
CZECH TECHNICAL UNIVERSITY IN PRAGUE

FACULTY OF ELECTRICAL ENGINEERING

Bachelor Thesis

Tomáš Nouza

Localization of mobile robots for exploration using
cloud services

Department of Cybernetics

Supervisor: Ing. Michal Reinštein, Ph.D.

Prague, 2012

Abstract

The aim of this thesis is to analyze the state-of-the-art of the currently avail-
able cloud services used for online localization of mobile robots performing urban
search and rescue missions. Based on this analysis, a robust algorithm for local-
ization of the mobile robot developed as a part of the Natural human-robot coop-
eration in dynamic environments (NIFTi) project was implemented in the Robot
Operating System (ROS). The localization includes mainly the trajectory informa-
tion in global world coordinates as well as markers corresponding the detected
objects of interest. The result is visualized in the online map application.

To provide this localization algorithm with the suitable navigation data, a
landmark based navigation algorithm was introduced. This relies on the com-
puter vision and is based on the matching feature points between the actual cam-
era view and the previously composed reference cloud of landmarks created lo-
cally (extension to the global navigation is discussed). For this purpose, the state-
of-the-art techniques such as Structure from Motion, Speeded-Up Robust Fea-
tures, and the Fast Approximate Nearest Neighbors were used.

Abstrakt

Cílem této práce je analýza state-of-the-art v současné době dostupných clou-
dových služeb využitelných pro online lokalizaci mobilních průzkumných robotů,
používaných při pátracích a záchraných misích v obydlených oblastech. Na zák-
ladě této analýzy byl implementován robustní algoritmus pro lokalizaci pásového
robota, vyvíjeného v rámci projektu NIFTi (Přirozená spolupráce robotů a lidí v
proměnlivých prostředích), pro prostředí ROS (Robot Operating System). Tato
lokalizace zahrnuje převážně trajektorii robota ve světových souřadnicích a ro-
botem detekované objekty. Výsledek je zobrazen do online mapové aplikace.

Aby byla tomuto lokalizačnímu algoritmu poskytnuta náležitá navigační data,
byl navržen navigační systém založený na orientačních bodech. Tento systém,
založený na metodách počítačového vidění, spočívá v přiřazení charakterických
bodů mezi aktuálním pohledem kamery a předem spočítaným referečním mrač-
nem orientačních bodů (rozšíření pro globální využití je diskutováno). Pro tento
účel byly využity nejmodernější techniky jako je Structure from Motion, Speeded-
Up Robust Features a Fast Approximate Nearest Neighbors.

Acknowledgements

I would gladly like to thank my supervisor Ing. Michal Reinštein, Ph.D. for his
knowledge support and permanent flogging me to work. I also want to express
special thanks to Mgr. Michal Havlena for his magics with SfM, which saved me
a lot of time in dead ends. I would also like to thank my family and girlfriend for
their patience, soothing and moral support.

Contents

1 Introduction 1

2 Resources 3

2.1 Hardware . 3

2.2 Software . 5

2.2.1 Willow Garage software . 5

2.2.2 CTU software . 5

2.2.3 Google products . 7

3 Theory 9

3.1 Conversion of coordinates . 9

3.2 Speeded-Up Robust Features . 10

3.3 Fast Approximate Nearest Neighbors 11

3.4 Transformation of 3D map to the global coordinate frame 11

3.5 Robot localization in a 3D map . 13

4 Implementation 15

4.1 Visualization using Googlemaps node 15

4.1.1 Robot applications . 15

4.1.2 Cloud buffer . 17

4.1.3 Web interface . 17

4.2 Landmarks based navigation . 17

5 Evaluation 19

5.1 Evaluation of the Googlemaps node 19

6 Discussion 22

6.1 Visualization using Google Maps . 22

6.2 Future work on the landmarks based navigation 23

i

7 Conclusion 24

Appendix A: CD content 30

ii

List of Figures

2.1 BlueBotics UGV [1] used in NIFTi project [2] 4

2.2 Side view of the robot . 4

2.3 Example of car detector. Red line represents rangefinder laser beam,
which is used to filter false positive detections. 6

2.4 CTU quad represented by a colored 3D cloud of landmarks com-
posed from panoramic images. Red dots represent reconstructed
camera positions of each image. 7

2.5 CTU quad from Google Maps. 7

3.1 Matched SURF [3] points (green dots) from 3D cloud 13

3.2 Original robot camera image . 14

4.1 Process diagram showing the division of the visualization process
into different computational layers. 16

4.2 Process diagram describing the landmarks based navigation. Green
part is made only once before placing to the robot. Blue part is run-
ning online and is repeated for every new image. 18

5.1 Terminal output of just terminated Googlemaps node 20

5.2 Google Drive [41] interface showing the newly created fusion table 20

5.3 Example of fusion table generated using Googlemaps node 20

5.4 Visualization of the robot trajectory in Google Maps. Detected car
is displayed as a red dot. 21

5.5 Form for publishing the map . 21

iii

Chapter 1

Introduction

In this work we will look closer to some state of the art cloud services and their
application to the map localization of the search and rescue robot developed as a
part of the NIFTi project. NIFTi (Natural human-robot cooperation in dynamic en-
vironments) [2] is an European project FP7-ICT-247870 focusing on Urban Search
& Rescue (USAR) missions. It concerns human-robot cooperation such as the lo-
calization of victims trapped in confined spaces due to natural disasters, building
or mine collapse, transportation accidents, etc. The emphasis is put on minimizing
task load for human and optimizing workflow. Sharing of information via various
interfaces is crucial for any human-robot cooperation and hence map visualization
of the robot trajectory and other objects of interest, that robot has detected during
mission (cars, victims, etc.), is key for the robot operators.

For this reason this thesis aims to: first, provide these information on the inter-
net to be available independently on where the user is and what device he or she
uses (PC, Mac, tablet, etc.), and second, suggest and evaluate one of the possible
ways of determining robot position with respect to the global world map. In the
section 2.1 there is closely described a robotic platform and its sensor equipment,
that is used for robot localization (orientation and position estimation), mapping
and for the detection of objects. For this purpose I have implemented a client side
Python script, that records these data and uploads them via a web application
to a cloud storage, from which they are used for visualization in an on-line map
application as described in the section 4.1.

