

CZECH TECHNICAL UNIVERSITY IN PRAGUE

FACULTY OF ELECTRICAL ENGINEERING

DEPARTMENT OF CYBERNETICS

BACHELOR PROJECT

Evolutionary Algorithm for the Longest Common
Subsequence Problem

 Author: Tereza Pytelová

2012, Prague Supervisor: Ing. Jiří Kubalík, Ph.D

Poděkování

Děkuji především mému vedoucímu, panu Ing. Jiřímu Kubalíkovi, Ph.D,

za vydatnou pomoc, trpělivost a pevné nervy.

Abstrakt

Problém nejdelší společné podsekvence je zajímavou úlohou v počítačové

vědě. Na tento problém lze převést mnoho reálných úloh, jakou je například

komprese dat nebo hledání vztahů mezi biologickými sekvencemi. Pro dvě vstupní

sekvence je problém nejdelší společné podsekvence optimálně řešitelný pomocí

dynamického programování, nicméně pro více vstupních sekvencí je problém NP-

úplný a jeho řešení pomocí dynamického programování je příliš časově i paměťově

náročné. Proto jsou v tomto případě využívány algoritmy heuristické jako je

paprskové prohledávání stavového prostoru, optimalizace pomocí mravenčí kolonie

či simulované žíhání. Tyto algoritmy nezaručují nalezení optimálního řešení, jsou

však mnohem méně náročné co se týče času a paměťového prostoru. Genetické

algoritmy jsou vhodné pro optimalizační problémy s velkým stavovým prostorem,

jakým je právě problém hledání nejdelší společné podsekvence. V této práci je

aplikován iterativní optimalizační algoritmus využívající genetický algorimus pro

hledání zlepšujících kroků (POEMS - Prototype Optimization with Evolved

Improvement Steps), který je schopen prohledat větší okolí ve stavovém prostoru než

klasické konstruktivní a lokálně optimalizační algoritmy a má proto dobré předpoklady

pro dosažení kvalitních výsledků. Nicméně ani jeden z navržených algoritmů neuspěl

ve srovnání se současnými špičkovými algoritmy. Možné důvody neúspěchu jsou

diskutovány v závěru práce.

Abstract

The Longest Common Subsequence Problem is an interesting task

in computer science which has many applications namely in data compression or

in molecular biology. Used to find similarities through input sequences it can be

solved to optimality by means of dynamic programming for two input sequences.

However for number of input sequences greater than two it becomes NP hard and

dynamic programming is not very efficient as it requires too much time and space.

In order to find an approximate solution in reasonable time many algorithms were

proposed such as beam search, ant colony optimalization or simmulated annealing.

Genetic algorithms represent another metaheuristic suitable for solving discrete

optimalizing problems with large search space. Aim of this work is to take an

advantages of an iterative optimization algorithm called the Prototype Optimization

with Evolved Improvement Steps (POEMS) applying it to the LCSP. It has been

shown that POEMS as an iterative algorithm based on genetic algorithm can obtain

very good results that is attributed to its ability to search larger neighbourhood than

traditional iterative local search algorithm. Nevertheless performance of both

proposed algorithms was not as good as was expected. Possible reasons for such

underachievement are discussed at the end of this work.

Table of Contents

1 Introduction ... 1

2 LCSP... 2

2.1 Definition .. 3

2.2 Existing Algorithms ... 4

2.3 Fitness Functions for GA .. 6

3 POEMS... 9

4 POEMS for LCSP.. 11

4.1 Representation ... 12

4.2 Actions.. 12

4.3 Fitness functions... 13

4.4 Algorithms for LCSP ... 14

5 Implementation.. 16

5.1 Implementation of POEMS ... 16

5.2 Implementation of LCSP... 18

6 Experiments .. 19

6.1 Datasets ... 19

6.2 Setup .. 20

6.3 Configuration of POEMS .. 20

6.4 Results ... 21

7 Discussion... 24

7.1 Feasibility of Candidate .. 25

7.2 Initialization of Prototype .. 25

7.3 Problem Representation... 25

7.4 Further Actions ... 27

7.5 Characters Specified by the Mask .. 28

8 Conclusions and Future Work... 29

9 References.. 29

List of Figures

Figure 1: The mask representation.. 4

Figure 2: The flowchart of the S-algorithm and the W-algorithm.............................. 15

Figure 3: The class diagram of the POEMS implementation. 16

List of Tables

Table 1: Parameters setting. .. 22

Table 2: Results for rat instance of alphabet size 4. .. 22

Table 3: Results for rat instance of alphabet size 20. .. 22

Table 4: Results for virus instance of alphabet size 4. ... 23

Table 5: Results for virus instance of alphabet size 20. ... 23

Table 6: Results for random instance of alphabet size 4.. 23

Table 7: Results for random instance of alphabet size 20.. 24

Table 8: Results for sets of 10 input sequences from ES instance. 24

Table 9: Results for sets of 50 input sequences from ES instance. 24

1

1 Introduction
The aim of this work is to apply a genetic algorithm to the Longest Common

Subsequence Problem (LCSP) trying to take the advantages of Prototype

Optimization with Evolved Improvement Steps (POEMS) algorithm.

The LCSP as a classic task in computer science has wide range

of applications including operating with databases, data compression or molecular

biology. In all of these areas it seeks after relationship among input sequences

which represent the specific problem. The LCSP can be optimally solved by

dynamic programming for two input sequences while it requires O(l1.l2) time

and space, where l1 and l2 are the lengths of input sequences. However

for arbitrary number of input sequences it becomes NP hard hence various

heuristic algorithms were proposed. The classical example is beam search [5],

simmulated annealing [2] or ant colony optimalization [9].

Genetic algorithms have already been used to solve this problem [8], but

in their primary form they are not very efficient. Nowadays GA are usually

employed in certain heuristic algorithms such as HGACO mentioned in [9].

Genetic algorithms are suitable for solving discrete optimalizing problems with

large search space and for the problems, in which is not easy to define the way

to the best solution. While using GA it is not necessary to understand the problem

to depth, it suffices only to define characteristics of the best solution. Specially

in the case of the LCSP the requirement is, that the solution has to be

subsequence of all input sequences and it should be as long as possible. Another

advantage of GA is their ability to change the temporary solution during entire

algorithm at contrary to such algorithms as beam search which can modify only

the last character. GA as well as other heuristic algorithms do not solve the

problem optimally, but in such task as the LCSP where the problem specific

algorithm requires excessively time and space, the non optimal solution found

in reasonable time is welcome.

Prototype Optimization with Evolved Improvement Steps (POEMS) is

an iterative algorithm based on genetic algorithm. Contrary to the traditional

genetic algorithms, it does not evolve a population of candidate solutions to the

given problem (i.e. the population of candidate common subsequences). Instead, it

works with a population of so called action sequences that are used to modify

a working solution. The best evolved action sequence that improves the working

solution the most is applied to the working solution yiealding a new one for the

next iteration. Thanks to this representation it is able to search larger

2

neighborhood of the current working solution than traditional local search

algorithms, which use neighbourhood defined by a single action or variation

operator. This is especially useful in the LCSP since the search space is very large

and for only one operator it would be quite difficult to search all possible states

in reasonable time. POEMS has already reached very good results applied to

the Shortest Common Supersequence Problem (SCSP) [10], [11]. Since these two

problems, the LCSP and the SCSP, are closely related this work tries to achieve

similar competitive results using POEMS on the LCSP. As the fitness function

included in POEMS, a combination of existing types of previously used fitness

functions is used.

To be able to compare a new algorithm with current state-of-the-art

approaches the same datasets as in [4] was choosen. The first dataset is

randomly generated and contains number of various alphabets. Second dataset

consists of three sets of protein and DNA sequences. The first is randomly

generated as well and other two sets contain real sequences of rat and virus.

