5.1.2). Yet in the latter case, it is required
to return instance of PBFS.ConcurrentClosedSet<T>.

5.3.3.2 Sharing open set

Depending on shareOpenSet value. When

false (default)

open set is created for each worker.
true

all workers share the same open set. When they take the best state from it, it may be
in fact nth-best, because another worker might have taken those better ones already.
Similar implementation as for closed set (see above) is required.

7Or synchronized but that would cause the workers calling them to execute serially. On the other hand,
when a proper clone is provided, then the methods can be synchronized. Although that is not necessary,
because they would be called from single thread only.

8e.g. when states are considered equal when similar � so the already closed state would be in di�erent
worker's scope
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5.3.3.3 Sequential distribution

Depending on allocateWorkSequentially value. When

false (default)

a hash function hashCode is used on a state s to be assigned to worker
(hashCode(s) mod n).

true

the state is according to the order i in which it was generated sent to worker (i mod n).

5.3.4 ClosedSet, OpenSet

As mentioned in 5.3.3.1, PBFS.ConcurrentClosedSet<T> may be required (and PBFS.

ConcurrentOpenSet<T>). These interfaces doesn't introduce any new functionality from BFS

.ClosedSet<T> (its ancestor), it is just to make the implementing programmer aware of the
concurrent nature.

Drawback: The set's type is checked in the runtime depending on current con�guration.
When it is not appropriate, a UnsupportedOperationException is thrown.

The default PBFS's implementation uses internally Java's ConcurrentHashMap for the
closed set. This supports some level of concurrency.

For open sets PBFS provides static method synchronizedOpenSet() to wrap single-thread
implementation.

1 protected OpenSet<T> createOpenSet ( )
2 { // re turns PBFS. ConcurrentOpenSet<T>
3 return PBFS. synchronizedOpenSet (new SomeSingleThreadOpenSetImpl ( ) ) ;
4 }

5.3.5 Synchronization

To satisfy the terminating condition in parallel environment (4.4) it is necessary for the
workers to wait for each other sometimes to detect whether to continue search. The naive
approach is to process one state (in each thread) and then come together and see, what
happened.

That unfortunately leads to enormous overhead - the workers would wait most of the
time for the slowest one (who got some state di�cult to expand, or who's thread is not
running).

My implementation of a worker does work while it has work to do. That means while
there are states in my open set that are better than current (globally) best goal (or if the
open set is not empty in case, there has not been found any goal yet).

When there is no work at this moment that doesn't mean to �nish, because there shall
be some states, from other workers, for me to be generated. My thread yields (to enable
other threads run), and makes a quick test whether other workers work. That is done by
calling master.isContinueSearch().
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1 i f a l l F i n i s h e d
2 return fa l se ;
3 else i f workingWorkersCount > 0 // workers t ha t isWorking==true
4 return true ;
5 else i f statesInMessageQueuesCount > 0
6 return true ;
7 else

8 return fa l se ;

Listing 5.3: master.isContinueSearch() in pseudocode

When true is returned, the worker starts over, and either does this active waiting loop
again, or has some states to process.

When false is returned, there is chance that the (whole) search has no other candidates
for a goal, and master.isEveryWorkerFinished() is called.

1 public boolean i sEveryWorkerFinished ( )
2 {
3 i f ( a l l F i n i s h e d )
4 return true ;
5 a l lF in i shedLock . l o ck ( ) ;
6 try

7 {
8 // wai t u n t i l a l l t h r eads meet in t h i s method
9 while ( ! a l l F i n i s h e d && a l lF in i shedLock . getQueueLength ( ) != numThreads −

1)
10 {
11 i f ( i sCont inueSearch (−1) )
12 { // p o l l i n g whether i s some work a l r eady
13 return fa l se ;
14 }
15 Thread . y i e l d ( ) ;
16 }
17 // endwhi le => a l l t h reads met here
18 a l l F i n i s h e d = true ;
19 return true ;
20 } f ina l ly

21 {
22 a l lF in i shedLock . unlock ( ) ;
23 }
24 }

Listing 5.4: master.isEveryWorkerFinished()

This ensures that the search terminates properly only when all workers agree that there is
no other work (meaning no other promising states).

This is shown in �gure 5.1.

The reason for these two tests is that the �nal one is quite expensive - it uses locking.
While the �rst one is asynchronous (therefore quick) and, in case the search is not over,
su�cient. It just is not trustworthy when it says �do not continue search�.

