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Prohlášeńı
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Abstract

This thesis compares different relational schemes and implementations of tools for the

DL−Lite language, which is suitable for formal representation of large data, making it

useful for such distributed environment like the Internet, and it shows the usefulness of

the language by its application in a real-life problem.

The key property of the DL−Lite language is that for storing large amounts of data

can be used the well-established relational databases, and it also allows to answer queries

reformulated into SQL directly in the databases. The reasons why the language is better

than relational databases themselves is that it provides higher expressivity, while still

having tractable reasoning.

The important task is to evaluate the query answering performance for data written in

this language with respect to different relational schemes. For this purpose we made use

of existing DL−Lite reasoner prototypes (Owlgres, QuOnto). Two testing datasets were

used (UOB, DBpedia) to accomplish this. The most interesting factor differentiating

the implementations (according to the performance) is the data representation model in

database, which can be characterised by its relational scheme. One of the implementations

(Owlgres) was for this reason extended with two additional relational models. The results

clearly show advantages and disadvantages of the models and the implementations.

The last objective is to apply the DL−Lite language in a real-life application, within

European project NetCarity, which attempts to make life of elderly people on their own

more secure. The language is used to represent information regarding sensors (their

properties and relations between them) and to store the measured data in a structured

way. This allows for complex queries and analyses of the measured data.
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Abstrakt

Ćılem této práce je porovnat r̊uzné relačńı schémata a technické realizace nástroj̊u pro

jazyk DL−Lite, který je vhodný pro formálńı popis objemných dat, který tak nacháźı

uplatněńı zejména na rozprosřených prostřed́ıch jako je Internet, a nakonec ukázat vhod-

nost jeho použit́ı na reálném problému.

Kĺıčovou vlastnost́ı jazyka DL−Lite je, že lze využ́ıvat pro ukládáńı velkého množstv́ı

dat osvědčené relačńı databáze, a rovněž př́ımo v ńı provádět zodpov́ıdáńı dotaz̊u přeformulovaných

do jazyka SQL. Důvod, proč je zvolený jazyk lepš́ı než samotné relačńı databáze je, že

poskytuje větš́ı expresivitu, při zachováńı výpočetně zvládnutelného dotazováńı.

Důležitým bodem je vyhodnotit výkon zodpov́ıdáńı dotaz̊u nad daty zapsanými v tomto

jazyce vzhledem k r̊uzným relačńım schémat̊um s využit́ım existuj́ıćıch prototyp̊u (Owl-

gres, QuOnto). Pro tento účel byla použita testovaćı data (dataset UOB, DBpedia). Nej-

zaj́ımavěǰśım prvkem odlǐsuj́ıćım implementace (vzhledem k výkonu) je použitý model

reprezentace dat v databázi, který lze vyjádřit relačńım schématem. Z tohoto d̊uvodu

byla jedna z implementaćı (Owlgres) rozš́ı̌rena o dva daľśı relačńı modely. Naměřené

výsledky jasně ukazuj́ı výhody a slabiny jednotlivých model̊u a implementaćı.

Posledńı úlohou je nasazeńı jazyka DL−Lite do reálné aplikace, v rámci evropského

projektu NetCarity, který se zabývá zabezpečeńım samostatného života starš́ıch spoluobčan̊u.

Využit́ı studovaného jazyka je pro popis informaćı o senzorech zde použitých (jejich vlast-

nost́ı a vztah̊u mezi nimi) a strukturované ukládáńı jejich naměřených dat. To umožňuje

komplexńı dotazy a analýzy nad naměřenými údaji.
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1. Introduction

The need for an intelligent structured way of representing and querying knowledge on

the Internet is apparent – there are large volumes of information in natural language and

semi-structured form, which are difficult to access. Classical full-text search used on the

Internet every day is somewhat limited, since it searches only by a set of keywords, not

using their semantics or semantic relations between them.

For this reason, a new group of languages appeared, called OWL (Web Ontology Lan-

guage, see Section 2.1.2), which is one of the realizations of the Semantic Web1. OWL

has its grounds in from Description Logics, the languages developed for formal knowl-

edge representation. All these languages allow for knowledge representation understood

by computers.

This thesis focuses on the languages family DL−Lite, which is a modern descendant

of OWL, and is planned to became a part of its upcoming major revision, the OWL 22.

The key property of the DL−Lite language is, as opposed to most of other description

logics, that for storing large amounts of data can be used the well-established relational

databases, while preserving correctness and completeness of the reasoning algorithms,

and it also allows to answer queries reformulated into SQL directly in the databases.

This inevitably puts some restrictions on its expressivity (complexity of constructs of the

language), which is still sufficient for many useful applications in different areas (according

to (Calvanese et al., 2005) e.g. conceptual data models and object-oriented formalisms)

and is strictly higher than expressivity of relational database technology. There is no

detailed comparison of DL−Lite implementations so far – it is a new technology not

widely spread yet.

This thesis starts with an overview of languages known as description logics, focusing

on the OWL language family. The details are in Section 2.1. The theoretical background

consequently aims to described in details the DL−Lite language, which is a fragment of

OWL 2, and to compare its capabilities with other members of the OWL family. The

1http://www.w3.org/2001/sw/
2http://www.w3.org/TR/owl2-profiles/
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1. Introduction

DL−Lite is described in detail in Section 2.1.3.

An important insight into the reasoning efficiency can be obtained by comparing in-

ference algorithms based on different relational schemes. The comparison of different

relational schemes is one of the key tasks of this thesis, because the scheme, used for rep-

resenting an ontology in a database, has big impact on the query answering performance.

Two testing datasets were used to accomplish this: UOB3 (The University Ontology

Benchmark) as an artificially generated benchmarking dataset, and DBpedia4, which

consists of real data extracted from Wikipedia (an encyclopedia on the Internet), re-

formulated into the description logics format (for details see Section 4.1). The most

interesting factor differentiating the implementations (according to performance) is the

database data representation model, which can be characterized by its relational scheme.

For this reason one of the implementations (Owlgres) was extended with two more rela-

tional models. The results clearly show advantages and disadvantages of the models and

the implementations. For details see Section 4.2, Section 4.3, and Section 4.4.

The last objective is to apply the DL−Lite language in a real-life application, the

NetCarity project, which attempts to make life of elderly people on their own more

secure. Its tasks are for example calling a help when such a person falls down, or set

off an alarm when a fire is detected. The application of the language is to represent

information regarding sensors used (their properties and relations between them) and to

store the measured data in a structured way. This allows for complex queries and analyses

of the measured data. The sensors are for example a microphone, an accelerometer, or

a camera installed in a house of the monitored person. For details see Section 5.1 and

Section 5.2.

3http://www.alphaworks.ibm.com/tech/semanticstk/download
4http://wiki.dbpedia.org/Downloads32
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2. Background

2.1. Description Logic

Description logics (DL) are languages that provide currently widely accepted means for

formalization of semantic web ontologies. The term “ontology” can be defined as an

“explicit specification of conceptualization of a knowledge” (Gruber, 1993). It describes

a structure of some information domain, and it defines a vocabulary used to express a

knowledge base.

An ontology can be expressed in an informal way, e.g. in natural language, or in a

formal way, e.g. frames and description logics. The problem of informal languages is

they do not allow for automatic processing by computers, while the formal ones do. A

rough overview of different languages for expressing ontologies can be found in Fig. 2.1

(Obitko, 2007), where the horizontal axis represents the level of formalization. On the

left hand side of the vertical line are the informal languages, as catalogues and glossaries,

usually expressed in natural language, which is not formally defined, and hence it is very

hard for a computer program to infer knowledge from such documents.

The formal languages on the right hand side restricts documents to certain constructs,

resulting in different expressivity, but allowing for automatic knowledge processing. Such

languages typically use constructs like is-a relation, taxonomy of classes and relations,

class restrictions, etc. The figure mentions e.g. “formal is-a” which is a very simple

language, assigning individuals to classes, but as the axis goes right, the languages are

becoming more expressive. Below, we will briefly mention “frames”. Description logics,

which will be discussed in more details, differ in expressive power, and spread among the

axis more on the right. The right end of the axis represents full featured logics, such as

first or higher order logics or modal logics, which have very high expressive power, but

generally lack decidability. This theoretical problem is a problem for implementation as

well, because a query answering system can search the answer for certain queries endlessly.

For more details about description logics, their complexity, applications, etc., see

(Baader et al., 2003).

3



2. Background

Figure 2.1.: Different ways of describing ontology

2.1.1. Comparison to Other Formalisms

Frames are based on two modeling primitives: frames and slots. A frame represents

an entity in the domain. It can be a “class frame” when it represents a class, and an

“individual frame” for an individual. This way a class is represented the same way as an

individual, making it possible to use the same constructs both for classes and individuals.

This is not possible in first order languages, like description logics, where the set of classes

and the set of individuals are inherently disjoint.

A frame has assigned a set of slots, each slot represents an attribute with an associated

value. Each slot can have a set of facets associated with it, which restrict its values. A

slot value can be any frame as well as basic data types. Frames allow for three different

types of collections: sets, bags (like sets but with multiple identical elements allowed),

and lists. Compared to description logics, frames do not have such precise semantics.

