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Abstrakt

Ciělom tejto bakalárskej práce je vytvorenie geometrickej mapy z
hrubých senzorických dát, nazbieraných mobilným robotom. Takáto geo-
metrická mapa môže slúžǐt pre algoritmy pre plánovanie trajektórie rob-
ota, pŕıpadne pre simuláciu prostredia v ktorom sa robot pohybuje. Im-
plementovaný algoritmus využ́ıva vzájomné súperenie jednotlivých clus-
trov o namerané priestorové body. Metóda bola testovaná na reálnych
dátach kde z celkového počtu pol milióna bodov vytvorila 30 polygónov.
Výsledný model prostredia bol taktiež využitý v simulátore projektu
Symbrion.

Abstract

The goal of this bachelor thesis is to create a geometrical map from
raw sensory data collected by a mobile robot. This map can serve as
an input for algorithms for planning robots trajectory or for simulation
of its environment. The algorithm is based on rivalry between clusters
which are competing for measured points. This method was tested by us-
ing real data producing 30 polygons from approximately 500,000 points.
Resulting environmental model was tested in simulator of Large-Scale
Integrated Project Symbrion.
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Spatial Models in Mobile Robotics

1 Introduction

From the very beginning of robot construction, there was an idea to make them fully
autonomous. That means, to act on their own, independent on human supervision. These
robots should be able to plan their trajectory, avoid collisions, fold clothes, etc. A fun-
damental issue of robot-environment interaction is the capability of the control system to
model the environment. With an appropriate surrounding model robots are able to make
predictions about their next states. Robots have to perform complex tasks at real time so
it is important to use appropriate environment representation. There are several ways to
represent environment models and some of them will be introduced in the following sections.

It is common that robots store information about the outside world in a form of a point
cloud. A point cloud is a set of points in a three-dimensional coordinate system which can
be measured by various types of sensors such as:

• stereo camera systems (such as Loreo),

• laser scanners (such as SICK laser),

• time of flight camera (such as SwissRanger),

• structured light systems (such as Kinect).

To construct a point cloud using a sensor mounted on a mobile robot, position of the robot
has to be known. In figure 1 a point cloud is collected by a mobile robot localized by
odometry.

(a) Measurement (b) Result

Figure 1: Point cloud measurement example
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Spatial Models in Mobile Robotics

The data in a form of a point cloud are not suitable for simulation or motion planning
because of memory requirements, and time-consumption of processing algorithms. These
are the reasons why a point cloud is usually transformed to another form of environment
model representation. One of these forms is a geometric map which represents environment
with geometric primitives like lines, polygons, spheres, etc. The goal of this thesis is to
design an algorithm which transforms a point cloud into a geometric map.

This bachelor thesis is divided into following parts. Firstly, existing methods for ge-
ometric maps construction and various types of environment model representations are
explained. Next few sections are devoted to description of partial algorithms and their im-
plementation. The explanation of the algorithm is divided into four parts: raw sensory data
filtering, plane equation searching, surface based algorithms for polygon border search, fi-
nal approximation and triangulation. The algorithms for equations of planes searching
are based on [1]. The final section contains experimental results and time consumption
analysis.
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2 Related work

2.1 Environment models

In mobile robotics, environment models can be used for path planning, localization
and simulation. Since environment changes with time, the model has to change as well in
order to provide robot with correct information. With higher level of environment model
abstraction it becomes more difficult to build the model.

2.1.1 Occupancy grid

A common representation of environment is an occupancy grid. The occupancy grid rep-
resentation divides multidimensional space into cells, where each cell stores a probabilistic
estimate of its state.
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Figure 2: Examples of occupancy grid with threshold set to 10 points per cell

2.1.2 Landmark map

A landmark map is based on storing information about important places in the envi-
ronment. These important places are called landmarks and are uses as reference points. A
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2.1 Environment models Spatial Models in Mobile Robotics

landmark map is mostly used for mobile robot localization or navigation.

2.1.3 Geometric map

A geometric map represents an environment with geometric primitives like lines, poly-
gons, spheres, etc. Construction of a geometric map is not as easy as construction of
an occupancy grid, but it provides a compact alternative to grid-based model, requiring
considerably less memory and hence less computation for path planning or simulation
methods [2].

