
Czech Technical University in Prague

Faculty of Electrical Engineering

BACHELOR THESIS

2012 David Hlavatý

Czech Technical University in Prague

Faculty of Electrical Engineering

Department of Cybernetics

Parallel Trajectory Planning on GPU

B.c. Programme: Open Informatics
Specialisation: Computer and Information science

May 2012
Author: David Hlavatý

Supervisor: Ing. David Šǐslák, PhD.

Acknowledgments

I would like to thank to my supervisor, Ing. David Šǐslák, PhD., for his support and help
during my bachalor project, and to Štěpán Kopřiva, who brought me to this project.

My thanks also belongs to my family for their love, patience and support, especially to
my father Zdeněk who also contributed to this thesis by several drawings.

Abstract

The release of the CUDA architecture made massively parallel computing possible on
ordinary desktops and opened a door to enormous computing power of graphics adapters.
The trajectory planning for aerial vehicles is one of the tasks that can benefit from it. The
sought path must respect all physical limitations of the airplane and avoid all no-flight zones.

The thesis presents two algorithms for trajectory planning on the CUDA architecture:
a parallel version of A* algorithm and Accelerated A* algorithm that uses varying planning
steps to speed up the planning. The parallelization relies on a distribution of states between
individual threads. To implement the proposed algorithms, a block synchronization that is
not officially supported in CUDA is required. Two solutions to this problem are given in
the thesis. Both algorithms are experimentally evaluated and compared to their sequential
version.

Abstrakt

Vytvořeńı CUDA architektury umožnilo masivně paralelńı vypočty na běžných osobńıch
počitač́ıch a otevřelo dvěře k obrovskému výpočetńımu výkonu grafických karet. Plánováńı
trajektorie v letecké dopravě je jedna z úloh, která může být paralelizovaná. Hledaná cesta
muśı respektovat jednak všechna fyzická omezeńı letadla a také všechny bezletové zóny.

Tato práce prezentuje dva algoritmy pro plánováńı trasy na CUDA architetuře: paralelńı
verzi A* algoritmu a Accelerated A* algoritmu, který použ́ıvá promněnlivý krok k zrych-
leńı prohledáváńı. Implementace navržených algoritmů vyžaduje synchronizaci mezi bloky
v CUDA architektuře, jenž neńı oficiálně podporována. V praci jsou navrhnuta dvě možná
řešeńı tohoto problému. Oba algoritmy byly experimentálně vyhodnoceny a porovnány s je-
jich neparaelizovanými verzemi.

Contents

1 Introduction 1
1.1 Thesis Goals . 2
1.2 Related work . 2
1.3 Thesis Organization . 3

2 Planning in Artificial Intelligence 5
2.1 Problem Statement . 5
2.2 Basic Terminology . 6
2.3 Overview of Search Algorithms . 6
2.4 A* Search Algorithm . 8

2.4.1 Properties of the Heuristic Function 8
2.4.2 Selection of the Heuristic Function 9
2.4.3 Heuristics for Two-Dimensional Grids 9

2.5 Accelerated A* Search Algorithm . 10
2.5.1 Algorithm Pseudocode Description 10

3 Parallel Planning on CUDA Architecture 12
3.1 CUDA Hash Distributed A* . 12

3.1.1 Concept . 13
3.1.2 Algorithm . 15
3.1.3 Optimality . 15

3.2 CUDA Parallel Accelerated A* . 16
3.2.1 States Distribution . 17
3.2.2 Threads Cooperation . 18
3.2.3 Task Scheduler . 19
3.2.4 Algorithm . 20
3.2.5 Rejected Approaches . 21

4 Implementation Details 22
4.1 Synchronization . 22

4.1.1 CUDA Concurrence Support . 22
4.1.2 Synchronized Buffer . 24
4.1.3 Non-Blocking Buffer . 26

4.2 Priority Queue . 28
4.3 Accelerated A* Excluded Area . 29

4.3.1 Representation . 29
4.3.2 Inflated Zones Generation . 29

VII

CONTENTS

5 Experimental Evaluation 31
5.1 CUDA Hash Distributed A* . 31

5.1.1 CHDA* Implementation Properties 32
5.1.2 Four-Way Unit Cost . 32
5.1.3 Eight-Way Unit Cost . 36
5.1.4 Prepare Arrays Kernel . 37

5.2 CUDA Parallel Accelerated A* . 39
5.2.1 CPAA* Implementation Properties 40
5.2.2 Comparison with Accelerated A* . 40
5.2.3 Impact of the Planning-Grid . 43

6 Conclusion 46
6.1 Future work . 47

A CUDA 50
A.1 Brief history . 50

A.1.1 Central Processing Units . 50
A.1.2 Graphics Processing Unit . 51

A.2 Fermi Overview . 52
A.3 Programming Model . 53

A.3.1 Program Structure . 53
A.3.2 Thread Hierarchy . 54
A.3.3 Thread Execution . 56
A.3.4 Warp Scheduler . 57
A.3.5 Memory Hierarchy . 58
A.3.6 Streaming Multiprocessor Occupancy 60

B Algorithms 62

C Figures 64

D Contents of the CD 66

VIII

List of Figures

2.1 States expanded by A* and Breadth-first search 8
2.2 The adaptive sampling example in two-dimensional space 10

3.1 Example of distribution of states . 13
3.2 Partitioning of search space into the sectors 17
3.3 A flowchart of CUDA Parallel Accelerated A* algorithm 20

4.1 A synchronized buffer . 26
4.2 Array representation of a binary heap . 28
4.3 A cut of a zone with three edges. 30

5.1 Selected two-dimensional grid planning setups 31
5.2 Execution time of prepare arrays kernel for different parameters 39
5.3 Expanded states in setup (A) . 42
5.4 Expanded states in setup (G) . 43
5.5 A progress of execution time and path length for setup (A) over individual runs. 44
5.6 A configuration used for planning-grid evaluation. 44
5.7 A time dependence of CPAA* on the planning-grid dimensions. 45

A.1 Maximum (theoretical) number of flop for the CPU and GPU 51
A.2 The basic design of the CPU and GPU . 52
A.3 Fermi multiprocessor . 54
A.4 CUDA thread hierarchy . 55
A.5 CUDA scalability . 56
A.6 Fermi Dual Warp Scheduler . 57
A.7 A spatial locality of the texture cache . 60

C.1 A path returned by Accelerated A* for selected setups 64
C.2 United States Airspace with all no-flight zones 65

IX

List of Algorithms

2.1 Basic structure of search algorithms . 7
2.2 Accelerated A* algorithm pseudocode . 11
3.1 CUDA Hash Distributed A* pseudocode . 14
4.1 Mutual exclusion lock pseudocode . 24
4.2 Try acquire lock pseudocode . 25
4.3 LIFO synchronized buffer pseudocode . 25
4.4 LIFO non-blocking buffer pseudocode . 27
B.1 CUDA Parallel Accelerated A* algorithm pseudocode 62

X

List of Tables

5.1 Results of CHDA* with a four-way unit movement model for selected setups 33
5.2 Results of CHDA* with a four-way unit movement model for random grids . 35
5.3 Results of CHDA* with an eight-way unit movement model for selected setups 36
5.4 Results of CHDA* with an eight-way unit movement model for random grids 38
5.5 Results of CPAA* on selected flight plans 40

XI

List of Acronyms

AA* Accelerated A*.

ALU Arithmetic Logic Unit.

CDHA* CUDA Hash Distributed A*.

CM Connection Machine.

CPAA* CUDA Parallel Accelerated A*.

CPU Central Processing Unit.

DRAM Dynamic Random Access Memory.

FIFO First-In, First-Out.

GPU Graphics Processing Unit.

HDA* Hash Distributed A*.

LIFO Last-In, Last-Out.

PBNF Parallel Best-N Block-First.

PRA* Parallel Retraction A*.

PSDD Parallel Structured Duplicate Detection.

RA* Retraction A*.

SDD Structured Duplicate Detection.

SFU Special Function Unit.

SIMD Single-Instruction, Miltiple-Data.

SIMT Single-Instruction, Multiple-Thread.

SM Streaming Multiprocessor.

XII

Chapter 1

Introduction

Path finding goes back a long time before the first computers were invented. Whenever
someone needed to move from one place to another, they always wanted to use the “best”
possible path. The meaning of the “best” path varied according to the nature of the journey.
For a group of merchants, the main aspect was the safety of the road. For a king moving his
army, the goal was to stay undetected from his enemies. The travel plan had to be prepared
in advance and modification required to stop and look at the map.

The invention of computers made planning much easier. Modern computers can go
through a large amount of possible solutions and return the desired one in a matter of
seconds. A typical usage is in navigation for cars in combination with the GPS system.
It calculates a route at the beginning and then it provides directions during the journey.
If a wrong turn is taken, it immediately recalculates the route and provides alternative
directions.

Nevertheless, the application of the path planning does not have to be limited only to
cars. Another domain where it is sought to find a solution quickly is the planning for aerial
vehicles. It might look at the first sight that it is not a complicated task, because aircrafts
can fly straight towards their goal. However, just as cars are limited by roads and traffic
regulations, airplanes must avoid certain areas that they cannot fly in. For example, the
United States Airspace contains more than 1400 no-flight zones consisting of areas around
government buildings, schools or military objects. A zone can either be valid for the whole
area or it can only be restricted to a specific altitude. In addition, some of these zones may
be active only for a limited time. The sought trajectory must not only consider all no-flight
zones, but it also has to respect the physical limitations of the airplane. That includes the
minimum and maximum velocity, turn radius, or flight range. Hence, the trajectory planning
for aerial vehicles is a computationally demanding task.

The flight plan planning is solved in the AgentFly system [1], that was developed by re-
searchers from the Agent Technology Center. The AgentFly is a multi-agent system enabling
large-scale simulation of civilian and unmanned air traffic.

Computers have changed a lot since the first computer was invented. For many years,
the most reliable source for improvement was to increase the clock speed. However, at the
same time, leading industrial companies were building supercomputers by adding additional
processors. This was the foundation of parallel computing. The most famous supercomputer
of today is the IMB Blue Gene, which aims to reach 20 Petaflops (i.e. 20 ·1015 floating point
operations per seconds) in 2012.

Unfortunately, supercomputers are extremely expensive. Therefore, for many years, par-
allel computing was only the domain of a few. A breakthrough came with the introduction of
the NVIDIA CUDA architecture in 2006, which made massively parallel computing possible
on ordinary desktops. CUDA enables computation power of the Graphical Processing Unit

1

1.1. THESIS GOALS

(GPU) to be used for general-purpose computing. Due to the affordability of graphics cards,
it soon got the attention of many programmers. Nowadays it is one of the most rapidly
developing fields of modern computing.

1.1 Thesis Goals

Both the planning and parallel computing are very popular topics. Several parallel search
algorithms were presented in the last decade, but none of them was designed for CUDA
architecture. GPUs are specific for their execution model, when multiple threads execute
the same instruction, and for their memory hierarchy.

This thesis aims to fill this gap. The goal is to explore the possibilities of parallel planning
on CUDA architecture and to use this knowledge to design an algorithm, implement it and
evaluate its performance. Parallel planning on the GPU would be especially useful for the
AgentFly, where hundreds of trajectories need to be computed and the affordable GPU
provides a nice way to boost performance.

1.2 Related work

Evett et al. [2] designed Parallel Retraction A* (PRA*). It is a parallel version of
Retracting A* (RA*) search that uses a hash function to distribute states among available
processors. The algorithm was tailored to run on a Single-Instruction, Multiple-Data (SIMD)
Connection Machine (CM)1. Retracting A* is a modification of A* algorithm. It uses the
same evaluation function to select the best state, but unlike A* it is not necessary to keep
all expanded states in memory. States can be retracted and re-expanded later to save some
space. This was an important property for PRA*, because each processor on the CM had
only small local memory. PRA* exchanges states between processors by using synchronous
communication. In the experiments performed by Evett et all., PRA* showed linear speed
up against RA* with respect to a number of processors.

Kishimoto et al. [4] introduced Hash Distributed A* (HDA*). Hash Distributed A*
is based on PRA*. It also uses the hash function to distribute states, but unlike PRA*
it uses asynchronous, non-blocking communication. It decreased the overheads caused by
communication, since a processor does not have to wait until it is confirmed that the state
was received. This makes it possible to used HDA* even on distributed systems, where
communication between individual systems has high latency. Another aspect of HDA* is
its simplicity. It does not use complicated retraction that was used by PRA*. It is merely
a parallel version of A*. Therefore, the implementation is straightforward, which makes it
easier to debug it. The execution time of HDA* was compared with A* and it was roughly
five times faster on a cluster with eight cores and with 128 cores, HDA* was between 35 to
65 times faster.

Zhou et al. [5] described a new algorithm for graph search, called Parallel Structured
Duplicate Detection (PSDD). Structured Duplicate Detection (SSD) is a graph search that
allows an unused portion of the state space to be stored on external memory. It is based
on many-to-one projection of the state space. The original state space is mapped to a new
abstract space. States in the abstract space form an abstract graph. An abstract state s ′1 is
a successor of abstract state s ′2 if there are two states s1 and s2 in the original state space,
s1 is successor of s2, s1 maps to s ′1, and s2 to s ′2. Abstract states, which do not have any
common successor, are said to be disjoint. States in the original space that map to one

1A Connection Machine was a (series of) supercomputer(s) designed by W Hillis. See [3] for more
information.

2

1.3. THESIS ORGANIZATION

abstract state are referred together as n-block. A group of n-blocks of disjoint abstract states
is called free n-blocks. PSDD uses n-blocks to divide the work between available processors
(threads). Each processor gets one free n-block. A processor then expands all states from
that n-block. Therefore, synchronization is not necessary at this point. Once all states are
expanded, another free n-block is selected. PSDD was validated against SSD. PSDD with
three threads was approximately three times faster.

Burns et al. [6, 7] further improved PSDD and presented Parallel Best-N Block-First
(PBNF). Unlike PSDD, it works well with inadmissible heuristics and non-uniform and non-
integer move costs. The improvement lies in the way an n-block is selected and expanded.
The cost of each n-block is determined by the best state inside it (i.e. the state with the
smallest evaluation function). Free n-blocks are ordered by their cost. When a new n-block
is requested, the one with the best cost is selected. Then instead of expanding all states,
only those with the cost smaller than the cost of the best free n-block are expanded. Once
the cost of states inside the n-block gets bigger, the current n-block is released and a new
one is acquired. PBNF was tested on several planning problems. Apart from one, it was
faster than A* even with only one thread. With seven threads, it was always faster than A*
and in most cases it was better than original PSDD.

None of these algorithms were designed to run on the GPU. Bleiweiss [8] described the
implementation of parallel path-finding on the CUDA architecture. His work is aimed at
crowded game scenes, where thousands of paths need to be found. Each path is planned
sequentially by one thread. Parallelism is achieved by running these threads on a CUDA
device simultaneously. Bleiweiss tested the algorithm on several graphs with different number
of edges. With 2150 edges and 115 600 agents (i.e. threads), the GPU implementation was
more than fifty times faster.

Edelkamp et al. [9] used the GPU to solve the Nine Men’s Morris game. A common ap-
proach in game theory is to use Depth-First search to explore the game states space. However
Depth-First search is inherently sequential. Therefore they used Breath-First search. The
main algorithm runs on the Central Processing Unit (CPU) and the GPU is used during
each iteration to expand all states at a given depth. This improvement helped them to ex-
plore every reachable state in less than four days. For comparison, the corresponding CPU
implementation was unable to return a result in five days.

1.3 Thesis Organization

Chapter 2 introduces planning in Artificial Intelligence. It formally defines the planning
problem and provides the overview of commonly used planning algorithms. The major part
of the section describes two search algorithms that were used in this work - the well-known
A* and its modification, Accelerated A*, that is used in the AgentFly for trajectory planning.

Chapter 3 presents the used approach for parallel planning on the CUDA architecture.
The first part of the chapter explains a parallel version of A* called CUDA Hash Distributed
A* (CHDA*). Beside the basic concept, it comments on the algorithm pseudocode and
discusses its optimality. The second part introduces modifications that are necessary in
order to run Accelerated A* on the GPU. The modified algorithm is called CUDA Parallel
Accelerated A* (CPAA*).

Chapter 4 gives the implementation details of selected parts. First, the problem of
synchronization between blocks is addressed. Two solutions to this problem are given -
a synchronized and non-blocking buffer. Then the representation of a priority queue for
suggested algorithms is provided. In the last part of the section, the representation of no-
flight zones in the AgentFly is described together with its impact on the parallel version of
Accelerated A*.

3

1.3. THESIS ORGANIZATION

Chapter 5 presents the experimental evaluation of presented algorithms. CHDA* is
compared to the implementation of A* in a two-dimensional grid with two movement models:
(i) four-way unit cost (ii) eight-way unit cost. The performance of CPAA* is evaluated on
real data from the AgentFly system. This chapter also discusses the results of the performed
experiments.

Chapter 6 summarizes all the information presented in this thesis and provides a final
evaluation of the achieved results. Furthermore, it suggests a possible extension of this work.

Appendix A covers general-purpose computing on the CUDA architecture. First, a brief
history of the CPU and GPU is given. Then NVIDIA’s Fermi architecture and the CUDA
programming model are described. Both of the most limiting factors of modern GPUs are
addressed - memory latency and code divergence.

4

Chapter 2

Planning in Artificial Intelligence

Many tasks, including trajectory planning, can be described as a planning problem. This
makes it possible to use one formal framework to solve all kinds of problems. Planning
problems, where the environment is observable, can be solved by one of the several general-
purpose search algorithms that were designed for solving such problems.

This chapter describes the planning in Artificial Intelligence. Section 2.1 provides a formal
definition of a general planning problem. The basic terminology is explained in Section 2.2.
The overview of commonly used algorithms for solving planning problems is given in Sec-
tion 2.3. Last two sections explain search algorithms that were used in this work. Namely
it is A* search in Section 2.4 and Accelerated A* search in Section 2.5.

