

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

Bachelor’s Thesis

Usability of General Game Players as AI libraries in practical
applications

Ondřej Musil

Supervisor: Mgr. Viliam Lisý, MSc.

Study Programme: Open informatics

Field of Study: Computer and Information Science

May 25, 2012

iv

Aknowledgements
I would like to thank my supervisor, Mgr. Viliam Lisý, Msc., for the patient assistance

and guidance during the entire time, my family, friends and all the people that supported
me, while I was writing this thesis. Without you, most of this would never be possible.

v

Abstract

The goal of General Game Playing (GGP) is to create intelligent agents that are able to learn
and solve different problems at an expert level without any human intervention. In this thesis,
I will discuss the basis for the use of such agents, and knowledge required for writing problems
in description language (GDL). I will show short examples of games in GDL and GDL-II.
I will also summarize result of competition organized under AAAI’s summer conference
and introduce some existing players. We will try how general player handles a practical
problem and how it stand up against domain specific player, that can be implemented in the
time comparable to the time needed for integration of the general player. We will discuss
advantages and disadvantages of application of these agents in practical application such at
Pursuit-evasion game.

Abstrakt

Cílem hraní obecných her je vytvořit inteligentní agenty, kteří budou schopni se naučit a
řešit různé problémy na úrovni expertů, bez zásahu člověka. V této práci rozeberu základy
pro použití takových agentů a pořebné znalosti pro popis problémů v popisném jazyku her
(GDL). Ukáži krátké ukázky her v jazyce GDL a GDL-II. Také shrnu výsledky soutěže
pořádané během letní konference AAAI a uvedu některé z existujících hráčů. Vyzkouším jak
si obecný hráč poradí s konkrétním problémem a jak obstojí proti doménově specifickému
agentovi, který je naimplementován za dobu srovnatelnou s dobou potřebnou pro integraci
obecného hráče. Také prodiskutujeme výhody a nevýhody použití těchto hráčů v praktickém
použití, například u Pursuit-evasion her.

vi

Contents

1 Introduction 1
1.1 Thesis outline . 2

2 General Game Playing 3
2.1 GGP Competitions and results . 3
2.2 Game Manager . 4

2.2.1 Handling illegal moves and timeouts 6

3 Game Description Language 7
3.1 GDL . 8

3.1.1 Restrictions . 8
3.1.2 Sample implementation . 9

3.2 GDL-II . 11
3.2.1 Sample implementation . 12
3.2.2 Game Checker . 13

4 Algorithms 14
4.1 A* and IDA* . 14
4.2 Depth-first search . 14
4.3 MiniMax . 14
4.4 Monte Carlo method . 15
4.5 Upper Confidence Bounds applied to Trees . 16

5 Successful players 18
5.1 Fluxplayer . 18
5.2 CADIAplayer . 19
5.3 Ary . 19

6 Problem solving 20
6.1 Game descriptions . 21
6.2 Domain player implementation . 27

6.2.1 Domain players . 27
6.3 Experiments . 28
6.4 Results . 32
6.5 Summary . 34

vii

CONTENTS viii

7 Discussion 35

8 Conclusions 38
8.1 Future work . 39

A List of used acronyms 42

B GDL descriptions 43
B.0.1 Attacker and guard (GDL) . 43
B.0.2 Attacker and guard (GDL-II) . 47
B.0.3 Basic PE game . 51

C Installation and user guide 54
C.1 Installation . 54
C.2 Usage . 54

D Content of included CD 56

List of Figures

2.1 (Genesereth2005): Communication diagram 4

4.1 Minimax Game tree . 16
4.2 (Chaslot, Bakkes, Szita & Spronck, 2008): Monte Carlo Tree search control

loop . 17

6.1 World discretization using graph representation. 21
6.2 Grid (11x11) representation with shortest path to escape point highlighted.

(E - evader, P - pursuer, X - escape point) . 29
6.3 Rubber and police, town representation . 31

C.1 Game Controller’s window . 55

ix

List of Tables

2.1 Annual results of the GGP competitions . 3

3.1 (Thielscher, 2010): Main GDL keywords and their functionality. 8
3.2 GDL-II extension . 12

6.1 Domain player classes . 27
6.2 The experiments overview . 28
6.3 Grid 11x11, Game Checker evaluation (rewards are listed in order: evader1,

pursuer1, pursuer2) . 29
6.4 Grid 31x31, Game Checker evaluation . 30
6.5 Rigged map, Game Checker evaluation (rewards are listed in order: evader1,

pursuer1, pursuer2) . 31
6.6 Experiments results, containing average steps, steps standard deviation (in

brackets) and average goal rewards. Roles ids described in Table 6.7. 32
6.7 Player’s identifiers description . 32

7.1 Summary of advantages and disadvantages of the general players 35

C.1 Player’s main classes . 54

x

Chapter 1

Introduction

The goal of General Game Playing is to create intelligent systems that can automatically
learn how to play a wide variety of games and problems, given only the description of
the game rules. Such system requires a form of general intelligence that enables it to au-
tonomously adapt to new and possibly radically different environments. General game-
playing systems are a quintessential example of a new generation of software that end users
can customize for their own specific tasks.

In order to perform well, general game players must incorporate various Artificial In-
telligence technologies, such as knowledge representation, reasoning, learning, and rational
decision making; and these capabilities have to work together in integrated manner.

At first the games with perfect information were studied. And the players in this area
were quite successful. Two years ago in 2010 Michael Thielscher introduced an extension of
standard Game Description Language (GDL) called Game Description Language for Incom-
plete Information Games. Which opens new possibilities for solving problems and future
improvements of player.

General game playing is a topic with an inherent interests and work in this area has also
practical value. The underlying technology can be used in a variety of other application areas,
such as business process management, electronic commerce, and military operations. The
usage of such players can be very effective for us. When solving some problems, we usually
use algorithms designed for those problems, or we have to develop our own heuristics. When
the rules are changed the new heuristic needs to be developed. But when the general player
is used, the only thing needed is to modify game description and player will adapt to changes
alone.

During 7 years since the introduction of General Game playing a number of research
groups have been established world-wide, especially the German universities in Berlin, Bre-
men and Potsdam. Most of these groups developed their own players, but also there is an
increasing number of researchers who are interested in specific aspects of general game play-
ing, which does not require them to build a full-fledged, competitive game-playing system.

1

CHAPTER 1. INTRODUCTION 2

1.1 Thesis outline

In this section I present the outline of my thesis which should present the basic idea what
to expect from this thesis.

In Chapter 2 I will introduce General Game Playing competition and its results and
Game communication protocol and Game manager, which controls the matches.

In the following Chapter 3 I will introduce syntax and some restrictions for Game De-
scription Language. Then I will show how can be games and problems written in Game
Description Language and its extension Game Description Languages for Imperfect Infor-
mation.

In Chapter 4 I will summarize algorithms that are commonly used in general playing.
Such as Monte Carlo methods and Minimax.

In the following Chapter 5 I will introduce some players and summarize information
about them.

A Chapter 6 will be devoted to a specific problem, namely Pursuit-Evasion game, I also
present results of particular scenarios and we will discuss them.

In Chapter 7 I will discuss advantages and disadvantages of general player. And we will
discuss other suitable problems.

In Chapter 8 I will evaluate this work, revisit goals and also I will discuss future work
on this subject.

Chapter 2

General Game Playing

The idea itself, that is to build a system that can learn to play plenty of games, has been
around for over 40 years. The French AI pioneer Jacques Pitrat wrote the first ever pro-
gram that, in principle, could learn to play arbitrary chess-like board games by being given
their rules [11]. Later general game-playing programs include [10], but it required AAAI
competition to spark broad interest in this problem as an AI Grand Challenge.

2.1 GGP Competitions and results

Main competition in General Game Playing is held under AAAI summer conference. This
competition has been organized annually since 2005 by Stanford people. This competition
was primarily established to promote work in this research area. The team (or the individual)
developer of the winning player obtain financial prize worth of $10000.

In Table 2.1 we can find annual results of AAAI competition. As we can see from the table
the names of players are often repeating. Thirteen players was registered to the competition
in 2011. And only one new player got to top four. We can see that the most successful player
is Cadia with two wins,two second places and one third. Cadia is prosecuted by Ary, which

2005 2006 2007
1. Cluneplayer Fluxplayer 5.1 CADIAplayer 5.2
2. Goblin Cluneplayer Fluxplayer 5.1
3. UT-AUSTIN-LARG Ary 5.3
4. Ogre ClunePlayer
2008 2009 2010 2011

1. CADIAplayer 5.2 Ary 5.3 Ary 5.3 Turboturtle
2. ClunePlayer CADIAplayer 5.2 Maligne CADIAplayer 5.2
3. Ary 5.3 TurboTurtle CADIAplayer 5.2 Ary 5.3
4. Fluxplayer 5.1 Fluxplayer 5.1 Fluxplayer 5.1 Nexplayer

Table 2.1: Annual results of the GGP competitions

3

CHAPTER 2. GENERAL GAME PLAYING 4

also won twice and three times Ary finished third. In Successful players I will introduce more
details of three most successful players.

2.2 Game Manager

A mediator is necessary for playing general games, it distributes game descriptions to players,
receives and validates theirs moves and distributes moves to all players, so they can evaluate
changes in the game states. Also the mediator recognizes the end of the game and its winner.
In GGP this mediator is called Game Manager (GM). For communication between players
and GM basic HTTP protocol is used. The communication diagram is shown in Figure 2.1
This ensures the developers choice of language and how they will implement their player.
The entire course of the match is controlled by three commands: start, play and stop. In
following sections I will introduce each of these actions and response to them.

Figure 2.1: (Genesereth2005): Communication diagram

START Command

The Start command is used to initialize new match. The command has five parameters.

(START <match_id> <player_role> <game_description> <start_clock> <play_clock>)

• match_id is the unique identifier of the match. This enables the players to play more
than one match at a time. Every subsequent command associated with the match will
contain this id.

• layer_role is a role name associated to player to which the command is sent.

CHAPTER 2. GENERAL GAME PLAYING 5

• game_description is a set of Kif sentences, enclosed by an outer set of parentheses.

• game_clock is an integer number representing time in seconds before the match
begins.

• play_clock is an integer number representing time in seconds for every turn.

Reply

Player should reply with READY before the startclock elapses. However, Game master
sends Play message to all players when startclock expires, regardless of whether they replied.
If all players replied with READY before startclock expires, the match starts immediately.

PLAY Command

The Play command is sent every time when the next move is requested from the player. The
Play command has 2 parameters.

(PLAY <match_id> (<A1> <A2> <A3> ...))

• match_id tells for what match this command is intended.

• A1 A2 A3 is a sequence of actions made since the last Play command call by each
player. The order of <A?> is identical with the order in which the roles are defined.

For example when we have the roles defined as following:

(role player1)
(role player2)
...

And the player receives the following play message from the GM:

(PLAY match_test ((MOVE UP) (MOVE DOWN)))

Than player1 moves up and player2 moves down.

Reply

The Play command expects a reply containing player’s move. For example, if player wants
to move upwards, then he sends a reply:

(MOVE UP)

CHAPTER 2. GENERAL GAME PLAYING 6

STOP Command

The Stop command is used to notify player about end of the match. The Stop command is
similar to the Play command. The command also sends match_id and player’s moves.

(STOP <match_id> (<A1> <A2> <A3> ...))

The meaning of the variables is the same as in the Start command.

Reply

Players reply for STOP command should be DONE.

2.2.1 Handling illegal moves and timeouts

If the player submits an illegal move (or fails his sending at all) the GM will choose a random
legal move for that player. Further play command is send as usual, so the player has chance
to submit his own legal move. There is no penalty for submitting illegal moves. One similar
situation might occur. When playclock is expired and the GM did not receive answer from
the player a random move is also made by the GM for that player.

Chapter 3

Game Description Language

The most accepted language for describing games was developed by Michael Genesereth and
team around [3] in 2005 and is called Game Description Language (GDL) [8]. GDL is a
specification of Knowledge Interchange Format (KIF) [2], a first-order logic based language
for describing and communication knowledge. It is a variant of Datalog that allows constants,
negations and recursion. A GDL game description uses terms, relations and implications.
GDL as well as KIF is usually given in prefix notation.

