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Abstract

This work deals with design and implementation of intelligent data warehouse for domain of
maritime piracy. This warehouse provides automatic categorization of text documents based
on their topics, allows to search for documents using queries, it automatically downloads news
from predefined sources and provides analysis of submitted piracy incidents in form of charts
and map of incidents. For creating the categorization module, we studied the task of text
classification. We evaluated three classification methods (Naive Bayes, k-nearest neighbours
and Support Vector Machines) on a dataset from multi-agent systems domain.

Abstrakt

Tato práce se zabývá implementaćı inteligentńıho datového skladu dostupného z webového
prohĺıžeče pro data z domény námořńıho pirátstv́ı. Sklad provád́ı automatickou katego-
rizaci textových dokument̊u na základě jejich tématu, umožňuje vyhledáváńı dokument̊u
dle uživatelských dotaz̊u, stahuje zprávy z předdefinovaných zdroj̊u a nab́ıźı také analýzu
vložených pirátských útok̊u ve formě graf̊u a mapy útok̊u. Pro vytvořeńı modulu pro kate-
gorizaci dokument̊u bylo nutné nastudovat problematiku klasifikace textu a provést rešerši
několika použ́ıvaných metod (Naivńı Bayes̊uv klasifikátor, algoritmus k nejbližš́ıch soused̊u a
Support Vector Machines). Tyto metody byly otestovány na množině dokument̊u z domény
multi-agentńıch systémů.
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Chapter 1

Introduction

In early days, collection of information meant searching through hundreds of documents and
finding relevant information by hand. But now, when performance of computers is sufficient,
more effort is spent on automation of these tasks by computer programs and leave only the
most important decision to human. This is possible due to the progress made in fields of
machine learning and data mining.

Organizations involved in preventing maritime piracy gather documents from different
sources and they need a mechanism to categorize and extract relevant information from them.
Some resources are in form of reports (PDF, etc.), newsfeeds or structured files containing
geographic data about piracy incidents. Our goal is to implement a platform-independent
data warehouse, which can handle these information, i.e. store them, categorize them to
predefined categories and provide them to user either by search queries or as visualization
on map and charts.

Existing services are suitable only as web folders for synchronization and sharing, others
can offer some additional functionality, such as document editing and file viewing, but none
of these services provide automatic categorization and domain-specific features (at least not
for free or small amount of money). There are also some database management systems,
which incorporate data mining algorithms, but these systems are expensive, thus making
them unsuitable for non-enterprise users.

First, we analyse the specifications for the warehouse, upon which we design a warehouse
architecture. Then we introduce the task of text classification needed for automatic data
categorization. Introduced classification methods will be evaluated on a dataset from domain
of multi-agent systems. The next section will provide a description of the implementation
with used libraries. Last section summaries this work and offers few ideas for future work.

1
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Chapter 2

Related work

There are many services for document management, file sharing and data analysis, here we
provide a short list of selected public solutions:

1. Dropbox[23]

• mainly used for file sharing and synchronization

• accessible from web browser or from standalone client (which is cross-platform)

• file revisions

• manual file categorization using folders

• no file searching, automatic categorization and data analysis

2. Google Docs[25]

• document sharing and collaborative editing

• accessible form web browser

• conversion of files to text

• file searching, reviewing and revisions

• manual file categorization using folders

• no automatic file categorization and data analysis

3. OpenKM[4]

• open-source document management system

• system can be deployed at own server

• accessible from web browser or from standalone client (which is cross-platform)

• conversion of files to text

• file searching and revisions

• manual file categorization using folders and user defined categories

• no automatic file categorization and data analysis

3



4 CHAPTER 2. RELATED WORK

4. Pentaho[5]

• business intelligence suite for data analysis

• enterprise and open-source editions (however the open-source edition has a very
small set of features)

• accessible from web browser

• provides complex data analysis - charts, maps, dashboards, tables etc.

• data for analysis may be stored in database - user provides tables and columns to
be analysed

• analysis results can be exported in CSV, PDF, XLS etc.

• support for scripting

• no file searching and automatic categorization

There are also solutions for large enterprises, for example Autonomy Corporation[9] pro-
vides “Intelligent Data Operating Layer” technology. They offer extraction of information
from structured and unstructured data, document searching, categorization, summarization,
scene detection etc.



Chapter 3

Design

3.1 Specifications and use cases

Here we provide a list of use cases and specifications for the warehouse:

• user access to the warehouse should be platform-independent and without the need of
installing additional application

• submission of piracy incidents in web form or from KML files

• uploading files to the warehouse

• automatic categorization of files into predefined categories with optional user interven-
tion

• downloading files from the warehouse

• searching for files using queries

• analysis of piracy incidents

• automatic acquisition of documents from maritime piracy websites

3.2 Task analysis

One of our main requirement is categorization of incoming data into categories, which may
overlap (i.e. one file can be assigned to more categories). We will denote the categorization
process as tagging and categories will be called tags (or labels, used interchangeably). Tagging
should be two-step process: automatic and manual. The manual step is mainly for auditing,
i.e. correction and specifying additional tags by the user. The question is, why to use
automatic tagging when we already rely on user interaction? The answer is that the number
of tags could be large and it would be very tedious work for users to go through all of them
and choose the relevant ones. With automatic tagging, we will suggest only few tags and user
will only add the most obvious ones which were omitted in the first step (we are making an
assumption that most documents have small number of tags). We will limit the automatic
step to files from which we can extract some text (e.g. PDF, HTML etc.).

5



6 CHAPTER 3. DESIGN

When files are categorized, a user can easily search for files by the name of the category.
Another option is searching for files using specific queries. The warehouse would return a
sorted list of files with descending relevancy to the given query. This is particularly useful
for text files where user would search for files containing some specific keywords. Searching
is done with text indexer, which stores the incoming files in optimized data structure for fast
retrieval of relevant files. Combination of text and tags search can narrow down the number
of retrieved files, e.g. query “agents” would retrieve documents about national security
and robotics, but by specifying the category, the user can filter documents from unwanted
category.