2.1 Problem Statement

S. Russel et al. [10] formally defined planning problem with the observable environment
by five components:

1. The initial state of the problem (e.q. the start position for a trajectory planning
problem).

2. A description of the possible actions available at a particular state. (e.q. for a two-
dimensional grid map: (i) go left (ii) go right (iii) go up (iv) go down)

3. A description of what each action does, formally called a transition model. It is a func-
tion that generates a new state as a result of applying a particular action at a particular
state. States that are reachable by a single action from some state s are known as the
successors of s . (e.q. for a two-dimensional grid map, the successors of state (1, 1) are
{(0, 1), (2, 1), (1, 0), (1, 3)}).

4. The goal test, which determines whether a given state is a goal state.

5. A path cost function that assigns a numeric cost to each path. A path is a sequence
of states that are connected by actions. If each action has a given cost, then the total
path cost is the sum of the cost of individual actions along the path.

The first three components (i.e. the initial state, actions and the transition model) define
state space that can be represented as a directed graph. States accessible from the initial
state are nodes of the graph and actions are links between these nodes. Thus, a problem
can be seen as a graph search (or a tree search if loops are allowed).

Some literature (including [10, 11]) distinguish these two terms. States are unique el-
ements of a state space. Nodes are elements that a search algorithm operates on. Each

5

2.2. BASIC TERMINOLOGY

node is associated with exactly one state. One state can be referred by several nodes. This
perspective is useful if a state can be visited more than once (loops are allowed), because
it emphasizes the fact that each visit is associated with a different path (each node is at
a different depth of the search tree).

A solution is a sequence of actions that leads from the initial state to a goal state [10].
Each solution is characterized by its path cost. An optimal solution is the one with the
lowest path cost among all possible solutions.

2.2 Basic Terminology

Open List (called the frontier in [10]) is a data structure that stores states which are
yet to be expanded by a search algorithm. Common representation for an open list is
a queue [10]. The order in which new elements are inserted and removed, determines the
type of the queue. The three most widely used types are: (i) first-in, first-out (FIFO queue)
(ii) last-in, first-out (LIFO queue) (iii) priority queue, where the element with the highest
priority is removed first. The FIFO queue is also known as the stack [12]. The LIFO queue
is sometimes referred to simply as the queue.

Closed List (called the explored set in [10]) is a data structure that stores states which
have been already expanded by a search algorithm. A closed list can be used to prevent
an algorithm from repetitively expanding a particular state [10]. It is often represented by
a hash table1. , since the hash table allows a fast look-up operation to check for an identical
(or in some applications a similar) state.

Binary heap is a tree structure that is usually stored in an array, where each node has the
maximum of two children that have bigger (smaller) key [14]. The root of the tree contains
the node with the smallest (biggest) key. It is commonly used data structure for a priority
queue.

Completeness is a property of a search algorithm. An algorithm is said to be complete if
it is guaranteed to find a solution if it exists [10].

Optimality is a property of a search algorithm. An algorithm is said to be optimal if it is
guaranteed to find an optimal solution [10].

2.3 Overview of Search Algorithms

As was mentioned at the beginning of this section, search algorithms are designed to
find a solution for planning problems that fulfill all requirements stated in Section 2.1. All
algorithms follow the same basic structure that is provided in Algorithm 2.1.

Individual algorithms vary in the way they select a state from the open list (line 5). This
property is known as a search strategy [10]. Based on the search strategy, they can be divided
into the two categories: (i) uninformed search (ii) informed search

1A hash table is a data structure that effectively implements a dictionary (i.e. an element can be accessed
by its key). [13]

6

2.3. OVERVIEW OF SEARCH ALGORITHMS

Algorithm 2.1 Basic structure of search algorithms (source: [10])

1: function Search(problem)
2: OPEN ← sinit
3: CLOSED ← ∅
4: while OPEN 6= ∅ do
5: sc ← Remove(OPEN)
6: if sc = sgoal then
7: return solution
8: else
9: Insert(sC , CLOSED)

10: foreach sn ∈ Successors(sc) do
11: if sn /∈ CLOSED then
12: InsertOrReplaceIfBetter(sN , OPEN)

13: return failure

Uninformed search only has the information about a state that is provided in a problem
definition [10]. That means they can only generate successors, and decide whether a partic-
ular state is a goal state or not. Typical strategies are:

• Breath-first search always expands all successors of the current state before selecting
another one from the open list. The open list is represented by a FIFO queue. Given
a sufficient amount of time, this algorithm is complete. If all actions have the same
cost, it is also optimal.

• Uniform-cost search selects and expands a state from the open list that has the
lowest path cost from the initial state. Before a new state is added into the open list,
it is tested to see whether a similar state is already in it or not. If it is, the state with
the smaller path cost is used. The open list is represented by a priority queue. Unlike
the Breath-first search, this algorithm is complete and optimal regardless of the cost
function.

• Depth-first search always expands the deepest state in the open list. The open list is
represented by a modified LIFO queue that adds successors in an opposite order than
they are generated. This algorithm, however, is not guaranteed to find an optimal
solution. In an extreme case, it may not even find a solution at all. Therefore, it is not
complete, nor optimal.

Informed search uses special knowledge about the domain of a problem to select the most
promising state [11]. A typical approach is to use this knowledge to compute a heuristic (by
evaluating a heuristic function).The heuristic function is described later, but in general it
should estimate the path cost from the current state to the goal state. These type of strategies
are known as Best-first search [10]. Common examples are:

• Greedy best first search uses only the heuristic to expand a state that is closest
to the goal state. The open list is represented by a priority queue that always returns
and remove a state with the smallest estimated remaining path cost. This algorithm
is neither complete, nor optimal.

• A* search combines the heuristic with the real path cost from the initial state. The
open list is also represented by a priority queue. If certain requirements on the heuristic
function are satisfied, it is complete and optimal.

7

2.4. A* SEARCH ALGORITHM

2.4 A* Search Algorithm

A* is one of the most popular search algorithms. It is easy to implement, and yet it
provides fairly good performance even on large problems. It is a form of best-first search [10].

A* uses an evaluation function f(s) = g(s) + h(s) to select a state for expansion, where
g(s) is the true path cost from sinit to s and h(s) is an estimated cost from s to sgoal [11].
During each iteration, it selects a state from the open list that minimizes f(n) (line 5 in
Algorithm 2.1). In general, this usually means that less states are expanded and a path is
found faster as illustrated in Figure 2.1. Whether this is the case depends on properties of
the evaluation function. It should be clear, that the path cost from the initial state is fixed.
Therefore, effectiveness of A* relies on the heuristic function.

(a) Breadth-first search

(b) A*

Figure 2.1: States expanded by A* and Breadth-first search. (source: [15])

2.4.1 Properties of the Heuristic Function

The heuristic has a significant effect on properties of A*. It can affect the effectiveness and
the optimality as well. Let h∗(s) be a true cost from s to sgoal. Then according to the value of
the h(n), the heuristic function can be divided into the three categories [15]: (i) h(s)� h∗(s)
(ii) h(s) � h∗(s) (iii) h(s) ≈ h∗(s). In the first case, only the g(s) is considered and A*
turns into the Uniform-cost search. The second case is the exact opposite. The heuristic is
much bigger than the true path cost. Therefore, the g(s) will have a little influence (if any
at all) on the evaluation function and A* reduces to Greedy best-first search. Neither the
first case nor the second leads to an improvement. Hence, the heuristic should be somewhere
around the true path cost.

8

2.4. A* SEARCH ALGORITHM

Let c(s , s ′) ≥ ε > 0 be the true path cost between states s and s ′, where ε is a reasonably
small value2. Then the heuristic function is said to be [10]:

• admissible if h(s) ≤ h∗(s)

• consistent if h(s) < c(s , s ′) + h(s ′)

The first property means that the path cost will be never overestimated, i.e. the total
path cost will be always bigger than the f(s). This is a sufficient condition for the optimality
if the closed list is not used or it is allowed to re-open already closed states. Otherwise it
is possible that an intermediate state on the desired path will be expanded and closed with
worse g(s) and it will not be re-opened once it is reached again with a better one.

The condition of the second property is nothing else than triangle inequality3 from math-
ematics, where vertices of the triangle are s , s ′, and sgoal [10]. In other words, the evaluation
function cannot get lower when moving to the successor state. Each function that is consis-
tent is also admissible. The admissible heuristic, however, does not have to be consistent.
If the heuristic is consistent then A* is optimal. P. E. Hart el al. [11] also proved that with
the consistent heuristic, A* will never expand more states than any other search algorithm.
The consistency is sometimes also called a monotonicity.

2.4.2 Selection of the Heuristic Function

Selecting the appropriate heuristic function can be tricky. It strongly depends on the
problem. The consistency does not mean that the heuristic is good. For example, h(s) = 0
is consistent, but it does not add any information beyond the problem definition.

Let h1 and h2 be two consistent heuristics. If h1(s) > h2(s) for all s ∈ V, than h1
dominates h2 [10]. The heuristic that dominates another one will never expand more states.
The condition for the admissible (and therefore consistent as well) heuristic gives the upper
bound. Therefore, the ideal heuristic should be as close to h∗ as possible.

One way of obtaining a good heuristic is to solve a relax problem [10]. A relax problem is
a simplified original problem. This is achieved by omitting some constraints. Such a problem
is usually easier and faster to solve. Another approach is to have a database of subproblems.
The heuristic then can be selected as the cost of a subproblem in the database.

When designing a heuristic, time complexity should be considered as well. If it takes
too much time to compute the heuristic, the algorithm might give a worse performance than
some uninformed search. Sometimes, it might be even feasible to choose an inconsistent
heuristic and obtain a sub-optimal solution that can be sufficient for the given problem.

2.4.3 Heuristics for Two-Dimensional Grids

When planning is done on a two-dimmensional grid, these are the most often used heuris-
tics:

• Manhattan distance: h(s) = |xs − xsgoal|+ |ys − ysgoal|

• Diagonal distance: h(s) = max(|xs − xsgoal|, |ys − ysgoal|)

• Euclidean distance: h(s) =
√

(xs − xsgoal)2 + (ys − ysgoal)2

2The meaning of ε is to ensure that each action will increase the path cost. Otherwise, the search might
get caught in a loop between two states with a cost that converges to zero

3Triangle inequality states that the length of any side of the triangle cannot be greater than the sum of
the other two.

9

2.5. ACCELERATED A* SEARCH ALGORITHM

2.5 Accelerated A* Search Algorithm

Accelerated A* (AA*) was introduced by Šǐslák et al. [16]. It was designed to enable
a trajectory planning in large-scale environments. It extends A* algorithm by adding an
adaptive sampling [17]. This brings significant speed-up while preserving a search precision.

The distance of a newly generated state from the parent state depends on a planning step.
The planning step length depends on the distance to the nearest excluded area (obstacle or
restricted area). If the state is far away from any excluded area, the sampling is sparse
and fewer states are generated. The closer planning gets to some excluded area, the smaller
step is used so AA* will not miss any solution. The planning step cannot get smaller than
a predefined minimum value, known as a search precision, otherwise the step will infinitely
reduce towards zero for states that are very close to some excluded area [16]. Therefore,
AA* will not miss any gap between excluded areas that is larger than the search precision.
Figure 2.2 illustrates this concept in an example in two-dimensional space.

Figure 2.2: The adaptive sampling example in two-dimensional space (source: [18])

The method of varying sampling steps has two drawbacks. First, it can result in gen-
erating several states that are almost similar, but that will not pass the ordinary equality
test [17]. This will dramatically increase the number of states and reduce the algorithm
performance. Hence AA* uses a similarity test instead when operating on open and closed
lists. Two states are similar if their euclidean distance and difference of their directions are
less than the thresholds derived from the planning step. Secondly, the path can be curved
more than it is necessary. In order to avoid it, each state is smoothed before it is added into
the open list. Briefly, smoothing is a process of finding a new parent that gives a better path
cost from the initial state when used instead of the current parent.

Since Accelerated A* is based on A* search algorithm, it also relies on a good heuristic
function. AA* uses the length of the actual path that respects all physical constraints on
a movement, but that does not consider any excluded zones.

2.5.1 Algorithm Pseudocode Description

The Accelerated A* pseudocode is provided in Algorithm 2.2. The function expects
a start and a goal planning configuration on the input and returns a flight plan (empty if

10

2.5. ACCELERATED A* SEARCH ALGORITHM

the search failed). The planning configuration consists of a position and a direction. The
flight plan is denoted as fp, the empty flight plan as 〈〉.

First, it is checked to see whether the start and the goal are valid (line 2). The con-
figuration is not valid if it is inside some excluded area. Then an initial planning state is
created and added into the open list.The planning state consists of a planning configuration,
a sampling level, a flight plan history, an usable flag that indicates if the flight plan used for
the heuristic is valid, an evaluating function cost and a reference to the previous planning
state. The closed list is initialized to an empty set (lines 4 - 7).

During each iteration (lines 8 - 26), the best state is removed from the open list and
inserted to the closed list (lines 9 and 10). If the usable flag is set (line 11), then a goal
state is prepared and smoothed. Then a complete flight plan is reconstructed and returned
(lines 12 - 15). Otherwise all possible flight plans from this state are generated (lines 16 - 26).

For each flight plan, an end planning configuration is obtained and a planning step is
detected (lines 17 and 18). Then it is checked to see if the configuration is already in the
closed list (line 19) and if the flight plan is not valid (line 21). The flight plan is valid if it
does not intersect with any excluded area. If either one of these conditions is true, then the
rest of the loop is skipped. Otherwise a new state is created, smoothed and inserted into the
open list (lines 23 - 26).

If the open list is empty, a trajectory was not found and the empty flight plan is returned
(line 27).

Algorithm 2.2 Accelerated A* algorithm pseudocode (source: [17])

1: function AASearch(pcS, pcG)
2: if ¬IsValid(pcS)or ¬isValid(pcG) then
3: return 〈〉
4: fpend ← Connect(pcS, pcG)
5: sS ← 〈pcS,DetectSamplingStep(pcS), 〈〉, IsValid(fpend), 0,Cost(fpend),−〉
6: OPEN ← sS
7: CLOSED ← ∅
8: while OPEN 6= ∅ do
9: sC ← RemoveTheBest(OPEN)

10: Insert(sC , CLOSED)
11: if usC then
12: sG ← 〈pcG,−,Connect(pcsC , pcG), true, gsC + hsC , 0, sC〉
13: sG ← SmoothPath(sG, pcS)
14: fpresult ← ReconstructPath(sG)
15: return fpresult

16: foreach fpi ∈ Expand(sC) do
17: pcN ← EndConfiguration(fpi)
18: ξN ← DetectSamplingStep(pcM)
19: if Contains(pcN , CLOSED, ξN) then
20: continue
21: if ¬IsValid(fpi) then
22: continue
23: fpend ← Connect(pcN , pcG)
24: sN ← 〈pcN , ξN , fpi, IsValid(fpend), gsC + Cost(fpi),Cost(fpend), sC〉
25: sN ← SmoothPath(sN , pcS)
26: InsertOrReplaceIfBetter(sN , OPEN)

27: return 〈〉

11

Chapter 3

Parallel Planning on CUDA
Architecture

This chapter presents two parallel algorithms. Section 3.1 explains a parallel version of
A* for the CUDA architecture and discusss its properties. This algorithm is called CUDA
Hash Distributed A* (CHDA*). Section 3.2 introduces modifications that are necessary for
CHDA* to be usable for Accelerated A*. The modified parallel algorithm is named CUDA
Parallel Accelerated A* (CPAA*).

3.1 CUDA Hash Distributed A*

CUDA reveals computational power through a large number of threads. In order to take
advantage of it, it is necessary to have work for these threads. A simple implementation
lets threads operate on a shared open and closed list. Synchronization has to be used to
ensure consistency of these structures. Both the open and closed list are accessed quite often.
Thus, this approach yields a lot of overheads. The situation is even worse on the CUDA
architecture. Recall that threads in a warp execute the same instruction (unless they are
divergent). Thus, they access these lists at the same time, which causes their execution to
be serialized and consequently it reduces the instruction throughput by a factor of 32.

Another problem is synchronization itself. CUDA supports synchronization only within
a single block. The block is assigned on one SM, ergo only a fraction of resources would
be used. To fully utilize the GPU, it is necessary to have multiple blocks and to establish
communication between them. This is possible due to the support of atomic operations on
global memory. Although it is impossible to avoid it, it should be used as little as possible,
which is not the case of the open and closed list.

Another approach is to use one’s own open and closed list for each thread. With careful
design, the access of threads in a warp can be coalesced as long as they request elements
with the same relative offset. In this case, synchronization is needed only when states
are transferred between blocks. In general, this should occur less often. Evett et al. [2]
introduced an algorithm that uses synchronous communication to distribute newly expanded
states according to their hash value. Kishimoto et al. [4] improved it to use asynchronous
communication. The suggested algorithm is a modification of this algorithm, which is known
as Hash Distributed A* (HDA*) [4].

The first part of this section introduces a CHDA* concept. It is followed by detailed
algorithm describtion. The last subsection discusses suboptimality of the algorithm and
suggests a solution to this problem.

12

3.1. CUDA HASH DISTRIBUTED A*

3.1.1 Concept

Work is divided between n threads that are divided into b blocks. Each block contains
t threads. All blocks must be guaranteed to run at the same time. Therefore, the size of
b and t is limited from above by the number of blocks and threads that can reside on one
SM as well as by usage of resources (i.e. registers and shared memory). To avoid wasting
available resources, the number of threads in a block should be a multiple of 32. Threads are
uniquely identified by their block id (bid) and thread id (tid) within a block. This identifier
is denoted as (bid, tid).

All threads are even. There is no master thread that would control the others. Commu-
nication between threads is asynchronous. Each thread has a buffer, where other threads can
put states for it. The buffer must support two operations: (i) insertion of new states by all
threads (ii) removal of states by the thread it belongs to. Consistency must be guaranteed
at all times. Several threads might try to insert new states while the owner tries to remove
one. Since buffers are located in global memory, access takes a long time. Ideally, requests
should be coalesced. This is impossible to achieve for insertion, but removal of states occurs
at the same time within a warp. Therefore, the buffers should be grouped by blocks, which
also makes them easily accessible using the (bid, tid) identifier.

