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Abstract

This bachelor project deals with analysis of neurological data using regularity measures.

The signals are microelectrode recordings acquired during deep brain stimulation surgery. This

project's aim is �nd suitable measure for classi�cation of basal ganglia's cores, namely subtha-

lamic nucleus, globus pallidus and substantia nigra, and adjacent parts of thalamus. Capability

of an automatic signal classi�cation would be a considerable bene�t during operations, where

it is necessary to locate cores precisely. All measures passed ANOVA/Kruskal-Wallis test on

signi�cance level α = 0.05 while the best discrimination in term of p-value was achieved for

sample entropy. Two used regularity measures, Lempel-Ziv complexity and sample entropy,

provided good results to discriminate di�erent basal ganglia nuclei.

Keywords: Parkinson's disease, signal processing, core classi�cation, complexity measure

Abstrakt

Tato bakalá°ská práce se zabývá analýzou neurologických dat pomocí metod me°ení komplex-

ity signálu. T¥mito signály jsou nam¥°ené ak£ní potenciály získané p°i operaci pomocí hloubkové

mozkové stimulace. Cílem této práce je najít vhodnou metodu pro klasi�kaci jader bazálních

ganglií, konkrétn¥ subthalamického jádra, globu pallidu a £erné substance, a p°ilehlých £ástí

thalamu. Schopnost automatické klasi�kace t¥chto signál· by byla zna£ným p°ínosem p°i oper-

acích, u kterých je nutné p°esn¥ daná jádra zam¥°it. V²echny metody pro²ly ANOVA/Kruskal-

Wallisovým testem na hladin¥ významnosti α = 0.05. Samplovací entropie byla z hlediska

p-hodnoty nejlep²í mírou pouºitou k diskriminaci jader. Dv¥ pouºité míry komplexity signálu,

Lempel-Zivova komplexita a samplovací entropie, poskytly dobré výsledky pro rozli²ení rozdíl-

ných jader basálních ganglií.

Klí£ová slova: Parkinsonova nemoc, zpracování signálu, klasi�kace jader, komplexita signálu
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Chapter 1

Introduction

As human average age increases, the prevalence of Parkinson's disease increases too. This places

higher demandes on a healthcare system. A treatment of the Parkinson's disease can be divided

into two main parts, the treatment with medicaments and a surgery. In recent years, the surgery

has been becoming more and more popular. In the Parkinson's disease surgery, there is necessary

to lead thin electrode through a brain to the structures, which are only a few milimeters small

[39]. Very precise targeting of the chosen structure is important. Unfortunately, the surgeon's

possibilities how to do it are limited, so many scientists has been interested in how to �nd a

method, which could help surgeon in the targeting. Dozens methods based on processing signals

taken during the surgical operation were proposed. In this work I'll focus on the comparison of

these methods and their application to real data sets.

This work was divided into six chapters. The �rst chapter is this introduction.

In the second chapter I'll focus on a description of parallel computing methods. There are

methods, especially those that process raw data, which are very time-consuming. The aim of

the parallel computing is to reduce the time consumed. I'll describe properties of three most

used softwares.

There is needfull to describe some theoretical issues, so in the third chapter I'll give some

informations about Parkinson's disease and related topics, such as a treatment of Parkinson's

disease, participated brain structures, a deep brain stimulation and a measuring action poten-

tiales and the data sets that I'll work with.

In the fourth chapter I'll describe and explain all used complexity measures such as entropy

based algorithms and chaos based algorithms that have lot of representatives on the both sides.

The �fth chapter is devoted to results. I'll refer about a practical usage of a chosen parallel

computing method and announce results and comparison of complexity measures.

In the sixth chapter I'll summarize the complexity measure results and refer about their

usage to our data sets.
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Chapter 2

Methods of parallel computing

2.1 Introduction to parallel computing

It is only few decades ago when computer was privilege of big corporations, important goverment

projects and army. How the development of computers goes ahead it pushes costs of elder and

simplier computers to the ground. The high cost and technological complexity caused that

computers began to link together and processors began to split in cores. Subsequently, the

parallel programming began to develop. This approach enabled to develop new demanding

signal processing algorithms.

Since part of my thesis deals with such demanding algorithms, it was very far-sighted from

my supervisor to start with survey of parallel programming methods. I got the assignment to

compare various approaches, which were able to parallelize the Matlab code. Then I applied the

chosen approach to the assigned problem. In the following text, there are described three various

approaches of the parallel computing, namely Matlab Parallel Computing Toolbox, Condor and

Sun Grid Engine. The choice of the Condor and the Sun Grid Engine was based on the fact,

that these programs are one of the most frequently used open source environments. The choice

of the Matlab Parallel Computing Toolboxu came naturally because our faculty has the license

for it.

2.2 Condor

Condor project starded at University of Wisconsin-Madison in 1988. It has been proposed by

Miron Livny in his doctoral thesis [48]. Since then, it is still under development. It has been

used for example for rendering of 3D movies, analysis of stock markets, processing of biological

data or simulations. There are two main products: The Condor high-throughput computing

system (Condor), and the Condor-G agent for grid computing.

Condor is a high-throughput distributed batch computing system. Like other batch systems,
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Condor provides a job management mechanism, scheduling policy, priority scheme, resource

monitoring, and resource management. Users submit their jobs to Condor, and Condor subse-

quently chooses when and where to run them based upon a policy, monitors their progress, and

ultimately informs the user upon completion [49].

There are several useful tools provided by Condor. Users can put demands to remote machine

(minimum RAM capacity, faster �oating point performance) for some group of jobs or vice versa.

For this purpose there is ClassAds framework. It matches jobs with appropriate machines.

Condor provides also tool for checkpointing and migration. This allows Condor to move job

to another machine if certain computer, where job runs, is going to be used by user. Thanks to

checkpointing, job that moved to another machine is performed where it had been interrupted.

Unfortunately, this advantege works under the Linux systems only and many conditions has to

be complied there.

Condor runs jobs on the remote machine on the background. Remote system calls is one

of Condor's mobile sandbox mechanisms for redirecting all of a jobs I/O related system calls

back to the machine which submitted the job. Users do not need to make data �les available

on remote workstations before Condor executes their programs there, even in the absence of a

shared �lesystem [47, 49].

Condor runs under the Linux, Mac OS X, FreeBSD and with some restrictions also under

the Windows operating system.

To run a parallel computation, user has to do several steps. First the user's program and

input data have to be prepared. Input data must be divided for all jobs and program must receive

data as an input. Communication has to be available through input, output and error terminals

only, because jobs will run on the background. Then the Condor's universe has to be chosen.

