Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

BACHELOR PROJECT ASSIGNMENT

Student: David Moid]l
Study programme: Open Informatics
Specialisation: Computer and Information Science

Title of Bachelor Project: Smartphone-based Real-time Taxi Sharing System

Guidelines:

. Survey existing methods and applications for real-time ride sharing.

. Familiarize yourself with Android Platform and Google App Engine development.

. Formalize taxi ride sharing as a multi-agent coordination problem.

. Propose a ride matching algorithm and a coordination mechanism for shared taxi ride
negotiation.

5. Implement both the client-side and server-side component of the matching algorithm

and the coordination mechanism.

6. Evaluate the resulting taxi ride sharing system on a set of test scenarios.

Howprp -

Bibliography/Sources: Will be provided by the supervisor.

Bachelor Project Supervisor: Ing. Michal Jakob, Ph.D.

Valid until: the end of the winter semester of academic year 2012/2013

/ i P "//, ‘
s /;) ¥
/ s A DZ-AN
prof. Ing./Vladimir Marik, DrSc. 7 prof. Ing. Pavel Ripka, CSc.
He ld of Department Dean

Prague, January 9, 2012

Ceskeé vysoké uceni technické v Praze
Fakulta elektrotechnicka

Katedra kybernetiky

ZADANIi BAKALARSKE PRACE

Student: David Moidl
Studijni program: Oteviena informatika (bakalaisky)
Obor: Informatika a pocitacové védy

Nazev tématu: Systém pro sdileni taxi v realném &ase pomoci chytrych telefond

Pokyny pro vypracovani:

cr

. Prostuduijte existujici metody a aplikace pro spolujizdu v realném &ase.

. Seznamte se s vyvojem na platformé& Android a Google App Engine.

. Formalizujte problém taxi spolujizdy jako multiagentni koordinaéni problém.

. Navrhnéte algoritmus parovani jizd a koordinaéni mechanismus pro vyjednavani taxi
spolujizd.

. Implementujte klientskou a serverovou komponentu parovaciho algoritmu a koordinaéniho
mechanismu.

6. Vyhodnotte vysledny systém pro sdileni taxi na sadé testovacich scénafu.

A WODN -

(@)

Seznam odborné literatury: Dod& vedouci prace.

Vedouci bakalarské prace: Ing. Michal Jakob, Ph.D.

Platnost zadani: do konce zimniho semestru 2012/2013

fl s

prof. Ing. Védimir Marik, DrSc.
vedouci katedry

V Praze dne 9. 1. 2012

Czech Technical University in Prague
Faculty of Electrical Engineering
Department of Cybernetics

Bachelor’s thesis

Smartphone-based Real-time Taxi Sharing System

David Moidl

Supervisor: Ing. Michal Jakob, Ph.D.

Study Programme: Open informatics
Field of Study: Informatics and computer science

May 20, 2012

v

Aknowledgements

First of all I would like to thank Ing. Michal Jakob, Ph.D. for his professional leadership. I
would also like to thank my family for their support and understanding and at last but not
least my friends Petr Mezek and Adam Kratochvil for consultations on various subjects.

vii

Prohlaseni

Prohlasuji, ze jsem praci vypracoval samostatné a Ze jsem uvedl veskeré pouzité infor-
macni zdroje v souladu s Metodickym pokynem o dodrzovani etickych principti pfi pfipravé
vysokoskolskych zavéreénych praci.

fout
V Praze dne 20.5.2012 ORI o . * 4o Scrive, SN

Abstract

Transportation is one the pillars of today’s society. Substantial percentage of people
transported all over the world every day is served by public transportation. One kind of
public transportation service allowing people to travel from somewhere to somewhere else
is taxi service. Despite the fact that systems for planning shared rides using single taxi
vehicle do exist, in many countries (including Czech republic) it’s still rather unfavourable
to use taxis for transportation, all the more so with some of these systems having insufficient
potential to be actually helpful.

I believe, that there is enough space for another system of such a kind based exclusively on
“smartphones” which are so widely spread these days. A system allowing its users to quickly
and easily plan a shared ride using single taxi vehicle. It would not only help its users to
save their money, but it would also make the whole taxi transportation more efficient. Such
a system - its architecture, implementation and overall workflow - is the topic of this work.

Abstrakt

Doprava je jednim z piliti dnesni spolec¢nosti. Vefejnd doprava se pak vyznamné podili
na celkovém poctu osob pfepravovanych kazdy den po svété. Jednou z moznosti, jak se
dostat z jednoho mista na druhé je vyuziti taxisluzby, kterych je dnes mnoho a svou ¢innosti
pokryvaji valnou ¢ast obydleného tizemi. V mnoha zemich (Ceskou republiku nevyjimaje)
je v8ak preprava pomoci taxisluzby spiSe nevyhodna. Ackoli ji7z existuji systémy, které by
mély pomoci lidem planovat spole¢né jizdy jednim vozidlem taxi, neni jich mnoho a nékteré
z nich ani nemaji dostate¢ny potencial, aby lidem skute¢né pomohly.

Véiim, Ze na poli sdilenych jizd taxi existuje dostatek prostoru pro novy systém zalozeny
vyhradné na schopnostech dnes tak rozsifenych “chytrych” telefonu, ktery by umoznil svym
uzivatelim rychle a jednoduse naplanovat spole¢nou jizdu jedinym vozidlem taxi, ¢imz by
nejen prispél k aspoie penéz jeho uzivatelid, ale i ke zefektivnéni vyuziti taxisluzeb. Takovy
systém - jeho navrh, implementace a fungovani - je tématem této prace.

vi

Contents

1 Introduction 1
1.1 Motivation e 1
1.2 Result of my work 2
1.3 Thesisoutline 3

2 Related work 5
2.1 Theproblem e 5)
2.2 Existing solutions Lo o 5

2.2.1 Cabcorner.com 6
2.2.1.1 Descriptiono 6

2.2.1.2 Interesting observations 0L 6

2.2.1.3 Improvement opportunities 6
2214 Summary 7

2.2.2 RideAmigos.com 7
2.2.2.1 Descriptiono 7

2.2.2.2 Interesting observations 0L 7

2.2.2.3 Improvement opportunities 7
2,224 Summaryo 8

2.2.3 Taxi Share - Chicago 8
2.2.3.1 Description Lo 8
2.2.3.2 Interesting observations 8

2.2.3.3 Improvement opportunities 8
2,234 Summary 9

2.24 FareShare 9
2.2.4.1 Description 0L 9
2.2.4.2 Interesting observations 9

2.2.4.3 TImprovement opportunities 10
2244 Summaryo e e e 11

2.3 Related work summary 11
2.4 Surveys and external referenceso 11
2.4.1 Spatio-temporal clustering L 12
2.4.2 Dial aride problems oL 12

vii

CONTENTS viii

3 Requirement analysis and specifications 13
3.1 Requirement analysiso L 13
3.1.1 Essential functions o 13
3.1.2 The additional features 14
3.2 Specification L 15
3.2.1 Application inputs 15
3.2.1.1 Authentication 15

3.2.1.2 Ride specificationo 15

3.2.2 Outputs of the application, 16

4 Architecture and design 17
4.1 Architecture 17
4.1.1 Model 17
4.1.1.1 Building blockso o o 17

4.1.2 Theworkflow 18
4.1.3 Technical point of view 22
4.2 Designo 23
4.2.1 Android philosophyo 23
4.2.1.1 Android activitieso 23

4.2.1.2 Screenshots Lo 23

5 Algorithms 25
5.1 Request matching L 25
5.1.1 K-Means algorithm o0 25
5.1.2 Directional algorithm L 0 o 27
5.2 Prototype evaluation o 29
5.3 Ride plan creationo 33
5.4 Negotiation 33
5.5 Datacleaning 33
5.6 Detailed description L 34
5.6.1 The distance e 34
5.6.2 Etalon adjustment Lo 34
5.6.3 Etalon postprocessingo 35
5.6.4 Online processing 35
5.6.5 Cross-bearing differenceo 0oL 36

6 Implementation 39
6.1 Specific descriptiono 39
6.2 Server-side specialitieso 39
6.2.1 Single threading and responsiveness 39
6.2.2 The datastoreo 40
6.2.2.1 Description L 40

6.2.2.2 Limitationso 40

6.2.2.3 Usageo 40

6.2.2.4 Frameworkso 41

6.3 Client-side specialities 41

CONTENTS ix

6.3.1 XML based resources 42
6.3.2 Painless threading oL 42
6.3.3 Usingmaps e 43
6.3.4 System-user cooperation 43
7 Evaluation 45
7.1 Experiments introduction L 45
711 Metrics . . . oL 45
7.2 Testing of the system 46
7.2.1 Input parameters description 46
7.3 Tests specificationo 47
7.4 Tests of clustering algorithms o o oo 48

7.4.1 |K-Means algorithm| Relations between maximal time difference, max-
imal spatial distance and number of created rides 48

7.4.2 |K-Means algorithm| Relations between maximal time difference, max-
imal spatial distance and ride efficiency 49

7.4.3 |K-Means algorithm| Relations between maximal time difference and
average time deviation o000 ol

7.4.4 |Directional algorithm| Relations between maximal time difference,
maximal cross-bearing difference and number of created rides o1

7.4.5 |[Directional algorithm| Relations between maximal time difference,
maximal cross-bearing difference and effectiveness of the ride 93

7.4.6 |Directional algorithm| Relations between maximal time difference and
average time deviation Lo Lo 55
7.5 Tests of online algorithm 0o o o6

7.5.1 |Online algorithm| Relations between input parameters and number of
created rides Lo e o6

7.5.2 [Online algorithm| Relations between input parameters and efficiency
ofaride L o7
7.6 Test results summaryo 29
8 Conclusion 61
8.1 Recapitulation 61

8.2 Work summary L 61

List of Figures

4.1 Workflow of clustering algorithms 19
4.2 Workflow of the online algorithm 19
4.3 Workflow of server-client intercommunication for clustering algorithms 20
4.4 Workflow of server-client intercommunication for online algorithm 21
4.5 Screenshots of the client application 24
5.1 Graphical explanation of cross-bearing difference 37
7.1 Relations between maximal time difference, maximal spatial distance and

number of created rides L oL 49
7.2 Relations between maximal time difference, maximal spatial distance and av-

erage detour 50
7.3 Relations between maximal time difference, maximal spatial distance and av-

erage Savig 50
7.4 Relations between average time deviation and maximal allowed time difference 51
7.5 Relation between maximal time difference, maximal cross-bearing difference

and number of created rides o oo 02
7.6 Relations between maximal time difference, maximal cross-bearing difference

and average saving of passengers 53
7.7 Relations between maximal time difference, maximal cross-bearing difference

and average detouro 54
7.8 Relations between average time deviation and maximal allowed time difference 55
7.9 Relations between maximal time difference, maximal bearing difference and

number of created rides L o o7
7.10 Relations between maximal cross-bearing difference and efficiency of a ride . . 58
7.11 Relations between maximal time difference and efficiency of a ride 58
7.12 Comparison of speed of individual algorithms 60

List of Tables

7.1 Shortcuts for scenarios Lo e 48
7.2 Configuration for K-Means test 1 48
7.3 Configuration for K-Means test 2 49
7.4 Configuration for K-Means test 3 o1
7.5 Configuration for Directional test 1 52
7.6 Configuration for Directional test 2o 53
7.7 Configuration for Directional test 2 55
7.8 Configuration for Directional online test 1 o6
7.9 Configuration for Directional online test 2 57
7.10 Optimal values of parameters 60
7.11 Comparison of average saving for individual algorithms 60

x1

Chapter 1

Introduction

1.1 Motivation

Taxi - an international word with the meaning of “a motor vehicle licensed to transport
passengers in return for payment of a fare and typically fitted with taximeter.”’ The fact,
that this word is international somehow implies that companies running a taxi business
are everywhere. And in most cases, they really are. Usually, taxi services are also easily
reachable: one can find their advertisements on a public places and see their vehicles running
across the city. No matter where one currently is, all one needs to do to get a ride is dial the
right number or simply wave on a passing vehicle. Eventually, a taxi is always “just around
the corner” ready to pick up it’s passenger and transfer him to desired destination.

But ubiquity of companies providing taxi services is the only thing they have in common.
There are huge differences around the world when it comes to prices, number of cars and
mainly their usage. On one side, there are localities like New York, Chicago, London and
other major cities where the number of taxis on the streets is almost the same as the number
of ordinary cars. These “taxi fleets” are used on a regular basis by a huge amount of passengers
as an independent type of public transportation. On the other side, there are many countries
where this schema does not apply. Consider taxi services in Czech republic: there are multiple
companies in taxi business operating on almost entire area of the country, each with sufficient
number of cars. But they are far from being used as much as the ones in cities listed above.
Also the price of a ride is quite high which is a significant drawback preventing taxis from
being used by the general public. But what if people had the opportunity to easily arrange
a single ride for multiple passengers using only one vehicle? Would it result in higher usage
of taxis? I believe the answer is yes.