These days the internet is full of map applications which differ in area cov-
erage, amount of details and functions of user API (Application Interface). I had
compared several of them and then decided to use the Google Maps due to its
user-friendly documentation, worldwide coverage and direct connection to other
Google products like a database storage. More information about Google products
used in this work can be found in the section 2.2.3.

The same method as mentioned above is used in Google My Tracks [4] where
data from user’s GPS (Global Position System) receiver are uploaded as tracks to
a cloud storage and visualized in Google Maps. Tracks can be shared with other
users and also information like average speed, elevation profile, etc. are provided.

1

1 INTRODUCTION

This product is not used in this work because it does not allow to visualize de-
tected objects and any other important non-trajectory markers.

Visualization of the robot position is useless if the robot position is unknown.
There are several possible ways how to determine it. First is the dead reckon-
ing navigation based on data fusion of proprioceptive sensors (odometry, inertial
measurements). Second, a large group of computer vision based approaches using
either camera images (visual odometry, VSLAM, etc.) or laser point cloud mea-
surement. Regrettably these localization systems provide only relative positions
(translation and rotation) with respect to the initial position. It also has an accu-
mulative error, which increases with traveled distance. For drawing anything on
maps, the position with respect to a global geodetic system is necessary. This can
be acquired by any GNSS (Global Navigation Satellite System) like GPS. Unfor-
tunately, satellites are unreachable in many USAR mission locations (e.g. narrow
street, building, tunnels, etc.). Fourth solution is to use an image matching based
navigation, which uses a database of images with known positions and compares
it with an actual camera view.

Regarding the image based navigation, Robertson and Cipolla [5] announced a
system that allows to navigate in an urban environment using just a single camera
and a database containing building facades. The accuracy was in the street scale
and it had problems in locations with similar buildings. Different system [6] tries
to match camera images to an aerial image depending on specific road features
like road marking. Senlet and Elgammal [7] introduced a system combining stereo
visual odometry, satellite images and route map working even on rural routes
with no marking but still working only on the routes. After reading [8] I decided
to use landmark based navigation as described in [9] and in [10].

This solution uses a 3D cloud of visual landmarks and compares them with
landmarks detected in the actual robot camera view. For comparison the Fast Ap-
proximate Nearest Neighbors (FLANN) [11] algorithm is used, which is in orders
of magnitude faster than exact linear search, while still providing sufficient near
optimal accuracy. More about FLANN is in the section 3.3. If there are three or
more credible matches, robot position can be calculated as described in the sec-
tion 3.5. For describing landmarks is advantageous to use Speeded-Up Robust
Features (SURF) [3] because it is faster than other detectors, while its performance
is comparable or sometimes even better. For more informations about SURF see
the section 3.2. To generate the 3D cloud in this work is used Structure from Mo-
tion (SfM) algorithm presented in [12]. Benefit is that the 3D position of every
SURF in the cloud is transformable to the global navigation frame if at least three
points have known positions. This transformation is described in the section 3.4.
Disadvantage is that the location has to be visited a priori to create this reference
3D cloud. Whole implementation of this localization method is in the section 4.2.

In the section 6.2 the improvement of this method is mentioned. It uses an on-
line database Google Street View [13] as a source for reference cloud generator,
which works even in locations previously not visited by the robot, but provides
worse accuracy in comparison to the solution mentioned above due to low density
of images per distance.

2

Chapter 2

Resources

In order to provide the reader with some important background information,
this chapter briefly describes the robotic platform and software used in this work.

2.1 Hardware

Fig. 2.1 shows an Unmanned Ground Vehicle (UGV) [1] designed by Blue-
Botics1, which is currently used in the NIFTi project. For the better imagination of
the robot size, Fig. 2.2 shows dimensioned blueprint of the robotic platform. For
its localization the robot uses the rotating SICK LMS-151 laser scanner, which can
provide a 3D point cloud composed of rotated planar scans, the Point Grey Lady-
bug 3 omnicamera, and the X-sens MTI-G inertial measurement unit (IMU) with a
GPS module. Finally, every motor has a position encoder for odometry measure-
ment. This means that the speed of both belts is measured independently. Com-
bination of all these sensors provides sufficient position and orientation accuracy
of the robot. Experiments showed that the GPS module has a very poor precision
and reliability. It has accuracy of 5 to 30 meters (the longer time spent on one place
the more accurate measurement), but in urban environment signal precision often
drops due to multipath error or signal outages.

Regarding networking and communication the robot is equipped with two wi-
fi antennas. The large one provides connection to a base station, from which the
robot can be teleoperated. It has maximum performance of 500 mW and enough
capacity to transfer up to 10 images per second from all 6 cameras in 2 Mpix
resolution each. The other one is a standard USB wi-fi module that provides an
internet network connection which is crucial for cloud services. Unfortunately,
this is often not available in USAR missions so in future it will be replaced or
extended by GSM module.

Inside the robot there is a embedded Kontron® PC equipt with the Intel®
Core™2 Quad Mobile processor (Penryn) Q9100, which has sufficient computing
power to realtime image processing. Powered on battery the robot can operate

1Swiss robotics company http://www.bluebotics.ch/

3

http://www.bluebotics.ch/

2 RESOURCES

Figure 2.1: BlueBotics UGV [1] used in NIFTi project [2]

Figure 2.2: Side view of the robot

nearly 4 hours. For longer missions there is a possibility of a hot-swap battery
replacement allowing uninterrupted operation.

4

2 RESOURCES

2.2 Software

In this section the third party software used in this work is described. It is di-
vided to open source software developed by Willow Garage [14], software devel-
oped by my colleges on CTU in Prague, and freely available software developed
by Google.

2.2.1 Willow Garage software

Willow Garage is a robotics research lab and technology incubator devoted
to developing hardware and open source software for personal robotics applica-
tions. It is a part of the open-source robotics community and is currently deter-
mining the state-of-the-art in personal robotics. Recently they founded the Open
Source Robotics Foundation (OSRF) [15] which is maintaining the ROS (see bel-
low). The OSRF was awarded by software contract with the recently announced
DARPA Robotics Challenge2.

Robot Operating System (ROS) [16] is a multiplatform meta-operating system
for robots. ROS provides an automatic management system for message-passing
between nodes [17] using TCP/IP protocol. A node is an executable that uses the
ROS to communicate with other nodes using topics [18]. Topics are named buses
over which nodes exchange the data in the form of messages. When using a com-
puter network connected to the robot(s), the ROS automatically passes messages,
so any node running on one computer can interact with all the other nodes in that
network. No code implementation is needed since it is open source package based
finished solution.