In maritime piracy we could devise a less dangerous routes using knowledge about location
of incidents and their evolution through time. These information can be visualized in charts
or on an interactive world map. The problem is acquiring this information. One option is
to employ techniques from text mining on incoming files, however this is outside the scope
of this work. We will limit ourselves to parsing incidents from files with a fixed syntax.

The warehouse will also periodically download and categorize news from web pages.
This will be performed in background by data tasks without any intervention from users or
warehouse administrator.

Security is not our primary concern, thus the warehouse will not provide any means
to protect private informations, all imported documents can be viewed by everyone. This
solution is suitable for internal use in private companies1.

3.3 Architecture

After defining and analysing specifications, we design the warehouse architecture. Warehouse
architecture with different modules can be seen in Figure 3.1; it is based on the client-server
model[32]. Reasons for using this model are:

• centralized data storage - server can work with all available data and perform analysis
on them.

• user application (i.e. client) doesn’t do “the hard work”, every computation and data
fetching is done on the server side. Client can be low-end computer with internet
connection and web browser.

• support for concurrent work of multiple clients.

• the warehouse can be accessed from anywhere, specification for platform-independence
is satisfied.

Here we provide a brief description of every module in the architecture:

Client - provides interaction with the warehouse to user in form of a web page. User can
upload and download files, search for files using queries and analyse incidents on map
or charts.

Server - serving client requests and communication with database. Data tasks collect doc-
uments from web sources.

1International Maritime Organization, The Maritime Security Centre – Horn of Africa etc.
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Database

Server

Incidents map

File upload

Client

Text tagger

Text extractors

Tagging library

SQL

HTTP

Programming language interface

Data tasks

File storage

Text indexer

File search

Incidents analysis

Figure 3.1: Architecture

Database - contains information about incidents, existing tags and temporary session in-
formation. For these tasks, any relational database with SQL queries will suffice.

File storage - in our previous work we stored files in the database with their metadata
(name, MIME type, assigned tags etc.). With usage of indexer, we can store files
directly on server’s filesystem and metadata inside the indexer2. This enables user to
perform search queries on metadata too.

Tagging library - text extractors are used to extract text from files of various formats,
whereas text tagger assigns appropriate tags to extracted text. Section 4 describes
text tagging in deeper detail.

3.4 Process design

This section provides a high-level overview of each function for client web page. We omitted
error reporting in our flowcharts.

3.4.1 Uploading file

Files can be uploaded from user’s computer or by providing publicly accessible URL. As
a response, server sends back suggested tags. User can select additional tags or remove
incorrectly suggested tags.

2this could lead to inconsistencies if files are deleted from filesystem by a careless administrator.
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3.4.2 Downloading files

Since files can be uploaded to the warehouse, there should be a mechanism to download
them as well. User can create complex search queries and server will return a list of relevant
files to that query.

3.4.3 Visualization of incidents

The idea of the incident map is to provide a visual where incidents occur. User can filter
incidents by type and year and by clicking on the incident marker, detailed information
about incident is shown.

3.4.4 Incident charts

Further analysis can be made by looking at charts. Charts provide an evolution of incidents
in time (i.e. per month, year etc.). As well as in map, user can filter incidents by type and
year. For computer data processing, CSV files can be downloaded for each chart type.
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Figure 3.5: Incident charts



Chapter 4

Text classification

In this section we provide an overview of the text classification task and give brief descriptions
for methods used in evaluation. Gained knowledge will be used in implementation of text
tagger for the warehouse.

4.1 Task definition

Definition follows [38], which also contain a nice overview of text classification. Let D =
{d1, . . . , d|D|} be a domain of documents and C = {c1, . . . , c|C|} a set of categories. Our
task is to find a classifier Φ : D × C → {true, false}, whose output is a decision for
input arguments (di, ck) ∈ D × C whether to assign a category ck to document di (true for
yes, false for no). Classifier function is an approximation of the unknown target function
Φ̆ : D × C → {true, false}, whose output decisions are always correct.

In machine learning approach, we use a general methods from the field of ML to find
the function Φ. We are given an initial corpus of documents Ω ⊂ D, for which outputs of
Φ̆(di), di ∈ Ω are known. The set Ω is split in two sets, TV and Te, where TV ∩Te = ∅. TV
is called a training set, which is used to build a classifier. Te is called a testing set, on which
the built classifier is tested and evaluated by some measures (discussion of used measures in
evaluation will be presented in Section 5.1.2).

We define functions Λ : D → Cs as Λ(di) = {ck | Φ(di, ck) = true, ck ∈ C} and
Λ̆ : D → Cs as Λ̆(di) = {ck | Φ̆(di, ck) = true, ck ∈ C}, where Cs is a set of all possible

subsets of C. In single-label classification, both |Λ(di)| = 1 and
∣∣∣Λ̆(di)

∣∣∣ = 1 must hold for

every di ∈ D. On the other hand, in multi-label classification the cardinality of Λ(di) and
Λ̆(di) is not constrained.

Text classification is a task with wide range of applications, including patent classification,
news classification, spam filtering, sentiment detection etc.

4.2 Document representation

First, we need to define a set of terms T = {t1, . . . , t|T |}. Terms can be words, bi-grams (i.e.
a pair of consecutive words) or anything else. For our purpose, we will use words (T then
can be interpreted as a vocabulary).

13
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In Vector space model1, document di ∈ D is represented as a vector dr(di) ∈ R|T | of term
weights wj(di), i.e.

dr(di) = (w1(di), w2(di), . . . , w|T |(di))

4.2.1 Term weights

Representations differs in meaning of term weights. In general, term weight is computed as
wj(di) = tlw(di, tj) tgw(tj), where tlw, tgw are called term local weight and term global weight
respectively. We present here a few variants which are commonly used in text classification
and information retrieval [12].

