

Czech Technical University in Prague

Faculty of Electrical Engineering

Department of Computer Science and Engineering

Bachelor's Thesis

Hrá£ pro hru AI Challenge - Ants

Stanislav Fi�k

Supervisor: Mgr. Viliam Lisý, MSc.

Study Programme: Open Informatics, Bachelor

Field of Study: Computer Science

May 25, 2012

Abstract

AI challenge is an international AI programming contest. The latest challenge (fall 2011),
called Ants, was about searching food and enemies in two dimensional space, gathering food
and destroying enemies by controlling large amount of units (ants). This thesis describes
several algorithms that can be used in this domain, such as A* search, potential �elds,
DCOP solvers, Minimax. It proposes solution for optimizing assignments based on distance,
covering and exploring area using multiple agents and for dealing with combat situations.

Some of described algorithms were used by my player implemented for the tournament
where appeared advantages and disadvantages of used potential �elds thanks to the variance
of the map set.

Abstrakt

AI challenge je mezinárodní sout¥º zam¥°ená na programování UI. Úkolem na poslední
sout¥ºi (listopad 2011), s názvem Ants, bylo hledání jídla a nep°átel v dvou rozm¥rném
prostoru, zbírání potravy a likvidování nep°átel, to v²e ovládáním velkého mnoºství jed-
notek (mravenc·). Tato práce popisuje popisuje algoritmy pouºitélné na této domén¥ jako
nap°íklad A* search, Potential �elds, DCOP solver, Minimax. A p°edkládá °e²ení problém·m
jako jsou optimalizace p°i°azování úkol· na základ¥ vzdálenosti, pokrytí a prozkoumávání
oblasti pomocí mnoºství agent· a souboj·.

N¥které z t¥chto algoritm· m·j hrá£ p°ihlá²ený do této sout¥ºe pouºíval kde se díky
r·znorodosti map projevili jak výhody tak nevýhody potential �elds.

v

vi

Contents

1 Introduction 1

2 Game Speci�cation 3

2.1 Map . 3

2.2 Turns and Phases . 4

2.3 Endbot Conditions . 4

2.4 Scoring . 5

2.5 Cuto� Rules . 5

2.6 Food Harvesting . 6

2.7 Food spawning . 6

2.8 Ants Hill Razing . 7

2.9 Ant Spawning . 7

2.10 Battle Resolution . 7

3 General Algorithm Description 9

3.1 A* . 9

3.1.1 A* code . 10

3.2 Potential �elds . 11

3.3 DCOP . 12

3.3.1 Problem de�nition . 12

3.3.2 DCOP_MST solver . 13

3.4 Minimax and it's variations . 16

3.4.1 Minimax . 16

3.4.2 Alpha-beta pruning . 17

4 Problems and Solutions 19

4.1 Food assignment and path planning using A* 19

4.2 Map exploring with potential �elds . 22

4.3 Map exploration as DCOP_MST . 23

4.4 Simple combat . 25

4.5 Better combat resolution using Minimax . 26

4.6 Symmetry detection . 26

vii

viii CONTENTS

5 Testing 27

5.1 Tournament . 27
5.2 Post-tournament updates . 27
5.3 Other bots . 27

5.3.1 xathis . 28
5.4 Results . 29

6 Conclusion 31

6.1 Evaluation . 31

List of Figures

2.1 Sample game state with 2 players . 4

3.1 Ant not using potential �elds (left). Ant using potential �elds(right) 12
3.2 Evaluated game tree with alpha-beta pruning 17

4.1 Ants scattered around hill by MGM . 23

ix

x LIST OF FIGURES

List of Tables

5.1 Results of duels of my bot and other players from tournament 29

xi

xii LIST OF TABLES

Chapter 1

Introduction

AI challenge [1] is great opportunity to test your skills in computer science and compare
them with thousands of programmers worldwide in a tournament. This contest started by
University in Waterloo Computer Science Club was open for public in 2010 when contest
gain sponsorship from Google. For each challenge participants have to write program (bot)
in almost any programming language that is able to plays a game versus an other's bots and
upload the source code to contest server.

This fall (2011) started third public AI challenge called Ant's. The challenge was creation
of bot controlling a lot of ants on an undiscovered grid with obstacles, food and enemies
controlled by other bots. To survive in this dynamic and hostile environment, bot has
navigate it's ants in order to explore map, �nd food and destroy enemies and their hills.

I wrote a bot focused on food gathering and map exploration to �nd more food, because
for each gathered food a new ant is spawned. I tried to overpower enemies by count with
just a simple combat strategy. My potential-driven bot using A* for food assignment gained
948th place from 7897 total players. After tournament I further improved the bot and tested
it against selection of bots from the tournament. The results shows that the food gathering
was e�ective.

In Chapter 2 - Game Speci�cation is described game environment, rules, goals. These
speci�cations is a modi�ed version available at [2].

In Chapter 3 - General Algorithm Description I'm proposing and describing algorithms
with potential of solving problems on this domain.

In Chapter 4 - Problems and Solutions is described problems and ways to solved them
using algorithms described in previous Chapter 3. This chapter also describes modi�cations
to these general algorithms in order to improve their performance on this domain or to use
them to solve slightly di�erent problems than they're meant to.

1

2 CHAPTER 1. INTRODUCTION

Chapter 2

Game Speci�cation

Ants is a turn-based multi-player strategy game set on a plot of dirt with water for obstacles
and food that randomly drops. Each player has one or more hills where ants will spawn.
The objective is for players to seek and destroy the most enemy ant hills while defending
their own hills, scoring is described in appropriate section (Section 2.4). Players must also
gather food to spawn more ants, however, if all of a player's hills are destroyed they can't
spawn any more ants.

2.1 Map

The map is a grid of squares that wraps around at the edges (a torus). This means if an ant
walks up across the top of the map they appear at the bottom, or walking to the right they
appear at the left. A bot is a program that reads input about the squares it can currently
see and outputs orders to move its ants around the map.

Figure 2.1 shows a sample map generated by included visualization script. The read and
blue dots are ants, blue textured squares are water tiles, light brown squares are tiles with
food and inside of the circles are hills.

Each ant (shown as red and blue dots on the map) can only see the area around (de�ned
by view radius provided at the start of the game), so bots will not start with a full view of
the map. This concept is in strategy games usually called Fog of War. Each turn the bot
will be given the following information for all squares that are visible to its ants:

• a list of water squares, that have not been seen before

• a list of ants, including the owner

• a list of food

• a list of hills, including the owner

• a list of dead ants (from the last attack phase), including the owner

3

4 CHAPTER 2. GAME SPECIFICATION

Figure 2.1: Sample game state with 2 players

2.2 Turns and Phases

A bot can issue up to one order for each ant during a turn. Each order speci�es an ant
by location and the direction to move it: North, South, East or West. Once the order is
executed, ants move one square in the given direction.

The game then goes through 5 phases:

• move all ants (ants that collide in the same square are killed)

• attack enemy ants if within range

• raze ant hills with enemy ants positioned on them (Razing hill described later in
Section 2.8)

• spawn more ants at hills that are not razed or blocked (Spawning described later in
Section 2.9)

• gather food next to ants (food disappears if 2 enemies are both next to it)

After the phases, the bot will receive the next game state and issue more moves.