Imagine a system enabling it’s users to do so. What would be the advantages of such a
system? Well, the obvious one is lowering the price of a ride per passenger. In a ride shared
between two people, the amount of money each of them has to pay would drop to a half
of the original value. That’s definitely positive. But what if one would share a ride with
two or even three more people...? The benefit is evident. Another advantage is a significant
increase of efficiency. Simply put, the more people in one car, the more effective usage of

LOxford online dictionary: http://oxforddictionaries.com/definition /taxi

CHAPTER 1. INTRODUCTION 2

that car. That would logically result in lower fuel consumption, thus the ratio of produced
greenhouse gasses per passenger would drop making taxis more environment friendly. At
least but not last there is the advantage of giving transportation represented by buses and
trains. Unlike train or bus, taxi is highly flexible. It doesn’t matter whether the passenger
needs to travel from the airport to downtown or to another city. Taxi is an independent unit
with no predefined route and no stopovers, so it’s ride is straight and fast.

With all these advantages it would be great if such a system existed. But it’s apparent
that the type of a system would have to be quite specific. It would have to allow it’s users to
immediately share their decision about going somewhere by taxi. That excludes a computer
application-based system right away. But it seems that a mobile-based system would do
the job. Since lots of people own a “smartphone” these days, phones sophisticated enough
provide a good platform for a system of this type. An important note is that a noticeable
amount of today’s smartphones is running operating system Google Android, which is the
operating system for which the application will be developed. System could then utilize
abilities of these phones such as determining it’s geolocation, internet connectivity and so
on. Packed in a single mobile application and delivered to the people by well known channel,
such as Android Market, it may find it’s users and get quite popular.

And that’s the whole motivation behind this project: to make something for the people,
that will help them to spare their money or at least to spend them for comfortable and fast
transportation as well as to increase usage of existing taxi services by taking advantage of
so many smartphones spread amongst the people.

1.2 Result of my work

With a vision of a system described above, I have implemented client-server applica-
tion with a goal of providing simple mobile-based solution for as-much-as-possible realtime
ridesharing. Main features of the system are:

e Availability - the only requirement is an Android-powered phone with its operating
system of version 2.2 or higher

e Scalability - thanks to Google App Engine® cloud-based framework

e Dynamic behaviour - almost instant response about whether or not there is a match
for users request

e Smartphone capabilities utilization - allowing users to use their current geological lo-
cation or built-in maps for specifying starting points and endpoints of their rides

e Multipart rides support - users are free to participate on just a part of a ride as long
as it is still favourable

2Google App Engine: https://developers.google.com/appengine/

CHAPTER 1. INTRODUCTION 3

1.3 Thesis outline

The thesis is divided into following chapters:

1.

Introduction
Explains what is the goal of this work and why would someone do that.

. Related work

A research on already existing solutions related to this work, their evaluation, discus-
sion and most important observations.

. Requirement analysis and specifications

Discussion on what is necessary for an application like this and general information
about how the result should look like.

Architecture and design
Describes of what pieces is the application made and how are they connected together
and provides some pictures of its actual appearance.

. Algorithms

Explains all the behaviour hidden to a user, i.e. what happens to a request for shared
ride once it’s sent to the server.

. Implementation

Covers all of the interesting parts of the actual Java implementation of both client and
server side of the system.

Evaluation
Test were performed on the system to measure its qualities. Results of those experi-
ments are discussed in this chapter.

. Conclusion

Summary of what was done and achieved in this work.

Chapter 2

Related work

2.1 The problem

In the previous chapter an interesting system was introduced. Let’s take a look on a
problem that this system is supposed to solve. Informally, the problem is to “allow people
to easily plan a shared ride using a single taxi”. That is quite a general problem which
can be potentially solved in many different ways. And, of course, some of them are already
implemented and available. These attempts of solving given problem come in different shapes
with different ideas behind them, but are all related to this paper since they all aim at
“allowing people to easily plan a shared ride using a single taxi”.

Some of these applications are listed and described below. Following list contains all
software solutions for our problem which I was able to find on the internet and which seemed
to be usable and functional at that specific time when I was searching for them.

2.2 Existing solutions

There are lots of applications (not exclusively for the mobile platform) providing taxi
services in different ways. However most of them can offer nothing more to a user than
approximation of price for a ride or simple booking of the vehicle for specific date and time.
Only a very few are capable of organizing a shared ride.

These ones differ one from another significantly, each having its pros and cons. For
every single one of them I will provide following properties: both brief and more detailed
description, interesting observations with relation to my work, possible opportunities for
improvement and a brief summary.

CHAPTER 2. RELATED WORK 2

2.2.1 Cabcorner.com

Cabcorner.com' is originally web-based application for planning shared taxi rides. Cur-

rently there is also mobile version available, but only for iOS-powered devices.

2.2.1.1 Description

According to available information, cabcorner.com is web-based application allowing its
users to plan a ride and display it on cabcorners website. Other users can than find this ride
using the same website and potentially join it.

Cabcorner provides its services only in some of the major cities around the world, not
including Prague, while the largest community of active users seems to be located in New
York. It’s difficult to make a reliable estimate about how many people use this application
regularly, but from relatively low numbers of available rides I would say not much.

As I mentioned before, a mobile version of cabcorner for i0S devices is also available and
according to available videopresentations it works in exactly the same way is its web-based
counterpart.

2.2.1.2 Interesting observations

HotSpots I personally consider cabcorners solution of HotSpots? interesting. Not only
that cabcorner placed its HotSpots to important traffic nodes (such as railway stations),
but it placed most of them inside shops while additionally providing its users with vouchers
enabling them to buy local goods for lowered prices. I'm not sure that stores are ideal places
for serving as HotSpots, but its quite a unique solution worth mentioning.

2.2.1.3 Improvement opportunities

HotSpots Despite the fact that I stated this feature as “an interesting observation”, at the
same time it is an improvable weakness, mainly because of these reasons:

e Shops can be crowded making it difficult for the passengers to find each other.

e The main intention of users of this service is to travel from somewhere to somewhere
else, not to go shopping.

e This concept is much more vendor-friendly than user-friendly.

Optimality of the route Cabcorner presumably supports onsets of the passengers along
the way. That’s the case when one passenger starts the ride and navigates the driver to pick
up the others. However, there seems to be no guarantee, that such a ride won’t be eventually
longer and less advantageous than a ride of a single person due to possible detours. This
is especially important on short rides where the effectiveness of a shared ride could drop
significantly with each detour.

!Cabcorner: http://www.cabcorner.com/
2HotSpot is a place defined by the taxi sharing service where people participating in the same ride should
gather before the ride begins.

CHAPTER 2. RELATED WORK 6

Fare sharing Along with the problem of effectiveness there is another major issue when it
comes to shared ride with multiple start points: how to split the fare amongst the passengers
fairly? Since every passenger may travel different distance, every one should logically pay
different price. This is something that probably didn’t come to mind of cabcorners creators
as their product doesn’t handle this in any way and I can imagine that leaving the splitting
of the fare to users themselves could lead to unpleasant situations.

2.2.1.4 Summary

The way cabcorner works is interesting, but it still reflects the fact that it originated as
a web-based service. A mobile-based application should work in more dynamic way allowing
its users to plan the rides just dozens of minutes or few hours ahead, not whole days in the
future.

2.2.2 RideAmigos.com

A web application for ride-sharing.

2.2.2.1 Description

RideAmigos?® is a web-based service providing ride-sharing capabilities for different types
of vehicles, not only taxis. It’s not even limited to sharing rides between individuals, but
allows to plan rides for larger groups of people. It all sounds very promising and is supported
by positive feedback from “happy users”, but reality is quite different.

2.2.2.2 Interesting observations

Ridesharing for larger groups The only interesting thing about RideAmigos is the
option to plan a shared ride for larger groups of people (like school trip or business trip for
whole company).

2.2.2.3 Improvement opportunities

Various issues Even after registering and trying to use the service I still don’t know, how
it would look like if someone really found my ride and wanted to join it. How would we
arrange from where will we start? Would I obtain any information about the other user
from the RideAmigos service or not? Would I have to contact him and arrange everything?
The answer to all these questions is “I don’t know”. It is obvious, that RideAmigos doesn’t
provide enough information to its user (frankly, it hardly provides any information) which
is enormous issue since being informed is the only way to smoothly arrange a ride in which
multiple users are involved.

*RideAmigos: http://www.rideamigos.com/

CHAPTER 2. RELATED WORK 7

2.2.2.4 Summary

Based on my experience, RideAmigos claims to provide wide range of ridesharing options,
but completely fails to deliver them. Its interface is non-intuitive and lack of information
about everything disables potential users from using it conveniently.

2.2.3 Taxi Share - Chicago

Android ridesharing application designed specially for Chicago.

2.2.3.1 Description

As the name suggests, Taxi Share - Chicago® was made exclusively for people living in
or visiting Chicago. Since its focused on a single city, it works in a slightly different way
compared to other applications.

2.2.3.2 Interesting observations

The way the rides are created As was mentioned before, this service is tailored to fit
just and only Chicago city. That fact is reflected in a way the rides are created. Unlike other
services which usually let a user pick the start and final destination, Taxi Share - Chicago
allows user to freely specify just the start location. The final destination has to be picked
from a list of predefined locations which covers pretty much all points of interest in the city.
The real use case scenario then look like this: one picks a destination from the list and then
specifies from where he/she wants to go. Other users can then see this ride and join it.

Direct communication Quite rare, but very smart and handy feature of Taxi Share
- Chicago is kind of instant-messaging client built into the application enabling users to
communicate directly before the ride begins. At first sight it may look unnecessarily but I
consider this functionality highly usable. Not only that it solves the problem of identifying
users at the start location, but it also provides an option to share other any additional
information (like that one of passengers needs to transport large-sized luggage that will take
up the whole trunk). According to developers of the application, this feature was designed
to provide a way for the users participating on the same ride to confirm their intentions and
to share any necessary information.

2.2.3.3 Improvement opportunities

Onsets along the way As this application allows onsets during the way, it should also
ensure effectiveness of the ride and handle appropriate splitting of the fare amongst passen-
gers. Since it does not do the former nor the latter, its opportunities for improvement are
exactly the same as those for cabcorner in 2.2.1.3 and 2.2.1.3.

“Taxi Share - Chicago: http://taxisharechicago.com/

CHAPTER 2. RELATED WORK 8

2.2.3.4 Summary

Taxi Share - Chicago is highly specialized application limiting its functionality to one
single city. The way the rides are planned and created is also adapted for this philosophy.
One can assume that this application works quite well (or is at least usable) in Chicago,
but it would be hardly possible to generalize its concept for being usable anywhere else.
Noticeable feature and a good idea is built-in instant-messaging client.

2.2.4 FareShare

Mobile application for iOS devices owners. From all applications related to my work that
I have found during my thorough search throughout the web, this one is probably closest to
the ideal “mobile application for taxi ridesharing”.

2.2.4.1 Description

FareShare® is the only mobile-only application providing taxi ridesharing capabilities that
I managed to find. As such, it encompasses few utilities that come in handy while planning a
common ride using a mobile phone just a few minutes before it happens. The application is
designed to work exclusively in New York and one can hardly estimate by how many people
its used.

2.2.4.2 Interesting observations

Redefining HotSpots For almost every single application listed above I have mentioned
its own solution for HotSpots. Without an exception, all other applications see HotSpot as
places where people gather before the ride starts. FareShare, however, comprehends this
term in quite a different way. For FareShare, a HotSpot is a place that most frequently
ends up being someones destination (such as pub, club, theater, historical monument and
so on). These places are then visible to users, presumably just for inspiration. Despite the
fact this is something unprecedented, I don’t consider this functionality being necessary for
application of such a kind.

Meeting places Since FareShares understanding of HotSpots is unique, I will use “meet-
ing place” instead to denote a place where involved passengers meet each other before the
beginning of their ride. FareShare does not define any fixed spots as meeting places, it rather
generates these dynamically for each single ride according to current position of participating
users. If a spot generated by the application does not fit ones needs, it can be adjusted by
selecting another point from the map. Note that I was not able to find out whether this
option is available only to the user who creates the ride or to other users as well.

PFareShare: http://faresharenyc.com/

CHAPTER 2. RELATED WORK 9

Passenger identification Unlike other systems which either not handle this issue at all
or provide just a partial solution, FareShare is equipped with rather elaborate technique for
allowing its users to easily recognize each other: every user has an option to upload his/her
photo that will be displayed to others enabling them to simply and positively recognize cor-
responding person, or one can select a notable piece of ones clothing from a list of predefined
items (such as “yellow glasses” or “pink vest”), that should help other distinguish that person
from the crowd. I don’t know if selecting multiple pieces of clothing is possible but even one
would definitely do the trick.