• Term local weights

term frequency tlwtf(di, tj) = number of occurrences of term tj in document di

binary tlwbin(di, tj) =

{
1 tlwtf(di, tj) > 0

0 otherwise

logarithmic tlwlog(di, tj) = log(1 + tlwtf(di, tj))

• Term global weights

none tgwno(tj) = 1

inverse document frequency tgwidf(tj) = log |TV |
#TV (tj)

where #TV (tj) is a number of documents in training set in which the term tj
occurred.

mutual information can be used as a weighting scheme [15] or as a term selection
method [41]2. Global weight can be computed as

tgwmi(tj) = H(X)−H(X|Yj) (4.1)

where H(X) is the entropy of the random variable X whose outputs are categories
of all training documents. H(X|Yj) is a conditional entropy where Yj is a random
variable which tells whether the training document contains term tj .

To abstract from document length, we can use normalization of weights, i.e.

wj(di) =
tlw(di, tj) tgw(tj)√∑|T |

k=1(tlw(di, tk) tgw(tk))2

4.2.2 Term selection

Because T tends to be large, techniques to reduce its dimensionality are employed, which
may lead to faster classification and more accurate prediction. Commonly used methods are
word lower-casing, removing stopwords and stemming (T will contain only stems of words).

Another technique is term scoring. Every term is scored by means of some function
score : T → R and only the n terms with highest scores are preserved. In evaluation we will
use tgwmi(t) as a scoring function.

1Introduced in SMART Information Retrieval System
2Please note that in this article the mutual information is presented as information gain.
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4.3 Methods

For evaluation we chose three methods: Naive Bayes ([30], [34], [12]), k -nearest neighbours
([12]) and Support Vector Machines ([28], [10]). Presented methods are used as single-label
classifiers, but in Section 4.4 we will extend them for needs of multi-label classification.

4.3.1 Naive Bayes

Naive Bayes classification is probabilistic method based on idea of the well-known Bayes
theorem

Pr(ck | di) =
Pr(ck) Pr(di | ck)

Pr(di)
(4.2)

where

Pr(di) =

|C|∑
s=1

Pr(di | cs) Pr(cs) (4.3)

Now we have to find estimates of Pr(ck) and Pr(di | ck) (we will denote them by hat).

Probability of the given category can be easily estimated from training set as

P̂r(ck) =

∣∣∣{d | Φ̆(d, ck) = true, d ∈ TV }
∣∣∣

|TV |
(4.4)

If we make an assumption, that occurrences of terms are independent, then we can
estimate Pr(di | ck) using multinomial distribution with parameters θkj

P̂r(di | ck) =

(∑
t∈T

tlwtf(di, t)

)
!

|T |∏
j=1

θ
tlwtf(di,tj)
kj

tlwtf(di, tj)!
(4.5)

Now we have to find |C||T | parameters θkj . Using Maximum likelihood estimate we can
arrive to estimates

θkj =

∑
d∈TVk

tlwtf(d, tj)∑
t∈T
∑

d∈TVk
tlwtf(d, t)

(4.6)

where TVk = {d | d ∈ TV, Φ̆(d, ck) = true}. To avoid multiplication by zero in Eq. 4.5 for
zero-frequency terms in classes we use Laplace smoothing [12].

With these derived results, we can define our classifier as

Φ(di, ck) =

true ck ∈ arg max
cr∈C

P̂r(cr | di)

false otherwise
(4.7)

The reason why to maximize P̂r(cr | di) comes from minimization of the Bayesian risk [16].

Disadvantage is the independence assumption, which is often violated by real data.

Advantages of Naive Bayes method is fast classifier modelling, no parameter selection and
simplicity of the implementation. Naive Bayes is successfully employed in spam-filtering3.

3http://spamassassin.apache.org/ project uses Naive Bayes in combination with different techniques.

http://spamassassin.apache.org/
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4.3.2 k-nearest neighbours

Let us define a distance function dist : R|T |×R|T | → R. For given testing document di we con-
struct a setNk ⊂ TV of k elements, whose distances to di (i.e. value of dist(dr(di),dr(dj)), dj ∈
TV ) are lowest. Classifier will be then defined as

Φ(di, cs) =

true cs ∈ arg max
cr∈C

∣∣∣{d | Φ̆(d, cr) = true, d ∈ Nk}
∣∣∣

false otherwise
(4.8)

k-NN can suffer from overfitting, thus some mean to find k which minimizes error on
testing data has to be employed. Other disadvantage can be somewhat slower classification
phase, since obtaining the set Nk can be costly (to improve the classification speed space-
partitioning structures like k-d tree can be used instead of linear search).

Advantages of k-NN are simple implementation and capability to classify non-linearly
separable data. Performance of k-NN is usually among the top classifiers (see [28],[40]).

4.3.3 Support Vector Machines

SVM is a binary classification method first proposed for text classification task in [28]. First,
we briefly describe how SVM works in its general, soft-margin form, then we apply it to our
task.

Let (xi, yi),xi ∈ Rn, i = 1, . . . ,m be a training set of data with their corresponding labels
yi ∈ {−1, 1}. SVM finds the separating hyperplane of this dataset with the widest margin
(distance from the hyperplane to nearest data from both classes) by solving the following
optimization task with unknowns w, b, ξi

min
1

2
||w||2 + C

m∑
i=1

ξi (4.9)

s.t. ∀i : yi(wxi + b) ≥ 1− ξi (4.10)

∀i : ξi ≥ 0 (4.11)

where (w, b) are parameters of the hyperplane, C is a cost parameter and ξi are slack
variables.

The formulation in Eq. 4.9 is transformed into dual task with variables αi, i = 1, . . . ,m
(αi are Lagrange multipliers)

max
n∑

i=1

αi −
1

2

m∑
i=1

m∑
j=1

αiαjyiyjxixj (4.12)

s.t.

m∑
i=1

αiyi = 0 (4.13)

∀i : 0 ≤ αi ≤ C (4.14)

Vectors xi for which their corresponding Lagrange multipliers are greater than zero are called
support vectors.
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Variables from primal task Eq. 4.9 are found as

w =
m∑
i=1

αiyixi (4.15)

b = yk(1− ξk)−wTxk (4.16)

where k is an index of any support vector, i.e. αk > 0 must hold. Classification of the new
data x will then be

sign(wTx + b)

For data, which are not linearly separable, a kernel trick can be used by replacing dot
products with kernel function K(xi,xj), which computes a dot product of xi,xj in higher
dimensional space.