A term is either a variable or an atom, which is a constant. Variables in GDL start with
question mark ?, followed by string. The atoms are simply strings.

atom
?variable

The relations specify initial state, as well as every other state. A relation consist of a relation
name and n parameters following the name.

(relation_name p1 p2 p3 ...)

Each parameter can be a term or other relation. If it is relation, than it must be closed in
brackets.

(relation_name p1 (relation_name2 p2a p2b) p3)

The implications define rules for recognizing and evaluating terminal states, generating and
playing legal moves. Implication have a head, which is a conclusion of it, and a body
containing the conditions. If all conditions are true, than a conclusion becomes true as well.
Also the implication symbol ⇐ is written in prefix notation.

(<= (head p1 p2 ...)
(body1 p1 p2 ...)
(body2 p1 p2 ...)
...
(bodyn p1 p2))

In GDL is difference between facts which are known globally and facts that are true in
current state. The globally known fact can’t be changed during game, so global fact should
be used only for static elements of game. Everything what is changed during game, such as
players position or grasp supplies.

7

CHAPTER 3. GAME DESCRIPTION LANGUAGE 8

Keyword Function
role(R) R is a player
init(F) F holds in initial state
true(F) F holds in current state

legal(R, M) player R can do move M in current position
does(R, M) player R does move M
next(F) F holds in next state
terminal current state is terminals
goal(R, N) player R gets N points in current position

distinct(P1, P2) requires that predicate P1 and P2 are syntactically different.

Table 3.1: (Thielscher, 2010): Main GDL keywords and their functionality.

3.1 GDL

Game Description Language is a language used to describe discrete games with perfect
information. The GDL distinguishes this relations: role, init, true, does, next, legal, goal,
terminal and distinct significance of these relations can be found in table 3.1.

3.1.1 Restrictions

The games described by GDL can’t be infinite. We can evade this limitation by adding step
counter to game description.

The GDL is limited to first order logic, in the contrast to the Prolog programming
language. The variables can’t be bound to predicates, so it is impossible to define arithmetic
in GDL. So this makes it necessary to define arithmetic in the game description, when it is
needed, with an explicit enumeration of the possible values.

Every game described by GDL should met several restrictions [8]:

Definition 1 (Termination): A game described by GDL terminates if all infinite sequences
of legal moves from the initial state of the game reach a terminal state after a finite number
of steps.

Definition 2 (Playability): A game description in GDL is playable if and only if every role
has at least one legal move in every non-terminal state reachable from the initial state.

Definition 3 (Monotonicity): A game description in GDL is monotonic if and only if every
role has exactly one goal value in every state reachable from the initial state, and goal values
never decrease.

Definition 4 (Winnability): A game description in GDL is strongly winnable if and only
if, for some role, there is a sequence of individual moves of that role that leads to a terminal
state of the game where that role’s goal value is maximal. A game description in GDL is
weakly winnable if and only if, for every role, there is a sequence of joint moves of all roles
that leads to a terminal state where that role’s goal value is maximal.

CHAPTER 3. GAME DESCRIPTION LANGUAGE 9

Definition 5 (Well-formed Games): A game description in GDL is well-formed if it termi-
nates, is monotonic, and is both playable and weakly winnable.

In addition to these rules, there are also restrictions to the use of keywords:

• role: appears only in head of facts.

• init: appears only in head of clauses and does not depend on: true, legal, does, next,
terminal, goal.

• true: only appears in body of clauses.

• does: appears only in body of clauses, does not deppend on: legal, term, goal.

• next: appears only in head of clauses.

3.1.2 Sample implementation

In this section I will show how to write the world representation. A typical example is the
game Tic-tac-toe, but I will explain how to implement a different turn based two-player
game. The game has two types of players: an attacker and a guard. As a world we can
imagine matrix:

c c c c c g
c c c c c g
c c c c c g
c c c c c g
c c c c c g

The purpose of the attacker is to reach the rightmost column (in the matrix represented by
g). And purpose of the guard is to protect the board line. The game is ended when the
attacker is captured, the attacker enters the line or the time is up (a specified number of the
steps were executed).

Roles

Players are defined through the role relation. For our game the roles are:
1 (r o l e a t ta cke r)
2 (r o l e guard)

This tells us that the game has two players and they will act as the attacker and the guard.

CHAPTER 3. GAME DESCRIPTION LANGUAGE 10

Init state

Init keyword is used to define starting point of the game. In the initial state of our game,
we need to define four initial facts.

1 (i n i t (p o s i t i o n a t ta cke r 3 1))
2 (i n i t (p o s i t i o n guard 3 6))
3 (i n i t (c on t r o l a t t a cke r))
4 (i n i t (s tep 1))

The first and the second line tells us what the initial position of the attacker and the guard
is. The third line tells that in the begin the attacker has control, so he moves first. And the
last line initializes the step counter.

Next state

The next keyword is used to define the facts, which will be true in the next state. For
example the change of controls can be done like:

1 (<= (next (c on t r o l a t ta cke r))
2 (t rue (c on t r o l guard)))
3
4 (<= (next (c on t r o l guard))
5 (t rue (c on t r o l a t t a cke r)))

Legal actions

The rules of the game restricts the actions played in a certain state. By using legal keyword,
we can define who and when is able to make a certain action. The attacker can do these
actions:

1 (<= (l e g a l a t ta cke r (move ? d i r))
2 (t rue (c on t r o l a t t a cke r))
3 (t rue (p o s i t i o n a t tacke r ?x ?y))
4 (legalMove ? d i r ?x ?y)
5 (d i s t i n c t ? d i r nowhere))
6
7 (<= (l e g a l a t ta cke r (move nowhere))
8 (not (t rue (c on t r o l a t t a cke r))))

The first rule enables the attacker to move in the direction ?dir, if the attacker has control,
he is on position ?x, ?y, the move is legal (player with this move doesn’t leave the playing
area) and the direction must be different from nowhere (player stays on the same position).
The second rule tells us, that the player must stay on the same position, if he doesn’t have
control.

Moves and does

The does indicates the moves actually done by the player in a particular step of the game.
The does relation in rules governs to state update. For example in our case:

CHAPTER 3. GAME DESCRIPTION LANGUAGE 11

1 (<= (next (p o s i t i o n ? char ?nx ?ny))
2 (does ? char (move ? d i r))
3 (t rue (p o s i t i o n ? char ?x ?y))
4 (nextPos i t i on ? d i r ?x ?y ?nx ?ny))

The second line tells us that the player with the role ?char did move in the direction ?dir.
So we take his ?x, ?y coordinates and update his position to the new one.

Terminal states

The game description contains a set of rules defining terminal states. This indicates, if our
game reached terminal state.

1 (<= termina l
2 passed)
3
4 (<= termina l
5 timeout)
6
7 (<= termina l
8 captured)

Goal

Using the goal keyword we define the reward for the player in final states. The rewards for two
players can be inverse (as in zero-sum games), asymmetric or complementary (cooperative
games). We define these goals:

1 (<= (goa l a t ta cke r 100)
2 passed)
3 (<= (goa l a t ta cke r 0)
4 timeout)
5 (<= (goa l a t ta cke r 0)
6 (captured))
7 (<= (goa l guard 0)
8 passed)
9 (<= (goa l guard 100)

10 captured)
11 (<= (goa l guard 100)
12 timeout)

3.2 GDL-II

With GDL one we can describe only finite games with an arbitrary number of players. How-
ever GDL can’t describe games containing some chance element or games where players have
only partial knowledge about the current state of the game. GDL-II, The Game Description
Language for incomplete information games [13] is a simple extension of basic GDL. GDL-II
has two new keywords. The first is random and is introduced as special role, which always
chooses random legal move. With this role we can model a chance, such as dice roll or taking
a card from the deck. Or for example randomly choose if a road from player’s position to
shelter is open. The second keyword is sees. This relation is specifies when a given player

CHAPTER 3. GAME DESCRIPTION LANGUAGE 12

Keyword Function
sees(R, P) defines that player R receives P in next state
random defines a special player making random moves

Table 3.2: GDL-II extension

sees or percepts any information. For example, the pursuer can see the evader only in the
moment when the evader is out from the hiding, or is close enough to the pursuer. The
overview of the new keywords is in the table 3.2.

3.2.1 Sample implementation

As an example of game with imperfect information, I will modify game from an example
game of GDL 3.1.2. Two small modifications make game much more complex. The first one
is that we have marauder that randomly chooses a field and makes it unreachable (this field
is blocked). Nothing happens, if that field is already taken by any other player. The player
staying on the blocked field must leave it and no other player can access it. The second
modification is that players can see each other only if they are in the same row or column
(which is not very realistic, but it’s sufficient as an example).

Role

Because we have some random behavior in our game, we need to define new role compared
to previous example. So now we have 3 roles:

1 (r o l e a t ta cke r)
2 (r o l e guard)
3 (r o l e random)

Next state

In the next state, we have to reflect that our random player have chosen any cell to block.
1 (<= (next (blocked ?x ?y))
2 (does random (chooseBlocked ?x ?y)))

The second line tells us that a random player has chosen a cell ?x, ?y and we have marked
this cell as blocked.

Legal

Also we should provide rules how a random player can choose blocked field:
1 (<= (l e g a l random (chooseBlocked ?x ?y))
2 (indexM ?x)
3 (indexN ?y))

Any cell can be chosen. The second and the third line tell us, that the cell must be in defined
ranges.

CHAPTER 3. GAME DESCRIPTION LANGUAGE 13

Goal

Here, only one modification is made and that is definition of the goal value for random player.
1 (goa l random 100)

Sees

Now we define when the player see each other.
1 (<= (s e e s guard (a t t a ck e rPo s i t i on ?x1 ?y1))
2 (t rue (p o s i t i o n a t tacke r ?x1 ?x1))
3 (t rue (p o s i t i o n guard ?x2 ?y2))
4 (or (inRow ?x1 ?y1 ?x2 ?y2)
5 (inCol ?x1 ?y1 ?x2 ?y2)))

For guard we define sees relation analogously.

3.2.2 Game Checker

Game Checker is a program for checking game descriptions (GDL 3.1 and GDL-II 3.2) for
syntax validity (safety, stratification, etc.) and well-formedness (playability, winnability, etc.
3.1.1). The useful functionality of the Game Checker is possibility to traverse the game tree.
Two methods are available. The first is simple depth-first search described in Section 4.2
and the Monte Carlo method described in Section 4.4. If the game tree is small, we can run
DFS on that game. The Game Checker will calculate calculate average goal rewards and the
Game checker also displays minimal and maximal goal values for all roles. This can be very
helpful to determine if the game was implemented correctly and how the author thought. If
the domain is too big to be explored exhaustively, we can use Monte Carlo method to get at
leas particular information about game and its results.

The author of the Game Checker is Stephan Schiffel. The program is available for
download at http://www.general-game-playing.de/downloads.html.

http://www.general-game-playing.de/downloads.html

Chapter 4

Algorithms

General game players must be able to play every game that can be expressed by GDL. In
this chapter I will describe algorithms used in GGP by existing players. At each algorithm
I will make brief stop to explain basics of that algorithm.

4.1 A* and IDA*

A* is a widely used algorithm in pathfinding and graph traversal. A* uses a best-first search
and finds a least-cost path from initial node to goal node. A* achieves a better performance
(according to time) by using heuristics. It uses distance-plus-cost heuristic function f(x) to
determine the order in which the search visits nodes in the tree. Distance-plus-cost function
is sum of two functions. The path cost denoted as g(x) and an admissible heuristic estimate
of the distance to the goal denoted as h(x).

Iterative deepening A* (IDA*) is a variant of the A* search algorithm, which uses iterative
deepening to keep the memory usage lower than in A*. It is an informed search based on
the idea of the uninformed iterative deepening depth-first search. The iteration depth limit
is controlled by a cost function. The cost function is evaluated at each node as the sum of
actual cost traversed f and heuristic value of reaching a goal h.

