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Abstract

This bachelor project deals with analysis of neurological data using regularity measures.
The signals are microelectrode recordings acquired during deep brain stimulation surgery. This
project’s aim is find suitable measure for classification of basal ganglia’s cores, namely subtha-
lamic nucleus, globus pallidus and substantia nigra, and adjacent parts of thalamus. Capability
of an automatic signal classification would be a considerable benefit during operations, where
it is necessary to locate cores precisely. All measures passed ANOVA /Kruskal-Wallis test on
significance level a = 0.05 while the best discrimination in term of p-value was achieved for
sample entropy. Two used regularity measures, Lempel-Ziv complexity and sample entropy,

provided good results to discriminate different basal ganglia nuclei.

Keywords: Parkinson’s disease, signal processing, core classification, complexity measure

Abstrakt

Tato bakalaiska prace se zabyva analyzou neurologickych dat pomoci metod mefeni komplex-
ity signalu. Témito signaly jsou namérené akéni potencily ziskané pii operaci pomoci hloubkové
mozkové stimulace. Cilem této prace je najit vhodnou metodu pro klasifikaci jader bazalnich
ganglii, konkrétné subthalamického jadra, globu pallidu a cerné substance, a prilehlych c¢asti
thalamu. Schopnost automatické klasifikace téchto signali by byla zna¢nym pfinosem pii oper-
acich, u kterych je nutné piesné dana jadra zaméfit. Viechny metody prosly ANOVA /Kruskal-
Wallisovym testem na hladiné vyznamnosti o = 0.05. Samplovaci entropie byla z hlediska
p-hodnoty nejlepsi mirou pouzitou k diskriminaci jader. Dvé pouzité miry komplexity signélu,
Lempel-Zivova komplexita a samplovaci entropie, poskytly dobré vysledky pro rozliseni rozdil-

nych jader basalnich ganglii.

Kli¢ova slova: Parkinsonova nemoc, zpracovani signédlu, klasifikace jader, komplexita signalu
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Chapter 1
Introduction

As human average age increases, the prevalence of Parkinson’s disease increases too. This places
higher demandes on a healthcare system. A treatment of the Parkinson’s disease can be divided
into two main parts, the treatment with medicaments and a surgery. In recent years, the surgery
has been becoming more and more popular. In the Parkinson’s disease surgery, there is necessary
to lead thin electrode through a brain to the structures, which are only a few milimeters small
[39]. Very precise targeting of the chosen structure is important. Unfortunately, the surgeon’s
possibilities how to do it are limited, so many scientists has been interested in how to find a
method, which could help surgeon in the targeting. Dozens methods based on processing signals
taken during the surgical operation were proposed. In this work I'll focus on the comparison of
these methods and their application to real data sets.

This work was divided into six chapters. The first chapter is this introduction.

In the second chapter I'll focus on a description of parallel computing methods. There are
methods, especially those that process raw data, which are very time-consuming. The aim of
the parallel computing is to reduce the time consumed. I'll describe properties of three most
used softwares.

There is needfull to describe some theoretical issues, so in the third chapter I'll give some
informations about Parkinson’s disease and related topics, such as a treatment of Parkinson’s
disease, participated brain structures, a deep brain stimulation and a measuring action poten-
tiales and the data sets that I'll work with.

In the fourth chapter I'll describe and explain all used complexity measures such as entropy
based algorithms and chaos based algorithms that have lot of representatives on the both sides.

The fifth chapter is devoted to results. I'll refer about a practical usage of a chosen parallel
computing method and announce results and comparison of complexity measures.

In the sixth chapter I'll summarize the complexity measure results and refer about their

usage to our data sets.



Chapter 2

Methods of parallel computing

2.1 Introduction to parallel computing

It is only few decades ago when computer was privilege of big corporations, important goverment
projects and army. How the development of computers goes ahead it pushes costs of elder and
simplier computers to the ground. The high cost and technological complexity caused that
computers began to link together and processors began to split in cores. Subsequently, the
parallel programming began to develop. This approach enabled to develop new demanding
signal processing algorithms.

Since part of my thesis deals with such demanding algorithms, it was very far-sighted from
my supervisor to start with survey of parallel programming methods. I got the assignment to
compare various approaches, which were able to parallelize the Matlab code. Then I applied the
chosen approach to the assigned problem. In the following text, there are described three various
approaches of the parallel computing, namely Matlab Parallel Computing Toolbox, Condor and
Sun Grid Engine. The choice of the Condor and the Sun Grid Engine was based on the fact,
that these programs are one of the most frequently used open source environments. The choice
of the Matlab Parallel Computing Toolboxu came naturally because our faculty has the license

for it.

2.2 Condor

Condor project starded at University of Wisconsin-Madison in 1988. It has been proposed by
Miron Livny in his doctoral thesis [48]. Since then, it is still under development. It has been
used for example for rendering of 3D movies, analysis of stock markets, processing of biological
data or simulations. There are two main products: The Condor high-throughput computing
system (Condor), and the Condor-G agent for grid computing.

Condor is a high-throughput distributed batch computing system. Like other batch systems,



Condor provides a job management mechanism, scheduling policy, priority scheme, resource
monitoring, and resource management. Users submit their jobs to Condor, and Condor subse-
quently chooses when and where to run them based upon a policy, monitors their progress, and
ultimately informs the user upon completion [49).

There are several useful tools provided by Condor. Users can put demands to remote machine
(minimum RAM capacity, faster floating point performance) for some group of jobs or vice versa.
For this purpose there is ClassAds framework. It matches jobs with appropriate machines.

Condor provides also tool for checkpointing and migration. This allows Condor to move job
to another machine if certain computer, where job runs, is going to be used by user. Thanks to
checkpointing, job that moved to another machine is performed where it had been interrupted.
Unfortunately, this advantege works under the Linux systems only and many conditions has to
be complied there.

Condor runs jobs on the remote machine on the background. Remote system calls is one
of Condor’s mobile sandbox mechanisms for redirecting all of a jobs I/O related system calls
back to the machine which submitted the job. Users do not need to make data files available
on remote workstations before Condor executes their programs there, even in the absence of a
shared filesystem [47, 49].

Condor runs under the Linux, Mac OS X, FreeBSD and with some restrictions also under
the Windows operating system.

To run a parallel computation, user has to do several steps. First the user’s program and
input data have to be prepared. Input data must be divided for all jobs and program must receive
data as an input. Communication has to be available through input, output and error terminals
only, because jobs will run on the background. Then the Condor’s universe has to be chosen.
Each universe has certain functions and abilities. The most common universes are Standard
universe, which allows checkpointing, migration and remote system call, and Vanilla universe,
which doesn’t provide these advantages but also isn’t limited. For Java Virtual Machine there is
a Java universe, for grid computing there is a Grid universe and so on. The third step is to write
a submit description file. It establishes how will Condor manage jobs. There is important to
tell Condor which program will be executed, in which universe, if there are any requirements to
jobs or machines, where are input data and where will be stored output data and so on. Finally
the computation is started by condor_submit command. Also there are many commands for
managing the computation. The example of the submit description file is in the Algorithm
[47].