Each thread is responsible for expanding states from its own open list. When a new
state is generated, a hash function is evaluated to obtain a hash for a given state. The
hash function may be any function that returns an integer with one limitation. It must be
deterministic (i.e. it must return the same value for equal states). The hash is used to select
a thread the state belongs to by using Equation 3.1. The state is then inserted into the buffer
of the desired thread. Figure 3.1 illustrates a distribution of states on a two-dimensional grid
map.

bid =
(hash mod n)

t
, tid = (hash mod t) (3.1)

Once all successors are generated, the thread checks its buffer for new states. If there is
one, the thread takes it and processes it. First, it checks whether the state is already in the
closed list. This test is different from the one used in the original A*. In general, due to
the nature of all parallel search algorithms, a state may already be closed with a worse path
cost. Therefore, it is necessary to allow re-opening of already visited states. If the closed list
contains an equal state with better f(s), the new state is discarded. Otherwise it is inserted
into the open list (or in the case that the open list already contains the equal state, it is
either discarded or the original value is updated and the open list is re-sorted, depending on
whether the new state has a better path cost or not).

hash = y · width+ x

Figure 3.1: Example of distribution of states for two blocks with two threads per block in
a two dimensional grid map.

The number of states that are removed from the buffer during each iteration can impact
performance. If only one state is removed, it is possible that a state with much better f(s)
will get stacked in the buffer for a long time (especially if the buffer is implemented as LIFO)
and the thread will keep expanding states that do not lead to a solution. On the other hand,

13

3.1. CUDA HASH DISTRIBUTED A*

if an algorithm requires that the buffer is empty before moving further, the thread might
end up removing states only if other threads keep inserting new ones.

Once a goal state is reached, the other threads are notified through a common variable
for all threads (a shared variable) in global memory and the solution is saved. The same
applies for a situation when the thread has nothing to do (i.e. the open list is empty). In
such a case, the thread notifies others and waits until all threads empty their open list or
the goal state is reached. While waiting, it must check its buffer for incoming states. If it
receives a new state, the other threads must be notified again that it has some states to
process (i.e. the open list is not empty).

The termination is possible only under two circumstances: (i) the goal state has been
reached (ii) all threads’ open lists and buffers are empty. In the first case, a path has been
found. In the second case, a path does not exist. It is especially important to check that
there are no states on the way, otherwise the algorithm might end earlier and miss a solution.

Algorithm 3.1 CUDA Hash Distributed A* pseudocode

Require: finished = false and emptyCounter = 0
Ensure: solution contains a solution to the problem if it exists.

1: function CHDASearch(problem, buffer, finished, emptyCounter, solution)
2: emptyF lag ← false
3: OPEN ← ∅
4: CLOSED ← ∅
5: (bidsinit

, tidsinit
)← GetSectorId(sinit)

6: if (tidsinit
, tidsinit

) = (bid, tid) then
7: InsertOrReplaceIfBetter(sinit, OPEN)

8: while ¬finished and (emptyCounter < n or ¬IsEmpty (buffer)) do
9: if ¬IsEmpty(OPEN) then

10: sC ← RemoveTheBest(OPEN)
11: Insert(sC , CLOSED)
12: if sC = sgoal then
13: solution← ReconstructSolution(sC)
14: finished← true
15: else
16: foreach sN ∈ Successors(sC) do
17: (bidsN , tidsN)← GetSectorId(sN)
18: Push(buffer(bidsN ,tidsN), sN)

19: while HasNext(buffer(bid,tid)) do
20: sC ← Pull(buffer(bid,tid))
21: if ContainsBetter(sC , CLOSED) then
22: continue
23: else
24: InsertOrReplaceIfBetter(sC , OPEN)

25: if IsEmpty(OPEN) then
26: if ¬emptyF lag then
27: AtomicInc(emptyCounter)
28: emptyF lag ← true

29: else
30: if emptyF lag then
31: AtomicDec(emptyCounter)
32: emptyF lag ← false

14

3.1. CUDA HASH DISTRIBUTED A*

3.1.2 Algorithm

A pseudocode for a CHDA* kernel function is provided in Algorithm 3.1. Besides a prob-
lem description and buffers, it expects three other arguments that must be placed in global
memory and shared by all threads: (i) a finished determines whether a solution has
been found yet (ii) an emptyCounter stores how many threads have an empty open list
(iii) a solution is used to return a found solution (if it exists).

First, an empty flag, open and closed list are initialized (lines 2 - 4). The empty flag
is used to determine whether a thread has notified others that its open list is empty. The
initial state is inserted only to the open list of a thread that it belongs to.

The main loop continues until either a solution is found or all states have been expanded
(lines 8 - 32). The iteration can be divided into three stages:

• Stage 1: expansion of a state from the open list (lines 9 - 18)

• Stage 2: processing of states from the buffer (lines 19 - 24)

• Stage 3: notification of other threads if the open list is empty or not (lines 25 - 32)

In the first stage, there is check done to see whether the open list has some more states
(line 9). If it does not, the expansion of the best state from the open list is skipped.
Otherwise, the best state is removed and closed (line 10 and 11). It is then compared with
the goal state (line 12). If they are equal, a solution is reconstructed and finished is set to
true (lines 13 and 14). Otherwise, successors are generated and written on an appropriate
buffer (lines 16 - 18).

As long as there is only one goal state, synchronization is not required while writing
a solution, since only one thread will ever write it due to the deterministic hash function.
However, if there are more goal states, it is possible that individual goal states will be
assigned to different threads. In such a case, a proper synchronization must be used to
guarantee consistency.

In the second stage, each thread processes states from its buffer. This pseudocode expands
all states in the buffer, but as was suggested in Section 3.1.1, it might not always be the
best solution. Once a new state is pulled from the buffer (line 20), it is checked to see if the
closed list contains an equal state with better path cost (line 21). If it does not, the new
state is inserted into the open list (line 24).

The last stage checks if the thread has a state in the open list. If it does not, the empty
counter is incremented if it was not done in previous iterations (lines 26 - 28). Similarly, if
the thread has some states to process and other threads were notified, the empty counter is
decremented (lines 30 - 32). To ensure consistency, the counter is incremented/decremented
by using an atomic increment/decrement operation.

3.1.3 Optimality

It is easy to observe that the algorithm is not optimal, even if h(s) is admissible and
consistent. A* optimality is guaranteed (under the condition that h(s) is admissible and
consistent), because an expanded state has the lowest f(s) (it is the best state) among all
states that have not been closed yet. In the suggested algorithm, n threads expand states
from their own open list. Therefore, besides the best state, n− 1 other states are expanded
as well. As a matter of fact, the best state might not be expanded at all during the iteration,
because it might be in some thread’s buffer. Since some threads might have less work to do,
it is possible that a suboptimal solution will be found first. Hence, without any modification,
the algorithm is not guaranteed to find the best solution.

15

3.2. CUDA PARALLEL ACCELERATED A*

To ensure optimality, the search must continue even after the solution is found. The
modified algorithm can be divided into two phases:

• Phase 1: find any solution

• Phase 2: continue search until it is proven that there are no better solutions

Phase 1 consists merely of the algorithm suggested in Section 3.1.1. When a solution is
found, the cost of the solution is stored in a shared variable in global memory.

Phase 2 adds few modifications. First, states with the f(s) worse than the best solution
are removed from the open list (the open list is pruned). Secondly, only states that have
the f(s) smaller than the best solution are added into the open list. The rest is discarded.
Whenever a new solution is found, its cost is recorded and the other threads are notified of
this change so they can prune their open list. The search continues as long as some thread
has states in the open list or in the buffer.

Depending on the data structure used for an open list, pruning can be an expensive
operation. The most commonly used implementation for the open list (and the one used in
this work, see Section 4.2) is a binary heap. Removing all nodes with a key value bigger than
a certain threshold would require traversing the whole tree and removing nodes that do not
satisfy this condition. Generally, the cost for such an operation is O(n · log(n)), which is
too high, especially on CUDA architecture due to high memory latency and code divergence
that will undoubtedly occur.

In the case that the cost for pruning is too high, it might be better to use a slightly
different approach. Instead of insisting on removing all states that are worse than the best
solution, only a portion of those states, which can be removed without adding too much
overhead, is removed. Furthermore, every operation on the open list (i.e. remove and return
smaller, insert, update) is given the best path cost as a limit. If a state with the f(s) worse
than the limit is accessed, it is immediately removed if the cost for such an operation is
small. A negative of this approach is that operations on the open list are generally slower,
because the open list contains more states. Nonetheless, in some situations, this might give
a better result.

3.2 CUDA Parallel Accelerated A*

Accelerated A* extends A* algorithm. Basically, the algorithm suggested in Algorithm 3.1
can also be used for AA*. Nevertheless, without any modification, a state distribution
would lead into expanding a lot of similar states. To avoid it, states that are close to each
other should be assigned to the same thread. A solution to this problem is described in
Section 3.2.1.

Unfortunately, this requirement introduces a new problem - a load balancing. CHDA*
relies on the fact that each successor will be, at least with very high probability, assigned
to a different thread. As a result of that, most of the threads have some work to do. This,
however, contradicts the condition that similar states should be processed by the same thread.
This would not be a problem if all threads had some states to expand from the beginning.
However, since only one thread can own the initial state, it can take a long time (if at all)
before all threads are occupied. Fortunately, unlike A*, AA* is computationally demanding,
especially during the smoothing. Hence, it can be solved by making two modifications: (i) let
several threads work on one state (ii) add another stage that would allow threads to work on
a state that does not belong to them. These two improvements are described in Section 3.2.2
and Section 3.2.3.

16

3.2. CUDA PARALLEL ACCELERATED A*

3.2.1 States Distribution

To avoid extensive overhead as a result of duplicate states, similar states must be assigned
to the same thread as often as possible. Thus, states are distributed according to their real
position in a search space rather than by a hash function. Assume without loss of generality
that a search is done in a two-dimensional setup1. Then search space can be divided exactly
into a two-dimensional grid of n sectors, with b sectors in the x-dimension and t sectors
in the y-dimension. Each thread is responsible for states in one sector. As a consequence,
duplicate states are undetected only on the border of two sectors. Figure 3.2 illustrates this
concept.

Figure 3.2: Partitioning of search space into the sectors in a two-dimensional setup.

Remember that AA* plans a path between two states: sinit and sgoal. Intuitively, the
sought path should be as straight as possible. Therefore, most of the expanded states should
lie in (or somewhere around) a space between sinit and sgoal. Let’s denoted this area as
a planning grid. Let xdiff be the difference between x-axis coordinates of the sinit and
sgoal and ydiff be the difference between y-axis coordinates. Let xpadding be the distance in
the x-axis dimension from a rectangle formed by the sinit and sgoal where expanded states
are considered to occur. Let ypadding be the same distance as xpadding only in the y-axis
dimension. Then planning grid can be expressed as a rectangle by its upper-left corner vul
and bottom-right corner vbr (3.2). The dimensions of the grid are (width, height) (3.3).

1A three-dimensional setup can be transformed to a two-dimensional for a need of states distribution by
omitting one of the dimensions.

17

3.2. CUDA PARALLEL ACCELERATED A*

vul = (min(xsinit
, xsgoal)− xpadding,min(ysinit

, ysgoal)− ypadding)
vbr = (max(xsinit

, xsgoal) + xpadding,max(ysinit
, ysgoal) + ypadding) (3.2)

width = xdiff + 2 · xpadding , height = ydiff + 2 · ypadding (3.3)

The planning grid is divided into b sections in the x-dimension and t sections in the
y-dimension. This gives one-to-one mapping between sectors of the search space and sections
of the planning grid. Therefore, each sector is assigned exactly one section. The dimensions
of each sector are (xsector, ysector) (3.4). This also improves hashing, because a position of each
state on the planning grid can be first transformed to an interval from (0, 0) to (xsector, ysector)
and then used to compute a hash. This way, all hashes are reachable for a given thread and
space in memory is not wasted.

xsector =
width

b
, ysector =

height

t
(3.4)

The described partitioning has one hiccup. It supposes that all expanded states will be
inside the planning grid. This, however, cannot be guaranteed and some states (or if the
planning grid is chosen wrongly most of them) can be outside the grid. A fast and an easy
solution is to extend the corner sectors to infinity. Since occurrence of these states is still
assumed to be rare, they can be assigned some default hash value. That way, a position
transformation can still be used to improve hashing for states inside the planning grid.

3.2.2 Threads Cooperation

Accelerated A* has some parts that, with the current approach, do not comply with
the CUDA architecture. Talk is about an intersection test and planning step test (called
a point-level test2).

To determine whether a path intersects, it must be tested against all excluded areas.
This requires loading a large amount of data from memory. There would not be a problem
if the path did not intersect for all threads, because they would request the same address in
the memory. A problem occurs when some paths intersect. Given the distribution of states,
the path of individual threads is likely to intersect with a different excluded area. Each time
some paths intersect, the warp becomes more divergent. In the worst possible case, a test
may fail for all threads except one on the first excluded area. In such a situation, these
threads are forced to wait until the path of the remaining one either passes or fails the test
and the throughput is dramatically reduced.

This problem becomes even more serious during the point-level test. The point-level is
detected by using a binary search [19]. First, the middle planning step is tested. If it fails,
the distance is decreased by one half. Otherwise it is increased by one half. A point is
then tested against this newly obtained distance. This continues until a correct point level is
found. To determine that a planning step is valid, it must be tested against all excluded areas.
In this case, however, individual threads might be testing different steps, hence requesting
completely different data. Therefore, besides the code divergence, a problem with scattered
memory access arises.

2It is called a point-level test, because the planning step is determined by testing the state position
(point) against inflated excluded areas. The excluded areas are inflated by the tested distance. It is then
tested whether the point is inside any inflated excluded area or not. If it is, an excluded area is closer than
the tested distance.

18

3.2. CUDA PARALLEL ACCELERATED A*

Both of these problems can be solved by having all threads in a warp to collaborate on
solving tasks that exhibit by natural data parallelism such as intersection and a point-level
test. Each thread will perform the test on a portion of excluded areas. This has positive
impact on the performance in several ways: (i) the test can stop as soon as one thread fails
(ii) memory access can be coalesced, because an interleaved memory pattern can be used
and successive threads can test successive excluded areas (iii) a warp can be fully utilized
even if only one thread has states in the open list (i.e. it improves the load-balancing).

3.2.3 Task Scheduler

Thread cooperation solves the load-balancing only partially. It merely optimizes the
execution within a warp. With a simple modification, the whole block can collaborate.
Nevertheless, this would still not solve the occupancy issue of other blocks. A simple analysis
of Algorithm 2.2 reveals an interesting property. The iteration of AA* can be divided into
three steps: (i) expand a state from the open list and generate its successors (ii) smooth the
path of each successor and detect its point-level (iii) try to add it into the open list. The
second step is the most expensive one. AA* tries to avoid it by detecting duplicate states of
already closed states in the first step. However, this is not possible for CPAA*. Because the
algorithm must allow re-opening of already closed states, smoothing must be computed for
every expanded state, otherwise it is not possible to decide whether a closed state should be
re-opened or not.

Observe that the second step does not require a write access to the open list, nor to the
closed list. All it needs is a newly generated state and read access to states that lies on
the path. Therefore, there is no reason to insist that the second step has to be executed by
a thread (or if thread cooperation is used a warp/block) that the state belongs to. Instead of
that, a smoothing and point level detection can be done by a thread (warp/block) that has
available resources (i.e. has no states to process). For the rest of this section, it is assumed
that the cooperation of all threads within a block is used.

This effect can be achieved by adding a task scheduler. The task scheduler is an ordinary
concurrent buffer. The only difference between the one used for distribution of states is that
it is shared by all blocks. Every block has to have write and read access to it. When a new
state is generated, it is added to the task scheduler. After all successors are generated (or
immediately if none of the threads in a block has a state to process), one or more states are
pulled from the task scheduler. Threads in a block then collectively smooth the path and
detect the point level of individual states. Then a thread that state belongs to is determined
and the state is added into the appropriate buffer. After that, the algorithm continues as
described in Section 3.1.1 - each thread checks its buffer for incoming states and processes
them. This whole concept is shown in Figure 3.3.

It can be further improved to provide even better control over the load-balancing. Assume
that only a few blocks have states for expansion. Once a block finishes generation of new
states, it tries to pull a state from the task scheduler. But since there are plenty of blocks
with available resources, this is not necessary at all. As a matter of fact it is even a counter
productive, because other blocks will have nothing to do. A better solution is to skip this
step and rather process received states from the buffer and expand the next state from the
open list. That way, most of the blocks can stay occupied until they have their own states
to expand.

19

3.2. CUDA PARALLEL ACCELERATED A*

Figure 3.3: A flowchart of CUDA Parallel Accelerated A* algorithm.

3.2.4 Algorithm

CPAA* algorithm is a combination of AA* algorithm, CHDA* algorithm that was de-
scribed in Section 3.1, and modifications introduced in this section. It can be divided into
four stages:

• Stage 1: expansion of a state from the open list, successors are added to the task
scheduler

• Stage 2: processing states from the scheduler (i.e. smoothing and point-level detec-
tion)

• Stage 3: processing states from the buffer (i.e. either add them into the open list or
discard them)

• Stage 4: notification of other threads whether the open list is empty or not

For further information, refer to a pseudocode of the kernel function in Algorithm B.1.
Note that the given algorithm is not optimal. The same as for CHDA*, it is necessary to
continue search even after a valid path is found to ensure that the optimal path is returned.
See Section 3.1.3 for more details.

20

3.2. CUDA PARALLEL ACCELERATED A*

3.2.5 Rejected Approaches

This section discusses two approaches that were originally considered and tested, but
that proved to be wrong.

Distribution of No-Flight Zones

Frequent operation in Accelerated A* is a test, whether a point is inside any (inflated)
zone. Logically, the point can be only inside those zones that extend to the sector the point
belongs to. Therefore, all zones can be divided between sectors before the search starts
and then the point can be tested against zones inside its sector. Furthermore, zones can be
re-organized in memory in such a way that consecutive zones belong to the same sector.

Unfortunately, this “improvement” had almost no effect on performance, but the time
needed for the distribution of zones was long. Therefore it was abandoned.

Larger Number of Sectors

Originally, there was an attempt to solve the problem with load balancing by adding more
sectors, while the number of threads and the size of the planning grid remained the same.
Each thread was responsible for more sectors. Each sector had its own buffer and closed list,
but the open list was shared by all other sectors that belonged to the same thread.