There exists a allFinished �ag allows to terminate the search immediately when set to
true, its purpose is described later.
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Figure 5.1: Operation of a worker

5.3.6 Exception handling

When a exception in a worker is thrown the master is noti�ed.

� allFinished is set to true, causing all other workers to end immediately,

� it is labeled by it's thread name (containing worker number and implementing class),

� when all workers terminate it is thrown from the PBFS.�nd() call � as an
InterruptedException in case the interrupt test was positive, or wrapped as a
RuntimeException otherwise.

This makes the program to end up with exception with verbose stack trace

1 java . lang . RuntimeException : java . lang . Exception : Exception in thread "BFSTest 

worker #1"

2 at PBFS. f i nd (PBFS. java : 121 )
3 at BFS . f i nd (BFS . java : 3 1 )
4 at BFSTest . main (BFSTest . java : 3 4 )
5 Caused by : java . lang . Exception : Exception in thread "BFSTest worker #1"

6 at PBFS. workerException (PBFS. java : 186 )
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7 at PBFSWorker . run (PBFSWorker . java : 160 )
8 at java . lang . Thread . run (Thread . java : 662 )
9 Caused by : java . lang . Ar ithmet icExcept ion : / by zero
10 at BFSTest . f i b (BFSTest . java : 9 6 )

Listing 5.5: Example stack trace

5.4 Con�guration Drilldown

Depending on con�gurations �ags (5.1.3 and 5.3.3) the search can operate in several modes.

5.4.1 HDA*

checkClosedSetIfBetter true
shareClosedSet false
shareOpenSet false

allocateWorkSequentially false
Each worker gets its own closed and open set. Distribution of the states is done by hash

function k and states are delivered to their destination worker k(S) via non-blocking queue.

This requires to provide hash function k such, that it distributes states fairly and all
workers have approximately same number of promising states.

5.4.2 HDA* with shared closed set

checkClosedSetIfBetter true
shareClosedSet true
shareOpenSet false

allocateWorkSequentially false
Closed set is created globally for all workers. The processed states are added concurrently

and checking is also concurrent (5.3.4).

This has an advantage when ClosedSet organisation does not comply the k (states dis-
tribution) and states for a worker to process are not necessarily stored in the worker's closed
set.

5.4.2.1 Sequential distribution

checkClosedSetIfBetter true
shareClosedSet true
shareOpenSet false

allocateWorkSequentially true
Sharing of the closed set relieves the necessity to have �xed scopes that ensure that when

a state is generated twice it goes to the same worker.

This approach does not require the programmer to provide fair hash function k, because
it doesn't in�uence the work distribution. Each worker gets assigned same amount of states
to process.
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5.4.3 PA*

checkClosedSetIfBetter true
shareClosedSet true
shareOpenSet true

Only one open and closed set is maintained, like in serial A*. The di�erence is that many
workers use them in parallel.

That causes synchronization overhead (2.4.1) especially for the reason of modi�cation of
(sorted) open set.

On the other hand, this has lower search overhead than previous con�gurations, because
there are always taken the n-th globally best nodes to expand, while in HDA* there are
taken the locally best nodes, that can be much worse.

5.4.3.1 Suboptimal PA*

checkClosedSetIfBetter false
shareClosedSet true
shareOpenSet true

As described in 4.4, the parallel implementation requires to compare states in the the
closed set to remain optimal, this accounts also for PA*. But unlike HDA*, PA* doesn't
deviate much from the serial-A*'s order of processed states.

In most cases, PA* is able to �nd optimal path without comparing states to closed set
and especially in continuous search space, there is always some tolerance because the search
space is relaxed into discrete approximation.

This can run a bit faster than PA*, and may be suitable for some problems.
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Chapter 6

Experimental Results

The planning was implemented and tested for AgentFly path planner and Sliding Tile Puzzle
domain. The algorithm was run in Java 6. The Java Virtual Machine (JVM) was provided
40GB of memory and run on 2x Intel Xeon E5620 (2.40GHz) in Windows 7 64bit. Each
problem was solved by serial A*, PA* and HDA* in up to 16 threads. Every combination
was invoked 30 times to provide statistically signi�cant results.

To allow approximately the same conditions for each measurement, each con�guration
was run before the actual measurement took place. This should have warmed-up the JVM.
Speci�cally to load all classes required, to perform additional just-in-time compilation, inlin-
ing code, and adaptive optimization. Before each measured planning System.gc() was called,
making the JVM to reclaim unused objects from the memory.