Algorithm 2.1 Example of the submit description file [47]
Executable = matlabparallel.m

Universe = vanilla

Requirements = Memory >= 32 && OpSys ==

“LINUX” && Arch == “INTEL”

Rank = Memory >= 64

Image_Size = 28 Meg

Error = err.$(Process)
Input = in.$(Process)
Output = out.$(Process)
Log = mathematica.log

Queue 150

2.3 Sun Grid Engine

Sun grid engine (SGE) is an open source batch-queuing system and is the open source version
of the newer Oracle grid engine. SGE was developed in 2001 from the previous environment
CODINE.

As you can see in the Figure 2.1} SGE cluster consists of QMaster which runs on the master
host and manages a parallel computation, execution deamons, which run on execution hosts,
shadow master, which take over the role of master host if crashes, submit hosts, which enable
users to submit and control batch jobs. In the Figure there is also ARCo box, which
represents Accounting and Reporting Console, which allows SGE to store informations to SQL
database and user to work with. The last component is DRMAA, which provides a program-
matic interface for applications to submit, monitor, and control jobs.

User specifies the requirements and submits the job to the SGE. SGE puts the job to the
queue and then send it to the execution device. When the job are finished, SGE show logs
about it. It contains QMON, the grafical user’s interface, which simplifies the work with SGE.

Like Condor’s universes, SGE has policies that are customized according to whatever is ap-
propriate for the site. Urgency policy defines priority for each job. This priority is value which
is derived from job’s resource requirements, the job’s deadline specification, and how long the
job waits before it is run. Using the Functional policy, an administrator can provide special
treatment because of a user’s or a job’s affiliation with a certain user group, project, and so
forth. In Share-based policy, the level of service depends on an assigned share entitlement, the
corresponding shares of other users and user groups, the past usage of resources by all users, and
the current presence of users within the system. The last policy in SGE is Override policy. It re-
quires manual intervention by the cluster administrator, who modifies the implementation. Like
the policies, there are also four users categories with different accesses to the SGE commands.

Job is submited by the gsub command from the terminal or QMON GUI and can be controled
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by gstat command. When the job is finished, a log can be sent through email.
All these informations were obtained from Sun N1 Grid Engine 6.1 User’s guide [52] and
from Beginner’s Guide to Oracle Grid Engine 6.2 [53].

2.4 Matlab Parallel Computing Toolbox

Matlab Parallel Computing Toolbox (MPCT) is the official Matlab toolbox for parallelization of
Matlab and Simulink programs. In its standard version, it provides twelve workers (MATLAB
computational engines) locally on a multicore desktop or eight workes for computing on a remote
cluster. There are three main possibilities how to use MPCT. It can be used for parallelization
of for loop by parfor statement, to executing batch jobs in parallel and for partitioning of large
data sets.

Parfor is exactly parallel for loop. It devides loop by its iterations. Each iteration is sent
to certain worker in any order so there is a condition for iteration independence. Parfor loop
requires either many iterations or long iterations. With a small amout of short iterations it
could be counterproductive. As you can see in the Algorithm a Matlab pool (cluster) has
to be opened. Then parfor statement can be used and in the end Matlab pool has to be closed.

Batch jobs in parallel are useful for example when user wants to execute a time-consuming
job, but he still wants to work in the same Matlab session. For this purpose, there is a batch
command. It starts to run a task on the worker as a batch job. This job is asynchronous, so
the client Matlab session is not blocked. Nevertheless, if the user wants to wait to the job,
there is a wait command. To retrieve the results, classical 1load statement can be used. In the
Algorithm [2.3] there is an example of the batch jobs in parallel. Naturally, the batch parallel
loop is possible to use also.

If a user has an array that is too large for computer’s memory, it cannot be easily handled
in a single MATLAB session. By distributed command used inside matlabpool statement, a

user converts classical array to distributed array. This distributed array is divided by columns



to smaller arrays and each small array is sent to different worker. User works with distributed
array as a classical array and workers automatically transfer data between themselves when
necessary. An example of using distributed array is in the Algorithm [2.4]

All these informations were obtained from Parallel Computing Toolbox User’s Guide [50].

Algorithm 2.2 Example of using parfor loop [50]

matlabpool open local 3

parfor 1=1:1024

A(i) = sin(i*2xpi/1024);
end
plot(A);

matlabpool close

Algorithm 2.3 Example of using batch jobs in parallel [50]

edit mywave

for i=1:1024
A(i) = sin(ix2xpi/1024);
end

job = batch(’mywave’) ;

wait(job);
load(job, ’A’);
plot(A);
destroy(job);

Algorithm 2.4 Example of using distributed array [50]

Matlabpool open
spmd
MM=distributed(M) ;
% there are operations with MM array
al=getLocalPart (MM) ;
end
Matlabpool close

al{1} % in the first cell of the cell array al, there is the part of the
resultant MM array




Chapter 3
Parkinson’s disease

Parkinson’s desease (PD) was described by James Parkinson in 1817. It is a progressive neu-
rological disorder characterised by a large number of motor and non-motor features that can
impact on function to a variable degree. PD is characterized by four major features include
tremor, rigidity, akinesia (or bradykinesia) and postural instability [26].

Although the cause of PD is unknown, there are some factors that contribute to the pathogen-
esis of PD. This factors include for instance genetic factors, environmental toxins and excessive
iron deposition [29]. The main feature occurs on the cellular scope is a loss of neurons in the
caudal and anterolateral parts of the substantia nigra pars compacta, which causes deficiency

of dopamine in the striatum, whose extent is directly correlated with the severity of PD [19].

3.1 Treatment

PD is incurable, but there are several possibilities how to lessen symptomps. In first line of
treatment, Levodopa is in general better solution for patients aged more then 60 years [30]. For
younger patients there is dopamine agonists. In later stage of the disease, combinations of these
approaches are necessary. If medicaments doesn’t work well or if side effects are unbearable,
there is possibility in surgery, in deep brain stimulation. But on the other hand, no treatment

is required if the quality of patient’s life is satisfactory [29].

3.1.1 Levodopa treatment

Levodopa has been highly used in treatment of Parkinson’s disease for 30 years. It apears better
to start with lower dose of levodopa at the beginning of the treatment, because it may lessen the
severity. But after ten years of treatment, there is no significant difference between treatment
regimens. There are many problems with levodopa use as well. As disease progresses, levodopa

causes dyskinesia and dose failure [28]. The most common side effects of levodopa treatment



are alternating between “on” and “off” phases [31], behavioral changes [32], nausea, postural

hypotension, distonia, pain and sweating [29].

3.1.2 Dopamine agonists treatment

Against levodopa, this treatment is in general less well tolerated, less effective and more ex-
pensive. It causes nausea and dizziness as well, but until no levodopa is used, there is no
dyskinesia and motor fluctuations. Other side effects of dopamine agonists treatment include
hallucinations, confussion, pleuropulmonary and retroperitoneal fibrosis, postural hypotension,
erythromelalgia. So the one of the main benefits in the comparison with levodopa is delay of
the levodopa use itself [28§].