This helped a little bit when the number of sectors per thread was four, but it was still
not enough to occupy all blocks, especially when the smallest planning step was used. When
the number of sectors was further increased, the performance reduced 3. Therefore, this
approach was also rejected.

3This is the problem with the distribution of states in general. See Section 5.2 for more details.

21

Chapter 4

Implementation Details

This chapter provides a detailed description of selected problems. Section 4.1 discusses
the problem of synchronization between blocks. First it explains concurrence support on the
CUDA architecture. Then the in-depth description of a synchronized and non-blocking buffer
follows. Section 4.2 introduces a representation of binary heap on the CUDA architecture.
Section 4.3 describes representation of excluded areas and differences between the generation
of inflated edges on the CPU and GPU.

4.1 Synchronization

Both algorithms, CHDA* and CPAA*, relay on exchange of states between blocks.
CUDA only supports synchronization between blocks by separated kernel launches. Nei-
ther CHDA* nor CPAA* can use this technique, because it would be necessary to launch
a new kernel after each iteration. On top of that it is not known in advance how many
iterations would be needed. Fortunately, CUDA supports atomic functions that perform
a read-modify-write operation in a single transaction. Therefore, it is possible to enforce
block synchronization by implementing a buffer in global memory that supports concurrent
read and write requests. According to the way the simultaneous requests are handled, con-
current buffers can be divided into two categories: (i) synchronized buffer (ii) non-blocking
buffer.

Furthermore, two challenges must be overcome while sharing data between blocks. The
first one is the result of a long memory latency and optimizations done by a compiler. The
compiler might decide to reorder some memory requests. This can result in a situation when
a control variable is set sooner than expected, before all changes to global memory are visible
by other blocks. As a consequence, a different block can read inconsistent data. This can be
avoided by using a memory barrier.

The second one is based on the fact that on Fermi, each SM contains an L1 cache. The
contents of individual caches is not synchronized. Thus, the L1 cache can have obsolete
values. It is up to a programmer to make sure that correct values are read. This can be
achieved by using a volatile keyword.

4.1.1 CUDA Concurrence Support

This section describes three components that are needed to implement communication be-
tween blocks on the CUDA architecture: (i) atomic functions (ii) memory barrier (iii) volatile
qualifier.

22

4.1. SYNCHRONIZATION

Atomic Functions

CUDA supports atomic functions from a compute capability 1.1 [20]. Atomic functions
read an address, perform a desired modification and write the result back without other
threads making any changes to that address.

A typical example used in books is an increment of a single variable [21]. This operation
is denoted as x++ in C/C++. Although it may seem that only a single instruction is needed,
it takes three instructions to increase the value of variable x by one: (i) read the value in x
(ii) add one to that value (iii) write the result back

Let’s assume that initially x = 3 and two threads want to increment it. The expected
result after performing an increment operation by both threads is x = 5. If threads reside
on the same SM, it will happen if a warp scheduler issues first all three instructions of one
thread and then of the other thread. This is not likely to happen due to the long memory
latency and the way the warp scheduler selects instructions for execution. Bigger chances are
that both threads will first read the value, then modify it and finally write the result (x = 4)
back. If threads are in the same warp, a correct result cannot be obtained in principle,
because the threads will execute all three instructions exactly at the same time. In such
a case, which thread will write the result back is undetermined. If threads are on a different
SMs, they are not even controlled by the same warp scheduler and the result may or may
not be correct. The only way to ensure the correctness is to use an atomic function (aptly
named atomicInc()).

The most useful atomic function available in CUDA C is atomicCAS() [20]. CAS stands
for Compare and Swap. It takes three arguments: (i) an address in a memory (ii) a com-
parison value (iii) a new value. It reads the value at the address, stores it in a temporary
variable old, and compares it with the comparison value. If they are equal, the value at the
address is replaced by the new value. The function returns old.

Memory Barrier

Very often, a program is written in such a way that some changes in memory are expected
to be visible to other threads before moving to another phase in computation. By default,
this intention is not known to a compiler. The compiler may reorder instructions to speed
up the computation. Therefore, if a result depends on the instructions order, a memory
barrier must be used. In CUDA C , the memory barrier, represented by __threadfence()

function, stalls a thread until changes, made by the calling thread, in shared memory are
visible by all threads in a block and changes in global memory are visible by all threads in
the device [20]. Furthermore, it prevents the compiler from moving memory requests, which
occur before the barrier, after the barrier and vice versa. Note, however, that requests on
the same side of the barrier can still be reordered, even two atomic functions if they operates
on different addresses.

To enforce that changes are visible only to threads in a block, the __threadfence_block()
function can be used. The same result can be achieved by __syncthreads() (a barrier syn-
chronization). Unlike the barrier synchronization, the memory barrier does not have to be
executed by all threads in a block. The thread can continue as soon as changes are visible.

Volatile Qualifier

Even with the memory barrier, a thread can still get incorrect data due to the inconsis-
tent L1 caches on Fermi. Another problem may occur when working with shared memory
within a warp [22]. Since execution of threads in a warp is naturally synchronized, it is

23

4.1. SYNCHRONIZATION

common practice to omit synchronization. However, on Fermi, CUDA compiler may decide
to accumulate results in a register instead of writing it directly back to shared memory.

Both of these problems can be solved by declaring a variable as a volatile [20]. The
compiler assumes that the volatile variable can be changed or used anytime by a different
thread. Therefore, the variable is never temporarily stored in a register, neither is it cached.
Every reference to that variable results in actual read or write requests.

The semantic is the same as in a standard C. Basically, three cases are possible [23]:
(i) volatile int a (ii) volatile int *a (iii) int *volatile a. The first case is straight-
forward. It means that variable a should be accessed in a volatile context. The remaining
two are more interesting. The trick is to realize that the compiler parses it from right to left.
Hence, in the second one, the value that a points to is going to be treated as volatile, but
not the pointer itself. The last case is an exact opposite. The pointer a is volatile, but the
value it points to is not and access to it can be optimized. These two cases can be combined
together. Consider the following declaration: volatile int *volatile a. In this case,
access to both, the pointer and the value it points to, compile to an actual load or store
instruction. If an object is declared as volatile, all its members are considered to be volatile.
It is even possible to declare only a method of the object as volatile. The result is that the
object (i.e. this pointer) is treated as volatile during the execution of that function.

4.1.2 Synchronized Buffer

The easiest way to implement a buffer that can be shared by several threads is to allow
only one thread to read from or write to it. This can be done using a mutual exclusion lock
(mutex) [24]. A mutex is an object that allows only one thread at a time to acquire control
over it. Once it does, the other threads that wish to use the mutex have to wait until the
owner’s thread releases it.

In CUDA C, a simple mutex can be implemented using a variable in global memory
and an atomic compare and swap instruction. Algorithm 4.1 provides a pseudocode for two
functions to acquire and release the control over the mutex. The mutex is used by a thread
if its value is true. Recall that atomicCAS() returns the original value. Therefore, the loop
at line 2 will not finish until the control over the mutex is acquired. For RealeseLock() to
work, mutex must be declared as volatile, otherwise line 4 may be optimized out.

Algorithm 4.1 Mutual exclusion lock pseudocode (based on [24])

1: function AcquireLock(mutex)
2: while atomicCAS(mutex, false, true) do continue

Require: mutex was previously acquired by the calling thread
3: function ReleaseLock(mutex)
4: mutex← false

The suggested mutex has one pitfall. If more threads in a warp try to acquire the lock,
the warp will get caught in an infinite loop. Once one thread in that warp acquires control
over the mutex, it will exit the loop. However, as a result of SIMT architecture, it will
be unable to proceed, because the other threads will be still trying to acquire the lock.
That is impossible since it is already acquired. The owner’s thread must first release it.
Unfortunately, that is impossible too, because it is waiting for threads that are trying to
acquire it. This situation is called a deadlock.

A solution to this problem is to not insist on obtaining the control over the mutex, but
rather try it once and if it fails, try it again a little bit later. It can be even immediately if

24

4.1. SYNCHRONIZATION

none of the threads in a warp has acquired the lock. The point is to give a thread that did
acquire it enough time to release it again. Algorithm 4.2 gives the modified AcquireLock()

function.

Algorithm 4.2 Try acquire lock pseudocode

1: function TryAcquireLock(mutex)
2: return atomicCAS(mutex, false, true)

Even with this modification, a dead lock can still occur. Assume without loss of generality
that a block consists of 32 threads and TryAcquireLock() is used to obtain the lock. For
simplification, let’s say that a block tries to acquire the lock if at least one thread in the
block tries to acquire it. Imagine a situation when all blocks that reside on one SM try to
acquire the lock. Once one block succeeds, it continues with the execution of a protected
part of the program (called a critical part) and releases the lock as soon as it finishes it.

Algorithm 4.3 LIFO synchronized buffer pseudocode

1: function Pull(array, lastIndex,mutex)
2: locked← true
3: while locked do
4: locked← TryAcquireLock(mutex)
5: if ¬locked then
6: if lastIndex > 0 then
7: lastIndex← lastIndex− 1
8: retV al← array[lastIndex]
9: threadfence()

10: else
11: retV al← null
12: ReleaseLock()

13: return retV al

14: function Push(newElement, array, lastIndex, size,mutex)
15: locked← true
16: while locked do
17: locked← TryAcquireLock(mutex)
18: if ¬locked then
19: if lastIndex < size then
20: array[lastIndex]← newElement
21: lastIndex← lastIndex+ 1
22: result← true
23: threadfence()
24: else
25: result← false

26: ReleaseLock()

27: return result

CUDA does not use a preemptive scheduling1. It merely selects a warp that has available
instructions for execution. Therefore, it might happen that the scheduler will issue only

1A preemptive scheduling allows to temporarily interrupt one task (thread) and give computational
resources to another one.

25

4.1. SYNCHRONIZATION

instructions of warps that are trying to acquire the lock and the block that owns it will never
get a chance to release it. Unfortunately there is nothing that can be done to prevent it
at this moment. Although the chance that this situation will occur is extremely small2, in
general it can happen and it must be considered when designing an algorithm.

The implementation of synchronized buffer does not differ much from the ordinary one.
Only a few changes are necessary. The extra work that has to be done is to acquire the lock
at the beginning of each method and to release it at the end. Before the lock is released, the
memory barrier must be called to ensure that all changes are visible to other threads. At
last, all the buffer’s variables that can be changed must be declared as volatile.

The synchronized buffer that was tested in this work is LIFO type. Internally, it is
implemented by an array that is used to store buffer elements and an index on the first free
position after the last element in the buffer. To minimize time that is spent in the critical
part, only pointers to objects are stored in the buffer. Since an object’s variables may be set
by one thread and read by another one, the object itself must be also declared as volatile.
Therefore, the buffer array must be declared as volatile T *volatile *array, where T is
the object type. If the first volatile is omitted, a thread might read incorrect values from the
object. If the second one is omitted, a thread might read incorrect pointer from the buffer
array. Algorithm 4.3 provides a pseudocode for push() and pull() functions.

As was suggested in Section 3.1.1, insertion of states happens at random, but all threads in
a warp remove states from the buffer at the same time. With that in mind, the synchronized
buffer can be improved to speed up removal of elements. Instead of having t separated buffers
for t threads in a block, they are all grouped under one buffer. The last indices and mutexes
are stored in a lastIndices and mutexes arrays. Last index and mutex of a specific thread
can be accessed through its unique thread id. This way, when all threads in a warp read
or write the last index, the request can be fully coalesced. Elements are stored in one big
array. Individual elements of one thread are interleaved by the number of threads in a block
(i.e. for a thread with the thread id tid, its elements are located in the array on indices
{tid, tid + t, tid + 2 · t, . . . , tid + (lastIndices[tid] − 1) · t}). This concept is illustrated in
Figure 4.1

Figure 4.1: A synchronized buffer for t = 4

4.1.3 Non-Blocking Buffer

A locking is an expensive operation. It adds unnecessary overheads even if only one
thread is trying to access a protected object, because the mutex must be first acquired and
then released. If occurrence of concurrent access by multiple threads is rare (or at least
adequately small), it might be better to try to insert (or remove) the element into (from)
the buffer without locking it and occasionally, if the buffer were modified by another thread

2It never happened during the experiments.

26

4.1. SYNCHRONIZATION

in the meantime, repeat the action until it succeeds. An algorithm that allows concurrent
access but does not required locking is called a non-blocking algorithm.

Treiber [25] proposed a non-blocking LIFO buffer. The buffer is internally represented
by a linked-list3. Algorithm 4.3 gives the pseudocode of Push() and Pull() functions. It
is almost the same as for an ordinary linked-list. The trick is on lines 7 and 14. The head
is updated only if it was not changed by another thread. If it was, atomicCAS() would not
update the head and the loop termination condition would not be satisfied. Hence the whole
procedure would repeat until the head is updated (or the buffer is empty in case of removal).
Since always at least one thread must update the head, a deadlock can never happen, not
even if all threads try to pull or push the element at the same time.

Algorithm 4.4 LIFO non-blocking buffer pseudocode (based on [25])

1: function Pull(head)
2: repeat
3: retV al← head
4: if retV al = null then
5: return null
6: next← GetNext(retV al)
7: until atomicCAS(head, retV al, next) = retV al
8: return retV al

9: function Push(newElement, head)
10: repeat
11: oldHead← head
12: SetNext(newElement, oldHead)
13: threadfence()
14: until atomicCAS(head, oldHead, newElement) = oldHead

Note that only an update to memory inside the Pull() function is done through the
atomic operation. Therefore, a memory barrier is not necessary. On the other hand it must
be used inside the Push() function, because the reference to the next element is updated.
In addition, both the head pointer and the object it points to must be declared as volatile,
otherwise it is possible that either a wrong head or reference to the next element will be read
(i.e. it must be declared as volatile T *volatile head). Similarly as for the synchronized
buffer, it can be improved by grouping buffers of threads in a block together.

It was mentioned in Section 3.1.1 that the number of states that are pulled during each
iteration can impact the performance. A non-blocking buffer offers a nice and easy solution
to this problem. Note that all states in the buffer can be removed by simply removing the
first one and setting head to null. Therefore, all states can be obtained from the buffer at
the beginning and then they can be processed without accessing the buffer again. A possible
drawback of this solution is that if one thread in a warp has much more states in the buffer
than others, the remaining threads will be doing nothing, even if some new states are added
into their buffer. This can be fixed by calling an ordinary Pull() function that removes only
one state. An alternative solution is to use a modified function for removal of a state from
the buffer that does not contains the loop. Instead, if atomicCAS fails it returns null. Let’s
call this function TryPull(). In both cases, the reference to the next state must be set to
null.

3A list is a data structure consisting of nodes that are connected [26]. In linked-list, each node contains
a reference to another node. Therefore, only the reference to the first node in the group need to be stored.
The first node is called the head of the linked list.

27

4.2. PRIORITY QUEUE

4.2 Priority Queue

A data structure used for a priority queue in this work is a binary heap. A binary heap
can be represented as an array [14], which makes it possible to at least partially optimize
access of individual threads in a warp with respect to memory latency. The way individual
nodes are mapped into the array is shown in Figure 4.2. The indices of parent and children
nodes from the current node are computed by using Equation 4.1.

Figure 4.2: Array representation of a binary heap (source [27])

parent =
current− 1

2
leftChild = (index+ 1) · 2− 1

rightChild = (index+ 1) · 2 (4.1)

A simple implementation, when the heap of each thread is stored in a separated array,
would not provide good performance, because access would not be coalesced even if threads
in a warp requested an element with the same array index. Therefore, a better solution is
to use the same technique as the one used for buffers. Priority queues of threads in a block
are grouped together and stored in one big array. Individual elements are interleaved.

This changes computation of indices of parent and children nodes a little bit (4.2). A new
formula can be divided into three parts: (i) transform a current index to normal scale
(ii) compute a result using Equation 4.1 (iii) transform the result back.

parent =

transform current to normal scale︷ ︸︸ ︷
current− tid

t
−1

2
·
transform result back︷ ︸︸ ︷

t+ tid

leftChild =

((
current− tid

t
+ 1

)
· 2− 1

)
· t+ tid

rightChild =

((
current− tid

t
+ 1

)
· 2

)
· t+ tid (4.2)

28

4.3. ACCELERATED A* EXCLUDED AREA

4.3 Accelerated A* Excluded Area

Every computationally intensive part of Accelerated A* is related to excluded areas.
Therefore, suitable representation is crucial for quick run of the algorithm. This section
describes representation that is used in the AgentFly system and discusses a problem with
inflated zones generation that arises on the GPU.

4.3.1 Representation

Each excluded area consists of three or more edges and the minimum and maximum
altitude. For simplification, any excluded area will be referred simply as a zone. Each edge
can be represented by two vectors with their origin in the Earth center. Let’s call these
edges ray1 and ray2. They define a plane of the edge that can be expressed by its normal
vector, denoted as normalP lane. In general, the normal vector can have two directions: it
can either be oriented to the zone or away from it. Which one is used is not important, but
it must be unified for all edges, otherwise it will be impossible to work with it. Hence, it is
defined that the normalP lane is oriented away from the zone.

All zone’s edges must form a convex shape. This condition simplifies many tasks that
are often used in AA* such as a test if a point is inside the zone. To determine it, only a dot
product with each edge must be computed. If any dot product is bigger than zero, the point
does not lie inside the zone.

4.3.2 Inflated Zones Generation

Remember that a planning step is determined by testing the distance to the nearest zone.
One way of doing it would be to construct a circle with a radius equal to the tested distance,
and to test whether any zone is inside or intersects with the circle. However, since the zones
stay the same but it is necessary to find out the planning step for a different state many
times, it would not be a good solution. The effective solution is the one that performs all
the hard work only once and then uses it to perform an inexpensive test many times.

This is the approach used in the AgentFly. When a particular distance needs to be tested,
the zones are inflated by the tested distance. The zone is inflated by rotating its edges by
the angle that is proportional to the tested distance. The result is that each zone also covers
the tested distance. The edges of the inflated zone are called inflated edges. The test itself
is nothing more than testing the state whether it is inside any inflated zone or not. If it is,
then that zone is closer than the tested distance. The inflated zone can be saved so if it is
requested again, no additional work is needed. Furthermore, it can be computed only on
demand (i.e. the first time it is needed), therefore no unnecessary overhead is created.