OpenCV (Open Source Computer Vision Library) [19] is a cross-platform li-
brary of programming functions aimed at real time computer vision, originally
developed by Intel, currently maintained by the Willow Garage. It has more than
2500 optimized algorithms covering all developer’s needs. In this work is mainly
used for image manipulation, SURF detection and FLANN matching.

2.2.2 CTU software

The Inertial navigation system aided by odometry (INSO) [20] is a ROS node
for the Extended Kalman filter based data fusion of odometry and inertial data
(acceleration and angular rates) provided by IMU. This node provides a reliable
dead reckoning navigation and hence is used in this work as a standard data input
for position information. In the future it will be extended by data from the visual
odometry which will even improve the long-term accuracy.

2Challenge specification: https://www.fbo.gov/utils/view?id=74d674ab011d5954c7a46b9c21597f30

5

https://www.fbo.gov/utils/view?id=74d674ab011d5954c7a46b9c21597f30

2 RESOURCES

Computer vision based detectors are implemented as ROS nodes, which pro-
cess the camera images in realtime and provide the position of detected objects
in the robot coordinate frame. Every object, that is being detected, has unique ID
enabling tracking of changes such as change in position. In this work, only the car
detector [21] is used but the code is capable to use any detector that provides data
mentioned above (position of unique ID labeled objects). There are currently two
detectors available, the car detector (shown in the Fig. 2.3) and the victim detector.
Other detectors such as the sign detector are under development.3

Figure 2.3: Example of car detector. Red line represents rangefinder laser beam,
which is used to filter false positive detections.

SfM Web Service [23] is a web application developed by a team lead by Tomas
Pajdla that provides a remote access to the 3D reconstruction systems developed
in Center for Machine Perception, FEE, CTU Prague [24].

The system provides tools like:

• Large-Scale Sequential or Unordered Data Processing for SfM reconstruction
from datasets containing thousands of perspective, fish-eye, or panoramic
images

• Multi-View Dense 3D Reconstruction for creating colored or textured sur-
face models of the scenes from perspective datasets once the cameras are
calibrated

In this work, the SfM Web Service is used for generating a 3D reference cloud
of SURF descriptors from panoramic images taken by the robot. Colored example
of this cloud is shown on Fig. 2.4. For comparison Fig. 2.5 shows the same area
taken from Google Maps. Red dots are reconstructed camera positions of each im-
age. Although computation time required for generating this cloud is in order of

3More demos of detectors can be found in [22]

6

2 RESOURCES

hours, in the final implementation the result is used for relatively fast localization
algorithm.

Figure 2.4: CTU quad represented by a colored 3D cloud of landmarks composed
from panoramic images. Red dots represent reconstructed camera positions of
each image.

Figure 2.5: CTU quad from Google Maps.

2.2.3 Google products

The Google Maps API [25] is a powerful tool for visualizing almost everything
into online maps. It has worldwide coverage, many layers and wide support for
many devices. Data structures are described in KML (Keyhole Markup Language)

7

2 RESOURCES

[26], which is XML like format for describing geographical data. It is an interna-
tional standard maintained by the Open Geospatial Consortium, Inc. (OGC) [27].
This standard is used in all Google services for geographical input.

The Google Fusion Tables (GFT) [28] is a modern data management and pub-
lishing web application that makes it easy to host, manage, collaborate on, vi-
sualize, and publish data tables online. Data are accessed in a similar way like
standard SQL database or from a web page. If they are in the KML format, they
can be visualized through the Google Maps. Tables can be shared the same way
as any other document using Google Drive, where they are implicitly stored.

Google Earth (GE) [29] is a free virtual globe, map and geographical informa-
tion program. It maps the Earth by the superimposition of images obtained from
satellite imagery, aerial photography and GIS 3D globe. A strong feature of the
GE is the ability to open and process KML files which could also be linked to
other KML files (for example placed on some web storage) that can even change
dynamically. Although GE downloads map data from internet, it uses relatively
large cache which enables off-line visualization of KML files on once visited loca-
tions.

8

Chapter 3

Theory

In this chapter is described theoretical analysis of methods used in this work.
It contains description of two main coordination frames used for navigation, and
a conversion between them (see section 3.1), also as brief introduction to the state-
of-the-art matching method based on the SURF (section 3.2) and FLANN (section
3.3). Last but not least is the transformation of a point cloud from coordination
frame with unknown scale to the global navigation frame based on the knowledge
of exact position of few points from given point cloud (see the section 3.4). Finally,
there is described an estimation of observer’s position from the given view angles
between points with known position (see the section 3.5).

3.1 Conversion of coordinates

Most of robot software works in the robot navigation frame with the:

• origin at the robot starting location

• X-axis oriented in the direction of the robot’s forward motion at the moment
of start

• Y-axis points to the left of the X-axis (perpendicular to the X-axis)

• Z-axis points up (perpendicular to the X-Y plane)

meanwhile the mapping software uses the Earth-centered Earth-fixed (ECEF) frame
where the Earth surface is approximated by the WGS84 ellipsoid [30, p. 51-52].
This ellipsoid is defined by its origin located at the Earth’s center of mass, semi-
major axis a = 6378 137m and semi-minor axis b = 6356 752, 314m. Every point
on the ellipsoid is determined by its latitude (angle from equator with positive
value to the north), longitude (angle from International Reference Meridian with
positive value to the east) and altitude. As only planar maps are used in this work,
it is sufficient to labour only with the latitude and the longitude.

9

3 THEORY

To allow conversions between these frames it is necessary to assign two points
from both frames, or only one point and a rotation between coordinate systems.
In this work, the latter variant, which depends on the robot’s default heading to
the east, is used. The east orientation was selected because the default orientation
of the CTU robot in the laboratory is exactly to the east. The starting position is
set manually by the robot operator (for example from a map or using GPS device)
in the ECEF frame (latitude, longitude pair) as parameters Olat and Olon.

