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Abstrakt

Tato diplomová práce se zabývá problémem lokalizace mobilního
robota v neznámém venkovním prostředí. Pozice robota je zde odha-
dována na základě pozorovaní okolí robota senzory (dálkoměrem či
kamerou). Tato pozorování jsou tvořena množinou dílčích měření.
Dvě takové množiny pozorování (skeny prostředí) pořízené ze dvou
posobě následujících pozic robota jsou použity v přístupu „scan-to-
scan”, který odhaduje parametry transformace popisující relativní
pohyb robota. Přesnost odhadu je ovlivněna šumem a pozorováními,
jejichž číselná hodnota je značně vzdálená od většiny pozorování,
tzv. „outlier“ měřeními. V této práci je studována nová technika pro
odhad parametrů transformace pozice robota, která je založena na
měření disperze reziduí s využitím vlastností entropie. Tato technika
(LEL) byla vytvořena s důrazem na robustní chování v případě, kdy
jsou vstupních data se značným množstvým „outliers“ . S ohledem
na toto robustní chování představuje metoda LEL slibný přístup pro
řešení problému lokalizace mobilního robota.

Hlavním cílem této diplomové práce je posouzení a ověření chová-
ní lokalizačního systému s využitím metody LEL v úloze lokalizace
mobilního robota v neznámém reálném prostředí. Uvažovaný sys-
tém pro lokalizaci robota je založen na systému dvou kamer, které
poskytují pozorování prostředí robota ve stereo obrázcích. Význam-
né objekty prostředí, vhodné pro lokalizaci, jsou z těchto obrázků
získána metodou „Speeded-Up Robust Feature“ (SURF), pro které
jsou určeny hloubky na základě určení rozdílu pozice pozorování
v pravé a levé kameře. Lokalizační metoda je také ovlivněna způ-
sobem určení korespondujících pozorování mezi dvěma po sobě nás-
ledujícími pozicemi robota, a proto je tento vliv v práci také disku-
tován. Mimoto, je v práci navržena nová metoda hledání silně kore-
spondujících dvojic, která pozitivně ovlivňuje chování metody LEL.
Kromě toho, je v práci také uveden přehled lokalizačních technik a
jejich porovnání. Na závěr této práce jsou diskutovány zjištěné vlast-
nosti metody LEL v úloze lokalizace mobilního robota.



Abstract

This diploma thesis deals with a problem of the mobile robot local-
ization in an unknown outdoor environment. The studied localiza-
tion problem is based on processing observations of the robot sur-
roundings sensed by its exteroceptors providing a set of measure-
ments called scan. Such a scan contains a percepted features of the
environment that are used in a scan-to-scan localization method. The
method provides an estimation of the robot pose transformation de-
scribing the robot motion (from which the global robot pose is deter-
mined) and the precision of the estimation is influenced by a noise
and outliers in the input datasets (scans). In this thesis, a new esti-
mation technique called Least Entropy-Like (LEL) to find parameters
of the transformation is studied in the context of the mobile robot lo-
calization problem. This technique has been designed to be robust to
a dataset corrupted by a significant amount of outliers, and therefore,
it is a promising technique to solve the localization problem.

The main goal of the thesis is to evaluate and verify the performance
of LEL in a serie of experiments and realistic scenarios of mobile
robot localization to provide a realistic expectation of the performance
in a real deployment of the method. The considered robot localiza-
tion system is based on a stereoscopic camera system and extraction
of features from the image using the Speeded-Up Robust Feature
(SURF) detection and estimation of the feature’s depth from the dis-
parity between the left and right images and known parameters of
the cameras. In addition to evaluation of the estimation technique
for outliers, the technique is evaluated also according to the qual-
ity of found correspondences between features in two consecutive
scans. Moreover, a new data association method is proposed to ex-
tract only strong feature correspondences, which positively impact
the performance of the LEL technique. Besides, an overview of lo-
calization techniques and their comparison is presented. Finally, the
properties and discovered findings are presented in the conclusion.
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Introduction

Mobile robots have become a part of humans life and they are designed to help
with many tasks, for example exploring unknown environment, transfer material
from one location to another, clean or entertain. An example of nowadays robotic
platforms for industrial as well as home use is depicted in Fig. 1. The most of such
tasks can be defined by a request to move a robot from its initial location to the
desired location. Therefore the robot needs to know its location according to the
selected coordinate system; thus, be able to localize itself. The localization prob-
lem is difficult due to the following reasons. Although global localization systems
like GPS [39] or GLONASS [42] are available in outdoor areas, they are not suf-
ficiently precise or available in all areas, e.g., indoor. On the other hand, systems
like VICON [40] can be used in indoor with very precise estimation of the robot
position. However, they require expensive infrastructure. Also, such systems do
not determinate all parameters of the robot pose, for example GPS estimates 3D
position but it cannot directly determine orientation. Because of such limitations
other sensors and localization methods are combined together to overcome such
issues and provide an independent localization system and a more precise esti-
mation of the robot position and orientation [5].

(a) (b)

Figure 1: Examples of mobile robots; a) industrial robot for transferring [52];
b) a robotic vacuum cleaner [51].

Sensors sense states of the robot or its surrounding environment and the robot
pose is then determined using such observations. Localization methods can be
divided into two main groups according to the type of measured values. Sensors
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from the first group measure inner states of the robot. An example of such sen-
soric system is an odometry for a wheeled robot, where rotations of the wheels
are used to estimate robot position changes. The second group are exteroceptors
that observe the robot surroundings and estimation of the robot position is based
on observation of the environment. Such a sensor can be laser or sonar based
rangefinders or a camera.

Figure 2: Increasing uncertainty during a robot localization [32].

The localization methods can be also divided to local and global [33]. The local
localization, also known as tracking, is a dead-reckoning problem. An initial po-
sition is required and the robot pose is estimated using estimation of the traveled
distance, robot heading and the robot’s previous pose. The main limitation of the
local localization is an integration of the measurement noise that increases uncer-
tainty in the estimation of the robot pose. An example of increasing uncertainty in
localization in terms of covariance matrix visualized as ellipses [38] is shown in
Fig. 2.

(a) (b)

Figure 3: Global Monte Carlo localization method, the posterior mobile robot pose
is represented by set of weighted particles that are updated; a) the initial states,
the current robot pose is unknown; b) during localization, the uncertainty in robot
pose is reduced; [9].

In contrast, the global localization works with many hypotheses about the robot
position. Based on new observations of the world and the current available map
of the environment, the hypotheses are adjusted and the most promising hypoth-
esis stands for the estimation of the robot position in the global coordinate frame,
see Fig. 3. These methods can also solved the so-called “kidnapped robot prob-
lem” [10], it means that robot is transferred by another force to unknown position.
For example, a modern iRobot Mint home robot cleans the room more systemat-
ically, it builds a map of the environment and plans its movements to cover the
whole floor. However, sometimes the cleaning pad has to be replaced; so, a human
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lifts up the robot, changes the pad and puts the robot on the floor again. The robot
will be unlikely placed to the identical location; hence, the robot has to solve the
“kidnapped robot problem” and has to localize itself according to the previously
build map.

The precision of localization methods also depends on the robot surround-
ings properties [29]. A surface, where a robot operates, can be rough, for example
path made from pavers; thus, information from sensors can be influenced by robot
shaking. The robot surrounding is very miscellaneous and it is difficult to specify
all possibilities. Even more, moving objects often exist and they are influencing
the robot environment. Localization systems have to be capable to handle with
these and more challenges.

The goal of this thesis is to evaluate a localization system for a mobile robot
that operates in an outdoor environment and uses a perception sensor to sense
robot surroundings. These sensed measurements form a dataset, which includes
important features and outliers that are observations numerically distant from
the rest of the features. These datasets are used in different local localization ap-
proaches as scan-to-scan matching, scan-to-map matching or simultaneous localization
and mapping. In this thesis, we assume that the new proposed Least Entropy-like
technique [7] is a promising optimization technique for localization and therefore,
its performance is evaluated and compared with well-know localization methods
of the scan-to-scan matching approach.

The thesis is organized as follows. The problem definition is given in Chap-
ter 1. A summary of considered sensors and types of the robots is given in Chap-
ter 2. The perception process is described in Chapter 3. The Least Entropy-like lo-
calization technique is introduced in Chapter 4 and other localization techniques
are described in Chapter 5. The scenarios for verification of the localization tech-
niques are proposed in Chapter 6. The Chapters 7 and 8 are dedicated to experi-
mental evaluation in the indoor and outdoor scenarios, respectively. The conclud-
ing remarks are in Chapter 9.
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Chapter 1

Problem Definition

Consider a mobile wheeled robot that operates in an unknown environment
and is equipped with odometry and perception sensors. An odometry sensor mea-
sures relative movements of the robot according to the relative coordinate system,
which is placed at the robot center of rotation. The global coordinate system is
placed at the specific place of the environment, see Fig. 1.1. The odometry mea-

C
x

y

r

r

r

Cw x

y

w

w

j

Figure 1.1: An example of the global and relative coordinate systems.

surements are recorded at particular time instants, for time T the odometry values
are

UT = u1, u2, u3, ..., uT .

A perception sensor senses the robot surrounding environment features f at dif-
ferent time instants t. Let the set of these measurements be

ZT = z1, z2, z3, ..., zt.

The mapM of the environment is determined using the sensed features as

M = f1, f2, . . . , fn.

The variables, their dependencies and relations can be seen in the graphical model
shown in Fig. 1.2.

The goal of localization techniques is to estimate the robot poses at particular
time instants. The robot poses can be defined in the global coordinate system and
the robot path can be defined as a sequence of poses

XT = x0, x1, x2, ..., xT .
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xt-1xt-1
xt xt+1

ut-1 ut ut+1

zt-1
zt zt+1

f1 f2 f3 f4

Figure 1.2: Graphical model of the localization variables.

A naïve localization method uses the odometry measurements transformed to the
global coordinate system and the robot initial position x0. If the odometry mea-
surements are without a noise, these process will estimate the exact robot path.
However, the odometry measurements suffer from a sensor noise and the error is
cumulated along the path; therefore, this approach is not sufficient for long robot
paths. Another localization technique is based on the estimation of a transfor-
mation between two consequent scans that includes the observed features of the
environment. This thesis is focused on this approach, its main idea is described in
the following section. Also, the phenomena that influence the localization preci-
sion are introduced here.

1.1 Localization Using Observations of the Environ-
ment

Having two scans P and Q acquired at the robot positions Pp and Qp, respec-
tively, the localization techniques solve the problem of finding a transformation
T projecting the scan Q to P. This situation is visualized in Fig. 1.3 for one pair of
sensed features. The feature sets P and Q have coordinates in different basis ac-

t

j

P Q~

p

q’

P

Qp

p

Figure 1.3: Relation of two different robot positions and corresponding observa-
tions.

cording to the robot relative position; so, the coordinatesQ have to be transformed
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to the base of P

Q′ = RQ,

where R is the rotation matrix. Then, equation

P = Q′ + T = RQ+ T, (1.1)

holds, where T = [dx, dy, dz] is the translation matrix. The robot relative trans-
formation can be defined as

T = [dx, dy, dz, ϕ, β, γ], (1.2)

where ϕ is yaw (the rotation about z-axis), β is pitch (the rotation about y-axis)
and γ is roll (the rotation about x-axis).

Definition of Studied Problem

Having the aforementioned preliminaries, the problem studied in this thesis
can be defined as follows. Let the robot operational environment be static, sensors have
fixed position on the robot’s body, the problem is to determine parameters of the trans-
formation T Eq. 1.2 describing the robot motion from the positions Pp to Qp using the
associated observations to these positions.

1.2 Precision of the Localization

A precision of a localization technique can be influenced by the following is-
sues, which are considered in this thesis.

Quality of feature sets

The projection of the feature sets Q to P is exact only if the features repre-
sent the same environment landmarks. However, the measurements are always
influenced by a noise. Moreover sets can include measurements, so-called outliers.
Outliers significantly affect the estimation of the transformation, see Section 7.1;
so, a detection of the outliers and discarding them from the estimation process is
another challenging problem that affects the precision of the localization.

Features extraction

The precision is also influenced by an extraction of the features from the input
scans, some data adjustments can be made before estimation process to improve
results. The process of feature extraction and data adjustment is a challenging
problem itself and it is describe in Section 3.1 and Section 3.2.
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Data association

Data association methods find for each features in the set P the best corre-
sponding feature from the set Q. Such pairs are then used in a particular localiza-
tion technique to estimate the robot pose. A brief introduction to the data associa-
tion problem is given in Section 3.4.

Robot velocity

The perception sensors scans environment during the robot movements. The
robot velocity can also influence the quality and precision of the measured obser-
vations. This is happened also for a laser rangefinder, because it does not make
n measurements at one time instant but it makes measurements in a sequence. It
means that n measurements are not captured from the same robot position as lo-
calization techniques suppose. Therefore, the robot localization using these mea-
surements cannot be ever precise. The error caused by the robot velocity can be
reduced if the speed of sensor measurements (e.g., laser rangefinder) is signifi-
cantly higher than the robot velocity.

In this thesis, it is assumed the scan contains measurements taken at the same
time instant for simplicity as it is assumed in literature using slow robots and fast
laser rangefinders or cameras.

Localization vs navigation

The localization can be considered as a passive process, which estimates the
mobile robot poses based on new measurements provided by the robot sensor
system and the robot movements are controlled by an independent process. On
the other hand, in the navigation, the estimation of the actual mobile robot pose
is directly used to control the robot motion. Although an employment of the es-
timation in the robot control problem can influence the performance of the robot
pose estimation itself, we assume an independent systems of robot control and
localization in this thesis. This allows us to be focused on issues of the localization
method and estimation technique itself.

Long corridors problem

When a robot operates in a specific environment, such as long corridors, the
robot’s laser rangefinder does not measure any obstacle in front of it. Moreover,
the side walls of the corridors do not provide any significant features that can im-
prove matching of two consecutive scans. Hence, the robot can be placed at differ-
ent position along the corridor, while the laser scanner provides almost identical
scans. Such a dataset is badly conditioned and the localization algorithms estimate
the traveled distance badly.
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Chapter 2

Considered Sensors and Robots

In this thesis, different types of wheeled robotic platforms are considered, that
are equipped with various types of perception sensors. This chapter gives an
overview of them and describes their significant properties that can influence the
estimation of the robot pose. Particular properties are then used in the localization
techniques to improve the estimation of the robot pose.