The results achieved with POEMS are not as good as expected. Its

performance is worse than the compared improved beam search algorithm (IBS-

LCS) presented in [4], which is the current state-of-the-art algorithm for the LCSP.

On the other hand, as the size of the problem instance grows in terms

of the number of input sequences its performance gets close to the IBS-LCS with

respect to length of the resulting subsequence. However, the efficiency

of the POEMS in terms of the computational time is much worse than that

of the IBS-LCS algorithm. This can be attributed to the repeated computation

of the population-based evolutionary algorithm.

This work is organised as follows: In section 2 there is a definition

of the LCSP and short overview of existing approaches with focus on their fitness

functions. POEMS algorithm is described in section 3 and its implementation

as well as implementation for the LCSP can be found in sections 4 and 5. Section

6 contains dataset specification, algorithm setup and the results. Discussion

on the problem is given in section 7, conclusion and the future work are placed

at the end of this work as sections 8 and finally references are situated

in section 9.

2 LCSP
The Longest Common Subsequence Problem belongs to a number of well-

known problems in computer science. It has wide range of applications

in the areas of data compression, query optimization in databases, clustering Web

3

users or in pattern recognition. The LCSP is also important for molecular biology

to compare DNA, RNA or amino acid sequences as through the similarity

of sequences functional or structural relationship among biomolecular sequences

can be found.

2.1 Definition

Goal of the LCSP is to find the longest common subsequence of the input

sequences. The LCSP is defined over some finite alphabet Σ. In this task

sequences of characters from Σ of finite lengths are denoted as input strings or

input sequences a1, a2, ..., ak. A subsequence of a string a is defined as

a sequence obtained by deleting zero or more characters from a. Given two or

more input strings a1, a2, ..., ak the task of the LCSP is to find the longest

sequence of characters that can be found as subsequence in all input strings. For

example having the input sequences ABCD, BDCA and BCDD the common

subsequences are B, C, D, BC, BD and naturally the null string. Sequences BC

and BD are the longest common subsequences (LCS) of this set of sequences.

Algorithms used to solve the LCSP usually work with problem defined

in binary alphabet, so it is necessary to define some function f: Σ to {0, 1}. A simple

binary encoding that has been proposed and used by Julstrom and Hinkemeyer [3]

is defined as follows:

Let a0 be the shortest input sequence denoted as reference. (In case

of input sequences of the same length a0 is considered as first of them.) Then s is

sequence of {0, 1} henceforth called mask determining which characters

from the a0 occure in the corresponding subsequence. For example having

a0 = ABCD and s = 1001, it represents subsequence AD. Such subsequence is

denoted as c(s), the candidate solution.

This candidate solution is allways a subsequence of a0, but it is not

necessary a subsequence of all input strings, therefore using this representation

infeasible solutions can appear.

To clarify various algorithms and its fitness functions more definitions have

to be formulated. At first the length of sequence a is denote as |a|. The number

of input sequences is marked as k and the length of the shortest one of them

(or the first one of all respectively) as n. In addition let prefix be the shortest

segment considered from left to right for which particular candidate solution is

subsequence. Analogously the suffix is the shortest part of input sequence

considered from right to left that allows c(s) to be its subsequence. At the end it is

important to specify the number of input seqences for which candidate solution is

4

a subsequence. This number is denoted as m(s). In the case of feasible solution

m(s) = n holds.

Figure 1: The mask representation

2.2 Existing Algorithms

For more than two input sequences the Longest Common Subsequence

Problem is NP-hard. The problem is polynomially solvable by dynamic

programming and it requires O(lk) of time and space, where l is the length

of the longest input sequence and k is the number of sequences. Such algorithm is

not very useful for large number of input sequences. In the case of biological

sequence analysis or searching in text the length of input sequences is usually

quite large. That is why approximation algorithms such as long run (LR) [13]

algorithm, expansion algorithm (ExpA) [14] and best next for maximal available

symbols (BNMAS) [15] have been found. These algorithms guarantee

performance ratio (i.e. the ratio of the length of the optimal solution over that

of the approximation) of |Σ| that is the size of alphabet Σ of the input sequences.

For DNA sequences |Σ| = 4 and for protein |Σ| = 20 holds, thus such results are not

very satisfying. In order to find better approximate solutions to the Longest

Common Subsequence Problem number of different heuristic algorithms have

been proposed with quite good results. In addition to the current state-of-the-art

Improved Algorithm for the LCSP [4] there are also algorithms based

on simmulated annealing [2] or the biologically inspired ant collony optimallization

(ACO) [9] which simmulates ants searching for food. Even HGACO (Hybrid GA

and ACO) [16] algorithm was proposed combining two evolutionary methods:

genetic algorithm and ACO. Despite the huge variety of different approaches this

section is concentrated only on a few recently state-of-the-art algorithms.

2.2.1 An Enhanced ACO Algorithm with Pair Matching Strategy

This algorithm [12] combines previously proposed ACO algorithm which is

inspired by ant collony foraging the food with matching pair algorithm (MPA).

It takes up previously succesful algorithm HGACO which uses repeatedly

alternating ACO algorithm and GA. Because GA requires lot of time, in EACO it is

replaced by the matching pair algorithm (MPA) which tries to connect the best

5

prefixes of candidate solutions and the best suffixes in the order to create better

solution.

The ACO uses a positive feedback realized by marks called pheromones.

Ant which is going back to the nest with food leaves pheromone marks on its path.

Ant searching for food will more probably use the path with larger amount

of pheromones. Marks vaporate in time, thus the longer path is less used than

the shorter one. Finally this algorithm discovers the shortest path from the nest

to the food. MPA tries to combine the longest prefixes with the longest suffixes

of input set of candidate solutions.

The heuristic algorithm is also used here but only for creating the first set

of candidate solutions. Then this set of solutions is given to ACO and the result is

considered as an input of MPA which tries to create longer solutions from given

subsequences. Consequently ACO and MPA periodically alternates until

the specified number of iterations is reached.

2.2.2 Beam search

Beam search is a constructive algorithm. It begins with an empty solution

which is iteratively extended by one character from given alphabet using all

possible ways. This algorithm is based on classical tree search but it allows only

limited number of branches at each step. The limiting number is the so called

beam width. In each iteration all possible extensions of current set of solutions

which can be reached by adding exactly one character from given alphabet are

created. Consequently best beam-width solutions are choosen from these feasible

solutions and this set is used to create next generation of candidate solutions by

adding one character. In the case of beam width equal to 0 it turns into greedy

algorithm, if the beam width is large enough to allow all possible extensions

the algorithm behaves as the basic breadth-first search. Otherwise solutions are

compared together and eventually deleted with regard to their fitness function

values.

Algorithm in [5] bounds not only the beam width, but also the number

of maximal possible extensions controlled by input parameter of this algorithm.

The value of this parameter should be between 1 and the |Σ|. If the number

of possible extensions is greater than allowed only the best characters are added

according to the so-called Best-next heuristic. Note, that in this algorithm solutions

with diffferent lengths are conceivable.

6

2.2.3 An improved Beam Search algorithm

An improved BS algorithm for the LCSP (ISB-LCS) [4] is based on the same

principe of BS as algorithm described above. However there are some differences,

which make this algorithm beeing the best of current state-of-the-art heuristic

algorithms to the LCSP. The first difference is in calculating the fitness values

of candidate solutions. The fitness here is based on probability that the random

string will be common subsequence of the rests of input sequences after deleting

their prefixes related to current candidate. Another difference is that improved

algorithm does not compare new candidate solution with each other but only with

specified number of best of current candidate solutions. Time saved by this

approach is used for enlarge the beam width. Fitness function for IBS-LCS is

described in more details in section 2.3.3.

