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Abstract

In this work, we focus on the combination of visual and depth data in object
detection. We propose an algorithm for object detection using a sliding
window technique and a Bayesian-like classifier based on random ferns with
Haar features. We test the algorithm on the car detection problem using a
mobile robot for urban search and rescue equipped with a camera and a 3D
lidar. The detector finds cars in a scene and estimates their approximate
orientation. We show that the fusion of the visual images and the 3D data
significantly improves the detection performance in comparison with utilizing
only the visual data. The detector is able to overcome poor data quality from
one of the sensors in harsh conditions.





Abstrakt

V této práci se zabýváme detekćı objekt̊u ve vizuálńıch a hloubkových da-
tech. Navrhujeme algoritmus pro detekci objekt̊u pomoćı techniky posuvného
okna a klasifikátoru založeného na Haarových př́ıznaćıch a vycházej́ıćıho
z bayesovské klasifikace. Algoritmus testujeme na úloze detekce automo-
bil̊u pomoćı mobilńıho robotu vyv́ıjeného pro záchranné práce v zastavěných
oblastech a vybaveného kamerou a laserovým dálkoměrem. Detektor vy-
hledává automobily a určuje jejich přibližnou orientaci. Experimentálně jsme
ověřili, že kombinaćı obrazových a hloubkových dat se značně zvýš́ı úspěšnost
detektoru oproti použ́ıváńı výhradně obrazových dat. Algoritmus je schopen
detekce i v náročných podmı́nkách, kdy je kvalita dat z jednoho ze senzor̊u
sńıžena.
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Chapter 1

Introduction

Object detection is one of the most important tasks in the field of computer
vision. We concentrate on the car detection problem using a mobile robot
for urban search and rescue, shown in Figure 1.1.

1.1 Motivation

The mobile robot is a part of the European Union integrated project NIFTi
– Natural human-robot cooperation in dynamic environments [3]. The robot
is designed to be used in critical situations such as car accidents in tunnels.
We focus on the car detection problem, which should help the robot operator
to quickly find cars in a scene. We propose an algorithm for car detection in
a scene using data from the robot’s camera and 3D lidar. The detector also
estimates an approximate orientation of the car. This is useful to determine
the areas to access the car or view into the car, see Figure 1.2.

1.2 Previous work

There are many approaches to object detection. In this section, we present
an overview of related work. Contrary to the majority of the papers in this
field, we have to deal with rather sparse point clouds. Additionally, we have
no generalized 3D model of the target object (car).

One of the efficient methods to find free-form 3D objects in point clouds
is proposed in [7]. A global model description based on oriented point pair
features is built in the learning stage and the model is matched locally using a
fast voting scheme in the classification stage. The point pair features describe
the relative position and orientation of two oriented points. This method is
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Figure 1.1: NIFTi BlueBotics mobile robot equipped with an omnidirectional
camera and a 3D lidar [3].

Figure 1.2: A motivation for the estimation of the approximate car orien-
ation. The yellow points and rectangles denote the areas of access or view
into the car [3].
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fast and able to deal with sparse point clouds, but it requires an accurate 3D
model of the target object, which is unsuitable for our task.

The works involving the combination of the visual and 3D data have
recently gained popularity since the Kinect device appeared on the market.
A recent work [9] concentrates on labelling objects in 3D scenes reconstructed
from RGB-D (color+depth) image sequences. The sliding window detectors
trained on various object views are utilized to assign class probabilities to
pixels in every RGB-D frame. These probabilities are projected into the
reconstructed 3D scene and integrated using a voxel representation. An
efficient inference on a Markov random field over the voxels is performed,
combining cues from view-based detection and 3D shape, to label the scene.

Another work concerning RGB-D data [4] on people tracking by a mo-
bile robot is based on the clustering of the scene by using 3D information in
conjunction with a reliable classifier based on histograms of oriented gradi-
ents, which is a method based on support vector machines, to identify people
among these clusters. Nevertheless, both methods [9] and [4] take profit from
tracking, which is not applicable in our problem because of the low frame
rate of the 3D lidar.

The article [12] focused on detection and tracking in urban environments
is the closest to our task. It deals with the fusion of the visual and 3D data
and aims at people and car detection. The 3D points are classified by the
boosted conditional random fields. The visual detector utilizes an extension
of the implicit shape model, which learns a codebook of local descriptors
from a set of labeled images and uses them to vote for centers of the detected
objects. The objects are tracked using a Kalman filter with multiple motion
models. The fusion of the data from the camera and the 3D lidar is however
performed by the tracking module, which is unapplicable in our problem.

Although the paper [10] deals only with 3D data acquired by an au-
tonomous mobile robot, it is very close to our work in other aspects. The
detector described in this work is based on Haar features and utilizes 3D point
clouds projected to an image plane. Objects are learned using classification
and regression trees and the Gentle AdaBoost algorithm.

1.3 Our approach

We have not found a method that would be directly suitable for our task.
Consequently, we propose a novel method based on our previous experience.

In [6], we found out that classification using random ferns is fast and
efficient and we wanted to try it also on the car detection problem. Let us
briefly explain the concept. Assume we have a set of randomly generated
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binary features, i.e., features with two possible values – 0 and 1. These
features are evaluated in each window. The pairs of image pixel intensities
are an example of binary features; in our work, we use Haar feature pairs.
We want to estimate a probability model from labeled training samples –
simply said, which evaluation of the binary features is ‘typical’ for each class.
As will be explained later, neither calculating the joint probability for all
binary features, nor assuming complete independence of all binary features is
appropriate. A random ferns-based classifier estimates the probability model
by making a compromise between these two ‘extremes’ – by modelling only
some of the dependences between the binary features. We use a modified
version of the algorithm originally described in [11] for the classification of
each window.

The proposed method is also based on our previous work on the sliding
window alignment in car detection [5], which was intended to extend the
work [15]. We improve the random ferns-based classifier that is used only
for the visual data in [5] by extension for the 3D data and enhancing its
performance by means described in the following text.