Final destination selection It seems that FareShare does not allow selecting a specific
address as the endpoint of ones ride. It only permits districts or city blocks to be selected.
This behavior may look flawed but it does make sense together with possibilities described
below.

Multiple endpoints According to promotional video FareShare manages to arrange a ride
from common starting point to multiple endpoints. In a situation when users travel in the
same direction but not to the identical place, the one that arrives to his endpoint earlier pays
relative amount of fare and gets off leaving the other passenger to continue to his desired
destination.

Fare splitting To provide comfortable user experience, FareShare deals with computation
of relative prices for individual users. When in the first endpoint, application offers an
estimated price to the user currently getting off who then adjusts this approximation to
correspond with reading from the taximeter, pays the price and leaves the vehicle.

Payment method Very rare and extraordinary is a possibility to pay cashless for the ride.
In case both users have their PayPal accounts set up correctly and they both have it linked
with the app, then the one who gets off earlier can transfer appropriate amount of many that
he is supposed to pay completely cashless to he bank account of the other user who then
pays the whole price for the ride at its very end. This idea is remarkable especially because
it eliminates delays making the ride even more effective.

Passenger rating FareShare uses simple yet effective system for rating its users by other
users with whom they shared a ride. After each ride every passenger is asked following
question: “Would you travel by this person again?”. The only possible answers are “Yes” and
“No” each resulting in rising or lowering credibility of rated user respectively.

2.2.4.3 Improvement opportunities

Limited number of users per ride Although it’s not explicitly stated, FareShare seems
to support rides shared by no more than two users. Even the promotional video clip shows
just two people sharing a single taxi. With some of its features looking like they was built
just for two users per ride, it doesn’t seem probable that FareShare will ever support more
than two people in a vehicle.

CHAPTER 2. RELATED WORK 10

2.2.4.4 Summary

FareShare is sophisticated mobile application with lots of useful tweaks, but it all comes
at price of not being able to serve more than two people per ride. For that twosome it provides
an ideal solution for quick and easy planning and realization of a shared ride though. I was
particularly impressed by the option of cashless transactions and implementation of users
rating.

2.3 Related work summary

Numerous already existing solutions were listed and described above, each of them with
different properties and features. So what is the conclusion about current taxi ridesharing
possibilities? Well, I would sum it up like this: currently, there are few ridesharing systems
out there allowing one to plan shared ride in one way or another, but only few of them are
based on mobile platform and even those running on mobile phones have a potential for
improvement.

These are the most important observation I have learned during my research on existing
ridesharing solutions about how newly created application should look like:

e The application should be mobile based so anyone could reach it virtually from any-
where

e The application should work in as much dynamic way as possible, ideally returning a
ridesharing opportunity immediately after receiving new request

e The application should allow its users to utilize capabilities of smartphones it would
run on such as determining users geolocation etc.

e The system should allow multiple starting points and multiple endpoints and it should
take care of fair splitting of fare amongst passengers

e The system should be able able to work anywhere, not just in specific area (such as
single city)

I believe that an application meeting these standards would serve its purpose very well
and would help its users to spare their money and use taxis effectively.

2.4 Surveys and external references

While performing my research on already existing solutions, I have also searched for
existing algorithms usable for spatio-temporal clustering. I have found some papers about
spatio-temporal clustering methods, but virtually none of them was directly related to my
work.

CHAPTER 2. RELATED WORK 11

2.4.1 Spatio-temporal clustering

Since spatio-temporal (ST) clustering is a kind of data mining, many papers cover this
problem from scientific point of view presenting various methods for different types of ST
data [5]. Majority of these methods aim at something completely different than I need
in my work like analyzing time series data, discovering common patterns in ST data or
analyzing trajectories of moving objects. Other methods based on ST clustering are focused
on analyzing events, like crime in urban localities [4] or spreading of diseases amongst people
[8]. Therefore none of them is quite suitable for my work.

2.4.2 Dial a ride problems

There is another type of problems that seems to be much closer to my work, though.
The problem is called dial-a-ride problem (DARP) and in general the goal is to propose set
of routes as cheap as possible satisfying certain criteria. There are again various methods
for solving this kind of problem ([2], [3]), and various instances of DARP with different
contraints (like time windows [6] or limited vehicle capacity [1]).

However, even DARP solving algorithms are not quite applicable to the problem my
system is supposed to solve, since DARP describes and solves routing problem from fleet
owner’s point of view. That means DARP solver needs to know certain information about
vehicles (such as their numbers and properties). This is something that my system can
never know as it works solely with requests from people who want to travel and do not
posses any knowledge about what vehicle will pick them up or even if there is any vehicle
available. That’s why I eventually came up with my own algorithm (in fact three of them)
for matching individual requests (see 5).

Chapter 3

Requirement analysis and
specifications

3.1 Requirement analysis

Based on my observation gathered during examination of already existing applications,
I made up a list of features that I consider being vital for any new application aiming at
providing ridesharing capabilities. These substantial functionalities are following (in order
of decreasing importance): ride effectiveness maximization, providing enough information,
ride organization and fare splitting. The additional ones are: passenger rating, passenger
recognition and methods of payment. Lets now go through them and have a closer look on
each of them.

3.1.1 Essential functions

Following features are those that I consider being essential for any new ridesharing ap-
plication in order to work both properly and effectively.

Efficient shared ride matching Although anyone would automatically expect any ap-
plication of this kind to create rides that are as much effective as possible (after all that’s
what these applications are meant to do), I think this part is not only worth mentioning, but
I consider it being most important since not all of the existing solutions guarantee maximal
effectiveness, for example by not addressing the problem of multiple starting points that
could eventually make the ride not effective at all because of long detours. This is something
that I think should never happen in such an application.

12

CHAPTER 3. REQUIREMENT ANALYSIS AND SPECIFICATIONS 13

Providing enough information Providing enough information, another aspect one may
take for granted yet it’s not incorporated in every existing system so far. RideAmigos
is perfect example of application which doesn’t provide enough information. Briefly, it is
virtually unusable. A user should be aware of a state of the application at all times and
should be able to use the application without any extensive learning. RideAmigos, for
example, completely fails in both the former and the latter. By “enough information” I
mean mainly the actual date and time of confirmed ride, who else is participating in the
ride, estimated total length and estimated total price of the ride.

Ride organization In other words “How will the ride be organized?” There are several
approaches in already existing applications:

e predefine fixed HotSpots and let users start from one of them

e create HotSpots dynamically and let users start from one them

e let users choose common starting point and general destination area
e let users go from anywhere to predefined locations

All of those approaches have their pros and cons, but the list lacks the one I find most
flexible and convenient: let the user freely choose both starting point and endpoint with the
option to pick passengers up and drop them off along the way. The reason it was not listed
is simple: none of the existing applications supports this concept. That’s a pity since I see
a lot of potential in this specific type of ride organization.

Fare splitting The application itself should handle correct and fair splitting of the fare
between users involved in a ride. Not only that it’s much more comfortable for each user to
know exactly how many is he/she supposed to pay, but I also believe that it may prevent
potential conflicts caused by arguing about each passengers relative price.

3.1.2 The additional features

All functions listed below are deemed to be something an application should have, but
are not that crucial to prevent it from working. I can imagine adding these features into the
application later once all vital parts are up and running.

Passenger rating Very handy yet dispensable functionality is rating of the users by other
users. Such a functionality would probably result in better user experience, but the same
application may work equally well without it.

Passenger recognition Quite an important part of the whole process when it comes to
applications preferring single starting point on which individual users need to find each other.
As T favor the concept of multiple starting points, this problem seems less important since
with multiple starting points one just waits patiently on the edge of the road for taxi to arrive.
Some kind of method for identifying fellow-passengers could be built in the application for
the case it’s needed, but it’s not that important.

CHAPTER 3. REQUIREMENT ANALYSIS AND SPECIFICATIONS 14

Methods of payment Usually people pay in cash for the ride. An interesting option was
introduced by FareShare to pay cashless using PayPal. The idea is definitely brilliant, but
tweaks like this may not be that usable as they require additional effort (like setting up a
PayPal account) from each and every user to work properly. Because of that, it may happen
rarely that all passengers participating in one ride would meet these requirements allowing
that feature to work.

3.2 Specification

In this section I will describe specifications for my application according to key features
mentioned in previous section. This specification covers users point of view and provides an
overview of inputs and outputs of the application. More detailed technical specification will
be given later in this work.

3.2.1 Application inputs

Since the goal is to create mobile-based application designed for taxi ridesharing, the
resulting program should require some information in order to work correctly and should be
able to accept users requests.

3.2.1.1 Authentication

Users needs to be able to authenticate himself against the application. This step is
necessary to prevent fake requests being created from users that are not really interested
into using the service as well as to ensure applications correct functionality that requires
existence of at least one Google account in users device.

3.2.1.2 Ride specification

A complete specification of a ride provided by the user to the application for processing
consists of following pieces:

Starting point The point from where the user wants to travel. This place can be specified
by selecting a specific point from the map or by looking up a certain address. Note that unlike
some of already existing solutions I plan to give the user an option of completely free choice
by not defining any fixed HotSpots or places of such a kind. Furthermore, application will
enable the user to utilize geolocation capabilities of his phone to select his current position
as starting point for the ride.

End point Analogically to the starting point, an endpoint will be selected in the very
same way by either selecting a place from the map, looking up a specific address or using
geolocation services of ones mobile phone.

CHAPTER 3. REQUIREMENT ANALYSIS AND SPECIFICATIONS 15

Date and time of the ride Information about when the user wishes to go. The only
limitation for this entry is that it must not be in the past. No restriction on how far in the
future may the ride be planned will be introduced, but it’s not expected that rides more
that few days in the future will be planned since that would go against the very idea of the
application. The ridesharing experience is supposed to be as much spontaneous as possible
with this application preferring rides planned just a few moments ahead over those planned
long time before the ride itself.

3.2.2 QOutputs of the application

As the result of users interaction with the application, the outputs described below will
be returned by the system.

List of users requests Once sent to the system, user will be able to list all entered rides
each of them containing the same information that were given to the application in time of
creation of that particular request.

Notifications The application will be able to actively notify the user in case that someone
else joins a ride. This notification should be optional and in case of being active, it should
signalize the occurrence of an event by both audible signal and a small icon displayed in
status bar.

Ride offers Notifications should signalize that match was found for some of users requests.
Ride offer, based on this match, will be proposed to the user for confirmation.

Chapter 4

Architecture and design

4.1 Architecture

This section shall describe the overall architecture of the system covering both client and
server side by presenting an essential building blocks of the whole application and the way
these are connected to each other in order to create an operational system.

4.1.1 Model

The system is planned to follow the classical client-server model providing reliable plat-
form for its users. As usually, the whole computational power will be provided by the server
making clients relatively thin by reducing their task to simply being able to send users input
and to display servers outcome.

All algorithms and processing done by the server will be done in centralized way meaning
that interactions will only occur between the server and individual clients, not between the
clients themselves.

4.1.1.1 Building blocks

Both the client and the server side can be decomposed to the individual blocks they are
made of (in this case these will be plain Java objects). Since the server part makes all the
work, I will mainly describe the parts forming the server side of the system.

Ride request An important and quite essential is the “ride request” block. Each of these
represents a single request created by the user and stored somewhere on the server for further
processing each encapsulating the information described in 3.2.1.2

Algorithms then work on the complete set of currently available requests trying to match
them together in the best possible manner.

16

CHAPTER 4. ARCHITECTURE AND DESIGN 17

Ride prototype Once the algorithm finishes processing of requests, it may or may not
produce a set of “Ride prototypes”, candidates that again may or may not make it to the
stage of a ride offer. Each of them contains following type of information:

e Direction of the ride
e Involved users
e Ride requests this prototype consists of

e Additional, implementation specific necessities

Ride prototypes are subjects to another process that either approves or rejects the pro-
totype based on certain criteria.

Ride plans Prototypes lucky enough to make it through the approval process are consid-
ered being sufficiently good to be offered to users as a possibility for shared ride. They come
to them in a form of “Ride plans”, more complex objects than “Ride prototypes” additionally
describing the ride by:

e A set of waypoints along with an order they will be travelled through
e Estimated total length and total price of the ride

e Relative prices for each individual user

4.1.2 The workflow

All the building blocks are used in a certain moment during applications lifetime. I used
BPMN flowcharts to capture the way the system internally works. One flowchart is provided
for each individual part of the system as well as for both of them interacting with each other.

Server part Following figure demonstrates how the server internally works. Two figures
are provided - one for clustering algorithm and the other for online one. Since initialization
related processes are not really relevant, this figure captures servers internal workflow after
it receives new request.