2.3 Endbot Conditions

Any of the following conditions will cause a player to �nish participating in a game:

2.4. SCORING 5

• The player has no live ants left remaining on the map.

• The bot crashed.

• The bot exceeded the time limit without completing its orders.

If a bot stops participating due to a crash or timeout, their ants remain on the board and
can still collide and battle with other ants. Their ants just do not make any future moves
and opponents are not explicitly told those ants' owners are no longer participating.

If a bot crashes or times out on a given turn then none of the moves received from that
bot will be executed for that turn.

2.4 Scoring

The objective of the game is to get the highest score. Points are awarded by attacking and
defending hills.

• Each bot starts with 1 point per hill

• Razing an enemy hill is 2 poins

• Loosing a hill is -1 point

2.5 Cuto� Rules

Games ends under following conditions.

Food Not Being Gathered If a game consists of bots that aren't capable of gathering
food, then the game is cuto�. If the total amount of food is 90

Ants Not Razing Hills If a game consists of a dominant bot that isn't razing enemy
hills, then the game is cuto�. If the total amount of live ants for the dominant bot is 90

Lone Survivor If there is only 1 bot left alive in the game, then the game is cuto�. All
other bots have been completely eliminated (no ants on the map) or have crashed or timed
out. Remaining enemy hills are awarded to the last bot and points subtracted from the hill
owners.

Rank Stabilized If there is no bot with hills left that can gain enough points to gain in
rank, then the game is cuto�. Even though bots without hills left could still possibly gain
in rank, the game is not extended them, only those with hills. For each bot with a hill, it's
maximum score (calculated assuming it could capture all remaining enemy hills) is compared
to each opponents minimum score (calculated assuming it would lose all remaining hills). If
any score di�erence can overtake or break a tie then the game continues. If no bot meets
these criteria, the game is stopped.

6 CHAPTER 2. GAME SPECIFICATION

Turn Limit Reached There is a maximum turn limit for each map. Each bot is given
the limit. The game ends at this point.

2.6 Food Harvesting

Harvesting of food occurs each turn after the battle resolution process. If there are ants
located within the spawn radius of a food location one of two things will occur:

• If there exist ants within the spawn radius belonging to more than one distinct bot
then the food is destroyed and disappears from the game.

• If the ants within the spawn radius all belong to the same bot then the food is harvested
and placed into the hive for that bot.

2.7 Food spawning

Food spawning is done symmetrically. Every map is symmetric, meaning each bot's starting
position looks like every other bots starting position.

• Each game will start with a few food items placed within the bots starting vision,
about 2-5.

• Starting food will be placed randomly on the map as well, symmetrically.

• Each game has a hidden food rate that will increase the amount of food in the game.
Then the amount to be spawned is divisible by the number of players, then that amount
of food will spawn symmetrically.

• The entire map is divided into sets of squares that are symmetric. The sets are shu�ed
into a random order. When food is spawned, the next set is chosen. When all the sets
have been chosen, they are shu�ed again.

• Every set will spawn at least once before a set spawns a second time. This means if
you see food spawn, it may be awhile before it spawns again, unless it was the last set
of the random order and was then shu�ed to be the �rst set of the next random order.

• Sometimes squares are equidistant to 2 bots. This makes for a set that is smaller than
normal. The food rate takes this into account when spawning food.

• Some maps have mirrored symmetry so that a set of symmetric squares are touching.
It would be unfair to spawn so much food in one place, so these sets are not used. If
you can �nd a mirror symmetry after exploring the map, then you can avoid those
spots when looking for food.

2.8. ANTS HILL RAZING 7

2.8 Ants Hill Razing

The objective of the game is to raze your opponents hills and defend your own hill. A hill
is razed (destroyed) when an enemy ant is at the same location as the hill after the attack
phase. Razed hills do not spawn ants anymore. If all your hills have been razed, but you
still have ants, your bot is still alive and your ants can still move, attack, gather food and
raze hills.

2.9 Ant Spawning

As food is harvested, it is placed in the hive. Each food will spawn 1 ant. Ants are only
spawned at hills.

• The hill must not have been razed.

• The hill must not be occupied by an ant.

Only 1 ant can be spawned on a hill each turn.

For maps with multiple hills, 1 ant can be spawned at each hill if there is enough food
in the hive. If there is less food in the hive than there are hills, each hill is given a priority.
The last hill to have an ant on top is chosen last or the hill to have been touched the longest
ago is chosen �rst. In case of a tie, a hill is chosen at random.

This means that if you always move ants o� of the hill right away, the spawned ants
should be evenly spread between the hills.

You can control which hill to spawn at by keeping an ant nearby to block the hill when
you don't want it to spawn ants.

2.10 Battle Resolution

If ant appears in attack radius of other ant of di�erent color the battle begins. The battle
resolution is based on ant distraction, which sum of enemy ants within ant's attack range.
Because the ants less distracted are considered to be more focused to kill enemy without
getting killed. Equally distracted enemy ants kills each other. The ant kills each ant within
it's attack range that is more or equally distracted than it is. Resolution starts with most
distracted ants so ant can kill and be killed in same turn. It also can kill more ants in single
turn.

Ants doesn't care about enemies colors. Distraction is calculated as number of ants that
are not the same color as the ant.

For example let's consider case where we have two ants of di�erent color within each
other's attack range. Both ants will have distraction value one and so both will die.

More interesting case is when there is two ants of same color (red) and one of other
(blue), also each of them within each other's attack range. Both red ants has distraction
value one while blue one has distraction value two and thus the blue one will die while both
red ants survive.

8 CHAPTER 2. GAME SPECIFICATION

Chapter 3

General Algorithm Description

This chapter describes algorithms that can be used on this domain. While implementing the
player for tournament, I focused mainly on food gathering to win game by overpowering en-
emy by count. The following algorithms were chosen to solve this problem: A* (Section 3.1),
Potential Fields (Section 3.2), DCOP solvers (Section 3.3).

This chapter also contains fragments of code used as illustration described algorithms.
Please note that instead of pseudo-code is used python.

3.1 A*

A* search algorithm as described in [?] is informed, best-�rst, path �nding algorithm
which �nds a least-cost path on graph. It uses optimistic heuristic function (usually denoted
f(x)) to �rst search the routes that appear to be most likely to lead towards the goal. It's sum
of two other functions. The path-cost function (usually denoted g(x)) and heuristic estimate
(usually denoted h(x)). The path-cost function is cost from starting node to current node

Heuristic function is estimate of distance from current node to goal. This function
must be admissible heuristic. It means that estimated distance must not be more than real
distance, other way the found path is not guaranteed to be shortest. If the heuristic function
is monotone (di�erence of heuristic values of any two neighboring nodes is not more than cost
of edge between these nodes) algorithm doesn't need to reprocess any of already processed
nodes and a closed set can be used. It's possible because the g(x) for every opened node is
always the lowest possible while using monotone heuristic function.

