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The work was supported by EC project FP7-ICT-247870 NIFTi
and by the Czech Science Foundation under Project P103/10/1585

Research Reports of CMP, Czech Technical University in Prague, No. 11, 2012

Published by

Center for Machine Perception, Department of Cybernetics
Faculty of Electrical Engineering, Czech Technical University
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Abstract

This work describes a Robot Operating System (ROS) module for automatic
flipper adaptation during obstacle traversal with the tracked NIFTi robot.

This module is intended to relieve the robot operator from the difficult
task of remotely controlling all four flippers by adjusting the flippers auto-
matically. The operator may decide to switch on the automatic mode part
of the time for example during a staircase traversal.

The algorithm does not model the terrain explicitly. It measures the
terrain profile by a vertically positioned 2D laser scanner mounted on the
front of the robot. The main goal is to achieve the flippers touch the ground
in order to maintain robot’s stability.

The proposed algorithm has been successfully tested on traversing stair-
cases, curbs, rails and various other obstacles of different shapes.



Abstrakt

Práce popisuje programový modul pro Robot Operating System (ROS), který
zajǐst’uje automatickou konfiguraci př́ıdavných pás̊u (tzv. flipper̊u) pásového
NIFTi robota během přej́ıžděńı r̊uzných překážek.

Tento modul má za úkol usnadnit obt́ıžné manuálńı ovládáńı flipper̊u
operátorem ř́ıd́ıćım robota tak, že tyto flippery nastavuje automaticky.
Operátor si automatický režim může zapnout např́ıklad během vyj́ıžděńı do
schod̊u.

Algoritmus překážky explicitně nemodeluje. Měř́ı profil terénu 2D lase-
rovým dálkoměrem přepevněným vpředu na robotovi tak, že laserová měř́ıćı
rovina je vertikálńı. Ćılem algoritmu je nastavovat flippery, aby se dotýkaly
země a z̊ustala zachována stabilita robota.

Algoritmus byl testován při přej́ıžděńı schod̊u, obrubńık̊u, kolej́ı a daľśıch
překážek.



Contents

1 Introduction 1

2 State of the Art 3

2.1 Autonomous staircase climbing . . . . . . . . . . . . . . . . . 3

2.2 Flipper control on an unstructured terrain . . . . . . . . . . . 5

3 The NIFTi robot 7

3.1 Traversing obstacles . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 The laser scanner . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Exploring the laser scanner data 11

4.1 Laser scanner data representations . . . . . . . . . . . . . . . 11

4.1.1 A point cloud . . . . . . . . . . . . . . . . . . . . . . . 11

4.1.2 A depth map . . . . . . . . . . . . . . . . . . . . . . . 11

4.1.3 Comparison of a 3D plot and a depth map . . . . . . . 12

4.2 Laser failure areas . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.3 Conclusion from the data exploration . . . . . . . . . . . . . . 16

5 2D vertical laser scan method 19

5.1 The algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.2 Computing position of the flippers . . . . . . . . . . . . . . . . 21

5.3 Geometrical problem formulation . . . . . . . . . . . . . . . . 21

5.4 A closed-form solution . . . . . . . . . . . . . . . . . . . . . . 23

5.5 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6 Evaluation and experimental results 27

6.1 Shortcomings and further discussion . . . . . . . . . . . . . . . 30

7 Conclusion 33

iii



A Implementation 35
A.1 Notes about the Robot Operating System . . . . . . . . . . . 35
A.2 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

A.2.1 Subscriptions (input) . . . . . . . . . . . . . . . . . . . 36
A.2.2 Publications (output) . . . . . . . . . . . . . . . . . . . 37

A.3 Constants (thresholds) . . . . . . . . . . . . . . . . . . . . . . 37
A.4 Program structure . . . . . . . . . . . . . . . . . . . . . . . . 38

A.4.1 Constructor . . . . . . . . . . . . . . . . . . . . . . . . 38
A.4.2 Callbacks . . . . . . . . . . . . . . . . . . . . . . . . . 39
A.4.3 The core – flipper angle computation . . . . . . . . . . 42

A.5 Used source code . . . . . . . . . . . . . . . . . . . . . . . . . 46



Chapter 1

Introduction

Figure 1.1: The NIFTi robot.

This work describes an algorithm for our robot, that makes easier the task
of driving the robot across obstacles such as staircases during teleoperation.

There are robots with different constructions designed with traversing
obstacles in mind. We work with the NIFTi robot, which is a small, tracked
search-and-rescue robot designed to move in difficult rough terrain. The
NIFTi project [1] works with this robot platform and investigates how human-
robot teams can work together to explore a disaster area (i.e. car accident
in a tunnel, railroad accidents or areas with chemical or radioactive contam-
ination), to assess the situation and locate victims.

The NIFTi robot may be teleoperated – that means remotely controlled
with the operator having only data from the robot’s sensors (i.e. an image
from on-board cameras or 3D scans of the surroundings from a laser scanner).
Focus in the NIFTi project is to make the robot more autonomous in the
future.
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2 CHAPTER 1. INTRODUCTION

Our robot has main tracks and additional four reconfigurable tracked
arms called flippers. Position of these flippers must be set manually during
teleoperation. This – especially for an unskilled operator – is quite slow and
the robot operator has to focus his entire attention to the demanding task
of setting all the four flippers to the correct angle assuring safe navigation.
Decreasing the time for example of a staircase climb is an important factor
in an urban search and rescue mission.

This work describes an algorithm, by which the robot can configure its
flippers autonomously and the operator controls only the main tracks speed,
i.e. commands the robot to go forward and controls its direction.

Chapter 2 State of the Art discusses existing methods of climbing stair-
cases autonomously with similar robots and also traversing a completely
unstructured terrain. Chapter 3 The NIFTi robot describes the robot itself
in greater detail and shows necessary flipper reconfigurations during a step-
climbing task. Chapter 4 Exploring the laser scanner data describes an initial
exploration of the data coming from the on-board laser scanner. It contains
visualizations and comments about data quality. Chapter 5 2D vertical laser
scan method describes the algorithm present in the working NIFTi robot’s
autonomous flipper control module. Its implementation is described in Ap-
pendix A. Finally, in the chapter 6 Evaluation and experimental results, we
show results in the field with the presented algorithm implemented on the
NIFTi robot.



Chapter 2

State of the Art

Research for and comments to existing methods of solving the staircase climb-
ing and obstacle traversal task with a tracked robot.

2.1 Autonomous staircase climbing

The need to help a robot teleoperator during staircase climbing was here as
far back as in 1994. Martens and Newman [2] were using a tracked robot An-
dros Mark VI, whose construction is now quite obsolete. They implemented a
simple control system utilizing two ultrasound sensors and an accelerometer
(measuring inclination of the robot with gravity as a reference) for maintain-
ing the heading direction perpendicular to the steps of the staircase, which
they identified as a requirement for a safe climb. This system assisted the
operator and decreased the time required to perform the task. They con-
cluded that the risk to the robot was reduced as well as the stress placed on
the operator.