2.3 Fitness Functions for GA

In heuristic algorithms used to solve the LCSP like simmulated annealing,

beam search or genetic algorithm there exist more candidate solutions.

The algorithm has to decide which solution is better and which is worse

and should be deleted. For this decision the fitness functions are used. The value

of fitness function shows the quality of candidate solution, how "fit" it is. Hence

higher fitness value means better solution. The quality of finite solution strongly

depends on how much the value of fitness function corresponds with requested

characteristics of an appropriate candidate solution s. For the right function

of genetic algorithm the pertinent fitness function is essential.

Each of further named fitness functions has its own advantages

and disadvantages and is tailored to certain type of algorithm. It does not mean,

that it is not possible to use it in different approach, but we can use it only if we

entirely understand the principe of this function. We also have to remember

the conditions under which is certain type of function defined.

An overview of the most commonly used fitness functions is given in this

section as they were taken as an inspiration for the evaluating function used

in the POEMS algorithm.

2.3.1 JH Function

First there is a simple function which is used in evolutionary algorithm

defined by Julstrom and Hinkemeyer [8] as follows:

7

Definition 1: fJH(s)

fJH(s) = 3000 (|c(s)| + 30m(s) + 50), if |c(s)| = n and m(s) = k,

 = 3000 (|c(s)| + 30m(s)), if |c(s)| < n and m(s) = k,

 = −1000 (|c(s)| + 30m(s) + 50)(k − m(s)), if |c(s)| = n and m(s) < k,

 = −1000 (|c(s)| + 30m(s))(k − m(s)), if |c(s)| < n and m(s) < k.

This function generally allows infeasible solutions (when m(s) < k) whose

fitness is set to negative values. Algorithms which use this function have to

calculate with the fact that such sequence can not be considered as finite solution.

In special occurence of |c(s)| = n (candidate solution has the maximal possible

length) this function is increased by 50. The reason for such advantage

(or disadvantage in case of infeasible solution) is not obvious, solution with

the maximal possible length will be better (worse) than the shorter one even

without this benefit. It is another disadvantage of this fitness function that it is not

clear why are its four constants set to just these values as they are and what will

happen, when we change them. It would be more understandable if these

constants depend on the length of input sequences or on their number.

2.3.2 fMAX

For clarify function fMAX(s) [2] it is necessary to define c(s)(d) as the longest

prefix of candidate solution, which is subsequence of all input sequences.

Its length is denoted here as d. Function fMAX(s) is counted as the length of prefix

c(s)(d) decreased by the length of the rest of this candidate solution. Thus

the longer the prefix is the higher is the value of fitness function. The maximal

length of prefix denoted as function MAX(c(s), a1, a2, ..., ak) and the fitness

function fMAX(s) are defined in following way:

Definition 2: MAX(c(s), a1, a2, ..., ak)

MAX(c(s), a1, a2, ..., ak)

= min {max {d | c(s)(d) is a subsequence of ai} | i ∈ {1, ..., k}}.

Definition 3: fMAX(s)

fMAX(s) = MAX (c(s), a1, a2, ..., ak) − (|c(s)| − MAX (c(s), a1, a2, ..., ak)).

After simplification we obtain following formula:

fMAX(s) = 2MAX (c(s), a1, a2, ..., ak) - |c(s)|.

Infeasible solutions are also allowed here, but they do not necessarily take

the negative values. Important property of this function is that deleting a character

which can not be mapped to the feasible solution increases the fitness value.

8

2.3.3 Probabilistic Heuristic

The probabilistic heuristic defined in [4] is based on the probability, that

random string y of length z is subsequence of the rest ri(c(s)) of each input

sequence. Set of these rests is denoted as R(c(s)) and it represents input

sequences deprived of characters from candidate solution.

The heuristic function hz(c(s)) is defined as follows:

Definition 4: hz(c(s))

hz(c(s)) = Pr (y is subsequence of R(c(s)))

Under assumption of independance the input strings it can be defined:

Pr (y is subsequence of R(c(s))) = Π Pr (y is subsequence of ri (c(s))

 for i ∈ {1, ..., k}.

Function Pr (y is subsequence of ri (c(s)) for i ∈ {1, ... ,k} can be determined

via dynamic programming which works with probability of that the first characters

are the same or not. It should not be forgotten, that hz(c(s)) depends not only

on c(s) but also on z. It means, that z has to be the same for all c(s). How to find

the best value for z is still not clear.

2.3.4 The Upper Bound Function (UB)

The UB function used in [5] counts the maximal possible extension

of current c(s). It is important to remember, that we have to count only

with feasible solutions. The UB function is defined in the following way:

Definition 5: UB(s)

UB(s) = |c(s)| + Σ min {|ai
B|c | i = 1, ..., n} for all c from Σ.

Here ai
B denotes the maximal rest of input sequence ai obtained from this

sequence by deleting its shortest prefix. |a|c stands for the maximum

of the occurences of character c in sequence a. For better insight here is

an example:

Lets have input sequences from the previous instance: ABCD, BDCA

and BCDD. Remind that null, B, C, D, BC and BD are all possible common

subsequences of this set. Consider the subsequence c(s) = B. The maximal rest

a1
B of the first sequence after deleting the shortest suffix corresponding with

the c(s) is CD, the same rest of the second sequence is DCA and of the last it is

CDD. Now go through the alphabet trying to find minimum occurences of choosen

character in all rests. For A and B character there is no common occurence. The C

appears in all rests at least once hence its contribution to sum in fitness function is

9

equal to 1. The same holds for D therefore the sum in fitness function for this

solution will be equal to 2.

Note that 2 is number of characters which are ideally possible to add. This

number is usually not reachable in real. In this case if C will be added, D wont

and vice versa. Thus this fitness shows the maximal estimation for extension

of current subsequence which probably wont be reached.

This function is used in beam search algorithm and can not be used

in genetic algorithms without changes because it prefers null solutions. It is caused

by the fact, that empty solutions have the maximal possible extension which is not

really obtainable.

3 POEMS
Prototype Optimalization with Improvement Steps as is described in [7] is

an algorithm which iteratively improves a temporary solution called "prototype".

Modifications on prototype are made by sequences of primitive problemspecific

actions which enable POEMS to search larger search space. The sequence

of actions is for further description denoted as AS.

Algorithm 1: Prototype Optimization with Evolved Improvement Steps

1 Prototype = GeneratePrototype()

2 i = 1

3 while (i <= nIterations) do

4 BestSequence = RunEA(Prototype)

5 Candidate = ApplyTo(BestSequence, Prototype)

6 if IsBetterThan(Candidate, Prototype) then

7 Prototype = Candidate

8 end if

9 i = i + 1

10 end while

11 return Prototype

The algorithm works as follows. At first the start prototype is initialized. Then

at the beginning of each iteration POEMS randomly generates a set of AS named

the AS population and then runs nGenerations evolutionary cycles. Each cycle

tries to find the best AS with respect to the current prototype. AS are compared

using fitness function of the solution they generate from the prototype considering

10

how much they improve it. In evolutionary cycle there are nTournament selections

in which the best "AS-parents" for "children" are choosen. During the crossover

from two parents two children are created having the properties inherited

from both parents. Children are then put through mutation which can influent ther

characteristics but only a little. If they are not the worst (according to their fitness),

children are added to the AS population to the detriment of worse ones.

In the population remain such ASs that cause the biggest improvement

of the prototype. At the end of the iteration the best AS from the AS population is

checked if it do not worsen the prototype. If do, the prototype stay unchanged.

If the modification makes the prototype better or the same quality as it was, the AS

is applied on prototype and the result is considered as the input for the new

iteration.

