
CZECH TECHNICAL UNIVERSITY IN PRAGUE

Faculty of Electrical Engineering

Bachelor Thesis

Jǐŕı Pytela

Implementation and Testing of Social Optimization
Algorithms

Implementace a testováńı algoritmů sociálńı optimalizace

Department of Cybernetics

Thesis supervisor: Ing. Martin Macaš

Gzech Technical University in prague
Faculty of Electrical Engineering

Department of Cybernetics

BACHELOR PROJECT ASSIGNMENT

Student:

Study programme:

Spec ia l i sat ion:

Tit le of Bachelor Project: lmplementation and Testing of Social Optimization Algorithms

Guide l ines:

1. In JAVA environment, implement an application for running and testing of selected social
approaches to optimization.

2. A comprehensive documentation must be part of the implementation.
3. Include binary particle swarm optimization and simple genetic algorithm into the application.
4. Perform testing and comparison on at least f ive testing functions with binary inputs.

B i b! i o grap hy/Sou rces :
[1]Wu, X. ,Zhao, M. , & Qu, Y. (2010). Part ic le Swarm Opt imizat ion Programming.20lO

lnternational Conference on Computational Aspects of Social Networks CASoN
(pp. 397-400). IEEE.
http.//ieeexplore. ieee. orq/xpls/a bs al l . isp?arn um ber=5600263

[2] Macas, M.; Lhotska, L.: Optimizers derived from human opinion formation. Nature and
Bio log ica l ly lnsp i red Comput ing (NaBlC), 20 '11 Thi rd Wor ld Congress on,
lssue Date 19-21Oct. 2011 pp.359-364.
httP:i/ ieeexplore. ieee.orq/stamp/stamp.isp?tp=&arnumber=6089618&isnumber=6089255

Bachelor Project Supervisor: Ing. Martin Macaš

Valid unti l: the end of the winter semester of academic vear 201212013

J i ř í Py te Ia

Cybernetics a Robotics

Robotics

il/ /-

prof' |ng. V|adimír Mařík, DrSc.

ffi
bgď

Head pf Department

Prague , January 9 ,2012

CSc.

Ceské vysoké učení technické v Praze
Faku lta elektrotech n ická

Katedra kybernetiky

Student:

Studijní program:

Obor:

Název tématu:

ZADANI BAKALARSKE PRACE

J i ř í Py te Ia

Kybernetika a robotika (baka|ářský)

Robotika

lmp|ementace a testování a|goritmů sociá|ní optimalizace

Pokyny pro vypracování:

1. V prostředí JAVA naimp|ementujte ap|ikaci pro spouštění a testování vybraných sociá|ních
přístupů k optimalizaci. Soustřed'te se na budoucí rozšiřite|nost vaší ap|ikace.

2. Součástí ap|ikace musí být podrobná a přeh|edná dokumentace.
3. Do ap|ikace naimplementujte také binární particle swarm optima|izaci a případně jednoduchý

genetický a|goritmus.
4. Provedte testování a porovnání na minimá|ně pěti testovacích funkcích s binárními vstupy.

Seznam odborné literatury:

[1]Wu, X.,Zhao, M., & Qu, Y. (2010). Part ic le Swarm Optimizat ion Programming.2010
International Conference on Computational Aspects of Social Networks CASoN
(pp. 397-400). IEEE.
http://ieeexplore. ieee.orq/xpls/abs all. isp?arnumber=5600263

[2] Macas, M.; Lhotska, L.: Optimizers derived from human opinion formation. Nature and
Biologically lnspired Computing (NaBlC), 2011 Third World Congress on,
lssue Date: 19-21 Oct. 201'1 pp.359-364.
http://ieeexplore.ieee.oro/stamp/stamp.isp?tp=&arnumber=6089618&isnumber=6089255

Vedoucí bakalářské práce: |ng' Martin Macaš

Platnost zadáni: do konce zimního semestru 201212013

prof. Ing.
ve

V/adimír Mařík, DrSc.
ucí katedry

V P raze dne 9 . 1 .2012

Acknowledgements

First of all I would like to thank my supervisor Ing. Martin Macaš, who offered me to
work on this interesting subject and patiently helped me with any problems and questions
that arose during the work on the thesis. I much appreciate all his help with LaTeX syntax.

I also wanted to express my gratitude to my parents for all their encouragement and
support in my studies and special thanks to my father for his help with English language
in this thesis.

Abstrakt

Optimalizace je problém, který je třeba řešit v mnoha odvětv́ıch lidské
činnosti. Tato práce se zabývá implementaćı nové optimalizačńı metody,
založené na teorii sociálńıho vlivu, do Java programu SITO tester.
Program SITO tester je Java projekt pro NetBeans IDE. Funkčnost
vytvořeného programu byla ověřena úvodńımi experimenty a výsledky
sociálńı optimalizace byly porovnány s binárńı optimalizaćı hejnem
částic. Pro porovnáńı bylo použito pět testovaćıch funkćı: Onemax, ECC,
Bipolar-6, PPeaks a Binary. V závěru jsou nast́ıněny možnosti daľśıho
rozvoje programu

Kĺıčová slova: sociálńı optimalizace, teorie sociálńıho vlivu, implemen-
tace SITO, SITO tester, optimalizace hejnem částic

Abstract

Optimization tasks can be found in many disciplines. This thesis is about
an implementation of a novel optimization method, Social Impact Theory
based Optimization (SITO). The method has been implemented within
a Java program called SITO tester, the program is in form of a Java
project for NetBeans IDE. Functionality of the SITO tester was proved
in the preliminary tests. The performance of the SITO algorithm was
compared to the peformance of Binary Particle Swarm Optimization al-
gorithm (BPSO). Five testing functions were used for the preliminary
experiments: Onemax, ECC, Bipolar-6, PPeaks and Binary. Some pos-
sibilities for further development of the program were suggested in the
conclusions.