Figure 3: Geometric map

2.1.4 Topological map

A higher level of environment representation is a topological map. In contrast to ge-
ometrical representation, topological model is simplified so that unnecessary details are
removed and only vital information remains. Topological models are generally described
by graph structure where the graph nodes define particular locations in the environment
and the graph edges define information for motion between nodes [3].

Figure 4: Example of topological model
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2.2 Geometrical map construction Spatial Models in Mobile Robotics

2.2 Geometrical map construction

2.2.1 Random Samples Consensus

Random Samples Consensus (RANSAC) is an iterative method for construction of geo-
metrical map from observed data that may contain large number of outliers. The RANSAC
method is based on computing a number of points that lie within a threshold distance from
a randomly selected primitive (in this case a plane). This selection is repeated several times
and the primitive with the maximum value represents a fit. To generate a plane from point
cloud, three points are randomly selected and then plane is constructed from these points.
In [4], some methods similar to RANSAC are shown - for instance MLESAC (Maximum
LikElihood SAmple Consensus) or MAPSAC (Maximum A Posteriori SAmple Consensus).

An advantage of RANSAC is that it can estimate the parameters even when a significant
number of outliers is present in the data set. The disadvantage is, that number of planes or
threshold has to be known before map construction. Another disadvantage is computation
time. There is a possibility to limit number of iterations to reduce computation time but
the obtained solution may not be optimal.

2.2.2 Hough Transform

The Hough Transform is a method for detecting parameterized objects. The simplest
case of Hough Transform is the linear transform for line detection. The idea is to transform
lines into space defined by the line parameters (for example slope and interception). That
means a line will be represented as a point in this space which is also called a Hough
space or an accumulator. For each point in the dataset all possible lines are computed
(with respect to discretization) and then the score of corresponding cell in Hough space is
increased. The cells with score higher then a certain threshold represent lines. An example
of 2 lines with corresponding Hough space is shown in figure 5. A line in a plane is defined
by an equation y = kx + q, but as variable k does not have an uniform distribution it is
common practice to use polar coordinates instead [5].

For detection of parametrized planes a method explained in [6] will be presented. The
planes are commonly represented by the equation z = mxx + myy + ρ, however, to avoid
problems bound with infinite slopes when representing vertical planes, the planes should
be represented in form

ρ = px cos θ sinϕ+ py sinϕ sin θ + pz cosϕ.

θ, ϕ and ρ define the 3-dimensional Hough Space corresponding to one plane in R3.

The Hough Space is divided into cells and for each point in dataset all cells(θ, ϕ, ρ),
where the point lies in plane defined by θ, ϕ and ρ, are voted. Voting means increasing the
score by 1. The cell with the highest value represents the most prominent plane, the plane
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2.2 Geometrical map construction Spatial Models in Mobile Robotics

Figure 5: Example of Hough Transform (Original figure downloaded from [5])

that covers most points of the point cloud.

Disadvantage of Hough Transform as well as RANSAC is that number of planes or
threshold has to be known before the map is built. Both Hough Transform and RANSAC
do not consider any limits of plane span while map is under construction. That means they
cannot be used for detecting walls lying in the same plane.
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3 Theoretical information

As was mentioned in the Introduction, the data in a form of a point cloud take a lot
of memory. It is usual to have a few hundred thousand points so it is important to store
this data in an appropriate data structure. The most common structures are octree and
kd-tree. In this work author had chosen to use kd-tree because it is easy to implement
without insertion and deleting operations.

3.1 Kd-Tree

A kd-tree is a data structure for storing a finite set of points from k-dimensional space.
It is a binary tree in which every node is a k-dimensional point which divides the space into
two subspaces with equal number of points in them. This tree is a useful data structure
for range search and nearest neighbor search [7].

3.1.1 Construction

There are several ways to construct a kd-tree. Recursive method described in algorithm 1
was used. The output is root node which can be used to access any point in the tree.