For assigning a category for a testing document di, additional work needs to be done,
since SVM is a binary classification method. We solve this by one-against-one method,
where we build a |C|(|C|−1)2 binary classifiers on each pair of categories. For categories cr, cs
with condition r < s we define a set TVrs = {d | Φ̆(d, cr) = true ∨ Φ̆(d, cs) = true, d ∈ TV }.
We associate a category cr with class −1 and category cs with class 1. Binary SVM classifier
is then built on TVrs and its decision is defined as

Φrs(di) =

{
cr sign(wT

rs dr(di) + brs) < 0

cs otherwise
(4.17)

where (wrs, brs) are parameters of the hyperplane in classifier Φrs. Final decision for docu-
ment di and category ck is then

Φ(di, ck) =

{
true ck ∈ arg max

c∈C
|{(r, s) | Φrs(di) = c, 1 ≤ r < s ≤ |C|}|

false otherwise
(4.18)

SVM has probably the slowest training phase from all presented methods (however,
classification phase for linear kernel is very fast as it requires only computing dot product
on sparse vectors). Soft-margin SVM has also a cost parameter to tune.

4.4 Multi-label classification

Different approaches to solve the multi-label classification task are presented in [39]. For our
purpose the binary relevance method is used. For each classification method we construct |C|
binary classifiers Φck : D × {0, 1} → {true, false}. Each classifier Φck is built on transformed
dataset Dck , where documents assigned with category ck are associated with class 1 (note
that ck doesn’t have to be the only assigned category for those documents) and documents
without this category are associated with class 0. Classification of the new document is then
defined as

Φ(di, ck) = Φck(di, 1) (4.19)

In this section we provided an overview of text classification task. We introduced different
term weighting techniques and presented three methods used in classification. Next section
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will evaluate these methods with different term weight combinations on multi-label dataset
from domain of multi-agent systems.



Chapter 5

Evaluation

In this section we evaluate classification methods presented in Section 4 on multi-label
dataset. The second part of this section deals with time measurements of the warehouse.

5.1 Classification methods

5.1.1 Dataset

As dataset for evaluation, we used a collection of scientific papers published on four confer-
ences from multi-agent systems domain: International Conference on Autonomous Agents
and Multi-agent Systems, AAMAS 2008 - 2011. We will refer to this collection as aamas.
Every document in this collection contains a field with document topics, which are used as
labels. We didn’t use the whole text of documents, we removed the part before the Intro-
duction section. Reason for this is to remove fields with document topics, because without
removing them, classifiers tend to overfit (they base their decision only on occurrence of
those topics). We also removed categories with low document frequency. Number of docu-
ments for each category in dataset is presented in Table 5.1. Average number of labels per
document is 1.9546.

Category Number of documents

economics 149

algorithms 411

experimentation 251

design 163

human factors 68

performance 103

theory 276

Table 5.1: Number of documents per category in aamas

19
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5.1.2 Measures

Let ck be the examined category, then we define (see [29],[38],[39])

TPk =
∣∣∣{dj | Φ(dj , ck) = true ∧ Φ̆(dj , ck) = true, dj ∈ Te}

∣∣∣ (5.1)

TNk =
∣∣∣{dj | Φ(dj , ck) = false ∧ Φ̆(dj , ck) = false, dj ∈ Te}

∣∣∣ (5.2)

FPk =
∣∣∣{dj | Φ(dj , ck) = true ∧ Φ̆(dj , ck) = false, dj ∈ Te}

∣∣∣ (5.3)

FNk =
∣∣∣{dj | Φ(dj , ck) = false ∧ Φ̆(dj , ck) = true, dj ∈ Te}

∣∣∣ (5.4)

Pk =
TPk

TPk + FPk
Rk =

TPk

TPk + FNk
Fk =

2PkRk

Pk +Rk
(5.5)

where Pk, Rk and Fk are called precision, recall and F-measure respectively. Using these
local measures for individual categories we can compute three global measures Fmi,Fma and
HL

Pmi =

∑|C|
i=1 TPi∑|C|

i=1(TPi + FPi)
Rmi =

∑|C|
i=1 TPi∑|C|

i=1(TPi + FNi)
(5.6)

Fmi =
2PmiRmi

Pmi +Rmi
Fma =

∑|C|
i=1 Fi

|C|
(5.7)

HL =
1

|Te|

|Te|∑
j=1

∣∣∣{cr | Φ(dj , cr) 6= Φ̆(dj , cr), cr ∈ C}
∣∣∣

|C|
(5.8)

where Fmi, Fma and HL are called micro-averaged F-measure, macro-averaged F-measure
and Hamming loss respectively. Macro-averaged measure gives equal weight to each category
and can be easily affected by small category, on which the classifier is giving incorrect
decisions. On the other hand, micro-averaged measure gives equal weight to each document
and it represent classifier decisions on most frequent categories.

5.1.3 Results

We evaluated dataset on three classification methods presented in Section 4. Before trans-
forming documents to representation, we lower-cased all words, removed stopwords and
numbers (stemming turned out to lower the accuracy in our preliminary tests, therefore we
omitted it). 66% of all documents were used as a training set, the rest were used as a test-
ing set. Evaluation was implemented in Octave[37] with our own implementations of Naive
Bayes and k-NN, for SVM we used LibSVM [11] package. Octave is an interpreted language
for numerical computations mostly compatible with Matlab[33].