2.1 Differentially Driven Robot

This type of the robot is typically equipped with two wheels and a supporting
point. The relative coordinate system is typically placed at the center C that is
located on the wheel axis, see Fig. 2.1a. This construction is widespread in mobile
robot applications due to ability to turn the robot around its centerC but it can also
rotate around a general center ICC. The angular robot velocity can be determined
as

ω =
vL

R− L
2

=
vR

R + L
2

=
vR − vL

L
,

where the radius R is
R =

L

2

vr + vL
vr − vL

and the robot linear velocity is

v = ωR =
1

2
(vR + vL).

The kinematic model according to the robot frame is vx
vy
ω

 =

 1
2

1
2

0 0
− 1

L
1
L

[ vL
vR

]
. (2.1)

This model is ideal, which means it does not consider a wheel slippage.
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Figure 2.1: The models of robots with differential (a) and ackerman (b) drive.

2.2 Robot with Ackerman Drive

This robot type is also called car-like, see Fig. 2.1b. The robot turning radius
depends on the angle ϕ of the steering wheel

R =
d

tan(ϕ)
.

The angular velocity is determined as

ω =
vs
M

=
vs
d

sin(ϕ).

The ideal kinematic model according to the robot frame is

 vx
vy
ω

 =

 cos(ϕ)
sin(ϕ)
sin(ϕ)

d

 [ vs ] . (2.2)

2.3 Laser Rangefinder

A laser rangefinder scans its surroundings in a plane with angular interval
〈θmin, θmax〉 and provides distance measurements from the sensor to the detected
obstacles. The distances are computed using a laser beam time of flight between
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transmission and reception of the reflected beam. If none obstacle occurs, the max-
imum waiting time interval runs over and the maximum distance is returned for
such a case. Two methods of determining the distance to an obstacle are as fol-
lows.

• Time of flight measurement is suitable for measuring distances in hundred
of meters due to less accuracy of this method that works as follows. A short
light pulse is sent out and a time interval is measured until a reflected light
pulse is received. A distance to an obstacle is calculated using an informa-
tion about velocity of the light. The high velocity of light is a difficulty be-
cause a time error δe = 1 ns causes a distance error 15 cm; so, precise time
measurement is needed.

• Phase shift method is used for determination of shorter distances than in the
previous case. The improvements of accuracy is done by sinusoidally mod-
ulation of an optical power of the laser beam. The phases of the transmitted
and reflected beams are compared. The phase shift ω can be determined as
ω = 2πtfmod, where t is the time of flight and fmod is the modulation fre-
quency. This shows that a higher modulation frequency can improve the
distance resolution.

The laser rangefinders are produced by several companies and they differ in many
parameters, such as maximal range, precision, resolution, etc. that can influence
the localization of mobile robot. Therefore, the laser rangefinders used in this the-
sis are described in the following section.

2.3.1 Particular Considered Sensors

The considered laser rangefinder is the SICK LMS200 [53], see Fig. 2.2a. The
standard device measures distances up to 80 m with a centimeter or millimeter
accuracy. It scans environment in a plane with 180◦ range of view with the angu-
lar resolution 0.5◦. Beside the robust and heavy LMS200 device, a smaller SICK
rangefinder exists, see Fig. 2.2b, which is more suitable for robotic applications
with small robots.

(a) (b) (c)

Figure 2.2: The SICK laser rangefinder devices (a,b) [53] and Hokuyo sen-
sor (c) [54].
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In addition to the SICK sensors, Hokuyo laser rangefinders [54] are also quite
popular in robotic community as the drivers for them are available in robotic sys-
tems like Player/Stage [49] or ROS [45], etc. The Hokuyo UTW-30LX (Fig. 2.2c)
is small and lightweight and detects obstacles within a distant range from 0.1 to
30 meters. It scans environment in a plane with 270◦ field of view and angular
resolution 0.25◦. The general accuracy of the provided distance measurements is
worse comparing to the SICK devices.

2.4 Camera

A camera is a representative of a passive sensors that senses the robot environ-
ment and produces a picture from which important features, shapes of objects,
materials properties and scene arrangement can be estimated. Detection of these
environment properties depends on the type of image sensor that varies accord-
ing to the sensor technology, the range of sensed spectral bands, image resolu-
tion and imaging geometry. In this thesis, images from the Malaga dataset [3] are
used, which has been captured by the color camera AVT Marlin F-131C, see Fig.2.3
with a CCD sensor. The quality of captured images (i.e., the quality of input sets
for localization methods) depends on the image resolution that is 1280 × 1024.
Moreover, it is also influenced by the way how the environment is captured into
the camera projection plan. This can be mathematically described by the pinhole
camera model.

Figure 2.3: AVT Marlin F-131C camera [55].

2.4.1 Pinhole Camera Model

The pinhole camera model describes how a scene feature F = [x, y, z], which is
defined in the camera coordinate system, is projected onto a point P = [u, v] in the
image plane, see Fig. 2.4. Without considering any lens distortions, the projection
is defined as  uw

vw
w

 =

 fx 0 cx
0 fy cy
0 0 1

 x
y
z

 , (2.3)

where w is the scale factor, fx, fy stand for the focal lengths in units of pixels and
cx, cy are the coordinates of the image center. The main lens distortions are radial
and tangential and they produce a displacement of the projected image. They can
be corrected using Brown’s distortion model
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Figure 2.4: The camera pinhole model.

u′ = u+ ur + ut
v′ = v + vr + vt,

(2.4)

where
ur = u(k1r

2 + k2r
4 + · · · )

vr = v(k1r
2 + k2r

4 + · · · )
ut = (2p1uv + p2(r

2 + 2u2))(1 + p3r
2 + · · · )

vt = (2p2uv + p1(r
2 + 2v2))(1 + p3r

2 + · · · )

and r =
√
u2 + v2 and [k1 k2 · · · ] are radial and [p1 p2 · · · ] tangential distortion

coefficients.
The camera pinhole model creates a 2D image features from 3D environment

observations. When using a camera for estimation of the mobile robot pose in R3,
the input features sets for localization techniques have to also be in R3; thus, the
recovering of a feature depth has to be solved.

2.4.2 Recovering a Feature Depth

The position of the features in two directions can be directly read from the
captured scene but the depth information has to be determined by an additional
method. Although cameras that produce 3D images exist, they are expensive [50],
and therefore, the depth is determined from a more images of the same scene
in this thesis. A widespread solution of the full estimation of depth information is
usage of two cameras in a stereo pair, which capture the same scene [11]. The third
solution is “ego-motion” that refers to the problem of camera localization from a
sequence of pictures from one camera [27]. In this thesis, the second approach
used and the method is described in Section 3.3.
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Chapter 3

Perception Process

The perception process consists of three parts. The first part is sensing of the
environment. Then, important features, such as corners or blobs, are extracted
and associated to corresponding pairs in the second part. Finally, the found fea-
ture pairs are used as input datasets in localization techniques. In this thesis, the
laser rangefinder and color stereo camera are utilized as the perception sensors.
The laser rangefinder produces a set of measured features, which can be used di-
rectly or only important features can be extracted. In this chapter, the relevance
filter [20] extraction method is described. It reduces the number of measured fea-
tures according to the relevance measurement. When using a camera, important
features are found as salient objects by image processing detectors [22] and they
are represented by descriptor, e.g., SIFT, SURF, RIFF, BRIEF, ORB etc. [43]. In Sec-
tion 3.2, a brief introduction to feature detection is given and the selected Speeded
Up Robust Features (SURF) [1] descriptor is discussed.

3.1 Detection of Features in Laser Rangefinder
measurements

When using a laser rangefinder as a perception sensor, the amount of captured
features can be reduced by using the relevance filter [20]. This filter removes the
unnecessary features and only important features remain, see Fig. 3.1. It works as
follows:

1. If the feature set contains more than three features, then the relevance K(fi)
is determined for each feature fi in the set as

K(fi) = |fi−1, fi|+ |fi, fi+1| − |fi−1, fi+1|,

where fi−1, fi+1 are neigbours of feature fi, i ∈ 〈2, N − 1〉. N is the size of
the feature set. Otherwise, the filtration procedure is terminated.

2. The minimal K(fmin) is found over all relevances K(f). If the found value is
bigger than the chosen threshold, the feature fmin is discarded and the whole
process is repeated.
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3. If K(fmin) is smaller than the chosen threshold or the feature set contains
less than four features, the algorithm terminates.

This method is suitable for feature sets that are captured in a structured environ-
ment because the features corresponding to the straight parts are discarded and
only features corresponding to corners are preserved. The corners are more unam-
biguous than the features on the straight parts (e.g., walls), therefore this filtration
improves the data association, see chapter 7.

Figure 3.1: The original measured points (black) and the preserved points (blue)
after relevance filtering.

3.2 Detection of Features in Camera Measurements

Feature detectors locate a feature in an image. The most of the existing detec-
tors can be divided into corner or region detectors. The found feature is repre-
sented by its descriptor. The requested properties of an ideal descriptor are ro-
bustness to occlusions and background clutter and invariance to many kinds of
variations, geometric and photometric transformations. The definition of these
properties are given in the following section together with an introduction of ba-
sic functions used in image processing.

3.2.1 Basic Image Functions

Consider an image I(p), where p = [x, y] is a pixel. The differences of image
are Ix and Iy with respect to x, y respectively. A Gaussian kernel with a local scale
parameter σ is defined as

g(p, σ) =

 1

2πσ
e
−p

Tp

2σ

 .

Scale Space

Detectors have to find features at different scales, because the search of cor-
respondences often requires feature comparison in images that are captured at
different scales. The linear scale space of image I(p) is a serie of L(p, σ), which is
determined by smoothing an image I(p) with a Gaussian g(p, σ) using different
scales σ, see Eq.3.1.
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L(p, σ) = I(p) ∗ g(p, σ) =

∫
I(p− q)g(q, σ)dq. (3.1)

Harris Matrix

The Harris Matrix represents the gradient information, i.e., a matrix of partial
derivatives. The eigenvalues of the Harris matrix determine if a point is a corner
or not. The Harris matrix is defined as

A(p) =

[
Ix(p)
Iy(p)

] [
Ix(p)
Iy(p)

]T
=

[
I2x(p) Ix(p)Iy(p)

Iy(p)Ix(p) I2y (p)

]
. (3.2)

Hessian Matrix

The Hessian matrix H(p, σ) at the pixel p at the scale σ is defined as follows

H(p, σ) =

[
Lxx(p, σ) Lxy(p, σ)
Lyx(p, σ) Lyy(p, σ)

]
, (3.3)

where Lxx(p, σ) are the second partial derivatives of L(p, σ) with respect to x and
Lyy(p, σ), Lxy(p, σ), Lyx(p, σ) are defined in a similar way.

Laplacian Function

The Laplacian function is invariant to rotation in a given image I(p). It is de-
fined as

4L(p, σ) = Lxx(p, σ) + Lyy(p, σ), (3.4)

i.e., it is a trace of the Hessian matrix H .

Geometric Transformations

Each pixel p1 can be mapped to its corresponding pixel p2 by a geometric
transformation. Different transformations as translation, reflection, rotation, skew,
scale, etc. can be expressed by the function

p2 = Ap1 + b, (3.5)

where A is the transformation matrix and b is the translation matrix.

3.2.2 Detectors

The one of the first detectors introduced in 1977 is Moravec’s corner detec-
tor [31], which finds the local maximum of minimum intensity changes. Harris
point that this detector is anisotropic, noisy and sensitive to edges; therefore, he
proposed Harris corner detector [13], which is also used as a building block of
modern detectors. This detector uses the Harris matrix and its eigenvalues to de-
tect corners. However, it is not scale invariant; so, Mikolajczyk and Schmid [30]
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proposed new detector, which uses scale-adapted Harris measure or the determi-
nant of the Hessian matrix to select the location and the Laplacian to select the
scale. This method is robust, scale-invariant and it has a high repeatability. The re-
peatability expresses the reliability of a detector to find the same physical salient
objects under different viewing conditions.

The scale invariant property is important for detectors to be used in local-
ization problems. Lowe proposed the Scale Invariant Feature Transform (SIFT) [24]
that approximates the Laplacian of Gaussians (LoG) by a Difference of Gaussians
(DoG) filter. Using this approximation, the detector is faster than previous detec-
tors. The Fast-Hessian detector, which is proposed by the authors of Speeded-Up
Feature Transform descriptor [1], improves the detection speed even more by using
the box filters instead of DoG. From the published comparison [22], the Hessian-
based detectors are more stable and repeatable than the Harris-based. Moreover,
when the determinant of the Hessian matrix is used instead of its trace (the Lapla-
cian), it improves the feature detections. The Harris corner, SIFT and Fast-Hessian
detectors are important in the evolution of detectors, therefore there are described
more detaily in the following paragraphs.

Harris corner detector

The Harris corner detector [13] is based on the Harris matrix, see Section 3.2.1,
which is computed for each pixel p in an image I(p). The eigenvalues λ1, λ2 of
this matrix determines three possible locations of the pixel.

• λ1 ≈ 0 & λ2 ≈ 0: the pixel is in an uniform intensity region;

• λ1 ≈ 0 & λ2 � 0: the pixel is on an edge;

• λ1 > 0 & λ2 > 0: the pixel is a corner.

A computation of the matrix eigenvalues is computationally expensive. That is
why the authors propose the Harris corner metric

mh = λ1λ2 + κ(λ1 + λ2)
2 = det(A)− κ trace(A)2,

where κ is a tunable sensitivity parameter. Using this metric, the pixel location is
determined as follows:

• if mh is small, then the pixel is in an uniform intensity region;

• if mh < 0, then the pixel is on an edge;

• if mh > 0, then the pixel is a corner.