Point P = (Plat, Plon) is then calculated from point P′ =
(
P ′x, P

′
y

)
as:

Plat = Olat +
P ′y
b
· 180
π

(3.1)

Plon = Olon +
P ′x

a · cos
(
Olat · 180π

) · 180
π

(3.2)

3.2 Speeded-Up Robust Features

SURFs are in this work used for describing keypoints in landmark based nav-
igation. It is a scale and in-plane rotation invariant detector and descriptor with
strong repeatability and robustness. The common application of SURF works as
follows:

1. “interest points” (such as corners, blobs and T-junctions) are selected (detec-
tion),

2. the neighbourhood of every interest point is represented by a feature vector
(description),

3. keypoints with closest Euclidean distances (above a given threshold) are
matched.

Concerning the photometric deformations, a simple linear model with the bias
(offset) and contrast (scale factor) change is assumed. Neither the detector nor the
descriptor use colour information. The detection is based on the Hessian-matrix
[31] approximation using integral images allowing fast computation of box type
convolution filters, which drastically reduce the computation time.

As the SURF is used for the image matching based on the Euclidean distance
between the descriptor vectors, the dimension of the descriptor has a direct impact
on the computational time. Here lies the main benefit of using SURF against still
widely used SIFT (Scale Invariant Feature Transform) [32]. SIFT is a predecessor
of SURF based on the local oriented gradients around the point of interest, which
uses 128-dimensional vector meanwhile the SURF, based on the first order Haar
wavelet [33] responses in horizontal and vertical direction, provides descriptor
of dimension 64. In [3] is the comparison that shows similar results in precision
for nearest neighbour matching for both SURF and SIFT. Nearest neighbour is an

10

3 THEORY

optimization problem for finding closest points in n-dimensional spaces. In many
cases, the distance is measured by Euclidean or Manhattan distance [34, p. 94,
313].

3.3 Fast Approximate Nearest Neighbors

As mentioned above, SURF landmarks are detected in the camera view and
matched with the reference cloud of landmarks. Simple linear search, necessary to
do the matching, is too costly since the cloud contains approximately 40 000 key-
points. Fortunately, there is no need for accurate Euclidean distance, in case only
selection of points, whose distance is closer than given threshold, is required. The
FLANN is a library for performing fast approximate nearest neighbor searches in
high dimensional spaces. For this purpose it contains a collection of algorithms,
such as multiple randomized kd-trees [35] or hierarchical k-means trees with a
priority search order [11]. Algorithm and its optimal parameters are selected au-
tomatically depending on the dataset. In this work, the FLANN implementation
from the OpenCV was used.

3.4 Transformation of 3D map to the global coordi-
nate frame

For full usage of the reference cloud of SURF landmarks gathered using the
SfM Web Service (see 2.2.2), transformation of every point from this cloud to the
global coordinate frame is crucial. To perform this transformation, at least three
points must have known position in both frames. Even this is the minimum (other
points are interpolated/extrapolated), the more points are known, the more pre-
cise transformation is obtained.

As this problem is encountered in many applications of computer vision, Shinji
Umeyama [36] provided an optimal solution, which always gives the correct trans-
formation parameters R (rotation), t (translation) and c (scaling) even when the
data are corrupted. Let the X = {x1,x2, · · ·xn} and Y = {y1,y2, · · ·yn} be cor-
responding point patterns in m-dimensional space. The minimum value ε2 of the
mean square error

e2 (R, t, c) =
1

n

i=1∑
n

‖yi − (cRxi + t)‖2 (3.3)

of these two point patterns with respect to the similarity transformation parame-
ters (R, t and c) is given as follows [36, p. 378]:

ε2 = σ2
y −

tr (DS)2

σ2
x

a = b (3.4)

11

3 THEORY

µx =
1

n

n∑
i=1

xi (3.5)

µy =
1

n

n∑
i=1

yi (3.6)

σ2
x =

1

n

n∑
i=1

‖xi − µx‖
2 (3.7)

σ2
y =

1

n

n∑
i=1

∥∥yi − µy∥∥2 (3.8)

∑
xy

=
1

n

n∑
i=1

(
yi − µy

)
(xi − µx)

T (3.9)

and let a singular value decomposition [37] of
∑

xy be UDV T where
D = diag (di) , d1 ≥ d2 ≥ · · · ≥ dm ≥ 0, and

S =

 I if det
(∑

xy

)
≥ 0

diag (1, 1, · · · , 1,−1) if det
(∑

xy

)
≤ 0

(3.10)

∑
xy is the covariance matrix ofX and Y , tr () is the trace of a square matrix (sum

of the elements on the main diagonal), det() is determinant of a matrix, diag() is
a diagonal of a matrix, µx and µy are mean vectors of X and Y , and σ2

x, σ2
y are

variances around the mean vectors ofX and Y respectively.

The singular value decomposition is a process of factoring m× n real or com-
plex matrix M to the form of M = UDV ∗ where U is an m×m real or complex
unitary matrix1,D is an m× n rectangular diagonal matrix with nonnegative real
numbers on the diagonal and V ∗ (conjugate transpose of V) is an n × n real or
complex unitary matrix.

When rank
(∑

xy

)
≥ m − 1, the optimum transformation parameters are de-

termined uniquely as follows:

R = USV T (3.11)

t = µy − cRµx (3.12)

c =
1

σ2
x

tr (DS) (3.13)

where S in (3.11) must be chosen as:

S =

{
I if det (U) det (V) = 1

diag (1, 1, · · · , 1,−1) if det (U) det (V) = −1 (3.14)

1U∗U = UU∗ = I

12

3 THEORY

when rank
(∑

xy

)
= m− 1.

Using the parameters obtained above (R, t and c) point X is calculated from
the point Y as:

X =
[
cR t

]
Y (3.15)

where
[
cR t

]
has dimension 3x4 and Y is in homogenous coordinates.

I have implemented this transformation in Python for the purpose of this work.
Y represent points in the reference cloud frame, X represent points in the global
coordinate frame.

3.5 Robot localization in a 3D map

Final step for performing the localization is to determine the robot position
from matched SURF points between actual camera view and the 3D cloud. Fig. 3.1
shows an example of this situation from the robot perspective, where the red lines
determine region of interest for the SURF search. Bellow this region is mainly the
robot’s body, above this region is too much distortion for credible matching. As
we can see, 18 SURFs (green dots) were matched with their correspondences in
the reference cloud.

Figure 3.1: Matched SURF [3] points (green dots) from 3D cloud

This spherical image was composed from 6 cameras, which original image
is on the Fig. 3.2. Spherical projection benefit is that the image width is equal
to the 2π radian, image height to the π radian, and hence the distance between
two points in pixels is their parallax in radians. This is useful in computing the
camera position from known position of selected points and their parallax. This

13

3 THEORY

problem is encountered in many applications of computer vision and is called the
Perspective-Three-Point Problem (P3P). A simple and straightforward solution to
the P3P problem is the direct linear transformation (DLT) [38]. The description
and implementation of this solution is above the scope of this bachelor thesis.