6.1 AgentFly Path Planner

Two scenarios were used for the benchmark. The �rst was Planner setup test (no.4, from
prede�ned con�gurations, �gure 6.1), that contains two obstacles and thus doesn't take ad-
vantage of the heuristics, especially in the beginning where f leads to explore the dead end.
The second scenario is planning in 3D mountainous terrain that contains three indepen-
dent segments, each is planned separately (�gure 6.2). As a hash function was used state's
mainHashCode, that re�ects it's position in 3D space.

25
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Figure 6.1: Planner setup test 4

Figure 6.2: Mountain
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6.2 Sliding Tile Puzzle

The parallel search was also implemented to solve 15-Puzzle game with intent to compare
the nature of these two domains on the empirical evaluation results. The problem can be
viewed as a planning of consequent moves that lead to �nal board con�guration.

The board is represented as �at integer array with values 1�15 describing tile position,
and zero stands for the gap. Each expansion represents one move of a tile onto the place of
the gap, making g increase by one. The heuristics is sum of a manhattan distances for a tile
to its desired place for each tile. A Java's built-in hash for integer array is used for hashing.

For testing a problem was chosen that requires about 250 thousand states to be visited
by serial A* (�gure 6.3).

1 2 6 4
5 3 7 14

9 15 8
11 13 12 10

Figure 6.3: The 15-Puzzle task

6.3 Search Time and Volume

For each task was measured wall time1 depending on thread count (Figure 6.4, left side).
There were also collected data showing search overhead (the right side of �gure 6.4, speci�-
cally number of processed nodes.

6.4 Speedup Over Serial A*

Figure 6.5 shows the speedup of the overall search (left) and amount of nodes processed in
a second over serial A* (right).

1measuring starts when �nd() is called and ends when master returns solution
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Figure 6.5: Speedup over serial A*
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Chapter 7

Discussion

The results have shown that for AgentFly path planning the parallel extension generally
performs worse than for 15-Puzzle task, yet still can perform better than serial A* when
suitable con�guration is used. From the graphs (�gure 6.5) it can be seen, that the speedup
grows mostly in the beginning (few threads running). Later, when more threads are added,
the growth declines.

7.1 Observed Issues

7.1.1 Increase of search overhead

In �gure 6.4 it can be seen, that for the AgentFly path planning tasks, the number of
processed nodes is increasing with threads, unlike for the 15-Puzzle � there the number of
processed nodes stays in the bounds of serial A* approach. It was expected behaviour, be-
cause HDA* and PA* takes advantage of speculative expansion of suboptimal (or locally
optimal) nodes. In the path planning, the heuristics guides the search to the goal after much
less nodes expansions than in the 15-Puzzle, where the search has to visit many indistin-
guishably promising states. This has high impact on the �nal speedup. When the search
overhead outnumbers parallel speedup of nodes processing, the search runs slower than serial
A*.

7.1.2 Hashing in continuous space

Continuous space is usually handled as a discrete space where near states are considered as
equal. This could lead to a situation, when such equality isn't transitional, and therefore
states couldn't be always hashed to preserve equivalence classes in each scope. This allows
duplicities in disjoint scopes.

Such duplicates can be eliminated by sharing closed set; that also allows concurrency
(thus doesn't introduce signi�cant synchronization overhead).

The search overhead is visible in �gures 6.4 where there are always more nodes processed
in HDA* over HDA* with shared closed set for the path planning tasks.

31



32 CHAPTER 7. DISCUSSION

7.1.3 Increase of communication overhead

Considering following situation: Node s1 is current globally best, and leads to the goal
optimally. It's (s1's) successor will therefore be some node s2, that is also on the �nal path.
Figures show A*1 (�gure 7.1) and HDA* (7.2) progress.

. . . s1 s2 . . .

Figure 7.1: A* timeline

When the A* algorithm is �nished processing state s1, it immediately chooses s2 for
further processing (in the same thread).

Worker A
. . . s1 s? . . .

t←→Worker B
. . . s? s2 . . .

Figure 7.2: HDA* timeline

Whereas in HDA*, worker A (who is processing s1's scope) sends s2 to worker B. When
B �nishes some state he is currently processing, he chooses s2. That delay (marked t in
the �gure) could last up to the time required for processing one state, but could be also
insigni�cant (approximately zero). In average case, it would lead up to 50 % slowdown of
the search.

This delay is an issue only for nodes that are on the path to the goal, that are to be
processed just after they have been generated, and thus their delayed processing makes the
search slow down. It's impact depends on how much is the search straightforward.