Summing these two functions we get estimated cost of path through processed node
(f(x)). Using f(x) we can sort our open list and use it as priority queue.

Performance heavily depends on quality of heuristic function (h(x)). If it's very close to
the true cost of the remaining path fewer nodes has to be opened and e�ciency will by high.
As the quality of heuristic function goes down, the A* acts more like bread-�rst search as
the bread-�rst search is A* with underestimated heuristic function (h(x) = 0 for all nodes).

9

10 CHAPTER 3. GENERAL ALGORITHM DESCRIPTION

3.1.1 A* code

Following code (Listing 3.1) shows generic A*.

1 def a_star (s ta r t , goa l) :
2 c l o s e d s e t = []
3 came_from = {}
4 g_score = { s t a r t : 0}
5 h_score = { s t a r t : h (s ta r t , goa l)}
6 op e n l i s t = Prior i tyQueue ([s t a r t] , key=lambda x : g_score [x] + h_score [x])
7 while op e n l i s t :
8 cur rent = op en l i s t . p o l l ()
9 i f cur rent i s goa l :
10 return reconstruct_path (came_from , goa l)
11 c l o s e d s e t . append (cur rent)
12 for neighbor in cur rent . ne ighbors () :
13 i f neighbor in c l o s e d s e t :
14 continue

15 tentat ive_g_score = g_score [cur r ent] + edge_cost (current , ne ighbor)
16 i f neighbor not in op e n l i s t or tentat ive_g_score < g_score [ne ighbor] :
17 came_from [ne ighbor] = cur rent
18 g_score [ne ighbor] = tentat ive_g_score
19 f_score [ne ighbor] = g_score [ne ighbor] + h_score [ne ighbor]
20 i f neighbor not in op e n l i s t :
21 h_score [ne ighbor] = h(neighbor , goa l)
22 o p e n l i s t . push (ne ighbor)
23 return None
24
25 def reconstruct_path (came_from , current_node) :
26 i f current_node in came_from :
27 return reconstruct_path (came_from , came_from [current_node])+ [current_node]
28 else :
29 return current_node

Listing 3.1: Generic A* code

Inicialization Algorithm starts by de�ning several sets and maps. Maps holding g and h
values (line 4 and 5) are used to keep track of distance from start to each node and heuristic
estimate from each node to goal respectively. Open list is used to �gure out what node
should be processed next. Order is de�ned by f value of node which is de�ned as sum of g
and h values (key on line 6). Using prioritized queue with ordering key set to f(x) is usually
good way to do it (line 6). To keep track of already processed nodes the closed set is used
(line 2). To reconstruct found path we need to know parent node for each probed nodes
(came_from map on line 3). Parent node is adjective to current node while having lower
distance to start.

Main loop The algorithm loops while the open list is not empty. If the open list is empty
at this point it means that the path could not be found. During each iteration polls out the
head of open list, which is a node with lowest f value and checks it for goal. If the goal is
reached, path is reconstruct and returned otherwise the processed node is closed by adding
it to closed set and it's adjective nodes that are not in closed set are added to open list. To
add node to open list the f value has to be known. The g(x) is calculated by adding cost of
the edge between processed node and it's adjective node to g value of processed one. The
h value is result of heuristic function. If the node is already in open list we should check

3.2. POTENTIAL FIELDS 11

whether it's new g value is lower then the one calculated earlier, if so we need to update it's
f value and position in open list.

3.2 Potential �elds

Potential �elds method generates arti�cial �electromagnetic� �eld from points of interest
(goals, obstacles, enemies) and navigates unit through this �eld like charged particle. This
method doesn't need discretized space in contrast to most path �nding algorithms. It also
acts reactively and thus it can easily responds to changes of environment. However the
reactive nature can lead to local optima problem.

In arti�cial potential �eld methods, an obstacle is considered as a point of highest po-
tential, and a goal as a point of lowest potential. Navigated unit always moves from a high
potential point to a low potential point. Algorithm sets potential �eld function and then
repeats selecting reachable point with minimum potential and navigating unit to this point
until the goal is reached.

The potential �elds driven ORTS bot had great success when playing against winner of
2007 ORTS tournament ([3] and [4]). It can be used for generating soft edge of obstacles,
navigating cluster of units or keeping unit slightly out of enemy unit's attack range.

Potential �elds is fast and simple path �nding substitution in dynamic game worlds be-
cause units doesn't need to do full path search and can look just one step ahead instead.
Generating full path on large distances can be huge waste of resources in dynamic envi-
ronment because the path can become obsolete because of changes in the environment. It
has very nice results on open map where obstacles are or can be �ll to convex shapes. Un-
fortunately this reactive method leads to local optima problems and makes it unusable in
complicated environments like mazes. But it can be used as supporting method for more
sophisticated path planning. For example the path of group of units can be found by A*
and following the path can be done by attracting units to segments of this path. Adding the
obstacle potential will force units to avoid them.

Following two images demonstrate advantages of potential �elds on open maps. This
map was used in AI challenge tournament (it's name is random_walk_p02_02). In both
cases agents start at yellow node and try to reach green node, black nodes are obstacles and
darkness of node in Figure 3.2) displays its potential. The potential values has been set as
sum of one quarter of potential of adjective nodes. Starting with 0 potential of passable
nodes and 1 of obstacles.

Both agents choose next move to minimize Manhattan distance to goal, but agent using
potential �elds choose node with lower potential. As you can see the potential-aware agent
(Figure 3.2 right) can easily pass obstacles with small gaps then the one without potential-
awareness (Figure 3.2 left).

Unfortunately there is a lot of cases in AI challenge Ants problem where both reactive
agents fails and path searching algorithm has to be used to successfully navigate agents.

12 CHAPTER 3. GENERAL ALGORITHM DESCRIPTION

Figure 3.1: Ant not using potential �elds (left). Ant using potential �elds(right)

3.3 DCOP

3.3.1 Problem de�nition

DCOP (Distributed constraint optimization Problem described in [8]) is problem where
group of agents must distributively choose values for a set of variables to either minimize or
maximized the cost of constraints over the variables.

DCOP is de�ned as a tuple (A,X,D,R), where:

• A is set of agents

• X is set of variables

• D is set of domains

• R is function that maps every possible variable assignment to a non-negative cost.

The objective in a DCOP is to have each agent assign values to its associated variables in
order to either minimize or maximize sum of cost's for a given assignment. DCOP is general
model that can be used to represent many real world problems as Meeting Scheduling and
Supply Chain Management.

