
CZECH TECHNICAL UNIVERSITY IN PRAGUE

Faculty of Electrical Engineering

Bachelor Thesis

Jan Vakula

Escape behavior in swarms of unmanned helicopters

Department of Cybernetics

Thesis supervisor: Dr. Martin Saska

In Prague on May 25, 2012

Aknowledgements

I would like to thank all the people who helped me in any way with the bachelor thesis.

Especially, I would like to thank my supervisor Ing. Martin Saska, Dr. rer. nat. for showing

me the right path. Further I have to thank my room-mates and my family for supporting

me.

Abstract

This thesis deals with the design, implementation and verification an

algorithm of escape behaviour, which decreases the possibility of collision

of a swarm of unmanned helicopters (UAV) with dynamic obstacles.

The model of the quad-rotor movement and constraints given by relative

localization of swarm particles is also implemented in the algorithm,

which is crucial for real deployment of the method. Controller for the

real model of the quad-rotor is designed and it calculates the speed

of each propeller of quad-rotors depending on a prescribed trajectory.

The algorithm for swarm control has been inspired by a paper [1],

where the algorithm of escape behaviour for 2D robots with differential

drive is described. The functionality of 2D algorithm is performed using

simulations and testing on a robotic platform SyRoTek. The functionality

of extended algorithm for UAV is verified using simulations in Matlab.

Abstrakt

Tato práce se zabývá návrhem, implementaćı a testováńım algoritmu

skupinového únikového chováńı, které sńıž́ı riziko kolize roje bezpilotńıch

helikoptér a dynamických překážek. Pro reálné využit́ı algoritmu je

zakomponován model pohybu helikoptéry a omezeńı daná relativńı

lokalizaćı člen̊u roje. Pro potřeby modelu je navržen regulátor, který

poč́ıtá rychlosti jednotlivých vrtuĺı helikoptéry v závislosti na trajektorii,

kterou má sledovat. Jako základ algoritmu je použit článek [1], který

zkoumá skupinové únikové chováńı robot̊u, kteř́ı se pohybuj́ı ve 2D.

Ověřeńı funkčnosti 2D algoritmu je provedeno pomoćı simulaćı a

implementaćı do robotické platformy SyRoTek. Funkčnost rozš́ı̌reného

algoritmu pro bezpilotńı helikoptéry je ověřena pomoćı simulaćı v

programu Matlab.

CONTENTS

Contents

1 Introduction 1

1.1 SyRoTek . 2

1.2 3D . 3

2 Control equations for 2D 4

2.1 Simulations . 7

3 SyRoTek 11

3.1 Experiments . 12

4 3D 14

5 Flocking equations in 3D 16

5.1 Other Individuals effect . 16

5.2 Goal effect . 17

5.3 Obstacle effect . 18

5.4 Sum of all effects . 20

6 Controller for 3D 22

6.1 Dynamic of quad-rotor . 22

6.1.1 Numerical computing . 23

6.2 Geometric tracking control on SE(3) . 24

6.2.1 Tracking errors . 25

6.2.2 Tracking controller . 25

i

CONTENTS

7 Experiments and simulations in 3D 27

7.1 Controller . 27

7.2 Swarm experiments . 28

7.3 Blender . 32

8 Conclusion 34

Appendix A Evaluation of SyRoTek I

Appendix B Contents of the enclosed CD III

ii

LIST OF FIGURES

List of Figures

1 Schematically illustrated forces and moments acting on robots 6

2 Sub-figures of simulation with 16 robots and static obstacle 7

3 Trajectory of the simulation with static obstacle 8

4 Sub-figures of the simulation with 16 robots and moving obstacle 8

5 Program schema . 11

6 Sub-figures of experiments with real robots and one obstacle 12

7 Sub-figures of experiments with real robots and two obstacles 13

8 Photo of quadrotor Parot AR.Drone . 14

9 Graph for eij, where a = 5, b = 4, c = 0.6, Lij ∈< 0, 4 > 17

10 Schematically illustrated vectors near the obstacle 18

11 Graph for eoi, where ao = −3, bo = 100, ‖Loi‖ ∈< 0, 3 > 19

12 Graph for δ, where d = 1, Ψ ∈< −π, π > 20

13 Illustrated model of quad-rotor [2] . 22

14 Rotation axes . 24

15 Sub-figures of the simulation . 27

16 Graphs of positions, velocities, euler angles and angular velocities 28

17 Graphs of moments and forces . 29

18 Graph of distances to the obstacle of experiment 1. 29

19 Graph of distances to the closest neighbour of experiment 1. 30

20 Sub-figures of experiment 1. 30

21 Graph of distances to the obstacle of experiment 2. 31

22 Graph of distances to the closest neighbour of experiment 2. 31

23 Sub-figures of experiment 2. 32

24 Graph of the distances to the obstacle of experiment 3. 32

25 Sub-figures of experiment 3. 33

iii

LIST OF TABLES

List of Tables

1 Table of constants used in 2D . 5

2 Table of variables used in 2D . 10

3 Table of variables used in 3D . 16

4 Table of constants used in 3D . 21

iv

1. INTRODUCTION

1 Introduction

The main goal of my Bachelor thesis is to understand, design, implement and verify

the algorithm of escape behaviour, which decreases the possibility of collisions of dynamic

obstacle with swarms of unmanned helicopters.

The motivation of this thesis is to integrate methods of control of a group of quad-rotors

and natural behaviours of animals, like birds or fish. To find a way to move a large number

of quad-rotors from one point to another. During the flight they have to fly in a compact

swarm and be able to avoid obstacles.