In fact, the delay only approaches 50 % as more threads (workers) are running. Because
there is n−1 chance2, that state s1 belongs to the same worker's scope as s2 does, and there
would be no delay. More accurate formula for the worst case is 50 · (1− n−1)% slowdown.

7.1.4 Increase of synchronization overhead

Figures 6.5 show that, for AgentFly tasks, the search slows down to a certain level when
many threads are running. It is caused by few synchronized parts of code for expanding a
state. These synchronized fragments make the search, in very concurrent environment, run
serially. While there is some search overhead due to suboptimal nodes expansion, the search
can be even slower than serial A*.

1applies to serial A* and PA*, that has some overhead (due to more advanced data structures), but the
main principle is the same

2expecting that fair (balanced) hash function is used; n is number of workers
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7.2 AgentFly Path Planner

Results show that PA* is always the fastest for AgentFly planning. The observed search
overhead is none, PA* visits as many states as A* does. For lower number of threads (up to
6) there is increase in performance.

HDA* is exploring the same number of states per second as the PA*, but the search
overhead increases accordingly and in more threads it is beaten by A*. HDA* with shared
closed set is faster, because it doesn't su�er from duplicates in disjoint scopes (7.1.2). This
reduces the search overhead.

The unnecessary search overhead results from the nature of path planning. The heuristics
often works very well and the search doesn't retract much to suboptimal states and most of
the time are processed nodes that have just been generated. The heuristics (and the other
tricks, including adaptive step size; 2.3.1) leads to the goal after very few nodes processed.
That makes no signi�cant advantage of speculative expansion in workers' local scopes.

The PA*'s bottleneck should be the synchronization while accessing the open set, but
in this case, it takes advantage of relatively time-consuming state expansion (checking for
collisions, calculating angles etc.) that is much more expensive than synchronization on
shared open set; that holds mainly for lower number of concurrent threads.

It can be seen (�gure 6.5) that for larger number of threads (six) the planner is not
processing more nodes at a time. This is due to overhead caused by synchronization, in
some internal methods, related to zone checking in the AgentFly planner.

7.3 15-Puzzle

HDA* shows speedup up to 4 times faster than serial A* in 16 threads (�gure 6.5). There
isn't any di�erence in sharing closed set, because hashing totally re�ects equality test. The
speedup is direcly proportional to the amount of nodes processed per second.

On the other hand, PA* goes 10 % slower than serial A*, independently on number of the
threads. The reason is the synchronization overhead when manipulation open set, combined
with huge number of visited states (2.5 · 105, meaning state expansion is relatively cheap
compared to synchronization on open set).
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Chapter 8

Conclusion

Parallel search algorithms for planning were implemented in this work. The goal was to
achieve speedup in planning tasks on multicore computers. The basic concept is to process
more nodes than does serial search in the same time, allowing the search to �nish faster. To
distribute work among threads HDA* or, alternatively, PA* approach is used.

The implementation was done in Java� programing language as a generic search frame-
work. Communication among threads in the HDA* is done using asynchronous message
queues, thus without synchronization overhead. The PA* is based on work-stealing and re-
quires synchronization on key structures. The search performance was tested on AgentFly
path planning, and additionally 15-Puzzle game.

Empirical results have been documented in several benchmarks, where the parallelization
proved its capability to accelerate states processing. The tasks were run in up to 16 threads.
There have, however, been observed several issues a�ecting overall speedup. Those depend
on speci�cs of search domains and the implementation.

The AgentFly path planning was accelerated only slightly more than 2 times over serial
A*. This was caused by synchronization in some methods for checking correctness of a path.
The PA* was preferable to HDA*, because HDA* introduces search overhead, that wasn't
counterbalanced due to the synchronization.

For the 15-Puzzle task there was signi�cant speedup (up to 4 times) and the �gures hint
it would still increase with more threads. This is possible due to the implementation, that
was non-blocking, and huge number of states was required to be processed in this task.

8.1 Future Work

For the path planner, there should be proposed expansion method that doesn't require
synchronization. This will enable to scale well even for many threads.

Another speedup can be achieved by bidirectional search � to run another search from
the end to the start, expecting to meet the forward one [8].
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Appendix A

CD Contents

text

Contains this document

src/pbfs

PBFS classes described in the Implementation chapter

src/atc/planner

Classes for AgentFly parallel planner implementation

that comply with up-to-date1 AgentFly project

src/puzzle

15-Puzzle PBFS implementation and simple testing task launcher

1May 15, 2012
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