Point cloud segmentation approach with staircase measurement was pre-
sented for example by Sanchez and Zakhor [3] in 2012. They primarily fo-
cused on model fitting into point clouds of interior structures like walls and
ceilings, but they also proposed a staircase model with six parameters (e.g.
tread depth, riser height and number of steps). Their algorithm however em-
ploys point-wise Principal Component Analysis, which makes the algorithm
run in the order of hours. It is definitely not a real-time solution we would
like.

Point cloud segmentation for the purpose of stair-climbing was done by
Osswald et al. [4] in 2011. They evaluated current state-of-the-art methods

3



4 CHAPTER 2. STATE OF THE ART

of segmenting a point cloud into planes. They built 3D models of complex
staircases based on laser range data acquired with a humanoid. Their models
were sufficiently accurate and enabled their robot to climb up the staircase.
They used a scan-line grouping, an extremely fast algorithm.

A recent and comprehensive paper on the staircase climbing task is Zhang
et al. [5]. They successfully implemented an entirely autonomous stair-
climbing module for a modern robot PackBot, which has tracks and front
flippers. They used a vertical laser scanner for distant staircase detection
and then a bunch of sensors including sonar, IR proximity sensors and a gy-
roscope during the actual climb. As was also common in other papers, the
staircase climbing procedure was divided into stages including Detection and
Approach, Climbing and Landing. This is not consistent with our goal since
such algorithm would be limited only to staircases – an quite likely not even
all of them, because the authors make assumptions about the staircase pa-
rameters. We want to control the flippers automatically possibly for a wider
set of obstacles.

Two papers from 2009 written by Mihankhah et al. [6], Kalantari et al.
[7] describe staircase climbing with a modern rescue robot ResQuake, which
has main tracks and four flippers with a little different construction than
our robot. Their goals were to find the staircase and to develop a fast,
safe and smooth autonomous stair climbing algorithm. The robot had two
laser scanners: one mounted horizontally and the other vertically. They
implemented a fuzzy control system (and later a kinematics-based controller)
for keeping the robot away from stairway sides and to keep the robot body
parallel to stairway sides.

The following papers deal with the autonomous stair-climbing task by
using a camera and a gyroscope or accelerometers. Steplight et al. [8] in 2000
climbed staircases with the Urbie robot. They fused measurements from a
sonar, a camera, and two accelerometers for attitude estimation. Xiong and
Matthies [9] steers the robot in 2000 on a staircase using vision only. Later,
Helmick et al. [10] in 2002 extend it by fusing 3D attitude information from
gyroscope measurements, vision, and a laser scanner. The laser scanner is
oriented horizontally, giving information about the surrounding walls and
is thus important for keeping the robot’s heading angle small. The same
approach is further extended in a long paper written in 2007 by Mourikis et al.
[11] who used a modern PackBot. Similar, a purely vision-based approach
is presented by Cong et al. [12] in 2008. They estimate the position of
UGV robot on a staircase and the orientation angle to stairs through robust
extraction of the stair edges.

For example Helmick et al. [10] in their 2002 paper demonstrate a working
solution to the staircase climbing problem, but they note a minor flaw in their
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conclusion – they do not slow down at the upper end of the staircase, so their
robot lands quite roughly. This is precisely the situation, which we want to
avoid. In our case, we do not want the robot to drive upstairs full speed and
then slam its front part down. After the robot tips over on the last step of
the staircase, the front flippers must be deployed under the robot to mitigate
the impact. This was for example done later by Zhang et al. [5] in their 2011
paper.

The papers usually dealt with autonomous staircase traversal, where the
main concern was to keep the heading angle as small as possible and to
keep a sufficient distance from the walls of the staircase. Main focus of the
algorithms was to constantly estimate values of these two parameters, which
allowed a controller to drive the robot autonomously upstairs. In our case,
we do not aim for a fully autonomous drive in such way.

Contrary to most papers dealing with the staircase climbing problem, we
set the flippers angle as a direct mathematical function of the terrain profile.
Others have usually been setting the flippers to some manually chosen stable
angle specific for each stage of the staircase-climbing procedure.

2.2 Flipper control on an unstructured ter-

rain

These papers describe methods for controlling the flippers autonomously and
therefore lowering the work-load of the operator for maneuvering the robot
on an unknown and unstructured terrain. These methods build on sensor
information in real-time and enable a semi-autonomous operation in rubble
(debris) environment found for example in areas with collapsed buildings.

Ohno et al. [13] is the first to propose in 2007 a semi-autonomous control
of a robot with flippers in an unknown environment. The authors designed
a sequence of motions for getting over an unknown upward and downward
step. They also dealt with adjustment of the robot speed. The robot used
an accelerometer, current sensors and distance sensors.

In 2008 Nagatani et al. [14] with a similar robot KENAF proposed another
strategy of simple sensor-based control of flippers independently on both
sides. They used two laser scanners whose scan planes are set in parallel
to the workspaces of the active flippers and perpendicular to the ground for
terrain sensing, and gyro sensors for the measurement of the robot’s attitude.
Their algorithm is very similar to the one used in our work. In the end,
authors thought about stability and ended with a question whether more
complex control would be effective or not.
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Two laser scanners positioned the same as in the previous work (and on
the same robot) were used by Okada et al. [15] in 2009. They had more
complicated flipper position computation and they tested a desired posture
for its stability before the flippers were physically set. They successfully
tested it during slow speed obstacle traversal (5-10 cm/s) on a pile of concrete
blocks.



Chapter 3

The NIFTi robot

The NIFTi robot is a 60 cm wide, approx. 40 cm high tracked robot. Its
length depends on the position of additional front and rear tracked arms
called flippers. When the flippers are fully deployed and touch the ground,
the total length of the robot is 120 cm. When the flippers are in an upright
position or retracted parallel to the main tracks in a horizontal position (this
configuration is used for transportation of the robot), the robot length is
determined by the length of the main tracks, which is nearly 70 cm.

Figure 3.1: A side view of the NIFTi robot – a technical drawing.

Purpose of the flippers is to enhance the robot’s mobility. The flippers
allow the robot to climb a staircase, traverse a higher step, deal with shallow
gaps in the ground or to cross easily railway tracks. This has been tested with
the developed automatic flipper control and it will be shown later. Flipper
angles can be actuated independently, but the track speed is uniform on

7



8 CHAPTER 3. THE NIFTI ROBOT

each side. Driving with the robot while its weight is purely on the flippers
is forbidden according to the manual, its weight must always rest mostly on
the main tracks.

This configuration (sometimes only with the front flippers) has been used
with successful robots like versions of Urbie robot [8, 9, 10], modern PackBot
[5, 11], UGV [12], KENAF [14], [15], ResQuake robot [6, 7] and others.

By zero flipper position we mean that the flippers touch the ground, i.e.
they are in the lower position on the technical drawing 3.1). A positive flipper
angle means flipper up, a negative angle flipper down, under the robot body
(this may actually be opposite in the ROS system, see A Implementation).

The robot does not have any touch sensors which could be used to sense
whether the flipper has touched the ground.

3.1 Traversing obstacles

When driving on a flat ground, the flippers are usually in an upward position
and additionally positioned in such way that they do not obstruct view of
the camera or the laser scanner, see picture (1) in Figure 3.2. The flippers
are used only during obstacle traversal to enable climb-up and prevent the
robot from falling over.