For my thesis, an algorithm based on flocking behaviour was chosen. This algorithm

is inspired by natural behaviour of fish, insect or birds. Animals have this algorithm

”programmed in their heads”, that means they use flocking behaviour without thinking. It

helps them to solve their cooperative tasks in their daily life. When looking at the motion

of a flock of birds it seems as though there is some kind of a centralised control. The flock

appears to move as one fluid object, it moves cooperatively. Nevertheless the movement

decisions of individuals are decentralised and based upon the local surroundings.

One of the basic models of this behaviour may be controlled by three simple rules [2].

• Separation - avoid crowding neighbours (short range repulsion).

• Alignment - steer towards average heading of neighbours.

• Cohesion - steer towards average position of neighbours (long range attraction).

Such algorithm based on flocking behaviour has some advantages. For example:

1. Real-time Algorithm

This algorithm can run real-time. There is nothing to be computed before robots

start. Every program loop calculates with actual position of robots, obstacles and

goal. The approach is also suitable for dynamic obstacles.

2. Distributed computation

Every individual in quad-rotor flock computes his own program, which accelerates

solving next step.

1/36

1. INTRODUCTION

The biggest disadvantage of this algorithm is that it is based on constants, which are

difficult to set.

I chose the algorithm described in ”Design and analysis of Group Escape Behaviour for

distributed autonomous mobile robots” [1] for unnamed ground vehicles (UGV) working in

planar environment. In this paper the authors describe control paradigm for robots, that

moves in two-dimensional (2D) space. At the beginning I used this approach for flocking

and for obstacle avoidance and made its modifications. This paper helped me to understand

advantages, disadvantages and principles of this algorithm. This experience helps me to

build a novel method for quad-rotors, which can fly in three-dimensional space.

1.1 SyRoTek

The whole algorithm for 2D robots was developed and tested in Matlab. It has been

rewroted to SyRoTek (System for robotic e-learning) [3] for better illustration of feasibility

and validity. It is a multi-robot platform, which consists of an arena with real autonomous

mobile robots, communication infrastructure and main control computer accessible from

the Internet. SyRoTek experiments are the evidence that these algorithm can be employed

for real robots. For use in SyRoTek the algorithm has to be rewritten in C++ language.

2/36

1. INTRODUCTION

1.2 3D

Modification of the original UGV algorithm for using in 3D applications will be investigated.

This algorithm is suitable for using with quad-rotors like ”Parot AR.Drone” [4]. Model of

quad-rotor’s movement from the paper ”Geometric Tracking Control of a Quadrotor UAV

on SE(3)” [5] will be integrated to enable extensions to 3D. In [5] the authors describe the

theoretical model of quad-rotor that is based on a real model and contains constraints. To

simplify the implementation of escape behaviour algorithm to 3D, it was decided to solve

this matter by dividing into two sub-problems. At first a controller for one quad-rotor is

implemented. And then a behaviour model for a flock is developed. Equations for controller

are used from the paper [5].

Matlab is used for the simulation of the developed method. For given input parameters

Matlab calculates the forces that need to be generated by propellers. The algorithm will

be visualised in Blender, which is a free open source 3D content creation suite.

3/36

2. CONTROL EQUATIONS FOR 2D

2 Control equations for 2D

In this section the control equations for 2D, which is inspired by the paper [1], are

explained. In this paper, planar robots with three degrees of freedom are used. Meaning of

all variables and constants used in this section is described in Table 2 and in Table 1 for

better readability. The equations

mi
dvi
dt

= Fp +
∑
j,j 6=i

eijFKHij
− γvi, (1)

Ii
d2αi
dt2

=
∑
j,j 6=i

(
eijMcij + eijMdij

)
+Mrbi −Dn

dαi
dt
, (2)

describe the dynamics of robot’s flock. There are two flocking equation, where equation (1)

is Newton’s second law of motion. On the left side of the equation there is described the

dynamics of the i-th individual and on the right side there is a sum of all the forces acting

on the i-th robot. Euler’s second law for 2D, equation (2), represents the dynamics of

rotation. The sum of the moments, which are acting on the i-th robot is on the right side.

Mcij is the moment for keeping the same heading direction of the robots. This moment

is important for faster reaction to obstacle avoidance. If any robot detects an obstacle or

a predator, it will start to change it’s direction. The other robots, which don’t detect the

obstacle and have local interaction, will change direction by moment the Mcij as

Mcij = Ktαji + Ct
dαji
dt

. (3)

FKij
denotes the force, that provides separation and cohesion. This force depends on

the relative distance between two robots and on derivation of relative distance. This force

is resolved into two components, one directed in the direction of heading vector of the

robot and the other is perpendicular to the heading direction. FKHij
accelerates the robot

and directly moves robots to required relative distance. FK⊥ij rotates the robot. This is

necessary for shortening or enlarging the relative distance between the robots if they are

too far or too close.

The schematic figure with forces FKHij
and FK⊥ij is shown in Figure 1. The size of FKij

is computed as

4/36

2. CONTROL EQUATIONS FOR 2D

Table 1: Table of constants used in 2D

constant description

Kt, Ct Constants used in the equation (3). These constants

tune the speed of reaction when αij is not 0.

Kd, Dd Constants used in the equation (4). These constants

tune speed of reaction when the robots divert from their

optimal relative distance between them

kF−M Constant that transfers force into moment in the

equation (6).

Ldi Constant, which sets required relative distance between

the robots.

U Potential function generating repulsion effect from the

obstacle.

d Constant used in the equation (8). This constant set

magnitude of function δrbi in dependence on angle.

a, b, c Constants, which sets distance function. This constant

is used in the equation (9) and (10).