Each universe has certain functions and abilities. The most common universes are Standard

universe, which allows checkpointing, migration and remote system call, and Vanilla universe,

which doesn't provide these advantages but also isn't limited. For Java Virtual Machine there is

a Java universe, for grid computing there is a Grid universe and so on. The third step is to write

a submit description �le. It establishes how will Condor manage jobs. There is important to

tell Condor which program will be executed, in which universe, if there are any requirements to

jobs or machines, where are input data and where will be stored output data and so on. Finally

the computation is started by condor_submit command. Also there are many commands for

managing the computation. The example of the submit description �le is in the Algorithm 2.1

[47].
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Algorithm 2.1 Example of the submit description �le [47]
Executable = matlabparallel.m

Universe = vanilla

Requirements = Memory >= 32 && OpSys == \

�LINUX� && Arch == �INTEL�

Rank = Memory >= 64

Image_Size = 28 Meg

Error = err.$(Process)

Input = in.$(Process)

Output = out.$(Process)

Log = mathematica.log

Queue 150

2.3 Sun Grid Engine

Sun grid engine (SGE) is an open source batch-queuing system and is the open source version

of the newer Oracle grid engine. SGE was developed in 2001 from the previous environment

CODINE.

As you can see in the Figure 2.1, SGE cluster consists of QMaster which runs on the master

host and manages a parallel computation, execution deamons, which run on execution hosts,

shadow master, which take over the role of master host if crashes, submit hosts, which enable

users to submit and control batch jobs. In the Figure 2.1, there is also ARCo box, which

represents Accounting and Reporting Console, which allows SGE to store informations to SQL

database and user to work with. The last component is DRMAA, which provides a program-

matic interface for applications to submit, monitor, and control jobs.

User speci�es the requirements and submits the job to the SGE. SGE puts the job to the

queue and then send it to the execution device. When the job are �nished, SGE show logs

about it. It contains QMON, the gra�cal user's interface, which simpli�es the work with SGE.

Like Condor's universes, SGE has policies that are customized according to whatever is ap-

propriate for the site. Urgency policy de�nes priority for each job. This priority is value which

is derived from job's resource requirements, the job's deadline speci�cation, and how long the

job waits before it is run. Using the Functional policy, an administrator can provide special

treatment because of a user's or a job's a�liation with a certain user group, project, and so

forth. In Share-based policy, the level of service depends on an assigned share entitlement, the

corresponding shares of other users and user groups, the past usage of resources by all users, and

the current presence of users within the system. The last policy in SGE is Override policy. It re-

quires manual intervention by the cluster administrator, who modi�es the implementation. Like

the policies, there are also four users categories with di�erent accesses to the SGE commands.

Job is submited by the qsub command from the terminal or QMONGUI and can be controled
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Figure 2.1: Oracle Grid Engine Component Architecture [53]

by qstat command. When the job is �nished, a log can be sent through email.

All these informations were obtained from Sun N1 Grid Engine 6.1 User's guide [52] and

from Beginner's Guide to Oracle Grid Engine 6.2 [53].

2.4 Matlab Parallel Computing Toolbox

Matlab Parallel Computing Toolbox (MPCT) is the o�cial Matlab toolbox for parallelization of

Matlab and Simulink programs. In its standard version, it provides twelve workers (MATLAB

computational engines) locally on a multicore desktop or eight workes for computing on a remote

cluster. There are three main possibilities how to use MPCT. It can be used for parallelization

of for loop by parfor statement, to executing batch jobs in parallel and for partitioning of large

data sets.

Parfor is exactly parallel for loop. It devides loop by its iterations. Each iteration is sent

to certain worker in any order so there is a condition for iteration independence. Parfor loop

requires either many iterations or long iterations. With a small amout of short iterations it

could be counterproductive. As you can see in the Algorithm 2.2, a Matlab pool (cluster) has

to be opened. Then parfor statement can be used and in the end Matlab pool has to be closed.

Batch jobs in parallel are useful for example when user wants to execute a time-consuming

job, but he still wants to work in the same Matlab session. For this purpose, there is a batch

command. It starts to run a task on the worker as a batch job. This job is asynchronous, so

the client Matlab session is not blocked. Nevertheless, if the user wants to wait to the job,

there is a wait command. To retrieve the results, classical load statement can be used. In the

Algorithm 2.3, there is an example of the batch jobs in parallel. Naturally, the batch parallel

loop is possible to use also.

If a user has an array that is too large for computer's memory, it cannot be easily handled

in a single MATLAB session. By distributed command used inside matlabpool statement, a

user converts classical array to distributed array. This distributed array is divided by columns
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to smaller arrays and each small array is sent to di�erent worker. User works with distributed

array as a classical array and workers automatically transfer data between themselves when

necessary. An example of using distributed array is in the Algorithm 2.4.

All these informations were obtained from Parallel Computing Toolbox User's Guide [50].

Algorithm 2.2 Example of using parfor loop [50]
matlabpool open local 3

parfor i=1:1024

A(i) = sin(i*2*pi/1024);

end

plot(A);

matlabpool close

Algorithm 2.3 Example of using batch jobs in parallel [50]
edit mywave

for i=1:1024

A(i) = sin(i*2*pi/1024);

end

job = batch('mywave');

wait(job);

load(job, 'A');

plot(A);

destroy(job);

Algorithm 2.4 Example of using distributed array [50]
Matlabpool open

spmd

MM=distributed(M);

% there are operations with MM array

al=getLocalPart(MM);

end

Matlabpool close

al{1} % in the first cell of the cell array al, there is the part of the

resultant MM array
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Chapter 3

Parkinson's disease

Parkinson's desease (PD) was described by James Parkinson in 1817. It is a progressive neu-

rological disorder characterised by a large number of motor and non-motor features that can

impact on function to a variable degree. PD is characterized by four major features include

tremor, rigidity, akinesia (or bradykinesia) and postural instability [26].

Although the cause of PD is unknown, there are some factors that contribute to the pathogen-

esis of PD. This factors include for instance genetic factors, environmental toxins and excessive

iron deposition [29]. The main feature occurs on the cellular scope is a loss of neurons in the

caudal and anterolateral parts of the substantia nigra pars compacta, which causes de�ciency

of dopamine in the striatum, whose extent is directly correlated with the severity of PD [19].

3.1 Treatment

PD is incurable, but there are several possibilities how to lessen symptomps. In �rst line of

treatment, Levodopa is in general better solution for patients aged more then 60 years [30]. For

younger patients there is dopamine agonists. In later stage of the disease, combinations of these

approaches are necessary. If medicaments doesn't work well or if side e�ects are unbearable,

there is possibility in surgery, in deep brain stimulation. But on the other hand, no treatment

is required if the quality of patient's life is satisfactory [29].

3.1.1 Levodopa treatment

Levodopa has been highly used in treatment of Parkinson's disease for 30 years. It apears better

to start with lower dose of levodopa at the beginning of the treatment, because it may lessen the

severity. But after ten years of treatment, there is no signi�cant di�erence between treatment

regimens. There are many problems with levodopa use as well. As disease progresses, levodopa

causes dyskinesia and dose failure [28]. The most common side e�ects of levodopa treatment
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are alternating between �on� and �o�� phases [31], behavioral changes [32], nausea, postural

hypotension, distonia, pain and sweating [29].