This is not possible on CUDA. The inflated zones must be pre-computed for all tested
distances. Fortunately, it can be easily parallelized - each thread can generate one inflated
edge. The only problem is with the generation itself, which, without any modifications,
would not run well on the CUDA architecture. Figure 4.3a shows a cut of a zone with three
edges. This zone is inflated by a distance d. The result is given in Figure 4.3b. It is easy to
see that something is wrong. The rotation created an empty space between adjacent edges,
which is unacceptable. The intuitive (and optimal) solution would be to connect them with
a rounded corner that respects the tested distance, i.e. the distance between the vertex
formed by the original adjacent edges and the corner is (at least) d. Unfortunately, this is
not possible to do in the selected representation. However, it can be approximated by several
edges. This solution is the one used on the CPU.

29

4.3. ACCELERATED A* EXCLUDED AREA

(a) Basic zone (b) Inflated zone without corners

(c) Inflated zone with ideal (rounded) corners (d) Inflated zone with simple corner

(e) Inflated zone with extended edges (f) Inflated zone with inflated simple corner

Figure 4.3: A cut of a zone with three edges.

The reason it would not work well on the GPU is that it is not known in advance how
many elements will be needed to approximate each corner. As result, memory would have
to be allocated dynamically for each corner. Therefore, write would not be coalesced and it
would require some post processing to sum up all edges and moved them into a single array
so they can be effectively accessed later during the search. Also a warp divergence would
further slow down the generation. Hence, another solution must be used.

The easiest solution is to add one edge between adjacent edges that will fill the space (Fig-
ure 4.3d). It is fast and it adds only one additional corner. Therefore it is not a problem
to pre-allocate memory for all corners so the access can be coalesced. Another option is
to simply extend adjacent edges until they intersect with each other (Figure 4.3e). This is
a little bit less effective since intersection must be computed. On the other hand, it does not
add any corner edge. Hence, fewer edges must be checked during the search. Both solutions
add some error (a cross-hatched area in figures). The first one underestimates the size of the
zone. Generally, this type of error is unacceptable, since it can result in a situation when
a longer planning step is selected and a solution to a problem is missed. The second one
overestimates it. This cannot affect the solution, therefore it can be used. Nonetheless, it has
another drawback. If the angle between edges is very small, the error will be extremely big
even if the zone is very small. As a result, a smaller step will be selected and consequently
more states will be generated.

Let’s call the first type of error an error of type A and the second one an error of type B.
The goal is to find a solution that does not have an error of type A and which minimizes an
error of type B. Such a solution is given in Figure 4.3f. It uses the same simple corner as in
Figure 4.3d, but it inflates it by distance c = d− v, where v is the distance of the vertex of
the original zone to the simple corner. The newly generated corner is tangent to the ideal
rounder corner. Therefore, its error is always of type B and it is guaranteed to be adequately
small.

30

Chapter 5

Experimental Evaluation

This chapter experimentally evaluates two parallel planning algorithms for CUDA archi-
tecture presented in this work. First, the execution time of CUDA Hash Distributed A* is
compared to the original A* in Section 5.1. Then, the empirical evaluation is used to inspect
the properties of CUDA Parallel Accelerated A* algorithm in Section 5.2.

Individual tests were run on the following configurations:

A* Intel(R) Core(TM)2 Duo CPU T8300 @ 2.40GHz, 4 GB DDR 667 MHz, Gcc 4.4

AA* Intel(R) Core(TM)2 Duo CPU T8300 @ 2.40GHz, 4 GB DDR 667 MHz,
Java 1.6 OpenJDK

CHDA* GeForce GTX 460 SE, 1 GB GDDR5 1700 MHz, CUDA Toolkit 4.2,
Driver Version: 295.41

CPDA* GeForce GTX 460 SE, 1 GB GDDR5 1700 MHz, CUDA Toolkit 4.2,
Driver Version: 295.41

5.1 CUDA Hash Distributed A*

This section evaluates the performance of CUDA Hash distributed A* by comparing it
with the original A* search. Algorithms were tested in a two-dimensional grid setup with
two movement models: (i) four-way unit cost (ii) eight-way unit cost. The experiments were
performed on two types of grid: (i) selected grids. (ii) randomly generated grids.

(a) Free grid (b) Obstacle (c) Maze

Figure 5.1: Selected two-dimensional grid planning setups. A green square denotes the start
position and a red square is the goal position.

Selected grids that were used for testing are provided in Figure 5.1. The first setup (a)
is an empty grid without any obstacle. The start is in the left-upper corner and the goal

31

5.1. CUDA HASH DISTRIBUTED A*

in the right-bottom corner. This task complies well with A*, since preferable states are on
the path from the start to the goal state. The second task (b) is more challenging. A u-
shaped obstacle in the middle of the grid forces A* to expand less favored states to find
a solution. The last one (c) is a maze without any cross-roads. In this scenario, the heuristic
is completely useless. Therefore, an ordinary breath-first search returns a solution faster
than A* since it does not have to compute the heuristic.

Randomly generated grids were tested with three different probabilities of a cell being
blocked. The used probabilities are: (i) 10 % (ii) 20 % (iii) 30 %. Each probability was used
to generate ten tasks (i.e. a random grid, start and goal position). The execution time for
individual tasks was summed-up to evaluate the performance for the given probability.

Each task was tested twenty times to avoid imprecision due to unforeseen events which
a processor must handle. The result for each task is the average value of repetitive tests. All
planning scenarios were tested with four different grid dimensions: (i) 100× 100 (ii) 1000×
1000 (iii) 2000× 2000 (iv) 5000× 5000.

In addition, all configurations were tested with three levels of optimization: (i) no opti-
mization [-O0 -g -G] (ii) level 0 [-O0] (iii) level 2 [-O2]. The first one is used, because the
CUDA compiler makes some optimizations even if -O0 flag is set. The only way to ensure
that optimizations are not used at all is to compile it with debugging symbols. Each section
first discusses the results without any optimization and then assesses the benefits of the
optimizations.

5.1.1 CHDA* Implementation Properties

The main aspect of CHDA* implementation was to evaluate its speed. Memory require-
ments were not the subject of interest. Therefore, a closed list was implemented simply as
an array with the same size as the tested grid. This is a memory inefficient solution if a grid
is sparse (i.e. it contains a lot of blocked cells), but allows it to keep implementation simple,
since a hash table with dynamic memory allocation does not have to be used. In addition,
a hash table would be inefficient by itself, because access to individual elements happens
randomly in nature and threads in a warp would most likely access non-successive addresses.

To decrease the amount of memory requests, the grid and the closed list are stored in
one common float array. Each cell contains one of the following values: (i) −1 if a cell is
blocked (ii)∞ if a cell has not been visited yet (iii) g(s) if a cell has been already expanded.
When a new state is expanded, its path cost is compared with the value in the array. If it
is smaller then the state is added into the open list. Otherwise it is discarded (either the
position is blocked or it has been visited with a better path cost). Queue indices are stored
in a similar way. Each cell contains a positive index in the open list or −1 if a state is not
in it.

CHDA* kernel was launched with 32 threads in a block and 32 blocks.

5.1.2 Four-Way Unit Cost

In the four-way unit cost movement model, four actions are possible: (i) go left (ii) go
right (iii) go up (iv) go down. The cost for each action is one. A commonly used heuristic
with this model is Manhattan distance1.

Selected Setups

Results of experiments are provided in Table 5.1. A* beats CHDA* in all configurations.

1See Section 2.4.3.

32

5.1. CUDA HASH DISTRIBUTED A*

No Optimization Level 0 Level 2

Setup A* CHDA* A* CHDA* A* CHDA*

a 1.68 32.21 1.31 24.27 0.32 25.40
b 4.01 40.59 4.27 27.04 1.05 27.63
c 1.42 3 542.47 1.68 3 324.27 0.41 3 323.69

(a) 100× 100

No Optimization Level 0 Level 2

Setup A* CHDA* A* CHDA* A* CHDA*

a 41.20 632.98 41.64 446.24 18.19 445.16
b 556.59 906.55 537.63 555.31 118.17 564.44

(b) 1000× 1000

No Optimization Level 0 Level 2

Setup A* CHDA* A* CHDA* A* CHDA*

a 82.80 1 820.68 83.23 1 693.90 46.09 1 697.38
b 2 442.66 5 472.90 2 442.66 2 391.33 489.57 2 360.61

(c) 2000× 2000

No Optimization Level 0 Level 2

Setup A* CHDA* A* CHDA* A* CHDA*

a 493.31 7 609.12 483.75 3 917.71 293.94 3 887.80
b 15 383.38 17 421.73 14 892.99 18 413.75 3 164.41 18 654.94

(d) 5000× 5000

Table 5.1: The execution time in milliseconds of A* and CHDA* for selected setups with
a four-way unit cost movement model for different map dimensions and different levels of
optimization.

33

5.1. CUDA HASH DISTRIBUTED A*

The most noticeable gap is in the maze (c). CHDA* is 2495 times slower in the smallest
map. Since the maze has only one possible path, only one thread has a state for expansion
in the open list at any given time. Therefore, during each iteration, 31 blocks have nothing
to do and in the last one, only one thread has a state in the open list. Hence, the algorithm
expands the same states as A*, but with additional synchronization overhead. This behavior
remains the same for larger maps which results in even slower execution. The CHDA* was
unable to return a solution within five minutes for a 1000× 1000 grid.

CHDA* still cannot compete with A* in the free grid (a), but the difference gets smaller
on larger maps (20 times slower on a 100× 100 against 15 times on a 5000× 5000). This is
a consequence of the fact that it takes some time before all threads have some states in the
open list and that it also takes some time to copy and prepare data on the device and to
launch the kernel. It is a common property of all CUDA programs that when a problem is
small it is better to solve it on the CPU.

The single obstacle scenario (b) turned out best for CHDA*. It was still ten times slower
than A* for the smallest grid but for the largest one, it was almost just as good as A* (only
1.13 times slower). The difference between results for scenarios (a) and (b) is caused by the
obstacle in the second one. In general, CHDA* expands more states than A*. If there are
no obstacles, all additional states expanded by CDHA* are useless. However, the obstacle
forces A* to visit some of these states too. Therefore, while A* is still checking states that
do not lead to a solution, some thread of CHDA* may be already on the right path.

The obvious differences between A* and CPAA* are also in the impact of optimizations
on execution time. As expected, A* shows a little increase in speed when debugging symbols
are turned off, but with the second level, it is approximately five times faster. CHDA* ex-
hibits different behavior. In most cases, the speed up is between one to two when debugging
symbols are turned off and no additional speed-up is achieved with further optimizations.
The initial speed-up is mostly caused by improving the usage of registers (i.e. storing tem-
porary results in the registers). The exception is the configuration (b) for the largest grid,
where optimizations slowed down the algorithm.

Random Grids

Table 5.2 provides run-times for randomly generated grids. The same as for selected
setups, A* is faster than CHDA*.

On random maps with a 10 % probability of a cell being blocked CHDA* had the worst
performance in the smallest configuration (66 times slower). As the grid size increased,
the relative difference became smaller. On the largest map, A* was approximately only
four times faster. CHDA* had a similar progress with the second configuration where the
probability was 20 % (79 times slower for 100 × 100, eight times for 5000 × 5000). In both
cases, the performance on a grid of size 2000 × 2000 was only slightly worse than the one
achieved on the largest grid map.

The last configuration, where a chance of a wall was 30 %, was the only exception.
CHDA* was thirty times slower for 100 × 100, but the relative difference between CHDA*
and A* was best for 2000×2000 when it was six times slower. Nevertheless, on 5000×5000 it
was 6.3. Hence, this different behavior could just as well be the result of a random generation.

The results of all random setups suggest one conclusion. The grid size must be at least
2000× 2000 to fully utilize CHDA*.

Similarly as for selected setups, A* speeds up when the second level of optimizations
is used while the CHDA* benefits from the optimization only when debugging symbols are
turned off.

34

5.1. CUDA HASH DISTRIBUTED A*

Prob. of No Optimization Level 0 Level 2

blocked cells A* CHDA* A* CHDA* A* CHDA*

10 % 3.28 216.47 3.33 191.35 0.87 192.48
20 % 3.85 303.580 4.24 255.53 0.97 261.13
30 % 9.27 280.49 9.57 264.55 2.62 261.60

(a) 100× 100

Prob. of No Optimization Level 0 Level 2

blocked cells A* CHDA* A* CHDA* A* CHDA*

10 % 328.95 5 345.57 288.39 3 003.04 128.66 2 999.51
20 % 332.00 5 348.47 304.22 2 968.42 127.70 2 960.37
30 % 514.35 6 760.79 402.38 3 784.30 162.34 3 777.22

(b) 1000× 1000

Prob. of No Optimization Level 0 Level 2

blocked cells A* CHDA* A* CHDA* A* CHDA*

10 % 1 876.07 11 531.25 1 309.48 3 869.21 558.43 7 571.33
20 % 1 814.86 20 491.65 1 664.95 12 380.90 656.67 12 397.52
30 % 4 721.60 28 723.71 4 425.55 17 923.01 1 375.87 18 096.15

(c) 2000× 2000

Prob. of No Optimization Level 0 Level 2

blocked cells A* CHDA* A* CHDA* A* CHDA*

10 % 6 089.63 25 375.57 5 697.42 19 672.76 2848.30 19 849.96
20 % 10 006.38 78 249.84 9 645.92 58 613.88 4044.16 58 207.52
30 % 13 458.91 85 637.70 12 357.02 59 466.30 4960.97 59 216.03

(d) 5000× 5000

Table 5.2: The execution time in milliseconds of A* and CHDA* in random grid maps with
a four-way unit cost movement model for different map dimensions and different levels of
optimization.

35

5.1. CUDA HASH DISTRIBUTED A*

5.1.3 Eight-Way Unit Cost

The eight-way unit cost movement model extends the four-way unit cost movement model
by adding four actions: (i) go diagonally left up (ii) go diagonally right up (iii) go diagonally
left down (iv) go diagonally right down. The cost of these additional actions is

√
2. Be-

cause of the diagonal movement, a Manhattan distance can overestimate the real path cost.
Therefore, it is a non-admissible heuristic for the eight-way movement model. An admissible
heuristic that gives the best estimate is Euclidean distance2.

Selected Setups

Table 5.3 summarizes run times for individual setups and levels of optimization. The
same as for all previous experiments, A* is faster in all cases.

No Optimization Level 0 Level 2

Setup A* CHDA* A* CHDA* A* CHDA*

a 0.28 120.97 0.24 116.83 0.06 118.37
b 5.06 106.90 5.24 93.02 1.17 87.94
c 2.43 10 584.31 2.58 2 835.55 0.59 2 661.65

(a) 100× 100

No Optimization Level 0 Level 2

Setup A* CHDA* A* CHDA* A* CHDA*

a 15.26 1 196.63 15.23 1 483.13 10.32 1 522.00
b 724.05 2 654.97 659.93 2 215.19 162.83 2 190.50

(b) 1000× 1000

No Optimization Level 0 Level 2

Setup A* CHDA* A* CHDA* A* CHDA*

a 57.04 4 230.27 58.35 9 055.44 39.33 9 225.50
b 3 202.49 15 472.90 2 865.03 11 545.12 740.01 11 767.87

(c) 2000× 2000

No Optimization Level 0 Level 2

Setup A* CHDA* A* CHDA* A* CHDA*

a 314.24 17 445.35 331.17 88 859.38 245.68 88 915.86
b 21 272.71 99 690.19 19 562.52 132 366.45 5 882.78 130 601.15

(d) 5000× 1000

Table 5.3: The execution time in milliseconds of A* and CHDA* for selected setups with
a eight-way unit cost movement model for different map dimensions and different levels of
optimization.

2See Section 2.4.3.

36

5.1. CUDA HASH DISTRIBUTED A*

For the first two configurations, the same conclusions apply as for the four-way unit
cost movement model with the difference that the gap between execution times of A* and
CHDA* is even bigger. Briefly, in the maze (c), CHDA* is 4 350 times slower. For the empty
map (a), the ratio between CHDA* and A* is 432 for 100× 100 and 56 for 5000× 5000.

Unlike for the four-way movement, in the (b) CHDA* provided the best performance on
the configuration of size 1000 × 1000. It was 3.7 times slower, while for 5000 × 5000 the
slowdown was 4.6.

The large gap is the result of additional actions and the fact that it must be possible to
re-open already closed states. Therefore, it cannot be discarded right after the expansion,
but it must be sent to the appropriate thread which can decide whether there is a better
state in the closed list or not. The additional slowdown in the maze scenario is a consequence
of the map representation which is unified with the closed list.

The effect of optimizations stayed unchanged for A* and for CHDA* in the configura-
tion (b). However, the (c) and (a) had a different behavior. In the maze, a significant speed
up was achieved. On the other hand, for (a) the effect was the opposite, and from 1000×1000
it slowed down the algorithm. For a grid of size 5000 × 5000, CHDA* with optimizations
was five times slower than without it. This behavior makes the effect of optimizations for
CUDA kernels difficult predictable.

Random Grids

The measured run-times are provided in Table 5.4. Again, A* performed better than
CHDA* for all configurations.

For all setups, the ratio between A* and CHDA* for a grid of size 100 × 100 was worse
than the one with the four-way movement model (72 times slower for the first one, 112 times
for the second one, and 99 times for the last one). Nevertheless, it did better for 5000×5000.
The ratio was 2.4 for a grid with a probability of 10 % of blocked cells, 4.2 for a grid with 20 %
and lastly, 3.9 when the chance of a wall was 30 %. Also the performance on a 2000× 2000
grid did not differ much. Therefore, it further supports the argument, that at least a map
of size 2000× 2000 is required, otherwise CHDA* is highly ineffective.

In addition, the effect of optimization on CHDA* is even more vague since it speeds
up all tasks for all grid dimensions except the largest one. For 5000 × 5000, only the last
configuration had better performance with optimizations. The remaining two run slower.

5.1.4 Prepare Arrays Kernel

Before the search kernel is launched, the map must be converted into the format that
was specified in Section 5.1.1 and individual cells of queue indices array must be set to −1.
This can be done in a single kernel. The number of array cells that must be set for each
array is n = width ·height. Each thread can process one or more elements. Figure 5.2 shows
the execution time of prepare arrays kernel for different number of threads per block and
different number of elements processed by one thread.

