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Relative visual localization in swarms of UAVs

Abstract

The aim of this thesis is to develop and implement a system provid-

ing relative localization in swarms of unmanned aerial vehicles based on

visual information provided by an on-board camera system. The basic

methods for localization are discussed and usage of the Kalman filter

in data fusion is shown. A thesis is developed in collaboration with the

COLOS project, which is focused on development of a complex system

for controlling the swarm of UAVs. A probability model of the patter

recognition system in the camera module is also prepared. Developed

algorithm for the data fusion in swarms of helicopters is implemented

and tested on the camera module.

Abstrakt

Ćılem této práce bylo navrhnout a implementovat systém pro rela-

tivńı lokalizaci bezpilotńıch helikoptér roje na základě vizuálńı informace

poskytnuté palubńım kamerovým systémem. Jsou probrány základńı

metody vzájemné lokalizace a použit́ı Kalmanova filtru pro f̊uzi dat.

Práce je součást́ı projektu COLOS, jehož ćılem je navrhnout komplexńı

systém pro ř́ızeńı robotického roje. V rámci práce byl dále zpracován

pravděpodobnostńı model kvality detekce blobu v pracovńım prostoru

kamerového systému. Vyvinutý algoritmus pro f̊uzi dat z v́ıce helikoptér

byl implementován a poté i otestován pro běh ve spolupráci s kamerovým

modulem.
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1 Introduction

The localization is one of the crucial elements of autonomous robotic systems. To be able

to localize itself, each robot requires a localization measurement, which provides the feed-

back for the robot actions and response to the situation in the surrounding environment.

But all this gathered information include uncertainty, which complicates determining the

position.

Using the larger number of robots that are able to cooperate (i.e., the swarm of robots),

many measurements with different uncertainties can be done in one time. The goal is to

optimally combine the measurements made by surrounding robots in swarm. This allows

to reduce resulting uncertainty and obtain better estimate of measured data. One of the

possible and frequently used techniques, which combines the information from different

sources is called Kalman filter.

This thesis is part of the COLOS project, which aims at develop the control system for

swarms of autonomous helicopters, which will allow to localize and control members in the

swarm. The thesis is focused specifically on the topic of cooperative localization based on

the fusion of position data acquired from the vision system developed for swarm members.

In this thesis, we will first discuss a basic localization methods, derive the equations

for the Kalman filter and show the algorithm performance. We also describe the hardware

platform on which results of this thesis were implemented and tested.

The core of thesis is the development of the data fusion algorithm. The main principle

of the algorithm is that each swarm member uses the vision system to relatively localize

surrounding members. The information on their position is then transmitted to the other

members. So, each member receiving localization estimates of his own. These estimates

are then fused and resulting position is used in the internal estimator. For more detailed

description and algorithm derivation, see Section 6.

In addition, the function describing the probability of localization in a certain place of

camera workspace is also implemented. Using this function during the controlling of swarm

movements allows to prevent the swarm members from leaving the area in which they can

be detected by other swarm members.
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2 Localization methods

In this section we will first describe some basic localization techniques in robotics. The

second part is devoted to the distribute localization methods.

2.1 Basic localization

The basic methods for localization can be divided into two groups, the method based

on relative and absolute position measurements.

2.1.1 Relative localization

The relative position localization, sometimes called a dead reckoning, is based on knowl-

edge of previous position which, is updated according to the speed and direction of move-

ment and time passed from the last known position. This method has been used for a long

time, originally for estimating the position on boat or plane [5, 1]. Because the estimates

are based on the previous positions the error in the estimate increases in time.

Odometry Odometry is one of the most often used methods for the positioning. It

is based on the integration of information provided by a moving sensors. The common

example is the usage of wheel encoders to count the rotation of the robot wheels [2].

By integration of this information, it is possible to estimate position of moving robot.

However, the error quickly increases with the travelled distance and measurement becomes

very inaccurate. With all these drawbacks, odometry is still the easiest method for the

position estimation.

Inertial navigation The inertial navigation uses motion sensors (accelerometers) and

the rotation sensors (gyroscopes), to compute position, orientation and velocity of moving

object [17]. The principle is similar to the odometry, the information from sensors are

integrated to obtain position estimate. This also leads to increasing error with the travelled

distance.

2/45



2. LOCALIZATION METHODS Relative visual localization in swarms of UAVs

2.1.2 Absolute localization

Unlike the relative localization the absolute localization method is independent on the

previous estimate, it is derived only from the current measurement. This indicates the

advantage of not increasing error over the motion. There are two main methods for absolute

localization, one using the landmarks and the other using maps.

Landmark This method is based on the usage of landmarks which are detected by a

robot. There are two types of landmarks, the active and passive ones.

Active landmarks actively send position information, from which robot determine its posi-

tion. To determine the position from the information provided by landmarks, the triangu-

lation or the trilateration is often used [23]. The triangulation is based on the measurement

of the angles to the landmarks and the trilateration on measurement of distances to the

landmarks. An example of active landmark system is the GPS which uses the trilateration

to determine position on the Earth.