In this work, we use both visual images from a camera and 3D points from
a lidar to make the detector more robust in the context of the car detection
problem in harsh visual conditions. The visual and 3D representations of a
scene are processed separately, so that the detector is resistant to failure of
one of the sensors. The detection process in the visual and 3D data is in
principle the same, because the 3D points are projected to the image plane
and an interpolated depth map is constructed. Besides the detection, we also
estimate an approximate orientation of a detected car, see Figure 2.1.

The detection is based on a sliding window algorithm. The concept is
simple: a sliding window is moving over the query image. An occurence of
a car in a certain orientation is tested in each window using a random ferns-
based classifier with Haar features. A sample result of the car detection is in
Figure 1.3.
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a b

Figure 1.3: Example of the car detector output projected on a visual image
(a) and on an interpolated depth image (b). The light blue rectangle repre-
sents the ground truth, the green rectangle indicates the position of the car
estimated by the detector. This window was correctly classified as a car in
the West orientation by both the visual and the 3D classifier.
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Chapter 2

Algorithm

In this chapter, we describe the algorithm for car detection in visual images
and 3D data using the sliding window method.

The main concept is that a rectangular sliding window is moving over a
query image and in each position, the most likely class, i.e., one of the eight
approximate car orientations, see Figure 2.1, is estimated. In case that the
detector is unsure about the decision, it states that there is no car in the
current window.

We take advantage of 3D point clouds to extend the visual information
from a camera. The point clouds are mapped to 2D grayscale depth images
with an identical point of view as the camera. These images are handled the
same way as the visual images, i.e., using the same algorithm. See Section
A.2 for more details.

In this work, the term detector is used for the ‘high level’ algorithm, which
serves to find cars and determine their orientation in a query image using the
sliding window technique on both the visual and 3D data. The detector is
described in Section 2.2. On the other hand, the term classifier refers to the
‘low level’ algorithm that assigns each window to one of the eight classes. It
is based on random ferns [11] with Haar features and described in detail in
the following section.

2.1 Random ferns with Haar features

Haar features

We have chosen Haar features as the lowest-level descriptors of a window.
We use five different types of Haar features, see Figure 2.2. These features
of various sizes are ‘placed’ into the window on different positions. The
grayscale image intensities are summed in the black and white areas of a
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Figure 2.1: Orientations of a car that are distinguished by the classifier –
eight approximate positions of a camera.

single feature. We take the absolute value of the difference of the black-area-
sum and the white-area-sum as a Haar feature response.

We use Haar features instead of pixel intensities used in the original work
[11]. The experiments we performed in [5] showed that Haar features out-
perform pixel intensities in the car detection problem.

The Haar features are randomly grouped into pairs. That allows binary
evaluation of each pair, i.e., which response of the two Haar features is higher.
Evaluation of a set of Haar features on a certain image window is a result of
the comparison of the responses in all feature pairs. Hence, for a set of N
feature pairs, there are 2N possible evaluations.

Probability model estimation

The classifier attempts to classify each window into one of the eight classes,
i.e., car orientations, as shown in Figure 2.1. The classification is based on
a probability model, which assigns each possible evaluation of a window the
probability of the presence of a car in a certain orientation. More accurately,
it is the conditional probability of a class given the evaluation of a particular
window. The window is assigned to the class with the highest probability.
Please note that the window is assigned to one of the classes even though
there is no target object at all. Such a classification should be discarded by
the detector if the probability of the most likely class is lower than a given
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Figure 2.2: Types of Haar features used by the classifier.

threshold. The selection of the particular threshold value will be discussed
later.

To enable this classification, we need to estimate the probability model.
Calculating the joint probability of all the N feature pairs would require
extreme amount of memory, as 2N values – probabilities of each of the possible
evaluations of the set of all feature pairs – would have to be stored for each
class. Assuming independence of all binary features would rapidly reduce
the necessary amount of memory, but it completely ignores the correlation
between features [6].

Random ferns

The main idea of the random ferns-based classifier consists in grouping the
feature pairs to arbitrary sets of equal size, called ferns, and calculating
a probability model from evaluations of these sets, assuming independence
of the sets. The grouping is again based on random selection. Schematic
visualisation of ferns is shown in Figure 2.3.

The sets are in fact not strictly independent, but this modification perser-
ves performance while using reduced amount of memory and reasonable com-
putational time.

In the learning stage, the probability model is calculated for each of the
ferns instead of the whole set of all feature pairs. That means, for each fern,
the conditional probability of each class given each evaluation is estimated
from the training data set.

Assuming the independence of the ferns, the conditional probability of
a class given the evaluation of a particular window is simply calculated as
a product of the conditional probabilities of a class given the evaluation of
each fern. For a given evaluation of a window, these conditional probabilities
are calculated for all classes and the window is assigned to the class with the
highest product. Illustration of the classification using ferns is in Figure 2.4.

In the following sections, we will describe the learning and classification
process in more detail.
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 Ferns

Haar features

Figure 2.3: Schematic visualisation of a ferns-based classifier. Ferns can be
described as frames with the same size as the window. All ferns have the
same number of Haar features, but the Haar features are different in each
fern – various positions, sizes and types.
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2.1.1 Learning

At the beginning of the learning stage, M ferns are generated, each containing
S pairs of Haar features, i.e., total M ·S = N feature pairs per window. The
type, location and size of the features is picked completely at random. These
ferns remain the same throughout the learning and classification process.

After that, the classifier is learned on labeled training samples. The Haar
features are evaluated on each sample and the number of occurences of each
particular evaluation in each fern is computed. At the end, the occurences
are converted to probabilities.

The evaluation of the Haar features is computed from an integral image.
This allows very effective calculation of the responses, as explained in the
following text.

Integral image

An integral image, also known as a summed area table, is an algorithm for
quick and efficient calculation of the sum of values in a rectangular subset of
a grid.

The value at any point (x, y) in the integral image is the sum of intensities
of all the pixels above and to the left of (x, y), inclusive:

I(x, y) =
∑
x′≤x
y′≤y

i(x′, y′) , (2.1)

where i(x′, y′) is the pixel intensity at (x′, y′) in the original image.