Description logics are generally strict subsets of FOL (first order logic), which allows

for decidable reasoning. This is because FOL is undecidable, and the obvious requirement

we want from our language on query answering is to finish in (reasonably short) finite

time.

Another interesting comparison is of description logics versus database systems (DBMS).

DBMS use the closed world assumption (CWA) and support only finite domains, while

description logics use the open world assumption (OWA) and the domain can be infinite.

Relational databases are also weaker in expressivity.

2.1.2. OWL

The most widely used language based on description logics at the moment is probably

OWL (Web Ontology Language), a W3C recommendation1. OWL in version 1.0 consti-

1http://www.w3.org/2004/OWL/
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2. Background

tutes three languages with different expressivity: OWL Lite, OWL DL, and OWL Full

(ordered by increasing expressivity). OWL Full provides maximum syntactic freedom of

the three, but does not give any computational guarantees. OWL DL provides maximum

expressivity while being decidable.

Let us see what is the expressivity of OWL DL, as it is a good example of fairly expres-

sive language. This example will help us understand how the language of our interest,

DL−Lite, is limited compared to widely used logic like OWL DL. Basic entities of every

description logic are concepts, representing sets of individuals, and roles, representing

sets of pairs of individuals. In terms of FOL the concepts are unary predicates and the

roles are binary predicates.

In OWL DL, a concept can be defined using constructs as in the following list, written in

description logics syntax. For details about used symbols and keywords, see (Baader et al.,

2003). OWL DL allows constructs from a set indicated by letters ALCtransHOIN (D),

as defined in description logics. The attached examples are from the domain of living

creatures.

• A (an atomic concept)

e.g. Person representing all persons

• ¬C
e.g. ¬Person, representing all individuals except persons

• C uD

e.g. Person u Male, representing all men (male persons)

• C tD

e.g. Man t Woman, representing all persons (men and women)

• ∀R · C
e.g. ∀hasChild · Woman, representing all parents that have only daughters (or no

children at all)

• ∃R · C
e.g. ∃hasChild · Person, representing all human parents (have at least one person

as a child)

• (≥ nR) (number restriction)

e.g. (≥ 3 hasChild), representing all parents with at least 3 children

5



2. Background

• (≤ nR) (number restriction)

e.g. (≤ 3 hasChild), representing all parents with the maximum of 3 children

• {a1, . . . , an} (nominals)

e.g. {class,interface,enumaration}, representing the list of basic building blocks

in Java

• R− (role inversion)

e.g. hasChild−, representing the role parent (hasParent) (inversion of the role

child)

In the list C, D are concepts, and R is a role. The roles in number restrictions can be

only simple roles (do not have transitive super-roles). OWL DL also allows datatype

roles to be used, where only the first argument comes from the domain, while the second

argument is of another data type.

Then a concept can be defined by one of the following axioms:

• C v D (inclusion)

e.g. Human v Mammal, saying that every human is a mammal

• C ≡ D (equivalence)

e.g. Human ≡ Person, saying that all humans are persons, and vice versa

Roles in OWL DL can be defined similarly – either by equivalence to, or by inclusion

of another role, or the inverse of a role. Also they can be defined as transitive.

For OWL DL semantics see http://www.w3.org/TR/owl-semantics/, as it is not the

main focus of this thesis.

2.1.3. DL−Lite

DL−Lite is another member of description logics family, which is less expressive than

all OWL languages, so that it can be stored in a relational database system, where also

queries can be evaluated using standard SQL language. This is a very modern approach,

because most of the other languages, though providing higher expressivity, are hardly

usable for large datasets. This is a typical case on the Internet, where an ontology is

about to store vast amounts of facts. Currently DL−Lite is not standardized by W3C,

but one of its variants, DL−LiteR, is a specified fragment of the up-coming W3C standard

of OWL 2.

6
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2. Background

Because of the application for the Internet, we need feasible worst-case complexities.

In order to have an efficient reasoning, because of the size of ABox (number of assertions,

which is very big on the Internet), the time complexity of queries with respect to ABox

should be as efficient as possible, preferably polynomial in time (polytime). Also the

space complexity should be logarithmic (logspace). These restrictions make it possible to

reformulate a query into the SQL language. Other languages have worse query answering

complexity, which makes them practically unusable for domains with many instances the

Internet offers.

Another advantage of this approach becomes obvious when we compare memory man-

agement during query answering. DL−Lite reformulates a query from e.g. SPARQL

into an SQL query, which is evaluated by an underlying DBMS (database management

system), keeping the ABox in a persistent storage (e.g. harddrive), only operating on

indices of database tables (typically B-trees); just the individuals featuring in the final

answer need to be read from the DB. Another key advantage is that SQL query answering

is well-settled problem, with many optimizations implemented in most modern DBMS’s,

making it very robust and efficient. Whereas most of the reasoners for OWL load the

whole ABox into memory, where they perform the whole reasoning process. The effi-

ciency of the process is very dependent on the optimizations the reasoner’s authors used,

and hence it may take some time for the reasoner to “evolve” into a state suitable for

practical applications. A bigger issue of this approach is the memory requirements, since

it is usually very demanding to store complete ABox of possibly many gigabytes into a

computer RAM memory.

To conclude the introduction, if we succeed to fit an ontology into a DBMS, we gain

a few advantages. The system would efficiently permanently store large ABoxes in a

DB, which is a well-established way of storing strictly organized data. Query answering

keeps an ABox in the DB – no need to transfer it into the memory, which would be

infeasible because of the memory size restriction anyway. Query answering is inherently

of polytime complexity, which is another “must” for large datasets. Let us see, what the

language DL−Lite satisfying all these conditions can express, as presented in (Calvanese

et al., 2007; Calvanese et al., 2006; Calvanese et al., 2005).

The basic version of DL−Lite is DL−Litecore, which satisfies all the aforementioned

requirements, has reasonable expressivity, but still can be expanded, while preserving

tractability. DL−Litecore constructs for defining concepts and roles are:

• B ::= A|∃R

7



2. Background

• C ::= B|¬B

• R ::= P |P−

• E ::= R|¬R,

where A denotes an atomic concept, B a basic concept, and C a general concept. Symbol

P denotes an atomic role, R a basic role, and E a general role.

The semantics is defined by an interpretation I:

I = (∆I , ·I).

An interpretation assigns sets of individuals to concepts, and sets of pairs of individuals

to roles, which is defined by the interpretation function ·I . The individuals are members

of the domain of the interpretation ∆I .

Semantics of the used constructs are in Table 2.1.

Table 2.1.: Constructs used in DL−Lite and their semantics

Syntax Semantics Comment

A AI ⊆ ∆I atomic concept

P P I ⊆ ∆I ×∆I atomic role

P− (P−)I = {(b, a)|(a, b) ∈ P I} inverse of an atomic role

∃R (∃R)I = {a ∈ ∆I |∃b : (a, b) ∈ RI} existential quantification

¬B (¬B)I = ∆I \BI negation of a basic concept

¬R (¬R)I = ∆I ×∆I \RI negation of a basic role

Then a TBox can be defined by inclusion axioms of the form:

• B v C, with the semantics of BI ⊆ CI

There are two other versions, DL−LiteF , DL−LiteR, which are slightly different, but

both are at the verge of keeping the complexity requirements satisfied. Their simple union

breaks the requirements. But restricting their union gives version DL−LiteA, which still

satisfies the complexity requirements.

DL−LiteR is extended by the concept construct:

• R v E, with the semantics of RI ⊆ EI

DL−LiteF is extended by the role restriction:

8



2. Background

• (funct R), with the semantics of {(a, b), (a, c)} ⊆ RI =⇒ b = c

All the versions can be expanded by data attributes of concepts and roles, which does

not affect the complexity.

What can DL−Lite express:

• is-a relationship – concept A1 is subsumed by concept A2, using A1 v A2

• disjoint concepts – A1 v ¬A2

• typed roles – ∃P v A1, ∃P− v A2

• mandatory participation in a role – all instances of a concept participates in a role

– A v ∃P , A v ∃P−

• prohibited participation in a role – A v ¬∃P , A v ∃P−

• functional restriction of roles – (funct P ), (funct P−) (only in DL−LiteF )

Fig. 2.2 (Calvanese et al., 2007) shows the relationship between DL−Litecore, DL−LiteF ,

DL−LiteR, DL−LiteA, and some other versions of DL−Lite, with the arrows meaning

“is extended by”.

Figure 2.2.: DL−Lite languages family

9



2. Background

2.2. DL−Lite implementation

2.2.1. Owlgres

Owlgres2 is an open source Java implementation of DL−Lite reasoner developed by

Clark & Parsia3, a small research and development firm specializing in Semantic Web

and advanced systems based in Washington, DC.

Owlgres uses a DBMS for persisting data, particularly it is tailored to work with

PostgreSQL4 database (see Section 2.2.1.1). PostgreSQL is a widely used open source

object-relational database system available for all major operating systems and platforms.