The detected features are invariant to the rotation, but they are not invariant to
the scaling.
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Scale Invariant Feature Transform (SIFT)

This method is a region detector [22] and it approximates the Laplacian of the
Gaussians (LoG) by the Difference of the Gaussian (DoG). This idea is proposed
by Crowley and Parker in [8], where they select the scale-space extrema in a serie
of DoG images by a convolution of the image with the DoG functions. Based on
this method, Lowe [24] propose the SIFT detector designed to handle the scale
invariant problem. The detection consists of three steps:

1. The scale-space extrema detection is the same as the Crowley and Parker method.

2. The keypoint localization discards the low contrast candidate points, that are
sensitive to noise. This is done using the function

L(ze) = L(z) +
1

2

δTL

δz
ze,

where

ze = −
(
δ2L

δz2

)−1
δL

δz

and z = [x y σ]. The points with L(ze) > 0.03 are preserved. Then, points
along an edge are discarded too. These points are detected using the ration

r =
lambda1

λ2
> 10,

where λ1, λ2 are eigenvalues of the Hessian matrix. This two filtering pro-
cesses improve the stability of features matching methods.

3. The orientation is assigned to the preserved keypoints with these sub-steps.

• The magnitude and orientation of all points in the circular region of the
found extreme are calculated.

• The magnitude is smoothed by a Gaussian window.

• The histogram with 36 bins is obtained by an accumulation of these
magnitudes. The magnitude is assigned to the bin using the correspond-
ing orientation.

• The orientation corresponding to the maximum of histogram and the
orientation corresponding to the local maximum, whose value is above
80 % of the global maximum, are selected.

• For each selected orientation, a correction is made. The parabola is fit-
ted to the histogram values of the selected orientation and its two neig-
bours. Then, the original orientation is replaced by the peak of the
parabola.

• The keypoint is created in the region, which orientation is the same as
the selected one.
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Fast-Hessian detector

The Fast-Hessian detector proposed by authors of the SURF descriptor [1] is
based on the Hessian matrix because it has a good accuracy. The Gaussians used in
the definition of the Hessian matrix, see Eq. 3.3, are optimal for scale-space analy-
sis, but they have to be discretised and cropped, see Fig. 3.2a. Authors proposed a
novel approximation for the Hessian matrix using box filters, see Fig. 3.2b, which
approximates the second order Gaussian derivatives. Their advantage is that they
can be determined at a very low computational cost using integral images. There-
fore, the calculation time is independent on the filter size.

(a) (b)

Figure 3.2: An example of the discretised and cropped Gaussian for the second or-
der derivative Lyy(p, σ), Lxy(p, σ) for σ = 1.2 (a) and the proposed approximation
Dyy, Dxy (b), where the gray regions are equal to zero [1].

The algorithm works as follows:

1. Integral image I∑(p) at a pixel p = [x, y] is determined by equation

I∑(p) =

i≤x∑
i=0

j≤y∑
j=0

I(i, j).

The sum of the intensities
∑

over a rectangular area in a image I(p) can be
determined by computed integral images as∑

= I∑(A)− I∑(B)− I∑(C) + I∑(D),

where A, B, C, D are corners of an area, see Fig. 3.3. This computation
of
∑

is independent on area size, which positively influence the computing
speed.

2. The determinant of Hessian matrix is approximated by the equation

det(Happrox) = DxxDyy − (wDxy)
2,

where Dxx, Dyy, Dxy are box filters, w is the relative weight of the filter re-
sponse because the Gaussian kernels and approximated kernels have a dif-
ferent energy. The weight w depends on the scale σ, but authors observed
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Figure 3.3: The calculation of the sum of the intensities inside the rectangular re-
gion [1].

that the impact is insignificant; so, they proposed to use w = 0.9 that corre-
sponds to the box filter with σ = 1.2. The approximated determinant repre-
sents the blob response in the image pixel p, it is stored and used to detected
important features in the next step.

3. The Fast-Hessian detector is a new approach to the scale-space, see Eq. 3.1. The
box filters of any size can be applied directly on the original image at exactly
the same speed, that is in contrast with the original approach, where the
same filter have to by iteratively apply to the output of the previous filtered
layer. Therefore, the scale-space is determined by up-scaling the filter size
rather than iteratively reducing the image size [1], see Fig. 3.4. This approach
improves the computational requirements, moreover it preserve the high-
frequency image components, because an image is not sampled.

Figure 3.4: The origin “pyramid” approach (left) for scale-space determination,
where an image is downsampled, and the proposed approach, where the size of
box filter is changed [1].

4. The important features are found using the non-maximum suppression method
introduced by Neubeck and Van Gool [34] and an interpolation of the max-
ima of Hessian matrix by method proposed by Brown and Lowe [4].

3.2.3 Descriptors

The features extracted by a detector are represented using a descriptor of the
feature surroundings. The size and properties of the descriptor influence the be-
haviour of other methods, e.g., data association. Many types of descriptors are
proposed [22] and one of the first descriptors use the local derivatives [19]. Schmidt
and Mohr [35] extend the local derivatives as the local gray-value invariants for
an image retrieval. These descriptors are outperformed by the SIFT descriptor
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proposed by Lowe [24]. The SIFT descriptor computes a 3D histogram of local
oriented gradients around the detected feature and creates a vector with 128 val-
ues.

Various methods based on the SIFT descriptor exist. For example Ke and Suk-
thankar [18] apply a principal component analysis (PCA) on the gradient image
around the detected feature to simplify the SIFT descriptor. They create the PCA-
SIFT descriptor with 36 values, which leads to faster processing of the found fea-
tures in other algorithms, e.g., features matching. But it is less distinctive than the
original SIFT and the PCA slows down the determination of the feature descriptor.
Lazebnik [21] proposed the RIFT (rotation invariant feature transform) descriptor
to improve the rotation invariance of the descriptor. The disadvantage of SIFT is
the high dimensionality of the descriptor that slows down the matching process;
thus, authors of SURF [1] proposed a descriptor with 64 values that is based on
the idea of SIFT. The SURF descriptor describes the intensity content within the
interest point neighborhood too, but it uses a distribution of the first order Haar
wavelet responses in x and y directions rather than the gradients. In this thesis,
the SURF descriptor is used for description of visual features in camera images. It
is based on the SIFT descriptor, therefore a more detailed description of the SURF
and SIFT descriptors are presented in the following paragraphs.

Scale Invariant Feature Transform (SIFT)

The SIFT descriptor [24] is created by the first gradient magnitude and orienta-
tion in the neighbourhood of the detected feature zk, which have the scale σk and
rotation Θk. The descriptor contains 16 orientation subhistograms (see Fig. 3.5),
where each subhistogram consists of 8 bins; thus, SIFT descriptor contains 128
values for each detected feature zk. The determination of the descriptor is as fol-

Figure 3.5: The SIFT descriptor [22].

lows:

1. The center τij is generated for each cell, see Fig. 3.5.

2. The locations lij are generated for each cell.
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3. The orientation bin ϕ with 8 values for the histogram is generated.

4. The centers and locations are transformed using the rotation matrix R(Θk)
and translation zk.

5. The gradient magnitude mij and the orientation φij of the location lij are
sampled around the feature zk in the scale σk.

6. The x-coordinate weighting vector ~wx
ij ∈ R16 of the location lij is determined

according to the equation

~wx
ij = [max(1− |τmnx − lijx|/4), 0],

where m,n ∈ 〈1, 4〉. The y-coordinate weighting vector ~wy
ij ∈ R16 is deter-

mined by the same equation, but y-coordinates τmny and lijy are used. The
local weighting vector is determined as

~wl
ij = [ ~wx

ij(m,n)× ~wy
ij(m,n)].

This step is repeated 8 times, because each cell have 8 orientations.

7. The orientation weighting vector ~w0
ij ∈ R8 is determined as

~w0
ij = [max(1− 4|~θ|/π, 0],

where
~θ = mod(φij −Θk − ϕ+ π, 2π)− π.

The vector ~w0
ij is determined for each cell.

8. The 128 dimensional histogram is computed as

hk =
1∑

6ij=1[~w
l
ij(k) · ~w0

ij(k)]k∈〈1,128〉 · wG
ijmij,

where wG
ij is the Gaussian weighting factor.

9. The histogram is normalized.

Speeded-Up Robust Feature (SURF)

The SURF descriptor [1] describes the distribution of the intensity content as
SIFT, but it is built on the distribution of the first order Haar wavelet response,
which reduces the computation time and increase the robustness. The descriptor
is created in the following steps.

1. The orientation of the detected feature f is identified as follows. First, the
Haar wavelet responses in x and y directions is determined within a circular
area with the radius r = 6σ, where σ is the scale at which the feature f
is detected, and the center of the area is at the detected feature f . These
wavelet responses are weighted with a Gaussian with the variance 2σ. Then,
the local orientation vector is determined by summing the horizontal and
vertical responses within a sliding window, see Fig. 3.6. The orientation of
the detected features is the longest of the local orientations.
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Figure 3.6: A gray sliding window used to detect the dominant orientation of the
Haar wavelet responses [1].

2. The descriptor is determined using the sums of Haar wavelet responses too.
First, the square areas centered at the feature f are created with orientation
determined in the previous step. The window is explicitly used with the size
20σ and it is divided into 16 square sub-regions, which preserve important
spatial information. In the next step, the Haar wavelet responses in the hor-
izontal direction dx and in the vertical direction dy are computed at 5 × 5
regularly spaced points at each sub-region. These responses are weighted
using the Gaussian with the variance 3.3σ (σ is the scale at which the feature
f is detected) to increase the robustness while geometric transformations or
features errors occur. The sub-region descriptor is determined as

v = [
∑

dx,
∑

dy,
∑
|dx|,

∑
|dy|].

Finally, the SURF 64 dimensional descriptor is created by determining de-
scriptor v for each sub-region.

3.2.4 Selection of Feature Detection Method

Authors of SURF [1] proves that their proposed Fast-Hessian detector is faster
than others existing detectors at that time. An independent comparison of de-
scriptors behaviour is available at [43]. The described SIFT and SURF descriptors
and others are compared in a scale and rotation invariant test, see Fig. 3.7. The
metric is the percentage of correct matches between the features from the source
image and the features from the transformed source image.

The SURF sensitivity to odd multiples of π/4 can be seen in Fig. 3.7b. It is
caused by a discretisation of the Gaussian and it is a weak point for all Hessian-
based detectors. The SURF and SIFT descriptors are the best from the tested de-
scriptors in the scale-invariant test, see Fig. 3.7a. Based on these evaluations, the
SURF detection (detector and descriptor) is used in this thesis.
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(a) (b)

Figure 3.7: Results of the scale (a) and rotation (b) invariant test for various de-
scriptors [43].

3.3 Depth Estimation from Stereo Images

The stereo images are taken by a general stereoscopic camera system that is
shown in Fig. 3.8. Each camera is defined by its position ~C, optical axis ~A and
image plane created by the vectors ~H, ~V . If the cameras are placed at the same
y-coordinate and their axes are parallel, the simplified model can be used, see
Fig. 3.9. This configuration is used in this thesis. The distance B between the cam-

Figure 3.8: The model of the stereoscopic camera system [11].

eras can be expressed as

B = B1 +B2 = D tan(ϕ1) +D tan(ϕ2);

thus, the depth D of a detected feature can be determined as

D =
B

tan(ϕ1) + tan(ϕ2)
.

Using the trigonometry functions and ϕp = ϕ0

2
, it holds that

tan(ϕ1) = 2x1 tan(ϕp)

x0
,

tan(ϕ2) = −2x2 tan(ϕp)

x0
.
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Finally, the depth D is

D =
Bx0

2 tan(ϕp)(x1 − x2)
. (3.6)

x
-x

x
1

2

0/2

Figure 3.9: The simplified model of the stereoscopic camera system [17].

Depth information is obtained by a triangulation of corresponding image fea-
tures with known stereoscopic camera parameters. Therefore, the coordinate dif-
ference between the corresponding image points, called disparity, has to be esti-
mated.

3.4 Data Association

Methods of data association can be divided into two groups according to the
amount of features that are requested to associate [6]. The individual measure-
ment data association methods associate a single captured feature from one set
with the appropriate feature from the other sets. The features in these sets are
measured independently. The batch data association methods associate a batch
of features that are sensed at one time instant. This situation arises when the used
sensor takes a measurement of the environment as a single snap or the scan fre-
quency is faster than the robot’s dynamics. The batch measurements are given,
for example, from a laser rangefinder or a camera, i.e., the types of sensors used
in this thesis.

The batch association has some special properties in contrast to the individual
association. The first is the greedy mutual exclusion, it means that no two features
can be associated with the same feature within a given batch. The second prop-
erty is the possibility that a feature pair can be compared within the entire batch.
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The data association is an independent research area and many different methods
exist [5]. This section is focused only on the nearest neighbour association method
and the additional filtering procedure that is proposed here.

3.4.1 New Proposed Association Method

During the research of LEL performance, it was observed that the LEL sig-
nificantly depends on the quality of the corresponding pairs, see Section 8.3 for
details. Also, it was proved that the standard nearest neighbour method has pro-
vided insufficient precision of LEL, see Section 8.4. Therefore, the new extension
of nearest neighbour method is proposed here.

Having two features A = [a1, a2, . . . , aN ] and B = [b1, b2 . . . , bM ] for which
each bj is associated to the particular feature ai if

1. their descriptors are identical. Such a case cannot ever exist because the im-
ages are always influenced by a noise. Therefore, the similar descriptors are
evaluated using the Euclidean distance between feature descriptors;

2. they have the same sign of the Laplacian, as proposed in [1];

3. and a feature bk with the similar descriptor does not exist to guarantee the
greedy mutual exclusion.

Figure 3.10: The corresponding pairs between left and right camera, the red pairs
are the outlying pairs.

The proposed extension consists of the following steps.

1. The smaller set is chosen as a reference, the features from the bigger set are
assigned to the reference features. Without loss of generality, it is supposed
that N > M in the next steps of the association procedure.

2. For each feature ai from the set A, the distances to all features from the set
B are determined. Thus, the matrix of the distances D with size N ×M is
obtained.
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3. The matrix D is normalized.

4. The similarity coefficient e ∈ 〈0, 1〉 is chosen. The features with the Euclidean
distance equal or smaller than a given e are considered as corresponding
pairs.

5. For each feature ai, the amount of the corresponding candidates are deter-
mined using the coefficient e. These amounts are stored in the matrix C with
the size N × 1.