The integral image is computed in a single pass over the input image
using the following formula:

I(x, y) = i(x, y) + I(x− 1, y) + I(x, y − 1)− I(x− 1, y − 1) , (2.2)

where I(−1, y) = I(x,−1) = I(−1,−1) = 0.

Once the integral image is computed, the sum of a rectangular area can
be calculated from the following formula, using the notation in Figure 2.5:∑

A(x)<x′≤C(x)
A(y)<y′≤C(y)

i(x′, y′) = I(C) + I(A)− I(B)− I(D) . (2.3)

The calculation is performed in a constant time, with only four array refer-
ences and three basic arithmetic operations [14].

14
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Figure 2.5: Integral image – fast calculation of the sum of the values in a
rectangular area using the Equation 2.3.

Probability model

The goal of the classifier is to assign a given window to the most likely class.
This can be formulated as finding

ĉi = arg max
ci

P (C = ci | f1, f2, . . . , fN) , (2.4)

where C is a random variable representing the class and fj, j = 1, . . . , N , is
the binary evaluation of the j-th feature pair.

We calculate the conditional probability of a class given the evaluation
using the Bayes’ formula:

P (C = ci | f1, f2, . . . , fN) =
P (f1, f2, . . . , fN | C = ci)P (C = ci)

P (f1, f2, . . . , fN)
. (2.5)

Since the denominator is only a scaling factor, independent from the class,
and since we assume uniform prior probability distribution, the problem re-
duces to finding

ĉi = arg max
ci

P (f1, f2, . . . , fN | C = ci) . (2.6)

The algorithm follows a Semi-Naive Bayesian approach, since it models
only some of the dependencies between the feature pairs. The conditional
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probability of a particular evaluation for a particular class is calculated using
the formula

P (f1, f2, . . . , fN | C = ci) = argmax
ci

M∏
k=1

P (Fk | C = ci) , (2.7)

where fj is the evaluation of the j-th feature pair, ci is the class that the
current evaluation is assigned to and Fk is the evaluation of the k-th fern.
As we use labeled samples for learning, the class ci is known in the learning
stage.

During the learning stage, we determine the values necessary for evalu-
ation of the right side of Equation 2.7. The evaluation of a feature pair fj,
consisting of Haar features Hj,1 and Hj,2, is determined as follows:

fj =

{
1, r(Hj,1) > r(Hj,2)

0, else
(2.8)

The function r(Hj,q) returns the response of a Haar feature. We calculate
the sum Sb of the image pixel intensities that correspond to the black areas
of the Haar feature and the sum Sw of the intensities that correspond to the
white areas (Figure 2.2). The response of a Haar feature is the absolute value
of the difference of Sb and Sw.

Evaluation of a fern Fk is a set of evaluations of the Haar features that
form the k-th fern,

Fk ≈
{
fσ(k,1), fσ(k,2), . . . , fσ(k,S)

}
, k = 1, . . . ,M , (2.9)

where σ(k, j) is a random permutation function that returns integers in range
from 1 to N . The feature pairs are divided into ferns this way.

We store the evaluation as a decimal number using the formula

Fk =
S∑
j=1

(
2(j−1) | fσ(k,j) = 1

)
=

S∑
j=1

2(j−1)fσ(k,j) , (2.10)

so that it can be easily used for indexing [11].

Model estimation from training samples

For each training sample from the class ci, we calculate the evaluation of
all ferns Fk, k = 1, . . . , S. For each evaluation Fk that is calculated on the
current sample in the k-th fern, the value of NFk,k,ci is increased by 1. (All of
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these values are initially set to 0.) This way, we get the number of occurences
of each possible evaluation for each fern.

Finally, we calculate the probabilities from the number of occurences
using the formula

pFk,k,ci = P (Fk | C = ci) =
NFk,k,ci + 1

2S−1∑
Fk=0

NFk,k,ci + 2S
. (2.11)

These are the only probability values necessary for the classification. We add
1 to the numerator and 2S to the denominator to overcome the issue that
some of the ferns could return zero probability of a particular evaluation,
which would result in total zero product despite possibly high probabilities
in other ferns [11].

2.1.2 Classification

The classification of a window is based on the probability model estimated in
the learning stage. Let p̂i be the probability of the most likely class ĉi for a
particular window. For each class, the product of the conditional probabilities
P (Fk | C = ci) is calculated. These values represent the probability of a
particular evaluation of a particular fern given the class. The classifier selects
the class with the highest product.

p̂i = max
ci

M∏
k=1

P (Fk | C = ci) (2.12)

ĉi = argmax
ci

M∏
k=1

P (Fk | C = ci) (2.13)

The classifier assigns the most likely class to each window, even though
there is no target object at all. The detector, which receives the values ĉi
and p̂i from the classifier, decides, whether the classification will be accepted
or not. This is based on a probability threshold: If the probability p̂i of the
most likely class is higher than a given threshold, the most likely class ĉi is
assigned to the window. If the probability p̂i is lower than that threshold,
the detector rejects the classification and states that there is no target object
in the current window [11].

The selection of the threshold is ambiguous, there is in general no optimal
value. Selection of a reasonable threshold depends on the data the detector
is used on and on the desired TP/FP ratio. We discuss the selection of the
threshold in Section 2.2.2.
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2.1.3 Space and time complexity

Choice of the parameters

Now we discuss, which values are the optimal for the classifier parameters
M and S, i.e., the number of ferns and the number of feature pairs per fern,
respectively.

In the experiments, we use 50 ferns of size 11, i.e., 22 Haar features
in each fern. That sums up to a total of 1100 features per window. The
experiments showed that such number and size of ferns is quite optimal for
our application.

A lower number of ferns yields worse results, while a higher number of
ferns would require modifications of the probability model estimation process,
as the probability values underflow the double data type precision.

Changing the fern size did not result in any significant improvement in the
recognition performance either. The choice of the parameters was discussed
also in [11] and the authors came to the conclusion that using 30–50 ferns
with 11 binary features is optimal.

Space complexity

The major part of the memory is used for storing the probabilities pFk,k,ci

(Equation 2.11) necessary for the classification. Let T be the number of
classes. M is the number of ferns and S is the number of feature pairs in
each fern. The probabilities are stored in an array of 2S ·M · T elements.