Keywords: Social Impact Theory based Optimization, SITO implemen-
tation, SITO tester, Binary Particle Swarm Optimization

CONTENTS Social Optimization

Contents

1 Introduction 1

1.1 Goals . 1

1.2 Motivation . 2

1.3 State Of the Art . 2

1.3.1 Implementations of SITO . 2

1.3.2 Nature Inspired Algorithms . 3

1.4 Thesis Organization . 6

2 Opinion Formation based Optimization 7

2.1 Opinion Formation Model . 7

2.2 Social Impact Theory based Optimization 8

2.3 Binary Particle Swarm Optimization . 10

3 Java Implementation 11

3.1 Program Structure . 11

3.2 Description of the Classes . 11

4 Preliminary Experiments 14

4.1 Fitness Functions . 14

4.2 Parameter Settings . 15

4.3 Experiments Results . 15

4.4 Population Size . 18

5 Conclusions 20

5.1 Future Work . 21

i

LIST OF FIGURES Social Optimization

List of Figures

1 Performance of SITO and BPSO algorithms on ONEMAX fitness function 16

2 Performance of SITO and BPSO algorithms on ECC fitness function . . . 16

3 Performance of SITO and BPSO algorithms on PPEAKS fitness function . 17

4 Performance of SITO and BPSO algorithms on BIPOLAR-6 fitness function 17

5 Performance of SITO and BPSO algorithms on BINARY fitness function . 18

ii

LIST OF TABLES Social Optimization

List of Tables

1 BPSO parameter settings . 15

2 SITO parameter settings . 15

3 Number of iterations required to find optimum with different population sizes 18

4 Contents of the CD . 24

iii

LIST OF ALGORITHMS Social Optimization

List of algorithms

1 Pseudocode for SITO algorithm . 9

iv

1. INTRODUCTION Social Optimization

1 Introduction

1.1 Goals

The purpose of this thesis is to develop a program simplifying the work with So-
cial Impact Theory based Optimization algorithm (SITO) (3.2). The program is named
SITO tester and the exact goals of the thesis are:

Implement a java application for running and testing of selected social ap-
proaches to optimization. Comprehensive documentation must be part of the
application

The main goal of this thesis is developing a tool for testing SITO on various testing
functions. It is essential that all the parameters defining SITO algorithm, the parameters
of the testing functions and the testing functions themselves should be easily changeable.
If the SITO tester program is to be useful, it needs to allow future users to add and modify
the testing functions and the optimization algorithms.

There are many approaches to binary optimization, some of them are described in sec-
tion 1.3, and it is not possible, and neither is it the goal of this thesis, to implement all
of them. Instead the program SITO tester implements only modules for SITO algorithm.
However different optimization algorithms can be implemented, as is shown with Binary
Particle Swarm Optimization algorithm (BPSO)[1], which was used for comparison with
SITO performance. As long as the newly implemented algorithm has some required basic
structure its results can be plotted in graphs and it is also possible to compare its perfor-
mance with other optimization algorithms inside the program. Or, if preferred, its results
are saved to text file and can be later used in other programs.

It is clear that modularity and openness to future extensions is one of the most important
features of SITO tester. To achieve it, the program is not a standalone application, instead
it is a java project for NetBeans IDE.

Include binary particle swarm optimization

In order to evaluate the performance of SITO algorithms there needs to be other similar
algorithm working on the same problem. In this thesis we compare SITO with BPSO
algorithm, mainly because BPSO is easy to implement and reliable in finding the global
optimum in wide range of optimization problems.

Perform testing and comparison on at least five testing functions with binary
inputs

To evaluate an optimization algorithm, it is necessary to have a comparison with other
algorithms and measure the quality of solution for each algorithm as well as the time
needed to found the solution. Often, an algorithm is outstanding on one kind of problems
and performs poorly on others. In this thesis it is tested whether SITO can be successfully

1/24

1. INTRODUCTION Social Optimization

applied to different optimization problems by comparing its performance on several binary
optimization benchmark functions to BPSO.

1.2 Motivation

The main goal is to implement the SITO algorithm and provide a tool for parameter
testing and modifications. SITO algorithm is relatively new method, first published in 2007,
created as an alternative for popular Binary Particle Swarm Optimization method. While
BPSO is inspired by social interactions of animals living in a group, SITO takes inspiration
in social behavior of humans. So far, SITO method has been successfully applied to the
problem of feature selection ([2][3]), which is an important part of design of classifiers
or other machine learning systems. The feature selection reduces computation time and
also improves the efficiency of the classifier. In 2011 research team at Central Scientific
Instruments Organisation, Chandigarh in India applied SITO method to optimization of
an impedance-Tongue [4] for classifying samples of black tea. In this case, SITO approach
outperformed Genetic Algorithm and Binary Particle Swarm Optimization. The same team
used SITO in 2012 to create methods for performance enhancement of an electronic nose [5],
the new methods proved more efficient and could lead to the development of new control
systems for tea production.