Algorithm 2: Genetic Algorithm for POEMS

1 ASPopulation = GenerateASPopulation()

2 i = 1

3 j = 1

4 while (i <= nGenerations) do

5 while (j <= nTournament) do

6 Parents = BestOf(ASPopulation)

7 j = j + 1

8 end while

9 Children = Crossover(Parents)

10 Children = Mutation(Children)

11 if NotTheWorst(ASPopulation, Children) then

12 add(ASPopulation, Children)

13 end if

14 i = i + 1

15 end while

16 return BestOf(ASPopulation)

Population of action sequences is initialized at the begining of each

iteration. ASs are randomly filled by actions until fixed length called maxGenes.

Types of primitive actions are defined in problem specific part of algorithm but

probability of selection of each type is the same. In addition each action can be

"switched on" or "swithched off". It means that action can be marked as "NOP"

11

action and such action is inactive. As the consequence the real number of active

actions in AS is always less or equal to its length. However NOP action still

remembers they own type and can be set as active again by mutation.

Other problem occurs, if there is a local optimum. It is probable, that AS

with greater number of active actions will be considered as worse and they will

disappear from the population. AS with only a few active actions wont be able to

get the prototype out of the local optimum that would cause a stagnation of

the search process. To avoid this state the drawers were created as they are

described in following paragraph.

Population of AS is devided into drawers indexed from 0 to maxGenes.

In each drawer there are sizeDrawer AS. The rule for randomly generated AS is

following: in each drawer can be only AS with the number of active actions

the same or greater than the index of the drawer. The reason is that in the last

drawer will be AS with at least maxGenes - 1 active actions and the diversity

in number of active actions is preserved. In addition to avoid deadlocks the AS

which do not modify the prototype at all is considered as the worst and its fitness is

set to the least possible value.

This algorithm works with only one temporary solution called prototype. This

is the difference between POEMS and beam search which remembers up to

beam-widtht candidate solutions throw entire algorithm. Although in comparison

with beam search POEMS do not have the advantage of remembering more than

one candidate solution, it is capable of modifying not only the last character, but

can affect all of the characters in temporary subsequence. It is limited only by

number of changes that can be realized throw one AS. This number is called AS

size and it can reach up to the value of maxGenes. This constraint is responsible

for a little disadvantage of this algorithm. If it is necessary to change more bits

in mask than maxGenes to achieve better solution from local maximum,

improvement is practicaly unreachable. So in such cases the diversity

of the possible candidate solution is influented negatively.

4 POEMS for LCSP
In this section two variants of the POEMS algorithm for solving the LCSP

are described. In Figure 2 there is a flowchart of both proposed algorithm which

can help to better understand the principe of optimalizing process. Each algorithm

also uses its own fitness function which is defined in section 4.3.

12

4.1 Representation

As in most of recent approaches an indirect "mask" representation has

been used. It means that the algorithm takes one input sequence as a reference

one, which is either the shortest input sequence of the set of input sequences or

the first one if all input sequences are of the same length. An array of 0s and 1s

of the same length as the reference sequence is then used as a mask whose

values indicate, which characters and in which order will constitute the candidate

subsequence. In particular, a value 1 at j-th position in the mask means that the

j-th character of the reference sequence appears in the candidate subsequence

while 0 means that the j-th character of the reference sequence does not. Thus,

the space of all possible subsequences is determined by the reference sequence

since only the characters present in the reference sequence can appear

in the generated subsequence, preserving their relative order in the reference

sequence.

Such easy representation we can afford since the solution has to be

a subsequence of all input sequences including the reference, hence character

which is not in the reference sequence has no chance to be in the subsequence

of all input sequences.

An alternative representation (which is not used here) would be to

determine the solution by the list of characters which appears in the subsequence.

In comparison with such approach using mask representation may cause that

changes in subsequence take place slower and it can take more evolutionary

cycles to find the way to better solution. Differences between mask and list

representation is discussed in section 7.

4.2 Actions

Changes in subsequence are realized by basic "Actions". Because of mask

representation the "SwitchOnOff" action would be enough to obtain all possible

subsequences. This action swaps bits in mask from 0 to 1 and vice versa thus only

one parametr is necessary. It is an integer number from 0 to length

of the reference subsequence decreased by one which is denoted as j. This

parametr define on which position the change will be applied. The result after

action application depends on the initial state of the mask. If mask[j] = 0 action

"SwitchOnOff" with parameter j swaps it to 1. It means that the character on j-th

position in the reference will be added on the corresponding place in

the subsequence. If mask[j] is equal to 1, after action application it will change to 0

thus the corresponding character will be deleted.

13

However there is a problem especially on the beginning of the algorithm.

When the mask contains only 0s more "switchOn" actions are required. Using only

one type of action the on effect depends on action parameter (eventually on

the mask). Better performance can be achieved if actions will be divided into two

types as mentioned above: "switchOn" and "switchOff" action. These actions have

still one parameter determining on which position the action will be applied but this

parameter can be derived only from corresponding positions in the mask.

"SwitchOn" action chooses the parametr only from the off-bites, "switchOff" action

only from on-bites. This separation will cause that at the begninning of algorithm

more "switchOn" actions will stay in AS population to fill defaultly empty

subsequence faster than using only one type of action.

4.3 Fitness functions

Two different fitness functions are described in this section. Each of them is

used in one of two here proposed algorithms. Fitness functions are different, but

they both check if the solution is feasible or not. The demand on feasibility is much

stronger than other requirements therefore feasible solutions will be always better

than infeasible ones. This is what causes the invariance of the length

of the solution at the end of the S-algorithm. Relevance of the requirements

in fitness functions is given by multipliers. More important requirement has to be

multiplied by number large enough so that it is not impacted by any value

of the less important one. This number is usually equal to the maximal possible

value of the next less important requirement.

4.3.1 nF Fitness Function

The fitness function for the S-algorithm is quite simple. It do not need

the mechanism for elongation the solution as it is done by algorithm itself. Thus it

is enough to demand the current solution to have the required length. Solutions

with different length are disadvantaged accordingly to the difference. NF fitness

function is then defined as follows:

Definition 6: nF(s)

nF(s) = l + (l - |ds|), if(reallyFeasible),

 = (l - |ds|), otherwise,

where l is maximal length of sequences and |ds| is the difference between

actual length of the current solution and required length. It is clear that to the

(l - |ds|) is in case of feasible solution added 1 multiplied by the maximal possible

value of that bracket (it means by the l).

14

4.3.2 RRm Fitness Function

RRm fitness function is used by W-algorithm. It consist of three parts.

The most important requirement is (as well as in the previous fitness) that

the solution have to be feasible. Then the maximal possible length is demanded

because elongation of the prototype have to be caused by this fitness function due

to initialization to empty string at the beginning of each algorithm. The least

resolver is the sum of prefixes (denoted here as sP) plus length of the longest

prefix (maxP) which is multiplied by number of input sequences to have the same

weight as the mentioned sum. By both these numbers the number 2kl is

decreased so neither the third part of this fitness function is never less than 0.

Accordingly to the beginning of this section the maximal value of this part (2kl) has

to multiplie the length of current solution. The third and most important

requirement has to be multiplied by 2kl2 to not to be impacted by other parts of this

fitness. RRm fitness function and further needed definitions follows.

Definition 7: RRm(s)

RRm(s) = 2kl2 + |c(s)| 2kl + (2kl - (sP + maxPk)), if(reallyFeasible),

 = |c(s)| 2kl + (2kl - (sP + maxPk)), otherwise.

Definition 8: maxP(c(s), a1, a2, ..., ak)

maxP(c(s), a1, a2, ..., ak) = max {pi | i ∈ {1, ..., k}}.

Definition 9: sP(c(s), a1, a2, ..., ak)

sP(c(s), a1, a2, ..., ak) = Σ {pi | i ∈ {1, ..., k}}.