Let’s take the values used in our experiments as an example – M = 50
ferns, S = 11 feature pairs per fern, T = 8 classes. Assuming the double
precision (8 bytes), we need 8 · 211 · 50 · 8 = 6 553 600 bytes of memory to
store the probability model.

Time complexity

Let us remind that M is the number of ferns, S is the number of feature
pairs per fern, N = M · S is the total number of feature pairs and T is the
number of classes. Let U be the number of training samples for each class,
assuming it is the same for all classes for the simplicity. A window has a size
of w × h pixels.

Learning The learning stage consists of the following steps:

1. Calculate an integral image. The integral image is calculated in a
linear time with respect to the image size – O(w · h).
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2. Evaluate feature pairs. The response of each Haar feature is com-
puted in a constant time, as explained in Section 2.1.1. Evaluation of
one feature pair is also performed in a constant time, since it is only
a simple comparison of two values – responses. Therefore, all Haar
features are evaluated in O(N).

3. Store the evaluation. For each fern, the evaluation calculated in
the previous step is converted to a binary number. The number of
occurences of this evaluation is increased for each particular fern.

This process is performed for each of the training samples from all classes,
i.e., T · U times.

Also some other computations, such as the random generating of the Haar
features and partitioning them into ferns at the beginning or the recalculation
of the number of occurences to probabilities at the end, are performed in
the learning stage. However, these tasks are of a negligible significance in
comparison to the process that is done with each sample.

Classification One of the most significant advantages of a ferns-based clas-
sifier is the fast classification. The classification of a window is performed in
these steps:

1. Calculate an integral image. The integral image is calculated in a
linear time with respect to the image size: O(w · h). This step is even
not necessary in our implementation, because the detector calculates
the integral image from the whole query image and passes the respective
part, according to the sliding window position, directly to the classifier.

2. Evaluate feature pairs. As explained above, the evaluation is com-
puted in a linear time with respect to the number of feature pairs –
O(N).

3. Calculate probabilities for all classes. Based on the evaluation,
the product of M values is calculated for each of the T classes.

4. Find the class with the highest probability. Finding a maximum
among the T classes is naturally performed in O(T ).

The calculation of the Haar feature responses is very fast and the other tasks
require a rather small amount of operations, so that the whole classifiation
process is done in a split second.
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2.2 Combination of visual and 3D data

In this section, we describe the learning and classification process of the
detector, which uses the output of the classifier described in the previous
section at its core.

We make the detector more powerful by using not only the visual data
from a camera, but also 3D point clouds from a lidar. The 3D point clouds
are transformed to the viewpoint of the camera and interpolated. This results
in a 2D grayscale depth image with the same resolution as the visual image.
Thus, the same algorithm may be used both for visual and 3D data. For a
detailed description of the transformation procedure, see Section A.2.

In Section 2.1.1, we described the learning procedure of a classifier. The
complete learning process of the detector is a bit more complex task, hence
we will describe the complete learning procedure of the detector on a higher
level now.

In the following Section 2.2.2, we will describe the detection process using
a sliding window.

2.2.1 Learning process of the car detector

The learning process consists of two stages: training stage, where many ran-
domly generated classifiers are learned on a training data set, and testing
stage, where the best classifier is selected. This helps select the configuration
of the randomly generated ferns, i.e., the types, sizes and positions of the
Haar features, which suits the best the desired application.

The detector is learned on both the visual and 3D data. There are two
types of the detector:

• Detector with separate classifiers. The image classifier and the 3D
classifier are learned fully separately. That means that the procedure
described in the following text is run twice, once for the image classifier
and once for the 3D classifier. The image classifier is learned on visual
images from a camera and the 3D classifier is learned on interpolated
grayscale depth images generated from 3D lidar point clouds. The
image classifier is then used to classify only visual images and the 3D
classifier evaluates depth images.

• Detector with a combined classifier. Only one classifier is used for
classification of both the visual and 3D data. The combined classifier
is in principle the same as the separate classifiers, the only difference
is that it is learned both on the visual and 3D samples.
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 W NES

Figure 2.6: Training samples with cars in different orientations: W – West,
S – South, NE – North East. Visual images are in the first row, interpolated
depth images are in the second row.

Training stage

As the Haar features are generated completely at random, more classifiers
are trained and the classifier that suits the best the car detection application
is selected in the testing stage.

Each classifier is learned on labeled training samples, i.e., cars with known
orientation. Examples of training samples are in Figure 2.6. The classifier
learning process is described in detail in Section 2.1.1.

Testing stage

The selection of the best classifier is based on the performance of a classifier
on a testing set. The performance is measured by the recognition rate on
labeled samples, i.e., the ratio of the samples assigned to the correct class.
To prevent an overfitting of a classifier, only the samples that were not used
in the previous stage of the learning process should be used for testing the
classifier performance. Hence we suggest splitting the set designated for
learning into two parts.

There is one more task that is performed during the testing stage – stor-
ing the data for a future probability threshold calculation. The probability
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threshold is used to distinguish windows with a car from windows without
a car in the classification stage. As the samples are labeled, we are able to
determine for each sample whether it was assigned to the correct class or
not. For each sample, we store the probability p̂i of the most likely class, as
described in Section 2.1.2. A set of the probability values of the correctly
classified samples and a set of the probabilities of the incorrect ones is stored,
which helps us to select the optimal probability threshold in the classification
stage.

2.2.2 Car detection using a sliding window

In the first stage of the classification process, the probability model estimated
in the learning stage is used to assign each window to the most probable class.
The windows, which probability is higher than a given threshold, are passed
to the next stage, where a confidence value is calculated for each window.
In the last stage, multiple responses in similar locations are removed using
non-maxima-suppression.

Sliding window

A sliding window with a fixed aspect ratio moves over a query image by a
given step in horizontal and vertical direction from the top left corner to the
bottom right corner, so that all positions in the ‘grid’ given by the step are
covered, see Figure 2.7. This process is repeated for different sliding window
sizes. That enables the detector to find cars of various dimensions.