Sooner or later, all values oscillate around 0.036 milliseconds. If each block contains at
least 512 threads, it does not matter how many elements the thread will process. If it is less,
the minimum number of elements that each thread must process depends on the number
of threads per block. Logically, if there are less threads in a block, more elements must be
processed by one thread.

This is necessary due to the fact that only a limited number of blocks can reside on one
SM. As a consequence, the SM stays unoccupied, which would normally result in a situation
when a warp scheduler has no warps with available instructions. However, since the values

37

5.1. CUDA HASH DISTRIBUTED A*

Prob. of No Optimization Level 0 Level 2

blocked cells A* CHDA* A* CHDA* A* CHDA*

10 % 8.54 617.55 8.04 580.13 1.91 579.94
20 % 8.05 983.33 8.05 788.01 1.94 796.91
30 % 7.63 753.26 6.67 702.31 1.68 699.07

(a) 100× 100

Prob. of No Optimization Level 0 Level 2

blocked cells A* CHDA* A* CHDA* A* CHDA*

10 % 957.52 8 167.61 884.35 5 705.32 269.80 5 621.30
20 % 640.14 7 410.61 580.50 4 961.38 199.83 4 976.95
30 % 666.52 8 440.63 628.41 6 477.74 243.24 6 439.16

(b) 1000× 1000

Prob. of No Optimization Level 0 Level 2

blocked cells A* CHDA* A* CHDA* A* CHDA*

10 % 4 758.99 23 233.84 3 869.21 22 170.88 1 251.64 21 969.13
20 % 5 495.353 34 280.015 4 873.18 24 369.42 1 545.58 24 506.91
30 % 3 023.69 16 981.80 2 774.43 11 815.41 1 095.08 11 768.87

(c) 2000× 2000

Prob. of No Optimization Level 0 Level 2

blocked cells A* CHDA* A* CHDA* A* CHDA*

10 % 28 340.55 68 685.33 25 115.29 115 197.10 8 959.94 114 941.88
20 % 32 483.51 137 706.01 28 275.34 145 833.33 9 833.89 148 131.31
30 % 21 973.61 86 170.50 20 287.06 43 578.01 8 334.94 44 863.05

(d) 5000× 5000

Table 5.4: The execution time in milliseconds of A* and CHDA* in random grid maps with
an eight-way unit cost movement model for different map dimmensions and different levels
of optimalization.

38

5.2. CUDA PARALLEL ACCELERATED A*

1 3 5 7 9 11 13 15 17 19
0.035

0.036

0.037

0.038

0.039

0.040

0.041

0.042

0.043

0.044

0.045

0.046

0.047

0.048

0.049

0.050

Threads per
 block

32
64
128
256
512

Proccessed elements per thread

T
im

e
 [m

s
]

Figure 5.2: Execution time in milliseconds of prepare arrays kernel for different parameters.
Each configuration was tested 500 times on a grid of size 5000× 5000 and the final value is
the average of those tests.

of individual elements are independent, a thread can proceed with the following element
without waiting for the previous write to finish.

5.2 CUDA Parallel Accelerated A*

This section provides experimental evaluation of presented CUDA Parallel Accelerated A*.
First, it is compared to the original Accelerated A* on selected flights in the United States
Airspace (Figure C.2). Second, the impact of the planning-grid size on performance is in-
spected.

Each configuration was run twenty times and the stated results are the average of these
repetitive tests. Unfortunately, the tested implementation of CPAA* failed to work when
optimizations were allowed. Due to the algorithm complexity, it requires further analysis to
discover the source of this behavior. Therefore, CPAA* was tested only without optimiza-
tions.

In addition, there was a problem with the dynamic memory allocation. Dynamic alloca-
tion inside the kernel function is supported from compute capability 2.x [20]. Before it can
be used, the heap of fixed size for dynamic allocation must be specified before the kernel is
launched. This operation takes some time, especially if the heap size is large. Normally, this
would not matter, because it can be done only for the first time as long as all threads release
allocated memory before the kernel terminates.

However, when CPAA* was run more than once, the execution time was longer with each
iteration. This did not happen during tests of CHPA*. However, unlike CHPA*, CPAA*
uses most of the available memory for dynamic allocation at the end of the kernel. Therefore,
this suggests a problem with dynamic allocation when it is forced to look for a free segment
in the heap.

To overcome this problem, the CUDA context was destroyed after each run of the algo-
rithm. This, however, also meant that heap had to be allocated before the next run again.
To provide an undistorted view on the CPAA* performance, the measured times do not
include the time for heap allocation.

39

5.2. CUDA PARALLEL ACCELERATED A*

5.2.1 CPAA* Implementation Properties

Implementation of CPAA* includes all load-balancing improvements that were discussed
in Section 3.2. A block consists of 32 threads (i.e. there is only one warp in a block) that
cooperates on computationally intensive parts. During each iteration, the threads select an
open list that has the state with the lowest f(s) and expand only one state from this open
list before moving to the next stage.

A task scheduler and buffers are implemented as a non-blocking LIFO queue that was
covered in Section 4.1.3. The algorithm terminates if either all states are expanded or if all
remaining states have the cost worse than the best found path. Furthermore, the algorithm
can be instructed to find only a suboptimal solution that is guaranteed to be no worse than
k % of the optimal solution. Lets call this property a limit of the solution (i.e. if the limit
is 5 %, the found path will not be worse than 5 % of the best path).

To accelerate computation of a modulo operation, the number of blocks must be a power
of two. Therefore, the kernel is launched with 32 blocks, which is the maximum number of
blocks that satisfies it and that can reside at the same time on the tested GPU.

CPAA*

Setup AA* 0 % 1 % 5 %

A 2 359.60 23 840.00 8 800.31 752.99
B 95.45 905.77 153.22 85.78
C 482.75 6 936.65 2 486.20 2 561.56
D 302.35 4 406.45 751.65 754.41
E 2 684.90 22 494.84 9 499.13 5 217.18
F 1 247.65 26 384.73 19 841.42 19 617.47
G 1 898.60 70 036.33 59 037.44 58 455.04

(a) Execution time in milliseconds

CPAA*

Setup AA* 0 % 1 % 5 %

A 1 615 259 1 615 356 1 622 452 1 672 750
B 986 529 986 694 992 200 998 031
C 2 126 046 2 125 690 2 130 160 2 130 025
D 3 981 238 3 981 422 4 008 835 4 017 991
E 2 150 602 2 150 661 2 159 159 2 183 103
F 2 000 423 2 000 555 2 008 272 2 009 415
G 2 698 917 2 698 764 2 708 466 2 707 436

(b) Path length in meters

Table 5.5: The execution time and path length on selected flight plans in the United States
Airspace for AA* and CPAA* with three different limits.

5.2.2 Comparison with Accelerated A*

The coordinates of the air-plane can be expressed by its longitude, latitude and altitude.
In the experiments, a constant altitude was used. Therefore, the planning reduces to a two-
dimensional setup. The longitude then corresponds to the x-dimension in Figure 3.2 and

40

5.2. CUDA PARALLEL ACCELERATED A*

the latitude to the y-dimension. The xpadding and ypadding were expressed as a ratio of xdiff
and ydiff . Specifically in the executed tests, it was 0.25 for both dimensions. In addition,
CPAA* was tested with three limits: (i) 0 % (ii) 1 % (iii) 5 %

The results are provided in Table 5.5. Figure C.1 contains a sample flight plan for
setups (A) and (G).

When the limit is 0 %, CPAA* is always slower than AA*, but it returns a path with the
same cost. Small differences are caused by imprecision of the floating point arithmetics [28]
and the fact that CPAA* uses a single-precision floating point representation, but AA* uses
a double-precision. In most setups, the slowdown is between ten to twenty percent. The
exception is the last one (G), where CPAA* was almost 37 times slower.

Let’s take a closer look at setup (A) (Figure C.1a). A straight path between the initial
state and goal state is not possible because of the excluded areas. However, none of them
forces the search to look completely elsewhere. Therefore, most expanded states should lie
between the start and goal state. Hence they should also fit inside the planning-grid.

Figure 5.3 shows states expanded by the original AA* and CPAA*. AA* (a) expands
states that are close to the ideal path. When it searches near an obstacle, the density of
states is larger due to the small planning step, but it never expands a state that does not
lead to the solution. Once it is clear of all zones, the search rushes directly towards the goal
state.

CPAA (b) exhibits a little different behavior. It expands much more states than AA*.
This was in part expected, because the only way how to parallelize a search algorithm is
to also expand states that do not have the best estimated path cost. It is beneficial if the
sequential algorithm will expand them later. Unfortunately, for the selected setup, AA* has
no reason to do so (and therefore it will not). Nevertheless, that is not the biggest problem.

Remember that in order to find an optimal solution, CPAA* must enable re-opening of
already closed states. Given the nature of the algorithm, this happens a lot. Furthermore,
the impact of this behavior is actually increased by the fact that the replaced states can have
successors that have successors and so on. In general it would be computationally expensive
and impractical to remember all successors. Therefore, they are simply left without any
modifications. As a consequence, successors of a new state will most likely replace them
which will start this cycle all over again.

In addition, the work with the hash table (and therefore the similarity test as well) is not
very effective, since the access happens at a random and therefore it cannot be coalesced.

The described problem is even more serious in the setup (G). States expanded by AA*
and CPAA* with the limit 0 % are illustrated in Figure 5.4. CPAA* generates a massive
amount of states in the area where the planning step is large. In other words, it completely
breaks the main property of Accelerated A*, which is to accelerate the search when there
are no excluded areas around.

The performance of CPAA* improves if the limit is bigger than 0 %. When the limit was
set to 5 %, CPAA* was even faster on the first two setups, roughly 3 times on (A). Note
however, these two were the only exceptions and on all the remaining configurations, it was
still much slower than AA*.

Figure 5.3c and Figure 5.3d illustrate states expanded by CPAA* when the limit was
1 % and 5 %. The number of expanded states is smaller. In (d), the states that are closed
to the excluded zones were completely omitted. The number of states was reduced by two
modifications. The first one is rather obvious. Since a solution is only required to be within
k % from the optimal one, the search can be terminated as soon as none of the opened states
has a path cost better than k %. The second one pertains to the closed list. The already
closed state has to be re-opened only if its path cost is better than k %.

41

5.2. CUDA PARALLEL ACCELERATED A*

(a) AA* (b) CPAA* 0 %

(c) CPAA* 1 % (d) CPAA* 5 %

Figure 5.3: Expanded states in setup (A)

42

5.2. CUDA PARALLEL ACCELERATED A*

(a) AA*

(b) CPAA* 0 %

Figure 5.4: Expanded states in setup (G)

Therefore, the length of the final path depends on the way the partial paths are found.
The limit k is merely the upper-boundary on a solution error. Figure 5.5 provides the
progress of execution time and path cost for individual tests. For AA* and CPAA* with
zero limit, the path length remains the same. In addition, the execution time of the original
AA* remains more or less the same for the whole time. On the other hand, the execution
time of CPAA* differs quite a lot. Also when k > 0, there is a dependency between the
execution time and the path length. If time decreases the length increases and vice versa.

5.2.3 Impact of the Planning-Grid

This section discusses the impact of the planning-grid on the execution time of CPAA*.
The experiments were done on a sample scenario with a single obstacle that diagonally blocks
the space between the start and goal state (Figure 5.6). It was intentionally chosen in such
a way that it is also larger than the rectangle formed by the start and goal states. Thereupon,
the search is forced to expand states that are outside the ideal path.

Figure 5.7 summarizes the results in a chart. Padding is expressed as a ratio of xdiff for
the x-dimension and ydiff for the y-dimension. It has the same value for both of them. In the
tested configuration, the ratio must be at least 0.25 for a grid to cover the whole excluded
area. The figure also contains the execution time of AA*, which does not use the planning
grid. Therefore its execution time remains the same. In general, this type of scenarios is the
one where a parallel algorithm should be faster than a sequential one, because it is forced to
expand less favored states anyway. And yet, all versions of CPAA* are slower. The difference
between the execution times of AA* and CPAA* decreases as the size of the planning grid
increases. In the global maximum, CPAA* with limit 5 % is even faster.

The selected configuration contains only one zone. Hence an intersect test and a planning
step detection are inexpensive, which implies that the slowdown is caused by the open and
closed lists and the number of generated states.

43

5.2. CUDA PARALLEL ACCELERATED A*

1 3 5 7 9 11 13 15 17 19
0

5000

10000

15000

20000

25000

30000

35000

AA*

CPAA* - 0 %

CPAA* - 1 %

CPAA* - 5 %T
im

e
 [m

s
]

(a) Execution time in milliseconds

1 3 5 7 9 11 13 15 17 19
1600000

1620000

1640000

1660000

1680000

1700000

AA*

CPAA* - 0 %

CPAA* - 1 %

CPAA* - 5 %

ε1%

ε5%

L
e

n
g

th
 [m

]

(b) Path length in meters

Figure 5.5: A progress of execution time and path length for setup (A) over individual runs.

Figure 5.6: A configuration used for planning-grid evaluation.

44

5.2. CUDA PARALLEL ACCELERATED A*

0 0.5 1 1.5 2 2.5 3
0

20000

40000

60000

80000

100000

120000

Limit

0%

1%

5%

CPU

Padding

T
im

e
 [m

s
]

Figure 5.7: A time dependence of CPAA* on the planning-grid dimensions.

The time dependence of CPAA* has the same course when a limit is 0 % and 1 %. It
starts with relatively high value and steadily decreases until the local minimum is reached
when the padding ratio is one. The long execution time when the padding is small is the
result of the situation that most of the expanded states fall outside the planning grid. Hence
they are all assigned a default hash value. Each new state must be compared for similar
states. Possibly similar states are selected according to their hash. The new state has to
be at least compared with all states that have the same hash. Therefore, if there are a lot
of states with the default hash, the large array must be processed and the similarity test
becomes expensive and a possible bottleneck of the algorithm.

Surprisingly, the execution time further decreased when the padding was increasing.
Both versions have a global minimum of around 2.4. Since the planning grid is already large
enough to cover most states, the additional speed up must be caused by something else.
With the grid size, the size of individual sectors increases as well which means that newly
expanded states are less likely to change a sector. As a consequence, only a few blocks will
have states for expansion and the rest will only process states from the scheduler. The fact
that it gives better performance only supports the observation made in the previous section
that the distribution of states is not the right approach.

CPAA* with the limit 5 % does not seem to be as much dependent on the size of the
planning-grid as the other two versions. The limit enables it to discard most states that are
only slightly better therefore the similarity test does not have to check as many states.

45

Chapter 6

Conclusion

This thesis explored possibilities of parallel trajectory planning on the CUDA architec-
ture. Two algorithms were suggested and tested. The first one is a parallel version of
A* search [11] called CUDA Hash Distributed A* (CHDA*). The second one is built on
Accelerated A* algorithm [16] and it is called CUDA Parallel Accelerated A* (CPAA*).

The first part of the thesis (Chapter 2) explained the planning problem as it was defined
by Russel et al. [10]. It then provided the review of two classes of search algorithms - an
uninformed search that only has information about states which are provided by the problem
definition, and an informed search that uses additional knowledge about the problem to select
a state for expansion. Then two algorithms that this work is based on were described. Namely
A* search that uses additional knowledge to estimate the path cost and Accelerated A* that
uses varying planning steps to speed up the search.

The second part addressed the parallel planning on the CUDA architecture. First
CHDA* and CPAA* were introduced (Chapter 3). CHDA* is a modification of Hash Dis-
tributed A* [4] that was designed for distributed systems. It distributes states between avail-
able processors asynchronously by their hash value. CHDA* uses this concept to distribute
states between threads that in general, can be in different blocks. Therefore, the algorithm
relies on a block synchronization that is not officially supported by NVIDIA. CPAA* follows
the same basic structure as CHDA* but it adds a few improvements. First, the search space
is divided into sectors. Each thread is responsible for states in one sector. Second, threads
in a warp cooperate on intensive parts such as an intersection or point-level test. At last,
intensive parts can be computed by any thread (warp).

Then, it discussed some implementation details (Chapter 4). The most space was ded-
icated to communication between blocks on the CUDA architecture. Two solutions to this
problem were suggested - a synchronized buffer that uses a locking mechanism to add or
remove an item and a non-blocking buffer that is represented by linked-list and uses an
atomic compare and swap operation to update the head of the list. Next, the interleaved
array representation of a binary heap and the impact of representation of no-flight zones in
the AgentFly on the CPAA* were described.

The last part of the thesis analyzed the presented algorithms (Chapter 5). CHDA* was
compared against the original A* search in a two-dimensional grid setup with four-way and
eight-way unit cost movement models. In all experiments, CHDA* was slower than A*. Poor
performance of CHDA* follows from the fact that the GPU excels in floating point operations,
but apart from the computation of heuristic, A* is mostly about access to memory, which,
on the other hand, is something that CUDA is not good at. In general, CHDA* performed
the worst when there were not any obstacles on the ideal path.

CPAA* was tested in three versions that differed in the cost of the returned path. The
first version (a) always returned the best path. The other two were guaranteed to return a

46

6.1. FUTURE WORK

path that was no worse than 1 % (b) and 5 % (c). Two types of experiments were conducted.
First, the execution time and path cost of CPAA* were compared with the implementation
of AA* in the AgentFly on selected flights in the United States Airspace. The version (a)
was significantly slower than AA*. The version (b) performed a little bit better, but it was
still noticeably slower. Only the version (c) was faster at least on some tasks. However, the
found path was not as good as the one returned by AA*. The detailed analysis showed that
CPAA* expanded a lot of states when a planning step was large. This behavior was caused
by the distribution of states that resulted in a situation when a lot of already closed states
had to be re-opened.

The second type of experiment was designed to investigate the dependence of a planning
grid on execution time. CPAA* was tested with a different size of the planning grid on
a simple configuration, where a straight path from the start to the goal state was diagonally
blocked by a single zone. As expected, CPAA* was very slow when the planning grid was
smaller than the zone, but the execution time dramatically improve as the size of the planning
grid increased until it was large enough to encompass all expanded states. Nevertheless,
compared to the original expectations, the execution time slowly decreased when the planning
grid was further enlarged. The fact that this was happening only supported the argument
that the distribution of states has negative side effects.