Owlgres uses a few libraries. It is bundled with Joseki, a SPARQL5 HTTP server

(allowing querying the knowledgebase over HTTP), which we did not test. The key

libraries for interfacing with the inputs are OWL API6 and Jena7. OWL API is a Java

interface and implementation for OWL, which serves in Owlgres for parsing input data

(TBox and ABox) in the RDF/XML format. Jena, specifically its SPARQL processing

engine ARQ8, is used only for parsing SPARQL queries.

There are three typical use-cases of the Owlgres operation:

• Loading a TBox – typically performed only once at the beginning of a knowledge-

base life, since it empties the used database, and creates all necessary tables there.

Currently Owlgres does not support incremental TBox loading. It simply parses a

TBox RDF/XML file using OWL API, puts it into corresponding DB tables, and

prepares empty tables for ABox assertions.

• Loading an ABox – can be run incrementally. Owlgres parses an ABox from a

RDF/XML file using OWL API, loads the entire TBox from DB, and using the

TBox it adds the ABox assertions into DB tables for assertions. Hence it cannot

add an ABox assertion for a concept or a role, which was not yet defined in the

TBox. This enforces a complete TBox to be loaded in advance.

• Querying an ABox – a query formulated in SPARQL is parsed using Jena; using

2http://pellet.owldl.com/owlgres
3http://clarkparsia.com/
4http://www.postgresql.org/
5SPARQL is a query language for RDF, which contains capabilities for graph patterns along with their

conjunctions and disjunctions; it also supports value testing and constraining queries
6http://owlapi.sourceforge.net/
7http://jena.sourceforge.net/
8http://jena.sourceforge.net/ARQ/
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2. Background

the entire TBox loaded from the DB, the query is reformulated into an SQL query,

which is posed to the DB. The SQL query result is bound the the queried variables,

and these variable bindings are presented as the final result.

For more details on Owlgres, its optimizations, details of the used language, and some

of the author’s tests, see (Stocker and Smith, 2008). Refering to DL−Lite language

description in Section 2.1.3, Owlgres uses the version DL−LiteR.

The database scheme Owlgres uses is described in detail in Section 3.1. To summarize,

it uses something we call a “single table” model (STM), which means there is a single

table for each fact type, e.g. for concept assertions, meaning that all concept assertions

for all concepts go into a single table. Thus the table obviously has to have a column

for specifying a concept, and a column for specifying an individual. The same is true

about object role assertions (a role column and two individual columns), data role asser-

tion (a role column, an individual column, and a data value column), and similarly for

annotations. Because repeating individuals’ URI identificators in all the assertion tables

would unnecessarily occupy a lot of persistent space, there is a table serving as a list of

individuals, translating their URIs into generated numerical primary key, which is used

instead of URIs in all the assertion tables.

2.2.1.1. PostgreSQL

PostgreSQL is an open source DBMS (database management system), originally devel-

oped at the University of California at Berkeley. It offers features like foreign keys,

triggers, views, transactional integrity, and multiversion concurrency control. It is a well

established DBMS.

The current stable version at the time of this thesis is 8.3.7, but a few first tests were

performed on version 8.3.0. This version difference might seem neglectable, but the truth

is different. There was a certain query, discussed in Section 4.2, which performed on a

testing dataset, took a long time (about 300s). When the PostgreSQL was upgraded to

version 8.3.7, the same query under the same conditions took much shorter time (about

5s). All the remaining tests were performed with version 8.3.7. For details, see Section 4.2.
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2.2.2. QuOnto

QuOnto9 is a Java implementation of a DL−Lite reasoner made by the authors of the

DL−Lite specification as stated in the articles (Calvanese et al., 2007; Calvanese et al.,

2006; Calvanese et al., 2005) at Sapienza, a university in Rome. It is based on DL−LiteF .

QuOnto is wrapped in a package called QToolKit, which is downloadable (after regis-

tration) from the QuOnto website. Unfortunately, QuOnto is not open source, and even

the QuOnto libraries in QToolKit are obfuscated10. This means there is no API and no

way how to understand the application details.

It uses H2 database11 (see Section 2.2.2.1) in the embedded mode, using memory storage

only. QToolKit has the H2 library bundled. The memory only mode of H2 means that

it cannot be revealed how the data are stored in the DB, since the memory cannot be

accessed by another instance of H2 (there is a special mode for dissalowing this, which is

unfortunately used in case of QuOnto).

QuOnto uses some other libraries as well, e.g. Jena’s ARQ probably for parsing

SPARQL queries. But it is hard to guess how exactly and what libraries are used, since

the QuOnto’s source codes cannot be examined, so only the list of JAR files bundled in

QToolKit is obvious.

The only access to the application is its GUI, where TBox and ABox can be loaded

into its text panes. Then there is the Run On QuOnto button, which does all the loading

and processing process. It lets us only to guess what exactly happens inside, it is un-

certain whether the loaded TBox is represented only in memory, or is loaded to the H2

database. The ABox does get loaded into the DB (according to some tests performed, see

Section 3.2). For reasoning services, it provides consistency check function, intensional

reasoning (e.g. checking subsumption, disjointness, etc.), and query answering. We used

only the query answering for our tests. A query can be entered in the following languages:

Datalog, SPARQL, and SparSQL12. We used the last two – SPARQL to test the same

queries as with Owlgres, and SparSQL because it offered some interesting observations –

9http://www.dis.uniroma1.it/~quonto/
10Obfuscation of a Java application is a process, where the compiled class files are modified so that their

function is the same, while they are very hard to decompile. It for example means that all class,

variable, and method names are changed to meaningless short strings, so a reverse engineer would

not know what class server what purpose, etc.
11http://www.h2database.com/html/main.html
12SparSQL is a query language developed for DL−Lite at Sapienza, a university in Rome. Its syntax

is inspired both by SQL and SPARQL. Basic usage looks like a SPARQL statement wrapped in an

SQL query.
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2. Background

it allowed us to find out what the relational scheme of the DB is (see Section 3.2), which

we would not know otherwise, since it is not documented and the authors do not want

to release this information.

A big issue of this implementation is that it does not use OWLAPI, and the authors did

not implement a parser fully compatible with RDF/XML. The only input it can handle is

OWL functional-style syntax13, without capability of handling URIs. All the identifiers

used in TBox and ABox have to consist of only alphanumeric characters.

The authors also released ROWLKit – another, slightly different implementation of

DL−Lite reasoner, based on QuOnto. They did so in quite late phase of this thesis

assignment, so there was not much time to study it and test it. The main difference is

that ROWLKit uses OWLAPI for parsing its input, which makes any testing and usage

much easier, allowing for interconnecting with other data and systems. Still it is not an

open source, and again the class files are obfuscated. The OWLAPI employment and some

other modifications make any testing more feasible, but there was not much attention

spent on testing, since there is a big problem: the relational schema is unknown. This is

because ROWLKit misses the SparSQL querying language support (has only SPARQL),

which allowed for revealing the relational scheme. Still some tests were performed, see

Section 4.3.

2.2.2.1. H2

H2 is an open source Java database implementation. It can operate both in embedded and

server modes. It can store a database only in memory. It provides transaction isolation

and database encryption.

It also provides a console application, which allows for a control of the DB using a

browser interface.

A special mode allows the DB to run in memory only, which should provide faster

operation, at the price of not having the data persisted on a hard drive. There are two

modes of in-memory DB:

named DB – accessed by JDBC string jdbc:h2:mem:db1, in which case the same DB

can be accessed many times from the same JVM using its name db1; another option

is to connect to the DB remotely using JDBC string

jdbc:h2:tcp://localhost/mem:db1

13http://www.w3.org/TR/2008/WD-owl11-syntax-20080108/
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2. Background

private DB – accessed by JDBC string jdbc:h2:mem, in which case the DB opened this

way is always unique, and cannot be accessed by someone else (is private)

Unfortunately, QuOnto uses H2 in the private mode.
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3.1. Owlgres

Owlgres is one of the systems tested for performance on DL−Lite query answering.

For its introduction, see Section 2.2.1. The version used for testing was 0.1, the newest

available at the time the tests were performed. Some parts have been extended or modified

in order to support different persistence models, to fix some bugs and issues, and to

measure its performance.

The key modification made within the scope of this thesis is the extension of Owlgres

model, which is used for persisting an ABox into a database. The TBox representation

model in DB was left unchanged, since it is not an important factor in query answer-

ing performance, because the complete TBox is loaded and compiled before a query is

executed.

But ABox persistence model is very important for a query, because every query is

reformulated into an SQL query posed to the DB tables persisting the ABox. And

obviously the time and space demands can vary for different SQL queries formulated for

different relational schemes.

3.1.1. Original Owlgres DB model

The original model (represented by relational scheme) of Owlgres, as designed and im-

plemented by its authors, is in Fig. 3.1. You can see the TBox is persisted in four tables.

The central one tbox_name is for storing all TBox entities – concepts, object roles, data

roles, and annotation roles.