For each window, the most likely class ĉi is determined together with the
probability p̂i of the most likely class by the algorithm described in Section
2.1.2. If the probability is lower than a given threshold, it is assumed that
there is no car in the current window. This is performed for both visual
and 3D data, each using ‘their’ classifier in the case of separate classifiers, or
using the same classifier in the case of the combined classifier.

The selection of the threshold value is based on the means of the proba-
bilities of the most likely classes in correct and incorrect samples determined
in the learning stage (more details can be found in the end of Section 2.2.1).
The default threshold value is calculated as a mean of these two means and
may be manually adjusted for better performance. The threshold value is
generally different for the visual and 3D data.

The windows with the probability over the threshold for the visual data,
3D data or both are passed to the following stage.
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Figure 2.7: Visualisation of the progress of a sliding window on a query
image.
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Calculating confidence

In this stage, a confidence is calculated for each window. The confidence
value is based on how much is the probability p̂i for the current window
higher than the threshold value. If the threshold is exceeded for both the
visual and 3D data, the two resulting confidence values are multiplied, so
that the windows with a car detected both in the visual and 3D data are the
strongest.

Selection of the strongest responses

As there may be, and usually are, multiple windows in similar positions,
we use the non-maxima-suppression algorithm to eliminate these multiple
responses.

The algorithm is quite simple. The window with the highest confidence
is found and all windows that are in a similar position are removed. Near
windows are determined by a cover ratio, which is calculated by division
of the intersection area and the union area of the ‘strongest’ window and
all other windows. The windows with the cover ratio higher than a given
threshold are removed. This process is repeated until no more windows
remain. The process has to be repeated, because there might be more than
one car in the query image, and we would like to find all of them.
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Chapter 3

Experiments

We performed various experiments to evaluate the car detector on the data
from a mobile robot. We concentrated on the detection performance, i.e.,
how many cars are found in query images using the sliding window method,
and on the classification performance – how many windows with cars are
classified to the correct class (orientation). We also compared the separate
classifiers with the combined classifier. The effect of the change of various
parameters, such as number of ferns, sliding window step and non-maxima-
suppression cover ratio limit, was also explored.

Generating samples

We were contending with the lack of data throughout all the experiments.
The data acquisition process was rather complicated, because, as far as we
know, data sets of both visual and depth data with cars are not commonly
available. We had to acquire the data ourselves, using a mobile robot –
Figure A.1. Because of the robot malfunction, we were not able to acquire as
much data as would be appropriate. We also encountered difficulties with the
3D lidar. The results are thus affected by the sparsity of the training data,
but the detector could be meaningfully evaluated on such a data set anyway.
We suppose that a larger training data set would help achieve significantly
better results.

To alleviate the lack of the training data at least a little, we extend
the data set by generating samples with some ‘noise’ in the ground truth
rectangle size and position, which also makes the detector more robust. The
change of the size and position of the ground truth rectangle is about 5 %
with respect to the ground truth rectangle dimensions.

The cars in the training samples are surrounded by a bounding box, which
includes at least 10 % of the background on each side, while retaining the
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Figure 3.1: Bounding boxes of the samples. If the car is ‘wide’, margins are
added to the tight car bounding box to form 10 % of the resulting sample
image width on each side. If the car is ‘high’, the margins are added in the
vertical direction, again approximately 10 % of the sample image height, both
on the top and on the bottom. The margins from the tight car bounding
box in the other direction occupy more than 10 % on each side to retain the
fixed aspect ratio.

fixed aspect ratio – see Figure 3.1. Another examples of the training samples
are in Figure 2.6.

Data sets

In the experiments, we used three data sets: training set, testing set and
evaluation set. As explained in Section 2.2.1, the training set is used to
learn many different randomly generated classifiers, the testing set serves to
select the best one among these and the classifier is finally evaluated on the
evaluation set. The number of images in each class is in Table 3.1.

To ensure a fair evaluation, the training, testing and evaluation sets are
disjunctive in all experiments. Neither two same images, nor two same cars
in an identical position on different images, appear in any two of the sets
simultaneously. On the other hand, due to the lack of data, the same cars
from slightly different views may be present in more than one set, but we
tried to prevent this as much as possible.
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Table 3.1: The number of cars in specific orientations in the data sets used
in the experiments. The evaluation set in this composition is used only in
the class estimation experiment described in Section 3.2.

Orientation Training set Testing set Evaluation set
N 9 4 4

NE 4 2 2
E 4 4 3
SE 11 3 3
S 16 8 10

SW 11 3 5
W 6 3 4

NW 7 4 5

Parameters

If not stated otherwise, we used the classifier parameters that are summarized
in Table 3.2.

Table 3.2: Parameters of the classifiers used in the experiments.

Number of ferns 50
Number of feature pairs per fern 11

Classes {N, NE, E, SE, S, SW, W, NW}
Number of samples per class 100

The minimal cover ratio of two rectangles in the non-maxima-suppression
was generally set to 1 %. The minimal cover ratio of a GT rectangle and
a classified rectangle to be accepted as a true positive was 50 %. The step
coefficient of the sliding window was set to 15.

3.1 Detection performance – sliding window

experiments

The most important task of the car detector is to localize cars in a query im-
age, so we concentrated on this in the first set of experiments. We performed
experiments to test the effect of the probability threshold value, minimal
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cover ratio for the non-maxima-suppression and sliding window step on the
detection performance.

The evaluation set consists of 10 query images with 11 cars and 10 query
images without cars. The image resolution is 616×808 pixels. We tested both
the combination of the separate classifiers and the single combined classifier.

The positions and sizes of the sliding window are determined by the fol-
lowing parameters:

• Step coefficient. The coefficient gives the number of ‘uniformly dis-
tributed’ window positions in the horizontal direction. The actual step
in pixels is calculated to meet the requirement of the number of po-
sitions of the sliding window in the horizontal direction. The step in
pixels is the same in the horizontal and vertical direction.

• Sizes. The sliding window also varies in its size to be able to detect
cars of various dimensions. In all the experiments, the sliding window
starts at its ‘natural’ size, which is 320 × 240 pixels – this is the size
of the training samples – and then is resized by 5 %: 8× reduced, 16×
enlarged from the default 100 % by 5 % in each step. This range covers
all cars in the data set from the robot used in our experiments and may
be naturally adjusted if necessary.