To use DCOP for managing surveillance the adaption for Mobile Sensing agent Teams
(DCOP_MST) described in [6] can be used. In DCOP_MST the agents adjusts their
positions to adapt to the dynamically changing environment and the dynamic changes in the
quality of information reported by sensors. Environment changes can be caused by change of

3.3. DCOP 13

priorities of area, unit movement. Quality of information can be changed by sensor failure and
whether changes. A MST problem several challenges not met by standard DCOP model.
Agents will need position and because of technology limitation the sensing and mobility
range has to be set. By limiting the mobility range a set of alternate position is de�ned.
Alternate position and sensing range de�nes a�ected agents by agent's move. One of most
challenging adaptation in the design of DCOP_MST is generation of goal function which
has to characterize the dynamic nature of the environment and dynamic quality of agent's
reports. The quality of agent's reports (credibility) is calculated using reputation model. The
required coverage for each point is represented total sum of agent's credibility to necessary
successfully cover it. The model's goal function is di�erence between credibility of agents
covering the area and coverage requirement. Because of the dynamic nature of the problem
a complete algorithm would not be practical. Some of existing local search algorithms for
DCOP can be adjusted to solve a DCOP_MST. Algorithm based on the Maximum Gain
Message (MGM) can be used in order to solve DCOP_MST. It is distributed message passing
local search algorithm with quick convergence. It's also monotonic and thus should minimize
expensive agent movement. Being incomplete and monotonic causes convergence to a local
minima.

DCOP_MST bring few new concepts not used in standard DCOP. The �rst one is agent's
position, which has to be represented by coordinates. Then two ranges has to be de�ned,
the Sensing Range(SR) of agent, which represent coverage of the agent, and Mobility Range
(MR) which represent range accessible in a single iteration. Using newly de�ned Mobility
Range the Domain set can be rede�ned. Domain of Agent includes all alternative positions
within agents Mobility Range from agents current position. Based on reputation model the
credibility variable for each agent can be compute as real positive number. To represent
coverage requirement for each point we need to de�ne environmental requirement function
(ER), which express required sum of credibility variables of agents with agents within sensing
range. Function current di�erence (Cur_Di�) de�ned for each point returns the di�erence
between value of environmental function (ER) and sum of the credibility variables of agents
currently covering it.

The global goal of agents is to cover area so the largest value of current di�erence is zero.
This can not be always achieved, so more general goal is needed, which is minimizing value
of current di�erence function over all points.

A ordered set OE including all types of events ordered accordingly to their chronological
order. Each event in OE includes it's type, time of occurrence and its location (in case of
an environmental event) or the agents involved (in case of an event which a�ects agents'
credibility). Each agent can send message to each of the other agents.

In DCOP neighboring agents are the agents that can be in�uenced by an assignment
change, because in the DCOP_MST the agents are aware of their position and their move-
ment is limited two agents are considered neighbors, if after move towards each other, their
sensing ranges overlap. Neighboring is also dynamic aspect of DCOP_MST.

3.3.2 DCOP_MST solver

In [6] is proposed a solving algorithm for DCOP_MST. The proposed algorithm choose
local search for solving problems instead of complete search because of dynamic nature of

14 CHAPTER 3. GENERAL ALGORITHM DESCRIPTION

environment and limited mobility of agents. The MGM (Maximum Gain Message) is local
search algorithm selected for this solver for it's fast convergence and simplicity. It's monotone
and thus it would avoid redundant movement of agents. In MGM after agent's receives the
assignment of all its neighbors, they compute maximal improvement (cost reduction) to its
local state possible by changing its assignment and sends this proposed reduction to its
neighbors. After collecting the proposed reductions from its neighbors agents changes its
assignment only if its proposed reduction is grater than the reduction proposed by all of its
neighbors.

1 def mgm_mst(agent) :
2 while True :
3 agent . send_to_neighbors (agent . cur_pos i t ion)
4 p o s i t i o n s = agent . r e c i eve_ne ighbor s_pos i t i ons ()
5 l oca l_redut i on = best_poss ib l e_loca l_reduct ion (agent)
6 agent . send_to_neighbors (l o ca l_reduc t i on)
7 l o ca l_reduc t i on s = agent . r ec i eve_ne ighbors_l r ()
8 i f (l o ca l_reduc t i on [" va lue "] > 0) :
9 i f (l o ca l_reduc t i on [" va lue "] > max(loca l_reduct ions , key=lambda x : x [" va lue "]) :
10 agent . cur_pos i t ion = loca l_reduc i ton [" po s i t i o n "]
11
12 def bes t_poss ib l e_loca l_reduct ion (agent) :
13 poss ib le_pos = agent . p o s s i b l e_po s i t i o n s ()
14 temp_diff = cur_d i f f . substract_coverage (agent . coverage)
15 new_pos = s e l e c t_po s i t i o n (poss ib le_pos , temp_diff , agent)
16 cur_covered_points = temp_diff . points_within_area (agent . cur_pos it ion , agent .SR)
17 new_covered_points = temp_diff . points_within_area (new_position , agent .SR)
18 cur_coverage = max(cur_covered_points − new_covered_points)
19 new_coverage = max(new_covered_points − cur_covered_points)
20 return {" po s i t i o n " : new_pos ,
21 " value " : min (cur_coverage − new_coverage , agent . c r e d i b i l i t y)}
22
23 def s e l e c t_po s i t i o n (po s i t i on s , func , agent) :
24 i f l en (p o s i t i o n s) == 1 :
25 return po s i t i o n s . pop ()
26 v i s i b l e_ s e t = union ([func . points_within_area (pos , agent .SR) for pos in po s i t i o n s])
27 target_set = [po int for point in v i s i b l e_ s e t
28 i f point==max(v i s i b l e_ s e t) and point >0]
29 i f not ta rget_set :
30 return random . cho i c e (p o s i t i o n s)
31 i f not [pos for pos in po s i t i o n s
32 i f a l l ([po in t s . d i s t anc e (pos) <= agent .SR for point in ta rget_set])] :
33 target_set = max ([[po in t s for po in t s in ta rget_set i f point . d i s t anc e (pos) <= SR]
34 for pos in po s i t i o n s] , lambda x : l en (x))
35 poss ib le_pos = [pos for pos in po s i t i o n s i f a l l ([po in t s . d i s t anc e (pos) <= agent .SR
36 for point in ta rget_set])]
37 i n t e r s e c t i on_ar ea = i n t e r s e c t i o n (
38 [func . points_within_area (pos , agent .SR) for pos in po s i t i o n s])
39 new_func = func . substract_coverage (i n t e r s e c t i on_ar ea)
40 return se l ec t_pos (poss ib le_pos , new_func , agent)

Listing 3.2: DCOP_MST solver

Each agent runs it's loop of mgm_mst. In which the agents sends and receives their
current positions to and from their neighbors (lines 3 and 4). Then calculates it's best
possible local reduction (line 5), and exchanges it with it's neighbors. Then changes their
position to position selected by local reduction if their positive local reduction value is larger
then reductions proposed by their neighbors (lines 8�10).

To select best possible local reduction appropriate function is used. This function gets
agents possible positions (those in its MR) and creates Cur_Di� without agents coverage

3.3. DCOP 15

(Cur_Di� where agent is not active). Then new position is found and it's value calculated
as di�erence of two points with highest value, one from set of points that won't be covered
from new position but are covered from current and one from set of points that is not covered
now but will be covered from new position. As the agent can't provide higher coverage that
is it's credibility value is reduced to it's credibility if higher.