Input: points := points in subset, depth := actual depth in the tree
Output: node := contains value (point) and child nodes (left, right)

if points.size = 0 then1

return NULL;2

end3

axis = depth mod 3;4

if axis = 0 then5

sort points by axis x;6

else if axis = 1 then7

sort points by axis y;8

else9

sort points by axis z;10

end11

k = points.size / 2;12

node.value = points[k];13

node.left = this(points before points[k], depth+1);14

node.right = this(points after points[k], depth+1);15

return node;16

Algorithm 1: A construction of a 3d-tree

Because all points were known before tree construction, there was no need to have
methods for adding or removing points which would lead to an unbalanced binary tree.
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3.2 Plane fitting Spatial Models in Mobile Robotics

3.1.2 Range search

In two dimensional space, the range search returns all points inside the rectangle defined
by the bottom left and top right corner. In three dimensional space, points inside a cube
are returned. Range search is more efficient than Nearest Range Search because it avoids
square root computing.

Input: node := tested node, min := bottom left corner, max := top right corner,
depth := depth in the tree

Output: points := set of points in range

if node = NULL then1

return;2

end3

axis = depth mod 3;4

if (axis = 0 AND node.value.x < min.x)5

OR (axis = 1 AND node.value.y < min.y)6

OR (axis = 2 AND node.value.z < min.z) then7

this(node.right, min, max, depth+ 1);8

return;9

else if (axis = 0 AND node.value.x > max.x)10

OR (axis = 1 AND node.value.y > max.y)11

OR (axis = 2 AND node.value.z > max.z) then12

this(node.left, min, max, depth+ 1);13

return;14

else15

this(node.left, min, max, depth+ 1);16

this(node.right, min, max, depth+ 1);17

end18

if node.value <= max AND node.value >= min then19

points.add(node.value);20

end21

Algorithm 2: Range search

3.2 Plane fitting

Fitting a plane is a problem where the idea is to find a plane that is as close as possible
to a set of n 3-D points (p1, · · · , pn). The proximity is measured by a square sum of the
orthogonal distances between plane and points.

Let the position of the plane be represented by a point c, element of the plane and a
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normal vector n. The orthogonal distance between a point pi and the plane is then

di = (pi − c)T n.

Thus the plane can be found by solving

e = min
n∑

i=1

d2i .

To solve this problem the algorithm 3 can be used. For more information, see [8].

Input: points := set of points
Output: c := point in the plane, n := normal vector

foreach points do1

c = c+ point2

end3

c = c/points.size;4

for i = 0 to points.size do5

A(0, i) = points(i).x− c.x;6

A(1, i) = points(i).y − c.y;7

A(2, i) = points(i).z − c.z;8

end9

svd(U , S, V , A) ; // USV T = A, Singular Value Decomposition10

n = (U(1, 3), U(2, 3), U(3, 3));11

Algorithm 3: Plane fitting

For singular value decomposition author had chosen to use a third-party library called
Armadillo. Armadillo is an open-source C++ linear algebra library and can be distributed
under the terms of the GNU Lesser General Public License. For detailed information about
Armadillo library see [9].
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4 Filtering

As considered data set contains hundreds thousands of points, which represent only a
few planes, most points can be filtered out without losing too much information. Filtering
is used to reduce the number of points and to remove the outliers, which speeds up the
calculation and suppresses problems with measurement noise.

For filtering author designed a simple algorithm based on uniform sampling of the envi-
ronment. Firstly, the whole space is divided into equal cubes (δ × δ × δ). If there are not
enough points inside a cube, it is classified as an outlier and all points inside the cube are
removed. Otherwise all points in the cube are replaced with their median value.

To find the value of parameter δ, the largest dimension has to be found first. The largest
dimension is the longest distance between minimal and maximal value in dimensions x, y
or z. This distance is then divided by 100 and the result of this computation is δ. Division
by 100 is optional and can be changed to any integer value. This value represents the max-
imum number of points in one dimension after the filtering is done. Parameter δ is one of
the most important values, because it is used as a base distance unit in subsequent steps
of the method, which will be explained in following text.