CHAPTER 4. ARCHITECTURE AND DESIGN 18

clustering triggered
; by CRON

'
mmnm

Figure 4.1: Workflow of clustering algorithms

Figure 4.2: Workflow of the online algorithm

Client part As I mentioned earlier, client application is very thin. It basically only sends
and received requests, therefore it wouldn’t make sense to provide client-only workflow as it is
bound closely to the server part. Clients behavior will be better illustrated by its interaction
with the server. Note that the parts of the applications lifetime in which the application is
being suspended, terminated or brought back to active state will be omitted since these are
Android OS specific and as such they are irrelevant for the general insight on the application.

Mutual interaction Finally, the most interesting part - mutual interaction between the
server and the client - is represented by following figures. There are two of them for the same
reason as there are two figures in “Server part” section - the two implementations behave
differently not only internally inside the server but also while interacting with the client
application.

CHAPTER 4. ARCHITECTURE AND DESIGN

19

Client

send new recuest to
the server

wait for servers
response

wait for further
notification

‘Store request into
the datastore

Server

Data store

let the server know
ahout users decision

wait for further
notification

was the ride
confirmed?

was the ride
cancelled?

——® -

Notify users

yes

Prepare for the ride

-+

f

b

tell the user to wait

for clustering

wait for CRON to
trigger clustering

wait for users to

accept/decline the

offer for specified
amount of time

confirmed by all
users?

does the ride still pay
off?

Figure 4.3: Workflow of server-client intercommunication for clustering algorithms

CHAPTER 4. ARCHITECTURE AND DESIGN

20

Client

send new request to
the server

response

matchfound?

let the server know
about users decision

wait for further
notification

was the ride
confirmed?

was the ride s
cancelled?

accepted? -

7

Create new request
wait farservers - . -

Decide whether or

not to accept the
offer

Prepare for the ride

requests from the
datastore
p—

Server

Data store

H were any sutable
: matches found?

Store request into
the datastore

inform the user that
--=7""] nothingwas found

wait for users to
accept/decline the
offer for specified

amount of time

confirmed by all
users?

does the ride still pay
off?

yes

-

Figure 4.4: Workflow of server-client intercommunication for online algorithm

CHAPTER 4. ARCHITECTURE AND DESIGN 21

4.1.3 Technical point of view

So far the architecture of the system was presented in a general, almost in theory. But
the implementation itself is nearly as important as the concept it is based on, therefore I
will briefly introduce technical solutions on top which the system will be built.

Google App Engine Server part will be implemented using Google App Engine - cloud
solution providing highly scalable platform for varying kinds of web applications.

Since the App Engine handles deploying, redeploying, starting and terminating instances
by keeping track of number of requests the application needs to serve, it fits my needs very
well.

App Engine currently supports web application developed in Java, Python and (still
experimentally) Go. As my preferred programing language is Java, my app will be written
in it.

Android operating system Android OS - developed by Google - is quite popular these
days. Millions of devices powered by a system with green robot in logo are activated every
day. Having such a huge user base is a vital property that qualified Android to be the system
hosting my client application. That, and the fact that Android application are developed in
Java as well.

Another big advantage of Android with relation to server-side implementation is that
it’s developed and maintained by the same company - Google. That makes both sides of
he application highly compatible and eliminates some obstacles one would need to overcome
while developing each part of the system in an environment from different provider.

CHAPTER 4. ARCHITECTURE AND DESIGN 22

4.2 Design

Since the application is supposed to be used by whoever downloads it, it has to implement
a user interface. In this specific case the user interface will form major part of the client-side
application.

4.2.1 Android philosophy

By the Android philosophy, applications should be built in such a way that they both use
as much already available resources (including parts of other applications) and allow their
parts to be used by other applications.

This approach directly implies that all Android applications are built from common
building blocks that may be potentially reused or shared. More complex structures and
behavior can then be achieved by combining these blocks together.

4.2.1.1 Android activities

The most essential building block of each Android application is so called “Activity”.
An activity is a container for both application logic and user interface elements designed
specifically to allow a user to perform a specific task. Each activity is usually represented
by one window taking up whole screen of the device. Activities have a non-trivial lifetime,
but that is irrelevant from users point of view. What matters to a user is how the activity
looks like.

4.2.1.2 Screenshots

Following pictures capture individual activities of the client application in a form they
actually look like on a real' device.

Figure 4.5 shows all significant parts of clients interface. Main window of the application
(4.5(a)) and new ride activity (4.5(b)) are the most important activities.

While creating a request for a ride, user can select starting point and endpoint either
by picking up a point from a map (4.5(c)), by using geocoding service which translates
textual address into geographical location (4.5(d)), or by using current geographical location
determined by the device.

Once the user submits the request, two things can happen: either a match is found on the
server and shared ride is offered to the user immediately (4.5(f)) or no match is found and
user is instructed to wait until one occurs (4.5(e)). Once a match is found, user is notified
via standard Android status bar notification (4.5(g)).

To make it easier for a user to work with this application, the application once requests
users permission to use credentials stored in the device (4.5(h)). In case user grants the
permission, application never asks for username nor password making user experience more
comfortable.

'In fact, almost all images were taken using Android emulator, not a physical device, but that makes
absolutely no difference

CHAPTER 4. ARCHITECTURE AND DESIGN

F @ 5:46em
Taxistem
New ride Planned rides

& i

Available rides History of rides

o ?

Settings Help

News

(a) Main window of the ap-
plication

Choose location

Podbélohorska
Praha

M & 6:390m

Start of the ride

GPS coordinates:

Select
No position was selected yet
L= Change
May 19, 2012
Time Ehaics
6:49 PM
End of the ride
GPS coordinates:
Select
No position was selected yet
Additional parameters
Maximal price:
Maximal price that you are
willing to pay: CzK

(b) New ride activity

M & 3:23em

(® No match was found

No match was found in the
database for your request. You
will be notified once a match
occurs.

ZH @ 3:19em

Pick start location

Search for

address: @ @
el

Sttesowce.

Hradéany

- {" o
pusion E g
oo o
....... CIBTA
", o
g 2 2
ousy
| 2
i
- Sacré com rign
- ¥
e 1
i e
* H
Bermamka i{ % ot
Google
2

[Select | \ Abort J

(¢) Picking

from a map

starting point

F N @ 9:28em

Ride offer

e

From: Praha, Vanickova
To: Praha, Smeralova
When: May 19, 2012

Estimated length: 363 km

Estimated price: 48 czk

Other passengers:
passenger1
passenger2

(d) Finding a point on map (e¢) No match found for re- (f) Ride offer - match found

using geocoding service quest for request
May 19, 2012 T Ml @ 9:02em Ml & 3:17em
Android Lleay Access Request
[Taxistem The following one or more

applications request permission to
access your account, now and in the
future.

A match was found for your request! ~ 9:01 PM

® Taxistem

Do you want to allow this request?

7 I Allow i Deny i

(g) Notification about found (h) Request for permission to
match use users credentials

Figure 4.5: Screenshots of the client application

23

Chapter 5

Algorithms

Earlier in this paper I have mentioned processing of requests several times, but I have
never explained what exactly that means. In this chapter an explanation will be given along
with few figures depicting the working process of algorithms.

5.1 Request matching

The vital functionality of the server part of the system is an algorithm matching active
requests and creating groups of similar ones that could potentially form a shared ride. As
my system ended up with two different methods for request matching, I will provide two
descriptions, one for each of them.

5.1.1 K-Means algorithm

The very first idea how to match individual requests from users was to use well-known
clustering algorithm called “K-Means”. As its name suggests, it works with mean values,
specifically with & of them. A general definition-like description follows.

Let S be a set of n objects (in my case requests for a shared ride, but lets just call them
“points” for the sake of generality) on which the clustering is about to be performed. Let K
be a set of k objects (lets call them “etalons”) that will represent the individual clusters once
the clustering process is finished.

An essential condition for k-means to work is that one needs to be able to determine a
“distance” between any two objects from S. More formally, a function must exist such that
for any pair of objects from S on its input returns a single value from R - their distance.

The algorithm works in following steps which are repeated until terminating condition is
met.

1. Etalon initialization - this is usually done by randomly assigning each etalon to one of
the points S

2. For every point compute its distance from each etalon and assign this point to the
closest of them.

24

CHAPTER 5. ALGORITHMS 25

3. Adjust etalons so that they become mean values of points assigned to them.

4. If assignment of all individual etalons did not change during last two iterations, termi-
nate. Otherwise continue with step 2.

Once finished, algorithm returns K with its elements (etalons) representing cluster cen-
ters and each assigned with some of the points.

Algorithm 1 Matching requests using K-Means method

Input: number of clusters
Output: ride prototypes
requests < all requests from the datastore
etalons < numberofclusters new etalons
for all etalons do
randromRequest < requests.get(random)
etalon.startLocation < randomRequest.start Location
etalon.endLocation < randomRequest.endLocation
etalon.time < randomRequest.time
end for
assignmentsChange < true
while assignmentsChange do
for all requests do
mindistance < in finity
for all etalons do
distance < computeDistance(etalon, request) {using formula in 5.6.1}
if distance < minDistance then
mandistance <— distance
closestEtalon < currentEtalon
end if
end for
closest Etalon.assigned Requests.add(request)
if closest Etalon # closest EtalonFromPreviouslteration then
assignmentsChange < true
end if
end for
for all etalons do
current Etalon.start Location <— mean value of start positions of assigned requests
current Etalon.endLocation < mean value of end positions of assigned requests
currentEtalon.time <— mean value of time positions of assigned requests
end for
end while
return etalons

CHAPTER 5. ALGORITHMS 26

5.1.2 Directional algorithm

My so called Directional matching algorithm is an algorithm I came up with which is
based on k-means idea, but utilizes additional, problem-specific knowledge. This algorithm
uses a direction (a bearing) of each individual ride request which can be computed quite
easily using starting point and endpoint of that particular request.

Let S again be the set of n points. Let K be a set of k etalons.

The algorithm itself then repeats following steps:

1. Initialize etalons - again by randomly assigning etalons to points

2. For every point compute its distance from each etalon and assign this point to the
closest of them.

3. Adjust etalons so that they become median values of points assigned to them.

4. If assignment of all individual etalons did not change during last two iterations, termi-
nate. Otherwise continue with step 2.

Once this algorithm terminates, it returns exactly the same output as k-means, that is a
set of etalons adjusted to be centers of requests. The only, but greatly important, difference
is in an assignment of individual requests to etalons.

Note: By replacing mean value by median value in step 3 the clustering method changed
from k-means to k-medians which is an algorithm with exactly the same properties and
workflow as k-means up to the step of adjusting etalons.

CHAPTER 5. ALGORITHMS 27

Algorithm 2 Matching requests using Directional method

Input: number of clusters
Output: ride prototypes
requests < all requests from the datastore
etalons <— numberofclusters new etalons
for all etalons do
randromRequest < requests.get(random)
etalon.startLocation < randomRequest.startLocation
etalon.endLocation <— randomRequest.endLocation
etalon.time < randomRequest.time
end for
assignmentsChange < true
while assignmentsChange do
for all requests do
mindistance < in finity
for all etalons do
distance < computeDistance(etalon, request) {simply as difference in bearings}
if distance < minDistance then
mindistance < distance
closest Etalon < currentFtalon
end if
end for
closest Etalon.assigned Requests.add(request)
if closest Etalon # closest EtalonFromPreviouslteration then
asstgnmentsChange < true
end if
end for
for all etalons do
current Etalon.bearing = findMedianBearing(assigned Requests)
end for
end while
return etalons

CHAPTER 5. ALGORITHMS 28

5.2 Prototype evaluation

Both algorithms described above produces identical results: sets of etalons with requests
assigned to them. But these clusters are not yet ready to be presented to users as ridesharing
offers. In fact, it may happen that several requests assigned to the same etalon differ greatly
one from another being completely incompatible in terms of ridesharing.

This is where the second phase of servers work takes place. This time returned etalons
(lets call them “cluster” from now on since that is what they represent) are fed to an evalu-
ation algorithm which task is to make a verdict about every etalon: approved or denied.

The way the algorithm works differs slightly for each of the clustering algorithms, but
generally it works as follows:

e A representative specimen for the cluster is selected (that may be the cluster itself or
one of assigned requests)

e Other requests are compared appropriately to this specimen

e If any of those requests is not “similar enough” (similarity conditions differ for each
implementation) to the specimen, it is removed from the cluster

e If one or more requests were removed, run the evaluation again on the reduced cluster

e If too many requests were removed during the process (only one request remains as-
signed to the cluster), terminate and discard current cluster

e If all remaining requests are similar enough and there are two or more of them, termi-
nate and approve this cluster

The result of evaluation algorithm is set of clusters, each of them possibly reduced by a
few requests. This set can be empty if none of clusters on the input was good enough to form
a shared ride. In case the returned set is non-empty, all clusters it contains are from now on
considered to be good enough to be presented to users as possible ridesharing opportunities.