3.1.2 Dopamine agonists treatment

Against levodopa, this treatment is in general less well tolerated, less e�ective and more ex-

pensive. It causes nausea and dizziness as well, but until no levodopa is used, there is no

dyskinesia and motor �uctuations. Other side e�ects of dopamine agonists treatment include

hallucinations, confussion, pleuropulmonary and retroperitoneal �brosis, postural hypotension,

erythromelalgia. So the one of the main bene�ts in the comparison with levodopa is delay of

the levodopa use itself [28].

3.1.3 Surgery

In general, surgical treatment is used to improve �o�� phases and dyskinesia mentioned above,

when medicamental treatment is no longer e�ective or side e�ects of treatment is worse then

PD symptoms. But there are many contraindications force surgeons and patients to consider all

possibilities. To these contraindications belong for instance pre-morbid cognitive or psychiatric

disturbance, problems with puncturing dura mater (brain shifting, infection) and severe cerebral

atrophy [29]. Also the surgery may not be bene�cial to patients with atypital parkinsonian

syndromes [33].

In according to [34], there are various possibilities how to do operation. The surgeon must

make decision about ablative brain surgery (lesioning) or deep brain stimulation (DBS), about

pallidal or subthalamic surgery and about unilateral or bilateral surgery. Among these possi-

bilities, there are several di�erencies. For instance bilateral pallidotomy are more risky than

unilateral, because there is higher chance to cause speech, swallowing or cognitive disturban-

cies, but the bene�t can be higher as well [35]. The lesioning in comparison with DBS is more

economical, there is negligible risk of infection and there is no need for adjustment stimulation

parameters. Nevertheless, DBS is more e�ective and reversible, so it is more acceptable for

younger patients [29].

3.2 Deep brain stimulation

The �rst deep brain stimulation (DBS) was realized in January 1987 by A. L. Benabid to

improve essential tremor [38]. Later, the DBS was used for treatment of Parkinson's disease,

dystonia, clinical depression and chronic pain [40]. In the treatment of PD, there are two

possibilities of the surgical operation mentioned above, the DBS and the ablative brain surgery.

In both cases, physician has to decide about the core that will be targeted. There are three
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Figure 3.1: Coronal cut of the brain with visualization of the thalamus and the basal ganglia
[54]

possibilities in DBS treatment, STN that is most common target, GPi or Th that is rather used

for treatment of essential tremor. Just before operation, Magnetic Resonance Imaging (MRI)

tooks the entire picture of the brain. Surgeon then pinpoints the trajectory of the microelectrode.

This microelectrode, which is only tens of micrometer thin, is applied. Because of brain shifting,

surgeon's MRI image is not so precise, therefore electrophysiological exploration must be carried

out. Surgeon listens the neuronal signal that is measured through implanted electrode during

microelectrode recording (MER) and by his experience he desides about reached core. This can

be very complicated, so reliable automatic classi�cation could be useful [43].

3.3 Cores structures

3.3.1 Basal ganglia

The basal ganglia (BG) are a set of subcortical nuclei located in the midbrain, around the

thalamus. The major nuclei of basal ganglia are the striatum, which is composed of the caudate

nucleus and the putamen; the internal and external parts of the globus pallidus; the pars

reticulata and the pars compacta of the substantia nigra; and the subthalamic nucleus [22].

Although for a long time, BG were thought to support motor functions exclusively, it is now

recognized that BG have a role in cognitive, a�ective and autonomous function also. BG

circuitry, shown in the Figure 3.3, is involved in a great range of functions including: reward

based learning, exploratory/navigational behavior, goal-oriented behavior, motor preparation,

working memory, timing, action gating, action selection, fatigue and apathy. In spite of the
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Figure 3.2: Typical signal shapes of the main measured cores with their ISI histograms

signi�cant progress in our knowledge of BG at several levels, it is still not clear how such an

overwhelming range of functions is supported by the same subcortical circuit [23].

3.3.1.1 Striatum

The Striatum is made from caudate nucleus and putamen and is the major input nuclei of

BG. These two parts are divided by a white matter tract called internal capsule. Striatum

receives inputs from a number of cortical areas and the thalamus [23]. In the case of PD,

dopaminergic innervation from substantia nigra pars compacta is a�ected, which causes PD

symptoms. Huntington's disease, chorea and dyskinesia causes striatum atrophy [46].

3.3.1.2 Subthalamic nucleus

Subthalamic nucleus (STN) is another input of BG, and like the striatum, also receives inputs

from cortex, but the exact function of the STN is still unknown [23]. STN is one of the major

targets of lesioning or DBS. Bilateral subthalamic surgery is used to improve appendicular and

axial akinesia, rigidity [29] and severe Parkinsonian tremor [36].

3.3.1.3 Substantia nigra

The substantia nigra (SN) is portion of the basal ganglia and consists of the pars compacta

(SNc) and the pars reticulata (SNr). The SNr (ventral portion of SN) contains small amounts

of dopamine and iron, giving it reddish color, while the SNc (dorsal portion) contains large

quantities of dopamine and melanin, making it black (whence the name, substantia nigra) [19].
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Figure 3.3: Basal ganglia circuitry [41]

With GPi, SNr constitutes the output nuclei of the BG [22]. During MER of Parkinson patients,

the SNr is characterized by more regularly �ring units [20].

3.3.1.4 Globus pallidus

The globus pallidus (GP) consists of internal (GPi) and external (GPe) part. With SNr, GPi

constitutes the output nuclei of the BG [22]. As well as STN, GP is also one of the major

tergets of lesioning and DBS. Unilateral pallidotomy is ofted used for improving contralateral

akinetic/rigid symptoms of PD [29] and severe tremor [37].

3.3.2 Thalamus

The human thalamus (Th) is a nuclear complex located in the diencephalon and comprising of

four parts (the hypothalamus, the epythalamus, the ventral thalamus, and the dorsal thalamus).

The Th is a relay centre subserving both sensory and motor mechanisms [27]. During MER

of Parkinson patients, the Th is characterized by relatively slowly �ring and bursting activity

patterns [20]. In former treatments of PD, Th was lesioned or stimulated to improve unilateral

tremor. Bilateral surgery caused often severe speech disturbances. But it was found that pallidal

and subthalamic surgery has better results, so there is no need to target Th for this reason [35].

3.4 DBS Toolbox

The DBS Toolbox provides processing of MER signals such as spike detection and sorting,

automatic data access or feature extraction. All informations about this environment is in

[43, 44, 45].
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3.5 Data

Data were recorded using 1 � 5 tungsten microelectrodes with an exposed tip size of 15 � 25 µm.

They were recorded for ten seconds at sampling rate 24 kHz and annotated by a neurologist using

visual and audio inspection of the MER recordings [43]. This annotation cosists of ten groups

of signals, exactly STN, STN_rb, STN_like, Th, SNr, SNr_like, GPi, GPe and Unknown.

Unknown, STN_like and SNr_like signals were removed from analysis. Later GPe has been

put together with GPi to form only GP annotation and STN_rb has been connected with STN.