Accuracy of SVM and k-NN is influenced by both document representation and classifier
parameters (cost in case of SVM, number of nearest neighbours in case of k-NN). For this
reason we tested both methods with all combinations of local and global term weighting (as
presented in Section 4.2.1) and in case of k-NN we also empirically found optimal k for each
combination (we simply used k on which the given combination reached its maximal Fmi
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Figure 5.1: Best Fmi values for different k, bin-idf weighting

measure), Figure 5.1 shows an example of such graph. For SVM we used a default cost as
defined by LibSVM for every combination. Found parameters are in Table 5.3. Graphs for
SVM weighting combinations are in Figure 5.2 and Figure 5.3, k-NN weighting combinations
are in Figure 5.4 and Figure 5.5. All representations of SVM and k-NN are normalized. We
used linear kernel for SVM and negative dot product as distance function for k-NN.

Final results (only using the best performing representations - log-mi for SVM and bin-idf
or k-NN) are shown in Figure 5.6, Figure 5.7, Figure 5.8 and Table 5.8.

Abbreviation Local weight Global weight

bin-no binary none

tf-no term frequency none

log-no logarithmic none

bin-idf binary inverse document frequency

tf-idf term frequency inverse document frequency

log-idf logarithmic inverse document frequency

bin-mi binary mutual information

tf-mi term frequency mutual information

log-mi logarithmic mutual information

Table 5.2: Abbreviations for term weights (see Section4.2.1)
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Method Term weights Parameter value

k-NN bin-no k = 9

k-NN tf-no k = 1

k-NN log-no k = 3

k-NN bin-idf k = 1

k-NN tf-idf k = 3

k-NN log-idf k = 13

k-NN bin-mi k = 13

k-NN tf-mi k = 5

k-NN log-mi k = 7

SVM all C = 1

Table 5.3: Optimal parameters for weighting combinations

Fmi Fma HL
terms kept NB SVM k-NN NB SVM k-NN NB SVM k-NN

10 0.602 0.584 0.525 0.498 0.429 0.461 0.222 0.215 0.266

20 0.630 0.602 0.509 0.546 0.444 0.445 0.223 0.207 0.272

30 0.643 0.610 0.517 0.586 0.453 0.456 0.224 0.200 0.266

40 0.648 0.632 0.525 0.593 0.491 0.456 0.226 0.190 0.265

50 0.657 0.619 0.555 0.604 0.485 0.478 0.222 0.195 0.247

60 0.651 0.627 0.541 0.602 0.491 0.467 0.228 0.194 0.257

70 0.653 0.626 0.546 0.603 0.491 0.465 0.229 0.194 0.257

80 0.656 0.633 0.547 0.610 0.497 0.475 0.228 0.190 0.258

90 0.650 0.624 0.565 0.600 0.489 0.500 0.232 0.196 0.244

100 0.649 0.629 0.569 0.602 0.494 0.511 0.232 0.195 0.243

200 0.638 0.627 0.604 0.600 0.489 0.546 0.237 0.195 0.226

300 0.639 0.641 0.611 0.590 0.502 0.541 0.230 0.188 0.219

400 0.644 0.637 0.609 0.599 0.494 0.534 0.230 0.190 0.219

500 0.647 0.642 0.587 0.604 0.506 0.503 0.224 0.186 0.228

700 0.644 0.639 0.599 0.605 0.514 0.529 0.228 0.188 0.218

1000 0.649 0.636 0.618 0.611 0.512 0.538 0.222 0.190 0.203

1300 0.651 0.639 0.632 0.611 0.516 0.551 0.221 0.187 0.197

1600 0.651 0.644 0.647 0.605 0.519 0.558 0.218 0.186 0.189

1900 0.660 0.639 0.649 0.617 0.517 0.563 0.210 0.188 0.184

3000 0.664 0.642 0.632 0.617 0.518 0.529 0.202 0.187 0.194

4000 0.667 0.644 0.641 0.617 0.519 0.553 0.197 0.185 0.184

7000 0.660 0.644 0.629 0.606 0.520 0.536 0.198 0.186 0.185

Table 5.4: Comparison of classification methods
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Figure 5.2: Measures for SVM weighting combinations, Fmi and Fma
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Figure 5.3: Measures for SVM weighting combinations, Hamming Loss

5.1.4 Discussion

Looking at results in Figure 5.2 and Figure 5.3 we conclude that choice of representation for
SVM is between log-idf and log-mi. Log-idf can achieve better values in Fma and Hamming
loss, however they are achieved at specific number of kept terms. Log-mi is less dependant
on number of kept terms, classifier decisions are not significantly influenced by parameter
choice. For these reasons, log-mi is a better choice.

On the other hand, choice of representation for k-NN is easily made, because bin-idf
achieve better values on all measures (we could achieve a similar results using log-no with
small number of kept terms, however this would negatively affect Hamming loss).

Comparing all methods we get an interesting conclusion that NB has better results in
Fmi and Fma than remaining methods, however by looking at Figure 5.8 we can see that
in most cases, NB has higher FP ratio than SVM and k-NN meaning that NB more often
recognizes an incoming document under incorrect category.

By excluding Naive Bayes, k-NN seems to be a good candidate, because we can achieve
better or similar results as SVM, however k-NN has much slower classification phase. How-
ever, its disadvantage is memory complexity, k-NN needs to store the whole training set
opposed to SVM, where we store only |C| vectors of dimension |T | and |C| numbers (this is
true only if we use linear kernel). For these reasons, we will use SVM in the warehouse as a
classifier.

The problem with this dataset is close relation between categories, which are sometimes
overlapping (e.g. algorithms and theory). Another problem is how the text is transformed to
terms. In our implementation, we split words on any non-alphabetic characters, for example
the sentence 3 heuristics for A* algorithm is converted to terms heuristics,for,a,algorithm.
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Figure 5.4: Measures for k-NN weighting combinations, Fmi and Fma
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Figure 5.5: Measures for k-NN weighting combinations, Hamming Loss

Next we remove stopwords, so the original sentence is represented by terms heuristics and
algorithm, which effectively removed A*, which would be probably a very good indicator
for algorithms category. This could be solved by creating a domain-specific vocabulary, in
which the tokenizer would look whether to split the examined words. However, the creation
of vocabulary can’t be automatized, we need a domain expert to write this vocabulary.