CHAPTER 5. ALGORITHMS 29

Algorithm 3 Cluster postprocessing in K-Means method

Input: set of clusters (etalons)
Output: set of possible ride offers
for all etalons do
if etalon.assignedRequests.size < 2) then
continue
end if
for all assignedRequests do
distance < computeDistance(etalon.startLocation, request.start Location)
distance < distance+computeDistance(etalon.endLocation, request.endLocation)
timeDistance < abs(etalon.time — request.time)
if distance > maxSpatial Distance V timeDistance > maxTimeD1f ference then
assigned Requests.remove(current Request)
etalon.startLocation <— mean value of start positions of assigned requests
etalon.endLocation <— mean value of end positions of assigned requests
etalon.time < mean value of time positions of assigned
end if
end for
if etalon.assigned Requests.size < 2 then
continue
else
evaluationResult < evaluate(etalon) {evaluation is described by Algorithm 5}
if evaluationResult # nothing then
ride Plan < createRidePlan(evaluation Result)
output.add(ride Plan)
end if
end if
end for
return output

CHAPTER 5. ALGORITHMS 30

Algorithm 4 Cluster postprocessing in Directional method

Input: set of clusters (etalons)
Output: set of possible ride offers
for all etalons do
if etalon.assignedRequests.size < 2) then
continue
end if
for all assignedRequests do
timeDif ference = abs(etalon.time — request.time)
if timeDif ference > maxTimeDif ference then
assigned Requests.remove(request)
etalon.bearing = findMedianBearing(assigned Requests)
continue
end if
crossBearingl < computeBearing(etalon.start Location, request.endLocation)
crossBearing2 < computeBearing(request.start Location, etalon.endLocation)
if crossBearingl > maxCrossBearing V crossBearing2 > maxCrossBearing
then
assigned Requests.remove(current Request)
etalon.bearing = findMedianBearing(assigned Requests)
end if
end for
if etalon.assignedRequests.size < 2 then
continue
else
evaluationResult < evaluate(etalon) {evaluation is described by Algorithm 5}
if evaluationResult # nothing then
ride Plan < createRidePlan(evaluation Result)
output.add(ride Plan)
end if
end if
end for
return output

CHAPTER 5. ALGORITHMS 31

Algorithm 5 Evaluation of cluster - common to all algorithms

Input: cluster (etalon)
Output: true if this cluster forms good ridesharig option, false otherwise
output < true
if etalon.assigned Requests.size < 2 then
return false
end if
while repeat do
repeat < false
prices < computeEstimatedPrices(etalon.assigned Requests)
for etalon.assignedRequests do
if request.maxCost < prices.get(request) then
assigned Requests.remove(request)
repeat <— true
end if
if etalon.assigned Requests.size < 2 then
output < false
repeat < false
end if
end for
end while
return output

CHAPTER 5. ALGORITHMS 32

5.3 Ride plan creation

Even though clusters approved by the evaluation algorithm are good enough possibilities
for shared rides, they can’t be sent to involved users right away. The reason is they do not
contain all of the necessary information that users need such as:

e Estimate of relative prices for each user
e Estimate of total length and price of the ride

e The order in which users should enter and leave the vehicle

This information is computed afterwards using starting points and endpoints of requests
assigned to each cluster. At that point, finally, the cluster, now represented by its corre-
sponding ride plan, can be offered to users.

5.4 Negotiation

The fact that users receive an offer for shared ride does not automatically imply they
will all accept it. One could find many reasons for a user not to accept the offer - from
occurrence of an unexpected event to simple change of his/her mind.

The system expects such situations and is capable of handling them. It does so by using
simple negotiation protocol.

The negotiation itself begins with creation of a ride plan and happens in following steps:

1. Users involved in the ride represented by this ride plan are notified

2. Each notified user is supposed to either accept or decline given offer

3. With each user who refused to take part in proposed ride, the ride plan is recomputed
4. If the system concludes that the ride is no longer favourable, the whole ride is cancelled
5

. If the system comes to a conclusion that the ride still may pay off, it adjusts the ride
plan accordingly and continues to step 1

Only after being accepted by all participating users, the ride is considered to be definitive
for the system, making it remove corresponding requests from a set on which clustering is
performed. In case the ride was cancelled, no requests are removed from that set making it
possible to match them with another ones again.

5.5 Data cleaning

There is one more situation in which a request can be removed from that set. It is
when the request is no more relevant, which would typically happen when a request has
not been chosen to be part of a shared ride for so long that the date and time on which
this request is planned happens to be in the past. Taking such requests into an account
during the clustering may (and probably would) have an adverse impact on the results of
the clustering algorithm. Therefore server has to periodically check for requests that are no
longer up-to-date and remove these from the set of clustered ones.

CHAPTER 5. ALGORITHMS 33

5.6 Detailed description

So far algorithms were described in general. In this section, more detailed description
will be given covering all important parts of these algorithms. Also third way of matching
requests will be introduced.

5.6.1 The distance

Probably the most significant distinction between both implementations is the way they
compute the distance from one request to another.

K-means algorithm K-means version uses following formula to determine a spatiotem-
poral distance between two requests - « and y:

d(xstarta ystart) + d(xendy yend)
2

with the following meaning of individual symbols:

D(z,y) = +w-t(x,y) (5.1)

® Tgiart, Tend and their corresponding y counterparts are starting point and endpoint of
requests respectively

e d(a,b) is a function returning real distance between given points in space in kilometers

e w is a constant used to adapt temporal distance and make it comparable with the
spatial one (this constant has a value of 0.0833 which is a number of kilometers walked
in one minute by a person walking at 5 kmph)

e {(z,y) is a function computing time difference between given points in minutes
Directional algorithm Directional version computes the distance in much simpler man-
ner: it just computes the difference in bearings of requests. Being a plain decimal numbers
in range from zero to 360 degrees (non-inclusive), bearings can be easily compared by simple

subtraction. The only complication is a possible underflow or overflow around values close
to zero or 360.

5.6.2 Etalon adjustment

Each algorithm handles adjusting of etalons in its own way.

K-Means K-Means algorithm algorithm adjusts etalon by performing following steps:

e A position is adjusted by computing mean values of starting points and endpoints and
assigning these to be new starting point and endpoint of the etalon respectively

e A time specification is adjusted by computing mean value of all requests (this step is
performed using millisecond representation of Java Dates in which these are represented
as long numbers)

CHAPTER 5. ALGORITHMS 34

Directional algorithm Directional algorithm adjusts etalons in following way:

e A bearing is adjusted by computing the median value of bearings of all assigned requests
(while median bearing is computed in a classical way by ordering bearings and selecting
the value right in the middle)

e A time specifications is adjusted the same way K-Means algorithms does it

5.6.3 Etalon postprocessing

Another aspect in which individual methods differ is a process I call “postprocessing” of
etalons. This process takes places right after clustering is finished and its task is to make
sure that clusters not making a good ridesharing option are discarded. This process was
already described in general in 5.2, so this time I will only mention those specific passages
that differ.

Selecting representative specimen While K-Means method uses computed etalon as
a representative specimen to which assigned requests are compared, Directional algorithm
uses the cluster simply as a container for requests that should belong together according
to clustering process. One of the requests assigned to this etalon is selected to be the
representative specimen and it is the one which has bearing most similar to mean bearing
of the whole group of requests in that cluster (that means that firstly a mean bearing is
computed for the whole cluster and then the request with bearing closest to that value is
selected).

Note: In etalon postprocessing Directional algorithm uses mean value of bearings instead
of median. This is caused by the fact that requests in one cluster are supposed to have very
similar bearings making usage of mean value possible.

5.6.4 Online processing

Everything said about algorithms up to this point was meant about their “offline” ver-
sions. By “offline” T mean periodical, CRON' scheduled processing of requests. That ulti-
mately means that a user wont get instant result from the server after adding new request.
That is quite a drawback and potential opportunity for improvement.

While K-Means algorithm cannot be adjusted to support on-the-fly request processing
just because of the way it works, Directional algorithm can. The result is what I call “online
version of the Directional algorithm.”

LCRON is an acronym for “Command Run On” with the meaning of time-based job scheduler

CHAPTER 5. ALGORITHMS 35

Online version of the Directional algorithm The most significant difference between
offline and online version of this algorithm is, that the online one does not perform any kind
of clustering. It works as follows:

1. A requests is received

2. Its bearing is computed

3. All requests with similar enough bearing are withdrawn from the datastore

4. Result set is iterated and all requests which are too distant in time are removed

5. Postprocessing takes place further removing all requests that are not positioned simi-
larly as the new one

6. If any requests remained, they create a good ridesharing opportunity and are returned
in form of a rideplan

Once finished, this algorithms returns either possible shared ride opportunity for given
request or it returns nothing in case no suitable requests were found that would form a
ridesharing option with given one. Either way the new request is stored in the datastore -
as an “active” one if no match exists or as “pending” one if a match was found.

Note: Selecting all requests having similar bearing and being too distant in time directly
in from the datastore is currently impossible since App Engine does not support queries
containing inequality conditions over more that one property. Probably because of its internal
all-indexing implementation.

5.6.5 Cross-bearing difference

Although individual internal parameters are described later (7.2.1), one of them needs
further explanation beforehand. T call this parameter “cross-bearing difference”. It is used
by both version (offline and online) of the directional algorithm to determine whether or not
is a request similar enough to specified reference request. It does so by computing bearings
from startpoint of the reference to endpoint of the other request and vice versa (that’s where
“cross-bearing” comes from). These bearings are then compared with bearing of the reference
request. If any of these differences is greater than predefined value, requests are considered
not to be similar enough.

Figures below should completely clarify its meaning. Figure 5.1(a) shows two requests -
reference request and another one - fairly similar to each other which would form quite good
ridesharing opportunity, while figure 5.1(b) depicts two requests with very similar bearing,
but with position not suitable for shared ride. With the value of “maximal cross-bearing
difference” set right, similar requests are approved to create a shared ride while not-similar-
enough ones are not.

CHAPTER 5. ALGORITHMS 36

Algorithm 6 Matching requests using Directional online method

Input: new request, maximal number of passengers
Output: ride offer or nothing
bearing Lower Bound < new Request.bearing — maxBearingDif ference
bearingU pper Bound < newRequest.bearing + maxBearingDif ference
requests <— all requests from the datastore having
bearing €< mazxBearingLower Bound, maxBearingU pper Bound >
for all requests do
timeDif ference = abs(etalon.time — request.time)
if timeDif ference > maxTimeDif ference then
requests.remove(request)
end if
end for
if requests.size > maxPassengers then
requests.sort {sort according to sum of distances between starting points and endpoints
of requests and new request }
requests <— 1...maxPassengers from requests
end if
if requests.size = 0 then
return nothing
end if
etalon < new etalon {artificial etalon is created so that methods for offline algorithm can
be reused}
evaluationResult < evaluate(etalon) {evaluation is described by Algorithm 5}
if evaluationResult = nothing then
return nothing

else
return createRidePlan(evaluationResult)
end if
[] Starting point [] Starting point
- Endpoint - Endpoint
Maximal allowed range Maximal allowed range
for cross-bearing difference for cross-bearing difference
= Cross-bearing difference = Cross-bearing difference

et
/
pod

s
&
s

(a) Cross-bearing difference of two similar requests (b) Cross-bearing difference of two non-similar re-
quests

Figure 5.1: Graphical explanation of cross-bearing difference

Chapter 6

Implementation

6.1 Specific description

In this chapter I will describe specific features of the system once again. Why is that?
Because since now, all the talk about how the system is designed, how it should work, how
particular problems are solved etc. was more or less general. But this time I will provide
an exact definition for specific parts of the system enlightening the way they really are
implemented inside the system.

Needless to say I would select only few certain parts as providing a complete detailed
specification would make this paper disproportionately long.

6.2 Server-side specialities

Many notable things come from using App Engine as underlying platform. Some of them
- those that I consider being most important - are listed an examined below.

Note: App Engine runs applications in its own runtime environment which limits or restricts
applications behaviour in certain ways.

6.2.1 Single threading and responsiveness

Frankly T was surprised a little when I firstly learned that App Engine strictly prevents
application from spawning threads. Then I thought it through (and read Googles explana-
tion) and I realised that it makes sense. General philosophy of web-based applications is
that these are meant to interact with users. As such, they should be as much responsible as
possible, i.e. they should return a response in almost no time. Google forces this behavior
by introducing two limitations:

e Application is prevented from running in more than one thread

e Application has to respond to a request in specified amount of time, otherwise its
execution is terminated forcibly

37

CHAPTER 6. IMPLEMENTATION 38

Note: Despite not being able to create new threads, an application is allowed to perform
standard operations against the only thread it’s permitted to use.