Figure 3.2: Original robot camera image

14

Chapter 4

Implementation

In this chapter an implementation of algorithms proposed in this work is in-
troduced. The first is a ROS node called Googlemaps node 4.1, which is used for
visualization of the robot trajectory and other detected objects of interest, that the
robot has met during its mission, to the Google Maps. The second is a web appli-
cation for the Google App Engine [39], which serves as a cloud buffer for the first
node to optimize data flow over the network. In the section 4.2 is closely described
the navigation method based on the reference 3D cloud of landmarks, which was
generated from a sequence of panoramic images.

4.1 Visualization using Googlemaps node

Visualization of data gathered by the robot using web application is a complex
task. The whole process can be split into three layers as shown on the Fig. 4.1.
Position data from the INSO node and the data from detectors (both described in
2.2.2) are uploaded from the robot to a cloud buffer (for details see 4.1.2), where
they are processed and then stored in the Google Fusion Tables, where they can
be visualized trough the Google Maps.

This application requires internet connection to assure proper functionality.
Since the internet connection during USAR mission is of questionable reliability,
the loss of the network connection must be expected and accounted for such that
the impact of this outage is minimized. This is done by parallel saving of the
uploaded data to files, from which they can be restored and uploaded to the GFT
using a recovery script also implemented in this work.

4.1.1 Robot applications

Object detectors and the navigation node (both described in 2.2.2) are running
locally on the robot. Every detected object is evaluated by its unique ID whenever
it was previously detected and if not, its position is saved in the global naviga-
tion frame. As the detectors provide positions of objects in the robot navigation

15

4 IMPLEMENTATION

robot layer position
data

manual
initialization

procedure

car
detector

victim
detector

other
detector

buffer layer
cloud buffer

web layer
Google Fusion Tables

Google Maps

Figure 4.1: Process diagram showing the division of the visualization process into
different computational layers.

coordinate frame, the conversion (described in the section 3.1) is necessary. The
same conversion must be done to the position data when using dead reckoning
navigation system. It is important, that the robot starting position and orientation
in the global navigation frame is entered manually before the program starts to
perform correct conversion.

The INSO node (described in 2.2.2) provides position messages up to 100 times
per second, which means that the relative position changes are very low with re-
spect to the motion dynamic of the robot. Since the Google maps have limited
resolution, I have implemented an artificial constraint such that only the position
change greater then 0.00001 degree in latitude or longitude (about 0.5m) is up-
loaded.

First of all, the Googlemaps node creates a fusion table on the Google Drive
(accessible using robot’s Gmail account), where every data will be stored. Data
uploads are initiated by the human operator, for example by pressing a button
on a rumblepad. Anytime the internet connection is not available and there is a
request to upload the data (including request to create the fusion table), requests
are queued and wait for the next data upload.

16

4 IMPLEMENTATION

4.1.2 Cloud buffer

To lower the network load I have implemented a cloud buffer1 running on
the Google App Engine. Data from the robot are uploaded into this buffer and
processed to provide better user experience when using the map. For example
the trajectory gets its arrow style, which triples the number of points. Because
the GFT has a limitation to amount of data inserted to one cell, the data are also
automatically split to comply with these limits. Next step is the upload to the GFT
over the Google’s high speed infrastructure. Mostly, the data are just moved from
one server to another in one datacenter.

4.1.3 Web interface

Once the data are in the GFT they are accessible as any other document stored
on Google Drive. They can be visualized through the GFT web interface in rows
or in a map or they are also accessible via SQL commands in the same manner as
in a database. The web interface is described in the section 5.1.

4.2 Landmarks based navigation

To provide the robot with an absolute position navigation software, I have
proposed an algorithm for landmarks based navigation. Fig. 4.2 shows the whole
process. As a first step, the area of interest, where the robot navigation is de-
manded, is documented by a series of images using calibrated cameras or bet-
ter by a panoramic camera. The best performance is achieved by using the same
camera mounted on the same platform in the documentation phase as later in the
detection phase. Reason is that cameras placed in the same altitudes above the
terrain see for example buildings facade in the same angle. These images create a
dataset, which is as a second step uploaded to the SfM web service (described in
section 2.2.2), where it serves as a source for the Large-Scale Data Processing tool.
This reconstructs a 3D point cloud of documented area composed from a SURF
(see the 3.2) described landmarks. The third step is to transform this 3D point
cloud to a global coordination frame using the algorithm described in the section
3.4. For this transformation at least 3 corresponding points must have known po-
sition, but the more points are provided, the more accurate reference is obtained.

After this preprocessing stage, the 3D point cloud is ready to serve as a refer-
ence point cloud for robot navigation. The robot position is obtained by iterating
the following sequence:

1. SURF descripted landmarks are detected in the actual panorama view us-
ing OpenCV (see 2.2.1) functions. For detection, only the region of 1600x360
from the original image of 1600x800 with masked robot body as on the Fig.
3.1, is used.

1hosted on http://gmapscloudbuffer.appspot.com/

17

http://gmapscloudbuffer.appspot.com/

4 IMPLEMENTATION

preprocessing

panoramic
images

SfM web service

reference
cloud of SURF

landmarks

corresponding
points in a global
navigation frame

human

SURF detection

camera image

robot

FLANN match

position
acquisition

Figure 4.2: Process diagram describing the landmarks based navigation. Green
part is made only once before placing to the robot. Blue part is running online and
is repeated for every new image.

2. These descriptors are matched with descriptors obtained in preprocessing
stage using the FLANN (introduced in the section 3.3).

3. Robot’s position is calculated using the algorithm described in 3.5.

18

Chapter 5

Evaluation

5.1 Evaluation of the Googlemaps node

To demonstrate the basic functionality of the Googlemaps node and its cloud
buffer a simple demo was created and is stored on the attached CD. Besides
the core Googlemaps script, this demo consists of two files: a bagfile demo.bag
which contains about 12 minutes long record of robot’s trip at CTU and executable
launchfile demo.launch. Bagfile is a file created by ROS program called Ros-
bag [40]. It saves all messages on selected topics (such as odometry data) to the
file and also enables replaying of these messages. It is a strong feature of ROS
which provides running several experiments on once recorded data. Launching
the launchfile demo.launch will replay this bagfile and launch the Googlemaps
node.