5.2 Warehouse

5.2.1 Testing hardware and Software

CPU: Intel Core 2 CPU 4400, 2.00GHz

RAM: 2 GB

Operating system: Arch Linux, kernel version 3.3.6-1

Java Runtime Environment: OpenJDK 1.6.0 24

Web browser: Firefox 12.0

5.2.2 Server

On the server side, we measured the average time of text extraction, tagging and indexing.
As a dataset, we used 265 news reports from OceanusLive in HTML format. All changes
made to index are immediately committed to filesystem. Results are shown in Table 5.5.



5.2. WAREHOUSE 27

0.4

0.45

0.5

0.55

0.6

0.65

0 1000 2000 3000 4000 5000 6000 7000

f
m
a
c
r
o
 
(
m
o
r
e
 
i
s
 
b
e
t
t
e
r
)

terms kept

NaiveBayes
SVM

kNN

0.5

0.55

0.6

0.65

0.7

0 1000 2000 3000 4000 5000 6000 7000

f
m
i
c
r
o
 
(
m
o
r
e
 
i
s
 
b
e
t
t
e
r
)

terms kept

NaiveBayes
SVM

kNN

Figure 5.6: Comparison of classification methods using Fmi and Fma
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Figure 5.7: Comparison of classification methods using Hamming loss

We also measured an average time of incident extraction from KML file with 434 inci-
dents. We ran this test ten times, the average time of extraction is 664.2 ms.

Avg. extraction time Avg. tag time Avg. index time Sum

5.6226 15.732 136.34 157.69

Table 5.5: Timing for text processing (in milliseconds)

5.2.3 Client

On the client side, we only tested how many incidents can be shown on map without no-
ticeable performance drop (these tests are subjective). About 1000 incidents can be shown
without a problem, memory usage of the web browser increased about 10 MB. However,
somewhere about 3600 we noticed a minor slowdown and about 4770 incidents the map’s
response became very slow (although still usable, if the user is patient).



5.2. WAREHOUSE 29

theory

NB SVM k-NN

TP 55 63 66

TN 128 121 133

FP 28 35 23

FN 37 29 26

algorithms

NB SVM k-NN

TP 111 111 109

TN 77 75 71

FP 37 39 43

FN 23 23 25

performance

NB SVM k-NN

TP 16 0 9

TN 185 212 198

FP 27 0 14

FN 20 36 27

experimentation

NB SVM k-NN

TP 71 56 52

TN 106 140 140

FP 60 26 26

FN 11 26 30

economics

NB SVM k-NN

TP 45 36 37

TN 171 178 183

FP 17 10 5

FN 15 24 23

design

NB SVM k-NN

TP 36 15 20

TN 147 174 173

FP 42 15 16

FN 23 44 39

human factors

NB SVM k-NN

TP 16 9 5

TN 208 219 219

FP 14 3 3

FN 10 17 21

Figure 5.8: Number of TP, TN, FP and FN for each category (2000 terms kept)
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Chapter 6

Implementation

Here we describe how each module of the warehouse is implemented. Main language used
for implementation is Java[13]. Reasons are

• applications written in Java can be run on any device for which Java Virtual Machine
exists. Most operating systems already have implementation of JVM.

• large collection of existing libraries.

• we are already familiar with the language.

6.1 Client

Client is build in Google Web Toolkit[26], which is a development toolkit for building browser-
based applications in Java. GWT enables us to write web pages without any knowledge
of HTML and JavaScript (code written in Java is ultimately transformed to HTML and
JavaScript). This is particularly useful, because it enables to share some code packages
between client and server (which is also written in Java).

For visualization of incidents on map, we tried three different libraries:

1. Official Google API for GWT[24] - official library from Google. Needs generated API
key, which is used by Google to trace the usage of their maps and if the usage is too
high, they may disable the map service (unless fee is paid). Built upon deprecated
Google Maps API[27], no longer in development.

2. Unofficial binding to Google Maps API[6] - No need for API key, uses the newer Google
Maps API. The implementation is quite buggy, we could not get the functionality we
wanted. No longer in development.

3. GWT-OpenLayers[2] - library using map tiles from OpenStreetMap [36] (community
project with purpose of creating free world map). Almost no documentation (for the
GWT side), development is still active1.

1last commit on 03.05.2012
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Even though the GWT-OpenLayers is almost undocumented and the coding was done mostly
by “trial and error” method, we could implement almost everything we needed, therefore it
is used. However we must note that the implementation is not perfect, for example selecting
incidents on map is not very accurate and pushing the selected incident marker on top layer
doesn’t seem to always work.

Client also provide a simple web form for incident submission.
Figure 6.1 shows a sample screenshot from the client web page.

Figure 6.1: Screenshot from the client - incident map

6.2 Server

Servlet technologies[14] are used to write server application. Servlet applications can be
deployed at web containers (for testing purpose, Apache Tomcat[20] is used). For each client
request (e.g. uploading a file, fetching incident analysis etc.) a web container invokes the
appropriate servlet which processes the request and usually sends back some response.
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Because the warehouse doesn’t use the database extensively (we use it only for storing in-
cidents, existing tags and some temporary information), we could base the choice of database
engine on our personal experience. For these reason, we used PostgreSQL[21]. Advantages
of PostgreSQL are PL/pgSQL language for writing stored functions, reasonable speed and
open-source license. If PostgreSQL would not suffice in the future, it could be replaced with
practically any database engine if the code using PL/pgSQL is rewritten (about 10 lines in
one Java class). We also used TEXT data type for storing text strings of variable length,
which is not part of SQL standard, however most databases seem to support it as well.

The warehouse can extract incidents from KML files. These files must follow syntax
described in Appendix C. For parsing KML we use JAK library [35]. JAK is build on top of
Java classes generated with JAXB from XML schema and provides an easier API for parsing
KML than raw generated classes from JAXB.