3.1.3 Surgery

In general, surgical treatment is used to improve “off” phases and dyskinesia mentioned above,
when medicamental treatment is no longer effective or side effects of treatment is worse then
PD symptoms. But there are many contraindications force surgeons and patients to consider all
possibilities. To these contraindications belong for instance pre-morbid cognitive or psychiatric
disturbance, problems with puncturing dura mater (brain shifting, infection) and severe cerebral
atrophy [29]. Also the surgery may not be beneficial to patients with atypital parkinsonian
syndromes [33].

In according to [34], there are various possibilities how to do operation. The surgeon must
make decision about ablative brain surgery (lesioning) or deep brain stimulation (DBS), about
pallidal or subthalamic surgery and about unilateral or bilateral surgery. Among these possi-
bilities, there are several differencies. For instance bilateral pallidotomy are more risky than
unilateral, because there is higher chance to cause speech, swallowing or cognitive disturban-
cies, but the benefit can be higher as well [35]. The lesioning in comparison with DBS is more
economical, there is negligible risk of infection and there is no need for adjustment stimulation
parameters. Nevertheless, DBS is more effective and reversible, so it is more acceptable for

younger patients [29].

3.2 Deep brain stimulation

The first deep brain stimulation (DBS) was realized in January 1987 by A. L. Benabid to
improve essential tremor [38]. Later, the DBS was used for treatment of Parkinson’s disease,
dystonia, clinical depression and chronic pain [40]. In the treatment of PD, there are two
possibilities of the surgical operation mentioned above, the DBS and the ablative brain surgery.

In both cases, physician has to decide about the core that will be targeted. There are three
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Figure 3.1: Coronal cut of the brain with visualization of the thalamus and the basal ganglia
[54]

possibilities in DBS treatment, STN that is most common target, GPi or Th that is rather used
for treatment of essential tremor. Just before operation, Magnetic Resonance Imaging (MRI)
tooks the entire picture of the brain. Surgeon then pinpoints the trajectory of the microelectrode.
This microelectrode, which is only tens of micrometer thin, is applied. Because of brain shifting,
surgeon’s MRI image is not so precise, therefore electrophysiological exploration must be carried
out. Surgeon listens the neuronal signal that is measured through implanted electrode during
microelectrode recording (MER) and by his experience he desides about reached core. This can

be very complicated, so reliable automatic classification could be useful [43].

3.3 Cores structures

3.3.1 Basal ganglia

The basal ganglia (BG) are a set of subcortical nuclei located in the midbrain, around the
thalamus. The major nuclei of basal ganglia are the striatum, which is composed of the caudate
nucleus and the putamen; the internal and external parts of the globus pallidus; the pars
reticulata and the pars compacta of the substantia nigra; and the subthalamic nucleus [22].
Although for a long time, BG were thought to support motor functions exclusively, it is now
recognized that BG have a role in cognitive, affective and autonomous function also. BG
circuitry, shown in the Figure 3.3} is involved in a great range of functions including: reward
based learning, exploratory/navigational behavior, goal-oriented behavior, motor preparation,

working memory, timing, action gating, action selection, fatigue and apathy. In spite of the
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Figure 3.2: Typical signal shapes of the main measured cores with their ISI histograms

significant progress in our knowledge of BG at several levels, it is still not clear how such an

overwhelming range of functions is supported by the same subcortical circuit [23].

3.3.1.1 Striatum

The Striatum is made from caudate nucleus and putamen and is the major input nuclei of
BG. These two parts are divided by a white matter tract called internal capsule. Striatum
receives inputs from a number of cortical areas and the thalamus [23]. In the case of PD,
dopaminergic innervation from substantia nigra pars compacta is affected, which causes PD

symptoms. Huntington’s disease, chorea and dyskinesia causes striatum atrophy [46].

3.3.1.2 Subthalamic nucleus

Subthalamic nucleus (STN) is another input of BG, and like the striatum, also receives inputs
from cortex, but the exact function of the STN is still unknown [23]. STN is one of the major
targets of lesioning or DBS. Bilateral subthalamic surgery is used to improve appendicular and

axial akinesia, rigidity [29] and severe Parkinsonian tremor [36].

3.3.1.3 Substantia nigra

The substantia nigra (SN) is portion of the basal ganglia and consists of the pars compacta
(SNc¢) and the pars reticulata (SNr). The SNr (ventral portion of SN) contains small amounts
of dopamine and iron, giving it reddish color, while the SN¢ (dorsal portion) contains large

quantities of dopamine and melanin, making it black (whence the name, substantia nigra) [19].
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Figure 3.3: Basal ganglia circuitry [41]

With GPi, SNr constitutes the output nuclei of the BG [22]. During MER of Parkinson patients,
the SNr is characterized by more regularly firing units [20].

3.3.1.4 Globus pallidus

The globus pallidus (GP) consists of internal (GPi) and external (GPe) part. With SNr, GPi
constitutes the output nuclei of the BG [22]. As well as STN, GP is also one of the major
tergets of lesioning and DBS. Unilateral pallidotomy is ofted used for improving contralateral

akinetic/rigid symptoms of PD [29] and severe tremor [37].

3.3.2 Thalamus

The human thalamus (Th) is a nuclear complex located in the diencephalon and comprising of
four parts (the hypothalamus, the epythalamus, the ventral thalamus, and the dorsal thalamus).
The Th is a relay centre subserving both sensory and motor mechanisms [27]. During MER
of Parkinson patients, the Th is characterized by relatively slowly firing and bursting activity
patterns [20]. In former treatments of PD, Th was lesioned or stimulated to improve unilateral
tremor. Bilateral surgery caused often severe speech disturbances. But it was found that pallidal

and subthalamic surgery has better results, so there is no need to target Th for this reason [35].

3.4 DBS Toolbox

The DBS Toolbox provides processing of MER signals such as spike detection and sorting,
automatic data access or feature extraction. All informations about this environment is in
[43, [44] [45].
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3.5 Data

Data were recorded using 1 — 5 tungsten microelectrodes with an exposed tip size of 15 — 25 pum.
They were recorded for ten seconds at sampling rate 24 kHz and annotated by a neurologist using
visual and audio inspection of the MER recordings [43]. This annotation cosists of ten groups
of signals, exactly STN, STN rb, STN like, Th, SNr, SNr_like, GPi, GPe and Unknown.
Unknown, STN like and SNr_ like signals were removed from analysis. Later GPe has been
put together with GPi to form only GP annotation and STN rb has been connected with STN.
Data structure is provided in Table 3.1] In the latter data analysis, there was usefull to know
number of signals for certain range of spike frequencies. See Table shows amount of signals
for these frequencies.