Note: Time limitations for responding to a request are one minute and ten minutes for
user-invoked and CRON-invoked requests respectively.

These limitations are a programmatic way of saying “your application is supposed to
perform simple tasks (not requiring multiple threads) after receiving a request and it has to
respond quickly enough not to make its user annoyed”

“But what can one do if one just needs an application to perform computationally ex-
tensive tasks?” you may ask. The answer is simple: not to make these computations while
responding to a request. To serve needs of applications of such a kind, App Engine is
equipped with a feature called “backends”. Backends are long-term, possibly both CPU- and
memory-extensive tasks running separately from the request-serving part of the application.
This service is billed and I will not provide any further information about it since I have no
personal experience with it as there was no need to use it in my work.

6.2.2 The datastore
6.2.2.1 Description

App Engine allows its users to choose what kind of storage will their applications use.
Options are two:

e High-replication datastore

e Master-slave datastore

It is obvious that both of them are designed to conform the needs of cloud-based ser-
vice. According to Google, high-replication datastore uses so called “Praxos” algorithm for
replication, while master-slave datastore utilizes traditional master-slave schema with one
master to which inserts are made and which is replicated to several read-only slave mirrors.
My application uses high-replication datastore.

6.2.2.2 Limitations

With the concept of highly replicated datastore comes one restriction: inserting into the
datastore is limited to only one write per second. As far as I can tell it is because of internal
representation of the datastore which is implemented using so called “big table” that relies
heavily on indexing and, of course, because of the fact that the data has to be replicated.

6.2.2.3 Usage

App Engines datastore is unlike any traditional SQL-based database I have ever met
(that’s probably why a term “datastore” is used instead of “database”). The main difference
is that there are no tables in the datastore. There is only the datastore. Whatever one needs
to persist there, one just puts inside.

CHAPTER 6. IMPLEMENTATION 39

An elemental piece of information in the datastore is an entity. An entity is special object
provided by App Engine API. An essential property of each entity is its kind. Entities with
the same kind are considered to belong to the same entity group even if they have nothing
more than kind in common. That is something completely unusual to someone with mainly
SQL-based databases experience.

6.2.2.4 Frameworks

Objectify As interesting as it may seem, working with raw App Engine entities is quite
bothersome, so I implemented a framework called Objectify into my project which makes
working with entities much more comfortable. Since Objectify demands that every class
that will ever by converted into or from an entity is registered with the Objectify service
beforehand, I have written a simple algorithm that scans for classes annotated by @Entity
annotation using Reflection API and registers them with Objectify service automatically
every time the server is started up.

Restlet App Engine is based on servlets. As such it handles well simple HTTP requests.
I, however, needed to add support for (preferably RESTful) web services to my project.
Since App Engine does natively support only SOAP web services and even that only par-
tially, I decided to use third-party framework to add this functionality. This framework
is called Restlet and allows the application to both receive and produce entities in various
representations from well-known XML to some obscure ones. I chose XML as preferred rep-
resentation for communication with outer world simply because its natural form is quite well
human-readable which comes handy while testing.

That’s pretty much it about implementation specific specialities when it comes to the
server part of the system. Lets now take a look on what Android-related finesses one can
encounter while developing an Android application.

6.3 Client-side specialities

Developing applications for Android is not quite the same as developing standard Java
applications for computers. In the very beginning I encountered a paradigm shift reevaluating
ones priorities of common programing practices. The most important things to keep in mind
when programing mobile application are these:

e Resources are limited
e CPU time is expensive
e Applications lifecycle is not straightforward

The first and the second one of them are nothing new to anyone with just basic pro-
graming knowledge. The thing is that in mobile apps programing they gain a whole new
dimension. Let me explain. ..

Even though no one possesses infinite resources, there is substantial difference when
comparing resources of an ordinary computer and an ordinary mobile phone. Computers

CHAPTER 6. IMPLEMENTATION 40

these days have usually few gigabytes of operating memory for a program to fill up contrary
to few hundreds of megabytes in average one can find in a mobile phone. Therefore the need
of being as effective as possible becomes much more important on mobile platform.

Similar schema applies to processor power as well. Despite the fact mobile processors
are currently experiencing massive boom and their development progresses rapidly, they
still do not catch up with classical computer processors. On the other hand, computational
power of mobile processors seems to be more than sufficient. That means that having “too
weak” processor is not the reason for the CPU time to be that expensive on mobile phones.
The reason lies somewhere else. ..close to resources. The thing is that unlike computer
plugged into a socket, mobile phone is powered by a battery providing only limited amount
of electrical energy which could be depleted quickly with wasteful CPU-usage policy.

Finally, there is one more Android-specific feature one needs to get familiar with - com-
plicated application lifecycle. Unlike computer programs which have quite straightforward
lifecycle - start, performing some work, termination - applications running on Android OS
have their lifecycle much more intricate. Once started, Android application may be paused,
suspended, woken up, notified, restarted or even terminated before it terminates naturally.
This process of changing states comes from the need of allowing a user to have multitasking-
like feeling while using Android device while additionally maintaining enough resources for
the system and applications to run. For further information about how it all works I would
recommend visiting Android developers site'.

This whole thing is fortunately managed by the Android OS (which does its job very
well) thus all one needs to do is to adapt ones application to obey Androids instructions.

6.3.1 XML based resources

Rather unconventional property of Android is the way it works with resources. Instead
of using precompiled classes representing individual objects, Android only stores XML defi-
nitions of these objects that can be then parsed and translated to Java object representation
during applications runtime using special system service called “Layout inflater.” Of course
layout inflater cannot be used to create objects that encapsulate any kind of application
logic (these are precompiled an loaded using classloaders in typical way), but for simple UI
elements consisting only of various basic Android UI components it is an interesting solution.

6.3.2 Painless threading

In contrast to computer programs that may not implement any kind of user interface, an
Android app typically has to implement UI, therefore it must run at least one so called “Ul
thread”.

In Android, an application is started in its main thread called “the UI thread” which is
responsible for processing users interactions with the application. A common situation is,
that an application needs to perform a task that may take a while. Apparently, that has to
be done in separate thread since blocking the UI thread even for a few seconds would make
the application not responding to the user at all which is worst possible behaviour.

! Android developers - Activities: http://developer.android.com/guide/topics/fundamentals/activities.html

CHAPTER 6. IMPLEMENTATION 41

But with multithreading usually comes the issue of invoking actions on separate threads
appropriately. An ordinary approach is to suspend the thread which needs results of an
asynchronous operation until the other thread - which runs the operation - finishes its exe-
cution. However, this approach is not applicable since suspending the UI thread would result
in application being not responsive which is what one needs to avoid. To solve this problem,
Android provides an ingenious solution called “Asynchronous task”.

An asynchronous task is represented by AsyncTask class parametrized by three param-
eters. The most important method of this class is method named doInBackground(...)
in which one places the logic that should be processed asynchronously. Once started by
an execute() method, AsyncTask spawns a new thread in which doInBackground(...)
method is executed. Once finished, it passes any results of its work as an input parame-
ters of onPostExecute(params) method which is again run in the thread that invoked an
execution of the asynchronous task.

This solution makes multithreading in Android very simple and developer-friendly. Asyn-
chronous task are typically used every time an application shows some kind of progress di-
alog which runs in the UI thread while an operation is being executed in background by
AsyncTask.

Note: My personal opinion after using multiple threads and Ul in Android is that this
particular practice is solved much better in Android that in Javas SWING library.

6.3.3 Using maps

One particular speciality of the Android system is its close bound to other Google services
such as Google Maps. To enable an application to use Google maps, one needs to build the
application for a special version of Android system called “Google APIs” and to obtain a
key for using this API. Then the application may use specific Android elements, such as
MapView.

Note: Using two different platforms from Google - the App Engine and Android - I came
across the need of representing geological location in both of them. Interesting observation is
that while App Engine uses class called GeoPt to store geological location in form of latitude
and longitude represented by a pair of decimal numbers, Android uses class called GeoPoint
that encapsulates latitude and longitude in microdegrees thus storing them as integer num-
bers making it necessary to convert from one to another while intercommunicating.

6.3.4 System-user cooperation

One more remarkable thing I have encountered while developing the Android application
is a way the system cooperates with a user (by a user I mean an application developer this
time). Nice example of this approach is in one of methods of an ArrayAdapter.

Array adapter in Android is used to populate a list of Ul elements with user-specified
information. The input of this method is not only an index specifying which element should
be returned, but also already created Ul element that is currently invisible to the one who
holds the device, so it can be recycled and shown again with different data eliminating the
need of creating brand new object since that could be resource-extensive.

With an insight on ArrayAdapter I close the chapter of implementation niceties and my
personal experience with them.

Chapter 7

Evaluation

7.1 Experiments introduction

There was lot of discussion on how the application is designed, how it works, what it does
etc... But what is really important is how it will behave in a real production environment.
That’s something nobody can tell for sure until the system is deployed and used by real
people, but one can simulate this state artificially by testing.

7.1.1 Metrics

Tests have two purposes: to measure important measurable parameters of the system
(called metrics) and to simulate actual traffic that the system will need to handle once
deployed.

One would definitely find many measurable parameters of this system, but for sake of
simplicity and clarity, I decided to measure only those providing important information of
the system, these are:

Average time variation For every ridesharing possibility found by the algorithm, an
average time variation is computed as mean value of differences of time of the resulting ride
from the desired time of the ride specified by each user. This information is quite important
because it tells us how much will the starting time of the resulting ride differ from time
specified by each user in average.

Average detour Along with average time variation, an average detour is computed for
every ride. That is how much longer will the ride be because of the detours caused by the
need of picking up users along the way. “The ideal ride” which is simply direct connection
between starting point and endpoint of the ride is used as reference. Apparently, with this
value growing up an effectiveness of the whole ride goes down.

42

CHAPTER 7. EVALUATION 43

Average percent saving Mean value of all savings of passengers involved in one ride.
This value is especially important since it holds information about how much money will
users of this system save in average. If this value would not be great enough, the whole
system would prove itself useless.

Average number of people per ride Another very important reading is how many
people will - in average - travel in one vehicle. More people in one car makes the ride more
effective, but at the same time less likely to happen.

Number of satisfied users Efficiency of the system could be partially determined from
this number. It tells how many of requests fed into the system will be satisfied. Obviously,
the greater this number, the better the system. But note that in some cases this number
could be quite low, but not meaning the system performs poorly, for example if there were
many requests scattered on large area that would just not form good ridesharing possibilities.

7.2 Testing of the system

7.2.1 Input parameters description

The system has multiple parameters that can be changed. Every one of them may or
may not influence its behavior in some way. These parameters are additionally divided into
two groups: domain specific (those related to the problem this system is supposed to solve)
and implementation specific (those that are internally used inside the system).

These parameters are listed below while the first and the second one are domain-specific
and the rest is implementation-specific:

Density of requests Defines how “dense” are requests the system is working with. More
dense requests means more requests being close to each other in space or time or both. Less
dense requests means less requests on larger area with greater distances between them.

Scenario It is clear that requests coming into the system would not be always randomly
distributed. Sometimes it would definitely happen that incoming requests would follow some
kind of pattern (for example in specific daytime people are usually going from the center of
a city to peripheries or the other way around). That may (or may not) affect results of the
system.

The implementation specific parameters are again divided into groups according to an
algorithm:

Clustering algorithms These parameters are used by clustering algorithms, i.e. K-Means
method and “offline” version of Directional algorithm.

e Maximal bearing cross-difference - a value specifying the maximal difference of
“cross-bearing” (see 5.6.5) and bearing of current representative specimen in degrees.

CHAPTER 7. EVALUATION 44

e Maximal time variation - specifies how far in time can individual requests be to be
still considered as being “close enough”.

e Maximal spatial distance - used only by K-Means method to determine whether or
not are two requests close enough in space.

e Maximal number of passengers per ride - specifies how many passengers can
participate in one ride. This value is used to determine number of etalons in clustering
algorithms.

Online algorithm This method works in completely different way than clustering algo-
rithms so it has its own parameters which are following:

e Maximal bearing difference - specifies how much different (in terms of bearing)
requests to fetch from the datastore.

e Maximal time difference - specifies how much different (in terms of time) requests
to fetch from the datastore.

e Maximal number of passengers per ride - the same parameter as the one used in
clustering algorithms, this time is used to limit maximal number of users for one ride.

These two types of algorithms had to be tested separately, since they work differently.
Therefore there are two individual groups of tests in following section each covering testing
of one type of algorithms.