Follows a brief description of its columns. By the term TBox entity, or just entity, we

mean a concept, an object role, a data role, or an annotation role.

id – generated numerical primary key, used in other tables for identification of the entity

type – what type is the entity of, its value can be one of the following list:
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Figure 3.1.: Owlgres original E-R diagram

1 – a concept

2 – an object role

3 – a data role

4 – an annotation role

auxiliary – a boolean, whether the entity (only object role) is auxiliary, Auxiliary roles

are used for qualified existential restrictions, which are not expressible in DL−Lite

directly; they need to be rewritten to fit into DL−Lite as ∃R · C −→ ∃P , where

P v R and ∃P− v C, where P is the auxiliary role
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frequency – how many times is the entity used in ABox assertions

name – the URI of the entity

The other tables have quite obvious meanings of their columns. The tables are:

tbox concept inclusion – for object role inclusions, C v D

tbox object role inclusion – for object role inclusions, R v P

tbox data role inclusion – for data role inclusions, R v P

These tables use generated numerical primary key in tbox_name as identification of en-

tities. Note that all these tables use all columns as one joined primary key, so any row

duplicities are avoided. Also the tables have indices on all columns separately, to allow

fast searching by single column, which is heavily used in SQL queries for query answering.

The only column with not that obvious meaning is the positive column in the

tbox_concept_inclusion. The column contains boolean values specifying, if the in-

clusions are positive or negative – a negative inclusion contains negation on the right

side. I.e.:

• C v B – a positive inclusion

• C v ¬B – a negative inclusion

The tables tbox_concept_inclusion and tbox_object_role_inclusion can have

negative id’s in their columns. A negative id stands for an entity with a positive id (equal

to negative of the negative id), but taken inversely. For tbox_concept_inclusion it is

because the table is used for existential restrictions also – e.g. of the form ∃R v C, in

which case the sub column contains a role id instead of an atomic concept id. Then the

negative id value means that the role R is inverted, as in ∃R− v C. This is used quite

often, because role domains and ranges are rewritten like this:

• domain(R) = C −→ ∃R v C

• range(R) = C −→ ∃R− v C

In tbox_object_role_inclusion a negative id in any of the two columns means the

corresponding role is inverted, as for storing axioms like R v P− and R− v P .

The ABox in the original persistence model is stored in fixed number of tables, there

is six of them, as opposed to other relational schemes, added to Owlgres for purposes of
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this thesis. The basic layout is similar to the TBox’s, with an individual listing table in

the center – table individual_name. It simply stores all individual names in the ABox,

with generated numerical primary keys used for identification in the other ABox tables.

The rest of the tables is for storing assertions:

concept assertion – for concept assertions (an individual is an instance of a concept),

only atomic concepts are allowed, a ∈ AI , or shortly A(a); a general concept

assertion C(a) can be rewritten like C(a) −→ A(a) where A v C, where A is a

fresh concept

object role assertion – for object role assertions (a pair of individuals fills a role), only

atomic roles are allowed, (a, b) ∈ P I , or shortly P (a, b); a general role assertion

E(a, b) can be rewritten like E(a, b) −→ P (a, b) where P v E, where P is a fresh

role

data role assertion – for data role assertions (a pair of an individual and a data value

fills a role); it is similar to object_role_assertion, except there is a textual

data value column value instead of role’s right hand side individual id column;

additional columns are datatype and language for defining the datatype (e.g.

http://www.w3.org/2001/XMLSchema#dateTime) and the language of a data value

annotation to resource – for annotating an individual with another individual; it has

a similar function as object_role_assertion, except there is no reasoning (sub-

sumptions etc.) performed on annotations

annotation to literal – for annotating an individual with a data value; it has a similar

function as data_role_assertion, again except there is no reasoning performed

on annotations

Unless otherwise noted, these assertion tables use generated numerical primary key in

individual_name table as an individual identification, and generated numerical primary

key in tbox_name table as an entity (concept, role, annotation) identification.

3.1.2. Modified DB models

In order to test different relational schemas, Owlgres was extended as part of this thesis

with another two DB models. Having in mind conjunctive queries, it may be resonable
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to assume that the query answering would be more efficient with an ABox representation

of one table per TBox entity, which makes filtering of ABox individuals easier.

The basic difference is that the schemes use multiple tables for ABox assertions, the

TBox tables remain the same. Multiple ABox tables means there is a single table for

every TBox entity (i.e. for every concept, every object/data role, and every annotation).

This drops the need to have columns in the ABox tables for identifying which TBox entity

is the assertion of; instead, the entity is identified in the assertion table name, e.g. ABox

assertions table concept_52 and object_role_43, where 52 is the id of a concept, resp.

43 is the id of an object role. Here only the assertions of the concept 52 are stored, resp.

the assertions of the object role 43 are stored.

The reason why these schemes are tested and what makes them interesting is that in

ontologies suitable for DL−Lite there is much higher number of ABox assertions than

of TBox axioms. Therefore it may be practical to classify individuals according to their

concept belonging (resp. role belonging) to separate tables, since typical queries on the

ABox ask about individuals of certain concepts; it is infrequent to ask about all indi-

viduals, regardless of concept classification or role membership. Thus, such a relational

model corresponds well to the conjunctive query pattern
∧

k Ck(xi)∧
∧

k Rk(xi, xj). This

means these schemes will result in reasonable number of tables, containing large amounts

of individuals.

There are two variants of this multiple table approach. The first is in Fig. 3.2, which

follows the original Owlgres model in that it contains the individual_name table. Thus

the individual id’s are used in the assertion tables.

The other variant is in Fig. 3.3. It uses an idea implemented in QuOnto (see Sec-

tion 3.2), where no such table as individual_name exists, thus there is no translation

from individuals to numerical keys. The assertion tables use directly the individual names.

Besides these differences in the two additional schemes the rest of the table columns

have a similar meaning.

Note that the TBox and the ABox schemes in Fig. 3.2 and Fig. 3.3 are disconnected,

the ABox tables do not refer to the tables in TBox using the standard DB approach, i.e.

foreign keys. It is because the reference, represented by entity ID from the tbox_name

primary key, is used in the ABox table names. This completely erases the need to have

the TBox in the DB. Having a TBox in a DB is just a convenient and efficient way of

storing it. It could be stored by some other means, e.g. in a standard RDF/XML file,

because the TBox is typically very small compared to the ABox. Thus the way a TBox

is stored does not affect the query performance over the corresponding ABox in almost
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Figure 3.2.: Owlgres modified E-R diagram - multiple tables

any way. The thing that matters the most is the way the ABox is stored.

Changing the original DB model meant not only modifying the piece of code where the

tables get created and filled in, but also the builder of an SQL query from a DL−Lite

query. The original SQL builder basically takes all entities appearing in the query, gener-

ates a certesian product (for the SQL SELECT ... FROM command) of tables correspond-

ing to entity types of the entities, and restricts the product using many conditions in the

WHERE clause. This means a cartesian product of many large tables, since for each entity

there is a single, large assertion table.

For example, for a query containing two class restrictions and an object role restrictions,

e.g. the one in Listing 3.1, the builder generates an SQL query containing cartesian prod-

uct of two copies of concept_assertion table and a copy of object_role_assertion,
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Figure 3.3.: Owlgres modified E-R diagram - multiple table QuOnto style

for an example see Listing 3.2. You can see another example in Appendix B.

Listing 3.1: An example SPARQL query

SELECT ?p ?a

WHERE {

?p rdf:type :Publication .

?p publicationAuthor ?a .

?a rdf:type :Professor .

}

Listing 3.2: Generated SQL for single table model for an example query

SELECT ca_0.individual AS x1 , ca_1.individual AS x2

FROM concept_assertion ca_0 , concept_assertion ca_1 ,
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object_role_assertion ora_0

WHERE ca_0.concept =33

AND ora_0.object_role =62

AND ca_0.individual=ora_0.a

AND ca_1.concept =49

AND ca_1.individual=ora_0.b

The builder for the multiple tables models does a similar things, but instead of taking

the complete tables for entity assertions, one table for each entity type, it takes assertion

tables specific for each entity, thus typically significantly smaller. So, for the example

query in Listing 3.1 used above, the cartesian product would consist of two smaller concept

assertion tables for specific concepts, e.g. concept_33 and concept_49, and a smaller

object role assertion table for specific object role, e.g. object_role_62. This also drops

some of the SQL WHERE condition clauses, since the restriction is performed by calling

the specific table by its unique name. For an example, see Listing 3.3. You can compare

other SQL queries for different models in Appendix B.

Listing 3.3: Generated SQL for multiple table model for an example query

SELECT ca_0.individual AS x1 , ca_1.individual AS x2

FROM concept_33 ca_0 , concept_49 ca_1 , object_role_62 ora_0

WHERE ca_0.individual=ora_0.a

AND ca_1.individual=ora_0.b

The difference in SQL builders for the two modified schemes, multiple table (MT) and

multiple table QuOnto style (MTQ), is that the former needs to translate the found id’s

of individuals answering the query to their URI strings, while the latter does not. The

translation is carried out by wrapping the generated SQL query (finding the id’s) as inner

query into another query, which takes the id’s found and maps them to URIs using the

individual_name table.