4.2 Depth-first search

Depth-first search (DFS) is an uninformed algorithm for traversing or searching a tree or a
graph. DFS starts at a given root node and explores as far as possible (reaching goal node,
or node without a child). If the goal is not found, the search backtracks, returning to the
most recent vertex whose exploration hasn’t been entirely completed.

4.3 MiniMax

MiniMax algorithm is widely used in decision making systems. The algorithm is based on
assumption that opponent is going to minimize your gain as much as possible. And you
are trying to maximize your gain as much as possible. The algorithm is maximizing the

14

CHAPTER 4. ALGORITHMS 15

minimal possible gain and it evaluates all states in the game tree and these values are called
Minimax values. These values are defined as (Russel & Norvig, 2003):

Minimax− value(vertex) =
utility(vertex) if n is terminate state
maxs∈Successors(vertex)Minimax− value(s) if n is max vertex
mins∈Successors(vertex)Minimax− value(s) if n is min vertex

Minimax traverses game tree depth-first 4.2 and search for leaves vertices. From the
leaves we obtain utility function for all players (in this case they are equal to Minimax
value) and we calculate Minimax values of their parent vertices. Minimax as described
here can be used to 2-player, zero-sum games. We can imagine that Max player is trying
to maximize utility and Min player is trying to minimize Max’s utility. Minimax can by
applied also on n-player games. In its paranoid version all players try to minimize Max’s
utility. On Figure 4.1 is displayed game tree with evaluated vertices. This game tree is
represents 2-player game and its three moves. Max vertices are gray and min vertices are
black (filled). All vertices are evaluated according to Minimax definition above. From the
example it should be straightforward to see how the MiniMax algorithm works. Minimax
algorithm explanation can be found in (Russell & Norvig, 2003) or a more formal description
in (Shoham & Leyton-Brown, 2010).

MiniMax is often used in GGP system because it is simple to implement and can be
applied to many games. But MiniMax has also several problems for application in GGP.
MiniMax can be used only for two (or in his modification for many) players games and
zero-sum games with alternating moves. These requirements cannot be always guaranteed.

Unfortunately, its approach for the large game is not sufficient enough, because huge
amount of time is required to traverse the whole tree and to calculate the tree values. There
are several methods possible to use when reducing the game tree. One of them is to limit the
maximal search depth. In which case we obtain smaller tree that can be traversed completely.
However, the leaf vertices of this new tree might not be terminal states and thus there is no
utility function which we can use to calculate MiniMax tree values. We can deal with this
problem by using heuristic function which tells us how good or bad the states are. Another
way is to prune game tree. One of the most effective enhancements is Alpha-Beta pruning.
As the name indicates, this method prunes the game tree so we obtain smaller tree and we
can search it deeper. Alpha-Beta pruning identifies vertices that leads to sub-trees which
has no chance to change the current game tree value.

4.4 Monte Carlo method

Monte Carlo method is not a specific method, but more a technique. Monte Carlo method
relies on repeated random simulations to compute the results. The simplest strategy is to
make repeated simulations until the time is up. After that the best move is chosen. Monte
Carlo is reweighs vertices to choose better moves.

The most used implementation of Monte Carlo method is Monte Carlo Tree search
(MCTS) [4]. It is a best-first search method which uses stochastic simulations. MCTS
can be applied to any game of finite length. Its basis is simulation of games where both

CHAPTER 4. ALGORITHMS 16

Figure 4.1: Minimax Game tree

AI and its opponents make random move, or better pseudo-random moves. From single
game, where player choose their moves randomly, very little can be learnt. But from lots of
simulations good strategy can be inferred. The algorithm builds and uses game tree. The
game tree is build by repeating these steps:
selection - At the beginning we need to select vertex in simulation tree starting from the
root vertex. The selection is repeated until the leaf vertex is reached. The selection of vertex
is done according to how much we want to explore the game tree or how much we want to
exploit informations that we obtained.
expansion - In this step we expand our simulation tree by adding one or more vertices.
These vertices shouldn’t have been previously part of the simulation tree. We can add
vertices only if it passes some condition (e.g. minimal number of visits of the vertex).
simulation - In this step we simulate the rest of the game from the leaves of the simulation
tree. Vertices can be selected randomly or pseudo-randomly (for this we need domain specific
heuristic).
backpropagation - After the simulation is finished we have to propagate results back
through the simulation tree. Each vertex that was a part of the simulation and leads to
terminal state should be updated.

These steps are illustrated in Figure 4.2.

4.5 Upper Confidence Bounds applied to Trees

UCT [7] is a variant of the Upper Confidence Bounds algorithm (UCB1). Simply it is UCB
applied to trees. UCB1 is a simple but effective way to balance exploration and exploitation.
It solves exploration-exploitation tradeoff. It keeps track of the average returns of all available
actions a ∈ A at time t and samples one with the highest upper confidence bound given as:

at = vi + C

√
lnN

ni

Where vi is value of i-th vertex (usually average value of previous simulations), ni is
number of visits of vertex i, N is number of visits of parental vertex if i-th vertex and finally

CHAPTER 4. ALGORITHMS 17

Figure 4.2: (Chaslot, Bakkes, Szita & Spronck, 2008): Monte Carlo Tree search control loop

C is coefficient defining how much we prefer exploration over exploitation. If there exists
action that has never been selected, the algorithms default behavior is to prefer this action
before any previously sampled. The confidence bound can be described as average estimate
value of taking an action plus UCB bonus. The bonus is calculated with respect to vertex
visits, the actions gradually build up their bonus when they are not selected and each time
they are selected the bonus drops. When the number of visits is low, the action with best
estimate value is selected for sampling, but in time the bonus of suboptimal action ensures
that this action may be also selected. If the actions continue to look suboptimal, they need
to rebuild their bonus value to be considered again. Each time the bonus takes longer to
be rebuilt. But if actions average value rises, than they are chosen more frequently for
sampling. The selection function chooses action from confidence distribution. We exploit
the best action until the number of samples in it generate certain level of confidence in its
estimate return value. If the suboptimal action is selected, it means that the confidence of
the best action is high enough that is better to lower uncertainty of the estimate value of
the suboptimal actions. UCT algorithm is commonly used in the selection step of MCTS
algorithm.

Chapter 5

Successful players

5.1 Fluxplayer

The Fluxplayer [12] is one of first successful players. Its authors Stephan Schiffel and Michael
Thielscher won with Fluxplayer GGP Competition in 2006 and since than they stands on
top places.

The author’s focus is on techniques for constructing search heuristics by the automated
analysis of game specification. The reason is that state space in most games is too big to
be searched exhaustively, it is necessary to bound the depth of the search and to use some
heuristic evaluation function for non-terminal states. It is not possible to provide a heuristic
function that depends on features specific for the concrete game at hand. Therefore the
heuristics function has to be generated automatically at runtime by using the rules given for
the game. The main idea of Flux’s heuristic is evaluation function calculating the degree
of truth of the formulas defining the predicates goal and terminal in the state to evaluate.
The values for goal and terminal are combined in a way that terminal states are avoided
for as long as the goal is not fulfilled. The value of terminal state has a negative impact on
the evaluation of the state while goal has a low value and a positive impact. A Fuzzy-logic
is used for implementation. This is part of theory about expressing dynamical domains in
first-order logic, that is called Fluent calculus and was introduced by Michael Thielscher
(1998).

To search a game tree Flux uses non-uniform depth-first search with iterative deepening.
Depth-first search is described in previous Section 4.2. Flux also uses two enhancements,
transposition tables for caching the value of states already visited during the search and
history heuristics for reordering the moves according to the values found in lower-depth
searches. The player is chooses additional pruning technique according to game type (single-
player, multi-player, zero-sum game, non-zero-sum game). The player adjusts its game tree
according to turn-based or simultaneous moves.

You can see all result of this player in GGP competition in Table 2.1.

18

CHAPTER 5. SUCCESSFUL PLAYERS 19

5.2 CADIAplayer

CADIA [1] is one of the most successful GGP players. CADIA won competition in years
2007 and 2008. Since that CADIA stands on podium.

The game-playing engine is written in C++ and can be split up into three conceptual
layers: the Game-Agent Interface, the Game-Play Interface and the Game-Logic Interface.

The Game-Agent interface handles external communications and manages the flow of
the game. It also includes a game parser for building a compact internal representation for
referencing atoms and producing KIF strings, both needed by the Game-Play interface. The
parser also converts received moves from the GM to the internal form.

Game-Play is the main AI part of the agent responsible for its move decisions. Cadia
does not require any a priori domain knowledge nor does it use heuristic evaluation of game
positions. Instead, it relies exclusively on Monte-Carlo based simulation search for reasoning
about its actions, but guided by an effective search-control learning mechanism. It runs
memory-enhanced IDA* search algorithm 4.1 on the startclock for single-player games. First
solution with points is stored and replaced if better solution found to remember best found
solution. If during the startclock is any partial solution found CADIA keeps in using IDA*
in the playclock. If no solution is found on startclock CADIA switches to UCT search 4.5
because its Depth-first search 4.2 has chance of hitting some return that might guide the
search better.

In the Game-Logic interface the state space of the game is queried and manipulated. The
Game-Logic interface encapsulates the state space of the game, provides information about
available moves, and tells how a state changes when a move is made and whether the state
is terminal and its goal value. It is also called Game controlled. Cadia is using YAP [14]
(Yet Another Prolog) for reasoning. YAP is a high-performance Prolog compiler. YAP is
mainly used because it is free for academic use, reasonably efficient, and provides a conve-
nient interface for accessing the compiled library routines from another host programming
language.

5.3 Ary

In years 2009 and 2010 Jean Méhat and Tristan Cazenave won GGP competition with their
Ary player [5]. Jean Méhat published infrastructure of Ary player called Subplayer.

The player is using Prolog for interpreting GDL. It translates game rules from GDL into
Prolog, and transmits them to the Proglog interpreter. This interpreter is than used as
interface for obtaining: legal moves, applying moves, detecting end of game, determining the
score for each player.

In the past Ary was using simple Monte Carlo method 4.4 to explore the game tree.
The player is doing random moves until end of game is reached. In the end of thinging
time (Playclock limit), move with best mean reward is played. Since finals 2007 the player
uses MC extension called Monte Carlo Tree search 4.4. Ary uses UCT 4.5, to balance
between exploration (deepening the search in promising branches) and exploitation (scouting
underexplored subtrees).

Chapter 6

Problem solving

In this chapter I will introduce, implement and test a game called Pursuit-evasion game.
I chose this game, because it is one of the most common real life problems, which can be
solved. Part of this problem is path finding, units positioning and agents cooperation.

Pursuit-evasion (PE) game is family of the games where one group follows other group,
which attempts to avoid its capturing. PE game can by modeled geometrically or on graph.
Geometrical representation is used for continuous environments and representation on graph
for the discrete. Form of euclidian plane is typically used for continuous representation.
But for euclidian system we need to define real numbers. But real numbers are problem,
because their definition and definition of operations on real numbers in GDL is the complex
task. Other problem is efficiency of players with definition of real numbers. This is the main
reason why it is better to use representation on graph.

If we want to use the general player for playing some game, we need to define the rules and
the entire world representation for the player. Almost every problem has to be simplified, we
need to create a game model. We have to consider, which game behaviors are important for
our solution. In our case, the pursuers and the evaders weight and size is irrelevant. On other
side, in PE game the important factor is speed. The velocity can be modeled as a number
of vertices visited during one turn. Other model simplification is distance discretization. I
mentioned how velocity can be modeled, but how the vertices models distance?

We have several options how the world can be discretize. For example we can cogitate,
that every street is an edge of the graph. Its cost represents the length of the street. The
unit can move from one vertex to another, only if it has enough move points. The move
points are points, which the unit accumulates, when it waits on the same position. Such
model has some disadvantages. The first is that unit must stay on the same position and wait
until enough points is accumulated. And the second disadvantage is that the unit cannot
change its direction during its transfer from one vertex to other. There is another solution for
discretization. We can dismember the streets to some number of pieces. Each of the pieces
is represented by graph vertex and the units moves from one piece (vertex) to another, only
if these vertices are connected with an edge. An example representation is on Figure 6.1.