Figure 3.2 shows the procedure necessary to climb up an obstacle with a
sharp edge, e.g. a curb. First, the operator has to lower the front flippers
to enable climb-up to the obstacle. As the robot inclination increases, it
also becomes important to lower the rear flippers to support the robot and
prevent it from falling back. As the robot reaches stage (4) in Figure 3.2, the
center of mass crosses over an unstable point and the robot tilts over to the
front. At this point, the front flippers must already be placed down under the
robot to eliminate slamming down of the front part, which is dangerous for
on-board equipment. During the next stages the robot body should become
level again. This is usually achieved by progressively elevating the front
flippers on which now the weight of the robot rests. It can be accompanied
by lowering of the rear flippers. This is unnecessary and is usually omitted the
by human operator, but our autonomous flipper control algorithm is capable
of doing this. Finally, the flippers are returned into the original position used
for navigating on a flat ground.

The robot has a differential that allows each of the main tracks to tilt
separately, which can be visible in Figure 3.3. This differential can be locked,
then the main tracks are both fixed in the position shown in the technical
drawing 3.1. When traversing obstacles, it may be advantageous to unlock
the differential and allow the tracks to fit to the terrain. This increases
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Figure 3.2: One possible version of a step climbing procedure. In each of
these steps the operator must reconfigure the robot’s flippers.

contact of the tracks with the ground and reduces slippages.

Since our algorithm works only in a single vertical plane in the center
of the robot, flippers on both sides are set jointly. When driving with the
autonomous flipper mode, it is therefore better to lock the differential, since
the algorithm counts on the tracks being both in the position they are in
the technical drawing 3.1 and the individual inclines of the main tracks are
not taken into account. It is possible to drive with the autonomous flipper
mode and the differential unlocked when crossing an obstacle where dissimilar
inclination of the tracks occurs minimally.
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3.2 The laser scanner

The NIFTi robot is equipped with a rotating laser scanner, an omni-directional
camera handful of other sensors.

Figure 3.3: The laser scanner is mounted on the front of the robot and can be
tilted. This image also shows different tracks inclination due to the unlocked
differential.

The laser scanner is a standard 2D (two-dimensional) SICK LMS-100-
type range finder mounted on a revolving base. By scanning during its ro-
tation, the laser scanner can scan 3D point clouds. The laser scanner is
mounted in the center on the front part of the robot approx. 20 cm above
the ground, see Figure 3.3.

The laser scanner works by sending a light pulse and measuring the time
till it receives an echo from a surface from which the laser beam has reflected
(time-of-flight LIDAR). This laser scanner can measure objects as far away
as 50 m, but reliably operates approx. up to 20 m.

The laser scanner will be used for obstacle sensing. The main difference
between the laser scanner mounted on the robot and a sight of the operator
is that the laser scanner is much closer to the ground, so it does not have
such a good view. Further-away obstacles (e.g. steps in a staircase) may be
occluded by the nearer ones. This is however not such a problem for our
algorithm, since it works only with the nearest data in range of the front
flippers. A bigger problem regarding our autonomous flipper task is that the
area behind the robot cannot be seen by the laser.

In the next chapter, we analyze the data the laser scanner provides.



Chapter 4

Exploring the laser scanner
data

Since the prospective algorithm would be based primarily on data from the
3D laser scanner, the focus was first on the data itself. Is it complete? How
precise is it?

4.1 Laser scanner data representations

4.1.1 A point cloud

A point cloud is a set of 3D vertices, i.e. points with (x, y, z) coordinates.
These points are intended to be representative of the surface of scene objects.
A 3D point cloud is produced in the following way in our case. Our rotating
2D laser scanner produces lines of points, each scanned at a different angle.
From these lines a full point cloud is constructed. Currently the robot must
not move while it scans all the lines. All points are thus scanned from the
same location.

Our point clouds usually contain 50k to 150k points. The number of
points in the point cloud (i.e. its density) depends on the speed of the laser
scanner rotation, which can be controlled on our robot.

4.1.2 A depth map

A depth map is an image similar to an image from a camera, except that
instead of color information, it contains depth (i.e. distance) to the surface in
the respective direction. A depth map, alike a photograph, is scanned from

11



12 CHAPTER 4. EXPLORING THE LASER SCANNER DATA

one viewpoint. The depth information in each pixel is usually converted to
pseudocolors so that a depth map can be drawn and viewed as a normal
image. It is easily understandable because it has similar geometry to an
optical image. See a comparison in Figure 4.2.

If two points are close in 3D space, they also must be close in the depth
map. The opposite is not true: two points close in the depth map can be far
away in 3D space, i.e. there is a sudden depth change in the depth map.

Here I use mostly a pseudocolor scheme which displays the nearest points
in blue and the furthest-away points in pink (blue-cyan-green-yellow-red-
pink). This can be seen as somewhat counterintuitive, since one would expect
near objects to be red (i.e. hot) and far objects blue (i.e. cold). An inverted
scheme was used since greater distance means greater value and therefore a
more intense color. White (background) means no data in these depth maps.

4.1.3 Comparison of a 3D plot and a depth map

Figure 4.1: (a) A depth map. Colors code distance (depth), axes show angle
in radians. We discuss areas with missing color in section 4.2 Laser failure
areas. (b) A 3D points plot of the same point cloud. Axes are in meters.

An advantage of the 3D plot of the point cloud is that a human can
easily identify flat structures like walls and ceilings whose shape is not clearly
obvious from the depth map. The biggest disadvantage is overlapping points
making it very confusing. Moreover, the 3D points plot is usually produced
from a different viewpoint than from which it was originally scanned. A view
on the 3D data from a different position is not completely valid, because if
scanned from there, it would contain different points. This is because the
point cloud is not a full 3D representation of the surroundings.
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Figure 4.2: An outside scan. (a) This is a good arrangement of the 3D plot
showing well buildings walls. (b) Drawing the depth map makes the scene
more understandable and shows a problem with cars. (c) A photo of the
scanned area. The depth map has a similar geometry to the photographic
image to which humans are accustomed.

I found a depth map to be more understandable representation of the
point cloud if a human wants to quickly assess what is in the scene. For best
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understandability of the 3D data, it is possible to combine pseudocoloring
according to depth with the 3D plot of the point cloud, as it is done for
example in RVIZ visualization program in ROS [16].

4.2 Laser failure areas

The depth map is the best for assessing areas where the laser fails, i.e. where
it does not provide any distance information (points). Missing points can
mean that the laser range finder did not get an echo from the surface or
could not measure the time of arrival of the echo properly.

It turns out, the laser has a problem with shiny and wet surfaces. This
can be for example visible in Figure 4.2 b. It shows extensive areas with
missing points belonging to the cars.

Next, we progressed toward scanning staircases. Subsequent images show
other areas where the laser is failing.

Figure 4.3: A scan of a staircase in the CMP building G. The robot does not
stand perpendicularly to the stairs.