Charts for incident analysis are generated on the server side with JFreeChart[31], client
only receives URLs for generated images. Our first attempt for implementation was by
generating charts on the client side with Google Charts Tools[24], however the result was
slower and the implementation more complicated. Advantages were interactive charts (e.g.
by hovering mouse over chart user could get some information), which is also possible with
JFreeChart, but it would mean a lot of generated traffic between client and server to track
the mouse motion. Charts are not cached, cache implementation would increase performance
when multiple users are requesting chart analysis (server would generate each chart once for
the first request and store it in cache until new incidents are added to the warehouse).

Data tasks are implemented as Java threads, which are started when server application is
deployed at web container. To demonstrate the approach, current implementation downloads
news from OceanusLive2.

6.3 Indexing and searching

Indexing and searching is done with Lucene library[17]. User can write quite complex queries,
currently supported searchable fields are text (only for files from which we can extract text),
name, type, tags and source of the file. For example, query

text:“support vector machines” AND tags:(classification OR multilabel) AND type:pdf

would search for PDF files containing the phrase support vector machines and which are
assigned to category classification or multilabel. Lucene combines Boolean model and Vector
space model for scoring files. It first narrows down the number of files by using the Boolean
model (e.g. from our example, Lucene will omit non-PDF files) and then score each file
from this reduced set by VSM. For scoring it uses modified cosine similarity (practically
normalized dot product of the query and file weights) to provide term boosting. Files are
then sorted by scores and presented to the user. More information about Lucene can be
found in [22].

2http://www.oceanuslive.org/main/index.aspx

http://www.oceanuslive.org/main/index.aspx
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6.4 Tagging library

There are many text classification Java libraries, for example (all these libraries are free to
download from their respective websites):

1. Classifier4J[1] - the simplest, provides Naive Bayes classifier and Vector Space search
(each category is represented by one document, new document is classified by cosine
similarity). It is also capable of creating simple summaries of the text (by preserving
sentences with most frequent words). No longer in development.

2. LingPipe[8] - library for natural language processing, classification methods include
Naive Bayes, k-NN, Perceptron etc. Free version of LingPipe permit its use only for
internal software.

3. Mahout[18] - scalable machine learning library for distributed computing, algorithms
can be run in parallel on different server clusters. Algorithms for clustering, data
mining and classification (Naive Bayes, Logistic Regression, etc.).

4. Weka[7] - machine learning library for data mining developed at University of Waikato.
Weka comes as a Java library and stand-alone GUI application for experimentation.

From these libraries, Weka has probably the most extensive list of features including many
classification and term selection methods (it is the only library containing all methods used
in Section 5). Support Vector Machines are directly implemented in Weka and there is also a
binding to LibSVM package. Since both implementations are comparable in terms of training
phase time and conversion of files to document representation is quite straightforward to
implement, we decided to implement our own text classification framework with LibSVM as
a classifier, thus dropping the necessity to use GPL as a license for the warehouse source
code (Weka is licensed under GPL). We also implemented a command-line interface, which
enables to build a classifier on new training data without programming. The warehouse
administrator can choose from different term weighting schemes as presented in Section
4.2.1.

As text extractors, two libraries are included, PDFBox[19] for PDF and jsoup[3] for
HTML files. Tagging library can be easily extended with additional extractors, if they are
needed in the future.

The tagging library needs a trained model to be able to tag files. We built a simple
model from aamas dataset with 50 documents from maritime piracy domain. From aamas
we removed design and performance categories (due to low accuracy) and we added a new
category for piracy documents. This dataset was evaluated on 4000 kept terms (other eval-
uation parameters remain the same as in Section 5 with log-mi weighting), the results are
in Figure 6.2.
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Category TP TN FP FN

theory 60 130 29 30

algorithms 112 85 32 20

experimentation 60 134 33 22

economics 36 182 9 22

piracy 19 230 0 0

human factors 12 220 3 14

Measure Value

Fmi 0.736

Fma 0.742

HL 0.143

Figure 6.2: Results for built tagger model
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Chapter 7

Conclusion

In this work, we studied the problem of creating intelligent data warehouse for maritime
piracy domain. We created a client-server application accessible from web browser. We also
studied the task of text classification and conducted an evaluation on domain specific dataset
with three classification methods (Naive Bayes, Support Vector Machines and k-nearest
neighbours). Gained knowledge was used to implement automatic categorization module of
text files in our warehouse. Current categorization module makes averagely one incorrect
category decision for incoming documents (we are assuming that incoming documents are
“similar” to documents, upon which the module was trained). Stored documents can be
retrieved using search queries. The warehouse also provide a basic analysis of collected
incidents in form of charts and visualization of incidents on a map.

A few things could be implemented to enrich the warehouse. For example, summaries of
text files could be shown in search results - this task is called text summarization. With this
feature, user would immediately see whether the files returned by indexer are relevant to his
query.

Currently there is no mechanism for login, therefore the warehouse is suitable for internal
use only. It would be better if only registered and logged users could upload files and submit
incidents. The warehouse administrator could then delete all files and incidents submitted
by user, who has been identified as a spammer.

37
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Appendix A

List of abbreviations

API Application Programming Interface

CSV Comma Separated Values

GPL GNU General Public License

GWT Google Web Toolkit

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

JAXB Java Architecture for XML Binding

JVM Java Virtual Machine

KML Keyhole Markup Language

k-NN k-nearest neighbours

MIME Multipurpose Internet Mail Extensions

ML Machine learning

NB Naive Bayes

PDF Portable Document Format

SQL Structured Query Language

SVM Support Vector Machines

URL Uniform Resource Locator

VSM Vector Space Model

XML Extensible Markup Language
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Appendix B

User guide

B.1 Submitting incidents

Select Incident menu item from Input menu, screenshot is in Figure B.1.