‖ FKij
‖= Kd (Ldi− ‖ Lji ‖) +Dd

dLji

dt
, (4)

FKij
= FKHij

+ FK⊥ij. (5)

FK⊥ij creates the moment Mdij with the equation (6). The force is converted to moment

by the constant kF−M as

Mdij = sign(αi − σ) · kF−M · FK⊥ij. (6)

The angle (αi − σ) has to be in the interval 〈−π, π).

The whole swarm also performs the obstacle avoidance by reshaping the swarm by

incorporating the following local obstacle avoidance control law to each robot:

5/36

2. CONTROL EQUATIONS FOR 2D

Figure 1: Schematically illustrated forces and moments acting on robots

Mrbi = sign(Θrbi) · δrbi · erbi · U, (7)

δrbi = (1 + d cos (αi −Θrbi)) . (8)

Mrbi will generate repulsion rotational motion from direction towards the detected

obstacle. Magnitude of this moment is decided by both the direction dependence function

δrbi and the potential function U generating repulsion effect from the obstacle. The dependence

function δrbi generates the repulsion according to the relative angle (αi −Θrbi) between

heading direction vector and the direction vector to the obstacle Lrbi .

We should mention that all these local interactive forces and moments only work between

the robots and obstacles inside their sensor range by using the distance functions eij and

erbi .

eij =
1

ea·Lij−b + c
+

1

e0.5·a·Lij−b + c
(9)

erbi =
1

ea·Lrbi
−b + c

+
1

e0.5·a·Lrbi
−b + c

(10)

6/36

2. CONTROL EQUATIONS FOR 2D

Figure 2: Sub-figures of simulation with 16 robots and static obstacle

2.1 Simulations

In order to simulate the algorithm and for setting constants mentioned in Table 1, a

simulation platform was developed. The platform was written in Matlab. Input parameters

for simulations are the starting position and the angle of the heading direction vector of

the robots, the constants and the position of the obstacle. The simulation computes the

trajectory, forces, speed and shows the movement of the swarm in a video sequence. An

example of the video sequence is shown in Figure 2. In this sequence the robots start in

front of the obstacle. The angles of heading vectors of all robots were set to 0 degree. At

the beginning the robots move like a flock. After a few steps they detect an obstacle and

the flock splits into two groups to avoid the obstacle. After avoiding the obstacle the group

is merged back into one flock.

The trajectories of robots are shown in Figure 3. This figure illustrates that regrouping

takes more time then splitting. It depends on the distance function eij, equation (9).

7/36

2. CONTROL EQUATIONS FOR 2D

Figure 3: Trajectory of the simulation with static obstacle

Figure 4: Sub-figures of the simulation with 16 robots and moving obstacle

8/36

2. CONTROL EQUATIONS FOR 2D

The next simulation in Figure 4 shows the flock behaviour dealing with avoiding a

dynamic obstacle. The obstacle moves during the simulation. This situation doesn’t cause

any troubles since the program calculates real-time all forces. Problems might emerge, if

the obstacle is moving too fast and the time step of the simulation is too long.

9/36

2. CONTROL EQUATIONS FOR 2D

Table 2: Table of variables used in 2D

variable description

mi Mass of the i-th individual.

vi Speed of the i-th robot.

γ Viscosity coefficient of fluid, which represents resistance

of the environment. If γ were 0, the robot could reach

infinite speed.

Ii Moment of inertia of the i-th individual.

αi The angle of heading direction vector in world

coordinates.

σ The angle between the force vector, which points to

other robot, and the heading direction vector

Ri Denotes the position vector of the i-th individual

Dn Rotation viscosity coefficient has the same purpose for

rotation, like the viscosity coefficient γ for translation

Fp Propulsion force acting in the direction of the heading

vector.

αji αji = αj − αi denotes angular difference of heading

direction from the j-th robot to the i-th robot.

Lji Lji = Rj −Ri denotes relative position vector from the

j-th to the i-th robot

Lrbi Relative position vector from the i-th robot to the

position of the obstacle if it exists

Θrbi Angle between the vector Lrbi and the heading direction

vector of i-th robot

10/36

3. SYROTEK

3 SyRoTek

Six mobile robots were used to show the performance of the developed algorithm. The

robots have differential drive, which corresponds to the model used in section 2. On the

top of the robot there is a label for its localization. Global localization from the top

camera is used, that is more suitable for long time simulations. The achieved accuracy

of the global localization is about 3 mm in position estimation and 5 degrees in robot

orientation [6], which is enough for verification experiments. SyRoTek robots also have

odometry localization, which is more accurate, but has a cumulative error.

The experiments were conducted in SyRoTek Arena. This is an enclosed space, which

is 3.5 meters length and 3.8 meters width. The robot working space is a flat area with an

outer barrier 18 cm tall. Additional 13 cm tall obstacles are placed inside. Some obstacles

can be remotely retracted, while the rest of them is fixed. To get more space in experiments,

the fixed obstacles were manually removed and only dynamic ones were used.

Figure 5: Program schema

11/36

3. SYROTEK

The algorithm described in section 2 was developed and tested in Matlab. For testing in

SyRoTek, I rewrote the code to C++. The Main class of the algorithm starts one thread for

each robot. The threads run in a infinite loop. At the beginning of the loop the algorithm

reads global positions of the robots. Afterwards it calculates the equation (1), equation

(2) and finally desired forward speed and angular velocity. The scheme of the algorithm is

illustrated in Figure 5. One loop lasts about 0.1 sec. The algorithm runs real-time, there

is nothing to be calculated before the main program starts. The evaluation of SyRoTek

system is described in Appendix A.