Remind that the pi denotes the shortest prefix of ai for which c(s) is

a subsequence.

4.4 Algorithms for LCSP

The accent was put on the length of resulting subsequence and not on time

so the first proposed algorithm called "S-algorithm" is quite time-consuming.

It simulates the behavior of beam search algorithm when forces candidate

subsequences to have exactly the given length. At the beginning the length is

equal to 0 - it means that the algorithm starts with null string. Then the length is

increased by one in each iteration and through POEMS the prototype is improved.

For better understanding this algorithm see Figure 2. The aim of this method is to

take an advantage of iterative extension of candidate solution. Algorithm stops

when the length of candidate solution is not modified during 20 iterations despite

of enforced elongation. This state is caused by here used fitness function which

prefers feasible solutions. Infeasible solutions are allowed, but the feasible ones

15

are advantaged by much greater fitness. Therefore it is practically impossible to

replace them to infeasible ones. By reason of initialization to the empty sequence

(which is surely the common subsequence) algorithm never ends with infeasible

solution.

The second proposed algorithm combines POEMS with the fitness function

based on minimalization of prefixes of input sequences as they are defined

in section 2.2. Fitness function for this algorithm named "W-algorithm" is

described more precisely in following paragraphs. Infeasible solutions are allowed

here as well as in the previous algorithm and they are disadvantaged in the same

way. There is one parameter called window which is used as "window to input

sequences". W-algorithm also works iteratively but in this case it gradually enlarge

the length of input sequences. It means that in the first iteration only first window

characters from input sequences are considered to create a subsequence by

POEMS. In next iteration the length is increased by window again. The algorithm

stops when the end of input sequences is reached. The flowchart of this algorithm

is showed in Figure 2.

Figure 2: The flowchart of the S-algorithm and the W-algorithm

16

5 Implementation
In this section an implementation of entire algorithm is described in details

as it was implemented in Java. The class diagram is shown in Figure 3.

5.1 Implementation of POEMS

Lets start with the class startBatch. In its main method it reads

configuration of algorithm and loads data. Then new instance of class POEMS is

created and in dependance of the type of the algorithm its method start()

or runSteps() is launched. Both of these methods returns the resulting solution

and class startBatch then only save results to files.

Figure 3: The class diagram of the POEMS implementation

17

Class POEMS returns the solution to given problem. At the beginning there

is a method generateSolution() which generates new instance of class Solution

and returns it initialized accordingly to the currently used algorithm. Method

runEA(Solution prototype) runs an evolutionary algorithm on current prototype.

At the beginning of each evolutionary algorithm it creates a new instance of class

ASPopulation and then runs its method runEvolutionaryCycle() while

the nGenerations cycles are not completed. At the end it returns the best AS from

the ASPopulation. Method start() uses both above mentioned methods.

After generating solution (namely prototype) it calls method runEA(Solution

prototype) to find the best AS. If this AS does not worsen the prototype, it applies

AS to the prototype using method applyActionSequence(ActionSequence AS)

from class Solution. This all is done nIterations times and then the prototype is

returned. Finally there is a method runSteps used in steps algorithm which

iteratively increasses the required length of the prototype and runs method start

until the terminal conditions are not reached.

Class ASPopulation extends an array list of ActionSequences. It contains

a method generate Drawers() used during initialization, method evaluate()

and method getBestAS() which returns the best AS from the list. Then there are

two methods in relation with evolutionary algorithms: the first is the method

runEvolutionaryCycle() where crossover and mutation take place with probabilities

defined in configuration. For choosing two "parents" for "children" it uses

the second method runTournament(), which nTournament times compares

randomly choosen ASs from the list and returns the best AS for each parent.

Children are added to the list when they are not the worst with regard to their

fitness function.

Class ActionSequence which extends an array list of Actions has method

doCrossover(ActionSequence as) and the method doMutate(). The first of them

creates two children from two parents (the instance and the parameter). One

of the children is returned by this method and by the second the current instance is

replaced. The method doMutate() specifies the type of mutation of the actions

in AS, concretely whether type of action or its parameters will be mutated. There is

also method evaluate() used for evaluating children in evolutionary cycle. The last

important method in this class is countAction() which returns the number of active

actions in this AS.

There are two abstract classes in POEMS implementation which represent

the problem specific classes. The first is the class Action containing methods

relationed with initialization, namely the setActionType(double pActive) method

and the method doBitFlip(). The setActionType(double pActive) method sets

18

the type of this action to randomly choosen actiontype from the list of possible

types given by problem specific part of the algorithm. With pActive probability

the action is set to active type, else it stays "NOP". Method doBitFlip() can

exchange the active actiontype for NOP and vice versa. Other methods are

abstract and specify the initialization and mutation for the problem specific parts.

The second abstract class is class Solution. It contains method

evaluate(Solution prototype) which sets the fitness to the candidate solution with

respect to the current prototype. For comparing solutions there are two methods:

isBetterThan(Solution prototype) which returns true if candidate solution has

the same or better fitness than prototype and equalsSolutions(Solution s) method.

The second of them is abstract as well as oher methods such as importatnt

applyActionSequence(ActionSequence) method, calculateFitness() used by all

evaluate methods and method reallyFeasible(). Also initialization of Solution class

instance is problem specific.

5.2 Implementation of LCSP

This part overrides two abstract classess from the POEMS part of entire

algorithm. During the initialization of class LCSPAction list of possible action

types called actionBase is created. For this implementation there are "switchOn"

action and "swithcOff" action in this list. In dependence on the action type method

initParameters() is executed choosing only feasible parameters for each type

of the action. For "switchOn" action only the off-bits are possible as parameters

and analogously "swithcOff" actions can switch off only on-bits. According to

the same rule the mutation of the parameters can be done by method

doMutateParameters() when the parameter is increased or decreased to the next

possible value.

Class LCSPSolution represents the solution to the LCSP. It contains

an array of 0s and 1s which acts as the mask determining the appearance

of the corresponding subsequence. This array is initialized according to the type

of algorithm either to all 0s or to all 1s. Method reallyFeasible() returns true if

the subsequence represendted by the mask is subsequence of all input

sequences. In this class there is also important calculateFitnes() function which

returns the value of fitness depending on current type of the algorithm. Previously

mentioned method applyActionSequence(ActionSequence AS) modifies the mask

in accordance with the AS from its parameter. It goes through the list of AS's

actions and in consonance with their type change matching bit in the mask. This

class also implements method equalsSolutions(Solution s). It returns true if both

19

solutions represent the same subsequences. Note that to be equal Solutions do

not necessary have to have the same mask.

6 Experiments
Here proposed algorithms were both implemented in Java on personal

computer Intel(R) Pentium(R) Dual CPU 2.16GHz with 1,96GB RAM using

Windows XP. The same computer was used also for running tests. At first a few

experiments were designed to test varying configurations of proposed algorithms

and back up some arguments in previous sections. Results of this experiments are

brought together in Table 1.

The rest of the tests are focused on comparison of solutions found by

current state-of-the-art algorithms (namely IBS-LCSP [4] and BS [5]) and

the solution found by POEMS. Two types of BS algorithm were proposed in [5] but

only the one which emphasize quality of resulting solution (BS-high-quality, BShq

respectively) was considered since the length of the solution is the main priority

for both W-algorithm and S-algorithm.

6.1 Datasets

Datasets used for testing most other algorithms were choosen to obtain

meaningful results. On the same datasets two current state-of-the-art algorithms

were tested, namely improved algorithm [4] or beam search [5]. These datasets

consist of various types of alphabet. There is 0-1 alphabet in the randomly

generetad ES dataset and also typical DNA alphabet consists of four letters: A, C,

G and T. Alphabet of size 20 denoting types of amino acids in proteins also can be

found as well as alphabets of the size from 10 to 100 characters in randomly

generated ES. Datasets named ES and rand are randomly generated on contrary

of Rat and Virus datasets which comes from real genomes of rat and virus.