6. The amount
∑

a of the features ai with only one corresponding candidate is
computed.

7. The new similarity coefficient e is chosen to maximize the
∑

a and the proce-
dure (from the step 4) is repeated. The procedure ends when the maximum
of
∑

a is found for the similarity coefficient emax.

Finally, the corresponding pairs [ai, bj] are determined using the coefficient
emax. The feature bj is associated with the feature ai if the distance D(i, j) is equal
or smaller than emax and any other distanceD(i, (1 . . .M)/j) is not equal or smaller
than emax.

The quality of the corresponding pairs can be improved by using the second
property of the batch data association; so, comparing all found pairs together. This
allows to throw away corresponding pairs, which are outlying. An outlying pair
is determined using differences of their positions. In Fig. 3.10, an example of the
outlying correspondence pairs can be seen (in red). This new proposed approach
is compared with the standard nearest neigbour method in Section 8.4, where the
influence to the mobile robot localization is verified as well.

26



Chapter 4

Least Entropy-Like Localization
Technique

The Least Entropy-Like (LEL) [7] estimator is designed to find parameters of
a transformation between two different input sets with robust behaviour for sets
corrupted by outliers. The idea is based on rewarding the presence of majority low
relative errors and penalizing a minority of large ones, i.e., finding such a cost
function that is able to “globally” measure the residual dispersion and rewards
evenly distributed residuals. These requirements formulated by the authors re-
quest properties of the cost function that can be fulfilled by the definition of the
entropy. The formulated cost function has the same mathematical properties as
the entropy, but the proposed method does not exploit the stochastic or infor-
mation theoretic meaning of the entropy [16]. Therefore, the authors named the
technique Entropy-like.

4.1 The Entropy-Like Estimator

The LEL estimator is deduced using a standard normalized discrete entropy
function, which is defined as

H = − 1

N

N∑
i=1

λi log λi.

Regarding possible errors in the input data, the entropy H has an advantage
that datasets, including few states with high probability, have a much lower en-
tropy than datasets including states with approximately same probability. Moti-
vated by this fact, the LEL estimator is designed by Eq. 4.1 to estimate such a
transformation T that maximizes probability of function λi, which minimizes the
entropy function.

TLEL = argminTH (4.1)
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For finding the transformation T, the function λ can be defined as

λij =
r2ij
D
,

where

D = ||r||2 =
N∑
i=1

M∑
j=1

r2ij

is the squared 2-norm of the estimation error, M is the space dimensions and N is
the number of points in the given datasets. The residuals

r = Q−RiniP + Tini

are computed using the initial estimations Rini and Tini. The entropy-like function
used in the LEL estimator can be compute as

H = − 1
log(NM)

∑N
i=1

∑M
j=1 λijlogλij if D 6= 0. (4.2)

The regular function H is not define if D = 0 and the authors of [7] defined it as

H = 0 for D = 0. (4.3)

The new entropy-like function H defined by Eq. 4.2 and Eq. 4.3 has all proper-
ties as the standard normalized entropy function. The properties are

H ∈ [0, 1]

H = 0 iff


ri = 0 ∀ i ∈ [1, N ]
or
∃! i∗ : ri∗ 6= 0 and ri = 0∀ i 6= i∗

H = 1 iff r2i = r2j 6= 0 ∀ i, j ∈ [1, N ].

The relative squared residual λij has the following properties

λij ∈ [0, 1],

N∑
i=1

M∑
j=1

λij = 1.

4.2 Initialization

The proposed entropy-like function is nonlinear with possible several local
minima. Moreover, it has been shown that the existence of the global minimum
cannot be guaranteed. Therefore, the performance of the LEL estimator depends
on the initial estimation of the transformation. The authors of LEL use the Horn
algorithm due to its low computational requirements. Here, it should be noted
that when using datasets from a laser rangefinder, Horn method is not a proper
function, see discussion in Section 4.2.1.
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4.2.1 Horn Algorithm

Horn algorithm [14] estimates the transformation T directly from datasets and
does not iterate, which is its main advantage. It is defined for three dimensional
space but modified algorithm for two dimensional space also exists. Here, the
origin version is described. The main idea is that the input datasets P and Q are
referred by their centroids

P̄ =
1

N

N∑
i=1

Pi, Q̄ =
1

N

N∑
i=1

Qi.

The algorithm minimizes the mean square objective function

E(ω, T ) =
1

N

N∑
i=1

‖RQi + T − Pi‖2,

where N is the number of points in each dataset. The transformation is

P̄ = sRQ̄+ T,

where s is changing of a scale. The rotation matrix R is determined using the
following steps.

1. The cross-covariance matrix
∑

PQ is given by∑
PQ

=
1

N

N∑
i=1

[
(Qi − Q̄)(Pi − P̄ )T

]
.

2. A matrix A is constructed as

A =
∑
PQ

−
T∑
PQ

.

3. The column vector ∆ = [A23A31A12]
T is formed using cyclic components of

the matrix A.

4. The symmetric matrix N is formulated as

N =

[
trace(

∑
PQ) ∆T

∆
∑

PQ +
∑T

PQ− trace(
∑

PQ)I3

]
,

where I3 is the identity matrix with the size three.

5. An eigenvector q̄ =
[
q0 q1 q2 q3

]
, which corresponds to the maximum

eigenvalue of the matrix N is selected. Horn [14] proves that this vector is a
quaternion, an another expression of the rotation.

The scale is then determined as

s =

(∑n
i=1 ‖ Q̄i ‖∑n
i=1 ‖ P̄i ‖

) 1
2

(4.4)

and the translation is
T = P̄ − sRQ̄. (4.5)
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Data sensitivity of Horn algorithm

Horn method is sensitive to the input data as it is shown in the following ex-
ample, which is ilustrated in Fig. 4.1. Let the robot be placed at the position Pp

and the laser rangefinder make the scan P of the robot surroundings. Then, the
robot rotates around its center about a small angle and a new scan Q is captured.
It can be observed that the robot position is the same but centroids of the scans
are significantly different, therefore Horn method estimates the translation incor-
rectly. This model situation is an excessive example and the behaviour of Horn
algorithm can be improved by carefully preprocessing of the input datasets but it
costs the computing time and the method becomes slower.

P Q

Figure 4.1: The robot rotates from P to Q, the centroids of captured datasets are
different while the positions of the robot are identical.

4.3 Optimization

The authors of the LEL method use the Levenberg-Marquardt [28] optimiza-
tion algorithm (LMA) to find a minimum of nonlinear function H over a space
of parameters defined by T. However, the LMA finds only a local minimum, not
the global. The LMA interpolates between the Gauss-Newton method and Steepest
Descent, which estimates the new parameter vector as

Ti+1 = Ti − µ∇H(T).

The convergence of the Steepest Descent can take a long time for complex functions
because a small constant steps are used to correct detection of minima. This be-
havior can be improved using the second order information. The process of the
estimation of new parameter T = T0 + δ is an iterative procedure and it consists
of the following steps.

1. The function H(T + δ) is approximated by its linearization

H(T + δ) = H(T) + Jδ,

where J is the Jacobian matrix.

2. The parameter vector T + δ is estimated to minimize the function H(T); so,
the ideal state is

H(T) + Jδ = 0.
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3. Multiplying the above equation by JT it can be rewritten as

−Hδ = JTH(T), (4.6)

where H = JTJ stands for approximation of the Hessian matrix.

4. The new parameter vector can be estimated as

Ti+1 = Ti −H−1d,

where d = JTH(Ti) is the average error gradient. Using this definition, the
Steepest Descent function can be rewritten as

Ti+1 = Ti − µd.

5. Levenberg’s contribution is “blending” these two equations, the “damped”
attribute ν is added to Eq. 4.6

− (H + νI)δ = JTH(T). (4.7)

The positive damping vector ν is adjusted at each iteration. The function H
is estimated for the proposed parameter vector T. If the function value is
decreased, then the step is accepted and ν is decreased and the Levenberg’s
method described by Eq. 4.7 gets closer to the Gauss–Newton algorithm. If the
function value is increased, the step is retracted and ν is increased getting the
Levenberg’s method closer to the Steepest Descent.

6. The proposed method has a disadvantage for large values of ν, because the
method is closer to the Steepest Descent and the convergence can be slow in
the direction of small gradient. Marquardt proposed improvements based
on the Hessian matrix, where larger movements are made along directions
of the smaller gradient. Therefore, Marquardt replaced the identity matrix I
with the diagonal matrix consisting of the diagonal elements of H, proposing
the final Levenberg-Marquardt optimization method

− (H + ν diag[H])δ = JTH(T). (4.8)

The Levenberg-Marquardt optimization method described by Eq. 4.8 estimates
the parameter vector T independently, but from the robot’s kinematics model
(Section 2), it can be seen that the transformation parameters are not indepen-
dent. Therefore, an idea to improve the robot pose estimation is to include the
robot’s kinematic constrains to the optimization method. In Chapter 8, several
experiments are made and it is observed that the influence of the parameters in-
dependence is insignificant.
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4.4 Parametrization of the 3D Rotation Matrix

When solving the nonlinear optimization problem, the used parametrization
of unknown variables has to be fair. It means that such a parametrization does not
cause more numerical sensitivity that one involved in the problem itself [15]. The
straightforward representation of the rotation matrix are Euler angles. They are
not fair, because they cause a nonlinear characteristic to the Jacobians in the op-
timization process. Moreover they could be numerically unstable. Another para-
metrization are quaternions, which are fair in this sense [15]. The quaternion is
defined as

~q = q0 + q1i+ q2j + q3k,

where q0 is the real part and q1, q2, q3 are the imaginary parts. It holds that |~q| = 1
if the quaternion ~q represents rotation. The rotation matrix can be then defined as

R =

 q20 + q21 − q22 − q23 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) q20 + q22 − q21 − q23 2(q2q3 − q0q1)
2(q1q3 − q0q2) 2(q2q3 + q0q1) q20 + q23 − q21 − q22

 .
The quaternion is defined by four elements, but it has only 3 DOF and this

is problem when using the unconstrained nonlinear optimization technique like
the Levenberg-Marquardt method. The naïve solution is to optimize only three
imaginary parts and then the real part can be determined as

q0 = ±
√

(1− q21 − q22 − q23).

During the optimization, it must be assured that the radicand is always positive,
which cannot be guaranteed during Levenberg-Marquardt method; therefore, this
approach is not suitable. The authors of [36] propose a robust solution, where the
quaternion is transformed to a three dimensional vector. The idea of the proposed
approach is based on the fact that all unit quaternions lie on the unit sphere in
R4 and for such a quaternion there always exists the tangential hyperplane Ψ.
The initial estimation of the rotation ~h0 and the desired estimation ~hz lie on the
great circle1 of the sphere. The goal is to describe the distance of ~hz from ~h0 and
the direction on the great circle using only three independent parameters. Such a
description can be made by a vector ~v that lies on the hyperplane Ψ because the
hyperplane is a subspace of R4; thus, vectors in this plane can be represented in
R3 with the origin at ~h0.

4.4.1 Base of the Tangential Hyperplane

The hyperplane Ψ tangential to ~h0 is defined by all points ~x ∈ R4 satisfying

~h0
T

(~x− ~xk) = 0,

1The great circle is the intersection of the sphere and a plane, which passes through the center
point of the sphere.
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where ~xk is a point lying in the hyperplane. When choosing ~xk = ~h0, the equation
can be rewritten as

~h0
T
~x = 1.

The hyperplane in the normal form is defined as

n1x1 + n2x2 + n3x3 + n4x4 − 1 = 0,

where ~h0 = (n1, n2, n3, n4). This hyperplane can be defined by the base

B = [b1, b2, b3, b4].

This base is determined as follows. The vector b1 is created as parallel to ~h0 with
the unit size. The other base vectors are created using Gram-Schmidt method [46],
they are orthogonal to each other and they have unit size; so, the base B is orthog-
onal too. The estimated vector ~v = [0, µ, ν, σ] has always the first coordinate
equal to zero. The vector ~v0 corresponding to the initial quaternion ~h0 is

~v0 = [0, 0, 0, 0].

4.4.2 Computing the Resulting Quaternion

The estimated vector ~v has to be normalized

~vN =
~v

|~v|
.

Then, the resulting quaternion ~hz is determined using ~h0 and ~vN . The quaternion

h

0

v4N

z

q

h

v

Figure 4.2: Resulting quaternion.

~hz lies on the “great circle” that is defined by the intersection of the sphere with
the 2D plane defined by ~h0 and ~vN . Such a quaternion can be computed as

~x = µ~h0 + ν ~vN .

The quaternion ~v defines the direction of ~hz and the distance from ~h0, see Fig. 4.2.
Thus, the resulting quaternion is determined as

~hz = cos(Θ) ~h0 + sin(Θ) ~vN , (4.9)

where Θ = atan(~v).
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This approach has the following advantages.

1. The unit-norm constrain is avoided.

2. The three variables of vector ~v can be changed freely by an optimization
algorithm.

3. The resulting quaternion has always unit norm.

In Section 8, this approach is compared with the rotation representation by Euler
angles.

34



Chapter 5

Other Localization Techniques

Three main approaches for estimating transformation parameters T between
two robot poses using scans of its surrounding exist. The first is known as the
scan-to-scan matching method in which the transformation is estimated using
only the actual scan and the previous one. In contrast, the scan-to-map match-
ing method uses the actual scan and the current map of the robot operational
environment. This map can be pre-prepared or the robot can build it simultane-
ously while localizes itself according to this map, which is a problem known as
the simultaneous localization and mapping (SLAM). This chapter describes the
widespread algorithms for the matching problems based on the ICP algorithm
and its extensions, RANSAC algorithm and gives a brief introduction to SLAM
approaches.

5.1 Matching Problems

The scan-to-scan matching method uses only two following scans for estimation
of the robot transformation T, where the estimated position differs from the true
robot transformation with an error δ at each such estimation. So, if the robot is
localized using the scan-to-scan method, the errors are cumulated along the whole
trajectory, and therefore, the difference between estimated and ground truth pose
is bigger at each step. The idea behind the scan-to-map matching method is to find
the transformation T using the actual scan and a map of the robot environment.
The error between estimated and true pose still exists but it is not cumulated due
to the map as reference. The total difference between the global and ground truth
pose is smaller than using scan-to-scan matching method.