Data structure is provided in Table 3.1. In the latter data analysis, there was usefull to know

number of signals for certain range of spike frequencies. See Table 3.2 shows amount of signals

for these frequencies.

This set of data is extension of the date from previous paragraph. If the certain neuron is

measured, signal from close neurons are added to the signal of measured neuron. There are

methods [24, 25] how to extract these signals, so we can work with only one neuron if needed.

The number of signals increased after neuron extraction, so I had to rewrite the Table 3.2 to

the Table 3.3.

Table 3.1: Number of signals from new data annotation
Th STN STN_like STN_rb SNr SNr_like GPi GPe Unknown Total

530 2803 79 298 349 24 155 222 7710 12170

Table 3.2: Number of signals for certain spike frequency threshold
>spikes 0 100 200 300 400 500 600 700 800 900 1000

Th 530 219 111 62 43 34 27 23 20 16 13
STN 3101 1937 1462 1083 754 522 348 217 127 81 55
SNr 349 214 169 141 117 86 64 48 37 27 19
GP 377 169 130 108 82 68 56 46 38 32 24
Total 4357 2539 1872 1394 996 710 495 334 222 156 111

Table 3.3: Number of signals with separated neurons for certain spike frequency threshold
>spikes 0 100 200 300 400 500 600 700 800 900 1000

Th 997 270 103 39 21 13 9 8 7 4 3
STN 6946 2766 1094 503 229 109 58 39 21 16 11
SNr 798 343 157 84 48 34 21 12 8 6 5
GP 787 300 116 57 37 24 15 10 10 6 4
Total 9528 3679 1470 683 335 180 103 69 46 32 23
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Chapter 4

Complexity measures

As the title indicates, the complexity measures are used to estimate a complexity of a signal.

These measures are based on information or chaos theory and reveal hidden properities of a

signal. These properities are used to classify a groups of signals, such as RR-interbeats [4, 10],

neuronal spike trains [14] or DNA sequences [15]. In this work I used interspike intervals (ISIs),

so before a complexity measure is applied, a raw signal must be transformed. At �rst, raw

signal is measured. Then threshold

Threshold = 4 ·median

(
|x|

0.6745

)
(4.1)

is estimated to detect spikes [42]. Then times between spikes are computed to create an ISI.

Finally, the complexity measures are estimated. Functions provided the transformation are

built in DBS Toolbox. See Figure 4.1 for shallow notion.

Figure 4.1: Diagram of signal transformation
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4.1 Lempel-Ziv complexity

The Lempel-Ziv complexity (LZC), a new approach of evaluating the complexity of �nite se-

quences, was proposed by Abraham Lempel and Jacob Ziv in 1976 [1]. LZC has been primarily

used to solve information theoretic problems and applications, but in recent years, it has been

applied extensively in biomedical signal analysis [13].

The signal must be converted into a �nite symbol sequence �rst. In the context of biomedical

signal analysis, typically the discrete-time biomedical signal is converted into a binary sequence

[13]. A neurological signal with T duration is divided into N bins with a size of ∆τ (N = T/∆τ).

Each bin is annotaded as "1" if it contains at least one spike belonging to major aggregated

cluster; "0", otherwise [14]. Principle of the signal transformation to a binary string is shown

in the Figure 4.2.

Independent explanation of Lempel-Ziv algorithm in accordance with [13] is in the following.

Consider binary strings P = s (1) s (2) ...s (n), S = s (1), Q = s (2), integers r = 1, c (n) = 1 (n

is equal to the number of bins) and operation π, which removes last character of the string, so

using further string SQπ consists of s (1) only. It was inicialization. Then algorithm is provided

as following. Is string Q substring of SQπ? If so, make new string Q by Qs (r + 2), increase r

by 1 and go to the begining. If not increase r and c (n) by 1, make new string S by s (1) ...s (r)

and Q by s (r + 1) and go to the begining. If r is equal to n, algorithm will �nish. Finally the

Lempel-Ziv complexity is counted

C (n) =
c (n) log2 (n)

n
. (4.2)

Example: Consider string P (57) = s (1) ...s (57) = 0010010010101001000101101011001010

11000100010110110010100. Make string S = s (1) = 0, where s means substring and number in

brackets is position in the string P , and string Q = s(2) = 0. Then make string SQπ = 0. Look

if Q is substring of the SQπ. It is, so make new string by adding next character, so Q = 01.

Now Q isn't substring of SQπ = 00, so c (57) = 2. Make new string S = 001 and Q = 0 and do

the same for all other characters. For humans the method is very easy, so we can split the string

to unique substrings as S (57) = 0|01|00100101|01001000|1011|0101100|101011000|10001011011|
|0010100. We have 9 vocabulary words and 57 characters, so the Lempel-Ziv complexity is given

by

C (57) =
9 log2 (57)

57
=̇0.9210.
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Figure 4.2: Principle of the signal transformation to a binary string

4.2 Burst index, pause index and pause ratio

The burst index (BI), pause index (PI) and pause ratio (PR) have been proposed by Jacques

Favre et al. in 1999 and can by used to quantify burst activities of deep brain nuclei. The BI

was de�ned as the number of ISI < 10 ms divided by the number of ISI > 10 ms, the PI was

de�ned as the number of ISI > 50 ms divided by the number of ISI < 50 ms and the PR was

de�ned as the total duration of ISI > 50 ms divided by the total duration of ISI < 50 ms [21].

4.3 Detrended �uctuation analysis

The detrended �uctuation analysis (DFA) has been proposed by C. K. Peng et al. in 1994 to

estimate long-range power-law correlations for DNA sequences [15], heartbeat time series [16]

or stride intervals of human gait [17].

First, the original time series is integrated, and then divided into boxes of equal lenght, n.

For each box of length n, a least squares line (representing the trend in that box) is �t to the

data. For a given box size n, the characteristic size of the �uctuations, denoted by F (n), is

then calculated as the rms deviation between y (k) and its trend in each box yn (k) as shows

Eqn 4.3. This computation is repeated over all time scales (box sizes). Typically, F (n) will

increase with box size n. A linear relationship on a log-log graph indicates presence of scaling

(self-similarity), such that �uctuations in larger boxes in a power-law fashion. The slope of the

line relating logF (n) to log n determines the fractal scaling exponent, α [18].
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F (n) =

√√√√ 1

N

N∑
k=1

(y (k)− yn (k))2 (4.3)

Figure 4.3: Detrended Fluctuation Analysis. First graph shows input signal (ISIs of one neuron).
As you can see on the second graph, input signal is integrated (blue) and divided to the boxes
(50 samples for this case). For each box the trend line is computed (red). Then the �uctuation
F (n) is computed and ploted as one of the blue points on third graph. This method is repeated
for all chosen boxes. Finally, the trend line of all �uctuations is computed. The slope of the
line is the measure required.