3.1 Experiments

1. All six robots start close to the border of the arena. The obstacle is extruded in the

middle of the arena. According to the expectation the flock of robots splits into two

groups of three members, as in the simulation in Matlab using the same algorithm.

The video from experiments is on the enclosed CD and sub-figures are shown in

Figure 6.

Figure 6: Sub-figures of experiments with real robots and one obstacle

12/36

3. SYROTEK

2. Robots start in the corner and go to the opposite one. There are two dynamic

obstacles extruded. The robots avoid the first obstacle, like in the previous experiment.

The second obstacle is left closed to the planed trajectory and the flock avoids it

together by turning right as shown in Figure 7.

Figure 7: Sub-figures of experiments with real robots and two obstacles

13/36

4. 3D

4 3D

A quad-rotor unmanned aerial vehicle (UAV) is a multicopter that is lifted and propelled

by four rotors, see Figure 8. Quad-rotors are classified as rotorcraft, as opposed to fixed-wing

aircraft, because their lift is generated by a set of revolving narrow-chord airfoils. Two of

the propellers spin clockwise and the other two counter-clockwise. Control of the machine

can be achieved by varying relative speed of the propellers.

Quad-rotor has six degrees of freedom, where four of them are used for asymptotic tracking

control, namely three position variables for the vehicle center of mass and the direction of

one vehicle body-fixed axis.

Figure 8: Photo of quadrotor Parot AR.Drone

There are several advantages of quad-rotors over other flying vehicles.

• Simple mechanical structure does not require complex mechanical linkages such as

swashplates or teeter hinges, which is common for helicopters. It incorporates only

four electric motors and fixed-pitch rotors.

14/36

4. 3D

• Using four rotors allows each rotor to have smaller diameter. Small diameter rotor

stores less kinetic energy than an equivalent single rotor, this reduces the seriousness

of consequences of contact with other objects [7].

• Quad-rotor is easy to stabilize and control.

• It is capable of vertical take-off landing (VTOL).

To simplify implementation of the algorithm of escape behaviour to 3D, it was decided

to solve this matter by dividing it into two sub-problems.

1. Extend the approach in [1] for a flock of quad-rotors.

Actual position of all flock members as an input parameter for one program loop.

Output is the required position of all quad-rotors, which is given as the input for

controllers of each of the robots.

2. Implement the controller for one quad-rotor.

Input parameter is the required position and output is the angular velocity of propellers.

The controller is based on the paper [5].

At the beginning of the program loop every quad-rotor in the group calculates the

required positions. Required positions are determined by

• the positions of all members which have local interaction,

• the positions of obstacles, if obstacles are in robot’s sensor range,

• the position of the goal.

The equations are described and explained in section 5. The required position is the input

parameter for the controller. The controller calculates lifting force and the moments, which

quad-rotor needs to achieve the required position. The Lifting force and the moments can

be transformed to speeds of rotors. The controller is described and explained in section 6.

15/36

5. FLOCKING EQUATIONS IN 3D

5 Flocking equations in 3D

In this section the method of calculating the required position depending on surrounding

of the i-th quad-rotor is developed. The surrounding acts on quad-rotors via forces. The

forces are summed and then transformed to the required position. The form of the equations

is developed intentionally to be similar to the equations in section 2.

The importance of all variables and constants used in this section is expressed in Table 3

and in Table 4.

Table 3: Table of variables used in 3D

variable description

Ri Denotes the position vector of the i-th quad-rotor

Hi Denotes the heading direction vector of i-th quad-rotor

Lji Lij = Ri −Rj denotes the relative position vector from

the i-th to the j-th quad-rotor

Lig The relative position vector from the i-th quad-rotor to

the position of the goal

Loi The relative position vector from the position of the

obstacle, if the obstacle exists, to the position of i-th

quad-rotor

Ψio The angle between the vector Lrbi and direction of the

heading direction vector of i-th quad-rotor

5.1 Other Individuals effect

The effect that provides separation and cohesion is expressed by the equation (11).

It represents their mutual interactions and ensures proper grouping of all individuals. In

section 2 the effect is represented by the force FKij
. The effect is expressed by

Findi =
N∑

j,j 6=i

eij · Findij , (11)

16/36

5. FLOCKING EQUATIONS IN 3D

where eij is the distance weight function. The magnitude of this function depends on the

relative distance between quad-rotors Lij. For the 3D algorithm the same weight function

is chosen as the one used in section 2:

eij =
1

ea·Lij−b + c
+

1

e0.5·a·Lij−b + c
. (12)

Example of this weight function is shown in Figure 9.

Figure 9: Graph for eij, where a = 5, b = 4, c = 0.6, Lij ∈< 0, 4 >

The interactive force

Findij = Kd(‖Lij‖ − Lr)Lij +Dd
dLij

dt
(13)

is designed as a spring-damper model to let Lij be fixed distance Lr.

5.2 Goal effect

The force that pushes the swarm into the goal isn’t mentioned in the paper [1]. We

upgraded this original algorithm by incorporating the goal effect. For practical usage it is

convenient to be able to assign the quad-rotors a specific position, that should be reached.