The passive landmarks do not transmit any signal, the robot have to actively search and

detect them. The passive landmarks can be artificial or natural. Artificial landmarks are the

landmarks designed to be detected by robots. For example, they may be various coloured

geometric figures [6]. The natural landmarks are the landmarks which haven’t been de-

signed to the usage with robots, they have already been part of robots’ environment. The

examples of natural landmarks can be roads, trees or windows [3].

Map A map based positioning uses the model matching between information from a

sensor and a priori known geometric or topological map. This approach uses the geometric

features to compute localization of the robot [23].

2.2 Sensor fusion

The Sensor fusion is based on the algorithms solving the position problem by combining

the estimates from the position measurements based on the relatives and absolute local-

ization methods. While combing the measurements from a more sensors, the problem of

estimation of the resulting measurement occurs. The importance of the sensor fusion is the

ability to obtain a more accurate estimate and reduce the uncertainty. If the information

3/45
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acquired from each sensors differs, the fusion can provide a complex information about a

situation.

A tool for the sensor fusion presented in this thesis is called Kalman filter. Introduction

to the filter and derivation of the equations and the algorithm is shown in the Section 3. The

basic usage for the position of the tracked object is proposed in [27]. Also the framework for

the robot localization using the Bayesian estimation and the Kalman filtering is presented

in [20] and the approach for the collective localization in [21] and [25].

The usage of the Kalman filter as the tool for the fusion of the measurements from a more

sensors is often presented. See [12] where the Extended Kalman filter is used to estimate

the position of the robot by fusing a data from the ultrasonic satellite and the inertial

navigation system. The similar approach is shown in [10] where the odometric and sonar

sensor measurements are fused by the Extended Kalman filter. For the other example of

the data fusion from the sensors providing the absolute and relative measurements, see [14].

Considering the swarm of cooperating robots, the data fusion algorithms are gaining

the importance. A distributed localization in a group of robots is experimentally studied

by [15]. The comparison of the Kalman estimation and the Triangulation techniques for

the target localization is evaluated in the [28].

A several papers present the applied algorithms for the cooperative localization using

the data fusion. At first, see [22] where the vision based system for the cooperative object

detection, localization and tracking using the Wireless Sensor Networks is presented.

In [11] the multi robot visual localization is presented. The paper introduces the parallel

fusion of the measurements from more robots. This principle is used as a part of the

developed algorithm in this thesis.

The last presented example of the cooperative localization is the [19].The localization

methods in a group of robots equipped with the range finders and targets are considered.
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3 Kalman Filter

The Kalman filter, presented by Rudolf E. Kálmán in 1960, is considered to be one of

the greatest achievements in the estimation theory in the twentieth century. With wide

range of usage, from the trajectory estimator for the Apolo program, automated missile

guidance system to the receiver of the GNSS [8], the Kalman filter is now the basic tool

for a system estimation.

The Kalman filter is a recursive filter estimating the state of a dynamics system from

a series of measurements. Under certain assumptions it is also optimal with the respect to

virtually any criterion that makes sense [16].

In this section we will derive the equations and describe the algorithm for the Kalman

Filter.

3.1 Equations

The Kalman filter addresses the problem of estimation the state x ∈ Rn of the discrete-

time system [26, 7]. The system model describes how the state of the system evolves over

time. The state equation is

xk = Axk−1 + wk−1, (1)

where A is an n × n matrix and wk−1 is the process noise reflecting interfering influences

in the system. The measurement equation

zk = Hxk + vk (2)

describes how the measurements z ∈ Rm are related to the states. The symbol H represents

m× n matrix and z ∈ Rn is the noise in the measurement.

The process and measurement noises are assumed to be zero mean Gaussian white noises

independent upon each other.

p(w) ∼ N(0, Q) (3)

p(v) ∼ N(0, R) (4)

We will define x̂−k ∈ Rn to be a priory state estimate in the step k known from the step
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prior to the step k and x̂k ∈ Rn to be a posteriori state estimate in the step k known from

the measurement zk [18]. A priory and a posteriori estimate errors are

e−k = xk − x̂−k , and (5)

ek = xk − x̂k. (6)

The covariance of the a priori estimate error is then

P−k = E[e−k e
−T
k ], (7)

and the covariance of the a posteriori estimate error is

Pk = E[eke
T
k ]. (8)

In deriving the equations for the Kalman filter we begin with finding the equation that

computes the a posteriori estimate of x̂k as linear combination of a priori estimate x̂−k

and a weighted difference between the measurement zk and prediction of the measurement

Hx̂−k [26] as

x̂k = x̂−k +K(zk −Hx̂−k ). (9)

The n×m matrix K is called Kalman gain and minimises the a posteriori error covari-

ance equation 6. The Kalman gain is then

Kk = P−k H
T (HP−k H

T +R)−1. (10)

Let us consider what happens, if the noise in the measurement is close to zero.

lim
Rk→0

Kk = H−1 (11)

The covariance of the measured noise is close to zero and the Kalman filter weights the

residual more heavily which means that actual measurement zk is trusted more and the

predicted measurement Hx̂−k is trusted less.