This set of data is extension of the date from previous paragraph. If the certain neuron is
measured, signal from close neurons are added to the signal of measured neuron. There are
methods [24], 25] how to extract these signals, so we can work with only one neuron if needed.
The number of signals increased after neuron extraction, so I had to rewrite the Table to
the Table 3.3

Table 3.1: Number of signals from new data annotation
| Th [ STN | STN_like | STN_1b [ SNr | SNr_like | GPi | GPe [ Unknown | Total |
1530 [2803] 79 [ 298 [349 | 24 [ 155 [ 222 ] 7710 | 12170 |

Table 3.2: Number of signals for certain spike frequency threshold
| >spikes | 0 | 100 | 200 | 300 | 400 [ 500 | 600 | 700 | 800 | 900 | 1000 |
Th [530 [ 219 [ 111 [ 62 |43 [ 34 [ 27 [ 23 [ 20 | 16 | 13
STN | 3101 | 1937 | 1462 [ 1083 | 754 | 522 | 348 | 217 | 127 | 81 | 55
SNr | 349 | 214 | 169 | 141 [117] 86 | 64 | 48 | 37 | 27 | 19
GP [ 377 [ 169 | 130 | 108 | 82 | 68 | 56 | 46 | 38 | 32 | 24
Total | 4357 | 2539 | 1872 [ 1394 | 996 | 710 | 495 | 334 | 222 | 156 | 111

Table 3.3: Number of signals with separated neurons for certain spike frequency threshold
| >spikes | 0 | 100 | 200 [ 300 | 400 | 500 | 600 | 700 | 800 | 900 | 1000 |
Th 997 | 270 | 103 | 39 | 21 | 13 | 9 8 7 4 3
STN | 6946 | 2766 | 1094 | 503 | 229 | 109 | 58 | 39 | 21 | 16 11
SNr 798 | 343 | 157 | 84 | 48 | 34 | 21 | 12 | 8 6 5
GP 787 | 300 | 116 | 57 | 37 | 24 | 15 | 10 | 10 | 6 4
Total | 9528 | 3679 | 1470 | 683 | 335 | 180 | 103 | 69 | 46 | 32 23
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Chapter 4
Complexity measures

As the title indicates, the complexity measures are used to estimate a complexity of a signal.
These measures are based on information or chaos theory and reveal hidden properities of a
signal. These properities are used to classify a groups of signals, such as RR-interbeats [4] 10],
neuronal spike trains [I4] or DNA sequences [I5]. In this work I used interspike intervals (ISIs),
so before a complexity measure is applied, a raw signal must be transformed. At first, raw

signal is measured. Then threshold

. 2]
Threshold = 4 - med — 4.1
resho median (0.6745 (4.1)

is estimated to detect spikes [42]. Then times between spikes are computed to create an ISI.
Finally, the complexity measures are estimated. Functions provided the transformation are
built in DBS Toolbox. See Figure [4.1] for shallow notion.

Spike detection Interspike intervals - ISIs

I

Raw zignal Complexity neasure

*
%

®
-

- > — & £

ES

%

Ed
®

=

Figure 4.1: Diagram of signal transformation
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4.1 Lempel-Ziv complexity

The Lempel-Ziv complexity (LZC), a new approach of evaluating the complexity of finite se-
quences, was proposed by Abraham Lempel and Jacob Ziv in 1976 [I]. LZC has been primarily
used to solve information theoretic problems and applications, but in recent years, it has been
applied extensively in biomedical signal analysis [13].

The signal must be converted into a finite symbol sequence first. In the context of biomedical
signal analysis, typically the discrete-time biomedical signal is converted into a binary sequence
[13]. A neurological signal with 7" duration is divided into N bins with a size of A7 (N = T'/Ar).
Each bin is annotaded as "1" if it contains at least one spike belonging to major aggregated
cluster; "0", otherwise [I4]. Principle of the signal transformation to a binary string is shown
in the Figure |4.2

Independent explanation of Lempel-Ziv algorithm in accordance with [13] is in the following.
Consider binary strings P = s(1)s(2)...s(n), S =s(1), Q = s(2), integers r =1, ¢(n) =1 (n
is equal to the number of bins) and operation 7, which removes last character of the string, so
using further string SQm consists of s (1) only. It was inicialization. Then algorithm is provided
as following. Is string @) substring of SQn? If so, make new string @) by Qs (r + 2), increase r
by 1 and go to the begining. If not increase r and ¢ (n) by 1, make new string S by s(1)...s(r)
and @ by s(r+ 1) and go to the begining. If r is equal to n, algorithm will finish. Finally the

Lempel-Ziv complexity is counted

€ (n) = 108 (1), (42)

n

Example: Consider string P (57) = s (1) ...s (57) = 0010010010101001000101101011001010
11000100010110110010100. Make string S = s (1) = 0, where s means substring and number in
brackets is position in the string P, and string () = s(2) = 0. Then make string SQm = 0. Look
if @) is substring of the SQm. It is, so make new string by adding next character, so () = 01.
Now @ isn’t substring of SQm = 00, so ¢ (57) = 2. Make new string S = 001 and @ = 0 and do
the same for all other characters. For humans the method is very easy, so we can split the string
to unique substrings as S (57) = 0/01/00100101|01001000/1011|0101100|101011000/10001011011|
|0010100. We have 9 vocabulary words and 57 characters, so the Lempel-Ziv complexity is given
by

9log, (57)

=0.9210.
57

O (57) =
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Figure 4.2: Principle of the signal transformation to a binary string

4.2 Burst index, pause index and pause ratio

The burst index (BI), pause index (PI) and pause ratio (PR) have been proposed by Jacques
Favre et al. in 1999 and can by used to quantify burst activities of deep brain nuclei. The BI
was defined as the number of ISI < 10 ms divided by the number of ISI > 10 ms, the PI was
defined as the number of ISI > 50 ms divided by the number of ISI < 50 ms and the PR was
defined as the total duration of IST > 50 ms divided by the total duration of IST < 50 ms [21].

4.3 Detrended fluctuation analysis

The detrended fluctuation analysis (DFA) has been proposed by C. K. Peng et al. in 1994 to
estimate long-range power-law correlations for DNA sequences [I5], heartbeat time series [16]
or stride intervals of human gait [17].

First, the original time series is integrated, and then divided into boxes of equal lenght, n.
For each box of length n, a least squares line (representing the trend in that box) is fit to the
data. For a given box size n, the characteristic size of the fluctuations, denoted by F'(n), is
then calculated as the rms deviation between y (k) and its trend in each box y, (k) as shows
Eqn This computation is repeated over all time scales (box sizes). Typically, F' (n) will
increase with box size n. A linear relationship on a log-log graph indicates presence of scaling
(self-similarity), such that fluctuations in larger boxes in a power-law fashion. The slope of the

line relating log F' (n) to logn determines the fractal scaling exponent, « [18].
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Figure 4.3: Detrended Fluctuation Analysis. First graph shows input signal (ISIs of one neuron).
As you can see on the second graph, input signal is integrated (blue) and divided to the boxes
(50 samples for this case). For each box the trend line is computed (red). Then the fluctuation
F (n) is computed and ploted as one of the blue points on third graph. This method is repeated
for all chosen boxes. Finally, the trend line of all fluctuations is computed. The slope of the
line is the measure required.

4.4 Approximate entropy

Approximate entropy (ApEn) was proposed by Steven M. Pincus in 1990. It was suggested to
classify complex systems with a relatively small amount of data, such as heart rate [5]. Later,

ApEn has been used in finance [6], psychology [7], and human factors engineering [§].
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In accordance with Pincus in [5], the algorithm is in the following. Consider a positive
integer m and positive real number r. Note time-series of data as u (1), u(2),...,u (), where
N is the signal length, then form vectors x (1), z(2),...,2 (N —m+ 1) in R™ defined by
x(i)=[u(i),u(i+1),...,u(i+m—1)]. Next define for each i, 1 <i < N —m+ 1,

number of j such that d[z (i), z (j)] <r

where d [z (i), z (j)] = . nax (lu(i+k—1)—u(j+k—1)]). Then define
1 N—-m+1
Finally, the ApEn is counted as
ApEn (m, 7, N) = @™ (r) — & (r) . (4.6)

Example: Consider signal u = [2, 3, 5, 1, 0], m = 2 and r = 3. Then form vectors

z(1) = [2,3],
z(2) = [39],
z(3) = [5 1,
z(4) = [L,0].