To select new position, recursive function is used. This function returns position if only
one position is available otherwise it �nds all points from passed di� (func) that is within
agent SR from any available position and all selects positive points with highest value. If
none of the points is positive any position can be return. Now we want to �nd positions
that covers all these points (line 35), this may not be always possible (check on line 31) so
we try at least �nd positions that covers largest subset (line 33). As we found positions that
is best to use we can consider points within SR from all these positions covered and update
di�(func) and �nally recursively call this function.

16 CHAPTER 3. GENERAL ALGORITHM DESCRIPTION

3.4 Minimax and it's variations

3.4.1 Minimax

Minimax (described at [7]) is algorithm for zero-sum and usually two player games, which
minimizes the maximum possible loss. Algorithm recursively explores game tree and returns
next move that minimizes loss. Because of depth and branching factor of game trees in most
games, it's not possible to compute complete tree. This is solved by limiting exploring by
depth and using heuristic function to estimate how good it would be for player to reach that
state (node of the game tree).

The following Listing 3.3 describes generic minimax function. This function uses gain
instead of loss, which is usually used, and thus it's maximin (maximizing minimum gain)
but the idea is same. The algorithm is started for each possible moves with game state after
that move, depth we want to compute to and set to maximize.

1 def minimax (s tate , depth , minimize = False) :
2 i f depth == 0 or s t a t e . i s_ f i n a l () :
3 return s t a t e . h eu r i s t i c_ga in ()
4
5 alpha = In f i f minimize else −I n f
6
7 for ch i l d in s t a t e . c h i l d s () :
8 s co r e = minimax (ch i ld , depth−1, not minimize)
9 alpha = min (alpha , s co r e) i f minimize else max(alpha , s co r e)
10 return alpha

Listing 3.3: Minimax code

Each call of minimax function returns either heuristic evaluation of processed state in
case that desired depth was reached or the state is �nal (lines 2 and 3 of Listing 3.3) or
minimum/maximum value of minimax called on it's children (lines 7 to 9). The minimizing
�ag is �ipped on each depth (call of minimax on line 8). This way the algorithm simulates
opponent's best possible move, the one that minimizes our gain (and because it's zero-sum
game, maximize his gain).

3.4. MINIMAX AND IT'S VARIATIONS 17

3.4.2 Alpha-beta pruning

The original minimax can be speed up by not expanding and calculating subtree which can
not change the result. Overview of this method is at [7]. To �nd out which nodes doesn't
need to be expanded alphabeta pruning denotes two new variables alpha and beta, which is
used as upper and lower bound.

Figure 3.2: Evaluated game tree with alpha-beta pruning

The Figure 3.2 shows possible pruning. Leaves marked with X (possibly some huge
subtrees) doesn't need to evaluated because the right subtree (with value 1) won't be selected
as maximum by root node. We know that as soon as we �nd the leaf with value 1, because
value of parent can be now only same or lower than 1.

1 def alphabeta (s ta te , depth , minimize = False , alpha = −In f , beta = In f) :
2 i f depth == 0 or s t a t e . i s_ f i n a l () :
3 return s t a t e . h eu r i s t i c_ga in ()
4
5 for ch i l d in s t a t e . c h i l d s () :
6 s co r e = minimax (ch i ld , depth−1, not minimize , alpha , beta)
7
8 i f minimize :
9 beta = min (beta , s c o r e)
10 else :
11 alpha = max(alpha , s co r e)
12
13 i f beta <= alpha :
14 break

15
16 return beta i f minimize else alpha

Listing 3.4: Alphabeta code

18 CHAPTER 3. GENERAL ALGORITHM DESCRIPTION

Chapter 4

Problems and Solutions

Following chapter describes usage of algorithms described in Chapter 3. It shows how to use
these algorithms in order to navigate ants, assign targets and explore map. It also describes
few performance improvements that we possible thanks to game speci�cations.

4.1 Food assignment and path planning using A*

Following section shows domain speci�c modi�cations to generic A* algorithm that I �gured
out in order to make it more e�ective. Ants are played on a grid where some nodes are
inaccessible and food which randomly appears on accessible nodes has to be gathered by
ants. There is a lot of ants and a lot food, so ant has to be assigned to food and a path has
to be found. Optimal assignation would be when sum of distance necessary to overcome by
ants in order to gather all food is minimal and thus the number of turn is minimal as well.
I used A* for both, the food assignment to the closest ant and path �nding.

Because of movement limitations in this domain the Manhattan distance is good choice
of heuristic function. It is admissible and even monotone. A* is usually used to �nd the
shortest path from one start to one goal. If we want to use A* to navigate ants in order to
collect food we need to �gure out which ant should collect which food. Fortunately the A*
can be modi�ed to do this ant to food mapping for us and even provide us the shortest path
in a single run. In order to collect food as soon as possible we're looking for ant which is
closest to food. To �nd it we need to run A* from food and our ants as goals. We also need
to modify the heuristic function. Instead of Manhattan distance we have to use minimum
of all Manhattan distances from node to each ant (Listing 4.1).

1 def h(s ta r t , g oa l s) :
2 return min ([manhatan_distance (s ta r t , goa l) for goa l in goa l s])

Listing 4.1: Modi�cation of heuristic function for multiple goals

As we are using lowest value for set of admissible heuristics the new heuristic stays
admissible. To prove it is monotone we need to prove that it keeps monotone when goal
with minimum distance is changed between adjective nodes because as far as we keep using
same goal the heuristic acts as standard Manhattan. Heuristic is monotone when di�erence
of values of heuristic function of and two adjective nodes is not larger than cost of edge

19

20 CHAPTER 4. PROBLEMS AND SOLUTIONS

between these nodes. Cost of all these edges is in our case one. Value of heuristic function
is based on selected goal. Let's say we have two adjective nodes A and B and two goals C
and D and heuristics H(x) = min(h(x,g)) where x is node, g is set of all goals and h(x,g) is
Manhattan distance from x to g. H(A) = h(A,C) and H(B) = h(B,D). This means that
H(A) ≤ h(A,D) and H(B) ≤ h(B,C). And because h is Manhattan distance and because
of the movement limitations: ∀g ∈ Goals : |h(A, g)− h(B, g)| = 1.

H(A) ≤ h(B,D) + 1

H(A)−H(B) ≤ 1

Instead of path reconstruction from food to found closest ant we can save the path-cost
(g(x)) to nodes and it will allow ant follow path without full path reconstruction. This also
make it reusable in future and allow ant to slightly change it when obstacle appears without
need to run new search. Ant follow path by choosing adjective, passable node with smallest
distance to goal.

If we change h(x) to select value saved in nodes instead of Manhattan distance when
possible we can improve future searches performance. We can even stop search when node
with known path to goal appears on head of open list and navigate ant through this node.
It's possible because the open list is sorted by f(x) which value can not be lower that real
path length as so we know that all other possible path through other nodes in open list won't
be better then this one.