6/45
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Another situation occurs if the a priori estimate error covariance P−k is close to zero.

lim
P−
k →0

Kk = 0 (12)

The Kalman filter weights the residual less heavily which means that zk is trusted less

and the predicted measurement Hx̂−k is trusted more.

3.2 Algorithm

We will shortly describe the algorithm of Kalman filter. Equations for the Kalman filter

can be divided into two groups, prediction equations and correction equations. Prediction

equations project the current state and error covariance estimate to obtain the a priori

estimate for the next time step. The correction equations incorporates a new measurement

to the a priori estimate to obtain a new a posteriori estimate [26].

Time Update
(”Predict”)

Measurement Update
(”Correct”)

Figure 1: Kalman filtre cycle (source [26]).

During the prediction (also called the time update), the Kalman filter compute a priori

state estimate x̂−k based on the a posteriori estimate x̂k−1 and also update uncertainty P−k .

x̂−k = Ax̂k−1 (13)

P−k = APk−1A
T +Q (14)

The correction step (also called measurement update) is used only when there is a mea-

surement. The equations correct the most recent beliefs by incorporating the information

7/45
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from the direct measurements.

x̂k = x̂−k +Kk(zk −Hx̂−k ) (15)

Pk = (I −KkH)P−k , (16)

where

Kk = P−k H
T (HP−k H

T +R)−1. (17)

The whole algorithm is repeated after each prediction and correction step with the

previous a posteriori estimates used to predict the new a priori estimates.

8/45



4. HARDWARE PLATFORM Relative visual localization in swarms of UAVs

4 Hardware platform

In this section we will introduce the platform on which the algorithms and software in

this thesis are developed and tested.

For the actual swarm of the helicopters the MK L4-ME quadricopters are planned to be

used. This helicopters will be fitted with the developed camera module running all software

necessary for the localization and control among the swarm members.

4.1 Camera module

The camera module (see Figure 2), developed for the COLOS project in the Gerstner

Laboratory for Intelligent Decision Making and Control at CTU, is the main tool used for

developing and testing software in this thesis. The module is designated to be fitted on the

helicopters in the swarm and provides capability for all necessary computations related to

the swarm movement.

Figure 2: Camera module with battery.

4.1.1 Hardware

The hardware of the module consists of four electronic boards (see Figure 3). The main

board is the Gumstix Overo board equipped with the OMAP 3503 processor and 802.11b/g

wireless communication. The other boards are Caspa camera board fitted with the Aptina

MT9V032 CMOS sensor, voltage regulator board and minicom board which provides power

and connectivity to the main board [9].

9/45
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Figure 3: Connected boards (source [6]).

4.1.2 Software

The operating system used in the camera module is a Linux distribution tweaked for

use on the Gumstix Overo board.

The administration of the module can be done by using a standard serial connection

or over the WiFi connection. The module is set to be automatically connected to the

open (without encryption) adhoc network with SSID COLOS and static IP addressing.

IP address of the module is in range 10.10.40.17x, where x varies for each module. The

connection to the module and remote controlling is possible over ssh with user root and no

password [6].

4.1.3 Tracker Server

The main application running in the camera module is the tracker server. This applica-

tion acts as a daemon providing information about the tracked objects. The tracker server

captures image which is processed by blob finder using the camera. Determined coordi-

nates of the tracked object are transmitted to the connected clients over UDP protocol.

The tracker server is also able to use a wide range of options (e.q. camera resolution, blob

size, frame-rate) specified in the configuration file.

10/45
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4.1.4 Client applications

The camera module software also offers applications for the remote access to the camera.

The first application is the tracker client. It’s a simple client side application for receiving

the position of the tracked objects which are sent by the tracker server over UDP protocol.

The second application is the tcam, which is a more sophisticated application offering

the interactive mode, where a window with the captured image is shown. The application

itself also contains two blob finders (colour based and ring based). The main purpose of

the application is direct testing of the blob finder algorithm on the images captured in

the camera. Other useful features are the adjustment of the camera control setting and a

creation of the setting file.

4.1.5 Patter detection

One of the key features of the camera module is the pattern detection. The blob finder

algorithm is implemented both in the tracker server and tcam application (ring based finder

is used by default).

The detection of the ring pattern (see Figure 4) is based on the image segmentation and

finding two discs forming a black and white ring. The computed size of the blob is then

compared to the expected size of used pattern (size of the ring).

di

d0

d

Figure 4: Pattern for the circle detector (source [6]).
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5 Model of reliability

In this section a model of reliability of the relative localization using the image pattern

(blob) recognition in the camera module is described. The main part of the model devel-

opment is to create a function written in Matlab or C which can predict probability of the

pattern recognition on specific coordinates related to the camera module. This will allow

to control the swarm movement with the aim to keep swarm members in the sight of the

camera. The development of the reliability model consists of three main parts.

• Calibration of the camera system to compensate properties of the optical system (see

Section 5.1).