As noted in Section 1.3.1 - Implementations of SITO, there are currently two programs
for testing and modifying SITO and both are implemented in Matlab. Some people prefer
Java over Matlab, but so far there has been no program for working with SITO in Java. The
purpose of SITO tester is to allow more people to explore and to use this new optimization
method.

The application is open to modifications, extensions and many new interesting and more
advanced functions can be added into the program. Because of the vast space for further
development, the program can be useful as a base for individual projects or theses for
students interested in SITO algorithm or its applications.

1.3 State Of the Art

1.3.1 Implementations of SITO

SITO algorithm is a new method and up to now, there have been only two programs en-
abling work with this algorithm. SIFS Tool [6] was developed at Czech Technical University
in Prague. During my work on this thesis, Bhondekar et al. published SITO Library [7]. It
was created after a successful application of SITO approach in their research. Both SIFS
Tool and SITO Library are implemented as Matlab toolboxes.

2/24

1. INTRODUCTION Social Optimization

1.3.2 Nature Inspired Algorithms

Optimization as defined by Encyclopædia Britannica is collection of mathematical prin-
ciples and methods used for solving quantitative problems in many disciplines, including
physics, biology, engineering, economics, and business. In the last century many new diffi-
cult optimization problems emerged in those and other fields and with them also various
techniques to solve them. In general, the techniques, or algorithms, can be exact or stochas-
tic.

Exact algorithms, for example A* search, are effective and guarantee finding optimal
solution of the problem. However, when facing too complex problems the use of exact al-
gorithms is not possible and instead it is necessary to use stochastic algorithms. Stochastic
algorithms do not guarantee that the solution they find is the optimum but it is an accept-
able solution that takes acceptable amount of time to get. Many algorithms that efficiently
explore a search space have been found by observation of processes in nature, for example
social structures, or behaviour patterns of animal and insect species, and so they are called
Nature Inspired Algorithms. They are subject of ongoing research and often the algorithms
are much improved since they were introduced for the first time. Below is a list of some of
the most used Nature Inspired Algorithms for optimization.

Particle Swarm Optimization

Particle Swarm Optimization algorithm (PSO) [8], first introduced in 1995, is popu-
lation based method inspired by flocks of birds and fish schools. The swarm is made
of randomly initiated candidate solutions, or particles, that move in multidimensional
search space. Each particle has a velocity and information about the best position
particles in the neighbourhood found so far, also called gbest, and its own best po-
sition, called lbest. In time, particles change their velocities towards gbest and lbest
positions assuming that they will reach even better solutions. The particles move in
a swarm-like group and keep diversity in their population even after they found the
best possible solution.

Ant Colony Optimization

Ant Colony Optimization algorithm (ACO) [9], introduced in 1996, is based on be-
haviour of ants in their search for food. In nature, ants move at first randomly
searching for food. When an ant finds food, he returns to the colony and lays down
pheromone trail. If other ants find this path they follow it until they also find the
food, on their return to the colony they enforce the path with their own pheromones.
Because the pheromones evaporate, the more time it takes to follow a path to a source
of food and back to the colony, the less attractive is the path. This allows further
exploration even after a local optimum has been found. ACO algorithm uses a set of
agents, called artificial ants, to find best paths on a graph. Pheromone distribution

3/24

1. INTRODUCTION Social Optimization

model is part of the graph and it is modified by the artificial ants moving through
the graph, much like real ants do in real world. One of advantages of the ant colony
is that even dynamically changing graphs can be explored. ACO has been used to
find near-optimal solutions to the traveling salesman problem and it can be useful
for network routing or transportation systems.

Simulated Annealing

Simulated annealing [10] was first described in 1983, the method is analogical to
annealing in metallurgy. When material is heated its atoms are freed from the posi-
tions they were locked in are able to randomly change their positions in search for
configuration with lower internal energy than that of the initial state. The ability
of atoms to change position decreases with the temperature until all the atoms stay
in their fixed positions. The algorithm works the same. Every iteration new position
is found by changing the current position, if the new one is better, it is accepted.
When new position is worse than the current one, it is still accepted with probability
depending on the system’s temperature. The temperature decreases over time and so
poorer positions are accepted with high probability at the beginning of the search,
allowing exploration of large part of the search space. Later the search is focused
on small part of the search space and only changes that improve the position are
accepted. Simulated annealing can be useful for example for structural optimization
or optimization of water distribution or transportation systems.

Genetic Algorithm

The first Genetic Algorithm (GA) [11] was used in 1975 by J. H. Holland. It is based
on idea of evolution through random mutation and natural selection. The research
in this field started with effort to better understand and model processes of natural
evolution but soon it became clear that the method could be applied to solve artificial
problems. There are many variations and modifications of the basic GA but in general
it uses population of individuals, usually character strings of fixed length are used
to represent their genetic information. Over iterations the population changes by
two main methods of change – mutation and crossover. Mutation is random and
small modification of an individual’s genetic information. Crossover is combination
of two individuals in order to produce their offspring. The child’s genetic information
is some combination of its parent’s genetic information. Original population size is
maintained by removing poor individuals from the population. Different GAs have
been successfully used for machine learning, circuit design, neural network design,
robots control and wide range of other optimization problems.