To summarize it, both CHDA* and CPAA* were slower than the original sequential
algorithms. CHDA* paid for frequent accesses to global memory and lack of floating point
operations that would hide the long latency of global memory. On the other hand, AA*
contains enough computationally intensive parts, therefore, CPAA* should comply well with
the CUDA architecture. However, the experimental evaluation showed that the problem lies
in the basic concept of the algorithm, because the distribution of states together with varying
planning steps causes expansion of a lot of similar states.

6.1 Future work

Accelerated A* has a potential to run faster on the CUDA architecture. Therefore, as
an extension to this thesis, the parallelization of AA* can be further explored, especially
following two concepts:

• Master - slave hierarchy: One block (master) would be responsible for operations
on an open and close list and the other blocks (slaves) would perform all computation
intensive parts such as an intersection test, point-level detection, or smoothing.

• Shared open and closed list: All threads in a kernel would be synchronized before
each iteration. Each thread would receive one state from the open list and expand
it. Threads would be synchronized again at the end of the iteration and they would
collectively insert newly generated states into the open and closed list.

47

Bibliography

[1] D. Šǐslák, M. Pěchouček, P. Volf, D. Pavĺıček, J. Samek, V. Mař́ık, and P. Losiewicz,
AGENTFLY: Towards Multi-Agent Technology in Free Flight Air Traffic Control, ch. 7,
pp. 73–97. Birkhauser Verlag, 2008.

[2] M. Evett, J. Hendler, A. Mahanti, and D. Nau, “Pra*: Massively parallel heuristic
search,” tech. rep., College Park, MD, USA, 1995.

[3] W. D. Hillis, The Connection Machine. Cambridge, MA, USA: MIT Press, 1989.

[4] A. Kishimoto, A. Fukunaga, and A. Botea, “Scalable, Parallel Best-First Search for
Optimal Sequential Planning,” in Proceedings of the International Conference on Auto-
mated Scheduling and Planning ICAPS-09, (Thessaloniki, Greece), pp. 201–208, 2009.

[5] R. Zhou and E. A. Hansen, “Parallel structured duplicate detection,” in Proceedings of
the 22nd National Conference on Artificial Intelligence - Volume 2, AAAI’07, pp. 1217–
1223, AAAI Press, 2007.

[6] E. Burns, S. Lemons, R. Zhou, and W. Ruml, “Best-first heuristic search for multi-core
machines,” in Journal of Artificial Intelligence Research 39, pp. 689–743, 2009.

[7] E. Burns, S. Lemons, W. Ruml, and R. Zhou, “Parallel best-first search: The role of
abstraction,” in Abstraction, Reformulation, and Approximation, 2010.

[8] A. Bleiweiss, “Gpu accelerated pathfinding,” in Proceedings of the 23rd ACM SIG-
GRAPH/EUROGRAPHICS symposium on Graphics hardware, GH ’08, (Aire-la-Ville,
Switzerland, Switzerland), pp. 65–74, Eurographics Association, 2008.

[9] S. Edelkamp, D. Sulewski, and C. Yücel, “Gpu exploration of two-player games with
perfect hash functions,” in Proceedings of the Third Annual Symposium on Combina-
torial Search, SOCS 2010, Stone Mountain, Atlanta, Georgia, USA, July 8-10, 2010
(A. Felner and N. R. Sturtevant, eds.), AAAI Press, 2010.

[10] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach. Prentice Hall,
3 ed., Dec. 2009.

[11] P. Hart, N. Nilsson, and B. Raphael, “A Formal Basis for the Heuristic Determination of
Minimum Cost Paths,” Systems Science and Cybernetics, IEEE Transactions on, vol. 4,
pp. 100 –107, July 1968.

[12] D. E. Knuth, The Art of Computer Programming, Volume 1 (3rd ed.): Fundamental
Algorithms. Redwood City, CA, USA: Addison Wesley Longman Publishing Co., Inc.,
1997.

[13] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson, Introduction to Algorithms.
McGraw-Hill Higher Education, 2nd ed., 2001.

48

BIBLIOGRAPHY

[14] J. Williams, “Algorithm 232: Heapsort,” Commun. ACM, vol. 7, pp. 347–349, June
1964.

[15] A. Patel, “Amit’s A* pages.” http://theory.stanford.edu/~amitp/

GameProgramming/.

[16] D. Šǐslák, P. Volf, and M. Pěchouček, “Accelerated a* path planning,” in Proceedings of
8th International Conference on Autonomous Agents and Multiagent Systems (AAMAS
2009) (S. C. Decker, Sichman, ed.), (Hungary), pp. 1133–1134, May 2009.

[17] D. Šǐslák, Autonomous Collision Avoidance in Air-Traffic Domain. PhD thesis, Czech
Technical University in Prague, Faculty of Electrical Engineering, Feb. 2010.

[18] Š. Kopřiva, D. Šǐslák, D. Pavĺıček, and M. Pěchouček, “Iterative accelerated a* path
planning,” in Proceedings of 49th IEEE Conference on Decision and Control, (Atlanta,
GA, USA), Dec. 2010.

[19] J. Bentley, Programming pearls (2nd ed.). New York, NY, USA: ACM Press/Addison-
Wesley Publishing Co., 2000.

[20] NVIDIA Corporation, CUDA C Programming Guide 4.1. Nov. 2011.

[21] J. Sanders and E. Kandrot, CUDA by Example: An Introduction to General-Purpose
GPU Programming. Addison-Wesley Professional, 1st ed., 2010.

[22] N. Corporation, “Fermi compatibility guide for CUDA applications,” May 2011.

[23] D. B. Mike Banahan and M. Doran, The C Book. Addison Wesley, second ed., 1991.

[24] E. W. Dijkstra, “Solution of a problem in concurrent programming control,” Commun.
ACM, vol. 8, pp. 569–, Sept. 1965.

[25] R. K. Treiber, “Systems programming: Coping with parallelism.,” Tech. Rep. RJ 5118,
IBM Almaden Research Center, Apr. 1986.

[26] M. V. Wilkes, “Lists and why they are useful,” in Proceedings of the 1964 19th ACM
National Conference, ACM ’64, (New York, NY, USA), pp. 61.1–61.5, ACM, 1964.

[27] “Binary heap. array-based internal representation.” http://www.algolist.net/Data_

structures/Binary_heap/Array-based_int_repr.

[28] “Ieee standard for floating-point arithmetic,” IEEE Std 754-2008, pp. 1 –58, 29 2008.

[29] “Intel Pentium 4 Processor 570J.” http://ark.intel.com/products/27475/

Intel-Pentium-4-Processor-570J-supporting-HT-Technology-(1M-Cache-3_

80-GHz-800-MHz-FSB).

[30] D. B. Kirk and W.-m. W. Hwu, Programming Massively Parallel Processors: A Hands-
on Approach. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1st ed.,
2010.

[31] N. Corporation, “NVIDIA’s Next Generation CUDA Compute Architecture: Fermi,”
2009.

[32] P. N. Glaskowsky, “NVIDIA’s Fermi: The First Complete GPU Computing Architec-
ture,” Sept. 2009.

[33] N. C. Micikevicius Paulius, “Local Memory and Register Spilling.” lecture, 2011.

49

http://theory.stanford.edu/~amitp/GameProgramming/
http://theory.stanford.edu/~amitp/GameProgramming/
http://www.algolist.net/Data_structures/Binary_heap/Array-based_int_repr
http://www.algolist.net/Data_structures/Binary_heap/Array-based_int_repr
http://ark.intel.com/products/27475/Intel-Pentium-4-Processor-570J-supporting-HT-Technology-(1M-Cache-3_80-GHz-800-MHz-FSB)
http://ark.intel.com/products/27475/Intel-Pentium-4-Processor-570J-supporting-HT-Technology-(1M-Cache-3_80-GHz-800-MHz-FSB)
http://ark.intel.com/products/27475/Intel-Pentium-4-Processor-570J-supporting-HT-Technology-(1M-Cache-3_80-GHz-800-MHz-FSB)

Appendix A

CUDA

The twenty-first century is without a doubt the age of parallel computing. It is no longer
the domain of expensive supercomputers. Almost every personal computer has a CPU with
two, four or even more cores. Most personal computers are also shipped with a GPU. GPUs
are relatively new, but as can be seen in Figure A.1, the modern GPU can outperform the
CPU ten to a hundred times. The reason lies in a different design (Figure A.2) of the CPU
and GPU, which is the result of varying original purposes. Note however, that the mentioned
speed up is only theoretical. In order to fully utilize the GPU’s resources, it is necessary to
overcome certain limitations. If they are not met, performance can reduce dramatically. In
the worst case, an application running on the GPU can even run much slower than on the
CPU.

The first part of this chapter (Section A.1) briefly covers the history of the CPU and
GPU development. The second part (Section A.2) introduces Fermi, the next generation of
the CUDA architecture. The last part (Section A.3) provides the detailed describtion of the
CUDA programming model.

A.1 Brief history

In order to understand limitations of the CUDA architecture and to be able to decide
whether to use the CPU or GPU for computation, it is necessary to know a little bit about
the development of these two processors.

A.1.1 Central Processing Units

The first personal computers contained CPUs that ran with internal clocks operating
around 1 MHz [21]. As new technologies were invented and integrated circuits were getting
smaller, the CPU clock speed increased. For thirty years, it was one of the most reliable
sources for improved performance. In 2005, the Intel Pentium 4 could run with a clock speed
up to 3.8 GHz [29]. Because of the dramatic increase in the CPU clock speed, other factors
such as memory latency and code branching1 arose. Therefore, large caches and control units
that can, for example, predict the result of the branch or alter the order of the instructions
without changing the output, were added [30].

Nevertheless, due to the power and heat restrictions, as well as physical limitations to
a transistor size, improving performance by increasing clock speed was no longer feasible [21].
Manufacturers were forced to look for alternative approaches. The inspiration came from

1Branching occurs when a code execution depends on some variable (i.e. during an if-else statement or
a loop)

50

A.1. BRIEF HISTORY

Figure A.1: Maximum (theoretical) number of floating point operations per second for the
CPU and GPU. (source: [20])

the improvement of supercomputers which, besides improving a single processor, steadily in-
creased the number of processors. Therefore, in 2005, leading vendors introduced processors
with two computing cores instead of one and began the development of CPUs with even more
cores. These processors have the same instruction set as the ordinary CPU, but multiple
cores can execute more instructions at the same time.

A.1.2 Graphics Processing Unit

At the turn of the 1980s, the graphically driven operating systems such as Microsoft
Windows helped to create a market for a new type of processor that offered hardware-assisted
bitmap operations to assist in the display of the graphical context [21]. In the mid-1990s, the
release of the first person games increased the demands for affordable graphics accelerators
that would help to create more realistic 3D environments. This was achieved by NVIDIA’s
GeForce 256, which was the first graphics processor able to completely perform transform
and lighting computations.

In the 2001, NVIDIA released GeForce 3 series. It was the first one to implement
Microsoft DirectX 8.0 standard that required compliant hardware to contain both vertex
and pixel shading stages that could be controlled by developers, and therefore, giving them
some control over the computations performed by GPUs. In general, these GPUs were
designed to produce a final color for each pixel in programmable arithmetic units known as
pixel shaders by using its coordinates and some additional information such as input colors
and textures. Researchers observed that since arithmetic performed on the input colors is
control by programmers, they can trick the GPU into doing non-rendering tasks. The trick is
to supplement real data as input colors, program pixel shaders to perform desired operations
and then read the result as a final color.

51

A.2. FERMI OVERVIEW

Figure A.2: The basic design of the CPU and GPU. The CPU devotes lots of resources on
the big caches to hide memory latency. The GPU concentrate on the pure floating point
computational power. (source: [20])

This had, however, several drawbacks. First of all, anyone who wanted to use the GPU
for general-purpose computations would need to learn either OpenGL or DirectX so he or
she could formulate his or her task as a graphical problem [30]. Secondly, there were tight
memory constraints of how or where a programmer could write his or her results. Also it was
undefined how a particular GPU would handle (if at all) floating-point data. Nevertheless,
results from these earliest experiments showed new possibilities of what a graphics card can
do.

After 5 years, in November 2006, NVIDIA unveiled CUDA2 architecture and the first
graphics card build-in with it, GeForce 8800 GTX [21]. This new family of graphics proces-
sors were specifically designed for general purpose programming. Vertex and pixel shaders
were replaced by unified shader pipeline, allowing a programmer to use every ALU for general-
purpose computations. In order to truly enable general-purpose computations, these ALUs
supported floating point arithmetics specified by IEEE [28] and were designed to use an
instruction set tailored for general computation. This required adding a large instruction
memory, an instruction cache and an instruction sequencing logic. To avoid an extensive
overhead with these modifications, several ALUs share these resources. This did not affect
the original purpose of GPUs, because the same shared program needs to be applied to
a massive number of vertices or pixels. NVIDIA also added memory load and store instruc-
tions that allowed a random byte addressing to fulfill the requirements of the C programs.
Note however, that these GPUs did not support double floating point arithmetics, neither
did they have any hardware-controlled cache.

A.2 Fermi Overview

The computational power of the Fermi GPU is divided into streaming-multiprocessors
(SMs) that share a global memory and a read-only constant memory3. The number of SMs
varies per device model, but the structure of each SM is the same for all GPUs with the
Fermi architecture.

Figure A.3 provides the basic scheme of Fermi’s SM. Each SM includes:

• 32 cores, that execute both a floating point and integer arithmetics instructions such
as an addition or a multiplication

2CUDA stands for Compute Unified Device Architecture
3They also share a texture memory, but it is only the special case of global memory. See p. 58 for more

information about memory hierarchy.

52

A.3. PROGRAMMING MODEL

• 16 load/store units, which calculate a source and a destination address for sixteen
threads per clock and load and store the data at each address to cache or DRAM.

• Four special-function units, that execute transcendental instructions such as sin, cos
or reciprocal per clock.

• A register file with 32 768 words (registers). Registers are split evenly between all
threads running on the multiprocessor.

• 64 KB RAM, which can be configured in ration 2:1 to be used as a software-controlled
shared memory and a hardware-controlled L1 cache.

• Thread control logic that consists of a common instruction cache and two warp sched-
ulers.

Fermi was also designed for a double precision arithmetic. When a double precision
operation is needed, two cores are used instead of one. Fermi can therefore perform up to 16
double precision operations per clock. Fermi is also the first GPU that includes a hardware-
controlled cache. Apart from the configurable L1 cache, a 768 KB L2 cache shared by all
SMs is available.

A.3 Programming Model

Even with the CUDA architecture, it was still necessary to learn OpenGL or DirectX to
utilize the computational power of the GPU. Therefore, NVIDIA extended industry-standard
C with a relatively small number of keywords and released a public compiler for this new
language, which is known as CUDA C [20]. Together with the CUDA programing model,
it provides a comfortable way to write applications that will benefit from new GPUs series
without any modifications. Each CUDA device is characterized by compute capability, which
determines what features it implements4. From now on, discussion will be strictly limited to
the NVIDIA’s Fermi series, which has a compute capability of 2.0 or higher. Note however,
that most information applies to GPUs with a compute capability of 1.x as well5.

A.3.1 Program Structure

A typical program usually consists of several phases that are executed either on the CPU
(also known as host) or on the GPU (also known as device) [30]. A CUDA program is
a unified source code that contains both a host code, written in C/C++, and a device code,
written in CUDA C. A CUDA compiler, nvcc, separates them during the compilation process.
The host code is then compiled using the standard C/C++ compiler and run as an ordinary
CPU process.

The code is executed on the device from the host by calling kernel functions. They are
often referred to simply as kernels. The kernel typically generates a large number of threads
that all execute the same program. Each thread is uniquely identified by its block and thread
index 6. Therefore, it can be used to supplement different data to individual threads.

When a device is used for the first time by the host thread, a CUDA context is created [20].
The CUDA context is analogous to a CPU process. All resources and actions are bound to
this context. This includes memory allocated on the device and texture references. Normally,

4For example, a device of compute capability 1.3 and higher supports double floating point arithmetics
5See Appendix F of [20] for more information about compute capabilities.
6A thread hierarchy is explained in Section A.3.2

53

A.3. PROGRAMMING MODEL

Figure A.3: Fermi multiprocessor (source: [31])

the CUDA context stays alive through the entire run of the host thread7. When the context
is destroyed, all recourses are automatically cleaned-up by the system.

A.3.2 Thread Hierarchy

CUDA was designed to support scalable programming, where thousands of threads can
be generated regardless of the actual device limitations [30]. As a result of that, the CUDA
program can benefit from a new version of the GPU without any modifications. NVIDIA
introduced the three-layer thread model to support this concept [20], consisting of: (i) grid
(ii) block (iii) thread. Figure A.4 illustrates this model in a two-dimensional example. The
purpose of a grid and blocks is mainly an abstraction designed to make a programmer’s life
easier.

Whenever a new kernel is launched, a large number of threads is created [30]. All threads
execute the same program, the kernel function, but with different data that are selected
based on the unique id within the thread hierarchy [20]. Threads are grouped into one-,
two-, or three-dimensional blocks. The maximum number of threads per block is 1024 with

7It can be destroyed early by calling CUDA API functions. See Appendix G.1 of [20] for more information.

54

A.3. PROGRAMMING MODEL

Figure A.4: CUDA thread hierarchy - a two-dimensional grid with two-dimensional blocks.
(source: [20])

the maximum number of 64 threads in the z-dimension on Fermi. In order to fully utilize
the GPU, the number of threads per block should be a power of two and no less than 32.
Each thread is identified by its position within a block that can be obtained from a three-
dimensional vector threadIdx. It is also possible to access all the block’s dimensions through
a blockDim.

Threads in a block can cooperate with each other [20]. They can exchange data through
shared memory8 and their execution can be synchronized by a barrier synchronization. The
barrier synchronization , represented by a __syncthreads() instruction in CUDA C, stalls
a thread until all threads in a block reach it. This is a powerful mechanism since it does not
add much overhead. Yet, it can be very tricky and dangerous. If a thread divergence9 occurs
and __syncthreads() is placed inside a divergent path, it will not be reached by all threads
and some (or all, if some other barrier follows) threads will halt and never finish [21].