• Measuring the recognition rate in whole space around the camera (see Section 5.2).

• Evaluation of this measured data and creating function providing probability distri-

bution similar to the behaviour established by measuring (see Section 5.3).

5.1 Camera calibration

The camera calibration have been done using the Camera calibration toolbox for mat-

lab [4]. This software allows easy calibration from several images containing the calibration

rig - the checker-board pattern (see Figure 5).

Figure 5: Image containing the calibration rig.
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The camera module includes a client application tcam, which is suitable for a manual

access to the camera server, adjusting the camera setting (contrast and brightness) and

obtaining single images and processing them. See application interface in Figure 6. This

software was used to obtain images required for the camera calibration.

Figure 6: tcam application interface with detected blob.

For the calibration, using the tcam application, contrast and brightness have been ad-

justed on the values appropriate to the conditions during the capturing. Then several

images with variously tilted calibration rig have been captured. These images have been

loaded into the calibration toolbox. The image corners were automatically extracted from

the known number and size of printed squares (see Figure 7).

Figure 7: Calibration rig with extracted image corners.

13/45



5. MODEL OF RELIABILITY Relative visual localization in swarms of UAVs

After proceeding all images calibration parameters have been computed and stored in

the file Calib Results.m, which can be directly used by the tracker server in the camera

module.

5.2 Measuring the camera workspace

The next step is the measurement of the camera workspace. The measurement has been

done for circle patterns of various diameters (14, 7, 6 and 3.5 cm) with camera resolution

480x360 pixels which provides a good compromise between the achieved frame-rate and

maximal measured distance.

The camera workspace has been measured using the tracker client running on PC. The

information about the tracked object has been sent by tracker server running in the camera

module.

Figure 8: Rate of recognition in the camera workspace for 14 cm pattern.

Each pattern was placed in various places to fully determine the camera workspace

14/45
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and its properties. Resulting measured data were manually divided according to the exact

measurement location. We created number of points in space by that to which a measured

data are assigned. For each point, there is then a computed probability of pattern recog-

nition in that location. Orientation of the coordinate system for these points depends on

the camera placement, in this thesis we consider x axis to be horizontal direction, y axis

vertical direction and z axis a distance from the camera.

These points create a map of probability of the pattern recognition in the camera

workspace. See Figures 8 and 9 where the rate of the successful pattern recognition in

each point is displayed by colour.

Figure 9: Rate of recognition in the camera workspace for 7 cm pattern.

To directly compare a reliability of the blob recognition according to the pattern size

and distance, see Figure 10 where a reliability of recognition for each pattern placed in

various distances is shown.

We can see that distance on which the pattern is correctly recognised increases with the

15/45



5. MODEL OF RELIABILITY Relative visual localization in swarms of UAVs

pattern size. With a smaller distances (ca. 0.5 m - 1 m), every pattern is recognised with

the reliability about 95%. With the increasing distance, a recognition rate for the smaller

patterns is decreasing.

Taking the size of the pattern and maximal recognised distance into account, we can

assume that best compromise are the patterns with 6 cm and 7 cm diameters which provide

a good reliability of the recognition on a greater distances, while keeping the pattern

relatively small.
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Figure 10: Rate of recognition for different blob sizes by distance on Z-axis.

5.3 Development of the probability model

The last step is a design of the probability model of the camera vision system.

The blob position is determined by a three basic parameters. A two angles (horizontal

and vertical position of the blob in the camera image), and distance of the blob from camera

(determined by the expected blob size). Due to its physical nature the correct recognition

of the image pattern is limited only by these three parameters. For example, the reliability

of the recognition drops for the very long or short distances (this is caused mainly by the

blob size), or if the blob is on the edge of the camera viewing angle. The principle of the

algorithm is based on this assumption.

16/45



5. MODEL OF RELIABILITY Relative visual localization in swarms of UAVs

At first, from the given Cartesian coordinates of the tracked pattern, the horizontal

and vertical angles are computed (φ and α respectively). According to the blob size, the

parameters of the probability distributions for both angles and distance of the blob from

the camera are computed independently. By analysis of the measured camera workspace,

the probability distributions have been chosen as follows. The middle part is constant

with the measured average reliability (see Figure 12d), the marginal part with a zero

probability of the recognition and the transition between these two parts estimated by the

Hann window (see Figure 11). By multiplication of these parameters, the resulting estimate

of the probability of recognition is then obtained.

0 10 20 30 40 50 60 70 80
0

0.5

1

Figure 11: Probability distribution.

In essence, for the chosen probability distribution a five parameters have to be found.

At first the average reliability of the detection in the central part of the camera workspace

(basically the recognition rate in the most suitable part of the camera workspace). For the

result of the experimental measurement, see Figure 12d. In the algorithm, the observed val-

ues were linearly approximated. The maximal detection rate corresponds with the pattern

with a 6 cm diameter. For the smaller or bigger patterns, the recognition rate decreases.