Running instructions

1. To launch the /demo/demo.launch type in the terminal:
roslaunch demo/demo.launch

2. In order to upload the trajectory data as well as detected objects in to the
Google Fusion Tables, first, let the program run to collect desired amount of
data from replaying bagfile, then terminate the program (e.g. by Ctrl+C).
Fig. 5.1 shows sample terminal output of the programme terminated by
Ctrl+C.

3. The data are now stored in the newly created fusion table (highlighted on
the Fig. 5.2) in the Google Drive [41].

4. By default, data are visualized in the rows. A map visualization is obtained
by clicking on the Visualize button and then selecting the Map. Fig. 5.3 shows
the location of this button.

19

5 EVALUATION

Figure 5.1: Terminal output of just terminated Googlemaps node

Figure 5.2: Google Drive [41] interface showing the newly created fusion table

Figure 5.3: Example of fusion table generated using Googlemaps node

5. Map as on the Fig. 5.4 contains the robot trajectory and detected cars. As
we can see from the trajectory, the robot ended on the same place as started.
Since these two points coincides, this serves as a demonstration of the INSO
node accuracy.

6. Clicking on the Get embeddable link button will show the form with the direct
link to the map1 and a HTML tag as on the Fig. 5.5. This code can be inserted

1To use this feature the sharing of the document must be set as Unlisted or Public. By default
every document is created as Private for security reasons

20

5 EVALUATION

Figure 5.4: Visualization of the robot trajectory in Google Maps. Detected car is
displayed as a red dot.

anywhere on the web pages to have there a copy of this map. Structure of
the tag is logical and can be simply generated by any program or script. The
only unique parameter, which must be set manually, is the table ID, which
is obtained during the creation of the table.

Figure 5.5: Form for publishing the map

21

Chapter 6

Discussion

This chapter highlights some of the issues and unsolved problems, which are
yet interesting but exceed the scope of this bachelor thesis.

6.1 Visualization using Google Maps

The Googlemaps node strongly depends on the node, which provides the nav-
igation data, i.e. position and orientation in general. Currently used INSO node
suffers from inaccurate measurements in heading rotation, which error accumu-
lates with a traveled distance. One solution, which is currently under develop-
ment, is to provide the INSO node with the data from visual odometry.

Other solution is usage of a triaxial magnetometer, which is also a part of the
IMU, but unlike the acceleration and angular rates is not a data source for the
INSO node. The problem is that the Earth’s magnetic field is much more weaker
than distortions coming both from the robot body and the surrounding environ-
ment. The robot body distortions come mainly from 7 motors, 3 fans and a dif-
ferential locker. If the robot magnetic field model would be created, these distur-
bances should be filtered and the magnetometer should improve the accuracy of
the navigation. Unfortunately this is very difficult task, moreover the robot can
operate in magnetically strongly distorted environment like a transformer station
where the filtering is almost impossible. Just a vicinity of a metal object such as
girder or heater is sufficient to turn the magnetometer axis over 90 degrees.

The functionality of the Googlemaps node can also be extended by the naviga-
tion data from the introduced landmarks based navigation. However the Google-
maps node must expect that the reference cloud of landmarks does not cover the
area, where the robot currently is and hence the fusion with the INSO node navi-
gation is necessary.

22

6 DISCUSSION

6.2 Future work on the landmarks based navigation

Achilles heel of the proposed landmarks based navigation is the long prepro-
cessing phase, which requires large amount of images to be captured as well as
long computational time (up to several days). One of the possibilities how the
landmarks based navigation could be improved is by using an on-line database
containing images with their location. One example of a large on-line database is
the Google Streetview [13], which contains panoramic images of streets all around
the world and is being permanently updated. These images have a density of one
image per 10 meters of route, which is not sufficient for the SfM web service (3D
reconstruction software mentioned in the 2.2.2) and can cause problems such as
false positive match of two similar windows on the building facade. However,
every Google Streetview image has a sparse depth map, which can help with the
image matching. This is an interesting topic for a future work.

Solution to the long computation time lies in the on-demand computing of the
close surrounding of the robot assumed position. It means that instead of com-
puting the large area of size 100x50 m using over 1600 images, only a small region
composed of tens images would be processed. Center of this region would be the
panoramic image with most corresponding landmarks. The reference point cloud
of landmarks then expands dynamically with every new image.

23

Chapter 7

Conclusion

The first aim of this work was to analyze the state of the art of the currently
available cloud services used for online localization of mobile robots performing
urban search and rescue missions. Based on this analysis, the Google products
were used for their user-friendly documentation of the API and direct connection
to other cloud services.

As the next step, the ROS node for visualization of robot trajectory and de-
tected cars was created. This node reports and publishes data on the internet at the
end of the mission or whenever the robot operator requires and also when the in-
ternet connection is available. For optimizing the data flows, the cloud buffer web
application was also implemented. The data published are stored on the Google
Drive using the concept of fusion tables and can be shared this way. Also there
is a possibility to add generated Google map to any web page. Specific imple-
mentation then depends on the web sites and web server services. The function of
this software was evaluated in outdoor experiments (one example is in the section
5.1).

For this localization software it is sufficient to use the current implementation
of the navigation algorithm based on inertial data fusion with odometry mea-
surements provided by the INSO node (mentioned in the section 2.2.2). Since this
navigation algorithm is a dead reckoning only (i.e. no external reference is taken
into account), with the traveled distance it suffers from cumulative error in head-
ing and the initial robot position has to be set manually. When seeking possible
extensions and improvements to the dead reckoning navigation a new navigation
method based on the database of landmarks was proposed and introduced in this
work. Original aim was to use a cloud services like the Google Street View as a
data source but in account of issues mentioned in the section 6.2 and for the rea-
son, that this services are not covering every place (e.g. CTU quad), the creation
of a custom data source was necessary and essential. This data was obtained dur-
ing a one hour outdoor experiment with the NIFTi robot (section 2.1) and then
processed by the SfM web service (section 2.2.2). Since this navigation method
exceeds the scope of this thesis, there was not sufficient time for implementation
and experimental evaluation.