If the closest ant isn't satisfying solution (it has already assigned more important task)
the algorithm can be resumed. All it takes is removing the ant from goals and recalculating
h(x) values for all nodes in open list and reorder it by updated f(x) values. We can do
this because the heuristic function is monotone and so we can be sure that all already
calculated g(x) values are correct. We just need to �x wrong order of open list which may
be broken because of possible changes of H(x) values (Only nodes which used removed goal
for calculating minimum estimated distance has wrong f(x) values and thus are in wrong
order). This search resuming can be very useful when the second closest ant is close to �rst
one. Smart way to achieve this is turning A* to iterator. In the Listing 4.2 is shown python
way to do so by modifying 10th line of original A* (Listing 3.1).

1 y i e l goa l
2 goa l s . remove (goa l)
3 r e c a l c u l a t e_op en l i s t (open l i s t , goa l s , goa l)
4 continue

Listing 4.2: Switching to iterator my modifying 10th line of Listing 3.1

To assign as much food as possible to our ants A* for each food has to be run. Order
in which the searches are run may lead to di�erent results, based on how we solve assigning
food to ant that already has assigned food.

If we decide to change its assignment when the new one is strictly better than the previous
one then we should rerun search for the previous one. This can be easily accomplished
by creating queue of all food and pushing there food that lost its assignee. We can take
advantage of resuming the searches, described above, by keeping them in memory till we
solve complete queue.

4.1. FOOD ASSIGNMENT AND PATH PLANNING USING A* 21

Other way to do this is creating priority queue of the searches and processing one A*
cycle of the one with lowest f(x) value of node at the head of it's open list repeatably until
all of them has assignment. This way the searches can share goals so the found solution in
one of them will remove this solution from goals of all searches and force them to recalculate
their open list.

Open list recalculation can be accelerated by memorizing what goal was used in h(x)
function (Listing 4.3). Only nodes where the goal, that has been just removed, was used in
heuristic function has to be recalculated. This can have great impact on performance using
the method with simultaneously processed searches.

1 def h(s ta r t , g oa l s) :
2 (d i s tance , node)=min ([(manhatan_distance (s ta r t , goa l) , goa l) for goa l in goa l s])
3 h_chosen_goal [s t a r t]= goa l
4 return d i s t anc e
5
6 def r e c a l c u l a t e_op en l i s t (open l i s t , goa l s , removed_goal) :
7 a f f e c t e d =[node for node in op e n l i s t i f h_chosen_goal [node] i s removed_goal]
8 for node in a f f e c t e d :
9 o p e n l i s t . remove (node)
10 h_score [node] = h(node , goa l s)
11 o p e n l i s t . push (node)

Listing 4.3: Accelerated open list recalculation

We should also take in mind that game is dynamic and food that is too far from our ants
may be gathered by enemy or closer ant without without assignment can appear (spawned
or one that just �nished it's task). Using A* for planning path on long distances can use a
lot of resources, the resource consummation grows exponentially. Setting maximum distance
cuto� isn't bad idea. Reasonable value is somewhere between one and two view distances.
Cuto� is applied when currently processed node's f(x) value is more then the set maximum
distance or to save memory we can discard these nodes instead of putting them to open list.

Setting cuto� has another positive e�ect. We can remove goals theirs h(x) value at the
beginning of the search is greater then our maximum distance. This speeds up further h(x)
evaluation.

22 CHAPTER 4. PROBLEMS AND SOLUTIONS

4.2 Map exploring with potential �elds

While Fog of War concept and food is spawn randomly we need to keep informations about
each map tile as new as possible in order to discover need food. To do so, the potential �elds
can be used. To navigate ants to tiles with old information we need to set new variable for
each map tile, which will represent how long the tile has not been seen. Using this negation of
this value as potential we can navigate ants toward lowest potential and make them discover
map. While the visible or water tiles has 0 potential and other tiles has negative potential
and longer it was unseen the lower it is, we can navigate them by selecting direction where
sum of unseen value of tiles slightly out of visible range in that direction is lowest.

I found this technique to be quite successful on open maps but had problems on more
complex maps like mazes. The ants stuck close to wall trying to reach �eld that is behind
it.

To prevent this we can run breadth-�rst searches (BFS) through non-water tiles limited
to distance of visible range for every possible position and calculate the potential as sum of
potential of all these tiles.This method is quite resource heavy. It involves �ve breadth-�rst
searches and sum of a lot of tiles' potential.

Problem with running a lot of searches can be solved by saving the result to tiles and it
can even improve A* performance if the distances generated during BFS are saved as well.
The problem of huge sum where most of values is zero can be also solved. We need to save
tiles that on the edge of the search. Tiles which straight line distance to center tile is less
than view distance and more then view distance - 1.

It can be tweaked even more by splitting the edge into 4 parts and return only 2 ap-
propriate parts based on direction where from we came but we already removed most of
unnecessary tiles and kept the potential evaluation unchanged. This tweak would remove
just another half of nodes and make the evaluation function more complex.

During testing bot on maze with right angle corridors appeared problem with trying to
turn too soon. Since the area behind the is not discovered, the ant is attracted there as soon
as the BFS can pass around the end of wall. This situation can be solved by reconstructing
the path generated by previous BFS to point that is just behind the wall and following it.
We can also keep setting direction changers on tiles we follow as long as the Manhattan to
the point behind the wall increases. This direction changers will change selected direction of
any further bot stepping on this tile and trying to repeat same mistake.

Even thought the ants stopped trying to explore unreachable tiles the closed map prob-
lems wasn't solved. On these closed maps there is usually more ants on smaller area and if
everything around the ant is visible, the ant doesn't know where to move.

To solve this I wrote simple workaround just before the tournament. I assigned ran-
domized simple fallback instructions to each ant. The instruction contained list of preferred
directions and ant which didn't knew where to move selected �rst possible instruction from
this list. The list was left or right rotating with random �rst direction.

Better solution would be calculating potential vector from it's neighbors (neighbors are
ants with overlapping view ranges), which is implemented in the newer version. To simplify
calculation I just selected the closest neighbor.

4.3. MAP EXPLORATION AS DCOP_MST 23

4.3 Map exploration as DCOP_MST

As DCOP solvers usually leads to static solution and thus make agent to �nd local optima and
stay there. To force agent to explore we need to dynamically change the ER (environmental
requirement) function to return values that depends on duration for which the area wasn't
covered. In Ants we want to cover every accessible area of map (non-water tiles) and so
we can de�ne ER function like: min(currentTurn − lastSeenTurn, threshold)/threshold
where currentTurn and lastSeenTurn is values of turn counter now and when the area was
last seen and threshold is number of turn after which the ER function is maximal. Note that
this function returns values from 0 to 1. To fully discover the any tile on map it needs to
be covered at least by one ant and there is no di�erence between ants so reputation model
proposed in original algorithm is not necessary and we can simply consider that credibility
of all ants is one. This and the fact, that to successfully cover any area in Ants is only one
ant needed, are reasons why ER function values is in range 0 and 1.

Changing ER function for some important positions like hill or front lines can create
guards or send more ants to �ght and help holding the area. The ER represents how many
ants we want assign to cover some area.