The next four parameters represent the threshold values which divide the probability

function into five parts (a maximal recognition rate in the middle, zero recognition rate

and the Hann window on each side). Due to symmetry, for the φ and α angles, only two

parameters are considered. These parameters in fact mean a position of the Hann window

in the probability function. No dependence of these parameters on the blob size was found

(see Figures 12a and 12b). So, for the purpose of the algorithm, the φ and α angles are

considered to be constant.

The probability function for the distance on the Z-axis is described by all four param-

eter. These parameters divide the probability function on part with the zero probability

of recognition (i.e. to close or to far from the camera), a part with maximal probability of
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recognition (middle distances) and the transition between them. Parameters are propor-

tional to the blob size (see Figure 12c) and therefore approximated by a linear function.
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(a) A threshold values for the α angle according
to the size of the blob.
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(b) A threshold values for the φ angle according
to the size of the blob.

4 6 8 10 12 14

0

2

4

Blob diameter [cm]

T
h
re

sh
ol

d
[m

]

Threshold 1
Threshold 2
Threshold 3
Threshold 4

(c) A threshold values for the distance on Z-axis
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(d) Average pattern detection reliability accord-
ing to the size of the blob.

Figure 12: Measurements for determination of probability distribution parameters.

All presented parameters have been experimentally found for the the camera resolution

480x360 pixels and approximated for a various diameters of patterns. The created matlab

function also allows the usage of more cooperating cameras (the function returns probability

from a camera with the best detection rate).

For the results of the developed algorithm , see Figure 13. This figure shows the predicted

rate of the recognition in the Y-Z plane (X-axis is considered to be zero) and the 7 cm
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pattern. Figure 14 shows the recognition rate in a whole camera workspace (points with a

zero recognition rate are omitted).

Figure 13: Predicted rate of recognition in the camera workspace for 7 cm pattern.

Figure 14: Predicted rate of recognition in the camera workspace for 14 cm pattern.

19/45



6. RELATIVE LOCALIZATION Relative visual localization in swarms of UAVs

6 Relative localization

The second goal of this thesis was to develop and test the algorithm for the fusion of

visual sensor data to obtain better position estimate of swarm members.

The goal was to compute a position of a helicopter from measurements made by sur-

rounding helicopters fitted with video cameras. Each observing helicopter uses image data

and its own known global position to compute the position of the observed helicopter in

global coordinates. These computed positions are then combined to obtain more accurate

position estimate.

The main idea of the algorithm is to provide a distributed method for the localization

among a swarm members. Each helicopter observes surrounding members and computes

their position using the vision system. This position estimates are then broadcast in the

swarm. Each helicopter receives the position estimates made by the surrounding members.

These position estimates are then fused using the algorithm described in [11]. The resulting

position estimate is then used to update the internal Kalman filter [27], which provides the

position and speed estimates for the helicopter.

In this section we will derive the algorithm used for the data fusion then we will describe

the implementation and evaluate algorithm on generated datasets and experimentally mea-

sured data.

6.1 Algorithm

At first we will derive a theoretical solution of our data fusion algorithm. There are three

main parts of the algorithm. The first is the position computing where the global position

of the observed helicopter is computed from known the position of the observing helicopter

and measured data from the vision system. The second part is the parallel fusion where

measurements from more helicopters are merged. The last part is the serial fusion where

we use Kalman filter to track the observed helicopter.

6.1.1 Position computing

The first step is computing the global position of the observed helicopter. Let P be a

known position of the observing helicopter and M the position of the observed helicopter.
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In this case we assume that Roll and Pitch angles are zero, so we consider only the Yaw

angle denoted θ . From the image processing we obtain the distance between the observed

and the observing helicopter d and two angles ϕ and α (see Figure 15).

.
x

y

z

θ

φ
α

d

P[x,y,z]

M[x,y,z]

Figure 15: Coordinate system of observing helicopter P and camera measurements.

For the global position M of observed helicopter we can write:

xM = xP + d · cosα · cos (ϕ+ θ) (18)

yM = yP + d · cosα · sin (ϕ+ θ) (19)

zM = zP + d · sinα. (20)

The next step is to derive the covariance matrix for our transformed measurement.

We assume that known coordinates of the observing helicopter and measurements from

the camera are independent so the measurement covariance matrix is
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C =



σ2
xP

0 0 0 0 0 0

0 σ2
yP

0 0 0 0 0

0 0 σ2
zP

0 0 0 0

0 0 0 σ2
θ 0 0 0

0 0 0 0 σ2
d 0 0

0 0 0 0 0 σ2
ϕ 0

0 0 0 0 0 0 σ2
α


. (21)

According to [24], we can obtain the covariance matrix for transformed coordinates as

Ct = J · C · JT , (22)

where J is the Jacobian matrix of M, which can be expressed as

J =


1 0 0 −d · cosα · sin (ϕ+ θ) cosα · cos (ϕ+ θ) −d · cosα · sin (ϕ+ θ) −d · sinα · cos (ϕ+ θ)

0 1 0 d · cosα · cos (ϕ+ θ) cosα · sin (ϕ+ θ) d · cosα · cos (ϕ+ θ) −d · sinα · sin (ϕ+ θ)

0 0 1 0 sinα 0 −d · cosα

. (23)

6.1.2 Parallel fusion

The next step in our algorithm is parallel fusion for optimal combinations of measure-

ments from more observing helicopters. Let assume that one helicopter with the unknown

position is observed by two helicopters. Each of the observing helicopters compute position

of the unknown one. Let us denote these computed positions as M1 respectively M2 with

the covariance matrices Ct1 and Ct2.