4/24

1. INTRODUCTION Social Optimization

Differential Evolution

Differential Evolution (DE) [12], introduced in 1997, is population based Evolutionary
algorithm used for optimization of real functions or real parameters. The population
of candidate solutions is used for the optimization, new candidate solutions are cre-
ated by combination of other candidate solutions from the population according to
simple formula and the best solutions are kept in the population while others are
removed. In tests DE proved to perform better than genetic algorithms or simulated
annealing. Other advantages of DE are easy implementation and minimal parameter
tuning requirements.

Artificial Immune Systems

Artificial Immune Systems (AIS) [13] were originally models of the immune system,
helping to better understand its mechanisms. Since then, research has focused also
on solving computation problems by imitating the biological processes than simu-
lating the immune system. Although, even today, AIS are closely connected with
immunology, because the better the understanding of the biological immune systems
the more possibility to apply the knowledge into creating more powerful and more
efficient artificial systems.

Decentralized Cellular Evolutionary Algorithm

Decentralized Cellular Evolutionary Algorithms [14] are very similar to Evolution-
ary or Genetic algorithms. In GAs every individual in the population can interact
with any other while in Decentralized Cellular Evolutionary Algorithms there is al-
ways defined structure in the population. Individuals form groups, or cells, and only
individuals in the same cell can interact. This structure helps maintain diversity .

Brain Storm Optimization
Brain Storm Optimization algorithm (BSO) [15] is a new method, introduced in 2011,
and it is similar to SITO algorithm in the sense of taking inspiration from human
behavior, in the case of BSO the human brainstorming process. It is suggested that
since humans are more intelligent than animals or insects, an optimization algorithm
inspired by humans should be superior to those inspired by other species. The effec-
tiveness of the algorithm was proved in the preliminary experiments, detailed analysis
and experimental tests are now subjects of further research.

5/24

1. INTRODUCTION Social Optimization

1.4 Thesis Organization

The thesis is organised into five sections. Section 1 - Introduction - contains details about
goals and motivation of this thesis as well as current state of research in the field of Nature
Inspired Algorithms. This work is about implementing algorithm for Social Impact Theory
based Optimization, so in section 2 - Opinion Formation based Optimization - you can find
information about the algorithm and its background and section 3 - Java Implementation -
contains details about the implementation of the algorithm in Java and organization of the
SITO tester program. Section 4 - Preliminary Experiments - describes experiments that
compare SITO and BPSO using SITO tester, details of the testing functions are included.
Section 5 - Conclusion - summarizes the work that has been done and suggests possibilities
for future development.

6/24

2. OPINION FORMATION BASED OPTIMIZATION Social Optimization

2 Opinion Formation based Optimization

SITO algorithm is population based optimization method and takes inspiration in social
psychology. The main part of the algorithm is simulated society. Fitness function is used
to evaluate each individual, individuals with higher fitness value are preferred.

2.1 Opinion Formation Model

The model of Opinion Formation in society is based on Bibb Latané’s Dynamic Theory
of Social Impact [16]. This theory suggests that behaviour and opinions of single indi-
vidual depend on society to which he belongs and if the same individual is introduced
into another social environment he will adapt to the new society and in turn affect its
other members. The Dynamic Theory of Social Impact successfully explained some of the
phenomena studied in social psychology.

Any individual changes his opinions accordingly with social impact of his group. The
opinion, or attitude, of the individual can take one of two possible values. The values may
be interpreted as people for or against some idea, people belonging or not belonging to
given group etc. but the interpretation is not important for the model itself. Social impact
is any influence on the individual in his social environment, its magnitude depends on three
variables:

Strength is an attribute of each individual and it determines how much can he affect
others. It corresponds to credibility or attractiveness of the individual. In real world
people with higher social status, experience or better public skills are better and
more efficient in communicating their opinion to others. The model distinguishes two
different forms of strength, one for individuals who share the same opinion and one for
those who oppose each other. Persuasiveness is the ability to convince someone with
opposing opinion to change it and supportiveness is the ability to help those sharing
the same opinion to resist influence from others. Persuasiveness and supportiveness
are not necessarily correlated.

Immediacy is a term the social impact theory uses for group structure. Immediacy is
obviously not attribute of an individual but of a pair of individuals. It can be viewed as
relations in the society or physical distance of the individuals. Generally it expresses
the possibility of communication between the two individuals.

Number of other individuals simply expresses the number of individuals that con-
tribute to the social impact on given individual. Usually not all individuals in the
population are considered, but only those whose immediacy to the given individual
is above some threshold value.

7/24

2. OPINION FORMATION BASED OPTIMIZATION Social Optimization

2.2 Social Impact Theory based Optimization

Social Impact Theory based Optimization (SITO)[17] takes advantage of the opinion
formation model described in previous section. With three modifications, it introduces
optimization ability into the simulation.

• Multiple attitudes: To make more-dimensional optimization problems possible
each individual is represented by a binary vector instead of a binary number.

• Replacement of persuasiveness and supportiveness by a single parameter:
As described in previous section 2.1, in Latané’s Dynamic Theory of Social Impact
persuasiveness and supportiveness are different but not independent. To simplify the
computation process, SITO algorithm uses only one parameter, strength. Persuasive-
ness and supportiveness are both equal to strength.