(a) Not filtered
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(b) Filtered

Figure 6: Difference between filtered and non filtered points
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Input: points := set of points that will be filtered, maxPointsInDimension :=
maximum points in one dimension after filtering is done, minPointsInCube
:= maximum number of points in cube to classify points as outliers

Output: filteredPoints := filtered points

cornerL = find left corner ; // minimal value in x, y and z dimension1

cornerR = find right corner ; // maximal value in x, y and z dimension2

∆ = cornerR− cornerL;3

δ = (the largest dimension in ∆) / maxPointsInDimension ;4

for i = 0 to ∆.x/δ do5

for j = 0 to ∆.y/δ do6

for k = 0 to ∆.z/δ do7

Point p = new Point(i ∗ δ, j ∗ δ, k ∗ δ) + cornerL;8

cube = points.rangeSearch(p,p+ δ) ; // set of points in cube9

defined by the left(p) and the right(p+ δ) corner

if cube.size > minPointsInCube then10

filteredPoints.add( median(cube) );11

end12

end13

end14

end15

Algorithm 4: Filtering
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5 Finding planes

To find the walls, plane equations have to be found first. Algorithm for planes equation
finding is based on [1]. Author made changes to speed up the calculation and to improve
the results. The whole algorithm can be divided into two parts:

• placing small clusters, which place a few hundred clusters to the model,

• spreading clusters, which enlarge and unite the clusters.

A cluster is considered to be a set of points lying in the same plane. After small clusters
are placed, there can be more than one cluster per wall, but they can be united in the
second part of the algorithm. In the end each cluster should represent one wall.

5.1 Placing small clusters

As was mentioned above, a cluster contains only points from the same plane, so author
needs methods to decide whether points are from the same plane. For this there was de-
signed a simple algorithm which returns true or false with respect to distance of points
from the considered plane. If the distance between all points and a plane is smaller than
parameter minDistance, method returns true, otherwise it returns false.

Placing clusters is an iterative process in which points are selected by breadth-first
search (BFS) algorithm. In kd-trees, BFS returns points in an approximately uniform dis-
tribution. If all points in the range around the selected point are from the same plane,
the cluster is placed and this is repeated few hundred times depending on parameter
numberOfClusters. Should there be insufficient number of clusters after all points were
tested, the algorithm continues with the next stage. That is not possible if the points are
selected from the tree randomly because that can lead to endless cycle.

If there is not enough small clusters placed, some of the planes will not be found. This
situation is shown in figure 7a.
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5.2 Spreading clusters Spatial Models in Mobile Robotics

Input: numberOfClusters, minPointsInCluster := minimum points in cluster to
place it, range, minDistance

Output: clusters := set of clusters

foreach point selected by BFS algorithm from kd-tree do1

cluster = points.rangeSearch(point− range, point+ range);2

if cluster.size < minPointsInCluster then3

continue;4

end5

cluster.calculatePlane;6

if cluster.arePointsFromPlane(minDistance) then7

clusters.add(cluster);8

end9

end10

Algorithm 5: Place small clusters
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(a) 20 clusters
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(b) 200 clusters

Figure 7: Result of the place small clusters algorithm with a different number of clusters

5.2 Spreading clusters

Now there are a few hundred small clusters placed and they are ready to spread. It
means that they are enlarged and united. At the end of this process there should be only
one cluster per wall.

Clusters are spreading gradually by adding spreadingFactor to maximum distance from
center in each dimension. Clusters are competing for points which means that points from
a cluster can be stolen by a cluster containing more points. If spreadingFactor is too small,
clusters spread slowly or do not spread at all. Otherwise, if it is too large and there exists
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more than one wall per plane, they are united into one wall. Empirically, we found that
the optimal value is around 5δ.

The process of spreading is repeated until there are at least fifty times less changes than
in the most productive run.

(a) 1. step (b) 2. step

(c) 7. step (d) 14. step

Figure 8: Process of spreading, for better illustration points are shown as polygons
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Input: spreadingFactor, minPointsInCluster, minDistance, outliersRange,
outliersMinPoints

Output: clusters

while changes is larger than maxChanges/50 do1

foreach clusters do2

if cluster.size < minPointsInCluster then3

cluster.remove;4

end5

cluster.calculatePlane;6

// maxDistanceFromCenter is method, which returns point

containing maximum distance from center in each dimension

Point range = cluster.maxDistanceFromCenter + spreadingFactor;7

pointsSet = points.rangeSearch(center − range, center + range);8

foreach point in pointsSet do9

if point is in plane and is not inside larger cluster then10

cluster.add(point);11

end12

end13

cluster.calculatePlane;14

cluster.removePointsOutsidePlane(minDistance);15

// filter used to remove outliers inside the cluster

// if there are not enough points in range around point p, p is

removed

cluster.removeOutliers(outliersRange, outliersMinPoints);16

end17

end18

Algorithm 6: Spreading clusters
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6 Forming polygons

6.1 Points to planes fitting

Despite having points in appropriate clusters and having planes equations, points do
not lie exactly in the plane. It is caused by measurement noise. To find polygon borders it
is useful to fit these points to the plane.