In the first step ¢ = 1. Take j = 1 and quantify d function with x (1) and z (1) as follows:
A (1), 2 (1)] = max (ju (1) — u (1)], [u(2) — u (2)]) = max (0, 0) = 0.

Isd[z (1), z(1)] <r,is 0 < 3? Tt is, so increase a numerator of C? (3) by 1. Do this procesude

for each ¢ and each j. Then count

A R ] o |
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Subsequently count

4
1
D2 (3) = 1 > InC7(3) = —0.1438.
=1

Do the whole procedure again for m = 3. You should get

z(1) = [2,3,5],
x(2) = [3,5,1],
z(3) = [5,1,0],

CY(3) = CEB) = C}(3) = 3,

and

3
. 1 .
3 _ 3 -
d° (3) = 3 ;_1 InC; (3) = —1.0986.
Finally ApEn is estimated as

ApEn (2, 3, 5) = & (3) — ®° (3) = —0.9548.

4.5 Sample entropy

A sample entropy (SampEn) was proposed by Douglas E. Lake in 2000 as a measure of neonatal
heart rate variability. The SampkEn was designed to reduce a bias of ApEn and has closer
agreement with theory for datasets with known probabilistic content [9]. The SampEn is largely
independent of a record length and displays relative consistency under circumstances where
ApEn does not [11].

The SampEn is very similar to the ApEn. It differs in two cases only. The first case is that
SampEn does not count self-matches. In acordance to the notation from Section [4.4] it means
that match is not taken into account if j # i. The second case is that SampEn does not use a
template-wise approach [14].

A good explanation of the SampEn is for instance in [14], so T will follow very freely the
explanation provided in [I4]. Consider a positive integer m and positive real number r. Note
time-series of data as u (1), u(2),...,u(/N), where N is the signal length, then form vectors
Tm (1), 2 (2), ..., 2 (N —m+ 1) in R™ defined by x,, (¢) = [w (i), u (i +1),...,u (i +m —1)].
Next define for each i, 1 <i < N —m + 1,

B (r) — number of j such that d[z,, (i), ., (j)] < 'r’7 (4.7)
N—-—m-—1
where d [z, (1), m (j)] = max (Ju(i+k—1)—u(j+ k— 1)|) and j ranges from 1 to N—m,

72 7777 m

B
Il
—

18



and j # i. Then define
N—m

B ()= —— 3 B (r). (4.8)

=1

Similarly define

number of j such that d[z,,1 (), Tpme (J)] <7

Al (r) = N 1 , (4.9)
and .
AT ) = S AT, (4.10)
Set
B= (N_m_21> (N =m) pon (4.11)
and
A= WN=m=DWN=m) gy (4.12)

2
B is the total number of template matches of length m and A is the total number of forward

matches of length m + 1, then the SampEn is defined as

SampEn(m, r, N) = —In (%) . (4.13)

4.6 Multifractal analysis

A theory of fractals and multifractals describes self-similar and complex scaling properties ob-
served in various physical systems. Especially in biomedicine, most of signals behave like frac-
tals. Fractals are geometric objects that exhibit some degree of similarity in a wide range of
scales. In the 1991, Muzy, Bacry, and Arneodo [3] proposed a wavelet transform modulus max-
ima (WTMM) method, which is based on wavelet analysis, which is also called a mathematical
microscope due to its ability to preserve good resolution on multiple scale [2].

Because of high complexity of this method, only a brief description follows. This description
is an encapsulated version of Pavlov’s explanation in [2]. There is fractal-like signal denoted as

g (x). The wavelet transform is applied to the signal as

W (a, o) = é/_oo ¥ (x - IO) g (z)ds, (4.14)

0o a

where 1 is a wavelet function, a is a scaling exponent and b is a space or time coordinate. All

wavelet coeficients W (a, () form a surface in a three dimensional space. This surface contains
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Figure 4.4: Typical multifractal spectrums of a neuronal signal, regular spectrum, so called

parabola type (left), and irregular spectrum, so called zigzag type (right)

so-called local maxima lines. These lines are removed to create partition function defined as

where L (a) is the set of all lines of local maxima that exist on scale a, and x; (a) characterizes
the position of the maximum belonging to the line [. Then we can say that

Z(g,a)= Y W(a z (),
)

leL(a

(4.15)

Z (q7 a) ~ aT(q)7 a —> 0+7

Now we can count the Holder exponent by the Legendre transform

(4.16)
where 7 (¢), the scaling exponent, is determined for some ¢ and it pose the slope of In Z (¢, Ina).

Finally the singularity spectrum is determined by

There is a question how to read

method, which is used in this work,

_d’T

h=—.
dg

(4.17)

D (h) = min (gh — 7 (q)) .

(4.18)
this singularity spectrum. There are various methods. One

has been provided by Makowiec et al. in [4]. Makowiec
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used four measures:
1. maximum of the spectrum h,,,, defined as h (¢ = 0),
2. Hurst exponent which is a measure of the long term memory of time series,
3. rare events h; where h (¢ — oo) and h, where h (¢ — —00),
4. a spectrum width A = h, — h;.

Makowiec redefined these measures for practical usage, so only the h; rare event has been
used and defined as h (¢ = 5) and the spectrum width defined as A = |h (¢ =0) — h (¢ = 2)|.
Makowiec used these measures to RR-series and integrated RR-series so he could estimate
Ama:c = h%%x - hmaac-

An example of the singularity spectrums is in the Figure 4.4
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Chapter 5

Results

5.1 Optimalization of time-consuming complexity measures

For an optimalization of the complexity measures, I naturally choose the Matlab Parallel Com-
puting Toolbox. There were many reasons for this choice. The most significant were easy
implementation and the fact, that most of used programs were written for Matlab. I used
Matlab parallel approach to find out features of parallelization in three different cases.

In the first case, there was a code from the DBS Toolbox with parfor cycle that performed
107 very long and memory intensive iterations. The time of serial computation was 5087 s on
average. In the Figure in Apendix [B] there is a dependence of a speedup coefficient to
each worker. The speedup coefficient is a ratio where a consumed time of each worker divides
a consumed time of a serial calculation. The best result is teoretically equal to the number of
workers. In accordance with previous, the result which I proposed in this case is not sufficient
and is discussed in Chapter [f] Repeated calculations gave the same results. In the Figure
b.1] there is a load of the server which I used to compute on. An explanation of the picture

parameters are in the following:
e %us is the CPU load with the user’s processes, which have default priority,
e sy is the CPU load with a core and its processes,

e %ni is the CPU load with the user’s processes, of which priority has been changed by nice

command,
e %id is the CPU idleness.