Figure B.1: Submitting incident

1. listbox for selecting the Incident type (currently supported types are SUSPICIOUS,
BOARDED, FIRED UPON, HIJACKED and ATTEMPTED).

2. type of Victim’s vessel (e.g. chemical tanker).

3. by clicking on this textbox, you will be presented with Date picker widget. Use it for
selecting the Date, when the incident occurred.

4. Latitude coordinate of the incident.

5. Longitude coordinate of the incident.

6. additional Description for the incident.
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7. clicking on this button will Submit the incident (if all necessary fields were specified
and are valid).

B.2 File upload

Select File menu item from Input menu, screenshot is in Figure B.2.

Figure B.2: File upload

1. with these radio buttons you can choose whether to upload a file from your computer
(Local file) or from web page (File from URL).

2. clicking on the Browse button will open a file dialog, where you can locate the file to
be uploaded.

3. original source of the file (e.g. web page). This textbox can’t be empty!

4. clicking on the Tag button will upload the selected file/URL to the server, which will
send back suggested tags (if any).

5. if you want to upload any publicly available resource from the web, you must provide
its URL to this textbox. This textbox can’t be empty!

After clicking on the button Tag, new page will be shown, where you can specify tags for
the file/URL, screenshot is in Figure B.3.

1. Existing tags on the server. Clicking on any tag will add/remove this tag to/from
Selected tags. You can hide this panel by clicking on Existing tags label.

2. Selected tags for the file. When this page loads, suggested tags from server will be
filled in this textbox. Tags are separated by commas. You can write your own tags,
however their names will be sanitized (i.e. removing trailing whitespaces, lowercasing,
replacing spaces by underscore etc.).
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Figure B.3: File tagging

3. clicking on this button will open a confirmation dialog with sanitized tags. By con-
firming, tags are submitted to the server.

B.3 File search

Select Search menu item from Output menu, screenshot is in Figure B.4.

1. Existing tags on the server. You can hide this panel by clicking on Existing tags label.

2. textbox for writing search query. Supported fields1 for searching are text, tags, type
and source. Default field is text.

3. button to perform the search query.

4. select all files on currently visible page for download.

5. deselect all files on currently visible page for download.

6. currently visible page of query results (i.e. files). Each result consists of a checkbox,
name (blue text), file source (green text) and list of assigned tags (black text, tags are
separated by space). Clicking on any component of the result will toggle the selection
of that result for download.

7. button to fetch the previous page of results (if exists).

8. button to fetch the next page of results (if exists).

9. button to download all selected files. If more than one file is selected, then files are
sent in ZIP archive.

B.4 Incident map

Select Map menu item from Visual menu, screenshot is in Figure B.5.

1Definition of field along with description of the query syntax can be found at http://lucene.apache.

org/core/3_6_0/queryparsersyntax.html

http://lucene.apache.org/core/3_6_0/queryparsersyntax.html
http://lucene.apache.org/core/3_6_0/queryparsersyntax.html
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Figure B.4: File search

1. Criteria tree, from which you can select visible Incident types and Years. You must
select at least one Incident type and Year, otherwise nothing will be shown!

2. the Incident map. You can change your current view position by dragging the mouse
or by using the directional arrows in 7.

3. visible incidents. By clicking on incident marker, details about the incident will be
shown. The selected incident is distinguished from others by drawing its marker with
black circle.

4. details about the selected incident. You can hide this panel by clicking on Incident
details label.

5. buttons for zoom. Clicking on the + will zoom in the map, clicking on to the − will
zoom out the map.

6. Legend of incident markers, each Incident type has its own marker. You can hide this
panel by clicking on Legend label.

7. directional arrows for changing the current view position.
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Figure B.5: Incident map

B.5 Incident charts

Select Analysis menu item from Visual menu, screenshot is in Figure B.6.

1. Criteria tree, from which you can select visible Incident types and Years in charts.
You must select at least one Incident type and Year, otherwise nothing will be shown!

2. Per year chart type is a group bar chart, where group is represented by Incident type
and the length of each bar represents the number of incidents in the given Year for
that type. You can hide this chart by clicking on the Per year label.

3. Per month chart type is a line chart for each Incident type, where the value is repre-
sented by the number of incidents for given month and year. You can hide this chart
by clicking on the Per month label.

4. buttons to download CSV files for each chart type.



50 APPENDIX B. USER GUIDE

Figure B.6: Incident charts



Appendix C

KML syntax for incident
submission

This section provides an internal syntax for incident submission in KML files1. Incidents
are represented as a Placemark feature contained in one root Folder container (Folder can
contain arbitrary number of incidents). The Placemark syntax for incident is in Fig. C.1.
Mandatory values are denoted by square brackets, optional by curly brackets. Definition of
values is the same as in Appendix B.1 except for Date, which is YYYY-MM-DD form.

<Placemark>
<name> [ I n c iden t type ] ,{ Vesse l type}</name>
<TimeStamp>
<when> [ Date ]</when>

</TimeStamp>
<Point>
<coo rd ina t e s> [ Longitude ] , [ Lat i tude ]</ coo rd ina t e s>

</ Point>
<d e s c r i p t i o n>{Desc r ip t i on }</ d e s c r i p t i o n>

</Placemark>

Figure C.1: Placemark syntax

1https://developers.google.com/kml/ contains a reference and tutorial for working with KML
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Appendix D

CD content

Root directory of the CD contains

• ACDataStorage - directory of the warehouse’s Eclipse1 project. Contains the source
code for both server and client side. Deployable WAR file can be generated by com-
pile build bash script.

• eval - directory containing the Octave implementation of the evaluation.

• LibTag - directory of the tagging module’s Eclipse project.

• libtag.jar - a command-line interface for tagging library.

• README - some general information about configuration and starting the warehouse.

• report - directory with source codes of this report. The generated PDF file is report/-
main.pdf

• tagger - a trained tagger model, which can be used by the tagging module. Generated
from aamas dataset and some documents from maritime piracy domain.

1http://www.eclipse.org/
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