4.4 Approximate entropy

Approximate entropy (ApEn) was proposed by Steven M. Pincus in 1990. It was suggested to

classify complex systems with a relatively small amount of data, such as heart rate [5]. Later,

ApEn has been used in �nance [6], psychology [7], and human factors engineering [8].
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In accordance with Pincus in [5], the algorithm is in the following. Consider a positive

integer m and positive real number r. Note time-series of data as u (1) , u (2) , . . . , u (N), where

N is the signal length, then form vectors x (1) , x (2) , . . . , x (N −m+ 1) in Rm de�ned by

x (i) = [u (i) , u (i+ 1) , . . . , u (i+m− 1)]. Next de�ne for each i, 1 ≤ i ≤ N −m+ 1,

Cm
i (r) =

number of j such that d [x (i) , x (j)] ≤ r

N −m+ 1
, (4.4)

where d [x (i) , x (j)] = max
k=1,2,...,m

(|u (i+ k − 1)− u (j + k − 1)|) . Then de�ne

Φm (r) =
1

N −m+ 1

N−m+1∑
i=1

lnCm
i (r) . (4.5)

Finally, the ApEn is counted as

ApEn (m, r, N) = Φm (r)− Φm+1 (r) . (4.6)

Example: Consider signal u = [2, 3, 5, 1, 0], m = 2 and r = 3. Then form vectors

x (1) = [2, 3] ,

x (2) = [3, 5] ,

x (3) = [5, 1] ,

x (4) = [1, 0] .

In the �rst step i = 1. Take j = 1 and quantify d function with x (1) and x (1) as follows:

d [x (1) , x (1)] = max (|u (1)− u (1)| , |u (2)− u (2)|) = max (0, 0) = 0.

Is d [x (1) , x (1)] ≤ r, is 0 ≤ 3? It is, so increase a numerator of C2
1 (3) by 1. Do this procesude

for each i and each j. Then count

C2
i=1 (3) =

3

4
,

C2
i=2 (3) =

3

4
,

C2
i=3 (3) =

4

4
,

C2
i=4 (3) =

4

4
.
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Subsequently count

Φ2 (3) =
1

4

4∑
i=1

lnC2
i (3)

.
= −0.1438.

Do the whole procedure again for m = 3. You should get

x (1) = [2, 3, 5] ,

x (2) = [3, 5, 1] ,

x (3) = [5, 1, 0] ,

C3
1 (3) = C3

2 (3) = C3
3 (3) =

1

3
,

and

Φ3 (3) =
1

3

3∑
i=1

lnC3
i (3)

.
= −1.0986.

Finally ApEn is estimated as

ApEn (2, 3, 5) = Φ2 (3)− Φ3 (3)
.
= −0.9548.

4.5 Sample entropy

A sample entropy (SampEn) was proposed by Douglas E. Lake in 2000 as a measure of neonatal

heart rate variability. The SampEn was designed to reduce a bias of ApEn and has closer

agreement with theory for datasets with known probabilistic content [9]. The SampEn is largely

independent of a record length and displays relative consistency under circumstances where

ApEn does not [11].

The SampEn is very similar to the ApEn. It di�ers in two cases only. The �rst case is that

SampEn does not count self-matches. In acordance to the notation from Section 4.4, it means

that match is not taken into account if j 6= i. The second case is that SampEn does not use a

template-wise approach [14].

A good explanation of the SampEn is for instance in [14], so I will follow very freely the

explanation provided in [14]. Consider a positive integer m and positive real number r. Note

time-series of data as u (1) , u (2) , . . . , u (N), where N is the signal length, then form vectors

xm (1) , xm (2) , . . . , xm (N −m+ 1) in Rm de�ned by xm (i) = [u (i) , u (i+ 1) , . . . , u (i+m− 1)].

Next de�ne for each i, 1 ≤ i ≤ N −m+ 1,

Bm
i (r) =

number of j such that d [xm (i) , xm (j)] ≤ r

N −m− 1
, (4.7)

where d [xm (i) , xm (j)] = max
k=1,2,...,m

(|u (i+ k − 1)− u (j + k − 1)|) and j ranges from 1 toN−m,
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and j 6= i. Then de�ne

Bm (r) =
1

N −m

N−m∑
i=1

Bm
i (r) . (4.8)

Similarly de�ne

Ami (r) =
number of j such that d [xm+1 (i) , xm+1 (j)] ≤ r

N −m− 1
, (4.9)

and

Am (r) =
1

N −m

N−m∑
i=1

Ami (r) . (4.10)

Set

B =
(N −m− 1) (N −m)

2
Bm (r) (4.11)

and

A =
(N −m− 1) (N −m)

2
Am (r) . (4.12)

B is the total number of template matches of length m and A is the total number of forward

matches of length m+ 1, then the SampEn is de�ned as

SampEn(m, r, N) = − ln

(
A

B

)
. (4.13)

4.6 Multifractal analysis

A theory of fractals and multifractals describes self-similar and complex scaling properties ob-

served in various physical systems. Especially in biomedicine, most of signals behave like frac-

tals. Fractals are geometric objects that exhibit some degree of similarity in a wide range of

scales. In the 1991, Muzy, Bacry, and Arneodo [3] proposed a wavelet transform modulus max-

ima (WTMM) method, which is based on wavelet analysis, which is also called a mathematical

microscope due to its ability to preserve good resolution on multiple scale [2].

Because of high complexity of this method, only a brief description follows. This description

is an encapsulated version of Pavlov's explanation in [2]. There is fractal-like signal denoted as

g (x). The wavelet transform is applied to the signal as

W (a, x0) =
1

a

ˆ ∞
−∞

ψ

(
x− x0
a

)
g (x) dx, (4.14)

where ψ is a wavelet function, a is a scaling exponent and b is a space or time coordinate. All

wavelet coe�cients W (a, x0) form a surface in a three dimensional space. This surface contains
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Figure 4.4: Typical multifractal spectrums of a neuronal signal, regular spectrum, so called
parabola type (left), and irregular spectrum, so called zigzag type (right)

so-called local maxima lines. These lines are removed to create partition function de�ned as

Z (q, a) =
∑
l∈L(a)

|W (a, xl (a))|q , (4.15)

where L (a) is the set of all lines of local maxima that exist on scale a, and xl (a) characterizes

the position of the maximum belonging to the line l. Then we can say that

Z (q, a) ∼ aτ(q), a→ 0+, (4.16)

where τ (q), the scaling exponent, is determined for some q and it pose the slope of lnZ (q, ln a).

Now we can count the Hölder exponent by the Legendre transform

h =
dτ

dq
. (4.17)

Finally the singularity spectrum is determined by

D (h) = min
q

(qh− τ (q)) . (4.18)

There is a question how to read this singularity spectrum. There are various methods. One

method, which is used in this work, has been provided by Makowiec et al. in [4]. Makowiec
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used four measures:

1. maximum of the spectrum hmax de�ned as h (q = 0),

2. Hurst exponent which is a measure of the long term memory of time series,

3. rare events hl where h (q →∞) and hr where h (q → −∞),

4. a spectrum width ∆ = hr − hl.