Fitting is done by replacing points with their projection on the particular plane. A
projection is the closest point lying exactly in the plane.

6.2 Finding polygon borders

Since algorithm should recognize only simple objects, author will assume that these
objects are created only from convex polygons [10]. It is easier to find a convex polygon
than a general polygon. There exists a solution for general polygons explained in [11].

Before explaining the algorithm, the method isSeeing(), which was used for border find-
ing, has to be explained first. In 2-dimensional space method returns true or false depending
on the position of tested point with respect to tested line. Position of a point is determined
by the point to line distance. If distance is positive, point lies on the right side, otherwise
on the left (if distance is zero, point lies exactly on the line) .

In 3-dimensional space it is similar, but method returns position of a point with respect
to a plane. To construct this plane, the polygon edge and the plane normal vector are used.
This process returns a plane perpendicular to polygon plane and polygon edge will lie on
this plane. If tested point does not see any edge of the polygon, it means point is inside
the polygon.

For polygon border finding the incremental algorithm is used as described in [12]. The
incremental algorithm is an algorithm for computing the convex hull of a set of points. The
basic idea is to add points one at a time updating the hull as algorithm proceeds.
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6.2 Finding polygon borders Spatial Models in Mobile Robotics

Input: points
Output: polygon

// Start with simple polygon containing only two vertices

polygon.add(points[0]);1

polygon.add(points[1]);2

foreach point from points do3

if point is inside polygon then4

continue;5

end6

// Replace all visible edges with two new edges, which connect the

tested point to the remainder of the old hull

firstV isibleV ertex = find first visible vertex;7

lastV isibleV ertex = find last visible vertex;8

polygon.removeVerticesBetween(firstV isibleV ertex,lastV isibleV ertex);9

polygon.addVertexAfter(point, firstV isibleV ertex);10

end11

Algorithm 7: Polygon border finding
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7 Final approximation

7.1 Polygons vertices fitting

Due to the measurement noise and filtering algorithm the polygons vertices are not lying
in the planes intersection. To improve the result, it is appropriate to snap them to these
intersections. Firstly, snapping to the corner is tested and if there is no corner in specified
distance from the vertex, the vertex is snapped to the nearest line. Snapping is done only
if vertex is not too far from the planes intersection.

To decide whether planes intersection or a corner exists a simple method is used. There
has to be at least one point in the range search around the corner (or around the vertex
to line intersection projection) in all clusters which were used to compute the corner (or
line intersection).
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Figure 9: Result of vertices fitting process
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Input: polygons := set of all polygons, maxDistance := maximum distance to fit
the vertex

Output: polygons := fitted polygons

foreach polygon from polygons do1

foreach vertex from polygon.vertices do2

closerCorner = find the closer corner;3

if closerCorner.distanceTo(vertex) < maxDistance then4

vertex = closerCorner;5

continue;6

end7

closerInter = find the closest intersection to vertex;8

if closerInter.distanceTo(vertex) < maxDistance then9

// vertex to intersection projection

vertex = closerInter.projection(vertex);10

end11

end12

end13

Algorithm 8: Polygon vertices fitting

7.2 Vertices reduction

After polygons vertices fitting, there can exist more than two points per edge. To reduce
this collinear points author used an algorithm 9.

Input: maxDistance := maximum distance from line to classify points as collinear
Output: polygons := polygons with reduced vertices

foreach polygon from polygons do1

foreach vertex from polygon.vertices do2

Line l = construct line from vertex before and after vertex;3

if l.distanceTo(vertex) < maxDistance then4

vertex.remove;5

end6

end7

end8

Algorithm 9: Vertices reduction
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7.3 Triangulation

A lot of motion planning or simulation methods accept only a set of triangles in the
input. The main reason is that only three vertices are needed to construct the plane and
due to the rounding more than three points usually do not lie exactly on the plane.