20

CHAPTER 6. PROBLEM SOLVING 21

Figure 6.1: World discretization using graph representation.

6.1 Game descriptions

In this section I will describe how the PE game on graph can by implemented in GDL. First
I will describe one game and later I will create modifications of this game. All modification
will be described and I will discuss why that modification is interesting.

First of all we should assemble our idea of the game model. In introduction of this
chapter, I decided I would use graph representation of the world. Next important decision
is the unit’s velocity. We will consider that all units moves with the same velocity, it means
that they can move from one vertex to adjacent one each turn. The movement of units is
simultaneous. It means that all units move in same moment. We could use turn taking
move, but simultaneous move is more resemble to real life movement. To make the game
more symmetric I created point called escape point. If the evader enters this point it escapes
from all pursuers and the evader wins the game. The last important thing is adding step
counter to ensure that the game is terminal. If several number of steps is made the game
ends (the game reached timeout) and we can say that evader was partially successful. The
evader didn’t escape, but it wasn’t caught too. This is the reason why the evader obtain
higher points when the game timeouts.

Now that we have thought through how the game model will look like, we can proceed
to implementation.

Basic game - Pursuer’s with separate goals

The environment of the game is static (no vertices are added or removed during the game)
so we can define the vertices and the edges as an atoms. The vertices are represented as:

(vertex <id>)

Where <id> is unique identifier of the vertex. The edges are represented as:

(edge <from> <to> <value>)

CHAPTER 6. PROBLEM SOLVING 22

Where <from> is represents the vertex from which the oriented edge is leading to the vertex
with id <to>. And <value> is cost of the edge. Next we need to define how player can
determine that two vertices are adjacent. Because we are defining game on undirected graph,
we can safe many lines in GDL description by defining only one direction of the edge and
detect adjacent vertices in the function. The function can look like:

1 (<= (adjacentVertex ?V1 ?V2)
2 (ver tex ?V1)
3 (ver tex ?V2)
4 (or (edge ?V1 ?V2 ?Cost1)
5 (edge ?V2 ?V1 ?Cost2)))

Where the second and the third line ensures that ?V1 and ?V2 are the existing vertices.
And the fourth and the fifth line says that edge from ?V1 to ?V2 or from ?V2 to ?V1 must
exist. The cost parameter is meaningless for now. According to this adjacency definition,
we can define only one direction between vertices, but now we must use this function for
the adjacency control. Otherwise we obtain directed graph. As we can see the definition of
graph in GDL is quite easy and straightforward. Now other aspect of the game need to be
defined, the aspects are roles, initial state, legal actions ,next relation, terminal states and
goal rewards.

The roles are changing in dependence on the game. But in this basic game I use three
roles, one evader and two pursuers, each controlled by one player. So we have:

1 (r o l e evader1)
2 (r o l e pursuer1)
3 (r o l e pursuer2)

When we have roles, than we can define what actions each role can do. We have two roles
playing as pursuer, because these roles behave the same way we can save work by defining a
relation pursuersTeam and only one implication for pursuers legal move. This can be done
this way:

1 (pursuersTeam pursuer1)
2 (pursuersTeam pursuer2)
3
4 (<= (l e g a l ? purs (move ? purs ?NewV))
5 (pursuersTeam ?purs)
6 (t rue (p o s i t i o n ? purs ?V))
7 (adjacentVertex ?V ?NewV)
8 (not (t rue (escapePoint ?NewV))))
9

10 (<= (l e g a l ? purs (move ? purs ?V))
11 (pursuersTeam ?purs)
12 (t rue (p o s i t i o n ? purs ?V))
13 (not (t rue (escapePoint ?V))))

From this definition we can see, that the pursuer can move to every adjacent vertex or stay
on the same position, only if the vertex where the pursuer wants to move is not the escape
point. The movement of the evader is similar, but without restriction for stepping onto
escape point and without control if the player is really evader.

1 (<= (l e g a l evader1 (move evader1 ?NewV))
2 (t rue (p o s i t i o n evader1 ?V))
3 (adjacentVertex ?V ?NewV))
4
5 (<= (l e g a l evader1 (move evader1 ?V))
6 (t rue (p o s i t i o n evader1 ?V)))

CHAPTER 6. PROBLEM SOLVING 23

When the actions are made, we need to define how the game state changes. This is done by
next relation. We need to bring three things to the following state: players positions, escape
point and state counter. All these three thing can be done by:

1 (<= (next (p o s i t i o n ? char ?V))
2 (does ? char (move ? char ?V)))
3
4 (<= (next (escapePoint ?V))
5 (t rue (escapePoint ?V)))
6
7 (<= (next (s t a t e ?NewN))
8 (t rue (s t a t e ?N))
9 (inc ?N ?NewN))

The first implication is updates players position. Because the names of the roles and the
names of the players identifying their position are identical, we can make position update
easily. The second implication just transfers information about escape point from the current
state to the next state. And the third implication transfers to the next state the state counter
increased by one. The inc relation must be defined, otherwise no information about state
counter is transferred to the next state. The inc relation looks like:

1 (inc 1 2)
2 (inc 2 3)
3 . . .
4 (i n t N−1 N)

Now we will define how the initial state looks and how the GM and the players can determine
that the state is terminal. First we will define the initial positions of players, where the escape
point is and we will initialize the state counter.

1 (i n i t (p o s i t i o n evader1 0))
2 (i n i t (p o s i t i o n pursuer1 10))
3 (i n i t (p o s i t i o n pursuer2 110))
4
5 (i n i t (escapePoint 60))
6
7 (i n i t (s t a t e 1))

For declaring terminal states we need to define some additional functions, such as captured,
which is true, if one or all pursuers are in same position as the evader, escaped, which is
true, if the evader escaped (the evaders position is same as position of the escape point) and
timeout, this is true, if some number of moves were made.

1 (<= (escaped)
2 (t rue (p o s i t i o n evader1 ?V))
3 (t rue (escapePoint ?V)))
4
5 (<= (captured)
6 (t rue (p o s i t i o n evader1 ?V))
7 (or (t rue (p o s i t i o n pursuer1 ?V))
8 (t rue (p o s i t i o n pursuer2 ?V))))
9

10 (<= (timeout)
11 (t rue (s t a t e 100)))

When we have these functions we can define terminal states. All three functions represent
terminal states of the game.

CHAPTER 6. PROBLEM SOLVING 24

1 (<= termina l
2 (captured))
3
4 (<= termina l
5 (timeout))
6
7 (<= termina l
8 (escaped))

If the state is terminal, the reward for the players is calculated. In this game the evader
obtains 100 points if he escapes, 50 points if 100 moves were made (timeout terminal state
reached) or 0 points if one or both pursuers caught him. Pursuers have inverse evaluation.
The pursuer which caught the evader obtain 100 points, 25 if 100 moves were made or 0 if
the evader escaped.

1 (<= (goa l evader1 100)
2 (escaped)
3 (not (timeout)))
4
5 (<= (goa l evader1 0)
6 (captured)
7 (not (timeout)))
8
9 (<= (goa l evader1 50)

10 (timeout))
11
12 (<= (goa l pursuer1 100)
13 (t rue (p o s i t i o n pursuer1 ?V))
14 (t rue (p o s i t i o n evader1 ?V))
15 (not (timeout)))
16
17 (<= (goa l pursuer1 0)
18 (t rue (p o s i t i o n pursuer1 ?V1))
19 (t rue (p o s i t i o n evader1 ?V2))
20 (d i s t i n c t ?V1 ?V2)
21 (not (timeout)))
22
23 (<= (goa l pursuer1 25)
24 (timeout))

The goal relation for the pursuer2 is identical with goal relation the pursuer1.
The complete implementation of the game is in Section B.0.3.

Mod 1 - Pursuer’s common goal

In the previous section I introduced PE game where every pursuer played for himself. An
interesting modification is to change the goal relation, so the pursuers obtain 100 points when
the evader is caught no matter who caught him. With this modification, pursuers should
cooperate or at least be more cooperative. We run this modification also for situation where
the general player plays as the evader. The reason is that Cadia player is somehow models
opponents. And I want to investigate how this modeling will change and what impact it will
have on the game. This modification is done by very simple adjustment of the goal relation.

1 (<= (goa l pursuer1 100)
2 (captured)
3 (not (timeout)))
4

CHAPTER 6. PROBLEM SOLVING 25

5 (<= (goa l pursuer1 25)
6 (timeout))
7
8 (<= (goa l pursuer1 0)
9 (not (captured))

10 (not (timeout)))

Whole modification is done by changing lines:

(true (position pursuer1 ?V))
(true (position evader1 ?V))

onto:

(captured)

and

(true (position pursuer1 ?V1))
(true (position evader1 ?V2))

onto:

(not (captured))

These modifications were made for both pursuers.

Mod 2 - Pursuers controlled by single player

Other interesting modification can be, if all pursuers are controlled by one player. We can
imagine the we have a spectator in the helicopter watching ground units and the spectator
is navigating friendly units. I will run only games where Cadia is playing for pursuers team.
The reason is that we can simulate this behavior by own heuristic.

In previous games the only action for players was move. Every player response with the
move command and the vertex where he wants to move e.g.:

(move pursuer1 11)

But if one player controls more players we need to modify the move relation. Now it will
look like:

(move pursuer1 v1 pursuer2 v2)

This moves pursuer1 to the vertex v1 and pursuer2 to the vertex v2. To obtain this move
relation we need to modify legal and next relations.

CHAPTER 6. PROBLEM SOLVING 26

1 (<= (next (p o s i t i o n evader1 ?V))
2 (does evader1 (move evader1 ?V)))
3
4 (<= (next (p o s i t i o n pursuer1 ?V1))
5 (does pursuer s (move pursuer1 ?V1 pursuer2 ?V2)))
6
7 (<= (next (p o s i t i o n pursuer2 ?V2))
8 (does pursuer s (move pursuer1 ?V1 pursuer2 ?V2)))
9

10 (<= (l e g a l evader1 (move evader1 ?NewV))
11 (t rue (p o s i t i o n evader1 ?V))
12 (or (adjacentVertex ?V ?NewV)
13 (sameVertex ?V ?NewV)))
14
15 (<= (l e g a l pursuer s (move pursuer1 ?NewV1 pursuer2 ?NewV2))
16 (t rue (p o s i t i o n pursuer1 ?V1))
17 (t rue (p o s i t i o n pursuer2 ?V2))
18 (or (adjacentVertex ?V1 ?NewV1)
19 (sameVertex ?V1 ?NewV1))
20 (or (adjacentVertex ?V2 ?NewV2)
21 (sameVertex ?V2 ?NewV2))
22 (not (t rue (escapePoint ?NewV1)))
23 (not (t rue (escapePoint ?NewV2))))
24
25 (<= (sameVertex ?V ?V)
26 (ver tex ?V))

The next relation for the evader is unchanged, but for pursuers we have to fork implication
into two new implications. From the code above should be straightforward how the position
of the pursuers is updated. The legal relation is modified for both. We are not able to define
legal move for pursuers in the same way as in previous games. It is possible for evader, but
to keep the description more consistent, we use the same rules for both. The only thing
which can be unclear is or relation, this just says that the player can move to any adjacent
vertex or stay in the same position. The last modification is about the goal rewards for the
players.

1 (<= (goa l evader1 100)
2 (escaped)
3 (not (timeout)))
4
5 (<= (goa l evader1 0)
6 (captured)
7 (not (timeout)))
8
9 (<= (goa l evader1 50)

10 (timeout))
11
12 (<= (goa l pursuer s 100)
13 (captured)
14 (not (timeout)))
15
16 (<= (goa l pursuer s 0)
17 (not (captured))
18 (not (timeout)))
19
20 (<= (goa l pursuer s 25)
21 (timeout))

CHAPTER 6. PROBLEM SOLVING 27

6.2 Domain player implementation

To be able to compare general player with domain specific player, we need to secure com-
munication between these players. The easiest way is to use already existing structure of
the general player. I decided to use BasicPlayer a part of the Palamedes IDE [6]. The main
reason is already implemented communication and move parser. I created basic environment
for playing PE game against the general players. It consists of 5 main classes: Game, PEG-
Player, PEGPlayer2, PEGStrategy and Graph. The overview and description is summarized
in the Table 6.1.