Makowiec rede�ned these measures for practical usage, so only the hl rare event has been

used and de�ned as h (q = 5) and the spectrum width de�ned as ∆ = |h (q = 0)− h (q = 2)|.
Makowiec used these measures to RR-series and integrated RR-series so he could estimate

∆max = hintmax − hmax.
An example of the singularity spectrums is in the Figure 4.4.
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Chapter 5

Results

5.1 Optimalization of time-consuming complexity measures

For an optimalization of the complexity measures, I naturally choose the Matlab Parallel Com-

puting Toolbox. There were many reasons for this choice. The most signi�cant were easy

implementation and the fact, that most of used programs were written for Matlab. I used

Matlab parallel approach to �nd out features of parallelization in three di�erent cases.

In the �rst case, there was a code from the DBS Toolbox with parfor cycle that performed

107 very long and memory intensive iterations. The time of serial computation was 5087 s on

average. In the Figure B.1 in Apendix B, there is a dependence of a speedup coe�cient to

each worker. The speedup coe�cient is a ratio where a consumed time of each worker divides

a consumed time of a serial calculation. The best result is teoretically equal to the number of

workers. In accordance with previous, the result which I proposed in this case is not su�cient

and is discussed in Chapter 6. Repeated calculations gave the same results. In the Figure

5.1, there is a load of the server which I used to compute on. An explanation of the picture

parameters are in the following:

• %us is the CPU load with the user's processes, which have default priority,

• %sy is the CPU load with a core and its processes,

• %ni is the CPU load with the user's processes, of which priority has been changed by nice

command,

• %id is the CPU idleness.

In the second case, there was the code that I used to count the multifractal spectrum where

input signals was white noise N = 10000 samples long in the �rst case and N = 50000 samples

long in the second case. The parfor cycle, which has been used for paralelization, was consisted
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of 100 iteration. The speedup coe�cient, which provide good result in both cases, and the

server load are shown in the Figures B.3 and B.4 in Apendix B.

Figure 5.1: NIT server load during usage of the parallelization of the code from DBS Toolbox

Figure 5.2: Time comparison of the chosen parallelized codes
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Figure 5.3: Speedup comparison of the chosen parallelized codes

A very similar result was obtained in the case of parallelization of the Lempel-Ziv complexity

calculation. The parfor cycle consisted of 1000 short iterations. The speedup coe�cient and

the server load are shown in the Figures B.5 and B.6 in Apendix B.

All these calculations are compared in following �gures. In the Figure 5.2, there is a com-

parison of the times required to compute proposed problems for each worker, where MFA means

multifractal analysis, LZC means Lempel-Ziv algorithm and DBS means the code gained from

DBS Toolbox. In the Figure 5.3, there is an comparison of the speedup coe�cients for all

these computations and theoretical speedup, which is the absolutely best result that can be

theoretically reached.

5.2 Complexity measures

Only most promising results are presented in this chapter. All methods were applied to the same

data. There were two main groups of the data mentioned in Section 3.5, ISIs without neuron

sorting and ISIs where the neuron sorting method was applied. Results were subsequently

divided in accordance to their annotation. For purposes of the statistical testing, four groups

have been created. In the �rst group, there are all six cores tested separately. In the second

group, the STN_rb core was uni�ed with STN core and GPi core was uni�ed with GPe core to

create only GP core. The third group separates STN core from the others and the fourth group

contains GPe and GPi cores only. All the results are summarized in the Appendix B.

For statistical testing, the Kolmogorov-Smirnov test has been used to decide about distri-

bution normality, and then the Kruskal-Wallis or the analysis of variance test has been used to

�nd the best input parameters that di�erentiate cores.
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Figure 5.4: LZC medians through all bin sizes for signals with neuron sorting

The three most promising results are compared by mean with standard deviation and by

median and median absolute deviation in the form of con�dence interval. Median absolute

deviation is de�ned as

σµ = median (|α (n)−median (α (n))|) , (5.1)

where α is a measure and n is a number of signals for each group of annotation. It forms a

con�dence interval as

[µ− σµ, µ+ σµ] . (5.2)

5.2.1 Lempel-Ziv complexity

Lempel-Ziv complexity (LZC) was counted for bin length from 50 to 340 samples with step by

10. Shorter bin length caused identical mean through all cores and longer bin length increased

variance. This method is not so time-consuming. Average time to count LZC for one signal was

0.6366 s for bin length 50 samples and 0.0641 s for bin length 340 samples. See dependence of

average consumed time to bin length in the Figure 5.6. The consumed time is higher for shorter

bins because LZ algorithm has to work with longer strings.

In the Figure 5.4 you can see how the median is changing with the bin length for all cores

separately. One can see the GPe and the Th are separated from other cores. This is a promising

result, so the statistical testing has been applied to �nd the best input parameters (bin length

and spike frequency range) that could separate cores as much as possible. The box plot for the

best result for six cores annotation is in the Figure 5.5.
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Figure 5.5: LZC box plot for signals with neuron sorting for bin lenght 340

Figure 5.6: Lempel-Ziv algorithm dependence of averege consumed time to bin length
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Figure 5.7: The best di�erentiation of GP cores by burst index

5.2.2 Burst index, pause index and pause ratio

As mentioned in Section 4.2, Favre used this measures to automatic classi�cation GPi signals

from GPe [21]. Despite Favre's conclusion, in our case the best of these measures was burst

index. See Figure 5.7 where can be seen the box graph of the best con�guration. The input

data in this case were ISIs without neuron sorting. These measures weren't successfully used

to classify other data sets. This method is the easiest to compute, therefore it is fatest too.

The consumed time to compute all three measures for an average signal (N = 317) was only

6.04 · 10−5 s.

5.2.3 Detrended �uctuation analysis

Because of requirement of the minimal length of the input data, only ISIs with more then 100

spikes have been used. Unfortunately, the results of the coe�cient α were very bad. In the

�gure 5.8, there is the result where p-value of the Kruskal-Wallis test was the smallest. To

verify the DFA software, the α were counted for the white noise and the Brownian noise which

is integrated white noise. The α coe�cient were 0.5 for white noise and 1.5 for Brownian noise

which corresponds to the Golberger's explanation in [18]. Time to count α coe�cient of an

average ISI with more then 100 spikes (N = 840) was 0.1439 s. The conclusion is that the DFA

is not useful to di�erenciate short ISIs.
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Figure 5.8: The best result for α coe�cient of the DFA

5.2.4 Approximate entropy

The best results of the ApEn for 6 core, 4 core and STN/others annotation has been moving

around spike range 20�Inf where the variance of the data is high. However for GP annotation,

the most signi�cant result was for the spike range 304�Inf where the variance is relatively small

and amount of ISIs are still high enough. The quartiles of the box graph in the Figure 5.9 do

not overlap which is very interesting result.