Large areas of missing points in the left and right part of the full depth
map (Figure 4.3 b) are caused by the robot body occluding the laser scanner
field of view. The robot body, strangely, does not reflect the laser (none or
only a minimal number of points is present).

The scan in Figure 4.3 does not appear to have any major areas with
missing points except one. It is the left wall of the stairway. This wall is
physically present there but is almost parallel to the laser ray path. This can
cause that the laser to fail to respond on this surface even though it is not a
shiny or wet one.

There is a strange effect of missing points on edges of the stairs. The
closer to the center, the more points are missing. Missing points on edges
are unfortunate for the stair climbing task, because the edges of the stairs
are the important structures which we may want to detect and they are also
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Figure 4.4: (a) A close-up of the center of the staircase depth map from
Figure 4.3. Note missing points. (b) This image shows missing points on
other edges and on some sudden changes in depth. Note that there are
glass panes inside the holes in the doors. The laser goes through glass and
measures the surface behind it.

Figure 4.5: Because of simplification of the stair detection task, we may place
the robot in front of the stairs so that it stands perpendicularly to the stair
edges. (a) Such situation is shown in this image, which is a close-up from a
full depth map. (b) Further close-up of the same situation. It shows a large
area with missing points. The upper stairs are not visible at all, there is no
data. This happens only when the robot stands perpendicularly to the edges
of the stairs. It is not clear what causes this. It is possible, that the laser is
getting multiple echoes from the further-away steps and cannot measure the
distance properly.

the places where the robot is in touch with the stairs while actually climbing
them.
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Figure 4.6: An image showing how the data of the scanned staircase actually
look like in 3D. There are points belonging to the first to fifth step. Further-
away steps have only a few points.

4.3 Conclusion from the data exploration

We gained clearer insight into the data provided by our laser scanner, which
could be used as an input to the prospective algorithm.

There was an idea, that the robot would measure the whole staircase from
below and count the number of steps for example. We discovered, that this
could be extremely difficult, because the laser data (point clouds) does not
contain sufficient information. As can be seen in Figure 4.6, the further-away
steps are not discernible in the data and even a human can not count the
total number of steps in the staircase. Such algorithm would also fail on a
very long staircase.

The surrounding walls may be present in the scan, but a staircase does
not have to have walls on its sides, it can have a balustrade. Further, since
the laser scanner is mounted very low on the robot, the robot only sees the
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Figure 4.7: The first image shows another problem with missing points, whose
cause is unclear. It shows a hallway with adjoining rooms with people. (a)
On many depth maps, there appear to be missing points in an almost perfect
circle near the center. (b) The second image shows the same scene in 3D,
the viewpoint is near to that from which the point cloud was scanned. There
is a lot of missing points belonging to the ground. This is unfortunate for
obstacle detection, even though obstacles are more likely to get detected than
a flat ground.

top horizontal surfaces of only one or two of the first steps of the staircase,
assuming it stands underneath it on the floor. All this suggest that a general
and at the same time robust model of a staircase would be very difficult to
make and it would be difficult to fit data to it, since the data is actually
missing a lot of information.

The approach based on point clouds would not produce a working algo-
rithm in the time assigned to this task. The point cloud is very complicated
and contains a lot of information completely unnecessary for the obstacle-
traversing task. Even bigger problem is that the point cloud cannot be cap-
tured frequently enough. It takes a few seconds to capture one point cloud.
However the staircase/obstacle-climbing algorithm – whatever it might be –
will have to react more quickly and with more recent data.





Chapter 5

2D vertical laser scan method

Our task of automatically controlling the flippers could have been solved by
processing the 3D data. Instead of trying to isolate a plane from the 3D point
cloud, we decided to use the individual 2D laser scans directly. Everything
that has been said about missing points in the previous chapter applies to in-
dividual laser scans as well. We care only about data, which could potentially
come in contact with the robot’s flippers during its subsequent movement.
Upon tightening the loop, i.e. running the algorithm more frequently with
up-to-date sensory data, it is possible to consider only terrain the robot can
touch in its current position. In other words, we do not need to look much
ahead.

The task does not require to separate objects in the data and measure
them. For the robot it is only important, that there is something there,
into which it can crash with its flippers. It does not matter to which object
it belongs or what are its parameters. The final algorithm is based on an
idea circumventing the problem that even if we could measure parameters
of the obstacle, we would also need precise and more importantly instant
information about the relative pose of the robot towards that obstacle.

5.1 The algorithm

We propose to focus on the terrain profile. The terrain profile in front of the
robot can be measured by the laser scanner in a vertical (scanning plane)
position, see figure 5.1.

Individual laser scans are up-to-date, frequently available and contain
almost no erroneous points. There will always be accurate data from in
front of the robot. The front flippers may be a little bit more important
to control properly than the rear flippers, as there are robots, which has
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Figure 5.1: The vertical scanning plane when the laser scanner is tilted into
a fixed position to capture the terrain profile. (a) Robot under a table and
facing a wall. (b) Robot facing a staircase.
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Figure 5.2: Example single vertical laser scans showing (a) the robot ap-
proaching a short staircase and then (b) the robot being on the staircase.

otherwise similar construction but they lack the rear flippers entirely, see
chapter 3 The NIFTi robot.

The algorithm for adjusting the front flippers is the following:

1. Set the laser permanently into a vertical position. This way it has the
most power focused on discovering the terrain profile. We get individual
laser scans at a rate of approx. 40-50 Hz.

2. Compute the front flippers position (described in the next sections).

3. Set the flippers physically according to the computed angle.

Now it remains to discover, how to actually compute the front flipper
position while having data such as shown in Figure 5.2.
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5.2 Computing position of the flippers

Figure 5.3: For every terrain profile and a known robot pose towards that
terrain, there exists a flipper configuration such that the flippers touch the
ground (or possibly they are in the lowermost position to mitigate possible
impact if they cannot reach down to the ground).

Deciding on the flipper angles has always relied on operator’s intuition
during obstacle traversal. An optimal solution is not obvious for the complete
problem, but is conceivable for a situation, in which the robot does not move,
it just stands on a terrain with certain profile as depicted in Figure 5.3.

In this static case, the flippers should touch the terrain to support the
robot. Nothing better can be done with the flippers in the static case; there
usually is only one angle at which they touch the ground.

It seems to be a good starting point to compute this static position. It is
not obvious, whether the static position is usable also in the dynamic case,
i.e. when the robot moves and is actually traversing the obstacle. This needs
to be discovered.

5.3 Geometrical problem formulation

The algorithm begins with a set of points from a single laser scan. These
points have coordinates xi and yi. The laser range finder measures distance
at a certain angle, so we obtain (xi, yi) by a transformation from polar to
Cartesian coordinates. Figure 5.4 only shows the process for one i-th point
(the red square) from the single laser scan.