For the fusion, as described in [11] we use weighted least square criterion to get the

optimal position M,

(M1 −M)T C−1t1 (M1 −M) + (M2 −M)T C−1t2 (M2 −M) . (24)

After derivation of the equation 24 with respect to M we get the necessary condition of

a local optimal solution
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(M1 −M)T C−1t1 + (M2 −M)T C−1t2 = 0. (25)

Then we can get the local optimal solution M,

M=M1 +K (M2 −M1) , (26)

where K can be obtained as

K =
(
C−1t1 + C−1t2

)−1
C−1t2 = Ct1 (Ct1 + Ct2)

−1 . (27)

Similar approach is then used to obtain updated covariance matrix, so we get

C = Ct1 −K · Ct1 . (28)

By this approach we have combined more measurements to get the optimal one.

6.1.3 Serial fusion

The next step is to use Kalman filter to track position of the observed helicopter. In our

case we don’t use any input so the matrix B is zero.

Basic equations of the Kalman filter are then:

Prediction:

x−k = Ax+k−1 (29)

P−k = AP+
k−1A

T +Qk−1 (30)

Correction:

x+k = x−k +Kk

(
zk −Hx−k

)
(31)

P+
k = (I −KkH)P−k (32)
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Kk = P−k H
T
(
HP−k H

T +Rk

)−1
(33)

Our state vector consists of position on each axis of the coordinate system (x, y and

z), and velocity (vx , vy and vz ). First three vectors are directly measured, the speeds are

hidden states. The state vector xk is

xk =



xM

vx

yM

vy

zM

vz


. (34)

We also assume that the speeds along each axes are constant. We can deduce the rest

of the system matrices from this

A =



1 dt 0 0 0 0

0 1 0 0 0 0

0 0 1 dt 0 0

0 0 0 1 0 0

0 0 0 0 1 dt

0 0 0 0 0 1


, (35)

H =


1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

 . (36)

Matrix Rk is previously derived matrix C and matrix Q represents the noise in the

system which is identified experimentally. The variance of the random noise added to the

generated data is used for the generated dataset. In case of the measured dataset desired

variances were estimated from the measured data and then manually adjusted to achieve

the best performance.
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6.2 Implementation

The algorithm described above, was implemented by using Matlab. This allowed quick

testing, debugging and evaluating of the algorithm on testing datasets.

For the potential use on the camera module, which can be fitted on the helicopter, the

algorithm was rewritten in C using Small Matrix Toolbox for C programmers [13]. This

toolbox allows to create matrix object in C programs and use basic matrix operation above

these objects (matrix multiply, determinant, computing of inverse matrix, etc.).

Evaluation of the algorithm on the camera modules have been done using the pair of

applications developed and supplied with the camera module. For the communication the

server-client architecture was used. The tracked object coordinates were obtained from the

camera image by blob finder and then sent over UDP by the tracker server running in the

camera module. Tracker clients running on the independent PC received object coordinates

which have been then passed to the algorithm where the position fusion has been done.

6.3 Experimental results

In this part we present some experimental results of the implemented algorithm. The

first tests used for the algorithm testing were made on the generated datasets. Other tests

were made on real measured data. This have been done using two different pattern detectors

at first the less accurate colour blob detector and then the improved circle blob detector

implemented in the camera module.

6.3.1 Generated dataset

For the testing we first generated required data vectors for position of the observing he-

licopters and measurements to which then a pseudo-random noise with normal distribution

was added. To achieve more realistic conditions the noise added to the second helicopter

was higher then to the first one. In experiment the stationary helicopters observe a heli-

copter moving along the x axis (see Figure 16).

Because of the different noise in measurements of each helicopter we assume that the

variances of the measurements from the second helicopter are twice as high as from the

first one.
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Figure 16: Arrangement of the experiment.

The results of the experiment (see Figures 17 and 18) shows a different noise in measure-

ments from each helicopter. The first figure shows the position of the observed helicopter

on x axis - i.e., moving two meters along the x axis. The second figure then shows the

position on the y axis. From the resulting computed position (green colour) it is evident

that the fusion algorithm was able to reduce the noise in measurements.

Figure 17: Measured and computed position on X axis.
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Figure 18: Measured and computed position on Y axis.

6.3.2 Colour detector

In this part we evaluate the datasets experimentally measured in the laboratory and

then processed them by using the colour detector.