• Introduction of a fitness function: The strength factors (persuasiveness and
supportiveness) in the opinion formation simulation were random numbers assigned
to each individual on initialization and changed only with change of attitude. This
randomness modelled some unknown phenomena in the simulation, which was the
point of the simulation, but in SITO algorithm the point is to implement optimization
ability into the simulation. The behaviour is changed by adding one parameter to
each individual, the value of fitness function, which is used to compute the strength
factor of the individual. Fitness function evaluates each individual in terms of a binary
optimization problem, the best individual in the population is the one with highest
fitness value. Strength factor is proportional to fitness value of given individual, so
more successful individuals have more influence on the rest of the population.

The mechanisms of SITO algorithm are explained for its particular instance, Simplified
SITO (sSITO) [3], which uses different equations for strength and impact functions and
different population topology than Original SITO [17] in order to simplify the computa-
tional process. The algorithm’s main part is population of individuals. Each individual is
candidate solution represented by binary vector si = (s1i , ..., s

d
i), where ski ∈ {1, 0}. The

binary vector is evaluated by the fitness function fi = f(s1i , ..., s
d
i) in terms of maximizing

f .

The topology of the population is important, because contribution of individual i to
the impact on individual j depends on his position in relation to j. All individuals who
contribute to impact on individual j are called neighbors of j. sSITO implements random
topology, meaning that neighbors of individual i are each iteration chosen randomly from
all individuals in the population. Social strength qij is strength by which individual i affects
j. There can be many ways to compute the social strength [3], for example:

qij = max(fi − fj, 0) (1)

fi and fj are fitness values of individuals i and j. This equation means that each individual
is affected only by those who are better than him. Social impact Ij = (I1j , ..., I

d
j) is vector of

8/24

2. OPINION FORMATION BASED OPTIMIZATION Social Optimization

impact values on each bit of candidate solution j and it is computed from social strengths
of j’s neighbors toward him. To compute overall impact on bit m of individual j we can
use following equation:

Imj =
∑
i∈Pm

i

qij −
∑
i∈Smi

qij (2)

Neighbors of j are on each dimension divided into two subgroups, persuaders Pm
j and

supporters Sm
j . The equation expresses overall social impact on individual i as sum of

overall persuasive minus overall supportive impact. If any of the two subgroups is empty,
its overall impact is defined as zero. Simple update rule generates new state of smj :

smj (t+ 1) =

{
1− smj (t) ifImj > 0
smj (t) otherwise

(3)

If impact function has positive value the individual changes his opinion. Random element
is added to the update rule in form of mutation. After new state was generated, every bit
of jth candidate solution changes its value with probability κ << 1 , κ is the mutation
rate.

The pseudocode of sSITO is shown in algorithm 1. First, all individuals in the population
are initialized as random candidate solutions with uniform distribution of values. Candidate
solutions are evaluated and all strength values are computed. Value of the impact function
is computed for each dimension of each candidate solution and the candidate solutions
are updated accordingly, with the possibility of random mutation. When all candidate
solutions have been updated, the process is repeated until a stopping condition is met.

initialize all si(0)
while stop condition not met do

for all i do
evaluate fi(t) = f(si(t))

end for
for all i, j do

compute strength values qij using equation 1
end for
for all i, d do

compute Idi (t) using equation 2
compute s̃di (t+1) using equation 3

end for
for all i, d do

compute sdi (t+1) by random mutation of s̃di (t+1)
end for
t← t+ 1

end while
Algorithm 1: Pseudocode for SITO algorithm

9/24

2. OPINION FORMATION BASED OPTIMIZATION Social Optimization

2.3 Binary Particle Swarm Optimization

Binary Particle Swarm Optimization (BPSO) ([18][1]) is similar to Particle Swarm Op-
timization, but its particles move only in binary space of attitudes instead of continuous
state space. Each particle is represented by binary vector of position si(t) and velocity vec-
tor of real values vi(t) and has information about the best position the particle achieved
so far, we can call it experience, and information about the best position of the best parti-
cle in its neighborhood, a kind of social knowledge. Following equations describe rules for
velocity update and position update.

vi(t+ 1) = ωvi(t) + ϕ1R1(pi − si(t)) + ϕ2R2(pl − si(t)) (4)

si,j(t) =

{
1 ifR3 <

1

1+e−vi,j(t)

0 otherwise
(5)

pi is the best position of particle i, the part of the formula represents experience of the
particle, ϕ1 is constant of experience weight. pl is the best position of any particle in the
neighborhood, it is the social knowledge of the particle, ϕ2 weight of the social knowledge.
The parameter ω is called inertia weight, modifying it affects the exploration behavior of
particles. R1 and R2 are diagonal matrices of random values from a uniform distribution
between 0 and 1, R3 is only one number generated the same way.

New values for every component vi are assigned, values higher than Vmax are replaced
by Vmax, values lower than −Vmax are replaced by −Vmax. The position of each particle
is updated according to its velocity. For the purposes of position update velocities are
normalized using sigmoid function.

10/24

3. JAVA IMPLEMENTATION Social Optimization

3 Java Implementation

For reasons we already explained in Introduction section (1.1), the program SITO tester
is not standalone application but a java project for NetBeans IDE.

Before starting the work on the program itself it was needed to think about the structure
of the program. The structure is important for good functioning and is hard to change later
during the programming. To allow users to easily modify the program it is also necessary
for the structure to be easy to understand, intuitive.