7.3 Tests specification

Parameters listed in previous section had to be tested in different configurations. Since
the number of possible configurations is enormous according to combinatorics, I relaxed the
problem by introducing limitations to each of those parameters. I ended up with thousands of
configurations which could be then tested in reasonable time. From these I obtained exactly
the same amount of results. I won’t of course list all of them, but just those depicting
important or interesting relations between input values and output readings.

For every result of a test I will provide following information:

e Input configuration for the test

e Expected output the test

e Actual output of the test and its comparison with the expected one

e Graphical representation of important dependencies

Note: For testing I used pseudo-real data generated by simulation framework used by Petr
Mezek in his work [7|. Three scenarios were generated each in three different sizes (300, 600
and 1200 requests) making nine data sets in total.

These scenarios will be referred to as shortcuts in consecutive section. Following table
explains meanings of these shortcuts:

CHAPTER 7. EVALUATION 45

Scenario description Shortcut
Random distribution of requests S1
Request heading from the center to edges of the area S2
Requests heading from marginal parts to the center of the area S3
Average value over all scenarios average

Table 7.1: Shortcuts for scenarios

7.4 Tests of clustering algorithms

These tests were performed in following way: the whole datastore was represented by
appropriate dataset. That models a situation in which requests gather in the datastore
during few hours. Internal parameters were adjusted according to current test configuration.
Then both versions of offline algorithms were run multiple times on that data using those
parameters to produce an output. On the output, all metrics were measured and averaged
to reduce possible noise in the data.

Note that each of clustering algorithms uses its own internal parameters to do its job.
Only common parameter is maximal allowed time difference. For this reason, following
results of my experiments are separated for each algorithm. Every experiment will be intro-
duced by an algorithm it was performed on.

7.4.1 |[K-Means algorithm| Relations between maximal time difference,
maximal spatial distance and number of created rides

Number of created rides is one of the most important readings we can obtain from the
system. It contains an information about how many requests were matched together to form
a ride. Since every ride is possible ridesharing opportunity, one would say that the greater
this number, the better the system. That is not completely true, because this value itself
doesn’t tell us anything about how effective these rides are.

Surely, number of created rides will be influenced by changing input parameters of the
algorithm. T expect that with rising maximal allowed time difference the number of created
rides would go up, since this parameter is restrictive inside the algorithm. I also expect that
with maximal allowed spatial distance going up, the number of created rides would go up as
well as increasing it means loosening another restriction.

Configuration for this test was following:

’ Parameters H Values
Scenario average
Density 600
Maximum of passengers per ride 2
Maximal time difference variable
Maximal spatial distance variable

Table 7.2: Configuration for K-Means test 1

CHAPTER 7. EVALUATION 46

40

Mai. time difference = 5 min e
3sH = = = Max. time difference = 10 min
— — ~Max. time difference = 10 min o -

oy
o

40
304.-

. 88

Average no. of created rides [-]
Average no. of created rides [-]

60

40

. . L)
: B& 0a 1.5 2 25
hfax. spatial distance [km] 4 Max. time difference [min] : Max. spatial distance [km]

(a) 3-D plot (b) 2-D plot

Figure 7.1: Relations between maximal time difference, maximal spatial distance and number
of created rides

As expected, increasing any of input parameters results in higher number of produced
rides. That is not surprising, because with higher allowed spatial distance the algorithm has
more options from which a ride can be created. The same applies for maximal allowed time
distance.

7.4.2 |[K-Means algorithm| Relations between maximal time difference,
maximal spatial distance and ride efficiency

Previous experiment confirmed that increasing both internal parameters of K-Means
algorithm results in higher number of produced rides. Now it’s time to look at efficiency of
these rides. T can tell how efficient each ride is from two measured value: average saving of
individual passengers and average detour of the ride.

Logically I would suspect that increasing maximal allowed spatial distance between re-
quests would result in less efficient ride. Decrease in ride efficiency should then lead to
average detour going up and average saving going down at the same time.

Result was obtained for following configuration:

’ Parameters H Values
Scenario average
Density 600
Maximum of passengers per ride 2
Maximal time difference variable
Maximal spatial distance variable

Table 7.3: Configuration for K-Means test 2

CHAPTER 7. EVALUATION 47

Mai. time difference = 5 min
1H == ~Max. time difference = 10 min -
— —~Max. time difference > 10 min =

0.8

0.6

Awerage detour [ken]

Awerage detour [km]

0.2
60

40

. . L L L
: B& 05 15 2 25
hfax. spatial distance [km] 4 Max. time difference [min] : Max. spatial distance [km]

(a) 3-D plot (b) 2-D plot

Figure 7.2: Relations between maximal time difference, maximal spatial distance and average
detour

05

Mai. time difference = 5 min
= = = Max. time difference = 10 min

0450 — — ~Max. time difference = 10 min

0.4

035

Average saving [-]
o
w

0.3

Average saving [-]

025

02

40
B0
80 015
Max. time difference [min]

n . L 1 L
o5 1 15 2 25
Max. spatial distance [km]

(a) 3-D plot (b) 2-D plot

Max. spatial distance [km] 25 100

Figure 7.3: Relations between maximal time difference, maximal spatial distance and average
saving

I think that results of this experiment are pretty clear. My hypothesis was confirmed and
we can see (7.2(a) and 7.2(b)) that with increasing maximal allowed spatial distance, average
detour rises regardless of maximal allowed time difference which was expected. What was
also expected is that with increasing maximal spatial distance the average saving per user
decreases (7.3(a) and 7.3(b)), again regardless of value of maximal allowed time difference.

It seems like maximal allowed time difference does not have any significant effect on
efficiency of the ride. That is correct, it doesn’t. What maximal allowed time difference does
is that it permits requests being far away from each other in time to form a ride. But those
requests are processed by clustering process beforehand in which their distance is computed
from both spatial and temporal distance, therefore results of clustering should produce well-

clustered groups of requests anyway. The only purpose of using maximal allowed time
difference is to filter out outliers.

CHAPTER 7. EVALUATION 48

7.4.3 |K-Means algorithm| Relations between maximal time difference
and average time deviation

Another important metric is average time deviation. This value represents the average
difference between time of realisation of created ride and users defined time. The most
interesting should be dependency of this metric on maximal allowed time difference.

From the way K-Means algorithm works I would expect this value not to grow much
since it should by somehow corrected by the clustering process in which both spatial and
temporal distance is taken into account.

Result was obtained for following configuration:

Parameters H Values
Scenario average
Density 600
Maximum of passengers per ride 2
Maximal time difference variable
Maximal spatial distance variable

Table 7.4: Configuration for K-Means test 3

Average time deviation [min]

o

L L L L L L L L 1
o 10 20 30 40 80 B0 mn 80 a0
Mas. tirme difference [rmin]

Figure 7.4: Relations between average time deviation and maximal allowed time difference

Indeed, average time deviation is not very sensitive to change of maximal allowed time
difference. Although I expected it not vary enormously, the result is slightly surprising. It
shows that using both temporal and spatial distance successfully eliminates extreme cases.

7.4.4 |[Directional algorithm| Relations between maximal time difference,
maximal cross-bearing difference and number of created rides

Previously, the behavior of K-Means algorithm was inspected. Lets now have a look at
the Directional one. This algorithm uses slightly different input parameters. Most important
one is what I call “cross-bearing difference”. For further information about this parameter
and its role please consult 5.6.5.

CHAPTER 7. EVALUATION 49

I think that there is direct proportion between input parameters and number of rides
produced by the algorithm. I expect that with rising maximal allowed time difference the
number of created rides would go up. I also expect that maximal cross-bearing difference
going up would lead to the number of created rides would go up as well. But I think that
rides which would be allowed to exist due to this restriction being too loose would not be
much favourable.

Configuration for this test was following:

’ Parameters H Values
Scenario average
Density 1200
Maximum of passengers per ride 2
Maximal time difference variable
Maximal cross-bearing difference || variable

Table 7.5: Configuration for Directional test 1

m
o

Max. cross-bearing diff = 5*
= = = May. cross-bearing diff = 10° -
— —Max_ cross-bearing diff > 10° 1

m
o

=
n

R ol B
g o O

Mo. of created rides [-]

]
o

Mo, of created rides [-]

1 1 . L
i 7 a o 1o 20 30 40 &0 B0 70 80 a0
Mau. time difference [min] 4 Max. cross-bearing difference [%] Wax. time difference [min]

(a) 3-D plot (b) 2-D plot

Figure 7.5: Relation between maximal time difference, maximal cross-bearing difference and
number of created rides

Result of this experiment confirms my hypothesis. By looking at figure 7.5 we can see
that there is a direct proportion between maximal time difference and number of created
rides as well as between maximal cross-bearing difference and number of created rides. As
I mentioned before, this effect is caused by loosening restrictions the algorithm uses which
results in more rides being still good enough to make it to final stage. Although this doesn’t
mean that it’s optimal to set these parameters as high as possible as there is another impor-
tant factor not covered by this test: effectiveness of the ride.

CHAPTER 7. EVALUATION 20

7.4.5 |[Directional algorithm| Relations between maximal time difference,
maximal cross-bearing difference and effectiveness of the ride

If one would try to make any conclusions solely from results of previous experiments,
one could conclude that setting those two internal parameters of the algorithm as high as
possible is a great idea since it results in higher number of created rides thus making the
algorithm more effective. Unsurprisingly, it’s not that simple.

Previous experiment doesn’t take into account two important facts: firstly, peoples time
is valuable and almost no one would take a ride scheduled long time before or after his desired
time. That means that although setting maximal time difference to great value produces
more results, it would be very rare if some of them would actually happen. And secondly,
despite the fact that setting maximal cross-bearing difference to great value also results
in more rides being created, there is still an important factor of passengers saving which
is surely also influenced by changing that parameter. That leads to following hypothesis:
average saving should go down with maximal cross-bearing difference going up. Additionally,
great value of maximal time difference should not be as favourable as not-so-great one.

Following configuration was used to perform a test:

Parameters H Values
Scenario average
Density 1200
Maximum of passengers per ride 2
Maximal time difference variable
Maximal cross-bearing difference || variable

Table 7.6: Configuration for Directional test 2

o
w

05

o
=
@

0.45

o
B
m

=
=
=

0.4

o
o
]

o
=

035 ~

Average savings [-]
Average savings [-]

&5 8
(T
o @

o
I
=

0.25 ~

o
o
=)

=3
[

1 1 . L 0.2 n n . . . n L "
1o 20 30 40 &0 B0 70 80 a0 a i 10 15 20 .] 30 o 40 45
Max. time difference [min] Max. cross-bearing difference [*]

o

(a) Relation between maximal time difference and (b) Relation between maximal cross-bearing differ-
average saving ence and average saving

Figure 7.6: Relations between maximal time difference, maximal cross-bearing difference
and average saving of passengers

CHAPTER 7. EVALUATION ol

1 1
09 R 09 g
0.8 4 0.8 g
07 . 07
E E
=08 =08
s s
Zaos Zaos =
o o
o4 504 b
& &
03 g 03
0.2] 0.2
01 1 01 4
o o

n n . . . n L "
o 1o 20 30 40 &0 B0 70 80 a0 o i 10 15 20 .] 30 o 40 45
Max. time difference [min] Max. cross-bearing difference [*]

(a) Relation between maximal time difference and (b) Relation between maximal cross-bearing differ-
average detour ence and average detour

Figure 7.7: Relations between maximal time difference, maximal cross-bearing difference
and average detour

This experiment resulted exactly as I expected: figure 7.6 clearly shows that there is
indirect proportion between maximal cross-bearing difference and average saving of each
user. That makes perfect sense since larger cross-bearing difference allows individual requests
in every ride to differ greatly in bearing, which means that requests forming one ride may
not be heading even similar direction, that makes the ride less efficient which results in less
saving per user.

Figure 7.6(a) also shows an interesting fact: extending time window for rides doesn’t
cause average saving to drop, but it doesn’t maximize it either. The peak in that plot
indicates that optimal time window lays around value of 20 minutes. We can also see that
average saving rises slowly with increasing maximal allowed time difference, but even if the
maximal saving would be achieved by setting it to 90 minutes, one needs to keep in mind
that real people would hardly accept such a great difference and computed saving would be
never reached in practice.

When it comes to average detour, its relations to internal parameters are following:
according to figure 7.7(a), average detour doesn’t really depend on value of maximal time
difference. That seems to be correct as there is no logical relation between those two values.
What it depends on is maximal cross-bearing difference. AsTexpected, setting this parameter
too high results in increase in average detour causing average saving to drop. From figures
7.7 and 7.7(b) it can be seen that optimal value of this parameter is about 10 degrees. That
corresponds with what one would anticipate: too low value reduces average detour (making
it almost zero) by forcing all requests in the ride to have almost the same direction, but
that’s not very likely to happen. Too large value, on the other side, allows too great variety
of bearing of individual requests causing long detours which then result in lower average
savings.