The measured object was performing a similar movement like in the generated dataset

but this time moving along the y axis (see Figure 19).

x

y

2m

2m

2m

Trajectory of the
observed helicopter

The second
camera module

The first
camera module@

@R
�

��	

�
��	

Figure 19: Arrangement of the experiment.
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The Figures 20 and 21 show the results of data fusion. This two figures can be divided

into three parts. In the first part, from the beginning to the measurement number 120

the object is observed only by the second helicopter because for the first helicopter the

object is out of the camera. So even though the measurement from the second helicopter is

accurate the result of the fusion is strongly disturbed by the noise from the vision system

of the first helicopter. The second part, measurements from 120 up to the 180, are properly

measured by both helicopters. For the rest of the figure the situation is similar to the first

part but this time the measurement from the second helicopter is missing. As we can see

this missing measurements strongly corrupt the resulting fusion.

We can get much better results by removing these incorrect values. Using prior knowl-

edge about the location of these values (in the first part there is corrupted signal from the

first helicopter and in the third part it is a signal from the second helicopter) it is possible

to improve the results of the fusion algorithm.

Figure 20: Measured and computed position on X axis.

The described approach is shown in Figures 22 and 23 which correspond to the Figures 20

and 21 mentioned earlier. In this case the first part (from the beginning to measurement

number 120) is estimated by using data only from the second helicopter and the third

part (measurements from 180 to 320) only by data from the first helicopter. As we already

stated this improves performance if a measurement from one helicopter is missing.
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Figure 21: Measured and computed position on Y axis.

Figure 22: Measured and computed position on X axis with prior knowledge about the
measurement.
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Figure 23: Measured and computed position on Y axis with prior knowledge about the
measurement.

We also compared positions estimated from both or only one measurement (see Fig-

ures 24 and 25). Figure 25 shows that if one measurement (in this case the second one)

is much noisier than another one, the result of data fusion is worse that one of the initial

measurements. So sometimes it is better to use only the less noisy measurement.

Figure 24: Position on X axis computed from different measurements.
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Figure 25: Position on Y axis computed from different measurements.

Testing on real data shows problems related to this vision system. Apparently if the

vision system doesn’t recognize the position of the pattern it still sends measurements

which are obviously incorrect and should be therefore distinguished and removed from

measurements.

6.3.3 Circle detector

In this part we tested our algorithm using experimentally measured data obtained from

the vision system using the circle detector (see Figure 26). The main advantage of this

detector compared with the colour detector (in addition to better recognition rate), is

an ability to recognise if there is a detected image pattern in the picture. This feature

solves problems related to the vision system based on the colour detector so we are able

to decide which measurements are correctly detected and separate incorrect ones from the

data fusion.

In the first experiment two camera modules were used to track image pattern moving up

and down along the Z-axis. For the experiment arrangement, see Figure 27, where positions

of the both camera modules, a measured tracked object positions and resulting computed

positions are shown.
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Figure 26: Camera modules tracking the image pattern during the experiment.

Figure 27: Arrangement of the experiment.

The 3-D figure of the experiment arrangement clearly shows that the tracked object is

recognized by both camera modules moreover with the fairly good precision. Although,
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it is also obvious that the recognised position is subject of constant error so each camera

module determined the position of image pattern on a slightly different place. This constant

error is probably caused by uncertainty in the position of the camera module.

Next Figure 28 shows Z-axis of the tracked object during the experiment. In the figure

the constant position error can be also seen. This example shows the advantage of the data

fusion which is able to reduce these constant errors.

Figure 28: Measured and computed position on Z axis.

During the testing of the fusion algorithm on camera modules with the circle detector

there appeared a problem with the recognition frame-rate which is varying. This fact com-

plicated the data fusion from more camera modules. Due this reason the fusion algorithm

has been slightly modified to overcome this difficulty. The algorithm is now able to process

the measurements with variable time of receiving.

The modification is quite simple the algorithm is checking for the measurement in each

time step but it is processed only if the new measurement arrives. Single arrived measure-

ment is directly used in the estimator, on the other hand, if more measurements arrive in

the same time the parallel fusion is applied.

The results of this modification can be seen in the next experiment.

In this experiment two camera module were used to track the image pattern moving in

the circle in front of these modules (see Figure 29). Because of the circle size, the tracked
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blob got out of the scope from the individual camera module several times during the

experiment. This resulted in the situation when both camera modules have been loosing

the blob position repeatedly during the experiment.
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Figure 29: Arrangement of the experiment.

For the experiment see Figures 30 and 31. We can notice a various discontinuities in the

measurements made by the camera modules which are caused by limited frame-rate in the

camera modules. Another important knowledge about the figures are constant lines in the

camera modules measurements. These lines indicates that the current camera module lost

the image pattern out of sight. As we can see from the figures, although the discontinuity

of measurements and frequent losses of the tracked image pattern, the fusion algorithm is

able to estimate successfully the approximate position of tracked blob using the information

from both complementary measurements.
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Figure 30: Measured and computed position on X axis.

Figure 31: Measured and computed position on Y axis.

The next experiment was similar to the previous one. Two camera modules tracked the

image pattern moving in the shape of the parallelogram. See the top view on the measured

experiment in the Figure 32.
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Figure 32: Arrangement of the experiment.