All builders must deal with a case, when there are more options for an individual in

which table to be found. E.g. when a query restricts a variable to be a member of certain

concept, which has multiple subsumed concepts. Then the builders generate an SQL

block for each such subsumed concept, gluing them together with the SQL command

UNION.

The advantages of the multiple table schemes do not come free. The schemes bring

also some drawbacks to a DBMS. The most important one is that they issue many tables

to the DB, in case of our tests with a large dataset it means around 1000 tables. It might

be slow for a DBMS to find a certain table, among so many – it applies a heavy load
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to the filesystem support of the OS. So there is a dilemma whether to filter individuals

by TBox entities using an indexed column of a few large tables, or to filter them by

choosing a table from many, retrieval of which from a filesystem may be slow – a task

which probably DBMS delegates to OS’s filesystem, which is probably not indexed. But

for real-case DL−Lite ontologies, the TBox contains typically small number of entities

(let us say with the maximum of around 104), therefore this amount of files should not

pose a problem to a DBMS or a filesystem support.

On the other hand, an advantage of the multiple table schemes might be that the

smaller assertion tables for often used TBox entities (e.g. an often used concept table

concept_41) get cached in the memory by the OS and/or the DB, making the query

answering faster.

3.1.3. Measuring Performance

Some minor modifications were performed in order to test time spent in different parts

of query answering. Measuring time of main entry points to the implementation, like

connecting the DB, loading a TBox, and loading a query, was easy. Besides that, to

obtain times of some interesting execution parts, e.g. performing the SQL query itself, it

was necessary to implement “temporal probes” into a few classes.

For testing purposes, we measure eight different times obtained from the system, which

are listed in Table 3.1.

Table 3.1.: Measured times in Owlgres query answering

Name Abbreviation Description

dbConnectTime conn The time it takes to connect to DB

tboxReadTime tbox Time of loading a TBox from DB

queryParseTime qparse Query parsing time, by Jena

queryReformulationTime qref Time of query reformulation into DL−Lite

sqlGenTime sqlgen Time of converting a query into an SQL

sqlTime sql SQL query execution time

queryExecTime qexec Total time of executing query,

includes qref, sqlgen, and sql times

totalTime total Total time of whole query answering process

The distribution of the measured times, with the inclusions depicted, is in Fig. 3.4.
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Figure 3.4.: Measured Owlgres query answering times distribution

3.1.4. Owlgres Issues and Bugs

The first issue was found when ABox loading performance was examined, because it

seemed surprisingly slow. Authors mention in (Stocker and Smith, 2008) that the speed

is relatively slow, but still it seemed there must be a problem with it. It was discovered

that the class ABoxAdditionProcessor, which takes care of the loading process, probably

contains a bug. As a result of time-profiling it showed up that each time an ABox

assertion is inserted, the number used as primary key for individual_name table for

the assertion is calculated, using the SQL SELECT max(id) FROM individual_name (in

function idForIndividual), which is obviously taking some time.

I think the author’s intention was to run the SQL only for the first time, and then

just increment the value. The issue is in using the maxIndividualId variable, because it

gets reset to zero every time an assertion is added (in function add(DLLABoxAssertion

assertion, Store store)), so the new maxIndividualId needs to be recalculated by

the SQL. The fix I have made results in about 1/3 faster processing on a large data set.

Another bug found was in the SQL query builder (class SQLQueryBuilder). Let us

start with an example of SQL in Listing 3.4 generated for a test query posed to Owlgres.

Listing 3.4: A piece of generated SQL to demonstrate an Owlgres bug

1 SELECT name_0.name AS x1 , name_1.name AS x2

2 FROM (

3 ...

4 ) as innerRel , individual name_0 , individual name_1

5 WHERE innerRel.x1=name_0.id

6 AND innerRel.x2=name_1.id

7

8 UNION

9

10 SELECT x1 , name_1.name AS x2
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11 FROM (

12 ...

13 ) as innerRel , individual name_0 , individual name_1

14 WHERE innerRel.x2=name_1.id

15 ...

It is a union of a couple of blocks, from which only the first two are displayed. The

query asks for annotation of some objects, and because it does not know if the annotation

is a literal or a resource, it generates such union.

The issue is in the second block. In the first one, there are used two copies of the

individual_name table in outer query (cartesian product) (line 4), which are then fil-

tered using WHERE (lines 5 and 6). But in the second one there are still two copies of

individual_name (line 13), but only one is used for WHERE condition (line 14) and for

output in SELECT (line 10).

Thus the second block generates a huge result caused by the unrestricted cartesian

product (in our case, the result of the rest of the query gave 5 rows, but with the second

individual_name, the cartesian product gave 5 times the size of ABox. And since the

second individual_name does not show in the output, it was the 5 rows repeated many

many times, and hence filtered on the final output as duplicities, showing only the 5

rows. But the size of the result of this sub-query is huge, and takes the DB a long time

to evaluate (in our case about 100s).

So the SQLQueryBuilder class was modified in the method getSQL(), where the un-

necessary tables in cartesian product were removed.

There might be another problem with querying annotation data. When a certain query

(giving a few results) was extended by adding a SPARQL statement asking for an object’s

label, e.g. by SPARQL row ?a rdfs:label ?label, the query answer gave no results,

even though the ABox contained the label annotation assertions for the individuals con-

tained in the result of the original query. But this case would need more time to analyse

the problem.

The last issue found is a problem with loading a TBox containing an axiom with

complement of a concept. When there is such an axiom, the visitor design pattern

for loading the TBox gets in an infinite loop. It is because the visitor’s visit method

TBoxLoader.NormalizingDescriptionVisitor.visit(OWLObjectComplementOf desc)

calls itself by executing desc.accept( this ). This has been fixed by replacing it with

the command desc.getOperand().accept(this).

There is one more thing, but it might be not a problem of Owlgres, but of Jena’s
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class ResultSetFormatter instead. The discovered behaviour is that when a result was

printed using the ResultSetFormatter class, some columns with values got switched,

making them not corresponding to their headers.

3.2. QuOnto

QuOnto is another system tested for performance on DL−Lite query answering. Its

version 0.137 alpha was used. Since QuOnto misses any API, and lacks any command-

line capabilities, the only way how to use it is through its GUI. The GUI provides rather

simple interface consisting of three text panes, and a menu bar.

The three text panes are used for inserting a TBox, an ABox, and something called

ECBox. ECBox stands for EQL constraints, which is a special language of the QuOnto

authors, described in (Corona et al., 2008), for constraining the ABox using a combination

of SQL and SPARQL similar to SparSQL.

The menu bar contains buttons for loading and saving a Tbox and an ABox, but these

buttons only manipulate the contents of the text panes. The important buttons are

Run On QuOnto and Stop On QuOnto, which runs processing of the TBox and the ABox.

It probably loads an TBox from corresponding text pane just into internal representation

in memory, instead of storing it in the DB, but it is uncertain. What is known for sure

is that the ABox is really stored in the DB, the schema of which was revealed by chance

due to bugs in the implementation described below.

There is a window for entering a query in different formats (Datalog, SPARQL, and

SparSQL), from which we used only SPARQL and SparSQL languages. An important

button is surprisingly the button Generate Log File in the menu. The log file itself is

not very descriptive of what the application is doing, but it is the log file where all the

Java exception generated in the application appear; the exceptions mostly do not appear

elsewhere.

This way we found out the QuOnto’s relational scheme, which is depicted in Fig. 3.5. As

you can see, it is a multiple table model, where individual names are stored directly into

assertion tables. The bug that allowed us to find the scheme was that the assertion tables

use directly the names of the TBox entities they represent, and there is no restriction

on the names. E.g. when there is a concept named “Woman,” it creates a table named

Woman. And since it uses the standard SQL commands, one can imagine, what would
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happen when there is a concept called “Select”. It tries to create the corresponding table

using the SQL CREATE TABLE SELECT, where “select” is an SQL keyword. This command

of course fails, generating an exception, which is recorded in the log. This property was

found, when a testing TBox contained the object property “like”, which is also an SQL

keyword. The SQL query for creating a table for object property “like”, as cought in an

exception, looks like:

CREATE TABLE like ( term1 varchar (255) , term2 varchar (255) , PRIMARY KEY( term1 , term2 ) )

The assertion tables are similar to the ones we used in Owlgres modification calling them

multiple table QuOnto style (see Section 3.1.2), though these are a little simpler.

Figure 3.5.: QuOnto E-R diagram

Another useful bug in QuOnto allowed us to see what an SQL query generated from

a DL−Lite query looks like. It is because of support for SparSQL querying language.

Its syntax and usage are described in (Pasquale, 2008), and in (Corona et al., 2008).