24

7 CONCLUSION

Although the thesis assignment was accomplished, there are a lot of ideas for
future work. It is mainly the minimizing the human factor in the whole localiza-
tion process. In the case of Googlemaps node, the robot operator must manually
set the robot starting location and orientation. In the case of the landmarks based
navigation, the operator has to do manual assignment of the reference cloud of
landmarks to the global navigation frame. The accuracy of both these operations
has a direct impact on the accuracy of the whole system. At this point I see the
weakest part because every human can make (and from time to time does) a mis-
take.

25

Bibliography

[1] The new NIFTi robot platform. Accessed: 27/01/2012. Available from:
http://www.nifti.eu/news/the-new-nifti-robot-platform.

[2] Natural human-robot cooperation in dynamic environments. Accessed:
25/05/2012. Available from: www.nifti.eu.

[3] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. Speeded-up
robust features (surf). Comput. Vis. Image Underst., 110(3):346–359, June 2008.
Available from: http://dx.doi.org/10.1016/j.cviu.2007.09.014,
doi:10.1016/j.cviu.2007.09.014.

[4] Google My Tracks. Accessed: 12/05/2012. Available from: http://www.
google.com/mobile/mytracks/.

[5] Duncan Robertson and Roberto Cipolla. An image-based system for urban
navigation. In IN BMVC, pages 819–828, 2004.

[6] Masafumi Noda, Tomokazu Takahashi, Daisuke Deguchi, Ichiro Ide, Hiroshi
Murase, Yoshiko Kojima, and Takashi Naito. Vehicle ego-localization by
matching in-vehicle camera images to an aerial image. In Proceedings of the
2010 international conference on Computer vision - Volume part II, ACCV’10,
pages 163–173, Berlin, Heidelberg, 2011. Springer-Verlag. Available from:
http://dl.acm.org/citation.cfm?id=2040739.2040759.

[7] Turgay Senlet and Ahmed M. Elgammal. A framework for global vehicle
localization using stereo images and satellite and road maps. In ICCV Work-
shops, pages 2034–2041, 2011.

[8] H. Uchiyama, D. Deguchi, T. Takahashi, I. Ide, and H. Murase. Ego-
localization using streetscape image sequences from in-vehicle cameras. In
Intelligent Vehicles Symposium, 2009 IEEE, pages 185 –190, june 2009. doi:
10.1109/IVS.2009.5164275.

[9] Margrit Betke and Leonid Gurvits. Mobile robot localization using land-
marks. IEEE Transactions on Robotics and Automation, 13:135–142, 1995.

[10] Stephen Se, David G. Lowe, and James J. Little. Vision-based global localiza-
tion and mapping for mobile robots. IEEE Transactions on Robotics, 21:364–
375, 2005.

26

http://www.nifti.eu/news/the-new-nifti-robot-platform
www.nifti.eu
http://dx.doi.org/10.1016/j.cviu.2007.09.014
http://dx.doi.org/10.1016/j.cviu.2007.09.014
http://www.google.com/mobile/mytracks/
http://www.google.com/mobile/mytracks/
http://dl.acm.org/citation.cfm?id=2040739.2040759
http://dx.doi.org/10.1109/IVS.2009.5164275
http://dx.doi.org/10.1109/IVS.2009.5164275

[11] Marius Muja and David G. Lowe. FAST APPROXIMATE NEAREST NEIGH-
BORS WITH AUTOMATIC ALGORITHM CONFIGURATION. In Ran-
chordas, A and Araujo, H, editor, VISAPP 2009: PROCEEDINGS OF THE
FOURTH INTERNATIONAL CONFERENCE ON COMPUTER VISION THE-
ORY AND APPLICATIONS, VOL 1, pages 331–340. Inst Syst & Technologies
Informat, Control & Commun; ACM SIGGRAPH, 2009. 4th International
Conference on Computer Vision Theory and Applications, Lisbon, PORTU-
GAL, FEB 05-08, 2009.

[12] Akihiko Torii, Michal Havlena, and Tomas Pajdla. From Google Street View
to 3D city models. In 2009 IEEE 12th International Conference on Computer
Vision Workshops, ICCV Workshops, pages 2188–2195. IEEE, September 2009.
Available from: http://dx.doi.org/10.1109/ICCVW.2009.5457551,
doi:10.1109/ICCVW.2009.5457551.

[13] Google Street view. Accessed: 30/01/2012. Available from: www.google.
com/streetview.

[14] Willow Garage. Accessed: 26/01/2012. Available from: http://www.
willowgarage.com/pages/about-us/overview.

[15] Open Source Robotics Foundation. Accessed: 08/05/2012. Available from:
http://www.osrfoundation.org/.

[16] Robot Operating System. Accessed: 16/01/2012. Available from: http://
www.ros.org/wiki/ROS.

[17] ROS node. Accessed: 27/01/2012. Available from: http://www.ros.org/
wiki/Nodes.

[18] ROS topic. Accessed: 27/01/2012. Available from: http://www.ros.org/
wiki/Topics.

[19] Open Source Computer Vision Library. Accessed: 08/05/2012. Available
from: http://opencv.willowgarage.com/wiki/.

[20] Michal Reinstein Vladimir Kubelka. Complementary filtering approach to
orientation estimation using inertial sensors only, 2011.

[21] Tomáš Svoboda Karel Zimmermann, David Hurych. Improving cascade of
classifiers by sliding window alignment in between. In Proceedings of the Fifth
International Conference on Automation, Robotics and Applications, pages 196–
201, Private Bag 11 222, Palmerston North , 4442, New Zealand, December
2011. School of Engineering and Advanced Technology, Massey University,
Massey University. CD-ROM. Available from: ftp://cmp.felk.cvut.
cz/pub/cmp/articles/hurycd1/icara2011.pdf.

[22] NIFTi object detection demos. Accessed: 23/05/2012. Available from:
https://cw.felk.cvut.cz/doku.php/misc/projects/nifti/
demos/object_detection.

http://dx.doi.org/10.1109/ICCVW.2009.5457551
http://dx.doi.org/10.1109/ICCVW.2009.5457551
www.google.com/streetview
www.google.com/streetview
http://www.willowgarage.com/pages/about-us/overview
http://www.willowgarage.com/pages/about-us/overview
http://www.osrfoundation.org/
http://www.ros.org/wiki/ROS
http://www.ros.org/wiki/ROS
http://www.ros.org/wiki/Nodes
http://www.ros.org/wiki/Nodes
http://www.ros.org/wiki/Topics
http://www.ros.org/wiki/Topics
http://opencv.willowgarage.com/wiki/
ftp://cmp.felk.cvut.cz/pub/cmp/articles/hurycd1/icara2011.pdf
ftp://cmp.felk.cvut.cz/pub/cmp/articles/hurycd1/icara2011.pdf
https://cw.felk.cvut.cz/doku.php/misc/projects/nifti/demos/object_detection
https://cw.felk.cvut.cz/doku.php/misc/projects/nifti/demos/object_detection

[23] SfM Web Service. Accessed: 21/05/2012. Available from: http://ptak.
felk.cvut.cz/sfmservice/.