The interactive force pointing to the goal

17/36

5. FLOCKING EQUATIONS IN 3D

Fgoali = Kg · Lig +Dg
dLig

dt
(14)

is designed as a spring-damper model to let Lig be distance 0. It is like a PD regulator

that is set by constants Kg and Dg. The problem of this proposed solution is that Fgoali

has too large magnitude if quad-rotors are too far from the goal position. Therefore Fgoali

is set to constant magnitude and direction is set to the direction of the vector to the goal

Lig if the magnitude of Lig is too large. Fgoali is then expressed by

Fgoali = Wg
Lig

‖Lig‖
. (15)

5.3 Obstacle effect

Figure 10: Schematically illustrated vectors near the obstacle

The swarm of quad-rotors performs the obstacle avoidance by the reshaping swarm by

incorporating the equation

Fobsi = δ · eoi ·
Hoi

‖Hoi‖
(16)

18/36

5. FLOCKING EQUATIONS IN 3D

to each quad-rotor. The magnitude of this force is decided by both the dependence function

δ and the exponential distance function eoi. The distance function is designed as

eoi = boe
ao‖Loi‖ (17)

Figure 11: Graph for eoi, where ao = −3, bo = 100, ‖Loi‖ ∈< 0, 3 >

and the example of a graph is shown in Figure 11. The dependence function is designed

as in section 2 as

δ = (1 + do cos (Ψio)) (18)

and the example of graph is shown in Figure 12.

Hoi is the direction vector, that points away from the obstacle and is perpendicular to

the heading direction vector of i-th quad-rotor. The schematic figure with vectors is shown

in Figure 10. The perpendicularity is ensured by crossproducts:

Hoi = (Hi × Fio)×Hi. (19)

The vector acting away from the obstacle Fio is designed as

Fio = Ko · Loi +Do
dLoi

dt
. (20)

19/36

5. FLOCKING EQUATIONS IN 3D

Figure 12: Graph for δ, where d = 1, Ψ ∈< −π, π >

It’s direction doesn’t point exactly from the obstacle to the quad-rotor, but it deviates

of this course. This deviation is caused by derivation, that predicts the position of the

obstacle.

5.4 Sum of all effects

The total force, that acts on the i-th individual is determined by the weighted sum

Fi = Wind · Findi + Fgoali +Wobs · Fobsi . (21)

The required position for the i-th quad-rotor is

Xg = Xi + CFtoD · Fi, (22)

where Xi denotes the actual position of the i-th quad and CFtoD is a constant, that

transforms force Fi to the vector.

The result of these equations is the required position that should be reached by the i-th

quad-rotor. The required position is given to the regulator and the regulator sets the speed

of the propellers to reach it. This algorithm runs simultaneously in all robots.

20/36

5. FLOCKING EQUATIONS IN 3D

Table 4: Table of constants used in 3D

constant description

Kd, Dd Constants used in the equation (11). These constants

tune the speed of reaction when quad-rotors divert from

their optimal relative distance between quad-rotors Lr.

Kg, Dg Constants used in the equation (14). These constants

tune the speed of reaction when quad-rotors divert from

the position of the goal.

Ko, Do Constants used in equation (14). These constants tune

the speed of reaction when quad-rotors detect an

obstacle.

Wg Constant that set the constant magnitude to the force

that pushes the swarm into the goal.

Wind, Wobs Weight constants used in the equation (21).

Ldi Constant, which represent the ideal distance between

i-th quad-rotor and j-th quad-rotor.

CFtoD Constant, which transforms force to distance.

d Constant used in the equation (18). This constant sets

the magnitude of dependence function δ depending on

angle.

a, b, c Constants, which set distance function (12)

ao, bo Constants, which set distance function (17)

21/36

6. CONTROLLER FOR 3D

6 Controller for 3D

In this section we elaborated quad-rotor vehicle model in Figure 13.

Figure 13: Illustrated model of quad-rotor [2]

This is a system of four identical rotors located at vertices of a square, which generates

thrust and torque normal to a plane of this square. The body-fixed frame is chosen as

(b1,b2,b3). The origin of the body-fixed frame is located in the center of the mass of this

vehicle. b1 and b2 lie in the plane defined by centres of the four rotors. The body-fixed

axis b1 is normal to this plane and points downwards, opposite to the direction of the total

thrust. To develop the controller the dynamic of quad-rotors needs to be further elaborated.

6.1 Dynamic of quad-rotor

The dynamics of the quad-rotor is represented by two equations. The first describes

translation, the second solves rotation.

1. Newton’s second law of motion,

F = ma, (23)

22/36

6. CONTROLLER FOR 3D

is used for translation. m denotes the mass of quad-rotor and a = v̇ = r̈ denotes

acceleration. F = −mge3+fRe3 denotes the sum of all forces acting on the quad-rotor.

R denotes the rotation matrix from the body-fixed frame to the inertial frame. f

denotes total thrust generated by propellers.

2. Euler’s second law is used for rotation:

J
dΩ

dt
+ Ω× JΩ = M. (24)

J denotes the inertia matrix with respect to the body-fixed frame. Ω denotes the

angular velocity in the body fixed-frame and M is the sum of all moments acting on

the quad-rotor.

The rotation matrix R can be found by converting it from Ω as

dR

dt
= RΩ̂, (25)

where

Ω̂ =


0 −ωz ωy

ωz 0 −ωx
−ωy ωx 0

 . (26)

The equation (25) is not appropriate for numerical computing, because after few

steps the rotation matrix R will not be orthogonal. This problem is therefore solved

using another method.

6.1.1 Numerical computing

Imagine a solid object, which rotates around the x, y and z axes, the angular velocities

around these axes are ωx, ωy and ωz. This rotation can also be represented by a single

rotation around the axis ω = (ωx, ωy, ωz) (see Figure 14).

The angular speed is
dΨ

dt
= ω =

√
ω2
x + ω2

y + ω2
z .