We shift the origin down by distance d, since the laser scanner center is
directly above the center of the front wheel. The flipper angle is determined
here by the normal vector of the ψi line. This line goes through the bottom
of the front flipper. Both belts of the main track and that of the flipper are
rolled around this wheel. Therefore the ψi line forms a tangent to the front
wheel. The ψi line is located at a distance r from the new origin O and we
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Figure 5.4: Geometry of the front flipper for the i-th point from a single laser
scan. The goal is to compute φi from (xi, yi)

.

want to discover its angle φi or its normal angle φni. The ψi line can be
described by the equation 5.1 which is a form of 2D line equation used for
example in the Hough transform.

xi cos(φni) + yi sin(φni)− r = 0 (5.1)

Since r (wheel radius) is known, this equation provides a way to compute
the normal angle φni for each and every point from the current laser scan
with coordinates (xi, yi) lying on differently tilted ψi lines.

From the computed set of φni angles for all points, we choose the highest
one φnmax. This is a normal vector angle, we want the flipper angle φmax

with values from π
2

(up) to −π
2

(down). The resulting flipper angle φmax is
obtained by adding π

2
to the normal vector angle φnmax.

This is the highest elevation angle and also the lowermost angle to which
the flipper can be physically positioned without colliding with the terrain.
The flipper then touches the ground in the point with the maximal φmax

angle; those points can be seen in Figure 5.5.

Note, that the angle reference for a flipper (i.e. φ = 0) is where the lower
part of the flipper is in parallel with the ground and with the x axis.
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Figure 5.5: Laser scanner data (red), a subset the closed-form solution al-
gorithm uses (green points) and the point with maximal φmax angle (pink
cross), that determines the flipper position.

5.4 A closed-form solution

Since the equation 5.1 for obtaining the φni angle is not easily solvable, I
used Maple 9.51 to obtain the solution. The following is a slightly modified
version of the used Maple script (not showing the i indices):
psi := x*cos(phi n)+y*sin(phi n)=r;

ψ : x cos(φn) + y sin(φn) = r

phi n := solve(psi,phi n):

phi n1 := phi n[1];

φn1 = atan2


−
x
(
rx+

√
x2y2 + y4 − y2r2

)
x2 + y2

+ r

y
,
rx+

√
x2y2 + y4 − y2r2
x2 + y2
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phi n2 := phi n[2];

φn2 = atan2


−
x
(
rx−

√
x2y2 + y4 − y2r2

)
x2 + y2

+ r

y
,
rx−

√
x2y2 + y4 − y2r2
x2 + y2


phi n1 := simplify(phi n1);

φn1 = atan2

(
−
x
√
y2 (x2 + y2 − r2)− ry2

(x2 + y2) y
,
rx+

√
y2 (x2 + y2 − r2)
x2 + y2

)
phi n2 := simplify(phi n2);

φn2 = atan2

(
x
√
y2 (x2 + y2 − r2) + ry2

(x2 + y2) y
,
rx−

√
y2 (x2 + y2 − r2)
x2 + y2

)
There are two solutions. In the end, from the φn1 and φn2 angles, the

negative one is chosen preferring φn2 if both are negative. The chosen result
becomes the φni angle in our previous notation.

5.5 Integration

So far has been described, how to set the flippers as a reaction to a single
vertical laser scan. In order for this algorithm to work practically, we have
to run it continuously.

Individual laser scans are available with frequency of approximately 50 Hz.
For each laser scan we make the computation described earlier, from which
we get one maximal φmax angle. Since the φmax angle varies slightly between
individual laser scans even when the robot is stationary due to measurements
noise, we employ an averaging of the φmax angles. The averaging window can
be set for example to 20 laser scans. This means, every 20th scan, we compute
the average value of the last 20 φmax angles.

Next, the result is rounded to tens of degrees (with hysteresis) and then
finally sent to the front flippers to physically change position. This way
the flipper position is updated with a reasonable frequency, roughly twice
a second. Beside averaging, the rounding is supposed to further suppress
oscillations of the flippers.

For the rear flippers, we mirror the same angle as the one computed for
the front flippers as can be seen in Figure 5.6. There is no particular reason,
why this should work. It is an idea to be tested.
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Figure 5.6: Mirror rear flippers angle idea.

The autonomous flippers mode is supposed to be turned on only during
traversal of more difficult obstacles, so we need to implement an on/off switch.
The whole system function is depicted in Figure 5.7.

Feedback from the flippers is currently not used. The necessary feedback
is now provided by a robot operator, who has to adjust the robot’s speed, so
that the flippers has time to catch up on.

laser
scanner

autonomous 
flipper

controller

flippers

joystick
(button)

scan

scanning speed/laser position

command (move)

feedback
(check position)

Figure 5.7: System diagram.





Chapter 6

Evaluation and experimental
results

Figure 6.1: The NIFTi robot traversing rails and high sleepers.

The algorithm is capable of traversing staircases and curbs, but it was
most intensely tested during a railway yard visit. The operator controlled
only the robot’s speed and direction and the automatic flipper control algo-
rithm set the flippers so that robot remained safe during traversal of difficult
obstacles. We tested it by making both upwards and downwards rides across
a fairly high step-shaped railway sleeper pile. See sequences in Figure 6.2 and
6.3. The robot with the automatic flipper control algorithm was operated
by different people and no difficulties or failures to traverse an obstacle were
reported.

The algorithm does not have any parameters requiring tuning for different
obstacles. Even though originally the module was supposed to be only useful
for climbing staircases, it ended as a completely general obstacle traversal
aid.
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Figure 6.2: The NIFTi robot traversing rails. Flippers are controlled auto-
matically. This situation benefits most from the mirroring method for the
rear flippers.
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Figure 6.3: The NIFTi robot traversing a high railway sleeper while its flip-
pers are controlled automatically.
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6.1 Shortcomings and further discussion

Figure 6.4: (a) Robot back falling when going down from a step. (b) Front
flippers unfavorable attack angle.

One question concerns leaving the flippers in the zero position in different
situations. For example it was found that the flippers should not be in contact
with the ground (where the algorithm places them) when navigating on a
flat safe ground. Flippers placed on the ground hamper turning and worsen
maneuverability in confined spaces. On the other hand, it is very helpful to
leave the flippers fully deployed in zero position during climb in the middle of
a staircase. This increases contact of the tracks with the ground and reduces
slippages. See Figure 6.5.

When going down a step, the rear flippers are set too low by the algorithm
and this causes the robot back to fall a little bit (Figure 6.4 a), if the operator
does not anticipate this and does not slow down. The rear flippers should be
a bit higher.

When climbing up a step, the attack angle of the front flippers chosen
by our algorithm is much higher than necessary (Figure 6.4 b, blue). This is
caused by the algorithm trying to avoid collision with the flippers, putting
the flippers still higher and higher during the approach. A human operator
usually tends to set the attack angle as low as possible (Figure 6.4 b, black).

A general problem is that our robot has only one laser scanner mounted
in front of the robot. We assume traversed obstacles have the same profile in
the center where the profile is measured by the laser as they have under the
tracks and flippers where it actually matters. This is roughly true for most
obstacles and a common robot use and a small difference does not matter
very much.

In the future the situation may be improved by not using single laser
scans, but utilizing a virtual cross-sections of a 3D map of the environment.
This will become feasible when sufficiently precise and up-to-date information
about the robot position in such map becomes available.
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!