Class Description
Game This class provides all informations about game, updates its state.

PEGPlayer Player for basic and pursuers common goal games.
PEGPlayer2 Player for games where pursuers are controlled by one player.
PEGStrategy Abstract class, all strategies should inherit this class.

Graph Data structure to hold graph representation.

Table 6.1: Domain player classes

6.2.1 Domain players

It is not so much about the players, but rather about their strategies. I have created 3 simple
heuristic strategies, one for the evader and two for the pursuers. They are not intended to be
used in real application. Their purpose is to show, that working strategy can be written very
quickly and without knowledge of sophisticated algorithms. All strategies during startclock
calculate distance between all vertices. This is not the best way, but how we will see during
the experiments time needed to calculate all distances is still much shorter than time, which
Cadia player needs for enough sufficient playing. Also during the startclock the map is loaded
to the Game class and this game is associated to the player or better to the strategy.

• Evader: It’s strategy is very simple. Every time the player is requested for the next
move, it takes the position of all pursuers and it marks all vertices in distance of 2 as
dangerous. Two is chosen because evader can get close to pursuer (sneak around him
to the target, usually to the escape point), but still stay far enough. When dangerous
vertices are marked, it takes all possible and safe moves. From these moves evader
takes that one, which moves him closer to the escape point.

• Follower: This strategy follows one evader. It chooses the closest one and it keeps
following him until the end of the game. In the beginning of each move it calculates
where the evader would move. This is done by taking all possible moves of the evader
and choosing one with the smallest distance to the escape point. This point, we can call
WhereToMove. The next step is the move chosen. This is done the same way except
the target is not the escape point, but WhereToMove. As next move vertex with the
smallest distance to the vertex called WhereToMove is selected. The strategy makes
also random move. The reason for it is that the strategies are not communicating
between each other. If two players with same strategy are in the same position, they

CHAPTER 6. PROBLEM SOLVING 28

will do the same moves. In this situation we will actually loose one player. For that
reason the pursuers move randomly, if they detect that two of them are in the same
position.

• Blocker: This strategy tries to prevent the evader to escape. It takes all the adjacent
vertices from the escape point - lets call then access points. Than the distance to
the closest evader is calculated from each access point. The access point with the
smallest distance is chosen, because it is the most vulnerable. We will call this vertex
as WhereToMove. As next move is selected vertex with the smallest distance to the
vertex called WhereToMove.

6.3 Experiments

In this section I will introduce specific scenarios of PE game, I will run matches for those
scenarios with the roles occupied by different players. I will discuss each scenario and its
results.

Tested general player is Cadia 5.2 in version 2.0.1 from June 8th 2001. Cadia player is
running on i7 3.2 GHz processor. The domain players are running on i5 2.3 GHz processor
and memory limited to 512 Mb.

Each game has both clocks (startclock and playclock) set to 10 seconds. The reason why
I chose 10 seconds will be discussed in Section 6.5.

I used standalone server called GameController to run test matches. To be exact I
used gamecontroller-gui-r495.jar and gamecontroller-cli-r495.jar. Both programs can be
downloaded as jar file or source code from: http://sourceforge.net/projects/ggpserver/.

The Table 6.2 shows overview of experiments which I will run .

Environment Game type

Scenario 1 (6.3) Grid 11x11
Separate goal (6.1)
Common goal (6.1)

2-player (6.1)

Scenario 2 (6.3) Grid 31x31
Separate goal (6.1)
Common goal (6.1)

2-player (6.1)

Scenario 3 (6.3) Rugged map
Separate goal (6.1)
Common goal (6.1)

2-player (6.1)

Table 6.2: The experiments overview

Scenario 1 - Small Grid

In this scenario environment is represented as a grid. The vertices of grid are numbered from
zero to 121. The numbering begins on top left corner and continues line by line (6.2). The
evader starts at the vertex labeled with the number 0, one pursuer is at the position 10 and
the second is at the position 110. The escape point is in the middle of the grid (the vertex

http://sourceforge.net/projects/ggpserver/

CHAPTER 6. PROBLEM SOLVING 29

60) so each player has the same distance to the escape point. When we run Game Checker
3.2.2 with Monte Carlo method limited to 60 seconds we obtain average rewards.

States checked Terminal states avg. rewards
Separate goal 276912 2914 38.6, 30.39, 31.16
Common goal 275350 3856 38.35, 52, 52

2-player 164271 2346 37.63, 52.77

Table 6.3: Grid 11x11, Game Checker evaluation (rewards are listed in order: evader1,
pursuer1, pursuer2)

From numbers in Table 6.3 we can see that the game goal rewards are fairly balanced
for the separate goals. In the game with common goal evaders average points are similar to
point earn in the game with separate goal. But this is not surprising, because evaluation
of the terminal states is not changed for the evader. The other thing is how this change
takes effect during the game play. The last row shows numbers for game where all pursuers
are controlled by one player. Here it look that the game is more optimistic for the player
controlling the pursuers. But it can be caused by less explored states and typical behavior
of MC method 4.4, which is random sampling.

Figure 6.2: Grid (11x11) representation with shortest path to escape point highlighted. (E
- evader, P - pursuer, X - escape point)

The shortest way from the evaders initial position to the escape point is 10 steps long,
so evader can escape in state 11. But this can happen only if pursuers are playing really
bad and don’t cut this shortest path. The shortest way is displayed in Figure 6.2. Only two
paths are displayed, but other two are symmetrical along the main axis.

We can say that the general player should be able to play this game sufficiently. The
domain is simple and its game tree is not big. But in the concrete implementation, the
general player can have problem to explore dangerous situations, which occurs when the

CHAPTER 6. PROBLEM SOLVING 30

evader is moving along the shortest path. For the pursuers it means that they must cut the
shortest path to escape point.

Scenario 2 - Big Grid

This scenario is similar to the previous Scenario 1 - Small Grid. The only difference is that
the matrix dimensions are 31 rows and 31 columns. The evader begins at the position 0, one
pursuer at the vertex with id 30 and the second at the vertex 930. Also the escape point is
in the middle of the matrix (the vertex 480).

Game Checker evaluation in Scenario 1 - Small Grid was running MC method for 60
seconds, but this game is much bigger so I let MC method run 10 times longer. It is 10
minutes and we obtained numbers listed in Table 6.4. From the average rewards we may
assume, that the players playing for evader’s role will be winning.

The shortest path is of course longer than in previous scenario. Now the path is 30 steps
long. The shortest path is identical to the paths in Figure 6.2, but scaled for dimension
31x31.

I’am testing this scenario, because I want to see how the general player will handle bigger
environments.

States checked Terminal states avg. rewards
Separate goal 692342 6994 49.95, 24.98, 25.06
Common goal 663347 7185 41.62, 37.57, 37.57

2-player 293933 2969 49.97, 25.05

Table 6.4: Grid 31x31, Game Checker evaluation

Scenario 3 - Rugged map

I created this scenario to test players in environment more similar to real problems. There
is only very small probability that we will solve PE game on open space as it is in previous
scenarios. We can imagine that in one part of a town, a thief robbed the house and got into
the car (on position 54), but the house alarm notified the police station (on position 0).
From the town leads only one path and if the thief reaches this point (on position 57), he
will escapes to the police. The police of course know this as well and their goal is to catch
or at least avoid escaping of the rubber. The initial positions are displayed in Figure 6.3.

CHAPTER 6. PROBLEM SOLVING 31

Figure 6.3: Rubber and police, town representation

As in previous scenarios, I will discuss Game Checker test results. Game Checker was
running Monte Carlo method for 60 seconds and he provided result in Table 6.5. For the
game with separate goals the results look balanced. But for the game with common goal
it looks better for pursuers. But the reason is that the pursuer take reward even when the
evader is caught by the second pursuer. And the third case is similar to the previous, because
player controlling pursuers is rewarded in a similar way. But other thing should be noticed
in game with 2-players. And it is a number of explored states. The number is smaller by
almost 150000 states. From this we can consider that this game will be more difficult for
players.

States checked Terminal states avg. rewards
Separate goal 563510 6974 32.26, 34.61, 33.54
Common goal 561762 6924 32.85, 53.4, 53.4

2-player 424474 5248 32.03, 54.57

Table 6.5: Rigged map, Game Checker evaluation (rewards are listed in order: evader1,
pursuer1, pursuer2)

CHAPTER 6. PROBLEM SOLVING 32

6.4 Results

As a first thing in this section I will comment the Table 6.6 and what we can find in that
table. The table is divided by the game type (Separate goals, Common goal, 2-player), game
environment (Grid 11x11, Grid 31x31, Town map) and the roles assigned to the players. The
abbreviations of player’s names are described in Table 6.7. The columns with average steps
also contains information about standard deviation of the samples.

The average values were calculated from 5 samples for each game. And the players had
10 seconds for thinking before the match begun and 10 seconds each turn to make their
decision (startclock and playclock).

Separate goals Common goal
avg. steps avg. score avg. steps avg. score

C, F, B 32 (32.6) 80, 20, 0 40 (19.9) 80, 20, 20
C, F, F 22.4 (13.7) 80, 20, 0 16.2 (2.3) 80, 20, 20

Grid 11x11 E, F, B 100 (0) 50, 25, 25 - -
E, F, F 35.8 (11.8) 60, 40, 20 - -
E, C, C 13 (2.8) 40, 60, 0 19 (7.4) 20, 80, 80
C, F, B 89.6 (14.5) 50, 35, 15 92 (17.9) 60, 20, 20
C, F, F 65.2 (21.3) 90, 5, 5 100 (0) 50, 25, 25

Grid 31x31 E, F, B 31 (0) 100, 0, 0 - -
E, F, F 31 (0) 100, 0, 0 - -
E, C, C 31 (0) 100, 0, 0 100 (0) 50, 25, 25
C, F, B 48 (13.5) 0, 100, 0 42.2 (5.2) 0, 100, 100
C, F, F 33.2 (5.9) 100, 0, 0 36 (1) 100, 0, 0

Town map E, F, B 100 (0) 50, 25, 25 - -
E, F, F 20.2 (4.6) 100, 0, 0 - -
E, C, C 24.2 (2.9) 0, 80, 60 21.4 (12.8) 20, 80, 80

2-player
avg. steps avg. score

Grid 11x11 E, C 15 (8.4) 80, 20
Grid 31x31 E, C 78 (31.7) 50, 35
Town map E, C 17.6 (1.1) 0, 100

Table 6.6: Experiments results, containing average steps, steps standard deviation (in brack-
ets) and average goal rewards. Roles ids described in Table 6.7.

Identifier Player
C Cadia player (GGP)
E Evader (General player)
F Follower (Domain player)
B Blocker (Domain player)

Table 6.7: Player’s identifiers description

CHAPTER 6. PROBLEM SOLVING 33

Separate goals

In the Scenario 1 - Small Grid Cadia is very successful in evader’s role. If we compare my
evader playing against follower and blocker or two followers, we find that Cadia has better
results, but our player has more consistent results. In Scenario 2 - Big Grid has little worse
results. But it was expected, because the domain was bigger. And the players had the same
time to make theirs moves, so they were not able to evaluate game states, as well as in
smaller grid, where the players reach to terminal states much sooner. Despite the fact that
the game tree is bigger, Cadia was playing very well against the followers in bigger grid.
The reason why Cadia is playing worse against follower and blocker in bigger grid than in
smaller is domain size again. Cadia has simply problem to find the best way how to bypass
blocking player and enter the escape point. My evader in bigger grid is playing much better
than Cadia, but it is not surprising. Because for domain player is actually everything same.
The only thing which we can observer is, that there is also longer time needed to calculate
distances between all vertices.

An interesting results are obtained on the Town map. Cadia playing against follower
and blocker behaves unreasonable. The blocker blocks the entrance to the escape point. So
Cadia should evade the follower. But Cadia in some moment stays on the same position
until it gets caught by the follower. The reason for this behavior may be wrong evaluation
of the reward, when the game timeouts (in our case an 100 moves were made).