In the second case, there was the code that I used to count the multifractal spectrum where
input signals was white noise N = 10000 samples long in the first case and N = 50000 samples

long in the second case. The parfor cycle, which has been used for paralelization, was consisted
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of 100 iteration. The speedup coefficient, which provide good result

in both cases, and the
server load are shown in the Figures and in Apendix

o0 NIT zerver load during time optimalization of the code in the first case
T T T
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Wr| —— =iy
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Figure 5.1: NIT server load during usage of the parallelization of the code from DBS Toolbox
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Figure 5.2: Time comparison of the chosen parallelized codes
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2 Speedup comparizon of the chosen parallelized codes
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Figure 5.3: Speedup comparison of the chosen parallelized codes

A very similar result was obtained in the case of parallelization of the Lempel-Ziv complexity
calculation. The parfor cycle consisted of 1000 short iterations. The speedup coefficient and
the server load are shown in the Figures and in Apendix

All these calculations are compared in following figures. In the Figure there is a com-
parison of the times required to compute proposed problems for each worker, where MFA means
multifractal analysis, LZC means Lempel-Ziv algorithm and DBS means the code gained from
DBS Toolbox. In the Figure [5.3] there is an comparison of the speedup coefficients for all
these computations and theoretical speedup, which is the absolutely best result that can be

theoretically reached.

5.2 Complexity measures

Only most promising results are presented in this chapter. All methods were applied to the same
data. There were two main groups of the data mentioned in Section [3.5] ISIs without neuron
sorting and ISIs where the neuron sorting method was applied. Results were subsequently
divided in accordance to their annotation. For purposes of the statistical testing, four groups
have been created. In the first group, there are all six cores tested separately. In the second
group, the STN _rb core was unified with STN core and GPi core was unified with GPe core to
create only GP core. The third group separates STN core from the others and the fourth group
contains GPe and GPi cores only. All the results are summarized in the Appendix

For statistical testing, the Kolmogorov-Smirnov test has been used to decide about distri-
bution normality, and then the Kruskal-Wallis or the analysis of variance test has been used to

find the best input parameters that differentiate cores.
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Figure 5.4: LZC medians through all bin sizes for signals with neuron sorting

The three most promising results are compared by mean with standard deviation and by
median and median absolute deviation in the form of confidence interval. Median absolute
deviation is defined as

0, = median (|a (n) — median (a (n))|), (5.1)

where « is a measure and n is a number of signals for each group of annotation. It forms a

confidence interval as

(=0 40, (5.2)

5.2.1 Lempel-Ziv complexity

Lempel-Ziv complexity (LZC) was counted for bin length from 50 to 340 samples with step by
10. Shorter bin length caused identical mean through all cores and longer bin length increased
variance. This method is not so time-consuming. Average time to count LZC for one signal was
0.6366 s for bin length 50 samples and 0.0641 s for bin length 340 samples. See dependence of
average consumed time to bin length in the Figure The consumed time is higher for shorter
bins because LZ algorithm has to work with longer strings.

In the Figure you can see how the median is changing with the bin length for all cores
separately. One can see the GPe and the Th are separated from other cores. This is a promising
result, so the statistical testing has been applied to find the best input parameters (bin length
and spike frequency range) that could separate cores as much as possible. The box plot for the

best result for six cores annotation is in the Figure [5.5]

25



Lempel-Ziv complexity (bin=340) box plot - spike range 200-Inf

- N .
1t : | 4
| I I
|
Fo.sr | € i i
% l | T
E ! '
30,5 | : i
=3 | |
7 | o l
T | ¥ B |
= 0,4+ | E— .
5" +
| + +
|
| +
0,2r | + + | 1
L . M |
+ +
0_ _
Th STH STN_rb Shr- GPi GPe

Figure 5.5: LZC box plot for signals with neuron sorting for bin lenght 340

102 Time dependence of LZC to bin length
..... T T T —

Time [s]

] 50 100 150 200 250 300 350 400
Bin zize
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Figure 5.7: The best differentiation of GP cores by burst index

5.2.2 Burst index, pause index and pause ratio

As mentioned in Section Favre used this measures to automatic classification GPi signals
from GPe |2I]. Despite Favre’s conclusion, in our case the best of these measures was burst
index. See Figure where can be seen the box graph of the best configuration. The input
data in this case were ISIs without neuron sorting. These measures weren’t successfully used
to classify other data sets. This method is the easiest to compute, therefore it is fatest too.
The consumed time to compute all three measures for an average signal (N = 317) was only
6.04-107° s,

5.2.3 Detrended fluctuation analysis

Because of requirement of the minimal length of the input data, only ISIs with more then 100
spikes have been used. Unfortunately, the results of the coefficient o were very bad. In the
figure there is the result where p-value of the Kruskal-Wallis test was the smallest. To
verify the DFA software, the a were counted for the white noise and the Brownian noise which
is integrated white noise. The « coefficient were 0.5 for white noise and 1.5 for Brownian noise
which corresponds to the Golberger’s explanation in [I8]. Time to count « coefficient of an
average ISI with more then 100 spikes (N = 840) was 0.1439 s. The conclusion is that the DFA

is not useful to differenciate short ISIs.
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Figure 5.8: The best result for a coefficient of the DFA

5.2.4 Approximate entropy

The best results of the ApEn for 6 core, 4 core and STN /others annotation has been moving
around spike range 20-Inf where the variance of the data is high. However for GP annotation,
the most significant result was for the spike range 304-Inf where the variance is relatively small
and amount of ISIs are still high enough. The quartiles of the box graph in the Figure do

not overlap which is very interesting result.

5.2.5 Sample entropy

SampEn has been giving the best results among all used methods. T decided to establish the best
result as the result with the lowest p-value of the statistical testing mentioned above. Firstly,
there was a problem how to select the m and r coefficients. For instance in [9], there is a method
how to choose m and r parameters. I counted the SampFEn for wide range of r and m, and
took the most significant value that medians of data sets are different. The best result is in the
Figure In comparison to the other methods, SampEn is relatively fast to compute. For
average ISI (N = 317) it took 0.009 s only. The advantage is that the computation time does

not rely on the input parameters, because the complexity of the method is the same.

5.2.6 Multifractal analysis

The singularity spectrum for each signal has been counted through software implementation
from Physionet [55]. The input parameters were set to MaxScale = 20, MinScale = 2, qui, = —5,

Jmax = 9, dq = 0.1, ord = 3, a = 0, b = 2.53, where scale is the a parameter of the wavelet trans-
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Figure 5.9: The best result of ApEn
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Figure 5.10: The best result of SampEn
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Figure 5.11: The most significant result for A" and ISIs without neuron sorting

Table 5.1: Comparison of multifractal measures for ISI without neuron sorting (mean=std)