23/36

6. CONTROLLER FOR 3D

Figure 14: Rotation axes

Now we can calculate the angle of rotation Ψ, because ω is known. If the angle of

rotation around axis ω is known, we can express the rotation matrix Rw around

arbitrary axis ω [8]. The vectors ωx, ωy and ωz in this matrix are normalised to a

unit vector. The rotation matrix can be expressed as

Rw =


(1− c)ω2

x + c ωzs+ ωxωy(1− c) −ωys+ ωxωz(1− c)
−ωzs+ ωxωy(1− c) (1− c)ω2

y + c ωxs+ ωyωz(1− c)
ωys+ ωxωz(1− c) −ωxs+ ωyωz(1− c) (1− c)ω2

z + c

 , (27)

where c = cos(Ψ) and s = sin(Ψ). The new rotation matrix is calculated from the

old rotation matrix and Rw.

Rnew = Rw · Rold (28)

6.2 Geometric tracking control on SE(3)

The controller is used to follow the prescribed trajectory of the location of the center of

mass, and given direction of the heading vector. The controller is the same as used in [5].

24/36

6. CONTROLLER FOR 3D

6.2.1 Tracking errors

At the beginning it is convenient to define tracking errors for x,v,R,Ω. In my case they

are defined as follows:

The tracking errors for the position and the velocity are given by

ex = x− xd (29)

ev = v − vd (30)

The tracking errors for the rotation matrix and the angular velocity are given by

eR =
1

2

(
RT

d R− RTRd

)∨
, (31)

eΩ = Ω− RTRdΩd, (32)

where the veemap ∨ : SO(3)→ R3 is the inverse of the hat map that is defined by condition

x̂y = x× y for all x, y ∈ R

6.2.2 Tracking controller

The next thing to be defined is the desired rotation matrix Rd depending on xd and the

heading direction vector b1d
The rotation matrix Rd also depends on the position error ex

and the velocity error ev, because if quad-rotors are not in the required position it has to be

tilted to move. The tilt is contained in rotation matrix Rd that depends on the body-fixed

axis b3d
. b3d

is defined by

b3d
=
−kxex − kvev −mge3 +mẍd

‖ − kxex − kvev −mge3 +mẍd‖
, (33)

where

b3d
= ‖ − kxex − kvev −mge3 +mẍd‖ 6= 0. (34)

25/36

6. CONTROLLER FOR 3D

For given b1d
and calculated b3d

, b2d
is expressed from the definition of the Cartesian

coordinate system. b2d
has to be a unit vector of the crossproduct of two perpendicular

axes b3d
and b1d

.

b2d
=

b3d
× b1d

‖b3d
× b1d

‖
(35)

The desired rotation matrix is given by

Rd = (b1d
,b2d

,b3d
) . (36)

Once we calculate all the errors and the desired position, we can determine forces and

moments that the propellers have to create to reach the required position as

f = − (−kxex − kvev −mge3 +mẍd) · Re3, (37)

M = −kReR − kΩ + Ω×Ω− J
(
Ω̂RTRdΩd − RTRdΩ̇d

)
. (38)

Furthermore, we can calculate the force, that has to be generated by each propeller. We

assume that the total thrust f and the total moment M can be written as
f

M1

M2

M3

=


1 1 1 1

0 −d 0 d

d 0 −d 0

−cτf cτf −cτf cτf



f1

f2

f3

f4

 , (39)

where fi is the force which generates the i-th propeller and d is the distance from the center

of mass to the center of propeller.

The propeller generates torque and cτf is constant, which transforms kinetic energy of the

propeller to moment M3.

When we have thrust of each propeller we can calculate the rotation speed of the

propeller. If the speed comes out too high we set it to maximum.

26/36

7. EXPERIMENTS AND SIMULATIONS IN 3D

7 Experiments and simulations in 3D

7.1 Controller

The controller is tested only for one quad-rotor. At the beginning of the experiment

the quad-rotor is placed to the origin of the coordinate system and the heading vector

is directed to (1, 0, 0). The goal position is set to (2,−10, 1) and the goal direction of

heading vector is set to (0,−1, 0). In Figure 15 there is a quad-rotor illustrated during the

experiment. Figure 16 shows the graphs of the x,y,z positions, euler angles, velocities and

Figure 15: Sub-figures of the simulation

angular velocities. In the graph of positions, there is shown that the quad-rotor reached

the goal position. The graph of euler angles is the evidence that quad-rotor rotated to the

required direction. Figure 17 shows graphs of the moments, the forces generated by each

rotor and the total force. In the graph of forces there is shown, that f1,f2,f3 and f4 are

limited to the value of 0 from below and to the value of 30 from above. The properties of

27/36

7. EXPERIMENTS AND SIMULATIONS IN 3D

Figure 16: Graphs of positions, velocities, euler angles and angular velocities

the model such as mass, moment of inertia etc. is set as in the paper [2]. The limits are set

to this value to show the functionality of the system in real applications. The actual value

can’t be measured because real quad-rotors are not available. The setting of values of the

controller’s constants are inspired by the paper [2]. Some of them are a little increased for

shorter rise time and smaller overshoot.

7.2 Swarm experiments

1. In the first experiment, we used 27 quad-rotors that start in a formation around

the origin of the coordinating system. There is one obstacle placed in the position

(5, 0, 0). The goal position is at (10, 0, 0). At the beginning of the simulation the

quad-rotors increase their relative distance to the pre-set value and move like a flock.