In this case, triangulation is a process which divides polygons into triangles. Author
used a Delaunay triangulation, which maximizes the minimum angle of all the angles of
the triangles so they tend to avoid skinny triangles. The main condition is that a circle
circumscribing any Delaunay triangle does not contain any other input point in its inte-
rior [13].

In algorithm 10 was used a method to decide if a triangle meets Delaunay condition.
Firstly, method calculates circumscribing circle center and radius. For any point with dis-
tance to center smaller than radius, method returns false. Otherwise, it returns true.

(a) Does not satisfy
Delaunay condition

(b) Satisfies Delau-
nay condition

Figure 10: Triangulation example

−3

−2.5

−2

−1.5

−1

−0.5

0.6
0.8

1
1.2

1.4
1.6

0
0.05

0.1

Figure 11: Result of triangulation process
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Input: vertices := polygon vertices ordered counter clockwise
Output: triangles := set of triangles

while vertices.size > 2 do1

foreach vertex v in vertices do2

Triangle t = construct triangle from vertices v−1, v and v+1;3

// index -1 means vertex before v

if t meets delaunay condition then4

triangles.pushBack(t);5

remove v from vertices;6

break;7

end8

end9

end10

Algorithm 10: Triangulation
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8 Experimental results

In this section will be presented the results of algorithm described in sections above. To
test the algorithm author used datasets collected by mobile robots in Gerstner laboratory
on Czech Technical University in Prague. These datasets are displayed on figure 6a, fig-
ure 12 and they are also provided on enclosed CD in folder data (these datasets will be
referred to as data1 and data2).

Figure 12: Dataset data2

Importance of the filtering algorithm is shown in table 1. The number of points in each
dataset is reduced to approximately 5000 points after the filtering.

Dataset Before filtering After filtering
data1 173661 4678
data2 523664 4153

Table 1: Number of points in datasets

Dataset Number of placed clusters Number of founded walls
data1 200 9
data2 200 30

Table 2: Number of clusters

One of the most important values are numbers of found walls and triangles. In table 2
and 3 this information is displayed. These values can be used as approximate information
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Dataset Number of triangles
data1 20
data2 102

Table 3: Number of triangles

about time consumption in motion planning algorithm.

In figure 13 and table 4 can be seen running times of all parts of algorithm. All running
times were measured on notebook with 3.9 GB RAM and processor Intel Core 2 Duo CPU
P8400 @ 2.26GHz × 2. The complete computation time is not only sum of partial algo-
rithms because of input/output operations.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Dataset 1

Dataset 2

time [s]

 

 
Filtering

Spreading clusters

Polygons vertices fitting

Other

I/O operations

Figure 13: Algorithm time-consumption

Algorithm name data1 data2
Filtering 140 ms 410 ms
Placing small clusters 10 ms 20 ms
Spreading clusters 3 500 ms 530 ms
Fitting to planes 0 ms 0 ms
Finding polygons border 0 ms 10 ms
Polygons vertices fitting 40 ms 380 ms
Vertices reduction 0 ms 0 ms
Triangulation 0 ms 0 ms
Complete 4 580 ms 4 260 ms

Table 4: Algorithm time-consumption

The final result for dataset data1 is shown in figure 9 (before triangulation) and in
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figure 11 (after triangulation). The result for data2 is shown in figure 14a and 14b.

−600
−400

−200
0

200
400

600
−200

0

200

400

600

100

200

300

400

(a) Before triangulation (b) After triangulation

Figure 14: Results for dataset data2

The result for dataset data1 was also tested as environment model in simulator of
Large-Scale Integrated Project Symbrion. In [14] this geometrical map was compared to
another two reconstructed models. The simulation on this model was significantly faster
than simulation with other 3D models. Performance of the simulation is displayed in table 5.
Complete results as well as simulation description and description of methods used for
reconstruction is shown in [14].