[24] Center for Machine Perception at Czech Technical University in Prague. Ac-
cessed: 21/05/2012. Available from: http://cmp.felk.cvut.cz.

[25] Google Maps API Family. Accessed: 27/01/2012. Available from: http:
//code.google.com/apis/maps/index.html.

[26] KML Reference. Accessed: 27/01/2012. Available from: http://code.
google.com/apis/kml/documentation/kmlreference.html.

[27] Open Geospatial Consortium, Inc. Accessed: 27/01/2012. Available from:
http://www.opengeospatial.org/standards/kml.

[28] Google Fusion Tables. Accessed: 16/01/2012. Available from: http://www.
google.com/fusiontables.

[29] Google Earth. Accessed: 27/01/2012. Available from: http://www.
google.com/earth/index.html.

[30] D. Titterton and J. Weston. Strapdown Inertial Navigation Technology. The
American Institute of Aeronautics and Astronautics, second edition, 2004.

[31] Hessian. Accessed: 28/05/2012. Available from: http://mathworld.
wolfram.com/Hessian.html.

[32] David G. Lowe. Distinctive image features from scale-invariant keypoints.
Int. J. Comput. Vision, 60(2):91–110, November 2004. Available from:
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94,
doi:10.1023/B:VISI.0000029664.99615.94.

[33] Haar Function. Accessed: 28/05/2012. Available from: http://
mathworld.wolfram.com/HaarFunction.html.

[34] Michel Marie Deza and Elena Deza. Encyclopedia of Distances. Springer Berlin
Heidelberg, 2009. doi:10.1007/978-3-642-00234-2_1.

[35] Jerome H. Friedman, Jon Louis Bentley, and Raphael Ari Finkel. An algo-
rithm for finding best matches in logarithmic expected time. ACM Trans.
Math. Softw., 3(3):209–226, September 1977. Available from: http://doi.
acm.org/10.1145/355744.355745, doi:10.1145/355744.355745.

[36] S. Umeyama. Least-squares estimation of transformation parame-
ters between two point patterns. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 13:376–380, 1991. doi:http://doi.
ieeecomputersociety.org/10.1109/34.88573.

[37] Singular Value Decomposition from Wolfram MathWorld. Accessed:
25/05/2012. Available from: http://mathworld.wolfram.com/
SingularValueDecomposition.html.

http://ptak.felk.cvut.cz/sfmservice/
http://ptak.felk.cvut.cz/sfmservice/
http://cmp.felk.cvut.cz
http://code.google.com/apis/maps/index.html
http://code.google.com/apis/maps/index.html
http://code.google.com/apis/kml/documentation/kmlreference.html
http://code.google.com/apis/kml/documentation/kmlreference.html
http://www.opengeospatial.org/standards/kml
http://www.google.com/fusiontables
http://www.google.com/fusiontables
http://www.google.com/earth/index.html
http://www.google.com/earth/index.html
http://mathworld.wolfram.com/Hessian.html
http://mathworld.wolfram.com/Hessian.html
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
http://mathworld.wolfram.com/HaarFunction.html
http://mathworld.wolfram.com/HaarFunction.html
http://dx.doi.org/10.1007/978-3-642-00234-2_1
http://doi.acm.org/10.1145/355744.355745
http://doi.acm.org/10.1145/355744.355745
http://dx.doi.org/10.1145/355744.355745
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/34.88573
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/34.88573
http://mathworld.wolfram.com/SingularValueDecomposition.html
http://mathworld.wolfram.com/SingularValueDecomposition.html

[38] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision.
Cambridge University Press, ISBN: 0521540518, second edition, 2004.

[39] Google App Engine. Accessed: 22/05/2012. Available from: https://
developers.google.com/appengine/.

[40] rosbag. Accessed: 24/05/2012. Available from: http://ros.org/wiki/
rosbag.

[41] Google Drive. Accessed: 22/05/2012. Available from: https://drive.
google.com/.

https://developers.google.com/appengine/
https://developers.google.com/appengine/
http://ros.org/wiki/rosbag
http://ros.org/wiki/rosbag
https://drive.google.com/
https://drive.google.com/

CD content

Attached CD contains the source codes of the software presented in this work.
Namely the Google maps node and some python scripts for the landmarks based
navigation. It also contains a text of this bachelor thesis in the PDF format and a
source codes of the whole text for the LATEX.

The directory tree is in the next table:

Table 1: Directory tree of the attached CD

Directory Label

Googlemaps_node source files for the Googlemaps node
↪→ demo demo files
↪→ src source codes
↪→ googlemaps_manual.pdf short documentation to the Googlemaps node
Landmarks source files for the Landmarks based navigation
↪→ dvorana.wrl WRL model of the CTU quad
↪→ find_in_pointcloud.py python script for matching in the model
↪→ pointassgmnt.point point assignment for the model
↪→ simtls.py python script for the transformation from 3.4
↪→ surf.desc file containing points descriptors
↪→ surf.point file containing points coordinates
↪→ transformed.point file containing points global coordinates
LaTeX source codes for the text of the thesis
↪→ thesis.pdf CD version of the thesis

30

	Introduction
	Resources
	Hardware
	Software
	Willow Garage software
	CTU software
	Google products

	Theory
	Conversion of coordinates
	Speeded-Up Robust Features
	Fast Approximate Nearest Neighbors
	Transformation of 3D map to the global coordinate frame
	Robot localization in a 3D map

	Implementation
	Visualization using Googlemaps node
	Robot applications
	Cloud buffer
	Web interface

	Landmarks based navigation

	Evaluation
	Evaluation of the Googlemaps node

	Discussion
	Visualization using Google Maps
	Future work on the landmarks based navigation

	Conclusion
	Appendix A: CD content