3.1 Program Structure

The pseudocode of SITO algorithm (1) shows there are four main actions that together
make the optimization process. They are evaluation, strength computation, impact com-
putation and update. These four actions are repeated until the optimization is completed.
It seems only natural that each action should be implemented as java class encapsulating
its sub-processes. Names of the classes are Fitness, Strength, Impact and Update. SITO is
population based algorithm, relations among candidate solutions play important part in
the optimization. To store the population, information about it and its properties another
java class called Topology was used. The optimization process information, in fact the core
of SITO algorithm, is inside java class Optimizer. The six classes are enough to perform
SITO optimization, but it proved to be useful to create one more class, i.e. Results, to
handle results of the optimization, as plotting graphs and comparing or saving the results.

At initialization all the other classes are input parameters of Optimizer. The optimization
process then takes place within Optimizer class, the output is class Results containing the
results of the optimization.

When testing the SITO on different fitness functions we noticed that assigning input
parameters of the Optimizer class manually each time is not efficient and so the last class
in the project was created - Cycling. Included are methods for setting up the optimization
automatically as well as for performing multiple runs of optimization and comparing them.

3.2 Description of the Classes

The classes are implemented as abstract and serve as templates for various range of
specific classes that fulfil their purpose. The abstract classes are stored in own packages
with corresponding name, the specific classes are in ”corresponding package”.custom (e.g.
abstract class Fitness is in package named ”fitness” and specific fitness functions are in
package ”fitness.custom”). In following list each class is explained further. Additional in-
formation can be found in SITO tester documentation.

11/24

3. JAVA IMPLEMENTATION Social Optimization

• Fitness
Fitness function is in fact a description of the problem, the subject of optimization.
The optimization process is a search for candidate solution with the highest value of
fitness function. Some of the fitness functions already implemented are described in
section 4.1.

• Strength
Strength function computes social strength from fitness values of candidate solutions,
equation (1) can be used for this purpose. Should the optimization be successful, the
social strengths have to be proportional to fitness values. The action of computing
strength produces 2-D matrix of social strength values mapping the relations of all
individuals in the population, indexes of columns correspond to indexes of individuals
that are affected while indexes of rows to individuals that are affecting others.

• Impact
Overall impact on given candidate solution is computed inside this class based on
partial impacts of all neighbors. Each neighbor contributes to the overall impact
according to the social strength he has toward target candidate solution. The choice
of exact equation used to compute overall impact is important and can change quality
of the optimization ability, for this purpose it is common to use equation (2) as it
leads to good results.

• Update
Candidate solutions in the population are updated to create new candidate solutions.
The change depends on overall impact on each candidate solution and on the update
equation. The formula (3) shown above, proved to be effective. However other, more
probabilistic, formulae can be used as well. Mutation, if present, is part of the update
function, the mutation rate κ is usually proportional to dimension of the optimization.

• Optimizer
This class is a template for any optimizer, in the SITO tester program SITO and
BPSO are already implemented. This class implements functions like stopping con-
dition or results processing while minimizing computation time for the optimization.
Any new optimizer algorithm, similar to SITO and BPSO, is easy to implement,
because the only thing required is defining instructions for one iteration. Results of
the optimization are obtained as the output of the optimization process and can be
saved to txt file or further used in the program.

• Results
Factically, there are two classes involved in processing the results - Results and Re-
sultsModule - but they are strongly related and thus their functions can be described
together. Every ResultsModule class is stored in ”results modules.custom” package.
In each iteration the ResultsModule scans the population for previously selected char-
acteristic and stores it (e.g. best fitness value so far or average fitness value). Results

12/24

3. JAVA IMPLEMENTATION Social Optimization

class contains a set of ResultsModules so it is possible to monitor a number of charac-
teristics during one optimization process. After the optimization, the results can be
plotted in graphs (using free java library JFreeChart([19])), saved to files or compared
to other results.

• Cycling
Functions that simplify testing are implemented inside Cycling class along with set-
tings of the algorithm. It is easy to automatically perform the same optimization
many times, to change the fitness functions or to compare results from different
optimization processes.

13/24

4. PRELIMINARY EXPERIMENTS Social Optimization

4 Preliminary Experiments

To compare SITO and BPSO methods we use five fitness functions, each defining differ-
ent optimization problem. Every optimization process is repeated 30 times, average values
are compared in graphs.

4.1 Fitness Functions

Performance of SITO and BPSO algorithms is tested on these five fitness functions:

1. ONEMAX:
One maximum function is simple function counting number of positive values in the
binary vector. Dimension D = 300, fitness value of optimum is f(s∗) = 300.

2. ECC:
Error Correcting Code Design Problem is search for codewords of alphabet, their
minimal Hamming distance is maximized. In every candidate solution there are 24
codewords each containing 12 bits. Fitness value is computed using following formula:
f(s) = 1/(

∑D
i=1

∑D
j=1 δ

−2
Hij) where δHij is Hamming distance between codewords i

and j. Dimension of the problem is D = 288, fitness value of optimal solution is
f(s∗) = 0.0674.

3. PPEAKS:
The function generates P random strings representing optima, that create peaks
in the fitness landscape. Every candidate solution is evaluated by the number of
bits in common with the closest optimum divided by the dimension of the problem.
Dimension D = 300, fitness value of optimal solution is f(s∗) = 1.