Unfortunately I wasn't able to implement the solving algorithm that would work fast
enough. The algorithm loops until there is no cost reduction, while in each iteration runs local
reduction for each ant and during each local reduction is a lot of iterations over tiles within
the sensing range (approximately 200 tiles) of each possible position. My implementation
was able to operate with 20 ants while the turn time limit was increased to 3 seconds which
was 3 times more than the tournament time limit. This slowness made it impossible to
compete with other players.

Figure 4.1: Ants scattered around hill by MGM

Although it was impossible to test it with larger amount of ants, the behaviour was good.
Instead of rapid exploring the bot covered large area around hill with just a few ants and

24 CHAPTER 4. PROBLEMS AND SOLUTIONS

when new ant was spawned ants at borders moved to cover new area. The coverage is shown
on Figure 4.3, the part map with red overlay is out of sensing range. This behaviour can
be used to build defensive borders by setting larger environmental requirement to positions
inside visible ranges of border ants.

To speedup the algorithm I changed next move selecting function to selecting tile which
has highest sum of current di�erence of tiles in its sensing range, but it a�ected the perfor-
mance just slightly, because the main problem is in large amount of operations on current
di�erence maps (500,000 with 15 ants every turn) which I wasn't able to signi�cantly de-
crease.

I'm convinced that this method is good way to solve exploration problem because unlike
potential �elds we can set number of ants (not just attraction) we want to keep close any
point. Thanks to the communication between ants there would by less unnecessary moves,
like two ants moving to explore almost same area.

There is also one signi�cant drawback of this method when comparing to potential �elds.
Unlike when using potential �elds where we can get all possible moves ordered by their value
this way we can get only one next move for each ant, which means that other methods like
safe tiles checking (described in following section) has to be implemented as input for the
algorithm and modify set of possible moves, before the algorithm starts. For example the
safe tiles checking can be in complicated situations slow and it have to be always run for
each possible position.

4.4. SIMPLE COMBAT 25

4.4 Simple combat

My tournament player was focused mostly on food gathering and tries to win with overpow-
ering opponents by count. But algorithm for solving combat situation was necessary. This
simple algorithm evaluates �elds as dangerous or save based on opponent position. Then
ants are allowed to move only to save �elds. There is no inter-agent cooperation and there
is a lot of special cases where this algorithm fails. My tournament bot used more simple
method and didn't calculated with how many enemies the enemy ant is �ghting with. This
method was implemented after the tournament.

To �gure out which �elds are dangerous we need to know for each �eld on map how many
enemies may have the �eld in it's attack radius next turn and how many ant's are attacking.
To do so we can use following algorithm. (Listing 4.4).

1 i n f l u e n c e = {owner : { f i e l d : 0 for f i e l d in Map} for owner in a l l_p l aye r s }
2 t o t a l = { f i e l d : 0 for f i e l d in Map}
3
4 for ant in a l l_ants :
5 for f i e l d in ant . f i e l d s_ in_rad iu s (ATTACK_RADIUS + 1) :
6 i n f l u e n c e [ant . owner] [f i e l d] += 1
7 t o t a l [f i e l d] += 1
8
9 def i s_sa f e (f i e l d) :
10 a t tack ing = t o t a l [f i e l d] − i n f l u e n c e [MY_BOT] [f i e l d]
11 i f at tack ing == 0 :
12 return True
13
14 best = In f
15 for the_f i e l d in f i e l d . f i e l d s_ in_rad iu s (ATTACK_RADIUS +1):
16 i f the_f i e l d . ant () and the_f i e l d . ant () . owner != MY_BOT:
17 value = t o t a l [t h e_f i e l d] − i n f l u e n c e [MY_BOT] [the_f i e l d] :
18 i f value < best :
19 best = value
20 i f best < at tack ing :
21 return False
22 return True

Listing 4.4: Save �elds evaluation

At �rst we need to �nd out how many ants are attacking each �elds per ant owner and
total. For this the in�uence and total maps are used (de�ned on lines 1 and 2 respectively).
The in�uence map structure is in�uence[owner][�eld] where owner is owner of ant that can
attack the �eld. The total is a map summing values of in�uence over owners. To �ll the
maps we �nd all �elds in all possible attack radius after one step (line 5) for each known
ant (line 4) and increase the corresponding value in our maps. At this point we can easily
calculate how many ants can attack ant at any position in next turn simply by evaluating
total[�eld] - in�uence[owner][�eld] where �eld is the position and owner is owner of ant at
the position. This is still not enough since the ant's survival is based on how many ants is
attacking the least attacked enemy ant attacking the ant.

To �gure out whether the �eld is secure we need to get how many ants is attacking the
�eld (line 10). If none the �eld is secure otherwise we need to �nd out how many ants is
the attacker's attacking and try to �nd at least one that is attacking less ants that we (lines
15�19). If we �nd one the our ant would die on this position and thus the �eld is not secure
(lines 20�21).

26 CHAPTER 4. PROBLEMS AND SOLUTIONS

I used this method without purpose to kill enemy ant, just let ants �ght those which
crossed my path. Because the grow of army worked nice I let my ants to enter 1:1 situations.
This nicely eliminated ants approaching my hill because of higher concentration of my ants
there. This method also dramatically minimized number of deaths in 2:1 situations.

4.5 Better combat resolution using Minimax

I didn't focus on combat situations, but it should be noted that the winning algorithm
(written by xathis) used minimax-like algorithm for combat resolution [5]. He divided ants
into a groups and expanded all possible moves of that group as maximization part and all
possible positions of enemies as minimization part. Evaluation function he used considered
number of dead ants and also distance from enemy, to keep pushing or at least holding the
battle line.

4.6 Symmetry detection

As the rules say, the map has to be symmetric in such way that all bots has same starting
conditions. And even though the food is spawned randomly each food it is spawn in all
images of that symmetry as well. It should be also noted that game starts with undiscovered
map thus detecting symmetry can dramatically speed up discovering it and keeping track of
food that is outside of current visible range.

If we represent symmetry as a�ne transformation we can generate set of possible symme-
tries at the start of the game and transform each newly discovered tile using each symmetry
in that list and remove those that doesn't �t. Eventually we end up with a single symmetry
left. This symmetry is the one that can be used to uncover additional parts of map. We can
also used this symmetry to discover food that is not currently visible, but some of it's image
is. Additionally the search algorithms can bene�t from this, because if the search has been
already run and cached on any image it can be transformed and reused.

In the end I reject this approach for several reasons. Searching for symmetry would take
lot of computation time, especially at beginning of game. I found out that �nding food is
not a problem since there is a lot of food spawning and more important than knowing where
a food is is being close to it. Knowing about food that is not close to any of my ants would
take also a lot of computation time because of additional useless searches. Actually the only
bene�t would be faster searches later in game.

Chapter 5

Testing

5.1 Tournament

My �nal version of bot for tournament used A* for food gathering and potential �elds for
map exploration. Unfortunately the A* didn't have depth cut o� and potential �elds didn't
used BFS technique described in Section 4.2 and it had problems on maze-like maps. It
scored 948th place from 7897 total players.