Figure 6.5: It is OK to leave the flippers in zero position in the first case,
i.e. to leave the front flipper higher than it would normally be set by the
autonomous flippers algorithm, which would try to make it touch the ground
below the last step. Such behavior improves performance in the middle of
a staircase. However, it is not OK to do this in the second example – the
robot is going to fall forward before reaching the last step. The problem is,
it is hard to discern between these two situation. Knowledge of the position
of the red point where the robot is supported is necessary.
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Figure 6.6: The resulting behavior of the robot with the autonomous flipper
control is complex and does not depend only on the algorithm itself. For
example during landing at the end of a staircase and in similar situations
we exploit the algorithm imprecision to gradually lower the robot. It works
the following way: the algorithm computes the front flipper angle (negative,
under the robot) but this angle is a little bit closer to the zero position than
it should be, i.e. the flipper end does not reach the ground. This causes the
robot to fall forward a little bit, which in turn makes the robot think that
the ground is a little bit higher, which results in putting the flipper even
higher. This way the robot progressively lowers its front part until it touches
the ground with its main tracks.



Chapter 7

Conclusion

A rescue tracked robot with flipper arms has high ability to get over different
kinds of difficult terrain, but it is a slow and demanding task to control its
flippers in remote control. A highly skilled operator is usually required.

We present a simple yet effective algorithm based on data from a single
vertical 2D laser scanner. The algorithm is constantly setting the front flip-
pers into such position, that they touch the ground. The rear flippers are set
to the same angle, mirroring the front flippers.

We implemented an autonomous flipper control module for the Robot
Operating System (ROS). It is designed to be used intermittently for example
during staircase climbing or traversal of any other difficult obstacle, which
would otherwise require frequent manual reconfiguration of the flippers.

We used this module to control the NIFTi robot’s flippers and examined
function of the proposed control law in multiple environments. The module
performed well during riding across various obstacles and allowed even an
unskilled operator to maneuver quickly on many types of terrain like stair-
cases, steps, curbs or rails by controlling just the main tracks speed and the
robot’s direction. Since the algorithm tries to hold the front flippers close to
the ground, this method also eliminates rough falls of the robot front part
and therefore limits damage inflicted to on-board devices. The algorithm
does not require any prior knowledge of the obstacle nor any tuning, so the
robot is likely to traverse successfully completely unknown obstacles as well.

Aside from relieving load of the robot operator, autonomous flippers con-
trol may become relevant as commanding of the robot shifts to a higher level
– i.e. the robot movements will not be directly controlled by the teleopera-
tor, but the robot may receive higher-level commands, for example to reach a
target located a few meters away. Since there can be obstacles on the robot’s
path, autonomous flipper control may become very important.
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Appendix A

Implementation

Technical description for programmers (innovators and bug-fixers).

The autonomous flipper control algorithm is implemented as a program
for the Robot operating system (ROS) running on the NIFTi robot. It is
written in C++ and uses the Eigen matrix library.

A.1 Notes about the Robot Operating Sys-

tem

Here I will briefly describe some ROS concepts and our autonomous flippers
software module.

The sedlafi2 experiments name refers to a ROS package, which is a
filesystem entity. A package is a group of files needed to compile and run
one or a small set of related programs in ROS.

Single programs (for example our fflip touch module, which actually
controls the robot flippers) are called nodes in ROS. One package can contain
several nodes and files required to compile and run these nodes. These are
typically its source code, launchfiles and message definitions.

The programs in ROS are called nodes because when they are run, they
form a Computation Graph, a peer-to-peer network which organizes their mu-
tual communication. Nodes communicate using data messages. A message
is a data structure containing typed fields. The following is an excerpt from
[http://www.ros.org/wiki/ROS/Concepts] with a straightforward descrip-
tion:

”Messages are routed via a transport system with publish/-
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subscribe semantics. A node sends out a message by publishing
it to a given topic. The topic is a name that is used to identify
the content of the message. A node that is interested in a certain
kind of data will subscribe to the appropriate topic. There may be
multiple concurrent publishers and subscribers for a single topic,
and a single node may publish and/or subscribe to multiple top-
ics. In general, publishers and subscribers are not aware of each
others’ existence.”

The whole system is coordinated by the ROS Master. There are also other
interesting ROS concepts, like services and bags, which are not covered here,
because these are not directly used with the autonomous flippers module.
More information to understand ROS can be found at:
http://www.ros.org/wiki/ROS/Concepts

http://www.ros.org/wiki/ROS/Tutorials/UnderstandingNodes

A.2 Interface

This section describes how the autonomous flipper program communicates
with its surroundings.

A.2.1 Subscriptions (input)

The fflip touch node subscribes to the following ROS topics:

• /scan for sensor msgs/LaserScan messages. Each message carries
one 2D scan made by the laser scanner. These messages arrive approx-
imately at a rate of 50 Hz. Content (definition) of the message can be
found here: http://www.ros.org/doc/api/sensor_msgs/html/msg/

LaserScan.html.

• /joy for joy::Joy joystick messages containing information about but-
ton and joystick axes changes.

• /robot status for nifti robot driver msgs::RobotStatus

message. The node uses only one its subfield,
RobotStatus::scanning speed to discover the current angular
velocity of the laser scanner rotation.

• /flippers state for nifti robot driver msgs::FlippersState mes-
sage. This message is used marginally and tells the node the current
position of the four flippers.

http://www.ros.org/wiki/ROS/Concepts
http://www.ros.org/wiki/ROS/Tutorials/UnderstandingNodes
http://www.ros.org/doc/api/sensor_msgs/html/msg/LaserScan.html
http://www.ros.org/doc/api/sensor_msgs/html/msg/LaserScan.html
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A.2.2 Publications (output)

The node publishes messages to the following topics:

• /flipper cmd, message type nifti robot driver msgs::FlipperCommand

• /flippers cmd, message type nifti robot driver msgs::FlippersState

• /scanning speed cmd, message type std msgs::Float64

• /laser center, message type std msgs::Bool

A.3 Constants (thresholds)

The program contains several categories of constants. The first set of con-
stants is tied to our NIFTi robot. Since the algorithm performs computations
based on the robot dimensions, these dimensions are hard-coded in the source
code. Their values has been derived from the robot technical drawing (Figure
3.1). Lengths are in meters and angles in radians.

• double downFromLaser = −0.123;

The y-axis shift from the center of the laser scanner (the coordinate
frame origin) to the center of the front wheel. This point is a center of
rotation of the front flippers.

• double wheelRadius = 0 . 0 9 0 ;

The radius of the front robot wheels (holding the main tracks and
flippers tracks).

• double f l i ppe rLeng th = 0 . 4 5 ;

This constant’s meaning is to specify the length of the flipper (from
the center of its rotation – center of the front wheel – to its end). The
value however does not state the real length of the flipper. The real
value is 0.356 m and a higher value is used to make the algorithm react
more usefully. Now the algorithm thinks, that the robot has longer
front flippers, it raises it earlier and the flipper does not collide with
the step.

• double alpha0 = 0 . 1 9 3 7 ;
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An angle offset. It comes from the flipper shape and is visible on the
robot technical drawing (Figure 3.1).