Common goal

If we compare the results of this game with the game with separate goals, the goal modifica-
tion did not bring that big changes of the results and of the rewards. The only exception is
game where Cadia was playing against two followers in the bigger grid environment. Cadia
was in game with separate goals diametrically better. The reason can be unpropriate model-
ing of opponents. But it can be caused also by my heuristic players. Because their heuristic
can by illogical and this will confuse Cadia player.

The reason why the results are missing in result table for the games where my domains
players are facing each other is that the heuristic will be the same as in previous game and
they wont consider the change of the goal values.

2-player

This game should test, if Cadia takes an advantage of controlling both pursuers. This is also
reason why I did not simulate the case where my domain player controls all pursuers.

Little surprising is that Cadia has problems to play sufficiently with both players. The
results in grid environments are not good at all. And the interesting thing is that Cadia was
playing better on the bigger grid than on the smaller. But if we look to results on Town
map, we can see that the results are very good. From this we can consider, that the problem
will be the branching factor on the grid. 1 If we look to process of the games on grids, we
will notice that often is moving only one pursuer. The reason can be under evaluated moves
where both pursuer will change their position, or even not evaluated these moves at all.

1All game logs are available on enclosed CD in folder game_logs.

CHAPTER 6. PROBLEM SOLVING 34

6.5 Summary

In this section I want to evaluate all the way from idea to play PE game to the results. I will
summarize complexity of each step and as last think in the section I will discuss obtained
results.

In Section 6.1 we created model of the problem. As it can be seen, that wasn’t tough task.
But we should not forget at the design time of the problem model to properties, limitations
and requirements of GDL. Such is playability, termination, etc. The implementation of the
problem in GDL is not usually difficult, but we should be very careful how we implement
the problem. Before starting the game with the general player it is very handy to test
the game using for example Game Checker mentioned in Section 3.2.2 or online utility
for checking games created by Michael Genesereth for GGP course on Stanford University
http://logic.stanford.edu/classes/cs227/2012/index.html (Class cs227). On those site, there
can also be found GDL stepper. The stepper is very useful, if we want to check some special
cases of the game and if we defined its behavior correctly. Although, it is very useful utility,
I don’t recommend it’s use for bigger environments.

The next step was to create the domain players. Here I saved some work using existing
general player. I used it’s communication protocol. But to be able to play the PE game, I
had to create game environments interpreter, which holds, updates and provides information
about the game state to the player. It was also necessary to create own environments loading,
because parsing from GDL description would take much more time. Many information in
the game description is useless for domain player, such as legal moves definition, goal reward
etc. All these thinks were ensured directly in the domain player.

One of the difficult tasks was to obtain and make running the general player. Only one
general player was freely available. Luckily it was Cadia player which is one of the best
players at all.

When I was preparing the experiments, I ran many pretest to find out the best config-
uration. This mainly concerned the setting startclock and playclock.At first I run the game
with 5 seconds for startclock and 1 for playclock, As I supposed the results was totally un-
satisfactory. After a few tests, I decided to use 10 seconds for both clocks. The reason is
that the player was already playing sufficiently and the game finished in reasonable time
(approximately 10 mites for one game).

When we take in account time needed to learn GDL and procure the general player, it
would be faster to create all PE game. But on the other side, if we already know GDL and
have working player, than usage of this player as support act can give us minimally partial
results. This results may tell us how difficult it would be to create own domain player and
how difficult the problem is for solution. This is the reason why I think that the general
player in this test succeeded.

http://logic.stanford.edu/classes/cs227/2012/index.html

Chapter 7

Discussion

The reason why we should want to use GGP as libraries for solving problems is saving of time,
Now we will discuss if the GGP system is already sufficient enough and if it provides easy
way to implement the problem. First of all I will summarize advantages and disadvantages
of general players and comment them, then I will try to identify improvements which could
help to better usage of the general players. As the last thing I’ll try identify some more
problem which could be solved by the general players.

Advantages Disadvantages
No algorithmic knowledge needed Unavailable public players
Quick definition of the problem Big time demands
Relatively simple integration Unstable results

Complex algorithms and methods implemented Needed big simplification
Unprepared for production

Table 7.1: Summary of advantages and disadvantages of the general players

No algorithms knowledge needed

In this I see the biggest advantage of general game playing. The users without any Artificial
Intelligence knowledge would solve the problems. Not many expertise are required, but at
least knowledge of the first-order logic can be very beneficial. learning curve is very steep
for GDL. If we begin with defining simple games such as Simple path finding from start
position to goal position or the game Tower of Hanoi1 we can learn GDL techniques very
quick. I think that user with good mathematical knowledge, but without bigger knowledge of
programming languages or even algorithmic knowledge may be able to solve some problems.

Quick definition of the problem

When we want to test some game/problem, such as PE game. The long way before first run
is before us. Because we need to define environment, players and mediator to control the

1description of Towers of Hanoi: <http://en.wikipedia.org/wiki/Tower_of_Hano>

35

http://en.wikipedia.org/wiki/Tower_of_Hano

CHAPTER 7. DISCUSSION 36

game flow. But if we use GGP a lot of work is done. At least we have already implemented
players, the mediator, which will control the game (it checks legality of moves, it distributes
information to all participants of the game, etc.). So for the first test we just need to develop
the rules of the game. But before we jump into implementation of problems in GDL we have
to stop and we should think out, if we are able to define the problem in GDL at all. The
games or problems played by the general players need to be simplified. Usually we don’t
need all information about the environment to obtain desired results. But it can happen
that amount of the informations needed for solution is too big to be handled by the general
player. For example use the general player for controlling a car would probably be largely
unsuccessful.

Relatively simple integration

Another thing that speaks in favor of the general player is chosen communication protocol.
Because the player is receiving only three commands 2.2 to be controlled during the gameplay.
Someone might say, that http is too slow for communication between environment and the
agent. It is right argument, but if we take in account time consumed by the general player for
playing is latency in http protocol meaning less. The other thing is that not every player is
communicating only over the http protocol. For example Cadia player 5.2 is communicating
through in/out pipes and the http server is only extension.

Complex algorithms and methods implemented

The thing, which can also speak in favor of the usage of the general players is lots of advanced
algorithms and theirs improvements implemented in these players. For example a lot of
research was made in reasoning or improving UCT 4.5 such as in [9, 15]. This can give us
an advantage in using the general player over implementing this features alone.

Big time demands

Demands on time is the biggest disadvantage of the general players. In Section 6.5 we were
discussing reason why I chose startclock and playclock to be 10 seconds. Not every domain
is that complete that the general player ould need a lot of time. But common time for
startclock in in tens of seconds. This is not that big problem, but for playclock 5 and more
seconds per one move is usually selected. So for simulations the general players can be still
useful, but for real application is this time often too long.

Unstable results

As we have observed in Table 6.6 the results if Cadia player were very unstable. In table
it is represented as standard deviation (in bracket in column avg. steps). So the question
occurs how much we can rely on the general players.

CHAPTER 7. DISCUSSION 37

Unavailable public players

One of the reasons why it is difficult to explore the possibilities of general players is their un-
availability. At least two web portals specialized on Genera Game Playing are existing. Prob-
ably most popular is The Dresden GGP Server (now running 130.208.241.192/ggpserver/).
On this server we can find 228 registered players. Some of them are only modification or
updates and some of them are just test of the user. But still we can find some familiar
names of the player such as Cadia, Ary, Fluxplayer, TurboTurtle, etc.). Unfortunately none
of them is usually running. The reason is clear. The players must run on its own server,
which is administrated by each user (developer). Also binaries or even source code is not
available in common. The only exception is Cadia player. We can find many basic player,
such as BasicPlayer, Jocular, Common Prolog Player, etc. But these players are usually use
less for application.

Chapter 8

Conclusions

This thesis was focused on application of General Game Playing systems in real problems.
After becoming familiar with the concepts of General Game Playing and some previous
works in this research field, I summarized results of annual competition held under summer
conference of AAAI. Based on competition results I presented some successful players in this
competition and their game solving techniques. I also described the most used techniques
and algorithms used on GGP.

The important part of GGP is Game Description Language for games definition. To
clarify how the problems can be implemented in GDL (Chapter 2) and GDL-II (Chapter 3)
I made two simple games and precisely explained them.

In Chapter 6 I implemented domain specific players for Pursuit-evasion game. I created
three different heuristic strategies (one for evader and two for pursuers) and tested them.
The comparison of their results against the general player’s results showed that the general
player is capable to achieve similar values and to be even more successful on smaller domains.
On the other hand the general player’s results weren’t so reliable because other test runs
showed that unlike other players the general player tends to fail unexpectedly. We also tried
to discover whether the general player can take advantage from controlling all pursuers and
make them to cooperate. The results of this modification were surprising, because even on
a small environment the general player received worse rewards than in the case when the
players were controlled separately. In conclusion, the general player wasn’t competent to
solve all problems properly despite previous expectations.

I also commented how difficult it is to create game for GGP compare to complete domain
implementation and what advantages can the general player bring. On of the possible ways to
use the generic player is to investigate solvability of given problems and to obtain information
how difficult it would be to create domain player.

In Chapter 7 I discussed main advantages and disadvantages of the general players. To
summarize, we can say that in smaller tasks, general players are useable only as guidance for
complete problem solving. The general players are still too limited and incompetent to be
applied as agents systems. Despite their relatively good results during solving various prob-
lems and despite containing advanced algorithms and techniques, they can’t be compared to
agents developed primarily for concrete problems.

38

CHAPTER 8. CONCLUSIONS 39

Evaluation

1. The first task was to get familiarize with main competition organized under
AAAI conference and study requirements needed to play General Games.
This task was done in Chapter 2 where the basis of GGP were described and in Chap-
ter 3 the GDL and GDL-II are introduced. I also created two examples of the games
implementation. In Chapter 5 some of the successful players are presented. In Chap-
ter 4 I descried algorithms used commonly by the general players.

2. The next task was to implement the domain player for specific problem,
precisely define the problem and experimentally evaluate efficiency of gen-
eral players against domain specific player. I examined this task in Chapter 6,
giving an explanation how the testing games were implemented and in what order those
games run. I also described the behavior of each domain player. In the conclusion of
the chapter I presented the results of the previously tested games and commented
them.

3. The last task was to discuss advantages and disadvantages of using general
game players as AI libraries for solving problems. I summarized and discussed
advantages and disadvantages of general players in Chapter 7.

8.1 Future work

• Not many real life problems are with perfect information. People involved in the
general game playing were aware about this limitation. Michael Thielscher published
an extension of standard GDL the GDL-II 3.2. This is opening new opportunities
for solving more problems using the general players. The problems will be also more
similar to reality.

• Integration of the general player into existing environment, such as AgentScout2 de-
veloped by Agent Technology Center.

http://agents.felk.cvut.cz/projects/agentscout2/

Bibliography

[1] Hilmar Finnsson and Yngvi Björnsson. Cadiaplayer: A simulation-based general game
player. 2009.

[2] M. R. Genesereth and R. E. Fikes. Knowledge interchange format, version 3.0 reference
manual. 1992.

[3] Michael R. Genesereth, Nathaniel Love, and Barney Pell. General game playing:
Overview of the aaai competition. AI Magazine, 26(2):62–72, 2005.

[4] Istvan Szita Guillaume Chaslot, Sander Bakkes and Pieter Spronck. Monte-carlo tree
search: A new framework for game ai. 2008.

[5] Tristan Cazenave Jean M ehat. Ary, a general game playing program.

[6] Ingo Keller. Palamedes: A General Game Playing IDE. PhD thesis, Dresden University
of Technology, 2009.

[7] Levante Kocsis and Csaba Szepesvari. Bandit based monte-carlo planning. 2006.

[8] Nathaniel Love, Timothy Hinrichs, David Haley, Eric Schkufza, and Michael Genesereth.
General game playing: Game description language specification. Technical report, 2008.
most recent version should be available at http://games.stanford.edu/.