4. BIPOLAR-6:
The fitness value is computed by applying function f6 on six-bit substrings of the
evaluated binary vector, which is defined as f6(~si) = 1, 0, 0.4, 0.8, 0.4, 0, 1 for |~si| =
0, 1, 2, 3, 4, 5, 6. Dimension D = 120 corresponds to 20 subproblems so the fitness
value of optimal solution is f(s∗) = 20.

5. BINARY:
Input binary vectors are evaluated as binary representations of numbers. Fitness
value of each is difference between its decimal value and goal number. Dimension
D = 100, fitness value of optimal solution is f(s∗) = 0.

14/24

4. PRELIMINARY EXPERIMENTS Social Optimization

BPSO
Population size 400

Neighborhood size 4
Inertia weight 1

Experience weight ϕ1 2
Individual weight ϕ2 2

Max. velocity Vmax 5

Table 1: BPSO parameter settings

SITO
Population size 400

Neighborhood size 5
Mutation rate κ 0.8

D

Table 2: SITO parameter settings

4.2 Parameter Settings

Parameters for BPSO and SITO are shown in table 1 and 2, respectively. The selected
parameters for BPSO [1] are those commonly used, they are known to provide good results.
Besides the population size, SITO algorithm requires only two parameters: mutation rate
κ and number of neighbors. The value of κ was obtained by simple testing. The number
of neighbors suggested in reference [3] is six, but in this work it was changed to five so it
would be closer to the same parameter of BPSO. The size of population is discussed in
section 4.4.

4.3 Experiments Results

Performance of both optimization techniques is shown in graphs in figures 1, 2, 3, 4
and 5, values in the graphs corresponds to fitness values of best candidate solutions found
so far averaged over the 30 runs of the optimization. Blue line marks values achieved by
SITO algorithm, red line is for BPSO values. In most of the graphs the blue line seems to
disappear when the optimal solution is found, that is because the red line is painted over
the blue line so when values of SITO are the same as values of BPSO only the red line is
visible.

15/24

4. PRELIMINARY EXPERIMENTS Social Optimization

Figure 1: Performance of SITO and BPSO algorithms on ONEMAX fitness function

Figure 2: Performance of SITO and BPSO algorithms on ECC fitness function

16/24

4. PRELIMINARY EXPERIMENTS Social Optimization

Figure 3: Performance of SITO and BPSO algorithms on PPEAKS fitness function

Figure 4: Performance of SITO and BPSO algorithms on BIPOLAR-6 fitness function

17/24

4. PRELIMINARY EXPERIMENTS Social Optimization

Figure 5: Performance of SITO and BPSO algorithms on BINARY fitness function

population BPSO SITO
10 891 3667
20 547 1968
30 427 938
50 244 562
100 211 378
200 207 113
300 201 85
400 182 90

Table 3: Number of iterations required to find optimum with different population sizes

4.4 Population Size

SITO and BPSO are both population based algorithms and the size of the population
strongly affects the efficiency of the algorithms. A simple test was used to determine how the
performance of each algorithm changes with the population size. Each algorithm was run
five times and the best fitness value achieved so far was noted in each iteration, average
value of the five runs was taken as the result. The number of iteration was set high in
order to provide enough time for the algorithms to find the optimal solution. The test was
performed on a problem defined by fitness function BIPOLAR-6, which was described in
section 4.1.

18/24

4. PRELIMINARY EXPERIMENTS Social Optimization

The results are shown in table 3. The number of iterations needed to reach the optimum
as well as the population size are given for both algorithms. It seems that the efficiency
of the BPSO algorithm does not strongly depend on the size of the population and it can
yield relatively good results even for small population size. In contrast, the SITO algorithm
becomes efficient only when the population size is around one hundred candidate solutions
or more.

19/24

5. CONCLUSIONS Social Optimization

5 Conclusions

The implementation of Social Impact Theory algorithm (SITO) into a Java application
and creating a useful tool for further work and research of the algorithm is the most im-
portant contribution of this thesis. The program is called SITO tester and its purpose is to
simplify work for people interested in the SITO algorithm. SITO tester is open to modifi-
cations and extensions so that it can meet the requirements of its users. In the development
of the program the priority was to keep the structure as intuitive and understandable as
possible and the single parts of the program easily changeable. To help understand the
inner functionality of the program, javadoc documentation containing description of all
classes and methods within the program is included.

The functions of the program were successfully tested in the preliminary experiments.
The Binary Particle Swarm Optimization algorithm (BPSO) was also implemented into
the SITO tester and even though it does not share the structure of the SITO algorithm it
can still use the functions for processing the results.

Initially it was assumed that the results of a single optimization processes will be saved
to text files and later processed in other programs, i.e. MS Excel or Matlab. Later, it
became clear that a simple results processing inside the SITO tester would be useful and
so the possibility to compute the average value from multiple runs of the optimization
was included. A free java library JFreeChart made possible plotting graphs inside the
program. SITO tester can compare, plot to graphs or save to text files the results from
multiple optimizations. If no advanced functions are required to process the results of the
optimization, no other programs are needed to process the data.