Rat, virus and rand datasets contain only two types of alphabet. Classical

DNA alphabet consists of four letters denotes the base, protein 20-characters

alphabet designates the type of amino acid in this protein. In case of DNA

sequences there are not only four characters in datasets, but also the "N"

character appears. It represents non-recognized base, thus it could be regarded

as arbitrary character from given alphabet. The same role is played by

the character "X" in protein datasets where it denotes an arbitrary amino acid.

Except randomly generated rand dataset all sequences originates from real DNA

sequences from NCBI (National Center for Biotechnology Information) taking first

600 character from obtained sequence. To run tests only sets with number of input

20

sequences equal to 10, 40, 100 and 200 were choosen as they show

the performance of proposed algorithms enough.

Randomly generated ES dataset contains various type of alphabets.

Namely the lengths 2, 4 and 10 for length of input sequences equals to 1000, 25-

characters alphabet for length of 2500 and at the end alphabet which consists

of 100 character with input seguences of length 5000. Due to lack of time for tests

only four datasets from ES were choosen, namely that of |Σ| equal to 2 and 10 with

combination of number of sequences in dataset equal to 10 and 50.

6.2 Setup

Rat, virus and rand dataset contain only one file per each combination

of length of the alphabet and number of sequences thus all of these datasets were

tested five times independantly to get reliable results. The average values for each

dataset are presented in corresponding tables.

The ES dataset contains 50 different input files for each combination

of the length of the alphabet and the number of input sequences. Thus

the algorithm was run only once on each data file and the presented results show

the average lengths of sequences among all 50 files. Even though the both

proposed algorithms put stress on quality of the solution rather than at time,

the average values of required execution timed are shown as well. Standard

deviations of the corresponding values can be found in brackets. Aditionally

the performance ratio (α) defined as (W-algorithm − IBS-LCSP)/IBS-LCSP

(analogously for S-algorithm) is counted to make comparison of new algorithms

and the current state-of-the-art IBS-LCSP easier.

6.3 Configuration of POEMS

Proposed algorithms were tested with folowing configuration: An nIterations

of POEMS was set to 20 for the S-algorithm and to 50 for W-algorithm

and probability of setting action to be active was considered as 50%. Genetic

algorithm used in POEMS was configurated to 20 nGenerations

and 10 nTournaments, maximal possible size of AS (maxGenes) was set to 10

and sizeDrawer to 20. Thus GA works with 200 AS. Probabilities was following:

p. of crossover = 71%, p. of mutation = 18% and p. of switching NOP and active

action = 26%.

Except the first five experiments designed for parameters setting, tests were

run on algorithms as they are described in previous sections. The S-algorithm

does not need any special setting whereas for the W-algorithm its only parameter

21

window was configurated to 20. Both algorithms start with an empty solution thus

an array mask was initialized to all 0s.

6.4 Results

In order to briefly present the results of the first part of experiments focused

on the appropriate setup of the algorithms Table 1 was created. At first the results

of final setup of algorithm is for better comparison placed in the first column.

Results of experiment which tries to demonstrate improvement caused by adding

sum of indexes in mask to the current fitness function follows in the column 2.

As is seen from table the difference in lengts of founded solutions is not much

relevant. The third test was focused on setting the only parameter of the W-

algorithm namely the window. For further tests the window = 20 and it is clear that

the larger window has negative impact on the quality of solution. Also nIterations

as an important parameter of POEMS algorithm was tested and as it is seen from

the fourth column more iterations cause better performance of algorithm as it has

more time to find better solution. Latterly the fourth experiment was run to show

differences between the algorithm which uses two types of actions and the one

which uses only one type. Additionally the difference of results while working only

with feasible solutions and while infeasible solutions are allowed is presented

at the end of this table.

All these tests run the W-algorithm as the S-algorithm requires a lot of time

and moreover it does not need any specific configuration. For tests only two

dataset of rat genome was used as the results for virus and random dataset would

be similar. Test were designed to put stress on quality of the resulting sequence,

thus only the average lengths of subsequences are compared in the table.

Concerning the comparison of proposed algorithm and the current state-of-

the-art algorithms there are six tables showing the performance of W-algorithm

on DNA and protein datasets. In the first column the number of input sequences

for appropriate dataset is defined. Results of W-algorithm given in second column

are calculated as average lengths of obtained sequences (LLCS) while BShq

and IBS_LCSP results folows in further columns. For each algorithm the average

time results calculated in seconds are placed in special columns whereas

the performance ratio takes place at the end of each table beeing calculated from

results of W-algorithm with regard to the IBS-LCSP.

Results of ES dataset are divided into two tables (see Table 8, 9). The first

of them contains results from datasets with number of input sequences equal to 10

on which both algorithms were tested. Considering datasets with larger alphabet

size the W-algorithm provides solutions of higher quality than the S-algorithm but it

22

would need more experiments to compare it together. On the datasets with 50

input sequences only S-algorithm was tested.

In spite of expectance obtained results were not as good as that of the IBS

algorithm. Nevertheless they are quite close to them considering datasets with

large number of input sequences. Especially for rat datasets of number of input

sequences egual to 200 the performance ratio reaches the value of -0.03.

Table 1: Parameters setting.

rat RRm RRm + Σ(i) window = 50 nIter. = 20 one action all feasible

|Σ| = 4 174.6(3.5) 173.6(2.8) 169.4(2.1) 170.6(1.6) 174.8(1.8) 176.6(3.3)

|Σ| = 20 60.6(1.2) 59.6(2.4) 58.6(1.9) 57.2(0.4) 59.0(1.8) 61.2(1.2)

Table 2: Results for rat instance of alphabet size 4. Comparison of the W-algorithm

with BS-hiqh-quality and the improved BS algorithm for rat instance of alphabet size 4.

 |Σ| = 4

l = 600 W-algorithm BShq IBS-LCSP α

k LLCS time LLCS time LLCS time

 10 175(3.5) 173.7 191 9.7 199 0.4 -0.12

 40 141(2.4) 323.1 146 9.4 146 0.5 -0.03

100 127(1.0) 589.5 132 38.5 132 1.0 -0.03

200 117(2.1) 1050.0 121 69.1 120 1.6 -0.03

Table 3: Results for rat instance of alphabet size 20. Comparison of the W-algorithm

with BS-hiqh-quality and the improved BS algorithm for rat instance and alphabet size 20.

 |Σ| = 20

l = 600 W-algorithm BShq IBS-LCSP α

k LLCS time LLCS time LLCS time

 10 61(1.2) 165.3(2.7) 69 27.4 70 0.5 -0.13

 40 44(0.5) 286.2(8.2) 49 47.0 49 0.6 -0.10

100 35(1.0) 509.3(2.6) 38 64.8 39 1.1 -0.10

200 31(1.1) 863.6(7.4) 33 101.0 32 1.7 -0.03

23

Table 4: Results for virus instance of alphabet size 4. Comparison of the W-algorithm

with BS-hiqh-quality and the improved BS algorithm for virus instance and alphabet size 4.