[ Core | Th | STN | SN+ | GP |
hmaz | 0.78 £0.21 0.86 +0.15 0.88+0.13 0.89 +£0.17
hént 1 0.73+0.16 | 0.68+0.14 | 0.75+0.14 | 0.83+0.17
Az | —0.06 £0.25 | —0.194+0.20 | —0.13 £0.20 | —0.07 +0.20

hy 0.44 4 0.26 0.50 4 0.20 0.56 4= 0.22 0.45 4 0.32
hf”t 0.33 +0.22 0.27 4+ 0.22 0.36 = 0.26 0.4140.40
A 0.224+0.18 0.21+0.15 0.18+0.18 0.36 &+ 0.28
At 0.244+0.23 0.24 +£0.17 0.23 +0.20 0.34 +0.27

form, ¢ is mentioned in section dq is the step of ¢, ord is an derivative order of gaussian
wavelet function, and a and b are the borders for obtaining spectrum through partition function
defined at Then the measures that used Makowiec in [4] has been obtained. The most sig-

nificant result were obtained for /"™ and ISTs without neuron sorting method applied. The box

graph is displayed in the Figure [5.11] Tables[5.1]and [5.2]show the mean and standard deviation
of obtained parameters through cores. Applications of this method to ISIs weren’t convenient
because software implementation required at least 300 samples to count the spectrum, so the
number of data was quite low. Because of this, it was appropriate to use four cores annotation
only. This method is very time-consuming for raw signals, but for short ISIs is fast enough and
it took only 0.182 s an average. In the Figure there is a time dependence of the algorithm

to the signal length. For this purposes, white noise signal were used.
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Data length

Figure 5.12: MFA algorithm dependence of average consumed time to data length

Table 5.2: Comparison of multifractal measures for ISI with neuron sorting (mean=std)

[Core| Th | SIN | SN+ |  GP |
hmaz | 0.81£0.19 0.83 +£0.16 0.87+0.13 0.87+0.15
Rint 1 0.65+0.13 | 0.65+0.14 | 0.72+0.14 | 0.75+0.15
Apgr | —021£0.14 | —0.174+0.21 | —=0.15+£0.19 | —0.07 £ 0.22

hy 0.48 +0.22 0.47 £+ 0.19 0.54+0.21 0.39 £0.23
hf”t 0.354+0.26 0.224+0.21 0.28 £0.24 0.30 +0.26
A 0.21 £0.19 0.21+£0.14 0.20 £0.20 0.30£0.21
At 0.194+0.16 0.26 0.17 0.26 +0.21 0.324+0.25
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5.3 Classification

Only the three most promising results are compared in this section. In the Table[5.3] SampEnj .02,

LZCa70 and A" are compared by their means with variation and medians (confidence intervals). The

** gymbol means the medians through all cores were significantly (p<0.001) different. For purpose

of classification, 1-NN classifier has been applied to classify STN core from the others. Data were
divided to training and testing sets in the ratio 4 to 1. Results of the classification with sensitivity and
specificity could be seen in the Table

Table 5.3: Comparison of the best three methods. The first value is mean + standard deviation
and the second value is range of median absolute deviation described in Chapter

" Coe | Th | SIN | S\t [ GP |
s 5.68 +1.09 6.50 + 0.57 6.16 = 0.78 5.04+1.51
SampEn3T gy
0. [4.46,7.21] | [6.03,7.11] | [5.56,6.95] | [3.05,7.92]
o 0.67+0.31 0.93 +£0.15 0.83 £ 0.24 0.68 +0.29
LZC** 279
0.33, 1.14] | [0.87,1.09] | [0.67,1.16] | [0.25, 1.18]
it 0.73+0.16 | 0.68+0.14 | 075+0.14 | 083+0.17
maz 0.49,0.92] | [0.50,0.82] | [0.57,0.90] | [0.58, 1.10]

Table 5.4: 1-NN classification
Measure | TP | FP [ TN | FN | Sensitivity | Specificity |

SampEn;),’o‘Og 50 14 53 212 19% 79%
LZCar9 220 | 48 | 28 | 51 81% 37%
pint 136 | 49 | 16 | 68 67% 25%
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Chapter 6
Conclusion

The work has been divided into two parts. In the first part I described properities of three
parallel computing frameworks — Condor, Sun Grid Engine and Matlab Parallel Computing
Toolbox. Then I chose the Matlab parallel approach to speed up a computation of chosen
complexity measure algorithms. In the case of the complexity measures, the speedup coefficient

followed approximately the function
6 1
dup = = = 6.1
speedup 7w+ = (6.1)

where w is the number of workers used in the parallel approach. But in the first case, where
no complexity algorithm was used, the speedup coefficient behaves very strange. I suppose the
problem is in the working memory demands, but because the parallelization of the complexity
measures had been working well, I decided not to looking for a solution.

In the second part of the work I focused on the complexity measures. I presented brief
description of all chosen algorithms and where it was possible I added an example of the method
applied to very easy input signal. These methods have been used to count complexity measures
and the best result for each measure has been presented. The main goal was to find a method
used to separate STN ISIs from the others. 1-NN classifier has been used for sample entropy,
Lempel-Ziv complexity and hi" parameter. An interpretation of the Table could be that
LZCyrg is the best method to classify ISIs from STN while SampEn; g2 is the safest method
for STN detection. The most of the methods had promising results to separate GP cores.
Unfortunately, these methods worked well for ISIs with more then 300 samples, where amount
of GP ISIs were small.

Because of input signals have been short ISIs, a time to compute one measure for a signal
was negligible. Lempel-Ziv algorithm was the slowest to compute in the case of ISIs, but in the
case of raw signals, multifractal analysis appears to be the slowest. Compared to raw signals,
ISIs carry not so much information. Also DFA and MFA needed minimum of samples in a

signal. I concluded that ISI signals without neuron sorting method applied is better to use,
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because of higher number of samples in the ISI.
For future work there is a place for more thorough parameter choosing, sophisticated clas-

sifiers and new complexity measures. Also raw signals should be included to the analysis.
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Appendix A

CD attachment

Data structure of the attached CD:
e Bachelor thesis - tex codes and other files for bachelor thesis compilation
e Matlab files - data structure of all source codes, MAT files and pictures

e Bachelor thesis.pdf



Appendix B

Graphs

B.1 Parallel computations
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Figure B.1: Speedup coefficient for optimalization of the code from DBS Toolbox
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Figure B.2: NIT server load during usage of the parallelization of the code from DBS Toolbox
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Figure B.3: Speedup coeflicient for optimalization of the MFA (N=10000) code
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Figure B.4: NIT server load during usage of the parallelization of the MFA (N=10000) code
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Figure B.5: Speedup coefficient for optimalization of the LZC code
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NIT server load during LZC optimalization
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Figure B.6: NIT server load during usage of the parallelization of the LZC code

B.2 Lempel-Ziv complexity
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Figure B.7: LZC medians through all bin sizes for signals without neuron sorting
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Figure B.8: LZC means through all bin sizes for signals without neuron sorting
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Figure B.9: LZC medians through all bin sizes for signals without neuron sorting

vi
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Figure B.10: LZC means through all bin sizes for signals without neuron sorting
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Figure B.11: LZC medians through all bin sizes for signals with neuron sorting
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Lempel-Ziv complexity mean - spike frequency 300-Inf

1 . : : e
Th /...../"" >
STH -

0,31 | ===25TN_rb .
SN
6P

0.8 GPe .

0.7

0.6

Lempel-Ziv complexity

0.5

1 1 1 1 1
50 100 150 200 pasi] 300 360
Bin size

Figure B.12: LZC means through all bin sizes for signals with neuron sorting
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Figure B.13: LZC medians through all bin sizes for signals with neuron sorting
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Lempel-Ziv complexity mean - spike frequency 300-Inf
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Figure B.14: LZC means through all bin sizes for signals with neuron sorting