Five testing functions were chosen to compare performance of SITO and BPSO algo-
rithms: Onemax, Bipolar-6, PPeaks, ECC, Binary. These testing functions are implemented
within SITO tester program. It was unexpected that the preliminary experiments showed
SITO algorithm exceeding BPSO algorithm on every one of the five used testing functions.
Several other simple tests were performed to determine the cause and they proved that the
size of the population in order of hundreds candidate solutions is better for SITO algorithm
than for BPSO. However for small population sizes BPSO algorithm strongly outperforms
SITO. It might be caused by a lost of diversity in the population and the SITO algorithm
needs long time to achieve the optimum by random mutations.

20/24

5. CONCLUSIONS Social Optimization

5.1 Future Work

SITO tester could be used for individual projects or theses for students interested in
this field. Many new functions could be added to make the program more usable and could
extend its applicability. Some of the possibilities for further development of the program
are suggested:

1. Extending the mechanisms for processing results or adding advanced functions for
plotting graphs.

2. Further minimizing the computation cost of the optimization process.

3. Including Graphical User Interface would make the program more attractive and
easier to use.

4. Adding the possibility to load data from files.

5. Including visualization of the optimization process could make the program useful
tool for better understanding the advantages and disadvantages of the optimization
method.

6. Implementation of other optimization methods within the SITO tester.

21/24

REFERENCES Social Optimization

References

[1] Russell C. Eberhart, Yuhui Shi, and James Kennedy. Swarm Intelligence (The Morgan
Kaufmann Series in Evolutionary Computation). Morgan Kaufmann, 2001.

[2] M. Macaš, L. Lhotská, and V. Křemen. Social Impact based Approach to Feature
Subset Selection. In Nature Inspired Cooperative Strategies for Optimization (NICSO
2007), 2008.

[3] M. Macaš and L. Lhotská. Simplified Social Impact Theory Based Optimizer in Fea-
ture Subset Selection. In Nature Inspired Cooperative Strategies for Optimization,
pages 133–147, Heidelberg, 2011. Springer.

[4] Amol P. Bhondekar, R. Kaur, R. Kumar, R. Vig, and P. Kapur. A novel approach
using dynamic social impact theory for optimization of impedance-Tongue (iTongue).
2011.

[5] Amol P. Bhondekar, R. Kaur, A. Kumar, R.and Gulati, C. Ghanshyam, and P. Ka-
pur. Enhancing electronic nose performance: A novel feature selection approach using
dynamic social impact theory and moving window time slicing for classification of
Kangra orthodox black tea (Camellia sinensis (L.) O. Kuntze). 2012.

[6] SIFS Tool. bio.felk.cvut.cz.

[7] SITO Library. www.sitolib.org.

[8] R. Eberhart and J. Kennedy. A new optimizer using particle swarm theory. In Pro-
ceedings of the Sixth International Symposium on Micro Machine and Human Science,
MHS 1995, pages 39–43, 1995.

[9] Marco Dorigo, Vittorio Maniezzo, and Alberto Colorni. The ant System: Optimiza-
tion by a colony of cooperating agents. IEEE Transactions on Systems, Man, and
Cybernetics Part B: Cybernetics, 1996.

[10] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing.
Science, 220(4598):671–680, 1983.

[11] John H. Holland. Adaptation in Natural and Artificial Systems: An Introductory Anal-
ysis with Applications to Biology, Control and Artificial Intelligence. The University
of Michigan Press, 1975.

[12] R. Storn and K. Price. Differential Evolution - A Simple and Efficient Heuristic for
Global Optimization over Continuous Spaces. 1997.

[13] Leandro N. de Castro and Fernando J. Von Zuben. Artificial Immune Systems - Part
I: Basic Theory and Applications. Technical report, 1999.

22/24

REFERENCES Social Optimization

[14] E. Alba, B. Dorronsoro, M. Giacobini, and M. Tomassini. Decentralized Cellular
Evolutionary Algorithms. 2004.

[15] Yuhui Shi. Brain storm optimization algorithm. In Proceedings of the Second interna-
tional conference on Advances in swarm intelligence - Volume Part I. Springer-Verlag,
2011.

[16] A. Nowak, J. Szamrej, and B. Latane. From Private Attitude to Public Opinion: A
Dynamic Theory of Social Impact. 1990.

[17] M. Macaš and L. Lhotská. Social Impact Theory based Optimizer. In Advances in
Artificial Life, pages 635–644, Heidelberg, 2007. Springer.

[18] J. Kennedy and R.C. Eberhart. A discrete binary version of the particle swarm
algorithm. In IEEE International Conference on Systems, Man, and Cybernetics,
1997.

[19] JFreeChart. www.jfree.org/jfreechart/.

23/24

Appendix

CD Content

Contents of the CD are listed in table 4.

Name Description
thesis bachelor thesis in pdf format.
SITO tester source codes of the program
experiments data from the preliminary experiments
documentation documentation for the program
instructions simple guide for the SITO tester

Table 4: Contents of the CD

	Introduction
	Goals
	Motivation
	State Of the Art
	Implementations of SITO
	Nature Inspired Algorithms

	Thesis Organization

	Opinion Formation based Optimization
	Opinion Formation Model
	Social Impact Theory based Optimization
	Binary Particle Swarm Optimization

	Java Implementation
	Program Structure
	Description of the Classes

	Preliminary Experiments
	Fitness Functions
	Parameter Settings
	Experiments Results
	Population Size

	Conclusions
	Future Work