Another category of constants is affecting the node function. There are
two constants affecting the program before it outputs the flipper angle:

• unsigned int anglesAveragingWindowSize = 20 ;

This value specifies the size of an averaging window. It specifies the
number of scan messages the node has to receive and compute corre-
sponding flipper angles to publish a command for changing the flipper
angle. It publishes only if the rounded average value is different from
the last one.

• unsigned int roundPublishedAnglesTo = 10∗PI /180 ;

A magnitude of the angle change step for the flippers, it is used for
rounding. This value is an flipper angle and is in radians even though
its value is set default to be 10 degrees.

Finally, there are constants tied to the laser scanner itself and correc-
tions of its output (described later in section A.4.3 The core – flipper angle
computation).

A.4 Program structure

The autonomous flipper control node resides in several .cpp files. In the main
function, the code only initializes ROS and constructs the node class.

A.4.1 Constructor

In the constructor, class fields are initialized. Some values are initialized
to a values adopted from a launch file (if the node is run using a launch
file). The node subscribes to all topics described in the Interface section and
advertises, that it is going to publish on topics. Loading parameters from a
launch file is facilitated by the getParam method. This method comes from
the nifti laser assembler source.
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A.4.2 Callbacks

The rest of the program comprises of callbacks. These are methods, which
get executed after a ROS message is received by the node on a specific topic.
Each subscription to a specific topic has its own callback function (class
method).

Some callbacks are only used to receive and store the last mes-
sage published on some topics. These include /robot status topic (the
robotStatusCallback method), which contains specific messages connected
to our robot (message type nifti robot driver msgs::RobotStatus). We
are only interested in the scanning speed subfield, which contains the cur-
rent laser scanner angular speed.

The flippersStateCallback method stores the last message received
on the /flippers state topic, which gives our node the true position of the
flippers. This value is currently used only marginally during the autonomous
flippers mode shutdown to stop the ongoing flippers relocation immediately.
This is intended to be a safety element – if the robot is doing something unde-
sirable or dangerous with the flippers, the operator can promptly disengage
the autonomous flippers mode and the flippers must stop their movement
without completing the ongoing (the last) relocation command by the con-
trol algorithm. Our node is not actually constantly checking, whether the
flippers are at the position, to which the control algorithm sends them. It is,
however, quite easy to implement such functionality.

The joystickCallback receives a message of the type joy::Joy and
implements a reaction to a button press. Since the joystick (node) sends
out messages every time a joystick state changes – which means, someone
has pushed or released a button, but also that a joystick axis has changed
slightly – and buttons state is send out as an array of boolean values (0/1),
it is not clear at first, when a button has been pressed. In other words, from
the many messages we receive on the /joy topic, we have to detect, which
message truly represents the event, that the button dedicated as an on/off
switch for the autonomous flippers mode has been pressed.

When detected, that the on/off button has just been pressed, we execute
the buttonAction method. This method implements the on/off functional-
ity. It toggles the state of the autonomous flippers mode. The buttonAction
method controls the behavior of the node in the following way:

If the autonomous flippers mode is off (i.e. we are turning it on), it:

1. Stores the most recent value of the rotating laser scanner angular speed
(scanning speed).

2. Turns the laser to one of the two vertical positions using the
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turnLaserVertical method.

This is not true if the module is in a manual laser angle mode where
responsibility of turning the laser into vertical position is solely on the
robot operator. In such case, the node does not even check, whether
the laser is in the right position and the flippers control algorithm
operates anyway. This mode was used when the laser scanner rotation
mechanism broke down. It partly could not rotate properly, but also
reported a wrong angle to the ROS system.

3. Toggles a boolean variable:

s ta i r caseModeState = true ;

This boolean variable controls the autonomous flipper control algo-
rithm, which is started off from the scanCallback method discussed
later.

If the autonomous flippers mode is on and we are turning it off, the
program:

1. s ta i r caseModeState = fa l se ;

Toggles the boolean state variable the so that the flipper control algo-
rithm knows immediately (upon receiving the next laser data) not to
operate.

2. Cancels the ongoing (if any) flipper movement by publishing a new
flipper command containing the last physical position flippers reached
and reported it back to this node (through the /flippers state topic).

3. Attempts to return the rotating laser scanner into a motion state prior
to turning the autonomous mode on. It either restores it by publishing
the saved value from before turning the autonomous mode on to the
/scanning speed cmd topic, or sends the laser into zero position (and
zero speed) if the data are not accessible or the laser scanner was not
moving when the autonomous mode was turned on. It means, that if
the laser was moving (rotating), the node restores its rotational speed.
If the laser scanner was stopped at certain angle, this angle is lost. The
node would have to set the laser scanner back into this angle and that
is a difficult task. Thus, the laser is returned to (and stopped at) the
zero position, i.e. horizontal scanning plane.

The turnLaserVertical method implements a relatively complicated
task of turning the laser scanner into one of the vertical positions, in which
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it can perform our task, i.e. scan the terrain profile. The task is compli-
cated, because the current robot implementation does not have any low-level
command to send the rotating laser scanner into specific position (angle).
So the command has to be implemented using a pseudo-closed-loop software
controller.

The main function of the autonomous flipper control algorithm is
started off from the scanCallback. The algorithm works upon receiving
a sensor msgs::LaserScan message on the topic /scan. Everything that
follows (which is the core of the autonomous flipper algorithm) is executed
only if (staircaseModeState == true).

First, the laser scanner angle is determined using the get laser angle

method by querying the ROS TF subsystem for the laser angle at a specific
time. The laser scanner angle value is the angle the laser scanner had at
the time of the laser data capture - this time is discovered using message
timestamp.

Then the the flipper computer class (FlippersAngle) is initialized with
the current laser data and scanner angle and is asked to compute the front
flippers angle:

F l ippersAng le f l ippersAngleComputer ( ranges , sensorAngle ) ;
double resu l t ingFFAngle =

f l ippersAngleComputer . getFrontFl ippersAngleClosedForm ( ) ;

The resulting flipper angle is stored in a buffer. The size of this buffer
is specified by the value of the anglesAveragingWindowSize constant de-
scribed in the Constants (thresholds) section. The algorithm does nothing
more in the scanCallback method, if the buffer is not fully filled. When it
contains the target number of values, the algorithm proceeds:

1. It averages all the computed angles in the buffer.

2. The resulting average is rounded and compared to the current value
(i.e. the last published and most likely also physically achieved by the
flippers). A hysteresis is implemented, so that the new value needs to
be a little bit higher than the half of the difference between the angle
steps after rounding.

3. It publishes the resulting angle, i.e. sends it to the flippers to physically
to execute the movement only if the new computed rounded value is dif-
ferent from the last one. This is done using the publishFlippersAngle
method.

Not publishing the value if it is the same as before is intended to relieve
the load of the ROS messaging system, but it has a downside. If one
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of the messages is lost, the flippers may remain in the old position,
because the algorithm does not send out the message again and it also
does not check, whether the flippers are in the target position.

Currently, there is a bug, which could be solved by publishing the angle
always, even if it has not changed. Currently, the flippers do not move
immediately after the autonomous mode is turned on, they move only
after there is an obstacle in front of the robot (i.e. which causes the
computed angle to be dramatically different and therefore a new value
is published).