[9] Jean Méhat and Tristan Cazenave. Combining uct and nested monte carlo search for
single-player general game playing. IEEE Transactions on Computational Intelligence
and AI in Games, 2(4):271–277, 2010.

[10] Barney Darryl Pell. Strategy Generation and Evaluation for Meta-Game Playing. PhD
thesis, University of Cambridge, 1993.

[11] Jacques Pitrat. Realization of a general game-playing program. In IFIP Congress (2),
pages 1570–1574, 1968.

[12] Stephan Schiffel and Michael Thielscher. Fluxplayer: A successful general game player.
In Proceedings of the 22nd AAAI Conference on Artificial Intelligence (AAAI-07), pages
1191–1196. AAAI Press, 2007.

[13] Michael Thielscher. A general game description language for incomplete information
games. In Proceedings of the AAAI Conference on Artificial Intelligence, pages 994–
999. AAAI Press, 2010.

40

BIBLIOGRAPHY 41

[14] Rogério Reis Vítor Santos Costa, Luís Damas and Rúben Azevedo. YAP Prolog user’s
manual.

[15] Karol Waledzik and Jacek Mandziuk. Multigame playing by means of uct enhanced
with automatically generated evaluation functions. In Artificial General Intelligence,
volume 6830, pages 327–332. Springer Berlin / Heidelberg, 2011.

Appendix A

List of used acronyms

GGP General Game Playing

PEG Pursuit-Evasion game

PE Pursuit-Evasion

GM Game Manager

AAAI Association for the Advancement of Artificial Intelligence

MCTS Monte Carlo Tree search

UCT Upper Confidence Bounds applied to Trees

42

Appendix B

GDL descriptions

B.0.1 Attacker and guard (GDL)

1 (r o l e a t ta cke r)
2 (r o l e guard)
3
4 ; ; i n i t s t a t e
5 (i n i t (p o s i t i o n a t ta cke r 3 1)) ; ; t h i rd row , f i r s t column
6 (i n i t (p o s i t i o n guard 3 6)) ; ; t h i rd row , l a s t column
7 (i n i t (c on t r o l a t ta cke r))
8 (i n i t (s tep 1))
9

10 ; ; next s t a t e
11 (<= (next (s tep ?newN))
12 (t rue (s tep ?n))
13 (inc ?n ?newN))
14
15 (<= (next (c on t r o l a t ta cke r))
16 (t rue (c on t r o l guard)))
17
18 (<= (next (c on t r o l guard))
19 (t rue (c on t r o l a t t a cke r)))
20
21 (<= (next (p o s i t i o n ? char ?nx ?ny))
22 (does ? char (move ? d i r))
23 (t rue (p o s i t i o n ? char ?x ?y))
24 (nextPos i t i on ? d i r ?x ?y ?nx ?ny))
25
26 ; ; l e g a l
27 (<= (l e g a l a t t a cke r (move ? d i r))
28 (t rue (c on t r o l a t t a cke r))
29 (t rue (p o s i t i o n a t ta cke r ?x ?y))
30 (legalMove ? d i r ?x ?y)
31 (d i s t i n c t ? d i r nowhere))
32
33 (<= (l e g a l a t t a cke r (move nowhere))
34 (not (t rue (c on t r o l a t ta cke r))))
35
36 (<= (l e g a l guard (move ? d i r))
37 (t rue (c on t r o l guard))
38 (t rue (p o s i t i o n guard ?x ?y))
39 (legalMove ? d i r ?x ?y)
40 (d i s t i n c t ? d i r nowhere))
41
42 (<= (l e g a l guard (move nowhere))
43 (not (t rue (c on t r o l guard))))

43

APPENDIX B. GDL DESCRIPTIONS 44

44
45 ; ; t e rmina l
46 (<= termina l
47 passed)
48
49 (<= termina l
50 timeout)
51
52 (<= termina l
53 captured)
54
55 ; ; goa l
56 (<= (goa l a t t a cke r 100)
57 passed)
58
59 (<= (goa l a t t a cke r 0)
60 timeout)
61
62 (<= (goa l a t t a cke r 0)
63 (captured))
64
65 (<= (goa l guard 0)
66 passed)
67
68 (<= (goa l guard 100)
69 captured)
70
71 (<= (goa l guard 100)
72 timeout)
73
74 ; ; f un c t i on s
75 (<= captured
76 (t rue (p o s i t i o n a t ta cke r ?x ?y))
77 (t rue (p o s i t i o n guard ?x ?y)))
78
79 (<= timeout
80 (t rue (s tep 37)))
81
82 (<= passed
83 (t rue (p o s i t i o n a t ta cke r ?x 6))
84 (indexM ?x)
85 (not captured)
86 (not timeout))
87
88 (<= (legalMove north ?x ?y)
89 (inc ?y ?ny)
90 (indexM ?x)
91 (indexN ?ny))
92
93 (<= (legalMove ea s t ?x ?y)
94 (inc ?x ?nx)
95 (indexM ?nx)
96 (indexN ?y))
97
98 (<= (legalMove south ?x ?y)
99 (dec ?y ?ny)

100 (indexM ?x)
101 (indexN ?ny))
102
103 (<= (legalMove west ?x ?y)
104 (dec ?x ?nx)
105 (indexM ?nx)
106 (indexN ?y))
107
108 (<= (nextPos i t i on north ?x ?y ?x ?ny)

APPENDIX B. GDL DESCRIPTIONS 45

109 (inc ?y ?ny)
110 (indexM ?x))
111
112 (<= (nextPos i t i on ea s t ?x ?y ?nx ?y)
113 (inc ?x ?nx)
114 (indexN ?y))
115
116 (<= (nextPos i t i on south ?x ?y ?x ?ny)
117 (dec ?y ?ny)
118 (indexM ?x))
119
120 (<= (nextPos i t i on west ?x ?y ?nx ?y)
121 (dec ?x ?nx)
122 (indexN ?y))
123
124 (<= (nextPos i t i on nowhere ?x ?y ?x ?y)
125 (indexM ?x)
126 (indexN ?y))
127
128 ; ; cons t s
129 ; ; m rows , n c o l s
130 (indexM 1)
131 (indexM 2)
132 (indexM 3)
133 (indexM 4)
134
135 (indexN 1)
136 (indexN 2)
137 (indexN 3)
138 (indexN 4)
139 (indexN 5)
140 (indexN 6)
141
142 (inc 1 2)
143 (inc 2 3)
144 (inc 3 4)
145 (inc 4 5)
146 (inc 5 6)
147 (inc 6 7)
148 (inc 7 8)
149 (inc 8 9)
150 (inc 9 10)
151 (inc 10 11)
152 (inc 11 12)
153 (inc 12 13)
154 (inc 13 14)
155 (inc 14 15)
156 (inc 15 16)
157 (inc 16 17)
158 (inc 17 18)
159 (inc 18 19)
160 (inc 19 20)
161 (inc 20 21)
162 (inc 21 22)
163 (inc 22 23)
164 (inc 23 24)
165 (inc 24 25)
166 (inc 25 26)
167 (inc 26 27)
168 (inc 27 28)
169 (inc 28 29)
170 (inc 29 30)
171 (inc 30 31)
172 (inc 31 32)
173 (inc 32 33)

APPENDIX B. GDL DESCRIPTIONS 46

174 (inc 33 34)
175 (inc 34 35)
176 (inc 35 36)
177 (inc 36 37)
178
179 (dec 38 37)
180 (dec 37 36)
181 (dec 36 35)
182 (dec 35 34)
183 (dec 34 33)
184 (dec 33 32)
185 (dec 32 31)
186 (dec 31 30)
187 (dec 30 29)
188 (dec 29 28)
189 (dec 28 27)
190 (dec 27 26)
191 (dec 26 25)
192 (dec 25 24)
193 (dec 24 23)
194 (dec 23 22)
195 (dec 22 21)
196 (dec 21 20)
197 (dec 20 19)
198 (dec 19 18)
199 (dec 18 17)
200 (dec 17 16)
201 (dec 16 15)
202 (dec 15 14)
203 (dec 14 13)
204 (dec 13 12)
205 (dec 12 11)
206 (dec 11 10)
207 (dec 10 9)
208 (dec 9 8)
209 (dec 8 7)
210 (dec 7 6)
211 (dec 6 5)
212 (dec 5 4)
213 (dec 4 3)
214 (dec 3 2)
215 (dec 2 1)

APPENDIX B. GDL DESCRIPTIONS 47

B.0.2 Attacker and guard (GDL-II)

1 (r o l e a t ta cke r)
2 (r o l e guard)
3 (r o l e random)
4
5 ; ; i n i t s t a t e
6 (i n i t (p o s i t i o n a t ta cke r 3 1)) ; ; t h i rd row , f i r s t column
7 (i n i t (p o s i t i o n guard 3 6)) ; ; t h i rd row , l a s t column
8 (i n i t (c on t r o l a t ta cke r))
9 (i n i t (s tep 1))

10
11 ; ; next s t a t e
12 (<= (next (s tep ?newN))
13 (t rue (s tep ?n))
14 (inc ?n ?newN))
15
16 (<= (next (c on t r o l a t ta cke r))
17 (t rue (c on t r o l guard)))
18
19 (<= (next (c on t r o l guard))
20 (t rue (c on t r o l a t t a cke r)))
21
22 (<= (next (p o s i t i o n ? char ?nx ?ny))
23 (does ? char (move ? d i r))
24 (t rue (p o s i t i o n ? char ?x ?y))
25 (nextPos i t i on ? d i r ?x ?y ?nx ?ny))
26
27 (<= (next (blocked ?x ?y))
28 (does random (chooseBlocked ?x ?y)))
29
30 ; ; l e g a l
31 (<= (l e g a l a t t a cke r (move ? d i r))
32 (t rue (c on t r o l a t t a cke r))
33 (t rue (p o s i t i o n a t ta cke r ?x ?y))
34 (legalMove ? d i r ?x ?y)
35 (d i s t i n c t ? d i r nowhere))
36
37 (<= (l e g a l a t t a cke r (move nowhere))
38 (not (t rue (c on t r o l a t ta cke r))))
39
40 (<= (l e g a l guard (move ? d i r))
41 (t rue (c on t r o l guard))
42 (t rue (p o s i t i o n guard ?x ?y))
43 (legalMove ? d i r ?x ?y)
44 (d i s t i n c t ? d i r nowhere))
45
46 (<= (l e g a l guard (move nowhere))
47 (not (t rue (c on t r o l guard))))
48
49 (<= (l e g a l random (chooseBlocked ?x ?y))
50 (indexM ?x)
51 (indexN ?y))
52
53 ; ; s e e s
54 (<= (s e e s a t tacke r (guardPos i t ion ?x2 ?y2))
55 (t rue (p o s i t i o n a t ta cke r ?x1 ?x1))
56 (t rue (p o s i t i o n guard ?x2 ?y2))
57 (or (inRow ?x1 ?y1 ?x2 ?y2)
58 (inCol ?x1 ?y1 ?x2 ?y2)))
59
60 (<= (s e e s guard (a t t a ck e rPo s i t i on ?x1 ?y1))
61 (t rue (p o s i t i o n a t ta cke r ?x1 ?x1))
62 (t rue (p o s i t i o n guard ?x2 ?y2))
63 (or (inRow ?x1 ?y1 ?x2 ?y2)

APPENDIX B. GDL DESCRIPTIONS 48

64 (inCol ?x1 ?y1 ?x2 ?y2)))
65
66 ; ; t e rmina l
67 (<= termina l
68 passed)
69
70 (<= termina l
71 timeout)
72
73 (<= termina l
74 captured)
75
76 ; ; goa l
77 (goa l random 100)
78
79 (<= (goa l a t t a cke r 100)
80 passed)
81
82 (<= (goa l a t t a cke r 0)
83 timeout)
84
85 (<= (goa l a t t a cke r 0)
86 (captured))
87
88 (<= (goa l guard 0)
89 passed)
90
91 (<= (goa l guard 100)
92 captured)
93
94 (<= (goa l guard 100)
95 timeout)
96
97 ; ; f un c t i on s
98 (<= captured
99 (t rue (p o s i t i o n a t ta cke r ?x ?y))