Simplifying it, it is basically a SPARQL query wrapped in a SQL query, where the

SPARQL query is embedded by the construct “sparqltable (SPARQL query),” which

behaves in the SQL context as an ordinary table. This is also confirmed by the observed

behaviour of QuOnto, that the SPARQL query part is reformulated into SQL by the

DL−Lite reasoner, and the resulting reformulated SQL is substituted into the SparSQL

query in the place of sparqltable command, leaving the rest of the SparSQL query as

is, and posing the final result to DB. This was discovered, when a mistake was made in a

SparSQL query in the non-SPARQL part, because the part was not checked for correct

syntax, and resulting concatenated query was posed to DB, giving an exception of wrong

SQL statement, and the exception was found in the log.
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For example an erroneous SparSQL is in Listing 3.5, where the inner SPARQL query

has an output column named pn, while the outer SQL query asks for pnn column, which

is an error not caught by QuOnto, but the query gets into DB, where it produces an

exception.

Listing 3.5: An erroneous SparSQL query

1 select people.pnn

2 from sparqltable (

3 SELECT ?pn WHERE {

4 ?p :httpuobiodtibmcomunivbenchliteowlname ?pn.

5 ?p rdf:type ’httpuobiodtibmcomunivbenchliteowlPublication ’.

6 ?p :httpuobiodtibmcomunivbenchliteowlpublicationAuthor ?a.

7 ?f :httpuobiodtibmcomunivbenchliteowlisFriendOf ?a.

8 ?f :httpuobiodtibmcomunivbenchliteowllike

9 ’httpuobiodtibmcomunivbenchliteowlPainting ’.

10 }) people

Which results in the final SQL query posed to the DB in Listing 3.6. The DB then

gives an exception stating that the column people.pnn is not found.

Listing 3.6: The resulting erroneous SQL

1 select people.pnn

2 from (SELECT DISTINCT alias_1.term2 AS pn

3 FROM httpuobiodtibmcomunivbenchliteowlpublicationAuthor alias_0 ,

httpuobiodtibmcomunivbenchliteowlname alias_1 ,

httpuobiodtibmcomunivbenchliteowlisFriendOf alias_2 ,

httpuobiodtibmcomunivbenchliteowllike alias_3

4 WHERE alias_0.term1=alias_1.term1 AND alias_0.term2=alias_2.term2

AND alias_2.term1=alias_3.term1 AND alias_3.term2=’

httpuobiodtibmcomunivbenchliteowlPainting ’

5 ) people

This again confirms the relation scheme to be of the type called multiple table model,

where every TBox entity is represented by a single table having the entity name.

3.2.1. Data Preprocessing

Since QuOnto does not use OWLAPI and does not provide full RDF/XML support

by other means, both TBox and ABox need to be accommodated to serve as QuOnto

input. QuOnto requires them in functional syntax, but the support for it is rather
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limited – all names cannot be URIs, but identifiers consisting of alphanumeric characters

only, and no namespaces are supported. Because both testing datasets use URIs as

entity and individual identificators, another conversion needs to be performed. One more

complication is that QuOnto uses the TBox entity identifiers directly for table names,

which are not case sensitive. Therefore entity names cannot differ just in character case

(e.g. when a concept and an object role name is the same, except the first letter is capital

for the concept name).

Conversion from the RDF/XML format of used datasets to functional syntax was easy,

because it is fully supported by OWLAPI. The complicated part was to adjust the names

to fit into QuOnto.

First, all namespace prefixes of names had to be replaced by the namespace name.

Then, capital letters of names were doubled, to distinguish the names from the same

names with lower case letters. Another thing to modify was to remove the data role

values quotation marks (not the escaped ones), since it is not recognized by QoOnto.

Then all non-alphanumeric characters were removed. The axioms containing too long

names had to be removed, too, because the assertion tables do not support names longer

than 255 characters. Things to artifically add to the TBox were all data role ranges,

when missing, because QuOnto fails to compile the TBox when there is a range axiom

missing. There was a couple of other things to change or remove.

When converting one of the testing datasets, DBpedia (see Section 4.1.2), which con-

tains a lot of different namespace prefixes used, a bug in OWLAPI was discovered. This

was an issue in the latest OWLAPI release available, version 2.2.0. Also the latest build

from OWLAPI SVN was tried, but it gave an exception without much useful informa-

tion. Because of the need to quickly convert the DBpedia data to functional syntax, the

problem was solved by using an older version of OWLAPI, 2.1.1.

The problem with namespaces in OWLAPI of version 2.2.0 was debugged in detail,

and the results were sent to its authors, who confirmed this as a bug. The bug appears

as freezing during the conversion. For a reference, it spends all the time when frozen in

method NamespaceUtil.generatePrefix, where it generates huge amount of prefixes.
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From all reasoning procedures (e.g. consistency checking), only the query answering was

tested, as being the most interesting and complex one.

4.1. Datasets

4.1.1. UOB

University Ontology Benchmark (UOB) is a dataset developed by IBM for testing per-

formance of OWL-DL reasoners. It is an extension of the well-known Lehigh University

Benchmark1 (LUBM).

UOB is a part of IBM Integrated Ontology Development Toolkit, downloadable at

http://www.alphaworks.ibm.com/tech/semanticstk/download.

It provides two TBox files with expressivity levels of OWL-Lite – SHIF(D) and OWL-

DL – SHION (D). The OWL-Lite version was simplified to fit the DL−Lite expressivity,

and used for all tests. The simplifications made are removing unsupported role properties

(symmetric, functional, and transitive), removing role inclusion axioms, reformulating/re-

moving number restrictions, and reformulating equivalence axioms.

The ABox contains various facts about university students and staff, their publications,

courses their take/teach, research groups they belong to, etc. There are three versions of

ABox, with one, five, and ten universities. A university has 20 departments on average,

another division entity of a university is a college.

There are two queries posed to the tested reasoners formulated for UOB data. The

first one in Listing 4.1 asks for all publications and their names, which have an professor

author with a student friend, who share the same hobby.

The query in Listing 4.2 retrieves all students that are taught by, have published

1http://swat.cse.lehigh.edu/projects/lubm/
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something and are teaching with someone from the same university part; it also includes

advisors of such students. Note that this query uses an undistinguished variable (_:a),

which is probably not supported (as far as a source code investigation can tell; nothing

about it was found in its documentation). The query was originally designed for LUBM

dataset, on which it gives a single result. Here it unfortunately gives no results, which

might be because of the lack of undistinguished variables support.

Listing 4.1: UOB SPARQL query 1

1 PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

2 PREFIX uob: <http :// uob.iodt.ibm.com/univ -bench -lite.owl#>

3

4 SELECT ?p ?pn

5 WHERE {

6 ?p uob:name ?pn .

7 ?p rdf:type uob:Publication .

8 ?p uob:publicationAuthor ?a .

9 ?f uob:isFriendOf ?a .

10 ?f rdf:type uob:Student .

11 ?f uob:like ?hobby .

12 ?a uob:like ?hobby .

13 ?a rdf:type uob:Professor .

14 }

Listing 4.2: UOB SPARQL query 2

1 PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

2 PREFIX rdfs: <http :// www.w3.org /2000/01/rdf -schema#>

3 PREFIX ub: <http :// uob.iodt.ibm.com/univ -bench -lite.owl#>

4 PREFIX owl: <http :// www.w3.org /2002/07/ owl#>

5

6 SELECT *

7 WHERE {

8 ?L rdf:type ub:University.

9 _:a ub:subOrganizationOf ?L.

10 ?E ub:isMemberOf _:a .

11 ?A ub:isMemberOf _:a .

12 ?E ub:takesCourse ?Z .

13 ?A ub:teacherOf ?Z .

14 ?A ub:teacherOf ?Z2 .

15 ?E ub:isAdvisedBy ?B .

16 ?E ub:teachingAssistantOf ?Z2 .
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17 ?Q ub:publicationAuthor ?E .

18 ?Q ub:publicationAuthor ?A .

19 }

4.1.2. DBpedia

DBpedia is a community effort to extract structured information from Wikipedia2 and

to make this information available on the Web3.

It consists of some structured data from Wikipedia, obtained from a few language

versions of Wikipedia, namely English, German, French, Spanish, Italian, Portuguese,

Polish, Swedish, Dutch, Japanese, Chinese, Russian, Finnish and Norwegian, which gives

around 274 million RDF triples in total. It describes over 2.6 million things, including

more than 213,000 persons, 328,000 places, 57,000 music albums, 36,000 films, 20,000

companies, etc.

The current dataset, which was used for testing, is of version 3.2, and can be down-

loaded at http://wiki.dbpedia.org/Downloads32.

Because the complete DBpedia dataset is huge, and the testing of it would be impracti-

cal, only a subset has been selected. First, only some parts of it were used (each DBpedia

part is in a separate file). The selected files are in Table 4.1. Next, not the entire files

were used, but the maximum of 100,000 triples per file was employed for testing.

2http://www.wikipedia.org/
3http://wiki.dbpedia.org/About
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Table 4.1.: Used DBpedia files

Label File name

Titles articles_label_en.nt.bz2

Categories (Labels) categories_label_en.nt.bz2

Disambiugation Links disambiguation_en.nt.bz2

Persondata persondata_en.nt.bz2

Redirects redirect_en.nt.bz2

Ontology Types types-mappingbased.nt.bz2

External Links externallinks_en.nt.bz2

Homepages homepage_en.nt.bz2

Images image_en.nt.bz2

Links to Wikipedia Article wikipage_en.nt.bz2

Ontology Infoboxes infobox-mappingbased-loose.nt.bz2

The ABox files are zipped, containing the data in N-triple format. OWLAPI does not

support this format, so Jena was used to convert the N-triples into RDF/XML format.