5.1.1 Iterative Closest Point

The Iterative closest point (ICP) procedure is a commonly used for scan-to-scan
matching [2]. The main idea is based on minimizing the square error

E(ϕ, T ) =
k∑

i=1

|RQ′i + T − Pi|2,
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where Q′ is the corresponding set to the input set Q. The algorithm works as fol-
lows.

1. A given input estimation of matrices Rini and Tini are used to determine a
new dataset of the initially transformed measurements

Q1 = RiniQ+ Tini.

2. The distances between each point from the set P and all points from Q1 are
calculated. The pair with the smallest distances is found and the points of the
pair are marked as the corresponding points. The corresponding point from
the set Q1 is added to the set Q′. Not necessary all points from the dataset Q
must be used and some points can be used more times, see Fig. 5.1.

Figure 5.1: An example of corresponding points between two datasets.

3. The parameters of the transformation T are estimated using

ϕ = arctan
Sxy′−Syx′

Sxx′+Syy′

T =

[
x′

y′

]
−Rω

[
x
y

]
,

where

x =
1

k

k∑
i=1

xi(t), y =
1

k

k∑
i=1

yi(t),

x′ =
1

k

k∑
i=1

xi(t+ 1), y′ =
1

k

k∑
i=1

yi(t+ 1),

Sxx′ =
k∑

i=1

(xi − x)(xi(t+ 1)− x′), Syy′ =
k∑

i=1

(yi − y)(yi(t+ 1)− y′),

Sxy′ =
k∑

i=1

(xi − y)(yi(t+ 1)− y′), Syx′ =
k∑

i=1

(yi − x)(xi(t+ 1)− x′).

4. The estimated transformation parameters are used to determine the square
error. If the error is smaller than the given threshold, the estimation process
ends. Otherwise, the algorithm continues with the first step using the newly
estimated parameters as initial values.
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One disadvantage of the ICP algorithm is that it estimates the rotation of the robot
with a significant error due to the correspondences found by the closest-point rule,
which contains a little information about the rotation. An iterative matching range
point has been proposed [26] to improve the estimation of the rotation.

5.1.2 Iterative Dual Correspondences

The main idea of the Iterative dual correspondences algorithm (IDC) [26] is to
combine the Iterative Closest Point (ICP) and Iterative Matching Range Point
(IMRP) in a single algorithm providing their advantages. The IMRP [26] works
in a similar way as the ICP algorithm, but it uses a different rule for searching the
corresponding points. Consider the datasetsQ andQ′ that can be described by the
transformation matrices R and T :

P ′ = RP + T. (5.1)

The idea of IMRP is to ignore the translation T and then it holds that |P | ≈ |P ′|.
The vector v is from the origin to the point P and it has angle Θ. The vector v′ is
from the origin to the point P ′ and it has angle Θ′. It holds that the angles are
related by equation Θ′ = Θ + ϕ. The IDC algorithm uses a translation estimated
by the ICP and a rotation estimated by the IMRP and produces a better solution
than each algorithm individually. Moreover, it has the same stability as the ICP
and it has identical convergence as the IMRP.

5.1.3 Random Sample Consensus

A method called Random Sample Consensus (RANSAC) [12] estimates param-
eters of a mathematical model based on a random selection of few representative
points from an input dataset. The method is an iterative procedure that is termi-
nated if the value of the selected criterion E is smaller than a given threshold. The
criterion describes how the model M fits to the input data D. For example, the
criterion can be defined as

E =
N∑
i=1

|di −mi|,

where di is an input point, m the model point and N is the total amount of points
in the dataset D and also in M .

The RANSAC algorithm can be used to fit a 2D line to an input set of points,
where some of the points approximately fit the line (such points are called inliers)
and some of them are so-called outliers, i.e., points corresponding to noise or in-
correct measurements. The advantage of RANSAC is that it fits only inliers to a
model of line unlike the least squares method that fits the line to all points from
the set.

The RANSAC method is used to estimate the transformation T. The algorithm
works as follows. First, n pairs of points are randomly selected from the input sets
P and Q, in this case n = 2, and the points are used to solve Eq. (1.1). Then, the
determined transformation is applied to all points from the setQ and the criterion
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E is computed again. If it is lower than a given threshold and lower than the
last estimation, the new transformation parameters are saved. This procedure is
repeated k-times.

5.2 Simultaneous Localization and Mapping

The simultaneous localization and mapping (SLAM) technique is used by au-
tonomous robots to localize itself according to the map that is simultaneously
created using world observations and the robot pose. Using terminology from
Section 1, SLAM is problem of recovering a model of the robot world M and
the sequence of robot locations XT from the odometry UT and measured features
ZT [37]. Two main forms of SLAM problem exist, the first is the online SLAM
problem where only the current robot pose xt and the mapM are estimated based
on the odometry measurements UT and features observations of the environment
ZT ,

p(xt,M|ZT , UT ).

Algorithms solving the online SLAM are usually incremental and can process one
data item at a time. The second one is the full SLAM problem that computes the
posterior of the whole robot trajectory XT and the mapM. This is defined as

p(XT ,M|ZT , UT ).

SLAM algorithms use two other models to solve these problems. The robot kine-
matic model describes how the next robot position xt can be estimated using the
previous position xt−1 and odometry measurement ut. This model can be deter-
mined by the probability distribution

p(xt|xt−1, ut).

The second model describes the relation between scan zt of the environment, the
true mapM and the robot current position xt. The model is

p(zt|xt,M).

5.2.1 Taxonomy

Several SLAM based approaches and algorithms can be found in literature.
The particular methods are focused on specific issues of the problem and they can
be divided according to the following taxonomy.

• Metric or topological map

A metric map contains geometrical information about relations of the map
features. A topological map describes only relations between the map fea-
tures.
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• Feature-based or volumetric map

Algorithms that work with a feature-based map, extract from scans only
some features that are significant for them, for example corners in the case
of the indoor environment. The volumetric map is a high dimensional rep-
resentation that allows realistic reconstruction of the environment.

• Known or unknown correspondences

When adding a landmark to the map, it has to be decided if the landmark
is new or if it is already in the map, i.e., if the new landmark corresponds to
the existing one. Some SLAM techniques suppose that correspondences are
known while others do not. The problem of estimating the correspondence
is one of the most difficult problems in SLAM [37].

• Small or large uncertainty

If the robot visits an identical place twice while it operates in the environ-
ment, the robot position and map are made more precise. This situation is
known as the loop closing problem and it is an advantage for localization
algorithms. The uncertainty before the loop closing may be large and SLAM
techniques have to handle with it.

• Static or dynamic environment

Objects are not moving in static environment over time and the localization
methods often evaluate a dynamic effect as measurement outlier.

• Passive or active SLAM

Passive SLAM algorithms only observe the environment and some other
algorithm controls the robot motion. Active SLAM algorithms control the
robot motion for the purpose of an accurate map.

Specification of the thesis approaches

The feature-based metric map is used in this thesis for cases, where it is sup-
posed that the correspondences are unknown. The both scenarios with small and
large uncertainties are tested in the dynamic environments. All algorithms are
passive, which means that the robot is navigated by another function.
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5.2.2 Three Main SLAM Approaches

This subsection presents a brief description of three main SLAM approaches
from which others methods are derived. The historically first is based on the Ex-
tended Kalman filter, the second approach is based on graph-based optimization
techniques and it is often used for the full SLAM problems. The third uses particle
filters and it is a popular method for the online SLAM problem.

Extended Kalman Filter (EKF)

The idea of EKF SLAM is based on a single state vector µ for estimating the
robot and landmarks positions and the covariance matrix

∑
for representation of

the uncertainty in these estimates [38]. While the robot is moving, these entities
are updated using the Extended Kalman filter. When a new feature is observed, a
new state is added to the system state vector µ. The disadvantage of EKF SLAM
is that the size of the covariance matrix grows quadratically with the number of
the observed features; so, it is not suitable for spaces with many landmarks. EKF
SLAM assumes metrical, feature-based map with known correspondences.

Graph-based Optimization Technique

This SLAM technique constructs a graph where nodes are robot locations and
map features. The arcs are between two consecutive robot positions and between
robot positions and sensed features where some features can be sensed from more
robot positions, but each node is connected only to few other nodes. The robot
and features positions are then determined through nonlinear sparse optimiza-
tion [25]. The advantage of this method is that the required memory is linear in
contrast to EKF SLAM methods; so, they can work with high-dimensional maps.

Particle Methods

In particle filters methods a probability distribution is represented as a set of
particles that are hypothesis of the true state of robot or landmark [23]. Each par-
ticle is represented by the mean vector µ and variances

∑
. The particle SLAM

method computes the probability of the new measurement that are compared
with the actual sensed scans. Based on this comparison, particles are weighted.
A higher weight is given to the particles whose prediction match the measure-
ments. In the next step, the particles are re-sampled and only particles with a high
weight are selected. For the new particle set, the mean vector µ and variances

∑
are updated.
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Chapter 6

Evaluation of the Localization
Techniques

The LEL algorithm is applied in two different scenarios in order to verify
the LEL’s behaviour using input datasets corrupted by outliers. The evaluation
of the behaviour is evaluated based on the precision, repeatability and quality of the
robot pose estimation that are defined in Section 6.1. The performance of LEL is
compared with the ICP and RANSAC algorithms.

In the first scenario defined in Section 6.2, a mobile robot with the differen-
tial drive is equipped with a laser rangefinder and it operates in an indoor envi-
ronment. Two different experimental datasets are made within this scenario. In
the first case, the robot movements and sensors perception are simulated in the
Player/Stage framework while in the second case, real measurements (from the
Radish database) are used. The robot is localized in R2; thus, the transformation

T = [dx, dy, ϕ]

is estimated using the scan-to-scan matching method. In the second scenario de-
fined in Section 6.3, the Malaga dataset [3] is used. A mobile robot with the acker-
man drive is equipped with a pair of cameras configured to capture stereo images.
The robot operates in an outdoor environment and it is localized in R3 by estimat-
ing the robot transformation

T = [dx, dy, dz, ϕ, β, γ].

using the scan-to-scan matching again.

6.1 Terminology

The behaviour of the localization techniques is evaluated by measuring of the
precision, repeatability and quality of the robot path. In this thesis, the term path
means the discretized form of a continuous real robot path because particular
measurements are captured according to the single robot pose. So, the robot path
is a sequence of the robot poses, as defined in Section 1. The localization methods
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are evaluated using n trials. For each trial, the robot is navigated along a pre-
defined trajectory, while its pose is available using a reference localization system
providing the ground truth. The error d between the ground truth pg and estimated
pe positions on the path is

d(i) = |pg(i)− pe(i)|,

where i is the index of the position at the particular path in trial j and pg(i), pe(i)
are vectors. The precision of the localization d̄ is then determined as the aver-
age value of error d(f) of the final robot position f during n trials according to
Eq. (6.1).

d̄ =
1

n

n∑
j=1

d(f) (6.1)

The repeatability is computed as the sampled standard deviation sn by Eq. (6.2).

sn =

√√√√ 1

n− 1

n∑
j=1

(dj − d̄)2 (6.2)

The quality of the robot localization is determined using the normalized sum of
the errors d, defined as

q =
1

l

m∑
i=1

d(i), (6.3)

where l is a length of the robot path.

6.2 Indoor Scenario

Two different indoor datasets are used to evaluate the LEL behaviour, the
simulated datasets from the Player/Stage framework and the real measurements
from the Radish database. The Player [49] is a network server based framework
for robot control, which provides an unified interface to the robot’s actuators and
sensors. Many different robotic hardware are supported. Moreover, the drivers
for new hardware can be added. The Player acts as a server and an user is its
client that communicates with the Player using TCP sockets. The Stage [49] is a
2D simulator of mobile robots, their sensors and objects in the environment.

The Radish database is an open project for robotic community that provides
datasets useful in robotics research and applications. The motivation for creat-
ing such a database is facilitation of the development, evaluation and compari-
son of robotics algorithms. These datasets can be created and used by anyone.
They include logs of odometry, laser and sonar data taken from real or simulated
robots in different environment conditions. The dataset usc-sal200-021120 is used
in this thesis. Here we would like to thank Andrew Howard for providing this
data. The Pioneer2DX [44] robot was used to create the dataset, see Fig. 6.1. The
robot has stepper motors that provide a precise odometry values. The robot was
equipped with the SICK LMS 200 rangefinder that was mounted 8 cm forward
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Figure 6.1: The robot Pioneer2DX used to capture the indoor dataset [47].

from the center of the robot. The robot was teleoperated by a human operator
during an exploratory tour in the university building. The maximum range of the
laser rangefinder was set to 8 meters; therefore, ends of the university corridors
were not detected. The dataset contains the maximum range measurements that
are not corresponding to any real feature in the environment; thus, they have to
be extracted out from the dataset.

The used data association algorithm is the same as described in Section 3.4, but
the Euclidean distance is determined using only the coordinates of the measured
features.

6.3 Outdoor Scenario

The Malaga dataset [3] is considered to verify the LEL behaviour in the lo-
calization of the mobile robot in real outdoor environments. This dataset includes
raw pictures from the stereo cameras and raw measurements from SICK rangefind-
ers. In addition, its main advantage is that it includes centimeter-accuracy ground
truth robot path. The main motivation of this dataset is the possibility to evaluate
different robotic approaches and compare their properties in a realistic outdoor
scenario. The Malaga dataset can be used in visual SLAM or visual odometry ap-
proaches, where a robot can be localized in R2 or R3.

6.3.1 Parameters of Vehicle and Sensors

An electric buggy was used to captured the data, see Fig.6.2. The main advan-
tage of the electric buggy over a car with a combustion engine is that it avoids
inherent vibrations. The buggy was equipped with twelve sensors. Two Hokuyo
UTW-30LX placed in the front and in the rear of the vehicle, respectively. The SICK
laser rangefinder LMS-200 is placed in the front and it is configured to measure the
maximum distance up to 80 meters with the accuracy of 40 mm. Two additional
SICK laser rangefinders LMS-221 are placed at each side of the vehicle to measure
the robot surroundings up to 32 meters with the accuracy 5 mm. Two CCD color
cameras AVT Marlin F-131C are placed at the front of the vehicle. They are distant
0.857 m from themselves and their optical axes are parallel and pointing forward.
Images are captured at 7.5 fps with the resolution of 1024× 768 pixels.
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(a) (b)

Figure 6.2: The electric buggy with the ackerman drive used to capture the Malaga
dataset [3].