4. Erase the buffer and start accumulating a new batch of angles.

A value of the anglesAveragingWindowSize constant is typically set to
20 (twenty last angle values averaged), which at an approximately 45 Hz rate
of the /scan messages gives 2.25 angle updates per second. An in-between
delay is 0.44 s.

The publishFlippersAngle just does the ROS message publishing of
the computed flippers angle. The sign of the angle is inverted because the
robot actually uses an opposite angle direction. There is also a possibility
of an offset correction, even though currently the offset correction is zero. It
also publishes the same angles for the rear flippers with changed sign once
more.

A.4.3 The core – flipper angle computation

This code is currently in the FlippersAngle.cpp file. This file also con-
tains the older discretized version of the flipper angle computation algorithm,
which was replaced by a shorter, simpler version using a closed-form solution.

The FlippersAngle class initializes with the data from a single laser scan
and the scanner angle, with which this scan was captured. For the scanner
angle only two values are possible: ±π

2
. Even though they both signify the

vertical position of the laser and the autonomous flipper mode cannot be used
in any other laser scanner angle (this actually could be changed in the future),
the algorithm needs to know the angle at which the data was captured. It
has to first somehow determine where is up and down and secondly, it uses
minor corrections, which differs slightly for to the two positions of the lase
scanner.

After initialization, the FlippersAngle class proceeds by running the
prepareRanges method from its constructor, where it:

1. Reverses the laser ranges data, if the laser scanner angle is −π
2
.
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Figure A.1: (a) Uncorrected (as it comes from the laser scanner). (b) Cor-
rected. Correction of the near range measurements. The correction uses the
formula ranges[i] = ranges[i]+0.17e−10·ranges[i] for all points closer than 0.5 m,
which has been simply made up to make the points in the left plot appear
as in the right plot.

2. Corrects the range measurements, which are nearer than 0.5 m:

ranges [ i ] += corrCoe f1 ∗ exp(−10 ∗ ranges [ i ] )

where corrCoef1 is set to 0.17 by hand, see Figure A.1 and A.2.

3. Since the sensor msgs::LaserScan contains the range measurements
but it actually does not contain the angles, at which these range mea-
surements have been made, the angles needs to be computed. This
task is again slightly dependent on the value of the laser scanner angle
(±π

2
). The angles are in either case a set of 540 values, which divide the

total scanning angle of the laser scanner (270◦) into half-angle pieces.
If the laser scanner angle is −π

2
, the angles are values from −135.0 to

134.5 (both inclusive) with a 0.5 degree increment. If the laser scanner
angle is +π

2
, the angles start at value of −134.5 and goes to 135.0 (both

inclusive) with a 0.5 degree increment. When the angles are computed,
we actually get coordinates of all the laser points in polar coordinates.

Note: it is possible, that this step of the algorithm could cancel out
with the (now probably unjustified) order reversal of the values in the
first step of the preparation stage of the algorithm. Then the angles
computation could be independent of the laser scanner angle.
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Figure A.2: (a) Uncorrected (as it comes from the laser scanner). (b) Cor-
rected. Correction of the near range measurements as it affects a range scan
of a staircase. The red points are completely wrong measurements caused
probably by reflection of the laser from the robot body. These points are
occur on the ends of the circular sector of the laser scan and we attempt to
discard them by cutting off a number of points at the ends (these points are
not useful anyway, since they are not in the front direction).

4. Go through all of the 540 values and complete the individual points
coordinates set with the Cartesian coordinates (x, y) of the points.

(ρ, θ, x, y) = (ρ, θ, ρ cos θ, ρ sin θ)

Each point is in the algorithm then represented by a vector with four
components, first two ρ, θ represent the polar coordinates (ρ is the
measured range and θ is the computed angle at which the range mea-
surement was acquired).

5. The algorithm filters points from the sides of the total angular range.
The concrete cut-off boundaries were discovered experimentally, but
their value can change and they should be checked once in a while.
The goal here is to remove unwanted points, which for example belong
to the robot body (or the antenna typically). These points are at the
sides of the angular laser scanner range and they can interfere with the
subsequent algorithms working with the points. We have to assure, that
the subsequent algorithms will not be confused by points belonging to
the robot body confusing it with an obstacle.

Note: the current algorithm probably does not depend on this filter-
ing step, since it takes only points, which have positive x coordinate.
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That cuts off a substantial side portions of the angular section scanned
by the laser and probably all the problematic points caused by laser
measurements on the robot body.

Moreover, the algorithm discards all points, whose ρ coordinate (i.e.
distance) is smaller than 0.1 m. These can be zero values (not mea-
sured, error, or did not get a reflection) or very near values caused
by reflecting some part of the robot body. The laser measurement is
invalid on a such near range anyway.

The FlippersAngle class contains a method getFrontFlippers-

AngleClosedForm(). This one actually performs the angle computation.
This method contains several constants connected to the robot dimensions
and kinematic structure described in the section A.3 Constants (thresholds).

double downFromLaser = −0.123;
double wheelRadius = 0 . 0 9 0 ;
double f l i ppe rLeng th = 0 . 4 5 ; // 0.356 correc t , 0 .45 working

// 11.1 deg accord ing to the t e c h n i c a l drawing :
double alpha0 = 0 . 1 9 3 7 ;
double p = wheelRadius ∗ cos ( alpha0 ) ;

Then the front flippers angle algorithm proceeds:

1. It first transforms the points origin into the center of the robot’s front
wheel. This is just a translation in the vertical (y) direction.

2. It recomputes all points distances to the new origin..

3. Only points inside a circle around the origin are chosen for further
processing. Specifically, only points fulfilling this condition are chosen:

i f ( x > 0 && d i s t < f l i ppe rLeng th
&& d i s t > wheelRadius ∗ s q r t ( 2 ) )

It roughly means: we want only points in front of the front wheels
(since there are the flippers), no further away than the flipper length
and a little bit further away from the edge of the front wheel, since
these points would produce weird results.

Currently, it is not very well handled if there are no points, which fulfill
this condition. The algorithm should do nothing in such case.

4. For all chosen points, φ01,02 angles are computed using the closed-form
solution (for derivation see 5.4 A closed-form solution):
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y1 = −x
√
y2(x2+y2−p2)−py2

(x2+y2)y
x1 =

px+
√
y2(x2+y2−p2)
x2+y2

φ01 = atan2(y1, x1)

y2 =
x
√
y2(x2+y2−p2)+py2

(x2+y2)y
x2 =

px−
√
y2(x2+y2−p2)
x2+y2

φ02 = atan2(y2, x2)

5. Then only one of these angles is chosen for each point. The second
angle is preferred, if it is negative, if it is not, then the first one is
used, if it is negative. If neither of the angles is negative, this is an
unexpected situation, the code issues a warning.

6. The algorithm finds the maximum angle.

7. It adds π
2

to the result, since the algorithm returns a normal vector angle
and we are interested in a tangent angle (counter-clockwise-turned from
the normal angle). This is the angle of the flipper which is finally
returned.

A.5 Used source code

nifti laser assembler.cpp
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