Table 5: Results for virus instance of alphabet size 20. Comparison of the W-algorithm

with BS-hiqh-quality and the improved BS algorithm for virus instance and alphabet

size 20.

 |Σ| = 20

l = 600 W-algorithm BShq IBS-LCSP α

k LLCS time LLCS time LLCS time

 10 64(1.0) 164.1(2.7) 75 27.2 75 0.5 -0.15

 40 44(0.8) 286.8(8.2) 49 48.4 49 0.6 -0.10

100 39(0.7) 523.3(2.7) 43 74.2 44 1.5 -0.11

200 39(0.6) 906.4(8.2) 43 140.0 44 2.2 -0.11

Table 6: Results for random instance of alphabet size 4. Comparison of the W-algorithm

with BS-hiqh-quality and the improved BS algorithm for random instance and alphabet

size 4.

 |Σ| = 4

l = 600 W-algorithm BShq IBS-LCSP α

k LLCS time LLCS time LLCS time

 10 189(2.5) 174.0 211 9.8 218 0.4 -0.13

 40 157(0.5) 333.8 167 21.0 172 0.7 -0.09

100 146(0.9) 639.4 154 40.3 158 1.2 -0.08

200 140(1.2) 1141.7 146 74.3 150 2.1 -0.07

 |Σ| = 4

l = 600 W-algorithm BShq IBS-LCSP α

k LLCS time LLCS time LLCS time

 10 193(2.7) 176.1(3.1) 212 11.6 225 0.5 -0.14

 40 154(2.0) 330.6(1.1) 162 21.9 168 0.6 -0.08

100 144(1.7) 631.1(4.0) 150 43.9 158 1.2 -0.09

200 144(0.7) 1140.2(1.3) 145 84.5 154 2.1 -0.06

24

Table 7: Results for random instance of alphabet size 20. Comparison of the W-algorithm

with BS-hiqh-quality and the improved BS algorithm for random instance and alphabet

size 20.

 |Σ| = 20

l = 600 W-algorithm BShq IBS-LCSP α

k LLCS time LLCS time LLCS time

10 50(1.0) 159.7 61 33.3 61 0.5 -0.18

40 33(0.7) 277.0 37 43.2 38 0.6 -0.13

100 28(0.6) 500.0 31 59.2 31 1.2 -0.10

200 25(0.4) 862.8 27 98.0 28 1.9 -0.11

Table 8: Results for sets of 10 input sequences from ES instance. Comparison of the W-

algorithm and the S-algorithm with BS-hiqh-quality and the improved BS algorithm for sets

of 10 input sequences from ES instance.

 k = 10

l = 1000 W-algorithm S-algorithm BShq IBS-LCSP α(W) α (S)

|Σ| LLCS time LLCS time LLCS time LLCS time

 2 556.7(4.7) 498.1 561.3(5.3) 1027.2 592.6 14.8 610.2 0.9 -0.09 -0.08

10 161.7(2.7) 3354.5 158.5(3.0) 312.5 192.2 9.4 199.7 0.9 -0.19 -0.21

Table 9: Results for sets of 50 input sequences from ES instance. Comparison of the S-

algorithm with BS-hiqh-quality and the improved BS algorithm for sets of 50 input

sequences from ES instance.

 k = 50

l = 1000 S-algorithm BShq IBS-LCSP α

|Σ| LLCS time LLCS time LLCS time

 2 507.3(2.0) 2695.2 521.9 43.5 535.0 1.5 -0.05

10 115.4(1.6) 698.9 129.6 18.8 134.6 1.4 -0.14

7 Discussion
In this section possible reasons for low quality of obtained sequences are

discussed as well as problems which appeared within the implementation.

25

7.1 Feasibility of Candidate

There are two ways to assure resulting solution to be feasible (i. e. to be

subsequence of all input sequences). At first we can consider only the feasible

subsequences through entire algorithm. It requires to use a method which turns all

infeasible solutions to the feasible ones before each calculation of fitness function.

This problem can be tackled by deleting characters which stand in the way

solution to be feasible (considered from left to right). Such behaviour may be

considered as quite big interference with process of genetic algorithm but

on the other hand it can better preserve the diversity of candidate solutions.

Alternatively the infeasible solutions are allowed, but they have much less

fitness values than the feasible ones. Therefore feasible solution always has

the greater fitness than infeasible, so it can not be replaced by infeasible one.

Since starting from the empty sequence (which is always a common

subsequence) algorithm never ends with the infeasible solution.

7.2 Initialization of Prototype

It is a big question how should the first prototype look like. Most

of previously used algorithms are constructive and start with empty solution as well

as here proposed algorithms. Both W-algorithm and S-algorithm begin with

an empty subsequence and iteratively try to fill it with feasible characters. But still

there are other possibilities how to create the first prototype. As opposition to

the empty subsequence the mask can be initialized to all ones. It means that

at the beginning of the algorithm the first prototype looks entirely like the reference

sequence. Then within the algorithm infeasible characters are deleted until

feasible solution is reached. Special fitness function is needed here to decide

which characters should be deleted to obtain subsequence as long as possible.

Other alternative is to initialize mask to 0s and 1s randomly, however it was

realised that it is not very good method as it is too much determining.

Consequently it is very difficult for AS to improve the prototype especially when it

is necessary to change large number of characters.

7.3 Problem Representation

This paragraph is focused on comparison between representation

of solution as mask on shortest input sequence (reference) and as a list

of characters from given alphabet. For good performance the probability with that

changes takes place (eventually the speed of modifying the solution) is important

and it is closely associated with the representation of the problem.

26

For better understanding lets consider following example: First start with

quite short input sequences. Having reference sequence ACCBD and other two

sequences CCBDA, CCBDD it is clear that the longest common subsequence is

CCBD. Lets think about the mask representation. Suppose the mask 11100

and corresponding subsequence ACC. It is seen, that it is necessary to remove

the character A to be able to obtain longer subsequence. That can be done only

by "switchOff" action with parameter 0. If we consider only "switchOff" actions this

modification has probability 1/3 (one of three switched-on characters). With list

representation and corresponding two types of actions the probability is the same.

(There are only three characters to be switched off.) However if we want to add

some character on the particular place, the probabilities will be different. Now

having the mask 01100 and subsequence CC we want to add B to obtain longer

subsequence CCB. While using mask representation the probability of required

action ("switchOn" on 3) is 1/3 again (one of three switched off characters) but

using list representation it is necessary to choose not only the position, but also

the character which will be added. The probability of adding B is then 1/3x1/4 =

1/12. (The probability of choice of the right place and the probability of choice

of the right character.)

For short sequences mask representation seems to be better. However

everything change dramatically when the sequences will be much longer. Imagine

the simmilar case as above with input sequences of length 100. For ACCBDAAAA

... A, CCBDABBBB ... B, CCBDDDDDD ... D the LCS will be the same (CCBD) but

probabilities of modifications will change. Having mask 111000000 ... 0 probability

of removing A stays 1/3 (one of three on-bites), but when we want to add B, with

mask representation it will be more difficult. The probability of action which add B

at the end of subsequence CC is now 1/98 (one character of 98 switched-off

characters. But with list representation it still remains 1/12. Therefore for longer

sequences list representation appears as more useful.

Situation changes not favourably for list representation in case of larger

alphabet. If the alphabet of this particular problem will be of size 50 the probability

of adding B will change to 1/3x1/50 = 1/150 while with the mask representation it

stays the same since type of character is choosen with place. The same case

comes on with elongation the sequences when the number of possible places

grows.

Considering the same number and types of active actions following

formulae for probability of adding the right character on the particular place hold:

27

for mask representation:

P = 1/(n - |c(s)|),

for list representation:

P = 1/((|c(s)| + 1)|Σ|),

where n is the length of the reference and |c(s)| denotes the length

of candidate solution.

If we match these two formulae together it can be deduced following:

|c(s)| = (l - |Σ|)/(|Σ| + 1).

If this formula holds, probabilities for mask and list representation are

the same. Length of candidate solution greater than this boundary will make

the mask representation more convenient, in case of shorter candidate solution it

would be better to choose the list representation.

It is clear that the boundary value depends on length of input sequences

and on used alphabet. Thus we are able to count the boundary values for datasets

used in this work to sum up which representation would have better performance.