The vehicle is fitted out with an inertial measurement unit (IMU) and GPS
devices for determination of the precise ground truth. The IMU consists of gy-
roscopes, accelerometers and magnetometers, which are combined using an Ex-
tended Kalman Filter to provide 3D orientation data at the maximal frequency
100 Hz. This unit has the accuracy 2.0◦ with the angular resolution 0.05◦ during
the vehicle motions.

The Differential GPS (DGPS) and Real-Time-Kinematics (RTK) devices are used
too. The DGPS overcomes the major limitations of a regular GPS system by using
a static reference station with a known position. The differential corrections are
sent to the unit attached to the vehicle via a radio signal. The static reference sta-
tions covers a large area (in order of kilometers). The DGPS system allows the
vehicle pose estimation in tens of centimeters. In contrast, RTK devices provide
a centimeter level of the accuracy by using the reference station corrections and
carrier phase of the GPS satellite. Moreover, the reference station can be moved;
so, the RTK devices can be placed closer to the vehicle, which would improve the
precision of the pose estimation. The vehicle is equipped with one DGPS unit and
three RTK-GPS units.

Figure 6.3: The points cloud of the used Malaga dataset. The green points denote
the ground truth part and approximated path is in red [3].
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6.3.2 Features Extraction

The dataset includes raw perception measurements, estimated traveled path
of the sensors and ground truth path for the robot’s center. In some areas, the
paths are not determined due to loss of the GPS signal, see. Fig. 6.3. The captured
raw images from left and right cameras have to be preprocessed in the follow-
ing steps in order to determine 3D feature set. This set is then used as an input
dataset in localization techniques. The preprocessing has been made with Matlab
software [48] without any special optimization, which are not part of this thesis
and do not influence the evaluation.

1. The open SURF detector for Matlab [41] is used to find important features
in the left and right images, see Fig.6.4, which are captured at the same time
instant.

Figure 6.4: Important features found by the SURF detection in the left and right
images.

2. The best corresponding features are found based on the proposed algorithm
described in Section 3.4, see Fig.6.5.

Figure 6.5: An example of the best corresponding points between the left and right
cameras.
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3. Using the found corresponding pairs of features, the depth of percepted fea-
tures is determined, see Section 3.3. Without loss of a generality, the depth is
assigned to the features from the left camera, see Fig. 6.6; thus, these features
are defined in R3. The features have coordinates according to the image co-
ordinate systems. Therefore, they are transformed to the robot coordinate
system by

F ′ = Rr(RcF + Tc) + Tr,

where F, F ′ are features according to the image and robot coordinate system,
respectively. Rc, Tc are rotation and translation matrices between the image
coordinate system and camera coordinate system, Rr, Tr are transformation
matrices between the camera and robot coordinate systems.

Figure 6.6: A visualization of the estimated depths, the blue points are in the fore-
ground, green points are in the middle part and red points are in the background.

4. The best correspondences are determined between features F ′ extracted from
the images captured in two consecutive robot poses, see Fig.6.7.

Figure 6.7: An example of the best corresponding points between the images cap-
tured in two consecutive robot poses.
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Chapter 7

Indoor Experiments

Performance of the ICP, IDC, RANSAC and LEL method is evaluated and
compared in an indoor scenario using the following experiments. In Section 7.1,
the emphasis is put on the algorithm behaviour for input datasets corrupted by
different levels of outliers. The input datasets are generated in the Matlab soft-
ware [48] that enables to change the number of outliers and their parameters
while other parameters of the datasets are fixed. It is expected that the precision
and quality of the ICP and IDC will be worse for increasing number of the out-
liers. On the other hand, outliers should not have a significant influence to LEL
and RANSAC. In this experiment, the Least-square (LS) method is considered in
the comparison because it is used by the RANSAC method for estimation of the
transformation between randomly selected features from the input dataset.

In Section 7.2, the algorithms are employed in the scan-to-scan matching prob-
lem, i.e., in the estimation problem of the robot pose transformation T = [x, y, ϕ]
in R2 using two consecutive laser scans P and Q acquired at the time instants t1
and t2 (t2 > t1). The input datasets are simulated using the Player/Stage frame-
work [49] that allows to control noise of sensor parameters and the robot environ-
ment parameters. It is expected that all evaluated algorithms estimate the trans-
formation parameters with a small errors; so, they could be used for the robot lo-
calization. This evaluation is then repeated using real data from the experiments
in a structured indoor environment, see Section 7.3. Finally, a summary of the
evaluation is given in Section 7.4.

7.1 Influence of the outliers

In this proposed experiment, the algorithm robustness to the presence of out-
liers is evaluated. The number of outliers and their parameters are controlled,
while other parameters of the input sets are fixed. The input sets are simulated
as two laser scans that measure features located on a straight line, e.g., a wall.
The equidistant placement of the features on the line is considered here, in spite
of the fact that features scanned by a laser rangefinder do not have equidistant
distances.
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The dataset P is created as a sampled line

y = ax+ b

with the parameters a = 4.5, b = 3.1. The dataset Q is then created by a transfor-
mation of the set P with T = [1.00; 2.00; 0.52]. The total number of the points in
the datasets is N = 100. In both cases, the samples of the lines are perturbed by
a noise variable e that is drawn as a random number with the uniform distribu-
tion in the interval 〈−1.5y; 1.5y〉, where y refers to the y-coordinate of the sample.
The ICP, LS and LEL estimation techniques require an initial guess of the esti-
mated transformation, and therefore, the initial value of T has been selected as
Tini = 1.1T = [ 1.1 2.2 0.57 ]. The RANSAC algorithm is initialized by the fol-
lowing parameters.

• The minimum number of the data points required to fit the model is n = 2
due to the localization of the robot in R2.

• A threshold value for determining if a data point fits a model is chosen to
tr = 10.

• The model fits well to the data if the number of points for which the error is
bellow the threshold tr is greater or equal to 0.6N .

The influence of the outliers to the performance of the transformation estimation
T has been evaluated in three cases with different numbers of the outliers.
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Figure 7.1: The comparison of the algorithm performances for the input sets cor-
rupted by: a) 10 % of outliers, b) 50 % of outliers.

In the first case, 10 % of samples in the set Q are replaced by outlying val-
ues, which are samples of a different linear function with the parameters [a, b] =
[−6, −1]. Then, the sets P and Q are used by the estimation techniques to es-
timate the transformation parameters Te. These estimations are compared using
sets P̂k that are created by the transformation of the original set P with the es-
timated parameters Te. The sets P and P̂k are then displayed in Fig. 7.1a. In the
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ideal situation, the correct points from the set P overlap the points from P̂k. In the
next case, the number of outliers is chosen as the boundary value 50 %. The LEL
and RANSAC methods still provide a suitable estimation, but the ICP and IDC
approaches are significantly influenced by such a high number of the outliers, see
Fig. 7.1b.

As the third situation, 80 % of outliers is chosen. From Fig. 7.2a, it can be ob-
served that the ICP estimates a dominant transformation of the outliers regardless
the correct transformation has been used for the initialization. Contrary, LEL still
gives a satisfiable estimation. The experiment with p = 0.8 has been repeated with
a worse initial transformation than in the previous case. An estimation given by
LS is used as the initial transformation here. It can be observed that LEL still pro-
vide a good estimation, see Fig. 7.2b.
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Figure 7.2: The comparison of the algorithm performances for input sets corrupted
by 80 % of outliers and different initial conditions.

The best performance in this evaluation provides the LEL and RANSAC esti-
mation methods; so, the robustness of LEL to outliers is verified.

7.2 Simulated Input Datasets

In this evaluation, the Player/Stage framework is used to simulate a robot
motion and sensoric measurements. A non-holonomic robot with a differential
drive is simulated with odometry measurements influenced by different levels of
noise. The robot is equipped with a laser rangefinder to scan the robot surround-
ing environment, the rangefinder is placed at the robot center and its orientation is
forward looking. The rangefinder has 180◦ scanning area with δ = 0.5◦ difference
between two neighboring measurements and the maximal range 8 m is influenced
by noise with the amplitude 0.01 m. In this section, the noise is drawn from the
normal distribution in all cases.
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7.2.1 Squared Robot Path

In the first case, the robot is navigated along a rectangular trajectory in an
indoor structured environment, where dimensions of the environment are inten-
tionally chosen as 10 × 10 m to guarantee that the robot’s rangefinder measures
the boundaries of the environment. The maximal translation velocity is vtmax = 0.1
ms−1 and the maximal rotation velocity is vrmax = 3◦s−1 = 0.0524 rad/s. The robot
odometry is influenced by a noise with the amplitude x = 0.05 m, y = 0.05 m and
ϕ = 0.5◦ = 0.0087 rad. The noise parameters are intentionally chosen to signifi-
cantly disturb the odometry measurements because it is expected that evaluated
algorithms estimate the robot trajectory more accurately than the odometry. The
odometry and rangefinder measurements are recorded with the frequency 1 Hz.
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Figure 7.3: The ground truth, odometry and estimated global robot paths (a,b) and
heading (c,d) for the squared path.

The evaluated algorithms use the odometry for initialization and they estimate
the robot pose using scans of the environment. A visualization of the estimated
robot positions can be seen in Fig. 7.3a and Fig. 7.3b. Regarding the figures, the
IDC algorithm provides the most accurate estimation of the robot position along
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the traveled path. The LEL algorithm provides a more accurate estimation of the
robot path than the ICP algorithm. Moreover, it is also a more precise than the
odometry values. In contrast, RANSAC gives the worst estimation at all. The ICP,
IDC, LEL determinate correctly situations when the robot is rotating, as can be
seen in the visualization of the robot heading estimations in Fig. 7.3d, RANSAC
does not.

The global robot path is determined using the estimated relative transforma-
tions Te; so, the precision and quality of the robot pose estimation depends on
the accurate estimation of each parameter Te. The estimated relative translation
dx and relative angle dϕ are plotted in Fig. 7.4. It can be observed that the less
accuracy of the LEL and ICP is caused by errors in the estimations of the relative
translation and rotation. The RANSAC method estimates all relative parameters
incorrectly.
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Figure 7.4: The ground truth, odometry and estimated parameters of the relative
translation (a,b) and rotation dϕ (c,d) for a squared robot path.
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Table 7.1: Algorithm properties

Algorithm d̄ sn q T
[m] [m] [m] [s]

ICP 2.14 0.13 19.01 241
IDC 0.21 0.08 9.15 256
LEL 1.28 0.12 12.85 84
RANSAC 8.78 9.05 83.72 609

An overall performance of the algorithms is evaluated in ten trials for different
input sets. This experiment is done because the algorithms depend on the initial-
ization and amount of outliers, as it has been shown in Section 7.1. Thus, in each
trial, the input set is generated with different noisy values. Then, the performance
metrics (the precision, repeatability and quality of the localization) according to
Section 6.1 are computed from the trials and the results are depicted in Table 7.1.
The column T denotes the average number of the required computational time to
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Figure 7.5: The ground truth, odometry and estimated global robot paths (a,b) and
headings (c,d) for the general path.
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perform a single trial using a standard laptop with CPU running at 2 GHz and
1.5 GB RAM. Here, it is worth to mention that the LEL estimation technique is the
least computational intensive, which is one of its benefits over the other methods.

7.2.2 General Robot Path

This scenario is also simulated using the Player/Stage framework with the
same robot and sensor but the robot is navigated to obtain measurements from
the whole environment, i.e., the robot is employed in the exploration task. This
navigation is made using an example code from the Stage framework and it is
chosen because it produces a general robot path. The odometry is influenced by
the noise with the parameters x = y = 0.005 m, ϕ = 0.005 rad. The maximal
translation speed of the robot is vtmax = 0.075 ms−1 and the maximal rotation
speed is vrmax = 0.1 rads−1.
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Figure 7.6: The ground truth, odometry and estimated parameters of the relative
translation (a,b) and rotation dϕ (c,d) for the general robot path.

The estimated global poses and headings of the robot are visualized in Fig. 7.5.
According to the presented results, the IDC and RANSAC algorithms have the
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same performance as in the previous scenario; thus, the IDC algorithm provides
the best result and RANSAC is the worst evaluated estimation technique. The
LEL estimation is influenced by the significant incorrect estimation of the relative
parameters during the first robot turn, see plots in Fig. 7.6 of the relative estima-
tions for a detail.

7.3 Real Robot Environment

The dataset usc-sal200-021120 from the Radish database has been selected to
evaluate the performance of the studied estimation techniques employed in a real
robot localization problem. The environment used is a university building with
several long corridors, where the issue described in Section 1.2 can occur.
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Figure 7.7: The odometry and estimated global robot paths (a) and heading (b) for
a robot path in a real environment.

Only the LEL and IDC estimation techniques are compared in this scenario.
The IDC is chosen because it provides the best performance in the previous eval-
uations. In Fig. 7.7a, the global estimated positions are visualized together with
the precise odometry measurement. It can be observed that both algorithms suf-
fers from the problem of the long corridors. This situation is observable also in
Fig. 7.8a, e.g., for the area between the time instants 500 − 1200. Regarding this
area, it can be seen that the estimations correspond to the odometry values but
they are influenced by a low amount of significant features in the input dataset;
so, the estimated relative translation is smaller than the odometry value. The LEL
algorithm has the same drawbacks as in the previous experiments, i.e., it estimates
the rotation less accurately than the IDC, see Fig. 7.7b and Fig. 7.8b.
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Figure 7.8: The odometry and estimated parameters of the relative translation (a)
and rotation dϕ (b) for a robot path in the real environment.

7.4 Summary

In this chapter, the LEL performance is evaluated and compared with the other
localization methods in scenarios representing a localization problem in an in-
door environment. In the first case, the LEL robustness to outliers is shown. The
RANSAC method provides a sufficient performance only for input datasets cor-
rupted up to 50 % of outliers. The IDC and ICP methods are significantly influ-
enced by outliers. Then, the ICP, IDC, LEL and RANSAC algorithms are evalu-
ated in the mobile robot localization task using the scan-to-scan approach for three
different robot environments.