5.2 Post-tournament updates

After the tournament I improved the bot and testing against the old version showed up that
the new bot wins in 59.6% of games, ties in 31.2% and loses in 9% of games which seems like
nice improvements. The bot uses potential �elds to move ants towards the uncovered map
tiles, but unlike the previous version, this time bot takes in count only tiles with path within
the sensing range from new position. Reason for this change is that exploring unreachable
area behind wall is useless because any food we would �nd wont be probable reachable. This
change minimized exploring dead ends and let ants focus on more useful tasks. Another new
part is that if an ant is already inside of explored and currently covered area it moves away
from it neighboring ants by maximizing minimal Manhattan distance from it's neighbors.
Finally the Simple Combat solution was �xed, old version of bot uses much simpler, faster
but highly inaccurate solver. This solution worked pretty well while playing against bots that
didn't attack on purpose. The bot was successfully avoiding positions where it would die
without dealing any damage. Since the grow of army worked well I decided to allowed ants
to step to position where they die and kill enemy. This decision slightly improved defence
and also helped clear way to enemy hills.

5.3 Other bots

When the tournament started and the submitting bots was closed participants got oppor-
tunity share their bots on forum. Just several dozen of users used it and mostly only codes
without description of used techniques were posted. From these posts I selected few samples

27

28 CHAPTER 5. TESTING

with various ranks to test my bot against them. Names in Table 5.4 are usernames users
used in the o�cial tournament and their bots can be found on the o�cial pages1.

5.3.1 xathis

The winner of the tournament was Mathis Lichtenberger using nick xathis. After the tour-
nament he also described methods he used [5]. The exploration method is very similar to
mine, but instead of spreading the ants inside of covered area he sends them to borders. The
borders is area that is adjective to other bot's area. The bot's areas are generated by running
BFS simultaneously from all visible bots (his and enemy's). When area collides with other
one, they can be either merged in case of same owner or create border otherwise.

1http://aichallenge.com

5.4. RESULTS 29

5.4 Results

The updated version of my bot was tested against the tournament version (listed as �cik)
and several players of various rank. This testing was possible thanks to the open-sourcing
act on the tournament's forums, where player have been posting sources of their bots since
the submitting to tournament was closed.

Bots played all 93 tournament maps for two players and time limit was set to 300 turn.
Following table show results of these duels, listed wins, loses and draws are wins, loses and
draws of my bot and uses score described in Chapter 2. Since my bot was focused on food
gathering and map exploring in order to grow fast in count I added ants domination and
average ant di�erence, where domination is number of games where my player ended with
more ants then enemy and the average di�erence is averaged di�erence between number my
ants and enemy ants at the end of the game.

Name Rank wins draws loses ants dominations avg ant di�

xathis 1 3.2% 40.8% 55.9% 3.2% -48
rossxwest 115 1.1% 50.5% 48.4% 42.0% -6
qgazq 382 36.5% 13.9% 49.4% 66.6% 15
utoxin 726 83.8% 7.5% 8.6% 98.9% 76
Flux_w42 764 43.0% 35.5% 21.5% 74.2% 23
nmalbran 813 27.9% 40.8% 3.1% 96.8% 69
gakman 941 65.6% 26.9% 7.5% 95.7% 34
�cik 948 59.7% 31.8% 9.1% 80.6% 21

Table 5.1: Results of duels of my bot and other players from tournament

Testing bot on all maps showed that potential �elds based navigation terribly su�er on
maze maps especially on maps with right angle corridors with thin walls, where bot tries
to navigate ant through wall. On the other hand on open maps with mostly almost convex
obstacles (like these in random_walk set) bot work very well, ants spreads across maps very
fast and bot dominated in count of ants very quickly.

The combat solution also worked well against players without some sophisticated combat
strategy and it would probably worked reasonably good even against xathis' bot if some
technique to guard borders of of explored are was used. Ants didn't got easily killed without
causing same damage to opponent. But since the ants on the edge were scattered and didn't
plan moves few step further the xanthis' minimax forced them to move into deadly positions.

30 CHAPTER 5. TESTING

Chapter 6

Conclusion

6.1 Evaluation

This section lists a requirements of this thesis and describes the accomplishments.

1. The student will study the rules of the AI Challenge � Ants and the software libraries
for creating players for the game.

I have described rules in Chapter 2 and used the libraries for communication with game
server available at the tournament page to create the player.

2. He will review the general algorithms and techniques used in games where players control
larger amount of units, mainly the potential �elds and other techniques successful in the Open
Real-time Strategy game.

Algorithms usable for games with large amount of units are listed and described in
Chaper 3.

3. Using the available libraries, he will implement a complete player that could be submitted
to the competition.

I've created and submitted player using potential �elds, A* and simple combat resolution.
Games played by this player is available to review on competition website under my pro�le
1. Sources are available online at github2.

4. He will compare the implemented player to the players successful in the 2011 AI Chal-
lenge competition.

Final ranking of the player and comparison of later version is available in Chapter 5.

1Pro�le for Ficik: http://aichallenge.org/pro�le.php?user=9566
2Repository with sourses: http://github.com/Ficik/Ants

31

32 CHAPTER 6. CONCLUSION

Bibliography

[1] Ai challenge. http://aichallenge.com [Online; accessed 18-May-2012].

[2] Ai challenge - aichallenge/aichallenge wiki. https://github.com/aichallenge/aichallenge/wiki/
[Online; accessed 18-May-2012].

[3] J. Hagelbäck and S. J. Johansson. The rise of potential �elds in real time strategy bots.
In AIIDE 08: Proceedings of the Fourth Arti�cial Intelligence and Interactive Digital

Entertainment Conference, pages 42�47, 2008.

[4] J. Hagelbäck and S. J. Johansson. Using multiagent potential �elds in real-time strategy
games. In Proceedings of the Seventh International Conference on Autonomous Agents

and Multi-agent Systems (AAMAS), 2008.

[5] M. Lichtenberger. Ai challenge 2011 (ants) post mortem by xathis.

[6] R. G. Roie Zivan and K. Sycara. Distributed constraint optimization for large teams
of mobile sensing agents. In International Joint Conference on Web Intelligence and

Intelligent Agent Technology, pages 347�354, 2009.

[7] S. J. Russell and P. Norvig. Arti�cial Intelligence: A Modern Approach (2nd Edition).
Prentice Hall, December 2002.

[8] J. M. Vidal. Fundamentals of Multiagent Systems. 2007.

33

34 BIBLIOGRAPHY

CD content

35

	Introduction
	Game Specification
	Map
	Turns and Phases
	Endbot Conditions
	Scoring
	Cutoff Rules
	Food Harvesting
	Food spawning
	Ants Hill Razing
	Ant Spawning
	Battle Resolution

	General Algorithm Description
	A*
	A* code

	Potential fields
	DCOP
	Problem definition
	DCOP_MST solver

	Minimax and it's variations
	Minimax
	Alpha-beta pruning

	Problems and Solutions
	Food assignment and path planning using A*
	Map exploring with potential fields
	Map exploration as DCOP_MST
	Simple combat
	Better combat resolution using Minimax
	Symmetry detection

	Testing
	Tournament
	Post-tournament updates
	Other bots
	xathis

	Results

	Conclusion
	Evaluation