Once again we see two camera modules this time placed at 45 degree angle. In fact each

camera module faces with different direction and covers different part of the surrounding

area. The modules share just a very small overlapping part of camera workspace.

Still, as seen in Figure 33 and 34, the algorithm is able to estimate the resulting shape

of trajectory.

Figure 33: Measured and computed position on X axis.
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Figure 34: Measured and computed position on Y axis.

So far the experiments only with two camera modules have been shown. Due to the lack

of the camera modules the range of the possible experiments have been limited. In fact, only

a two camera modules were available for the experimenting. To overcome this difficulty and

test the fusion algorithm with a larger amount of the camera modules, different approach

have been used.

Instead of a several camera modules simultaneously tracking the image pattern, only

one module have been used. The whole experiment (i.e. movement of the image pattern)

have been repeated several times, with the camera module placed in the different locations.

Evaluating this measured data the possibility of fusion from the several camera modules

have been tested.

This last experiment shows the fusion from a five camera modules. For the arrangement

of the experiment and the 3-D view of the measured and computed position estimates, see

Figure 35.
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Figure 35: 3-D view of the experiment.

A five camera modules placed in the various locations tracked the image pattern moving

in a straight line across the experiment workspace. As well as in the previous experiments

with the camera module, the problem with varying camera recognition frame-rate occurred.

This caused a discontinuities in the camera measurement.

Also due to the experiment arrangement each camera module is able to track the image

pattern only in a limited part of its motion. This missing measurements can be seen

as a straight (horizontal) line in the Figures 36 and 37. The algorithm estimated the

resulting position for the entire range of the image pattern motion. The inaccuracy of

the estimated position is caused probably by the permanent error in the camera module

position. Other problems are the varying frame-rate and the missing precise synchronisation

of the measurements. This causes the lack of the measurements for the fusion (i.e. there

is often only a single measurement in a one time-step), so only a state of the internal

estimator is updated, but no data fusion (which is able to reduce the permanent errors in

the measurement) is applied.
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Figure 36: Measured and computed position on X axis.

Figure 37: Measured and computed position on Y axis.
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7 Conclusion

In this thesis we discussed the problem of the cooperative localization and Kalman filter

algorithm and its usage for the estimation and data fusion. We also described the hardware

on which our results were evaluated.

Work in this thesis is a part of the COLOS project aimed at developing a complex

control system for swarm of unmanned aerial vehicles. For purposes of this project two

algorithms were developed and implemented.

At first we developed the algorithm for cooperative localization in swarm of unmanned

aerial vehicles which uses the data fusion of location information provided by the vision

system implemented in the camera modules. The algorithm was tested and verified on the

generated datasets and also evaluated in the actual experiments using the vision system

implemented in the camera modules. For these experiments the server-client architecture of

the swarm was used. The camera modules represented servers which broadcast information

about the position of tracked objects and a user computer acted as the client receiving the

position information and processing the data fusion algorithm.

As you can see in Section 6.3 the algorithm proved to be able to reduce uncertainty in the

tracked object position by fusing more position estimates. Another benefit of the algorithm

is the ability to deal with vision system outages (mostly caused by moving the object out

of the camera workspace) in an individual camera module and sufficiently estimate the

entire patch of the tracked object motion.

However, the evaluation of the algorithm on real experiments was problematic due to the

lack of the camera modules. By that time only two of them were available. This limited

the range of possible experiments. Still by using only one camera module to repeatedly

capture a scene with the experiment from different positions and angles, we were able to

verify the algorithm on the fusion of several position estimates provided by five camera

measurements.

We also developed a probability model of vision system in the camera module which

can predict the probability of recognition according to the position of the tracked object

in the camera workspace.

The results of this work can be subsequently used in the COLOS project. For the full

implementation of the fusion algorithm in the camera modules would be desirable to rewrite
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the tracker server in the camera module and implement fully distributed communication

among the swarm members.

41/45



REFERENCES Relative visual localization in swarms of UAVs

References

[1] C. Adams. Is ”dead reckoning” short for ”deduced reckoning”? http://

www.straightdope.com/columns/read/2053/is-dead-reckoning-short-for-

deduced-reckoning/, November 2002.

[2] D.P. Anderson. Imu odometry. http://www.geology.smu.edu/~dpa-www/robo/

Encoder/imu_odo/, October 2006.

[3] J. Borenstein, H.R. Everett, and L. Feng. Where Am I? Systems and Methods for

Mobile Robot Positioning. 1996.

[4] J.Y. Bouguet. Camera calibration toolbox for matlab. http://www.vision.caltech.

edu/bouguetj/calib_doc/, May 2012.

[5] N. Bowditch. The American practical navigator : an epitome of navigation. The

Agency For sale by the Supt. of Docs., U.S. G.P.O, Bethesda, Md. Washington, DC,

2002.
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Appendix

CD Content

In table 1 the names of all root directories on CD are listed

Directory name Description
bp bachelor thesis in pdf format.
sources source codes
datasets measured datasets
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