5.2.5 Sample entropy

SampEn has been giving the best results among all used methods. I decided to establish the best

result as the result with the lowest p-value of the statistical testing mentioned above. Firstly,

there was a problem how to select the m and r coe�cients. For instance in [9], there is a method

how to choose m and r parameters. I counted the SampEn for wide range of r and m, and

took the most signi�cant value that medians of data sets are di�erent. The best result is in the

Figure 5.10. In comparison to the other methods, SampEn is relatively fast to compute. For

average ISI (N = 317) it took 0.009 s only. The advantage is that the computation time does

not rely on the input parameters, because the complexity of the method is the same.

5.2.6 Multifractal analysis

The singularity spectrum for each signal has been counted through software implementation

from Physionet [55]. The input parameters were set to MaxScale = 20, MinScale = 2, qmin = −5,

qmax = 5, dq = 0.1, ord = 3, a = 0, b = 2.53, where scale is the a parameter of the wavelet trans-
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Figure 5.9: The best result of ApEn

Figure 5.10: The best result of SampEn
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Figure 5.11: The most signi�cant result for hintmax and ISIs without neuron sorting

Table 5.1: Comparison of multifractal measures for ISI without neuron sorting (mean±std)
Core Th STN SNr GP

hmax 0.78± 0.21 0.86± 0.15 0.88± 0.13 0.89± 0.17

hintmax 0.73± 0.16 0.68± 0.14 0.75± 0.14 0.83± 0.17

∆max −0.06± 0.25 −0.19± 0.20 −0.13± 0.20 −0.07± 0.20

hl 0.44± 0.26 0.50± 0.20 0.56± 0.22 0.45± 0.32

hintl 0.33± 0.22 0.27± 0.22 0.36± 0.26 0.41± 0.40

∆ 0.22± 0.18 0.21± 0.15 0.18± 0.18 0.36± 0.28

∆int 0.24± 0.23 0.24± 0.17 0.23± 0.20 0.34± 0.27

form, q is mentioned in section 4.6, dq is the step of q, ord is an derivative order of gaussian

wavelet function, and a and b are the borders for obtaining spectrum through partition function

de�ned at 4.15. Then the measures that used Makowiec in [4] has been obtained. The most sig-

ni�cant result were obtained for hintmax and ISIs without neuron sorting method applied. The box

graph is displayed in the Figure 5.11. Tables 5.1 and 5.2 show the mean and standard deviation

of obtained parameters through cores. Applications of this method to ISIs weren't convenient

because software implementation required at least 300 samples to count the spectrum, so the

number of data was quite low. Because of this, it was appropriate to use four cores annotation

only. This method is very time-consuming for raw signals, but for short ISIs is fast enough and

it took only 0.182 s an average. In the Figure 5.12, there is a time dependence of the algorithm

to the signal length. For this purposes, white noise signal were used.
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Figure 5.12: MFA algorithm dependence of average consumed time to data length

Table 5.2: Comparison of multifractal measures for ISI with neuron sorting (mean±std)
Core Th STN SNr GP

hmax 0.81± 0.19 0.83± 0.16 0.87± 0.13 0.87± 0.15

hintmax 0.65± 0.13 0.65± 0.14 0.72± 0.14 0.75± 0.15

∆max −0.21± 0.14 −0.17± 0.21 −0.15± 0.19 −0.07± 0.22

hl 0.48± 0.22 0.47± 0.19 0.54± 0.21 0.39± 0.23

hintl 0.35± 0.26 0.22± 0.21 0.28± 0.24 0.30± 0.26

∆ 0.21± 0.19 0.21± 0.14 0.20± 0.20 0.30± 0.21

∆int 0.19± 0.16 0.26± 0.17 0.26± 0.21 0.32± 0.25
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5.3 Classi�cation

Only the three most promising results are compared in this section. In the Table 5.3, SampEn3,0.02,

LZC270 and hintmax are compared by their means with variation and medians (con�dence intervals). The

** symbol means the medians through all cores were signi�cantly (p<0.001) di�erent. For purpose

of classi�cation, 1-NN classi�er has been applied to classify STN core from the others. Data were

divided to training and testing sets in the ratio 4 to 1. Results of the classi�cation with sensitivity and

speci�city could be seen in the Table 5.4.

Table 5.3: Comparison of the best three methods. The �rst value is mean ± standard deviation
and the second value is range of median absolute deviation described in Chapter 4.

Core Th STN SNr GP

SampEn∗∗3,0.02
5.68± 1.09

[4.46, 7.21]

6.50± 0.57

[6.03, 7.11]

6.16± 0.78

[5.56, 6.95]

5.04± 1.51

[3.05, 7.92]

LZC∗∗270
0.67± 0.31

[0.33, 1.14]

0.93± 0.15

[0.87, 1.09]

0.83± 0.24

[0.67, 1.16]

0.68± 0.29

[0.25, 1.18]

hint∗∗max

0.73± 0.16

[0.49, 0.92]

0.68± 0.14

[0.50, 0.82]

0.75± 0.14

[0.57, 0.90]

0.83± 0.17

[0.58, 1.10]

Table 5.4: 1-NN classi�cation
Measure TP FP TN FN Sensitivity Speci�city

SampEn3,0.02 50 14 53 212 19% 79%
LZC270 220 48 28 51 81% 37%
hintmax 136 49 16 68 67% 25%
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Chapter 6

Conclusion

The work has been divided into two parts. In the �rst part I described properities of three

parallel computing frameworks � Condor, Sun Grid Engine and Matlab Parallel Computing

Toolbox. Then I chose the Matlab parallel approach to speed up a computation of chosen

complexity measure algorithms. In the case of the complexity measures, the speedup coe�cient

followed approximately the function

speedup =
6

7
w +

1

7
, (6.1)

where w is the number of workers used in the parallel approach. But in the �rst case, where

no complexity algorithm was used, the speedup coe�cient behaves very strange. I suppose the

problem is in the working memory demands, but because the parallelization of the complexity

measures had been working well, I decided not to looking for a solution.

In the second part of the work I focused on the complexity measures. I presented brief

description of all chosen algorithms and where it was possible I added an example of the method

applied to very easy input signal. These methods have been used to count complexity measures

and the best result for each measure has been presented. The main goal was to �nd a method

used to separate STN ISIs from the others. 1-NN classi�er has been used for sample entropy,

Lempel-Ziv complexity and hintmax parameter. An interpretation of the Table 5.4 could be that

LZC270 is the best method to classify ISIs from STN while SampEn3,0.02 is the safest method

for STN detection. The most of the methods had promising results to separate GP cores.

Unfortunately, these methods worked well for ISIs with more then 300 samples, where amount

of GP ISIs were small.

Because of input signals have been short ISIs, a time to compute one measure for a signal

was negligible. Lempel-Ziv algorithm was the slowest to compute in the case of ISIs, but in the

case of raw signals, multifractal analysis appears to be the slowest. Compared to raw signals,

ISIs carry not so much information. Also DFA and MFA needed minimum of samples in a

signal. I concluded that ISI signals without neuron sorting method applied is better to use,
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because of higher number of samples in the ISI.