After a few steps they detect an obstacle and the flock splits into groups to avoid the

obstacle. The distance to the obstacle of all the quad-rotors is shown in the graph in

Figure 18. The graph of distance of all quad-rotors to the closest neighbour is shown

28/36

7. EXPERIMENTS AND SIMULATIONS IN 3D

Figure 17: Graphs of moments and forces

in Figure 19. The simulation in sub-figures is shown in Figure 20.

Figure 18: Graph of distances to the obstacle of experiment 1.

2. In the next simulation we use the same number of quad-rotors, 27. The start and the

goal position is set to the same value as in the previous experiment. The difference

29/36

7. EXPERIMENTS AND SIMULATIONS IN 3D

Figure 19: Graph of distances to the closest neighbour of experiment 1.

Figure 20: Sub-figures of experiment 1.

is that there are three obstacles. The first one is placed at (5, 0, 0), the second one at

(5, 0, 2) and the third one at (7, 2, 0). In this experiment the quad-rotors avoid the

obstacles as expected. The sub-figures from experiment is shown in the Figure 23.

The distance to the obstacle of all the quad-rotors is shown in graph in Figure 21.

The graph of distance of all quad-rotors to the closest neighbour is shown in Figure

22.

3. The next experiment deals with 10 quad-rotors. The start, the goal and the obstacles

30/36

7. EXPERIMENTS AND SIMULATIONS IN 3D

positions are set to the same value as in the previous experiment. The experiment

shows that the algorithm can control different number of swarm members. The

sub-figures from the experiment is shown in Figure 25. The graph of the distance

of all quad-rotors to the closest neighbour is shown in Figure 24.

Figure 21: Graph of distances to the obstacle of experiment 2.

Figure 22: Graph of distances to the closest neighbour of experiment 2.

31/36

7. EXPERIMENTS AND SIMULATIONS IN 3D

Figure 23: Sub-figures of experiment 2.

Figure 24: Graph of the distances to the obstacle of experiment 3.

7.3 Blender

Blender is used to create visualisation of the developed algorithm for a flock of quad-rotors

[9]. Blender is the 3D visualisation software for creating 3D scenes. The trajectories of the

quad-rotors are generated in Matlab and transferred into Blender by Python script. The

script mapped generated trajectories to 3D model of quad-rotors. The Blender renders a

video sequences of the scene.

32/36

7. EXPERIMENTS AND SIMULATIONS IN 3D

Figure 25: Sub-figures of experiment 3.

33/36

8. CONCLUSION

8 Conclusion

In this thesis the algorithm of escape behaviour for swarm of UAV was successfully

developed. The algorithm decreases the possibility of collision of dynamic obstacles with

the swarm of the quad-rotors. This algorithm could be implemented into controllers of

real quad-rotors and used for shifting the whole swarm from point A to point B. The

functionality and the design of the algorithm were theoretically tested in 2D with models

of UGVs before developing the algorithm for quad-rotors. Theoretical tests showed that

the algorithm can be used for the problem of dynamic obstacle avoidance. The algorithm

for UGVs was implemented into SyRoTek for test with real hardware.

The experience gained during developing and testing the algorithm for UGVs was used

to develop the algorithm for UAVs. Before implementation the algorithm for swarms the

tracking controller for one quad-rotor had to be developed. One restriction for real robots

was implemented in the controller. The restriction affects lifting force generated by the

rotors. The controller was tested in a simulation in Matlab and worked well. The whole

algorithm for swarms was simulated and tested in Matlab as well. The Blender was used

for visualisations. The sequences from simulations are shown in section 7.

To sum up, all the thesis objectives were successfully accomplished:

• The extension of escape behaviour, [1], to 3D was designed and implemented in

section 6

• The model of UAV from [5] was integrated in section 5.

• The developed method was prepared to integrate into the control system of autonomous

swarm.

• The implemented system was verified with simulation of movements of 3D swarm in

section 7.

• The functionality of the method of 2D algorithm was demonstrated with a system of

autonomous robots SyRoTek [3] in section 3.

34/36

8. CONCLUSION

The algorithm for 3D is fully functional and it is prepared for real deployment. It has

fulfilled all expectations, but I have a few ideas that could be further elaborated.

• The algorithm considers only point obstacles. This is sufficient for simple scenarios

but not for real-life situations. Improvement of the algorithm might be developing of

an algorithm for obstacles of real size and shape.

• To implement robot’s reaction to the change of the heading vectors of the others

quad-rotors, like Mcij in section 2. This could improve the speed of reaction for

obstacle avoidance.

• Real parameters of quad-rotors couldn’t be measured, because they were not available.

I hope that the algorithm is robust and it will be used in real quad-rotors for shifting

quad-rotors swarm.

35/36

REFERENCES

References

[1] H. Min and Z. Wang, “Design and analysis of group escape behavior for distributed

autonomous mobile robots.,” in ICRA, pp. 6128–6135, IEEE, 2011.

[2] M. LaLena, “Flocking behavior simulator,” http://www.lalena.com/AI/Flock/,

1996-2012.

[3] J. Faigl, J. Chudoba, K. Košnar, M. Kulich, M. Saska, and L. Přeučil, “Syrotek-a

robotic system for education,” In Proceedings of Robotics in Education, 2010.

[4] P. SA, “Ar.drone,” http://ardrone.parrot.com/parrot-ar-drone/en, 2012.

[5] T. Lee, M. Leoky, and N. McClamroch, “Geometric tracking control of a quadrotor

uav on se (3),” in Decision and Control (CDC), 2010 49th IEEE Conference on,

pp. 5420–5425, IEEE, 2010.