The total number of windows in all positions and scales per image is
approximately 3500.

Ground truth is known for the query images. Each window, for which
the detector states that there is a car, is evaluated as correct – true positive
(TP) – if the cover ratio, i.e., the quotient of the intersection and the union
of the ground truth rectangle area and the window rectangle area, is at least
50 %. Otherwise it is incorrect – false positive (FP). The correctness of the
class (orientation) is not tested in this experiment, we concentrate on this in
the experiment described in Section 3.2.

An example of the output of the detector using the combination of the
visual and 3D classifier is shown in Figure 3.2.

Note Let’s assume that the query image is divided into four equal quarters
by three horizontal lines. We attempt to detect the cars only in the two
quarters in the middle, i.e., in the second and third part. It is given by the
robot view that the cars never appear in the top or bottom quarter of the
image, which is evident for instance from Figure 3.2. By this modification,
we save a half of the computation time.
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a

b

c

Figure 3.2: Example of the results of the detector on the data from the mobile
robot. Visual images are in the left column, interpolated depth images are
in the right column. The light blue rectangle represents the ground truth.
Legend: a – car found only by the visual classifier (magenta rectangle), b –
car found only by the 3D classifier (blue rectangle), c – car found by both the
visual and 3D classifier (green rectangle). The classifiers were also correct in
the estimation of the orientation in all cases.
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3.1.1 Probability threshold

At first, we calculate the ROC curves to have a general overview of the de-
tector performance. We tested the performance for the combination of the
separate classifiers and for the single combined classifier for different proba-
bility thresholds. As can be seen in Figure 3.3, a combination of two separate
classifiers – a visual classifier learned on visual data and a 3D classifier learned
on 3D data – is more efficient than a combined classifier that is learned on
both the visual and 3D data.

In this experiment, the TPR value never reaches 1, even if the probability
threshold is set to 0. Some of the cars are never found, because the non-
maxima-suppression removes the true positive windows that have a lower
confidence than a false positive window. For an example, see Figure 3.4.

The decline in the performance of the separate classifiers at approximately
FPR = 0.6 (Figure 3.3) is caused by the following: One TP window is
overridden by a FP window, which was detected only by the visual classifier so
far, but once the probability threshold is exceeded even for the 3D classifier.
As the confidences from the both classifiers are multiplied, the non-maxima-
suppression selects the FP window with a higher confidence. The TP window
has a lower confidence, because it is still detected only by the visual classifier.
The relevant images are shown in Figure 3.5

3.1.2 NMS cover ratio limit

Now we test the effect of the minimal cover ratio for the non-maxima-
suppression algorithm. We set a fixed probability threshold, based on the
results of the previous experiment, and evaluate the detector performance
for various minimal cover ratio values. It is obvious from Figure 3.6 that the
detection performance is the best for the lowest values of the minimal cover
ratio.

3.1.3 Sliding window step

We also evaluate the effect of the sliding window step on the detection per-
formance. Again, we set a fixed probability threshold, based on the first
experiment. Figure 3.7 shows that the classifier achieves the best perfor-
mance with 15 window positions in the horizontal direction when using the
separate classifiers and with 30 window positions for the combined classifier.

30



Figure 3.3: Comparison of the performance of the separate classifiers and
the combined classifier in the sliding window experiment. The total number
of positive windows is the number of cars in the data set, the total number
of negative windows is the number of all detected FP windows after non-
maxima-suppression in the data set for the probability threshold set to 0.
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Figure 3.4: An example of detection failure. The true positive windows are
overridden by a false positive window with a higher confidence.

a b

Figure 3.5: Detection failure after decreasing the probability threshold. Leg-
end: a – the true positive window (along with two false positive windows)
is detected by the visual classifier, b – the true positive window detected by
the visual classifier is overridden by a false positive window detected by both
classifiers, which multiplies their confidences.
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Figure 3.6: Effect of the minimal cover ratio value for the non-maxima-
suppression on the performance of the separate classifiers and the combined
classifier in the sliding window experiment. The y-axis shows the absolute
count of TP and FP windows in the data set. The TP value may be higher
than the number of cars in the data set – one car may get multiple TP ‘hits’
for higher minimal cover ratio values.
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Figure 3.7: Effect of the sliding window step on the performance of the sepa-
rate classifiers and the combined classifier in the sliding window experiment.
The y-axis shows the absolute count of TP and FP windows in the data set.
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Table 3.3: Summary of the overall performance of the classifiers in the class
estimation experiment. The recognition rate indicates how many samples
were assigned to the correct class.

Classifier Recognition rate (%)
Separate visual classifier 50.5

Separate 3D classifier 82.5
Combined classifier 59.6

3.2 Classification performance – correct class

estimation

The experiments described in this section concern the estimation of the ap-
proximate orientation and the comparison of the separate 3D and visual
classifiers with the single combined classifier.

The evaluation was performed on a data set of 100 samples for each class
in the evaluation set. The samples were generated by the same process as the
training and testing samples, as described at the beginning of this chapter.

The classifiers were evaluated on the same type of data that was used
for learning: the separate visual classifier was evaluated on visual images,
the separate 3D classifier was evaluated on depth images and the combined
classifier was evaluated on both visual and depth images.

The summary of the overall performance of the classifiers is in Table 3.3.
Figure 3.8 shows the classification results of the visual classifier, Figure 3.9
shows the results of the 3D classifier. It is obvious from the table and from
the graphs that the 3D classifier significantly outperforms the visual classifier.

The detailed results for the combined classifier are in Figure 3.10.