Method used for reconstruction mean [ms] dev [ms]
GG-based 333 125

GSRM 115 43
Method described in this work 2.5 0.5

Table 5: Performance of a simulation
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9 Implementation

In this section author explains the basic concept of algorithm implementation. The whole
implementation can be divided into two parts computation tools and visualization tools

9.1 Computation tools

Author programmed computation tools in C++ language and followed concept of the
object-oriented programming. The main intention was to create easy to use class, which can
be used in many different projects. The main class is called Reconstruction and contains all
the algorithms described in the sections above, as well as methods for loading and saving
data from and into the file.
Example of the Reconstruction class use:

Reconstruction recon;

recon.loadPointsFromFile(’with_floor3.txt’);

float delta = recon.filterPoints(100, 10);

recon.savePointsToFile(’filtered.txt’);

Program was compiled on Linux operating system but it can also be compiled on Windows
OS. For compiling it is important to have Armadillo library installed and to add -larmadillo
as parameter for compiler. It is also strongly recommended to have optimization enabled
when compiling programs, because Armadillo is a template library.

Figure 15: Class Hierarchy

9.2 Visualization tools

For visualization author has decided to use Matlab environment. The programmed
scripts can be used to visualize data saved by the computation tools.
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9.2.1 Display points, polygons, triangles

The only parameter for all the functions described in this section is the name of the file
where data are saved.

To visualize points, function displayPoints can be used. It displays non clustered points
as small black points and clustered points as bigger coloured points. The points from the
same cluster are coloured equally. Triangles and polygons are also distinguished by colours.

9.2.2 Display process of computation

The script displayProcess can be used to visualize whole process of computation. The
process of placing small clusters is shown up front, and then follow the processes of spread-
ing and final approximation. There are two possibilities on how to visualize the process of
spreading:

• in a form of point cloud,

• as polygons.

The script is set to display polygons by default but it can be changed by setting variable
showPolygons to false. There are more parameters that can change process of visualization
like showPlacing, pauseSpreading, etc. Complete list of parameters with their default values
is on the top of the script.
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10 Conclusion

The main goal of this bachelor thesis was to create an algorithm for detecting the walls
in a point cloud measured by the mobile robot. The purpose of this algorithm was to
generate a simplified model of an environment around the mobile robot for faster motion
planning, faster simulation and for the memory requirements reduction. Many methods
were designed for 3D object reconstruction and author explained some of them in section 2.

Because it is not efficient to operate on unfiltered data, simple filtering algorithm which
provides uniformly distributed data and significantly reduces amount of points in the data
sets was implemented. The filtering algorithm is simple and filtering process can fail if
there are outliers far away from other points in point cloud. Due to the lack of time, the al-
gorithm for outlier removal was not implemented. This algorithm was described in section 4.

Filtered points were clustered. The main condition for the clustering algorithm is that
all the points in the cluster should lie on the same wall. The clustering algorithm is divided
into two parts Placing small clusters and Spreading clusters. Both parts were explained in
the section 5.

The next step was to find the borders of the walls. Author used the surface based algo-
rithm described in 6. Now, the walls are represented by the mathematical equations but
due to the measurement noise, border of the walls do not lie exactly on the planes inter-
sections. The section 7 contains description of the simple approximation algorithm which
fits border to the closest corner or to the closest planes intersection.

In computer graphics it is usual to represent object by the set of triangles so author
programmed an algorithm which transforms the mathematical equations of the walls into
the set of triangles.

The algorithm was tested on two datasets and the results are shown in section 8. There
is also time-consumption analysis for all sub-algorithms for the both datasets. For visual-
ization were programed a few scripts for the Matlab, which are explained in section 9. Also
a few words about the implementations can be found in this section.

The result of the algorithm was used for the purpose of the Large-Scale Integrated
Project Symbrion to speed up simulation of robot swarm behaviour. The algorithm was
also published at Mathmod 2012 - 7th Vienna International Conference on Mathematical
Modelling [14] and IEEE ICRA workshop on Reconfigurable Modular Robotics [15].
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Appendix A

Contents of the enclosed CD

bachelor thesis.pdf The PDF version of this document.
data/ The folder with the used datasets.

computation/ The source code used for computation.
visualization/ The scripts used for visualization.

results/ The folder with computed results.
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