In the first and second environments, the Player/Stage framework is used to
obtain measurements from the odometry and the laser rangefinder while the robot
is navigated along a squared and general paths. In this evaluation, the IDC algo-
rithm provides the best performance. The LEL algorithm provides a competitive
performance to the ICP, but it is significantly faster. The RANSAC algorithm is
the slowest algorithm. Moreover, it provides the worst performance. In the third
environment, the real measurements are used from the Radish database and the
performance of the IDC and LEL algorithms are compared. Both algorithms are
influenced by a low amount of the significant measurements in the input datasets,
that is caused by the problem of long corridors, which is described in Section 1.2.
The IDC provides a better estimation of the rotation parameter than LEL.

Based on these evaluations, the LEL performance in the mobile robot localiza-
tion task is promising, but it has to be improved. For example, only important
features can be extracted from the input datasets and corresponding measure-
ments can be associated by a better method to increase precision of the estimated
parameters. Such improvements have been implemented and evaluated for a out-
door localization scenarios described in the next chapter.
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Chapter 8

Outdoor Experiments

Five different sets of experiments have been performed to evaluate the LEL
behaviour in an outdoor scenario. In the first experiment, simulated input datasets
are used to observe the LEL behaviour for datasets corrupted by different levels
of outliers. Moreover, an influence of the initial estimation of the transformation
parameters and the influence of the rotation matrix parametrization are verified
in this experiment.

In the second type of experiments, the robot localization task is simulated, it
means that the dataset with features from different robot poses and odometry is
generated. The estimations of relative transformation parameters are then used
to determine the global robot path. These two experiments are similar to the ex-
periments that are performed by the authors of LEL. In these experiments, the
important fact is that corresponding pairs are known. The quality of the corre-
spondences influences the LEL behaviour, as it is shown in the third experiment.

Finally, the LEL performance is verified using the real measurements from the
Malaga dataset [3], where features and correspondences have to be determined.
The proposed data association method, see Section 3.4, is verified in the last ex-
periment.

8.1 Influence of the Dataset Parameters

The input datasets P, Q for the localization methods are generated to simu-
late sets of features measured by a robot. The dataset P is generated as a plain
perpendicular to the z-axis with random values drawn from the uniform distri-
bution within the interval z ∈ 〈3.6, 4.4〉. The new dataset Q representing the next
measurements to be aligned to the previous dataset is created according to known
transformation matrices R0 and T0 by Eq. 8.1.

Q = R−10 (P − T0) (8.1)

Then, O% of features in dataset Q are replaced with outlier values, see Fig. 8.1.
The transformation T0 with parameters R0, T0 is the ground truth value. In this
section, all random values, which represent noisy measurements, are drawn from
the uniform distribution.
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Figure 8.1: An example of the generated datasets P (in blue) and Q with added
noise and outliers (in green).

8.1.1 Influence of the Outliers

The influence of the outliers is evaluated in 50 trials for 50 datasets Q10 that
are generated by Eq. 8.1 and 10 % of randomly selected features are replaced by
outliers with z ∈ 〈−20zf , 20zf〉, where zf is the value of the selected feature. The
initial transformation is generated using the ground truth transformation T0 with
added noise from the interval 〈−0.1T0, 0.1T0〉.

Then, the LEL method estimates the transformation between the sets P and
Q10. These estimations are compared with the ground truth transformation T0.
The results show that the estimated transformation differs from T0 only in order
of 10−5 m; so, the LEL estimation can be considered as sufficiently precise for the
localization. This experiment is repeated with 20 % and 50 % levels of outliers. The
differences between the estimated and ground truth transformations are in order
of 10−4 m. From these results, it can be observed that the LEL algorithm is robust
to the presence of outliers.

8.1.2 Influence of the Initial Transformation

The entropy-like function H is a non-linear function, where several local min-
ima exist. Moreover, it depends on six variables of the transformation T in the
case of outdoor localization scenario; thus, the found local minimum depends on
the initial transformation parameters as well. In this experiment, a set of 50 ini-
tial transformations Tp is generated using T0 with the added noise drawn from
the standard uniform distribution on the interval 〈−pT0, pT0〉, for values p ∈
{0.1, 0.2, 0.5}. For each initial transformation, the LEL estimation is determined
using the input sets P, Q. The differences between T0 and the estimated transfor-
mation are determined and the average differences are shown in Tab. 8.1. It can
be observed that the estimation error increases with a bigger uncertainty of the
initial transformation parameters.

The differences in Tab. 8.1 seem to be insignificant. However, the impact of the
noisy initial transformation can be better observed in the robot localization task,
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Table 8.1: The average differences between the ground truth and estimated trans-
formation for different noise levels of the initial transformation.

dx dy dz ϕ β γ
[mm] [mm] [mm] [10−3rad] [10−3rad] [10−3rad]

d0.05 0.51 0.78 0.82 0.21 0.11 0.09
d0.10 0.52 0.81 1.00 0.35 0.15 0.16
d0.25 1.12 2.02 1.96 0.93 0.42 0.38

where the differences are cumulated. Therefore, the impact to the global robot
pose increases. To observe this behaviour, a new experiment is arranged as fol-
lows.

1. The input initial set P0 contains extracted features from an image from the
Malaga dataset.

2. The setQ0 is then generated using Eq. 8.1, where the transformation matrices
are created using relative ground truth changes from the Malaga dataset.

3. The set Q0n is created by adding the noise and outliers to the set Q0.

4. The initial transformation parameters are generated by adding a noise value
from the interval 〈−0.1T0, 0.1T0〉 to the ground truth value T0.

5. Then, the sets P0, Q0n are used as inputs for the LEL algorithm to estimate
the relative transformation.

6. In the next step, P1 is equal to Q0 and the set Q1n is generated by transform-
ing of P1 and by adding noise and outliers.

7. This generation is repeated to get N pairs of Pj, Qjn , where the important
fact is that the features from the both datasets Pj and Qjn have perfect and
known correspondences.

8. Finally, the relative transformations are used to determine the robot global
path, see Fig. 8.2.

The estimated global robot path from the LEL technique is compared with the
ground truth and odometry path, see Fig. 8.2. The odometry path is determined
using the noisy initial parameters of T from the step 4 of the process above. In
Fig. 8.2a, xy-view of the paths is shown, where the LEL estimated path reflected
the ground truth. The difference between them seem to be caused by a cumulation
of the errors due to the used scan-to-scan matching approach. However, the influ-
ence of the noisy initial values is better observable in xz-view in Fig. 8.2b, where
the estimated LEL path is significantly influenced by the initial guess. Thus, the
precondition of the difficulties caused by the initial values are verified here. The
LEL’s dependence on the initial values is one of its disadvantage that should be
resolved in a future work.
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Figure 8.2: Influence of the noisy initial transformation parameters (odometry) to
the LEL algorithm in the robot localization task.

8.1.3 Influence of Rotation Representation

The representations of the rotation matrix R by Euler angles and by quaternions
are compared in two different cases. In the first case, the transformation

T1 = [0.1217, 0.2178, 0.3616, 0.0166, 0.0011, 0.0008]

between sets P and Q is chosen to simulate the relative robot changes. It means
that the transformation contains small values, especially angles are ∼ 0.5◦. The
non-linearity of goniometric functions sin(α), cos(α) is insignificant for a small
angle α. However, the considered angles are intentionally chosen much bigger to
test significant non-linearity of the goniometric functions in the second case using
the transformation

T2 = [0.1217, 0.2178, 0.3616, π/3, π/4, π/6].

The performance of the LEL estimation is compared according to the ground truth
transformation using the both approaches of the representations of the rotations.

In both cases, 50 trials with different noise in the initial values are considered.
The used terminology is:

• The LEL estimation via Euler angles is Te, via quaternions Tq.

• The Euler difference is de = Te − TK , where TK reffers to T1 or T2.

• The quaternion difference is dq = Tq − TK .

• The average value of differences d̄a is determined as

d̄a =
1

N

N∑
i=1

(de − dq),

where N is the number of trials.

59



In the first case, the values of d̄a are only in order of 10−6; thus, the impact
of the rotation representation is insignificant for small angles. In the second case,
the differences de are bigger than differences dq. The average value is

da = [0.67, 0.80, 1.39, 0.07, 0.05, 0.03],

where the translation difference is in meters and the rotation difference is in radi-
ans.

The summary of this verification is as follows:

1. The optimization of non-linear least-entropy like function H is a more pre-
cise for the representation of the rotation matrix via quaternions for angles
α� 0.5◦.

2. The optimization is equally precise for angles α ∼ 0.5◦.

3. The optimization process using the representation via Euler angles is faster
than via quaternions.

8.2 Localization of Mobile Robot with Known Corre-
spondences

The datasets P, Q are generated using the same method as in the simulation
of the robot localization tasks presented in Section 8.1.2. The odometry is gener-
ated from the ground truth transformation T0 with added noise drawn from the
uniform distribution on the interval 〈−0.25T0, 0.25T0〉. The noise amplitude is in-
tentionally chosen to be small to reduce influence of the initial value.
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Figure 8.3: The LEL estimation of the robot global path using known (blue) and
unknown (magenta) correspondences.
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It can be observed that the LEL estimation is quite precise when known corre-
spondences are used, see blue path that is overlapping with the ground truth path
in Fig.8.3.

8.3 Localization of Mobile Robot with Unknown Cor-
respondences

The LEL behaviour is verified here in the situation when the correspondences
between features in the input datasets P, Q are unknown. The exactly same
datasets P, Q as in the previous experiment are used; however, the data asso-
ciation algorithm from Section 3.4 is used to determine corresponding pairs of the
feature descriptors. Therefore, the descriptors D of features in the dataset Q are
influenced as follows.
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Figure 8.4: The LEL estimation of the relative changes using known (blue) and
unknown (magenta) correspondences. The LEL estimations using known corre-
spondences overlap the odometry and ground truth values.
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1. The noise drawn from the uniform distribution on the interval 〈−0.1D, 0.1D〉
is added to descriptors D. The noise is intentionally significant to cause
problematic data association.

2. The features in dataset Q are randomly permuted.

The new dataset Qa is created as the best corresponding features from Q to the set
P using the data association algorithm.

The LEL estimations using the datasets P, Qa are used to determine the global
robot path, see magenta path in Fig. 8.3. It can be seen that wrong correspond-
ing pairs significantly influence the LEL behaviour. When the relative changes are
compared, it can be observed that the estimation of the translations dx, dy, dz
is not influenced by a wrong correspondence matching, see Fig. 8.4a (the LEL es-
timations overlap the odometry and ground truth values). However, the estima-
tion of the rotation angles is significantly influenced by wrong correspondences
matching, see Fig. 8.4b, 8.4c, 8.4d.

8.4 Comparison of Data Association Methods

The significant influence of correspondence matching has been shown, and
therefore, the new proposed data association methods, see Section 3.4 is compared
with the standard Nearest Neighbour approach (NN). This comparison is made
by using two different sets of the corresponding pairs CNN and CP as the input
datasets for the LEL algorithm. These sets are generated as follows.
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Figure 8.5: The global paths using the new proposed data association method
(blue) and Nearest Neigbour method without any filtration (magenta).

1. The input datasets P, Q that were generated in the previous case are used.

2. The set CNN is created by the corresponding features from Q to P that are
determined using the minimal Euclidean distance in the NN and no extra
filtration is made.
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3. The set CP is created by the corresponding features from Q to P that are
determined by the new proposed method.

According to Fig. 8.5, the LEL algorithm provides better estimations of robot
path using the corresponding pairs CP than with CNN . Therefore, this method is
used in the final experiment.

8.5 Localization of Mobile Robot with Unknown
Correspondences in the Real Environment

In this final experiment, the localization method based on the LEL estimation
techniques is applied in the real outdoor environment. The input datasets are ob-
tained from the Malaga set PARKING 0L by the method described in Section 6.3.2.
The authors of the Malaga set provide the estimated path for the left camera; so,
these values are used as an initial transformation for the LEL estimation and they
are refered as odometry in the figures. Based on the previous evaluation, the rep-
resentation of the rotation matrix R by the Euler angles is chosen because it is
faster than the parametrization via quaternions and the influence of the gonio-
metric functions is insignificant due to small angle values.
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Figure 8.6: The global robot paths in xy-view (a) and xz-view (b).

The comparison of the global paths (sequences of the robot poses) is shown
in Fig. 8.6. The constant difference between the odometry and ground truth paths
is caused by the fact that the ground truth path is related to the center of the
robot, but the odometry path is related to the center of the left camera. Regarding
these figures, an altitude of the robot is significantly incorrect. This error is quite
surprising; thus, the implementation of algorithm has been checked for a possible
error. It has been found out that the error in the robot’s altitude is really caused by
the significant errors in the estimation of the angles, see the global yaw, pitch and
roll angles in Fig. 8.7.
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Figure 8.7: The global robot yaw(a,b), pitch(c) and roll(d) angles.

The robot is moving on the rough asphalt surface, which influences the rota-
tion angles. The robot is heading forward by x-axis, see Fig. 6.2. The pitch angle
β is a rotation around y-axis of the robot; thus, the pitch angle influence if the
cameras (placed in the front part of the robot) are heading towards the ground
or towards the sky. The significant pitch change can be seen in Fig. 8.7c between
600 − 800 instants. The roll angle γ is a rotation around x-axis and it is plotted in
Fig. 8.7d.

The precision of the LEL estimation for each parameter of the transformation
T = [dx, dy, dy, ϕ, β, γ] can be compared from Fig. 8.8. In the shown sub-figures,
the ground truth values are not plotted because the ground truth path contains
smaller amount of the robot poses than the odometry in the same path section; so,
the comparison of the relative increments is not possible. The odometry values
are precise in this dataset; therefore, the LEL estimated parameters are compared
according to them. The LEL estimation of the translation is precise, the blue (LEL)
and green (odometry) graphs are overlapping with small differences. The LEL
estimation of the rotation is influenced by the precision of the data association.
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Figure 8.8: The relative changes of the robot pose.