CHAPTER 7. EVALUATION 52

7.4.6 |Directional algorithm] Relations between maximal time difference
and average time deviation

Unlike K-Means algorithm, Directional method doesn’t use both temporal and spatial
difference at the same time to compute anything. Each value is used separately during the
process of clustering, therefore I expect that with increasing maximal allowed time difference,
the average time deviation would grow much more significantly, i.e. to dozens of minutes
instead of just minutes.

Result was obtained for following configuration:

’ Parameters H Values
Scenario average
Density 1200
Maximum of passengers per ride 2
Maximal time difference variable
Maximal cross-bearing difference || variable

Table 7.7: Configuration for Directional test 2

<l W
th o

)
!

=

Ayerage time deviation [min]
&

m

il L L L L L L L L 1
o 10 20 30 40 80 B0 mn 80 a0
Mas. tirme difference [rmin]

Figure 7.8: Relations between average time deviation and maximal allowed time difference

And it really does. According to figure 7.8 there is a direct proportion between maximal
allowed time difference and average time deviation. It totally corresponds with the way this
algorithm work: while clustering, it considers all requests to be “close enough” in time as long
as their temporal distance from selected reference is lower than specified value - maximal
allowed time difference. Figure 7.8 also shows that up to 20 minutes of maximal allowed
time difference, the average time deviation is reasonably small (about five minutes), but
with its further increase the average time deviation grows up to almost half an hour which
is potentially unacceptable for users.

CHAPTER 7. EVALUATION 93

7.5 Tests of online algorithm

In this part I will present results of tests performed on online version of Directional
algorithm. This method uses one more additional parameter - maximal bearing difference
- because of which I had to generate separate testing configurations. I also needed to use
slightly different testing methodology. Instead of representing the datastore by all requests
from appropriate data set, I divided my data sets into two parts each in ration 4:1. Then I
used the larger part to represent current state of the datastore and the rest as test set from
which all requests were taken one by one and fed into the algorithm which either returned a
ride or not.

All metrics measured on this algorithm are the same as those specified in preceding
section. Unlike clustering methods this one is deterministic, therefore there was no need to
run each configuration multiple times and take the result in average.

7.5.1 [Online algorithm] Relations between input parameters and number
of created rides

Once again there is a need for knowing how input parameters influence number of created
rides. Unlike clustering algorithms tested earlier, this one doesn’t work with complete set
of requests currently located in the datastore, but it selects only small subset of them on
which operations are performed. Size of that subset is directly affected by values of those
parameters making it very important to set them correctly.

Result was obtained for following configuration:

’ Parameters H Values
Scenario average
Density 600
Maximum of passengers per ride 3
Maximal time difference variable
Maximal cross-bearing difference || variable
Maximal bearing difference variable

Table 7.8: Configuration for Directional online test 1

CHAPTER 7. EVALUATION o4

M e 8 e

Mo. of created rides [-]
Mo. of created rides [-]

40 40

50 50

20

Max. time difference [min] o Max. time difference [min] o

Max. bearing difference [°] Max. cross-bearing difference [%]

(a) Maximal time difference, maximal bearing dif- (b) Maximal time difference, maximal cross-bearing
ference and number of created rides difference and number of created rides

Figure 7.9: Relations between maximal time difference, maximal bearing difference and
number of created rides

Figure 7.9(a) shows that number of created rides grows with both maximal time difference
or maximal bearing difference going up. This is an expected result, because both parameters
directly influence the number of requests being withdrawn from the datastore and the more
requests there are for processing, the more rides are created. Effect of increasing maximal
cross-bearing difference on number of created rides is exactly the same as for clustering
algorithms.

7.5.2 [Online algorithm]| Relations between input parameters and effi-
ciency of a ride

Once again it’s time to evaluate effectiveness of created rides according to values of algo-
rithms parameters. Expected result is the usual one: increasing max-cross-bearing difference
should lead to decrease in average savings and increase in average detour. Also too great
value of maximal time difference should mean worse efficiency of the ride.

Result was obtained for following configuration:

‘ Parameters H Values ‘
Scenario average
Density 1200
Maximum of passengers per ride 3
Maximal time difference variable
Maximal cross-bearing difference || variable
Maximal bearing difference variable

Table 7.9: Configuration for Directional online test 2

CHAPTER 7. EVALUATION

09

08

0.7

0.6

05

0.4

Average detour [kim]

0.3

0.2

0.1

@

10

. . .
15 20 .] 30
Max. cross-bearing difference [*]

95

0.45

0.4

035

03

Average saving [-]

0z

0z L L L L L L L L '
o L3 10 15 20] 30 £ 40 15

Max. cross-bearing difference [*]

(a) Dependency of average detour on maximal (b) Dependency of average saving on maximal cross-
cross-bearing difference

bearing difference

Figure 7.10: Relations between maximal cross-bearing difference and efficiency of a ride

09

08

0.7

0.6

05

0.4

Average detour [kim]

0.3

0.2

0.1

20

. . .
30 40 &0 B0 70
Max. time difference [min]

80

=]

05

045

0.4

035

Average saving [-]

0.3

025 L L L L L L L L L
o 10 20 30 40 50 B0 70 80 =]

Max. time difference [min]

(a) Dependency of average detour on maximal time (b) Dependency of average saving on maximal time

difference

25

NN R
B W e

i

]

=]

Awerage no, of passengers per nde [-]
¥

o

()

20

. . .
30 40 &0 B0 70
Max. tirne difference [rmin]

on maximal time difference

a0

a0

difference

30

25

20

Average time deviation [min]

o L L L L L L I L L
i} 10 20 30 40 50 B0 70 a0 a0

Max. tirne difference [rmin]

Dependency of average number of users per ride (d) Dependency of average time deviation on max-

imal time difference

Figure 7.11: Relations between maximal time difference and efficiency of a ride

CHAPTER 7. EVALUATION o6

Result represented by figure 7.10 are almost self-explanatory. As usually, increasing
maximal cross-bearing difference results in less efficient ride meaning longer detours and less
savings.

The other four figures are more interesting, since they depict something new: figures
7.11(b) and 7.11(c) show that both average detour and average saving increase with value
of maximal time difference going up. That is unprecedented observation which may look
strange or even wrong, but I believe it is correct.

An explanation is shown in figure 7.11(c) depicting dependency of average number of
passengers per ride on maximal time difference. Note that with increasing maximal allowed
time difference the average number of passengers per ride also increases. This is something
that never happened for clustering algorithms which produce almost exclusively rides con-
sisting of two passengers only. On the other hand, online version of the directional algorithm
produces rides of three users often enough to influence resulting savings and detours. In-
creasing number of passengers per ride then explains both increase in average detour (there
are more passengers to pickup along the way increasing total length of the ride) and increase
in average savings (detours caused by picking up third person are compensated by third user
joining the ride which results in splitting the fare amongst three people instead of two).

Even though it may look so, setting maximal time difference too high is not optimal. .. as
usually. This time it causes average time difference to grow (fig. 7.11(d)) to potentially
unacceptable values.

7.6 Test results summary

I performed test on all types of algorithms implemented in the system. The most impor-
tant notices were discussed on previous pages. Beside these I made some other interesting
observations: clustering algorithms produce almost exclusively rides consisting of two users
only while online method returns rides of three passengers on regular basis. Clustering al-
gorithms are also slow. Despite the fact that underlying clustering methods (k-means and
k-medians) both have polynomial complexity, time of computation grows significantly with
number of requests (for 1200 requests it took about 90 seconds to complete computation).
Online method is much faster though. It takes just few seconds to perform the calculation.

In conclusion, all algorithms works as expected producing reasonably good results. How-
ever, clustering methods seems to be too slow for larger amount of data. The online version
of Directional algorithms is much more suitable for this kind of problem where response time
matters.

The purpose of these test was not only to see how algorithms work, but also to find out
what is the best configuration of parameters. By further analyzing collected data I concluded
following values being optimal:

CHAPTER 7. EVALUATION

’ Parameter ‘ Optimal value Unit
Maximal time difference 22 minutes
Maximal spatial distance 1.5 kilometers

Maximal cross-bearing difference 12 degrees
Maximal bearing difference 15 degrees

Table 7.10: Optimal values of parameters

o7

I also compared individual algorithms on both their efficiency represented simply as
average percent saving over all configurations and their speed which I measured along with

other metrics.

Algorithm Average saving

K-Means 0.33
Directional offline 0.37
Directional online 0.41

Table 7.11: Comparison of average saving for individual algorithms

=)
=1

K-Means
r| — = — Directional offline
—— - Directional online

@
a8

Ayerage time of computation [s]
S S I e |
B E B & & 8

=

T |
"

il L
300 400 500 GO0 700 8OO 900 10000 1100 1200

Mumber of raguests in datastors [-]

Figure 7.12: Comparison of speed of individual algorithms

By looking at table 7.10 and figure 7.12 one can see that the verdict is clear: online version
of the Directional algorithm seems to be the best choice. Not only that its average saving
over all configurations is highest amongst all implemented methods, but it also works with
constant speed which is huge advantage over other two methods which wouldn’t probably
be able to handle very large data sets in reasonable amount of time.

Chapter 8

Conclusion

8.1 Recapitulation

The goal of this work was to develop a smartphone-based system capable of matching
individual requests for taxi rides into one shared ride. The system was supposed to be
build for Android OS using Google App Engine as server backend. Tests should have been
performed to evaluate the system and to find out its optimal configuration. Expected benefits
of this system were mainly monetary saving of its users and increased efficiency of taxis used.

8.2 Work summary

I have surveyed already existing solutions for shared taxi rides and concluded, that there
definitely is a space for new system of such a kind. Then I familiarized myself with Android
OS and Google App Engine development. I have also searched for algorithms suitable for
spatio-temporal clustering and eventually came up with my own one. I have implemented
both client-side and server-side parts of the system using multiple different implementations
of ride matching algorithm. Then I have conducted a series of experiments with different
test scenarios on the server-side part of the system to both evaluate its work and to find
optimal settings for its input parameters.

All of the above was done for one purpose only: to create a system which could help people
to use taxis more effectively. Evaluation of the whole system gave me quite a satisfactory
result: the system is capable of creating shared rides. Two or three people are usually
involved in one shared ride while every one of them pays about 40% less compared to price
while going separately.

Another advantage of this system is that unlike some of already existing ones, it’s not
location dependent and as such, it should work virtually anywhere. That, together with
making use of capabilities of today’s smartphones, makes it very flexible, all the more so
while running on cloud-based App Engine which provides highly scalable backend solution.
And there is another difference between this application and most of already existing ones:
my system fully supports shared rides with multiple starting points and multiple endpoints
by which it almost completely eliminates a need for the passengers to gather somewhere
before the ride begins.

o8

CHAPTER 8. CONCLUSION 29

In conclusion, the system seems to fulfil it’s assignment by working as expected and pro-
ducing shared rides based on individual requests. These rides are then cheaper for passengers
and more economical than individual ones. This is especially important these days when
prices of fuel are constantly rising and efficiency of each ride is more and more relevant. One
day, possibly, people will use system like this (preferably this specific one) regularly to plan
shared rides, thus saving their money and being more friendly to an environment.

Bibliography

1]

2]

13]

4]

5]

[6]

7]
18]

M. Charikar and B. Raghavachari. The finite capacity dial-a-ride problem. In Foundations
of Computer Science, 1998. Proceedings.39th Annual Symposium on, pages 458 467, nov
1998.

Jean-Francois Cordeau and Gilbert Laporte. The dial-a-ride problem: models and algo-
rithms. Annals of Operations Research, 153:29-46, 2007. 10.1007/s10479-007-0170-8.

Roberto Cordone and Roberto Wolfler Calvo. A heuristic for the vehicle routing problem
with time windows. Journal of Heuristics, 7:107-129, 2001. 10.1023/A:1011301019184.

Tony Grubesic and Elizabeth Mack. Spatio-temporal interaction of urban crime. Journal
of Quantitative Criminology, 24:285 306, 2008. 10.1007/s10940-008-9047-5.

Slava Kisilevich, Florian Mansmann, Mirco Nanni, and Salvatore Rinzivillo. Spatio-
temporal clustering. In Oded Maimon and Lior Rokach, editors, Data Mining and
Knowledge Discovery Handbook, pages 855-874. Springer US, 2010. 10.1007/978-0-387-
09823-444.

Quan Lu and Maged Dessouky. An exact algorithm for the multiple vehicle pickup and
delivery problem. Transportation Science, 38(4):503-514, November 2004.

Petr Mezek. Agentni simulace taxi spolujizdy. 2012.

JL Santos, E Carrasco, AL Moore, F PA-Bravo, and C Albala. Incidence rate and spatio-
temporal clustering of type 1 diabetes in Santiago, Chile, from 1997 to 1998. Rewvista de
SaAPA, 35:96 — 100, 02 2001.

60