Lempel-Ziv complexity (bin=270) box plot - spike range 228-Inf
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Figure B.15: LZC box graph for signals without neuron sorting
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Lempel-Ziv complexity (bin=270) box plot - spike range 228-Inf
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Figure B.16: LZC box graph for signals without neuron sorting
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Figure B.17: LZC box graph for signals without neuron sorting



Lempel-Ziv complexity (bin=140) box plot - spike range 344-Inf
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Figure B.18: LZC box graph for signals without neuron sorting

B.3 Burst index, pause index and pause ratio

BI box plot - spike range 336-1123

. |
18 + | ]
+ |
16 : .
+ |
14 + g
12t + .
— 10f g
i +
8r o+ + B
L + + + |
E + i i
ir T + ]
' + =
2r | . E
= e [E— [— T
0 - —_— —_— [—— —_— -
Th 5TH STH_rb Shir GPi GPe

Figure B.19: Burst index box graph for 6 cores annotation and ISTs without neuron sorting
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Bl box plot - spike range 236-Inf
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Figure B.20: Burst index box graph for 4 cores annotation and ISIs without neuron sorting
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Figure B.21: Burst index box graph for STN /others annotation and ISIs without neuron sorting
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Bl box plot - spike range 316-1376

20~ E
S
1} | -
|
16 | E
|
14+ | 1
|
12+ | 4
= 10k -
8_ -
- + u
& +
4F + .
2F —T 1
EEEEEEEEEH T
0_ - - -
GPi GPe

Figure B.22: Burst index box graph for GP annotation and ISIs without neuron sorting
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Figure B.23: Burst index box graph for 6 cores annotation and ISIs with neuron sorting
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Figure B.24: Burst index box graph for 4 cores annotation and ISIs with neuron sorting
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Figure B.25: Burst index box graph for STN /others annotation and ISIs with neuron sorting
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Bl box plot - spike range 37-Inf
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Figure B.26: Burst index box graph for GP annotation and ISIs
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Figure B.28: Pause index box graph for 4 cores annotation and ISIs without neuron sorting
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Figure B.29: Pause index box graph for STN /others annotation and ISIs without neuron sorting
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Figure B.30: Pause index box graph for GP annotation and ISIs without neuron sorting
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Figure B.31: Pause index box graph for 6 cores annotation and ISIs with neuron sorting
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PI box plot - spike range 30-Inf
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Figure B.32: Pause index box graph for 4 cores annotation and ISIs with neuron sorting
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Figure B.33: Pause index box graph for STN/others annotation and ISIs with neuron sorting
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Figure B.34: Pause index box graph for GP cores annotation and ISIs with neuron sorting
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PR box plot - spike range 430-Inf
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Figure B.36: Pause ratio box graph for 4 cores annotation and ISIs without neuron sorting
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Figure B.37: Pause ratio box graph for STN /others annotation and ISIs without neuron sorting
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Figure B.38: Pause ratio box graph for GP annotation and ISIs without neuron sorting
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Figure B.39: Pause ratio box graph for 6 cores
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PR box plot - spike range 54-Inf
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Figure B.40: Pause ratio box graph for 4 cores annotation and ISIs with neuron sorting
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Figure B.41: Pause ratio box graph for STN/others annotation and ISIs with neuron sorting
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PR box plot - spike range 21-Inf
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Figure B.42: Pause ratio box graph for GP annotation and ISIs with neuron sorting

B.4 Detrended fluctuation analysis
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Figure B.43: DFA box graph for 6 cores annotation and ISIs without neuron sorting
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Figure B.44: DFA box graph for 4 cores annotation and ISIs without neuron sorting
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Figure B.45: DFA box graph for STN /others annotation and ISIs without neuron sorting
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IFA box plot - spike range 220-Inf
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Figure B.46: DFA box graph for GP annotation and ISIs without neuron sorting
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Figure B.47: DFA box graph for 6 cores annotation and ISIs with neuron sorting
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IFA box plot - spike range 218-Inf
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Figure B.48: DFA box graph for 4 cores annotation and ISIs with neuron sorting
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Figure B.49: DFA box graph for STN/others annotation and ISIs with neuron sorting
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IFA box plot - spike range 272-Inf
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Figure B.50: DFA box graph for GP annotation and ISIs with neuron sorting

B.5 Approximate entropy

ApEn (m=1, r=0,32) box plot - spike range 20-Inf
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Figure B.51: ApEn box graph for 6 cores annotation and ISTs without neuron sorting
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ApEn (m=1, r=0,3) box plot - spike range 40-Inf
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Figure B.52: ApEn box graph for 4 cores annotation and ISIs without neuron sorting
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Figure B.53: ApEn box graph for STN/others annotation and ISIs without neuron sorting
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ApEn (m=4, r=0,36) box plot - spike range 304-Inf
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Figure B.54: ApEn box graph for GP annotation and ISIs without neuron sorting
B.6 Sample entropy

Sample Entropy (m=3, r=0,02) box plot - spike range 320-Inf
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Figure B.55: The best result of SampEn for 6 cores annotation and ISIs without neuron sorting
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Sample Entropy (m=3, r=0,02) box plot - spike range 336-Inf
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Figure B.56: The best result of SampEn for 4 cores annotation and ISIs without neuron sorting

Figure B.57: The best result of SampEn for STN /others annotation
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Sample Entropy (m=3, r=0,02) box plot - spike range 324-Inf
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Figure B.58: The best result of SampEn for GP annotation and ISIs without neuron sorting
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Figure B.59: The best result of SampEn for 6 cores annotation and ISIs with neuron sorting
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Sample Entropy (m=2, r=0,1) box plot - spike range 98-Inf
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Figure B.60: The best result of SampEn for 4 cores annotation and ISIs with neuron sorting
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Figure B.61: The best result of SampEn for STN /others annotation and ISIs with neuron sorting

XXXl



Sample Entropy (m=2, r=0,2) box plot - spike range EO-Inf
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Figure B.62: The best result of SampEn for GP annotation and ISIs with neuron sorting

B.7 Multifractal analysis

hmax bax graph - spike range 324-Int
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Figure B.63: The most significant result for h,,,, and ISIs without neuron sorting
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Figure B.64: The most significant result for A and ISIs without neuron sorting
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Figure B.65: The most significant result for A,,,, and ISIs without neuron sorting

XXX1V



hl box graph - spike range 325-Int
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Figure B.66: The most significant result for h; and ISIs without neuron sorting

hint bax graph - spike range 328-Int
+
0 +
1.5F i
+

.
-
|
-

|
0.5+ | B

— . .
0r _ | | L i
< .
0.5 + 1
+
Th STH SMr- GP

Figure B.67: The most significant result for A" and ISIs without neuron sorting
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Delta box graph - spike range 32b-Int
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Figure B.68: The most significant result for A and ISIs without neuron sorting
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Figure B.69: The most significant result for A™ and ISIs without neuron sorting
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Figure B.72: The most significant result for A,,,, and ISIs with neuron sorting
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Figure B.73: The most significant result for ~; and ISIs with neuron sorting
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Figure B.75: The most significant result for A and ISIs with neuron sorting
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