3.3 Benefits of the visual and 3D data fusion

One of the main points of this work is the fusion of the visual and 3D data. In
this experiment, we compare the performance of the combination of separate
classifiers and the single combined classifier with the performance of only the
visual classifier on visual data and only the 3D classifier on 3D data. Figure
3.11 shows that utilizing the combination of separate classifiers for evaluation
of both visual and 3D data significantly increases the detection performance.
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Figure 3.8: Detailed results of the visual classifier in the class estimation
experiment. Each graph represents a (ground truth) class. The bars show,
how many samples were assigned to which class (in %).
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Figure 3.9: Detailed results of the 3D classifier in the class estimation exper-
iment. Each graph represents a (ground truth) class. The bars show, how
many samples were assigned to which class (in %).
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Figure 3.10: Detailed results of the combined classifier in the class estimation
experiment. Each graph represents a (ground truth) class. The bars show,
how many samples were assigned to which class (in %).
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Figure 3.11: Comparison of the classifiers using combination of both visual
and 3D data with utilizing only visual or only 3D data. The total number
of positive windows is the number of cars in the data set, the total number
of negative windows is the number of all detected FP windows after non-
maxima-suppression in the data set for the probability threshold set to 0.
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Chapter 4

Conclusion

We have proposed, implemented and tested an object detector utilizing both
visual data from a camera and 3D data from a lidar. One of the intended
applications, on which was the detector also tested, is the car detection prob-
lem.

Based on the experience we gained in our previous work [5] and [6], we
have implemented a detector using the sliding window technique and clas-
sifiers based on random ferns with Haar features. We have designed two
types of detectors utilizing both the visual and 3D data. The first one uses
a combination of two separate classifiers – a visual classifier for the visual
data and a 3D classifier for the depth data. The second one uses a single
combined classifier for both visual and 3D data. The experiments showed
that the former one has a better performance, but the latter one may be
more efficient in some specific situations as well.

The detector finds positions of cars in a scene and estimates approximate
orientations of the cars. The experiments confirm the expectation that the
performance of a ferns-based classifier on the depth images is significantly
higher than on the visual images. In our experimental data set, 82.5 % of the
depth image samples were assigned to the correct class by the 3D classifier,
while only 50.5 % of the visual image samples were classified correctly by the
visual classifier.

We also tested the dependence of the recognition performance on the val-
ues of various detector parameters, such as sliding window step and minimal
cover ratio for the non-maxima-suppression. It turned out that a smaller
sliding window step, i.e., a more dense grid of windows, does not guaran-
tee better recognition performance. A higher cover ratio limit increases the
number of true positives, but also significantly increases the number of false
positives. The detector was able to find 3 cars out of 11 with no false pos-
itives, 4 cars and one false positive or 8 cars and 7 false positives in our

40



evaluation data set consisting of 10 scenes with cars and 10 scenes without
cars.

We have also created a tool for data acquisition from a mobile robot
equipped with a camera and a 3D lidar. We had to create a data set for
the evaluation of the detector ourselves, because we have not found any
suitable data sets with both the visual and 3D representation of cars. We
have scanned and processed scenes with cars in the outdoor experiments
with the robot. Regrettably, we encountered various difficulties regarding
the outdoor experiments, which disallowed us to gain the required amount of
data. Besides that, a considerable part of the 3D data from the lidar was of
a very poor quality. The lack of data had an adverse impact on the detector
performance in the experiments.

Further work should involve particularly experiments on a larger and
better quality data set to confirm the theory that the results are not very
good because of the lack of data. An algorithm to reduce the number of false
positives, in other words, a better way to determine the car locations in a
scene than the probability threshold, should increase the performance of the
detector. Using richer 3D descriptors like surface normals and curvatures
may improve the performance as well.
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Appendix A

Data acquisition

We have created a tool to easily acquire data for the detector from a mobile
robot. In this chapter, we will describe the process of data acquisition using
this tool.

A robot equipped with an omnicamera and a 3D lidar, see Figure A.1, was
used to obtain the visual and 3D data. The robot runs the Robot Operating
System (ROS) [1]. Messages in the ROS system, including images from the
omnicamera and 3D point clouds from the lidar, are published on certain
topics. To receive these messages, subscribers are registered to listen on the
topics.

We use the ROS function rosbag to record all messages published on
certain topics into a single bag file during the outdoor data acquisition pro-
cess. A recorded bag file may be later played, so that all the messages are
published exactly the same way as when running on the robot in real time.
We have created a tool to extract the visual and 3D data from a bag file
as separate images and text files. Since the omnicamera and the 3D lidar
have different origin, the 3D data have to be transformed to the viewpoint of
the single cameras of the omnicamera. After that, various visualisations of a
projection of point clouds to visual images are created, including interpolated
2D depth images that are used for learning.

A.1 Extraction of images and point clouds

from robot data files

The visual and 3D data extraction from a bag file is performed by the Bash
script bag2imgpcl.sh. The script takes a bag file pathname as an input
argument and produces directories with images from the cameras 0–4 of the
omnicamera and point cloud files recorded in the bag file.
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Omnicamera

3D Lidar

Camera 4

Figure A.1: Sensors of the NIFTi robot used for the car detection [2].

The cameras 0–4 are the cameras ‘around’ the omnicamera, the camera
on the top is the camera 5. We use almost without exception the images
from the camera 4 as the data for our detector. The other cameras have the
disadvantage that the view is occluded by robot parts, such as the flippers,
or the image area is not fully covered by the 3D points because of the limited
lidar range.

A.2 Projection of the 3D point cloud to the

visual image

The 3D point cloud is projected to each of the cameras 0–4 of the omnicam-
era. Transformation parameters are available [8] for the transformation from
the lidar origin to the origin of the camera 4 and for the transformation from
the omnicamera origin to the origin of all cameras. The intrinsic parameters
for the cameras are known and are the same for all cameras.

For the description of the projection algorithm, we use the following no-
tation, based on [13]:

• Rotation matrices are denoted as R<from>−<to> and are of size 3× 3.

• Translation vectors are denoted as t<from>−<to> and are of size 3× 1.

• The focal length in pixels is in the 2× 1 vector f .

• The principal point coordinates are in the 2× 1 vector c.
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• The scalar α is the skew coefficient. It defines the angle between the x
and y pixel axes.

• The vector k of size 5× 1 contains image distortion coefficients (radial
and tangential distortions).