100 (t rue (p o s i t i o n guard ?x ?y)))
101
102 (<= timeout
103 (t rue (s tep 37)))
104
105 (<= passed
106 (t rue (p o s i t i o n a t ta cke r ?x 6))
107 (indexM ?x)
108 (not captured)
109 (not timeout))
110
111 (<= (notBlocked ?x ?y)
112 (indexM ?x)
113 (indexN ?y)
114 (not (t rue (blocked ?x ?y))))
115
116 (<= (inRow ?x ?y1 ?x ?y2)
117 (indexM ?x)
118 (indexN ?y1)
119 (indexN ?y2))
120
121 (<= (inCol ?x1 ?y ?x2 ?y)
122 (indexM ?x1)
123 (indexM ?x2)
124 (indexN ?y))
125
126 (<= (legalMove north ?x ?y)
127 (inc ?y ?ny)
128 (indexM ?x)

APPENDIX B. GDL DESCRIPTIONS 49

129 (indexN ?ny)
130 (notBlocked ?x ?ny))
131
132 (<= (legalMove ea s t ?x ?y)
133 (inc ?x ?nx)
134 (indexM ?nx)
135 (indexN ?y)
136 (notBlocked ?nx ?y))
137
138 (<= (legalMove south ?x ?y)
139 (dec ?y ?ny)
140 (indexM ?x)
141 (indexN ?ny)
142 (notBlocked ?x ?ny))
143
144 (<= (legalMove west ?x ?y)
145 (dec ?x ?nx)
146 (indexM ?nx)
147 (indexN ?y)
148 (notBlocked ?nx ?y))
149
150 (<= (nextPos i t i on north ?x ?y ?x ?ny)
151 (inc ?y ?ny)
152 (indexM ?x))
153
154 (<= (nextPos i t i on ea s t ?x ?y ?nx ?y)
155 (inc ?x ?nx)
156 (indexN ?y))
157
158 (<= (nextPos i t i on south ?x ?y ?x ?ny)
159 (dec ?y ?ny)
160 (indexM ?x))
161
162 (<= (nextPos i t i on west ?x ?y ?nx ?y)
163 (dec ?x ?nx)
164 (indexN ?y))
165
166 (<= (nextPos i t i on nowhere ?x ?y ?x ?y)
167 (indexM ?x)
168 (indexN ?y))
169
170 ; ; cons t s
171 ; ; m rows , n c o l s
172 (indexM 1)
173 (indexM 2)
174 (indexM 3)
175 (indexM 4)
176
177 (indexN 1)
178 (indexN 2)
179 (indexN 3)
180 (indexN 4)
181 (indexN 5)
182 (indexN 6)
183
184 (inc 1 2)
185 (inc 2 3)
186 (inc 3 4)
187 (inc 4 5)
188 (inc 5 6)
189 (inc 6 7)
190 (inc 7 8)
191 (inc 8 9)
192 (inc 9 10)
193 (inc 10 11)

APPENDIX B. GDL DESCRIPTIONS 50

194 (inc 11 12)
195 (inc 12 13)
196 (inc 13 14)
197 (inc 14 15)
198 (inc 15 16)
199 (inc 16 17)
200 (inc 17 18)
201 (inc 18 19)
202 (inc 19 20)
203 (inc 20 21)
204 (inc 21 22)
205 (inc 22 23)
206 (inc 23 24)
207 (inc 24 25)
208 (inc 25 26)
209 (inc 26 27)
210 (inc 27 28)
211 (inc 28 29)
212 (inc 29 30)
213 (inc 30 31)
214 (inc 31 32)
215 (inc 32 33)
216 (inc 33 34)
217 (inc 34 35)
218 (inc 35 36)
219 (inc 36 37)
220
221 (dec 38 37)
222 (dec 37 36)
223 (dec 36 35)
224 (dec 35 34)
225 (dec 34 33)
226 (dec 33 32)
227 (dec 32 31)
228 (dec 31 30)
229 (dec 30 29)
230 (dec 29 28)
231 (dec 28 27)
232 (dec 27 26)
233 (dec 26 25)
234 (dec 25 24)
235 (dec 24 23)
236 (dec 23 22)
237 (dec 22 21)
238 (dec 21 20)
239 (dec 20 19)
240 (dec 19 18)
241 (dec 18 17)
242 (dec 17 16)
243 (dec 16 15)
244 (dec 15 14)
245 (dec 14 13)
246 (dec 13 12)
247 (dec 12 11)
248 (dec 11 10)
249 (dec 10 9)
250 (dec 9 8)
251 (dec 8 7)
252 (dec 7 6)
253 (dec 6 5)
254 (dec 5 4)
255 (dec 4 3)
256 (dec 3 2)
257 (dec 2 1)

APPENDIX B. GDL DESCRIPTIONS 51

B.0.3 Basic PE game

1 ; ; Pursu i t evas ion game with 2 pursuer s and one evader
2 ; ; Game ends a f t e r 100 s t a t e s
3
4 (r o l e evader1)
5 (r o l e pursuer1)
6 (r o l e pursuer2)
7
8 ; ; i n i t s t a t e
9 (i n i t (p o s i t i o n evader1 0))

10 (i n i t (p o s i t i o n pursuer1 10))
11 (i n i t (p o s i t i o n pursuer2 110))
12
13 (i n i t (escapePoint 60))
14
15 (i n i t (s t a t e 1))
16
17 ; ; next s t a t e
18 (<= (next (p o s i t i o n ? char ?V))
19 (does ? char (move ? char ?V)))
20
21 (<= (next (escapePoint ?V))
22 (t rue (escapePoint ?V)))
23
24 (<= (next (s t a t e ?NewN))
25 (t rue (s t a t e ?N))
26 (inc ?N ?NewN))
27
28 ; ; l e g a l
29 (<= (l e g a l evader1 (move evader1 ?NewV))
30 (t rue (p o s i t i o n evader1 ?V))
31 (adjacentVertex ?V ?NewV))
32
33 (<= (l e g a l evader1 (move evader1 ?V))
34 (t rue (p o s i t i o n evader1 ?V)))
35
36 (<= (l e g a l ? purs (move ? purs ?NewV))
37 (pursuersTeam ?purs)
38 (t rue (p o s i t i o n ? purs ?V))
39 (adjacentVertex ?V ?NewV)
40 (not (t rue (escapePoint ?NewV))))
41
42 (<= (l e g a l ? purs (move ? purs ?V))
43 (pursuersTeam ?purs)
44 (t rue (p o s i t i o n ? purs ?V))
45 (not (t rue (escapePoint ?V))))
46
47 ; ; t e rmina l
48 (<= termina l
49 (captured))
50
51 (<= termina l
52 (timeout))
53
54 (<= termina l
55 (escaped))
56
57 ; ; goa l
58 ; ; evad1
59 (<= (goa l evader1 100)
60 (escaped)
61 (not (timeout)))
62
63 (<= (goa l evader1 0)

APPENDIX B. GDL DESCRIPTIONS 52

64 (captured)
65 (not (timeout)))
66
67 (<= (goa l evader1 50)
68 (timeout))
69 ; ; purs1
70 (<= (goa l pursuer1 100)
71 (t rue (p o s i t i o n pursuer1 ?V))
72 (t rue (p o s i t i o n evader1 ?V))
73 (not (timeout)))
74
75 (<= (goa l pursuer1 0)
76 (t rue (p o s i t i o n pursuer1 ?V1))
77 (t rue (p o s i t i o n evader1 ?V2))
78 (d i s t i n c t ?V1 ?V2)
79 (not (timeout)))
80
81 (<= (goa l pursuer1 25)
82 (timeout))
83 ; ; purs2
84 (<= (goa l pursuer2 100)
85 (t rue (p o s i t i o n pursuer2 ?V))
86 (t rue (p o s i t i o n evader1 ?V))
87 (not (timeout)))
88
89 (<= (goa l pursuer2 0)
90 (t rue (p o s i t i o n pursuer2 ?V1))
91 (t rue (p o s i t i o n evader1 ?V2))
92 (d i s t i n c t ?V1 ?V2)
93 (not (timeout)))
94
95 (<= (goa l pursuer2 25)
96 (timeout))
97
98 ; ; f un c t i on s
99 (<= (adjacentVertex ?V1 ?V2)

100 (ver tex ?V1)
101 (ver tex ?V2)
102 (or (edge ?V1 ?V2 ?Cost1)
103 (edge ?V2 ?V1 ?Cost2)))
104
105 (<= (escaped)
106 (t rue (p o s i t i o n evader1 ?V))
107 (t rue (escapePoint ?V)))
108
109 (<= (captured)
110 (t rue (p o s i t i o n evader1 ?V))
111 (or (t rue (p o s i t i o n pursuer1 ?V))
112 (t rue (p o s i t i o n pursuer2 ?V))))
113
114 (<= (timeout)
115 (t rue (s t a t e 100)))
116
117 ; ; teams
118 (evadersTeam evader1)
119 (pursuersTeam pursuer1)
120 (pursuersTeam pursuer2)
121
122 ; ; graph r ep r e s en t a t i on
123 (ver tex 1)
124 (ver tex 2)
125 . . .
126 (vere tx N)
127
128 (edge 1 2 1)

APPENDIX B. GDL DESCRIPTIONS 53

129 (edge 3 4 1)
130 . . .
131 (edge M N 1)
132
133 ; ; other cons t s
134 (inc 0 1)
135 (inc 1 2)
136 . . .
137 (inc 99 100)

Appendix C

Installation and user guide

C.1 Installation

On included CD we find folder called eclipse projects with three projects (bc-domain-player,
org.eclipse.palamedes.gdl.core, org.eclipse.palamedes.kif.core), all these project need to be
imported to the Eclipse’s workbench. The guide how to import projects is in Eclipse docu-
mentation - Importing existing projects.

C.2 Usage

In package cz.cvut.fel.ggp we find 5 classes which starts player with the given strategy. Players
without substring 2player are intended for games which does not contain this substring too.

Class name Strategy Port
StartEvader1 Evader’s main strategy 4001
StartEvader2Player Evader’s main strategy 4001
StartPursuer1 Pursuer’s follow strategy 4002
StartPursuer2 Pursuer’s follow strategy 4003
StartPursuer3 Pursuer’s block strategy 4004

Table C.1: Player’s main classes

For running matches we need run game manager. The game manager is included in CD
and it can be find in eclispe_projectsbc-domain-playergamecontroller. It is java archive and
it can be executed by command:

java -jar gamecontroller/gamecontroller-gui-r495.jar

If we want to start the game (e.g. game_peg_mat11.kif), we must make sure that thematch
id is identical with the name of file containing game description (it means: game_peg_mat11).
The example how may look the game manager before the game is started is in Figure C.1.

54

http://help.eclipse.org/helios/index.jsp?topic=%2Forg.eclipse.platform.doc.user%2Ftasks%2Ftasks-importproject.htm
http://help.eclipse.org/helios/index.jsp?topic=%2Forg.eclipse.platform.doc.user%2Ftasks%2Ftasks-importproject.htm

APPENDIX C. INSTALLATION AND USER GUIDE 55

Figure C.1: Game Controller’s window

Appendix D

Content of included CD

56

	Introduction
	Thesis outline

	General Game Playing
	GGP Competitions and results
	Game Manager
	Handling illegal moves and timeouts

	Game Description Language
	GDL
	Restrictions
	Sample implementation

	GDL-II
	Sample implementation
	Game Checker

	Algorithms
	A* and IDA*
	Depth-first search
	MiniMax
	Monte Carlo method
	Upper Confidence Bounds applied to Trees

	Successful players
	Fluxplayer
	CADIAplayer
	Ary

	Problem solving
	Game descriptions
	Domain player implementation
	Domain players

	Experiments
	Results
	Summary

	Discussion
	Conclusions
	Future work

	List of used acronyms
	GDL descriptions
	Attacker and guard (GDL)
	Attacker and guard (GDL-II)
	Basic PE game

	Installation and user guide
	Installation
	Usage

	Content of included CD