[6] J. Chudoba, J. Faigl, M. Kulich, T. Krajnık, K. Košnar, and L. Preucil, “A technical

solution of a robotic e-learning system in the syrotek project,”

[7] G. Hoffmann, H. Huang, S. Waslander, and C. Tomlin, “Quadrotor helicopter flight

dynamics and control: Theory and experiment,” in Proceedings of the AIAA guidance,

navigation, and control conference, vol. 4, p. 44, 2007.

[8] M. Chen, S. Mountford, and A. Sellen, “A study in interactive 3-d rotation using 2-d

control devices,” in ACM SIGGRAPH Computer Graphics, vol. 22, pp. 121–129, ACM,

1988.

[9] G. G. P. License, “Blender,” http://www.blender.org/, 2012.

36/36

A. EVALUATION OF SYROTEK

Appendix A : Evaluation of SyRoTek

After eliminating all the problems I evaluate working with SyRoTek fairly well. I commend

that I was able to test my algorithms from home via the Internet. The schematic view on

SyRoTek web page was sufficient for primitive orientation. The reservation system also

performed well, except of the button for inviting others students to my time slot, which

didn’t work. I have some comments about the SyRoTek system.

• I had problems installing the required software to my own distribution of Linux.

The instructions posted on SyRoTek web pages didn’t work for me. I tried to find

a solution for my problems on Player-Stage web pages, but it took me a lot of time

and it didn’t work. Finally I used a pre-installed Linux distribution on a virtual

machine. The disadvantage of this solution is that the virtual machine was running

too slow, especially when I started Stage. In the virtualized Linux, I had also problems

with display resolution and font, which was difficult to read. While working on the

computers at school It was necessary to use a virtual machine to run Player/Stage,

because students do not have the privileges to install new software.

I suggest to install the required software for SyRoTek onto the computers at school

or write more detailed user manual for installation onto my distribution of Linux

operation system.

• Another helpful thing for beginners could be a prepared template of an easy program

with basic functions. For example the program should be able to move robots straight

forward. The communication between the robots should be solved as well. It would

be good to post this template on the SyRoTek web site. We got the program from

one Ph.D. student, but it was too complicated with lot of unnecessary functions for

us.

• At the beginning of work I had problems with the preparation of six robots that

I used for my programs. Sometimes one of the robots would stay at the charging

station and would report malfunction. Over the time this problem was solved.

I/IV

A. EVALUATION OF SYROTEK

• The next problem, which we solved during our work, was controlling the moving

obstacle. Teachers gave me the privileges and provided me a functional and simple

sample C++ code. It would be good to post this sample code on SyRoTek web site

too.

• To develop a system which would enable students to download video sequences that

are recorded during their time slot. Now students have to go to the teachers and ask

for the records. It is annoying for teachers as well as for students. All records could

be deleted after some time, for example a week.

I would like to thank all the teachers and students who helped me with SyRoTek,

especially to Ing. Jan Chudoba, who was very helpful and always ready to fix the problems

with the arena.

II/IV

B. CONTENTS OF THE ENCLOSED CD

Appendix B : Contents of the enclosed CD

/

bachelor thesis.pdfcomplete Bachelor Thesis in PDF
2D simulations/

simulation.mmain m-file, which starts the 2D simulation

animate.m, create.m, plot ind.msupporting m-files for the
visualisation of the simulation

3D simulations/

controller/this directory holds m-files for the simulation
of the controller

sim movement quad.mmain m-file, which starts the
controller simulation

SetParameters.mm-file with the set parameters

plotGraphs.m, drawQuad.m,

createQuadModel.msupporting m-files for visualisation of
the simulation

create3D.m, calculateRw.m,

derivation.m, saveAllVariables.m,

RtoE.m, inverseVee.m, vee.msupporting m-files

BoundedControl.mm-file with the set restrictions

regulator.mm-file computing regulator
calculations

swarm/ this directory holds m-files for the simulation
of swarm movement, some of them are the
same as in the controller folder

sim movement swarm.mmain m-file, which starts the controller
simulation

forceToObst.m function calculating the repulsion force from
the obstacles

forceToInd.mfunction calculating the force to the others
robots

forceToGoal.m function calculating attractor force to goal
. . .

SyRoTek/........................... this directory holds files for SyRoTeK

robot.ccmain file of the algorithm
. . .

III/IV

B. CONTENTS OF THE ENCLOSED CD

videos/............................ this directory holds videos of the experiments

2D matlab.avi video from the experiment in section 2

controller.avi video from the experiment with the
controller from section 6

swarm 10i 1obs.avi video from experiment 3 in section 7 with 10
quad-rotors and one obstacle

swarm 14i 1obs.avi video with 14 quad-rotor and one obstacle

swarm 27i 1obs.avi video from experiment 2 in section 7 with 10
quad-rotor and one obstacle

swarm 27i 3obs.avi video from experiment 1 in section 7 with 27
quad-rotor and three obstacles

syrotek experiment 1.avi video from SyRoTek experiment 1

syrotek experiment 2.avi video from SyRoTek experiment 2

IV/IV

	Introduction
	SyRoTek
	3D

	Control equations for 2D
	Simulations

	SyRoTek
	Experiments

	3D
	Flocking equations in 3D
	Other Individuals effect
	Goal effect
	Obstacle effect
	Sum of all effects

	Controller for 3D
	Dynamic of quad-rotor
	Numerical computing

	Geometric tracking control on SE(3)
	Tracking errors
	Tracking controller

	Experiments and simulations in 3D
	Controller
	Swarm experiments
	Blender

	Conclusion
	Appendix Evaluation of SyRoTek
	Appendix Contents of the enclosed CD