For DNA sequences of length 600 the boundary is (600-4)/(4+1) = 119,2,

for proteins datasets it can be calculated as (600-20)/(20+1) = 27,5. These

numbers are quite close to lengths of resulting sequences thus it would be

considered that it is not important which representation is used. Nevertheless

at the beginning when actions are applied on very short candidate solutions the list

representation always win.

7.4 Further Actions

To change representation of problem is not the only way to improve

performance of proposed algorithm. Also adding some specific actions can cause

faster modification of the prototype and shorten the way to the better solution.

Excepting "switchOn" action (on position) and "switchOff"action (on position) there

can be also action, which switch two characters together or change the character

to another from given alphabet. More types of actions can be useful in both

representation the mask and the list.

Number of actions needed to perform some modifications:

 add char. remove char. switch 2 char. change char.

sw.On/sw.Off 1 action 1 action 2 actions 2 actions

If each two actions which is needed to switch two characters and change

character to other from given alphabet will be replaced by one special "switchTwo"

and "changeCharacter" action, the modification of prototype could be easier.

28

7.5 Characters Specified by the Mask

The last problem which was found using mask representation in relation

with S-algorithm is not easy to describe therefore use the example again. Suppose

the S-algorithm as is described in section 4 and start with subsequence

with required length 1. Imagine, that character T is in all sequences at the first

position. Therefore the best subsequence is with no doubt T and actions whose

result is T will have the best fitness. The problem occures if T appears also

somewhere at the end of the reference sequence e.g. on the last position.

Consequently the action which switches on the last bit in mask can be considered

as the best, however for the rest of the algorithm there is no chance to add some

character after T. Characters can be added only before T, but if it is required

to have T as the first character adding anything before it is not desired. This

problem is caused by the fact, that the choosen T is not whatever T, but exactly

the T on the last position in reference. While evaluating T it is not controlled, where

the T is, and algorithm considers as T the first T which appears in each

subsequence. To deal with this problem the T at the end of the reference

sequence should has not the same fitness as T choosen from the first position.

First attempt at improvement of the algorithm preformance was adding

the "least-index" request to fitness function. Sum of indexes in mask should be

the least possible, means that whan we want to add T, it should be such T

in reference, which has the least index. Fitness function then may looks as follows:

(previous fitness)(maxI) + Σ{mask[i] | i = 1, ..., n}

where maxI is maximal possible value of addded sum and it is equal to

l(l - 1)/2.

Regrettably it turned out that it is not much helpful due to problem

mentioned in the first paragraph. It is very small probability that the action will pitch

upon the "best T", it means the T at the beginning of the reference sequence.

Concretely if we consider the sequence of length of 600 characters, the probability

of choosing the right T is 1/600 to switch on required T. When the right T is not

choosen at first, the probability changes to 1/360000 (1/600 to delete currently

choosen T x 1/600 to add the right one). There wont be this problem with the list

representation where it is enough to choose the best character from the alphabet.

In this work the algorithm deals with this problem by special attitude

to the reference sequence, while it consideres not the first found charecter but

exactly the one specified by the mask. Nevertheless it is still not enough to move

"T"s to the beginning of reference.

29

8 Conclusions and Future Work
In this work two algorithms employing POEMS algorithm were proposed

to deal with the LCSP for arbitrary number of input sequences. However obtained

results are not as good as was expected especially for less numbers of input

sequences. This fact is attributed to several problems discussed in previous

section. Nevertheless for large sets of input sequences results are quite close

to the current state-of-the-art algorithms with regard to the solution quality.

However, the POEMS is much worse than both compared state-of-the-art

algorithms in terms of the computational time. This is probably caused by repeated

computation of the population-based evolutionary algorithm.

In the future it would be interesting to run proposed algorithms

with combination of the list representation or with more types of actions. Further

experiments can also investigate the dependance of solution quality on window

size in case of W-algorithm.

9 References
[1] T. Jansen and D. Weyland, "Analysis of evolutionary algorithms for the longest
common subsequence problem". In Proceedings of the 9th annual conference on Genetic
and evolutionary computation. New York: ACM, 2007, p. 939-946. ISBN: 978-1-59593-
697-4.

[2] D. Weyland, "Simulated annealing, its parameter settings and the longest common
subsequence problem". In Proceedings of the 10th annual conference on Genetic
and evolutionary computation. New York: ACM, 2008, p. 803-810. ISBN: 978-1-60558-
130-9.

[3] B. A. Julstrom and B. Hinkemeyer, "Starting from scratch: Growing longest common
subsequences with evolution". In Proceedings of the 9th international conference
on Parallel Problem Solving from Nature. Springer-Verlag Berlin, Heidelberg: 2006, p.
930-938. ISBN: 978-3-540-38990-3.

[4] S. R. Mousavi and F. Tabataba, "An improved algorithm for the longest common
subsequence problem". Computers and Operations Research 2012, 39(3), p. 512-520.

[5] Ch. Blum, M. J.Blesa, M. López-Ibáñez, "Beam search for the longest common
subsequence problem". Computers and Operations Research 2009, 36(12) p. 3178–86.

[6] Ch. Blum and M. J. Blesa, "Probabilistic Beam Search for the Longest Common
Subsequence Problem". Lecture Notes in Computer Science 2007, p. 150-161. ISBN:
978-3-540-74446-7.

[7] J. Kubalík, "Solving the DNA Fragment Assembly Problem Efficiently Using Iterative
Optimization with Evolved Hypermutations". In Proceedings of the 12th annual conference
on Genetic and evolutionary computation. New York: ACM, 2010, p. 213-214. ISBN: 978-
1-4503-0072-8.

[8] B. Hinkemeyer and B. A. Julstrom. "A Genetic Algorithm for the Longest Common
Subsequence Problem". In Proceedings of the 8th annual conference on Genetic and
evolutionary computation. Seattle: ACM, 2006, p. 609-610. ISBN:1-59593-186-4.

30

[9] S. J. Shyu and C.-Y. Tsai, " Finding the longest common subsequence for multiple
biological sequences by ant colony optimization". Computers & Operations Research
2009, 36(1), p. 73-91.

[10] J. Kubalík, "Efficient stochastic local search algorithm for solving the shortest
common supersequence problem". In Proceedings of the 12th annual conference comp
on Genetic and evolutionary computation [CD-ROM]. New York: ACM, 2010, p. 249-256.
ISBN 978-1-4503-0073-5.

[11] J. Kubalík, "Evolutionary-Based Iterative Local Search Algorithm for the Shortest
Common Supersequence Problem". In Proceedings of the 13th Annual Conference
on Genetic and Evolutionary Computation [CD-ROM]. New York: ACM, 2011, p. 315-322.
ISBN 978-1-4503-0557-0.

[12] H.-Y. Wenga, S.-H. Shiaub, C.-B. Yanga, Y.-H. Penga and K.-S. Huanga,
"An Enhanced ACO Algorithm with Pair Matching Strategy for the Longest Common
Subsequence Problem".

[13] T. Jiang and M. Li, "On the approximation of shortest common supersequences
and longest common subsequences". SIAM Journal on Computing 1995, 24(5), p. 1122–
39.

[14] P. Bonizzoni, G. D. Vedova, G. Mauri, "Experimenting an approximation algorithm
for the LCS". Discrete Applied Mathematics 2001, 110, p. 13–24.

[15] K. S. Huang, C. B. Yang, K. T. Tseng, "Fast algorithms for finding the common
subsequence of multiple sequences". In Proceedings of international computer
symposium. Taipei, Taiwan: 2004. p. 90–95.

[16] H.-Y. Weng, S.-H. Shiau, K.-S. Huang, and C.-B. Yang, “Hybrid algorithm
for the longest common subsequence problem”. In Proceedings of the 26th Workshop
on Combinatorial Mathematics and Computation Theory. Chiayi, Taiwan: 2009, p. 122–
129.