The precision of the global estimated path is also influenced by the fact that the
LEL algorithm is used in the scan-to-scan approach. Therefore, the small errors in
the estimation cause that the difference between the ground truth and estimated
global pose increases. The odometry values are quite precise here; so, the influence
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of the noisy initial transformation is insignificant in this experiment. However, the
unknown correspondences cause errors in the estimation of the transformation
parameters. The influence of the data association is discussed with new findings
in the following section.

8.5.1 Influence of Data Association

It can be observed from Fig. 8.6a that the differences between the estimated
and the ground truth paths become significantly greater from the location [x, y] =
[15, 10], which approximately corresponds to the 120th instant. If the input images
are evaluated for the instants 100− 200, the moving large object is found. The fea-
tures detected on this object influence the data association and consecutively also
the LEL estimation. Therefore, a new experiment is proposed. The same dataset
from the Malaga set is used, but the starting robot pose is considered at the loca-
tion [x, y] = [16, 25]; so, the images with the moving object are skipped. In this
case, the LEL estimates a better global robot path than in the previous experiment,
see Fig. 8.9. This experiment shows that the LEL behaviour significantly depends
on the correct data association.
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Figure 8.9: The global robot paths in xy-view (a) and xz-view (b) with the robot
initial position at [16, 25] m.

Regarding the figures, the robot pose is estimated by LEL with less precision
from the location [x, y] = [25, 100] that corresponds to the 400th instant. The
images are evaluated again and it is observed that the robot is crossing the empty
crossroads at this location; so, only a few distant features are detected.

8.6 Summary

The Least-Entropy Like (LEL) method is proposed to be invariant to outliers
in the input datasets. This property is validated in this thesis. The differences be-
tween the LEL estimation and the ground truth transformation are insignificant if
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datasets are corrupted by 10 %, 20 %, 50 % outliers. The impact of the initial trans-
formation is verified as well. Regarding the presented results, the performance of
LEL depends on the quality of the initial transformation and it has to be chosen
carefully.

The influence of the parametrization of the rotation matrix to the optimiza-
tion is tested too. It is shown that the representations via Euler angles and via
quaternions have the same behavior for small changes of the angle (α ∼ 0.5◦). The
quaternion representation provides a more precise estimation than the Euler an-
gles for angle changes α� 0.5◦. In the localization of a mobile robot, the changes
of the angle are small, and therefore, the representation using the Euler angles
is sufficient. Moreover, the optimization process with parametrization via Euler
angles is faster than via quaternions.

The authors of LEL support behaviour of the localization technique only by
experiments where known exact correspondences are used [7]. This thesis extend
these experiments and provides additional study of the LEL behaviour for the
cases where perfect correspondence are known as well as unknown. The pre-
sented results shows that LEL estimates the transformation precisely using known
correspondences. On the other hand, unknown correspondences significantly in-
fluence the LEL estimation. Therefore, the new data association method is pro-
posed in this thesis to reduce the influence of wrong corresponding pairs to the
estimation. The comparison of the standard NN method and the new proposed
method is verified and the results indicate that the new proposed method signifi-
cantly improves performance of the LEL estimation.

Finally, the LEL is verified in a scenario within a real outdoor environment.
Such an evaluation has not yet been done (to the best of our knowledge), and
therefore, it provides a more realistic expectations about the LEL performance in
practical deployment of the method in the localization task of a mobile robot. The
quality of the LEL estimation in this experiment (in the sense of proposed termi-
nology in Section 6.1) is q = 16.52. The error is caused by a wrong correspondences
due to a large moving object. The experiment without data from moving object is
done and the quality of the LEL estimation is q = 2.6; so, it is better than in the
previous case. The robot travels along the 220 m long path, the error of the final
estimated pose and ground truth is only 0.92 m in xy plain and 0.65 m in xz plain,
which represents 0.5% of the total length of the traveled path.

Regarding the results, the proposed localization method using the Least-Entro-
py Like estimation technique and data association method with filtration seems to
be an appropriated for the mobile robot localization task in an outdoor environ-
ment. The LEL estimations can be significantly improved by filtration of features
detected on moving objects.
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Chapter 9

Conclusion

In this thesis, a problem of mobile robot localization is studied. In particular,
the thesis is focused on an evaluation of the new Least Entropy-like (LEL) estima-
tion technique employed in finding parameters of the transformation describing a
robot motion; hence, an estimation of the robot global pose. The parameters of the
transformation are determined from two sets of observations of the robot’s sur-
roundings acquired by a robot’s sensor system at two consecutive time instants.

The LEL estimation method has been proposed in 2009 [16] and its applica-
tion in the mobile robot localization task has been proposed relatively recently
in 2011 [7]. The LEL estimation has been designed to be robust to outliers, and
therefore, it seems to be a suitable technique for solving the localization problem.
However, it has not been widely used in robotics due to its short history, and
therefore, the main goal of this thesis is to evaluate the performance of the LEL
method in various scenarios of the mobile robot localization problem, especially
in outdoor environments.

Moreover, the LEL estimation technique is compared with other well-establish-
ed estimation methods (i.e., already considered in mobile robotics), such as meth-
ods based on the ICP or RANSAC. A summary of the gained experiences and
achieved results during solving the diploma thesis are described in the next sub-
sections together with an overview of the developed localization system. Finally,
in Section 9.2 a possible future work is proposed.

9.1 Summary of the Gained Experiences and Achieved
Results

First, I acquainted myself with the new proposed LEL technique for parame-
ters estimation and its application in the mobile robot localization task. The idea
of LEL is based on rewarding the presence of majority of low relative errors and
penalizing a minority of large ones, i.e., finding such a cost function that is able
to “globally” measure the residual dispersion and to reward evenly distributed
residuals. The requested properties of the cost function can be fulfilled by the defi-
nition of the entropy. I have implemented the LEL estimation algorithm in Matlab
software and then, I have verified the implementation correctness by repeating
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the same experiments as the authors of LEL have done. I have proposed the first
experiments to verify the robustness to the presence of outliers, see Section 7.1.
The achieved results confirm the robustness of the algorithm to this kind of noise.

During the work on the thesis, we have observed that the application of the
LEL algorithm in a mobile robot navigation using the rangefinder sensors is a
more demanding task than we have expected at the beginning of the work. This
complication was caused by following difficulties. The first difficulty was caused
by specific properties of the observations captured by a laser rangefinder. As ex-
plained in Section 4.2.1, the authors of LEL have used the Horn method for an
initial estimation of the transformation’s parameters, but this method estimates
the parameters incorrectly when a laser rangefinder is used.

The second difficulty was caused by poor experiments that have been done
by the authors of LEL. They have used only simulated data for which corre-
spondences between observations are exactly known. The correspondences sig-
nificantly influence the LEL behaviour as it is shown in Section 8.3. If the datasets
from a laser rangefinder are used, the correspondences are unknown; so, the LEL
performance using these datasets cannot be ever precise as for using known cor-
respondences. Due to the time constraints caused by these difficulties, we decided
to consider the mobile robot localization rather than on the mobile robot naviga-
tion task, see Section 1.2. This allows us to be focused on issues of the localization
method and estimations technique itself.

A summary of the findings for indoor localization scenarios

I have studied different approaches to solve the mobile robot localization prob-
lem that use sets of observations sensed by the robot’s exteroceptors. Namely, I
have compared scan-to-scan and scan-to-map matching approaches in Section 5.1
with simultaneous localization and mapping (SLAM) technique described in Sec-
tion 5.2. The scan-to-scan matching approach estimates the robot transformation
using only two consecutive sets. In contrast, the scan-to-map matching approach
estimates the transformation by matching the actual scan to the current map of
the robot operational environment. This map can be pre-prepared or the robot
can build it simultaneously while localizes itself according to this map, which is a
problem known as SLAM.

Regarding SLAM, I acquainted myself with three main approaches: 1) the Ex-
tended Kalman filter (EKF) approach; 2) the graph-based optimization techniques;
and 3) the particle filters approach. Here, it is worth to mention that an usage of
SLAM approaches for the mobile robot localization is not the main goal of this
thesis and SLAM is included mainly to provide a comparison with the studied
localization approaches. Regarding the localization approaches, I have decided to
focus on the scan-to-scan matching approach, because I assumed, the robot can
operate in a completely unknown environment. Besides, the data association has
less computational complexity than in the scan-to-map approach.

Regarding the particular evaluated localization methods, I have chosen the
Iterative Closest Point (ICP), its extension Iterative Dual Correspondences (IDC) and
the Random Sample Consensus (RANSAC) methods (Section 5.1) for a comparison
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with the new LEL estimation technique. I have proposed the indoor scenario for
evaluation of all methods, where the laser rangefinder was used as the perception
sensor.

Three different experiments have been performed to evaluate the LEL perfor-
mance in the mobile robot localization in an indoor scenario. Two experiments
were simulated in the Player/Stage framework where the robot was navigated
along the square path (Section 7.2.1) and in an exploration task (Section 7.2.2). The
third experiment was made using the real datasets from the Radish database (Sec-
tion 7.3). The IDC algorithm provides the best estimation of the robot path from
the tested algorithms, LEL provides better estimation than the ICP algorithm.

A summary of the findings for outdoor localization scenarios

In the second part of my diploma thesis, I have studied the localization prob-
lem using a visual features in outdoor environments. Here, six parameters of the
robot pose are estimated; so, the observations have to be obtained in R3. For
this purpose, a stereoscopic system containing two cameras is considered. I ac-
quainted myself with the problem of the depth estimation from stereo images and
I have decided to use an approach that determines the disparity between left and
right images for an observation. The depth is then determined using this dispar-
ity and geometric information about the stereoscopic system. The observations
(also called features) for disparity determination are extracted from the images
using the computer vision features detection methods. I have decided to used the
Speeded-Up Robust Feature(SURF) descriptor and its Fast-Hessian detector, because
it outperforms all other studied detection methods, see Section 3.2.4.

The detected features from the right and left images have to be associated to
the corresponding pairs for the correct disparity determination. Also, the features
from two consecutive robot poses have to be associated for the estimation process.
Therefore, I studied the data association problem and I have chosen the Nearest-
Neigbour association method because it is used in many localization methods.
In addition, I have proposed a new extension of the Nearest-Neigbour associa-
tion method, which is based on the determination of the minimal distance crite-
rion that maximizes the number of strong corresponding pairs, see Section 3.4.
Moreover, the corresponding pairs are then compared based on the geometric
properties of the whole batch and wrong correspondences are filtered out, which
improves the performance of the LEL estimation technique noticeably, see Sec-
tion 8.4.

The performance of LEL depends not only on the quality of the correspon-
dences, but also on the initial estimation of the transformation parameters and
on the used optimization algorithm. The initial estimation of the transformation
parameters influences the found minimum during the Levenberg-Marquardt op-
timization because the optimized Entropy-like function has several local minima.
Moreover, the optimization process is influenced by the representation of the rota-
tion matrix, see Section 4.4, where parametrization using Euler angles and quater-
nions are compared. The sensitivity of LEL to the initial transformation and to
the rotation matrix representation has been verified. In Section 8.1.2, it is shown
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that the initial transformation significantly influence the LEL estimation and the
parametrization using the quaternions provides a better performance than the Eu-
ler angles, see Section 8.1.3.

Finally, I have proposed the outdoor scenario for verification of the developed
localization system based on LEL. In this scenario, real measurements from the
Malaga dataset are used. The authors of LEL tested the performance only in the
situation where features correspondences were exactly known. Therefore, I have
proposed the first experiment to observe the influence of the error in the corre-
spondence association, see Section 8.3. The experiment showed that influence of
the data association is significant, which motives me to propose a new data asso-
ciation method. A comparison (Section 8.4) of the new method with the original
Nearest-Neighbour method shows that the new method significantly improves
the estimation of the whole LEL estimator.

Finally, the developed localization system has been applied in the visual local-
ization task in the real outdoor environment using the Malaga dataset. It has been
found out that a large moving object seen at the beginning of the robot path cause
a wrong data association, which consecutively leads to incorrect estimations of
the robot’s angles. If features on the moving object are not considered in the data
association, the performance is significantly improve, see Section 8.5.1. Based on
the achieved results, the overall behaviour of the localization method using the
scan-to-scan matching (where errors are cumulated along the path) can be summa-
rized that the system based on the LEL technique can be used for the mobile robot
localization with an appropriate and careful data association.

An overview of the developed localization system for outdoor environments
is summarized in the following steps:

1. The stereoscopic camera system is used to obtain images of the robot sur-
rounding environment.

2. The important features are extracted from images using the SURF detection
method.

3. The features from left and right images captured at the same robot pose are
associated by the new proposed method.

4. The depth of features is determined using the disparity between correspond-
ing features and the geometric properties of the used stereoscopic system;
so, the features are defined in R3.

5. These features from two consecutive robot poses are associated to corre-
sponding pairs.

6. These pairs and an initial estimation of the transformation parameters are
used in Levenberg-Marquardt optimization technique that finds the local
minimum of the Least-Entropy Like estimation function.

7. These estimations of transformation parameters are used to determine the
global robot pose.
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9.2 Future work

Regarding the achieved results, the localization system based on the Least-
Entropy Like function seems to be promising for mobile robot localization in an
outdoor environment. It has robust behaviour while the input datasets are cor-
rupted by outliers, which is an important property for correct parameters estima-
tion. Nevertheless, it significantly depends on an initial estimation of the trans-
formation parameters and on the correct data association. The LEL method has
provided the smallest time complexity from the verified algorithms, but it is not
still sufficient for online localization. Thus, a future extension may be oriented to
reduce these influences.

The influence of the initial parameters can be improved by estimating the
Least-Entropy Like function using several rough estimations of the initial param-
eters. Then, the most probably estimation can be selected based on the minimal
value of the entropy function. The robustness to data association can be improved
by adding a method for detection of moving objects.

Another possible extension is an application of the proposed localization tech-
nique within the scan-to-map approach, where the estimations errors are not cu-
mulated along the robot path.
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CD Content

The CD is attached to the printed version of this work containing the text of
the diploma thesis in a PDF format, source codes of thesis in LATEX format and
source codes of localization techniques. In following table the directory structure
on the CD is described.

Table 1: Directory structure on the CD

Directory File Description
src source codes of localization techniques
doc source codes of diploma thesis
thesis.pdf text of diploma thesis
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