Unfortunately, Jena apparently works the way that it loads the entire input file into

memory before commencing the conversion, which prohibited to convert some of the

selected files (the biggest one has over 800MB, which in internal representation in memory

takes even more). Therefore this was another reason for the afore-mentioned 100,000

triple limit on a file.

The website also provides an ontology TBox for the data, which is labeled DBpedia

Ontology, and resides in the file dbpedia-ontology.owl.bz2. Though the TBox does

not use complex language, it does not fit into DL−Lite expressivity – it uses concept

union on the top of it, so the TBox was simplified for the tests. The simplifications

made are rewriting axioms containing union of concepts (role domain axioms, object role

range axioms) to axioms containing a fresh auxiliary concept instead, where the auxiliary

concept is on the left hand side of multiple fresh concept inclusion axioms, with the right

hand sides of all the concepts of the union. Another modification is removing all date

role range axioms.

There are two queries posed to the tested reasoners formulated for DBpedia data. Note

that both use the distinct keyword to display only distinct results, which was added

in order to try a different feature in the queries. The first one in Listing 4.3 asks for

two individuals. The first of them has to have his given name equal to someone else’s
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surname, and the second individual has to have his surname equal to someone else’s

given name. Additionally, the first individual has to be disambiguated (a Wikipedia

disambiguation article has to lead to him). And the final restriction is that an artwork of

the first individual and an artwork of the second individual have to have similar genres.

Similar in this case means that the genres meet in being defined as genres of a single

object.

The other query in Listing 4.4 just adds the restriction, that both the individuals have

to be artists. This might seem like a simple and insignificant modification, but it actually

complicates the resulting SQL query quite a lot (see test results in Section 4.2).

Listing 4.3: DBpedia SPARQL query 1

1 PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

2 PREFIX rdfs: <http :// www.w3.org /2000/01/rdf -schema#>

3 PREFIX dbo: <http :// dbpedia.org/ontology/>

4 PREFIX dbp: <http :// dbpedia.org/property/>

5 PREFIX foaf: <http :// xmlns.com/foaf /0.1/>

6

7 SELECT DISTINCT ?a1 ?a2

8 WHERE {

9 ?a1 foaf:givenname ?name1 .

10 ?jmenovec1 foaf:surname ?name1 .

11 ?a2 foaf:surname ?name2 .

12 ?jmenovec2 foaf:givenname ?name2 .

13

14 ?d dbp:disambiguates ?a1 .

15

16 ?dilo1 dbo:artist ?a1 .

17 ?dilo2 dbo:associatedMusicalArtist ?a2 .

18

19 ?dilo1 dbo:genre ?g1 .

20 ?dilo2 dbo:genre ?g2 .

21 ?cosi1 dbo:genre ?g1 .

22 ?cosi1 dbo:genre ?g2 .

23 }

Listing 4.4: DBpedia SPARQL query 2

1 PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

2 PREFIX rdfs: <http :// www.w3.org /2000/01/rdf -schema#>

3 PREFIX dbo: <http :// dbpedia.org/ontology/>

4 PREFIX dbp: <http :// dbpedia.org/property/>
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5 PREFIX foaf: <http :// xmlns.com/foaf /0.1/>

6

7 SELECT DISTINCT ?a1 ?a2

8 WHERE {

9 ?a1 foaf:givenname ?name1 .

10 ?jmenovec1 foaf:surname ?name1 .

11 ?a2 foaf:surname ?name2 .

12 ?jmenovec2 foaf:givenname ?name2 .

13

14 ?d dbp:disambiguates ?a1 .

15

16 ?dilo1 dbo:artist ?a1 .

17 ?dilo2 dbo:associatedMusicalArtist ?a2 .

18

19 ?dilo1 dbo:genre ?g1 .

20 ?dilo2 dbo:genre ?g2 .

21 ?cosi1 dbo:genre ?g1 .

22 ?cosi1 dbo:genre ?g2 .

23

24 ?a1 rdf:type dbo:Artist .

25 ?a2 rdf:type dbo:Artist .

26 }

4.2. Owlgres

The performance tests of Owlgres were carried out on a standard laptop computer with

an Intel Core2 Duo CPU running at 1.6 GHz and 2 GB of RAM, with two operating

systems installed: Microsoft Windows XP Professional SP3 (32-bit) and Kubuntu 9.04

(Jaunty Jackalope) Beta 64-bit, a distribution of Linux.

Running Owlgres requires Java Virtual Machine (JVM), the used one was Java from

Sun of version 1.6.0 10. The DB used was PostgreSQL of version 8.3.0 for a few first

tests on Windows, but it was upgraded to version 8.3.7, which sped up one of the tests;

the version on Linux was always 8.3.7.

The tests were performed for all combinations of the following:

• Two datasets (UOB and DPpedia) – abbreviated by uob and dbp

• Two queries (two for each dataset) – denoted by number 1 and 2
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• Three DB schemes (single table, multiple table, multiple table QuOnto style) –

abbreviated by st, mt, and mtq

Owlgres was run in the command-line mode, with a JVM option allowing it to use up

to 1 GB of RAM. Several Owlgres execution scenarios were tried, but in order to keep

the repeated tests as independent as possible, the JVM for Owlgres was restarted for

each set of tests (where a set is a sequence of 12 tests: combinations of two datasets, two

queries, and three DB schemes), and also the DBMS (PostgreSQL) was restarted after

each set. There was 20 of these sets repeated – to have more data allowing for some simple

statistical processing (computing standard deviation). Restarting the DBMS suppressed

DBMS using caches for tables and their indices for subsequent tests, letting them to read

the data from persistent storage every time. Restarting the JVM prevented from caching

objects and probably some other optimizations a JVM may do.

The first chart in Fig. 4.1 compares total times of all datasets, all queries, and all

schemes both in Windows and Linux. The total times mean times of complete querying

process, i.e. connecting to the DB, loading a TBox, processing a query and running a

reformulated query on the DB. Note that there are standard deviations of the measured

times (with respect to the 20 repeated test sets) marked using the thin line in the shape

of the letter “I”.

There was a problem measuring the time of the second query on DBpedia on single

table scheme DB. It took so long it was not practical to wait for a result (it was run

overnight). This case is marked in all charts with full-height bars with a discontinuity

mark (shaped like two thunderbolts).
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Figure 4.1.: Owlgres query times
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Follow two another charts in Fig. 4.2 and Fig. 4.3, each for an operating system. These

show how is the total time of query execution divided into steps of the query answering.

For explanation of the abbreviations used for the answering steps see Section 3.1.3.

It manifests that the most of the query answering time takes executing an SQL query

by the DB. almost all other steps have neglectable times, except the query reformulation

of the second query for the UOB dataset (part of the three bars is yellow). It is because

the query is very complex, and its reformulation to DL−Lite requires many query mod-

ifications. The process of reformulation is of course independent of the DB model used,

thus the three yellow parts are of about the same height.

The non-SQL steps for the first query of the UOB dataset, single table model (the

leftmost bar), also consumed more time then usual in other cases. But this is because

this test was always the first in the set of tests (the set was run repeatedly, but always

in the same order), and the time spent here is probably mostly due to JVM loading Java

classes, libraries, and performing other initializations.

Figure 4.2.: Owlgres query times distribution on Windows
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Figure 4.3.: Owlgres query times distribution on Linux
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An interesting situation appears in Fig. 4.4. It shows times measured in very early tests,

when on the Windows platform accidentally there was an older version of PostgreSQL,

version 8.3.0. Most of the results are basically similar, except for the first test query

for DBpedia dataset with single table model, for which the total time was significantly

higher then in all other tests. Of course all the long time was spent processing an SQL

query by the DB. It is hard to estimate what is the cause for it being so long, probably

the older version of DB missed some minor optimization, which applied to such complex

query for the single table model (the SQL queries for multiple table models are quite

simpler). It may be similar problem with the second DBpedia query (taking practically

immeasurable amount of time), which is not very complex, but maybe would need another

database optimization, which PostgreSQL could be missing. Note that the times cannot

be exactly compared to the results in the previous charts, because the testing conditions

were different (the DBMS and the JVM was not restarted).

Figure 4.4.: Owlgres query times – first test, with Windows PostgreSQL version 8.3.0
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4.3. QuOnto

The tests were performed on the same machine as described in Section 4.2. The JVM

version was 1.6.0 10 again. The database QuOnto uses is the H2 embedded Java database.

The version of H2 bundled with QuOnto is 1.0.74. A newer version 1.1.112 of H2 was

tried out, with a hope it might speed up the tests, but with no success. All the QuOnto

tests were performed on Windows platform, since it completely runs in a JVM, which

erases most of the platform differences. Note that most of the tests in this section are

performed with QuOnto coming from the QToolKit package. Some tests were performed

with another system implementing QuOnto, the ROWLKit, which are at the end of this

section.