For future work there is a place for more thorough parameter choosing, sophisticated clas-

si�ers and new complexity measures. Also raw signals should be included to the analysis.
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Appendix A

CD attachment

Data structure of the attached CD:

• Bachelor_thesis - tex codes and other �les for bachelor thesis compilation

• Matlab_�les - data structure of all source codes, MAT �les and pictures

• Bachelor_thesis.pdf
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Appendix B

Graphs

B.1 Parallel computations

Figure B.1: Speedup coe�cient for optimalization of the code from DBS Toolbox
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Figure B.2: NIT server load during usage of the parallelization of the code from DBS Toolbox

Figure B.3: Speedup coe�cient for optimalization of the MFA (N=10000) code
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Figure B.4: NIT server load during usage of the parallelization of the MFA (N=10000) code

Figure B.5: Speedup coe�cient for optimalization of the LZC code
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Figure B.6: NIT server load during usage of the parallelization of the LZC code

B.2 Lempel-Ziv complexity

Figure B.7: LZC medians through all bin sizes for signals without neuron sorting
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Figure B.8: LZC means through all bin sizes for signals without neuron sorting

Figure B.9: LZC medians through all bin sizes for signals without neuron sorting
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Figure B.10: LZC means through all bin sizes for signals without neuron sorting

Figure B.11: LZC medians through all bin sizes for signals with neuron sorting
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Figure B.12: LZC means through all bin sizes for signals with neuron sorting

Figure B.13: LZC medians through all bin sizes for signals with neuron sorting
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Figure B.14: LZC means through all bin sizes for signals with neuron sorting

Figure B.15: LZC box graph for signals without neuron sorting
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Figure B.16: LZC box graph for signals without neuron sorting

Figure B.17: LZC box graph for signals without neuron sorting
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Figure B.18: LZC box graph for signals without neuron sorting

B.3 Burst index, pause index and pause ratio

Figure B.19: Burst index box graph for 6 cores annotation and ISIs without neuron sorting
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Figure B.20: Burst index box graph for 4 cores annotation and ISIs without neuron sorting

Figure B.21: Burst index box graph for STN/others annotation and ISIs without neuron sorting
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Figure B.22: Burst index box graph for GP annotation and ISIs without neuron sorting

Figure B.23: Burst index box graph for 6 cores annotation and ISIs with neuron sorting
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Figure B.24: Burst index box graph for 4 cores annotation and ISIs with neuron sorting

Figure B.25: Burst index box graph for STN/others annotation and ISIs with neuron sorting
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Figure B.26: Burst index box graph for GP annotation and ISIs with neuron sorting

Figure B.27: Pause index box graph for 6 cores annotation and ISIs without neuron sorting
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Figure B.28: Pause index box graph for 4 cores annotation and ISIs without neuron sorting

Figure B.29: Pause index box graph for STN/others annotation and ISIs without neuron sorting
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Figure B.30: Pause index box graph for GP annotation and ISIs without neuron sorting

Figure B.31: Pause index box graph for 6 cores annotation and ISIs with neuron sorting
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Figure B.32: Pause index box graph for 4 cores annotation and ISIs with neuron sorting

Figure B.33: Pause index box graph for STN/others annotation and ISIs with neuron sorting
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Figure B.34: Pause index box graph for GP cores annotation and ISIs with neuron sorting

Figure B.35: Pause ratio box graph for 6 cores annotation and ISIs without neuron sorting

xix



Figure B.36: Pause ratio box graph for 4 cores annotation and ISIs without neuron sorting

Figure B.37: Pause ratio box graph for STN/others annotation and ISIs without neuron sorting
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Figure B.38: Pause ratio box graph for GP annotation and ISIs without neuron sorting

Figure B.39: Pause ratio box graph for 6 cores annotation and ISIs with neuron sorting
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Figure B.40: Pause ratio box graph for 4 cores annotation and ISIs with neuron sorting

Figure B.41: Pause ratio box graph for STN/others annotation and ISIs with neuron sorting
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Figure B.42: Pause ratio box graph for GP annotation and ISIs with neuron sorting

B.4 Detrended �uctuation analysis

Figure B.43: DFA box graph for 6 cores annotation and ISIs without neuron sorting
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Figure B.44: DFA box graph for 4 cores annotation and ISIs without neuron sorting

Figure B.45: DFA box graph for STN/others annotation and ISIs without neuron sorting
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Figure B.46: DFA box graph for GP annotation and ISIs without neuron sorting

Figure B.47: DFA box graph for 6 cores annotation and ISIs with neuron sorting
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Figure B.48: DFA box graph for 4 cores annotation and ISIs with neuron sorting

Figure B.49: DFA box graph for STN/others annotation and ISIs with neuron sorting

xxvi



Figure B.50: DFA box graph for GP annotation and ISIs with neuron sorting

B.5 Approximate entropy

Figure B.51: ApEn box graph for 6 cores annotation and ISIs without neuron sorting
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Figure B.52: ApEn box graph for 4 cores annotation and ISIs without neuron sorting

Figure B.53: ApEn box graph for STN/others annotation and ISIs without neuron sorting
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Figure B.54: ApEn box graph for GP annotation and ISIs without neuron sorting

B.6 Sample entropy

Figure B.55: The best result of SampEn for 6 cores annotation and ISIs without neuron sorting
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Figure B.56: The best result of SampEn for 4 cores annotation and ISIs without neuron sorting

Figure B.57: The best result of SampEn for STN/others annotation and ISIs without neuron
sorting
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Figure B.58: The best result of SampEn for GP annotation and ISIs without neuron sorting

Figure B.59: The best result of SampEn for 6 cores annotation and ISIs with neuron sorting
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Figure B.60: The best result of SampEn for 4 cores annotation and ISIs with neuron sorting

Figure B.61: The best result of SampEn for STN/others annotation and ISIs with neuron sorting
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Figure B.62: The best result of SampEn for GP annotation and ISIs with neuron sorting

B.7 Multifractal analysis

Figure B.63: The most signi�cant result for hmax and ISIs without neuron sorting
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Figure B.64: The most signi�cant result for hintmax and ISIs without neuron sorting

Figure B.65: The most signi�cant result for ∆max and ISIs without neuron sorting
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Figure B.66: The most signi�cant result for hl and ISIs without neuron sorting

Figure B.67: The most signi�cant result for hintl and ISIs without neuron sorting
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Figure B.68: The most signi�cant result for ∆ and ISIs without neuron sorting

Figure B.69: The most signi�cant result for ∆int and ISIs without neuron sorting
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Figure B.70: The most signi�cant result for hmax and ISIs with neuron sorting

Figure B.71: The most signi�cant result for hintmax and ISIs with neuron sorting
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Figure B.72: The most signi�cant result for ∆max and ISIs with neuron sorting

Figure B.73: The most signi�cant result for hl and ISIs with neuron sorting
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Figure B.74: The most signi�cant result for hintl and ISIs with neuron sorting

Figure B.75: The most signi�cant result for ∆ and ISIs with neuron sorting
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Figure B.76: The most signi�cant result for ∆int and ISIs with neuron sorting
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