Using these parameters, we are able to project the point cloud to the
viewpoint of all cameras in the following steps:

1. Transform the original 3D points XL in the point cloud from the lidar
origin to the camera 4 origin.

XC4 = RL−C4XL + tL−C4

2. Transform points XC4 from the camera 4 origin to the omnicamera
origin.

XO = (RO−C4)
T (XC4 − tO−C4)

3. Transform points XO from the omnicamera origin to the origin of in-
dividual cameras.

XCi
= RO−Ci

XO + tO−Ci
, i = 0, . . . , 4

4. Let XCi
= [X, Y, Z]T . Calculate the normalized pinhole projection by

division of X- and Y -coordinates by the Z-coordinate.

xn =

[
X/Z
Y/Z

]
=

[
xn
yn

]
5. Let r2 = x2n + y2n. Calculate the tangential distortion vector d.

d =

[
2k3xnyn + k4(r

2 + 2x2n)
k3(r

2 + 2x2n)2k4xnyn

]
6. Using the tangential distortion vector d, calculate the normalized point

coordinates including the lens distortion.

xd =
(
1 + k1r

2 + k2r
4 + k5r

6
)
xn + d =

[
xd
yd

]
7. Calculate the final pixel coordinates xp = [xp, yp]

T of the 3D points in
the viewpoint of the camera i.xpyp

1

 =

fx αfx cx
0 fy cy
0 0 1

 =

xdyd
1
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A.3 Projection output

The script produces various images with projection of the 3D points. Before
the projection process can begin, two additional steps have to be performed.

• Distance calculation. For each point XL in the point cloud, we
calculate its Euclidean distance from the lidar origin. This is necessary
for the construction of a depth map.

• Matching of images and point clouds. On the robot, the rate
of saving images is much higher than the rate of saving point clouds.
That means that the corresponding images and point clouds have to
be matched. Each image and point cloud has a time stamp, so the
time-nearest image is found for each point cloud.

For each image from a camera matched with a point cloud, the script
creates four images, see Figure A.2. The visual image (c) and the corre-
sponding interpolated grayscale depth image (b) are used as input data for
the car detector.
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 c

 b

 d

Figure A.2: Images produced by the projection tool: a – 3D points on a
white background, visualized in a grayscale depth image, b – interpolated
grayscale depth image, c – visual image that was time-matched with the
point cloud, d – combined color depth image – both visual data and 3D
points displayed in one image.
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Appendix B

Implementation

We have implemented the random ferns-based detector in MATLAB ver-
sion 7.8.0. Source codes are available on the enclosed CD in the detector

directory in the following subdirectories:

• ferns detector – core functions – learning and classification, sliding
window algorithm, non-maxima-suppression etc.

• exp demo – demonstration scripts – learning of the car detector on
a sample data set, car detection in a query window

• bag2imgpcl – tool for the extraction of data from a robot and for the
projection of 3D points to visual images – see Chapter A

Detector

In this section, we briefly describe the most important source codes in the
detector/ferns detector directory.

As explained in Chapter 2, the car detection consists of two main stages:
learning and classification. At first, the classifier(s) of a single window have
to be learned. The function learn ferns() is used for this purpose. The
classification of a window is performed by classify ferns().

The car detection process is controlled by the function find cars(). At
first, all windows are classified by the eval windows() function, which runs
the sliding window. In the next stage, the windows with the probability
under the given threshold are discarded and the confidence is calculated
for the rest using the classify windows() function. The last stage is non-
maxima-suppression performed by nms(), which selects the windows with the
highest confidence and removes all windows that intersect with the ‘strongest’
windows by more than a given cover ratio limit. Detailed information can
be found in the source codes.
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Demonstration scripts

We have created demonstration scripts to show the detector functionality.
There are four scripts in the detector/demo directory, which can be directly
run ‘as they are’:

• go detect.m – Detect cars in a given image using learned classifiers.
The detected windows are shown in two figures, with the visual and the
depth image as a ‘background’. This version utilizes the combination of
separate classifiers. The filename of the query image can be specified in
the im name variable. By default, the learned classifiers used for the ex-
periments described in Chapter 3 are loaded. It is also possible to learn
the classifiers again, using the go learn.m script. To use alternative
classifiers, change the argument of the load function in the Parameters
section. The probability threshold coefficients in prob threshold im

and prob threshold pcl may be adjusted to achieve better results.

• go detect combi.m – The same as go detect.m, but using a combined
classifier.

• go learn.m – Learning of separate classifiers. The learned classifiers
are saved in a file named model <timestamp>.mat.

• go learn combi.m – Learning of a combined classifier. The learned
classifier is saved in a file named model combi <timestamp>.mat.

The scripts utilize the MEX function in the detector/ferns detector

directory. We provide the compiled binary for 32-bit Microsoft Windows
platforms and 64-bit Unix platforms. If you are running another operating
system, please make the binary yourself by executing the following command
in MATLAB in the detector/ferns detector directory:

mex computeHaarInt mex.cpp

Note To avoid unnecessary reimplementation, some auxiliary codes from
other authors from the CMP were used. The author is noted in all source
codes.
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Appendix C

Enclosed CD

The enclosed CD contains two directories: detector and thesis. The source
codes, data and results are in the detector directory, the thesis PDF and
TeX sources are in the thesis directory.

There are five subdirectories in the detector directory. The subdirec-
tories ferns detector, exp demo and bag2imgpcl were described in Chap-
ter B. The remaining two subdirectories are described in the following text.

data – The directories cars qvga train and cars qvga test contain vi-
sual and depth image samples with cars for the training and testing stage of
the detector learning process, as described in Section 2.2.1. The directories
sliding eval and sliding eval combi contain visual and depth images
with ground truth bounding boxes of cars used to evaluate the detector.
The files in these directories were used in the sliding window experiments
described in Section 3.1.

results – The results of the experiments described in Section 3.1. The
directories named *prob contain the results of the experiments testing the
effect of the probability threshold on the detection performance. The *cover
directories contain the results of the experiments with various non-maxima-
suppression minimal cover ratio values. The effect of the sliding window
step coefficient on the performance is captured in the *step directories. The
subdirectories of these directories are named by the particular parameter
values. In each directory, there are *.mat files with the same names as the
directories. These files contain a ‘summary’ of the detection results on the
whole data set in two variables: nTP – number of true positive windows –
and nFP – number of false positive windows.
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