Communication between individual blocks is not supported, neither is their synchroniza-
tion. This results from the fact that blocks are required to be independent10 (i.e. order

8See Section A.3.5 for more details.
9Thread divergence is a situation, when some threads in a block take a different path in the program

than others (i.e. execute the instruction(s) that others do not) [21]. This path is then known as a divergent
path [30]. This can often happen if some part of the code depends on the condition (i.e an if-then-else or
a loop)

10This is more like a recommendation than a rule. As a matter of fact, this work heavily depends on
blocks cooperation. Since compute capability 1.1, CUDA has supported atomic functions that performs

55

A.3. PROGRAMMING MODEL

in which they are executed should not affect the output) [20]. Figure A.5 shows the scal-
ability achieved by dividing a program into the set of independent blocks. Hence, writing
a program that will benefit from future GPUs is nothing more than writing a program with
enough blocks to occupy additional SMs.

Figure A.5: CUDA scalability - A multi-threaded program is partitioned into blocks of
threads that execute independently from each other, so that a GPU with more SMs will
automatically execute the program in less time than a GPU with fewer SMs. (source: [20])

The last layer in the CUDA thread hierarchy is a grid. Blocks are organized into a grid
that can be either one-, two- or three-dimensional on Fermi [20]. The maximum number of
blocks is limited to 65 535 per dimension. Each block is identified by its position on the grid
that is accessible through a three-dimensional vector blockIdx. The grid dimension can be
obtained from a gridDim variable.

A.3.3 Thread Execution

When a kernel is launched, the thread hierarchy is mapped to the hardware hierarchy of
the GPU [31]. The grid is mapped to the available GPU. Modern GPUs, including Fermi,
can execute more kernels, which belong to the same application (thread to be precise), at
the same time. Since blocks are expected to be independent, they are distributed among
SMs with the available execution capacity [20]. Multiple blocks can be assigned to one SM.

a read-modify-write operation without interruption from other threads [20]. Therefore, it is possible to
implement synchronization and exchange data between blocks by using atomic operations on variables in
global memory). Kernel will execute even if blocks are not independent, but it is up to the software developer
to ensure that the program will run properly on a specific device. Note however, that NVIDIA discourages
any attempt at block synchronization.

56

A.3. PROGRAMMING MODEL

Threads from one or multiple blocks that reside on one SM are executed concurrently. Once
a block is assigned to an SM, it stays there until all the threads in that block finish the kernel
execution.

As was mentioned earlier, a typical CUDA program consists of hundreds to thousands of
threads. To keep the cost of managing, scheduling and executing threads low, CUDA uses
a unique architecture called Single-Instruction, Multiple-Thread, abbreviated as SIMT [30].
As the name indicates, a single instruction is executed by multiple threads, where each thread
uses its own instruction arguments. Therefore, overheads, caused by fetching and processing
instructions, can be amortized over multiple threads.

Fermi and all previous GPUs so far, partition threads in a block into groups of size 32,
called warps [20], which are managed and scheduled together. Threads are divided conse-
quently according to their unique thread id. Each thread in a warp has its own instruction
address counter and register state. Therefore, they can execute independently and take
different paths in a conditional code.

However, a warp executes one instruction at a time. Because of the SIMT architecture,
this instruction can be executed by all warp’s threads. If threads in a warp diverge (i.e. some
of them take a different path in a conditional code), the warp execution will execute these
paths one by one [30]. In the worst case, if all 32 threads take a different path, the execution
will get completely serialized. Hence, to fully utilize GPU, threads in a warp should have
the same control flow paths.

A.3.4 Warp Scheduler

As was shown in Figure A.3, each SM on Fermi contains two warp schedulers. Each one
of them can issue one instruction every two cycles [31]. They are often referred together as
a dual warp scheduler. Every two clock cycles, a dual warp scheduler select two warps and
issues one instruction for each warp. This process is illustrated in Figure A.6. Since the
execution context (i.e. program counters, registers, etc) for each warp are located directly
on the SM for the entire lifetime, switching from one warp to another has no cost.

Figure A.6: Fermi Dual Warp Scheduler

57

A.3. PROGRAMMING MODEL

32-bit instructions are issued to a group of 16 execution cores, 16 load/store units or
four SFUs. Therefore, it takes two clock cycles to execute a warp arithmetic instruction on
execution cores or a load/store instruction [32]. 32-bit special-functions instructions take
eight clock cycles to execute, but they are issued in a single clock cycle. 64-bit instructions
(i.e. double precision and long instructions) need all 32 cores to execute arithmetic instruc-
tions [31]. Therefore, only one warp can be selected every two cycles. Also special-functions
instructions take twice as much time (i.e 16 clock cycles). This reduces the instruction
throughput by a factor of two.

A.3.5 Memory Hierarchy

Unlike the CPU, the GPU does not rely on a hierarchy of large caches to hide memory
latency [20]. Instead of that, it tries to hide it with computations. Hence, transistors devoted
to big data caches on the CPU can be used for data processing. However, this puts some
requirements on a programmer, because certain memory access patterns must be used as well
as a ratio between arithmetics and load/store instructions must be met in order to achieve
high performance. Hence, it is necessary to understand CUDA memory hierarchy. This is
true even for Fermi which introduced L1 and L2 caches [31]. Physically, the GPU contains
three types of memories [20]: (i) local registers (ii) shared memory (iii) device memory.

Local registers present the fastest and the smallest memory available on the CUDA
device [20]. They are located directly on a SM. On Fermi, each SM includes 32 768 registers.
These registers are assign per thread. Therefore, it is not possible to share results through
a register. Registers are split evenly between all available threads on a SM. The maximum
number of registers that Fermi can allocate to one thread is 63 [33].

Shared memory is another kind of on-chip memory (i.e. it is located on a SM) [20].
As the name implies, it can be shared between threads within a block. The content of shared
memory ceases to exist with the end of the kernel.

Shared memory is divided into equally-sized memory modules, called banks, which can
be accessed simultaneously [20]. Because it is on-chip memory, access to it is fast as long
as a read or write request is made of n addresses that fall to n distinct memory banks. If
two or more addresses fall into the same bank, bank-conflict occurs. In such a case, the
original request must be split into as many bank-conflict free requests as necessary. The
original request is said to cause n-way bank conflicts, where n is the number of separated
bank-conflict free requests.

On Fermi, shared memory has 32 banks with a bandwidth of 32 bits per two clock cycles.
Memory is organized in such a way that successive 32-bit words are assigned to the distinct
banks11. If more threads request a read from the same address, the word is broadcasted
within a single transaction without causing a bank-conflict. If more threads try to write to
the same address, each byte is written by one of the threads. Which thread writes which
byte is undefined.

Because of low latency, shared memory can be used as a temporally, software controlled
cache [30]. A common example is matrix multiplication. Threads within a block can coop-
erate on loading part of the matrix into shared memory and then using it to perform the
arithmetic operations12. Correct use of shared memory can have a significant effect on the
final performance.

11For example no bank-conflict will occur if all threads within a warp read or write a corresponding float
number from the array of size 32.

12See Chapter 5 of [30] for more details.

58

A.3. PROGRAMMING MODEL

Fermi is the first GPU that allows part of shared memory to be used as hardware con-
trolled L2 cache [31]. Each SM contains 64 kB memory that can be used in one of the
following two configurations:

• 48 kB shared memory, 16 kB L2 cache.

• 16 kB shared memory, 48 kB L2 cache.

Device memory is the largest and the slowest memory on the GPU [20]. The latest
GPUs support up to 6 GB DRAM. Device memory is shared by all kernels and its content
exists through the entire CUDA context. Access to device memory takes between five to
eight hundreds clock cycles.

The CUDA programming model splits device memory into four types, which differ in
their usage and addressing: (i) global (ii) constant (iii) texture (iv) local memory.

Global memory is the most general memory available for the programmer that resides
in device memory [20]. It supports read and write access and it is shared by all threads.
Global memory is accessed via 32-, 64- or 128-byte naturally aligned13 transactions. When
a warp executes an instruction that accesses global memory, it coalesces accesses of individual
threads into as few transactions as possible. The number of transactions depends on the size
of the word accessed and the distribution of the memory accesses. The first GPUs had
rather strict limitations - consecutive threads had to access consecutive addresses. These
limitations became more relaxed with each new version of the CUDA architecture.

Another aspect that a programmer must be aware of is size and alignment require-
ments [20]. Global memory instructions can only access words of one, two, three, eight
or 16 bytes that are naturally aligned. Otherwise, access has to be divided into multiple
instructions. As result of that, access cannot be fully coalesced, which has a negative effect
on the memory throughput.

Special care must be taken when using two-dimensional arrays. Common representation
stores rows successively. If the size of a row does not meet alignment requirements, the
following rows after the first one will not be naturally aligned. Hence, access to these rows
will not be correctly coalesced. Fortunately, CUDA C provides several functions that allocate
memory for two-dimensional array with correct padding at the end of the row14.

Constant memory is the 64 kB read-only memory that resides in device memory [20].
Because data in constant memory cannot change, a cache can be used effectively. Each SM
contains a special 8 kB cache that is designated only for constant memory. Right usage can
significantly speed up the application.

Unlike global memory, constant memory does not use coalescing. It can only handle one
address at a time. Therefore, the original request is split into as many requests as there
are different memory addresses. This decreases throughput by a factor equal to the number
of separated requests. Because each SM contains an L2 cache on Fermi, it might be faster
to use global memory instead of constant memory if each thread within a warp accesses
a different address.

Texture memory is another read-only memory that resides in device memory [20].
Unlike constant memory, it does not have any size limitations. It shares its space with global
memory. The difference between global and texture memory lies in access. Texture memory

13The address is a multiple of the accessed segment size.
14See [20] for more information.

59

A.3. PROGRAMMING MODEL

is cached in a special cache that is optimized for a 2D spatial locality (Figure A.7). Note
however, that it can still be used for 1-dimensional arrays. The size of the cache is device
dependent, but it should be between 6 to 8 kB per SM.

Figure A.7: A spatial locality of the texture cache. If a value at the red position is requested,
adjacent values (green) are loaded into the cache as well [21]. This is different from the cache
normally used on the CPU or by global memory on Fermi, where only adjacent values in
a single row are loaded.

Texture memory has several other advantages [20]. First, data in texture memory can
be either addressed by absolute coordinates (i.e. 0, 1, 2, · · · , n− 1) or by linear coordinates
(i.e. any number in 〈0, n − 1〉), where the closest coordinates will be selected. For linear
addressing, texture coordinates can be also normalized (i.e. any number in 〈0, 1〉). Secondly,
it can remap out-of-range coordinates to the valid range based on the addressing mode.
Lastly, filtering can be used if data are fetched by linear coordinates15.

All of these computations (texture addresses, filtering) are computed by special load/store
units designated only for texture memory. Therefore, load/stores instructions located on each
SM can be used for some other memory requests.

Local memory is per-thread memory that resides in device memory [20]. It is used for
some automatic variables such as large arrays or structures or whenever a kernel uses more
registers than available 16. The same limitations and requirements as for global memory
apply for local memory17. In order to improve throughput, consecutive 32-bit words are
allocated to the consecutive threads with respect to their id. Therefore, as long as threads
within a warp access the same relative address, the access is fully coalesced.

On Fermi, each thread can use up to 512 kB of local memory.

A.3.6 Streaming Multiprocessor Occupancy

As was mentioned in the previous section, CUDA tries to hide memory latency by com-
putation. How successful it will be, depends on two factors [30]:

• The number of arithmetic instructions per load/store instruction.

• The number of warps with instructions ready for execution.

The first one is self-explanatory. The second one is often affected by the number of
warps that reside at a given time on a SM. The maximum number of warps per SM is 48 on
Fermi [20]. Besides that, SM has several other limitations that can reduce the number of
resident warps:

15See Appendix E of [20] for more details on texture fetching.
16This is known as register spilling [33]
17This also means that local memory is cached on Fermi

60

A.3. PROGRAMMING MODEL

• The number of registers per SM (32 768 on Fermi). If a kernel uses too many registers,
CUDA may be forced to assign less blocks per SM and hence reduce the number of
warps.

• Amount of shared memory available per SM (Fermi can be configured to use either
16 kB or 48 kB shared memory). If a block uses too much shared memory, CUDA may
be forced to assign less blocks per SM and hence reduce the number of warps.

• Maximum number of blocks that can reside on a SM (eight on Fermi). For example if
a block consists only of 32 threads, then there can be no more than 256 threads (eight
warps)

• Maximum number of threads that can reside on a SM (1536 on Fermi). For example
if a block consists of 1024 threads, it will not be possible to assign more blocks on the
SM and the remaining 512 threads (16 warps) will stay ”unused”.

A programmer must be well aware of these limitations. Selecting the right kernel config-
uration is not a simple task. Sometimes it can be better to use more registers even at the
cost of reducing the number of blocks per SM. This can especially apply if number of threads
per block is small. In another situation, it might be better to load some data again in order
to save a few registers. Usually, it is necessary to experiment with several configurations in
order to find an optimal solution.

61

Appendix B

Algorithms

Algorithm B.1 uses the following notations:

• tid and bid refers to a thread id within a block and a block id.

• when tid is use as a subscript, it denotes the variable of a given thread (e.q. OPENtid).

• all other variables are shared by all threads in a block.

Algorithm B.1 CUDA Parallel Accelerated A* algorithm pseudocode

Require: pcS and pcG are valid, finished = false and emptyCounter = 0
Ensure: solution contains a solution to the problem if it exists.

1: function CPAASearch(pcS, pcG, buffer, scheduler, finished, emptyCounter, solution)
2: emptyF lagtid ← false
3: OPENtid ← ∅
4: CLOSEDtid ← ∅
5: (bidpcS , tidpcS)← GetSectorId(pcS)
6: if bidpcS = bid then
7: fpend ← Connect(pcS, pcG)
8: sS ← 〈pcS,DetectSamplingStep(pcS), 〈〉, IsValid(fpend), 0,Cost(fpend),−〉
9: if tidpcS = tid then

10: InsertOrReplaceIfBetter(sS, OPENtid)

11: while ¬finished and (emptyCounter < n or ¬IsEmpty (scheduler, buffer)) do
12: sCtid

← RemoveTheBest(OPENtid)
13: Insert(sCtid

, CLOSEDtid)
14: foreach sCi

do . Iterate over all sCtid

15: if usCi then
16: sG ← 〈pcG,−,Connect(pcsCi , pcG), true, gsCi + hsCi , 0, sCi

〉
17: sG ← SmoothPath(sG, pcS)
18: fpresult ← ReconstructPath(sG)
19: if tid = 0 then
20: UpdateIfBetter(solution, fpresult)
21: finished← true

22: else
23: foreach fpj ∈ Expand(sCi

) do
24: if IsValid(fpi) then
25: pcN ← EndConfiguration(fpj)
26: if tid = 0 then
27: Push(scheduler, (sCi

, pcN , g
sCi + Cost(fpi))

62

28: while HasNext(scheduler) do
29: (sC , pcN , g

N)← Pull(scheduler)
30: ξN ← DetectSamplingStep(pcN)
31: fpend ← Connect(pcN , pcG)
32: sN ← 〈pcN , ξN , fpi, IsValid(fpend), gN ,Cost(fpend), sC〉
33: sN ← SmoothPath(sN , pcS)
34: if tid = 0 then
35: (bidsN , tidsN)← GetSectorId(sN)
36: Push(buffer(bidsN ,tidsN), sN)

37: while HasNext(buffer(bid,tid)) do
38: sCtid

← Pull(buffer(bid,tid))
39: if ContainsBetter(sCtid

, CLOSEDtid) then
40: continue
41: else
42: InsertOrReplaceIfBetter(sCtid

, OPENtid)

43: if IsEmpty(OPENtid) then
44: if ¬emptyF lagtid then
45: AtomicInc(emptyCounter)
46: emptyF lagtid ← true

47: else
48: if emptyF lagtid then
49: AtomicDec(emptyCounter)
50: emptyF lagtid ← false

63

Appendix C

Figures

(a) Setup A (b) Setup G (rotated by 90◦)

Figure C.1: A path returned by Accelerated A* for selected setups. (source: AgentFly)

64

Figure C.2: United States Airspace with all no-flight zones. (source: AgentFly)

65

Appendix D

Contents of the CD

• CHDA* source codes

• CPAA* source codes

• Data for CHDA* experiments in text files

• Data for selected flights from the AgentFly in binary files for 32-bit architecture

• Figures of found paths by AA* for selected flights.

• Figures of expanded states by AA* and CPAA* for selected flights.

• Bachelor thesis in Portable Document Format (pdf)

66

	Introduction
	Thesis Goals
	Related work
	Thesis Organization

	Planning in Artificial Intelligence
	Problem Statement
	Basic Terminology
	Overview of Search Algorithms
	A* Search Algorithm
	Properties of the Heuristic Function
	Selection of the Heuristic Function
	Heuristics for Two-Dimensional Grids

	Accelerated A* Search Algorithm
	Algorithm Pseudocode Description

	Parallel Planning on CUDA Architecture
	CUDA Hash Distributed A*
	Concept
	Algorithm
	Optimality

	CUDA Parallel Accelerated A*
	States Distribution
	Threads Cooperation
	Task Scheduler
	Algorithm
	Rejected Approaches

	Implementation Details
	Synchronization
	CUDA Concurrence Support
	Synchronized Buffer
	Non-Blocking Buffer

	Priority Queue
	Accelerated A* Excluded Area
	Representation
	Inflated Zones Generation

	Experimental Evaluation
	CUDA Hash Distributed A*
	CHDA* Implementation Properties
	Four-Way Unit Cost
	Eight-Way Unit Cost
	Prepare Arrays Kernel

	CUDA Parallel Accelerated A*
	CPAA* Implementation Properties
	Comparison with Accelerated A*
	Impact of the Planning-Grid

	Conclusion
	Future work

	CUDA
	Brief history
	Central Processing Units
	Graphics Processing Unit

	Fermi Overview
	Programming Model
	Program Structure
	Thread Hierarchy
	Thread Execution
	Warp Scheduler
	Memory Hierarchy
	Streaming Multiprocessor Occupancy

	Algorithms
	Figures
	Contents of the CD