All QuOnto testing was complicated, and a few bugs were encountered. With some

of them the QuOnto authors were confronted, resulting in a brief response stating that

this prototype should be understood as an evidence that there is a real implementation

of DL−Lite, that it is not just a theory in the authors’ papers.

The problems resulted in rather complex data preprocessing, as described in Sec-

tion 3.2.1. Another difficulty is with measuring its performance – there is no easy way

how to measure the time. There is no way how to measure times of different steps of the

query answering process (query reformulation, SQL execution, etc.), since QuOnto does

not provide any API. And also measuring the total answering time was not easy, since

the only way how to execute a query is pressing a button in its GUI, with the answering

finish demonstrated only by showing results. And since it generally takes a long time to

answer a query in QuOnto, it is impractical to wait with a stopwatch until an answer

appears. Thus a very course solution was used: a simple utility measuring CPU load

was made, which shows the time when the CPU load goes over/under certain threshold.

And because the query answering in QuOnto heavily utilizes the CPU, using the utility

allowed to measure the time of the query answering.

Due to big differences in time performance the results are not displayed in charts.

Instead, our analysis is supported by a few tables – Table 4.2, Table 4.3, Table 4.4, and

Table 4.5, that depict the performance of the most interesting tests.

First, the same datasets as for Owlgres were used, with the full ABoxes. The resulting

total query answering times are in Table 4.2. You can see here, that only the time for

the UOB dataset query 2 was obtained, while the others were inaccessible, because took

too long (one of the tests was run overnight). Which is a real surprise, since the query 2

of UOB was one of the most difficult queries, and it finished earliest in this test (though
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later than in any of the Owlgres tests).

Table 4.2.: Measured times of QuOnto query answering, full ABox

Dataset Query Time

UOB
1 > 11h

2 316s

DBP
1 > 1h

2 > 1.5h

In order to find out what the unmeasured times are like, the reduction of ABox was

administered (instead of simplifying the queries, which may be quite unpredictable re-

garding the answering complexity – it is dependent on usage frequency of TBox entities,

etc.). First, the ABoxes of both datasets were reduced to 1/10 of the original ones (10%).

From the Table 4.3 you can see it was still impossible to find out DBpedia queries an-

swering times. Note that in the tests for DBpedia with the full ABox, the times for which

the queries were run (wihtout an answer) are shorter than for the 1/10 ABox case. It is

because we expected the queries for 1/10 of ABox to finish, thus we waited for a longer

time.

Table 4.3.: Measured times of QuOnto query answering, 1/10 of ABox

Dataset Query Time

UOB
1 1449s

2 8s

DBP
1 > 14h

2 N/A

Thus the ABoxes were reduced once again, to 1/20 of the original ones (5%). And the

result is that the DBpedia query 1 time is obtained, but not the time for the query 2, as

seen in Table 4.4.

For this size of ABoxes, also a newer version of H2 database was tried. It has been

tested on both queries for DBpedia, with worse results: for query 1, it did not finish in

one hour (as opposed to 1370s with the older version), and for query 2 it did not give a

result in reasonable time as well.
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Table 4.4.: Measured times of QuOnto query answering, 1/20 of ABox

Dataset Query Time

UOB
1 185s

2 6s

DBP
1 1370s

2 > 4h

Therefore another strong reductions of the ABoxes to 1/400 of the original ones were

made (0.25%) (using 1/100 still did not lead to a result for the DBpedia query 2 in a

reasonable time). Now all the times are known, as seen in Table 4.5. Note that the time

measuring granularity is 1s, thus the low times of 2s are very coarse-grained.

Table 4.5.: Measured times of QuOnto query answering, 1/400 of ABox

Dataset Query Time

UOB
1 2s

2 2s

DBP
1 10s

2 181s

The QuOnto implementation ROWLKit offers a lot of advantages compared to QToolKit.

Some of them are the support for OWLAPI (this eliminates the need for data preprocess-

ing), and a more informative GUI, which shows the time of the end of a query answering

process (no need for CPU load monitoring). The important disadvantage is the database

model is not known, because no flaws revealing it were found, and again there are no

source codes nor any detailed documentation.

But ROWLKit gave much better results for the full ABox of UOB dataset, which are in

Table 4.6. It probably uses the H2 more efficiently, but it is hard to know how, since the

DB schemes are not known, nor are the SQL queries posed to the DB. Unfortunately, it

was impossible to even load the DBpedia data, because the ROWLKit froze up, perhaps

because of lack of memory. An attempt on Linux was made, assigning more memory to

the JVM than on Windows (up to 3GB), but with no success, the application froze up

again (endless execution overnight).
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Table 4.6.: Measured times of ROWLKit query answering, full ABox

Dataset Query Time

UOB
1 22s

2 8s

4.4. Comparison

Comparing the results of two different systems implementing DL−Lite – Owlgres in

Section 4.2 and QuOnto in Section 4.3 – is not entirely fair, because the systems use

quite different data storage.

One could anticipate that the QuOnto times may be shorter, since it does not persist

knowledge base on the harddrive (as Owlgres), but it keeps it in the RAM, which is

much faster. than in contrast to Owlgres using a database with permanent hard-drive

storage. The disadvantage of this approach is that it consumes a lot of RAM. As seen in

the results below, sometimes the application froze up. The answer might be that though

the H2 database uses much faster RAM storage, it lacks many optimizations that other

well-established databases have. Another explanation is that the Java based H2 is being

interpreted, which might be slower than the native code of PostgreSQL.

In spite of the anticipations, Owlgres was more efficient in most cases. There are two

major explanations for that: Owlgres has a better reasoner, reformulating queries into

more optimized SQL queries, than QuOnto has, or that the H2 is not as optimized as the

PostgreSQL database is.

Both things have something to do with optimizations. One opinion could be that

when there is not very optimized SQL query generated by a reasoner, the database would

internally optimize it, making up for the reasoner; this capability may be missing in H2.

But this is not entirely true, since there are optimizations a database cannot make, those

that require the knowledge of TBox, which only reasoners have. For example, Owlgres

keeps track of frequencies – numbers, how many times each TBox entity is used, which

helps formulating the SQL query in order to start with the least frequently used entity

(concept, object role, etc.) first.

Even though QuOnto has generally much longer query answering times, one of the

result is significantly better then other Quonto times – the result for the UOB dataset,
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query 2. While Owlgres has for UOB query 2 almost the worst time (except for DBpedia

query 2), and in general, query 2 for UOB is very difficult, which is also confirmed by

the long time Owlgres needs to reformulate it into DL−Lite. This means the QuOnto

reasoner has probably some smart optimization for this case, which Owlgres does not

have. Note that we are not absolutely certain about it, because the query does not

return any results in both cases, thus one of the reasoners might work incorrectly, and

would return no results even when there should be some.

A more interesting will be the comparison of different database relational schemes in

Owlgres now. First notes are regarding the query answering time distribution. As Fig. 4.2

and Fig. 4.3 show, most of the time spent during a query answering is in executing its

SQL query. Besides a few deviations (e.g. a bit longer initial time for the first test

(UOB,1,st) probably because of JVM caching, and some unresolved slightly longer times

mainly for Linux testing), the only significant exception is query reformulation for UOB

dataset, query 2, all schemes, which only proves that the query is rather complex (also

confirmed by the complex SQL query in Appendix B), and it has nothing to do with the

scheme.

The most important result is that the multiple table schemes are significantly faster

then the single table scheme in most cases. The only case where it is not entirely true

is the aforementioned query 2 for UOB dataset, where the single table model is a few

percent faster on Windows, but still is slower with higher difference on Linux, resulting in

a rather balanced performance. As mentioned before, the query is more complex than the

others, which probably somehow erases some scheme differences (for Windows, the UOB

query 2 provides the most balanced results among different schemes). The single table

scheme even completely fails for the query 2 of DBpedia, for which case the database was

not able to give an answer (when run overnight) – the cartesian product of huge tables

generated by the generated SQL query was probably so big the DB was unable to cope

with it.

Comparing the two multiple table schemes, the one with an individual names table and

the QuOnto style, a little better results give the one containing and individual names table

(called simply multiple table model). It gives shorter times for most of the tests except the

one for query 1 for DBpedia, where it is significantly slower. An explanation is that using

the individual names table (thus using numerical identifiers for individuals in all assertion

tables) makes looking for the actual query answer easier (using DB indices for numeric

columns), with an additional query translating the resulting numeric identifiers into the

actual individual names using the individual names table. This makes answering most of
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the queries faster because of the more efficient query for individual identifiers. While the

DBpedia query 1 is faster because the query is rather simple, so most of the time takes

translation from individual identifiers to their actual names, whereas the multiple table

QuOnto style scheme leaves this out, producing the individual names directly.

Other tests could be performed to find out how the query atoms reordering affects

the query answering performance, since a reasoner can have a query atoms reordering

optimization. But these tests have not been performed, because having in mind how a

query gets reformulated into an SQL query, we assume that the optimization is performed

by a DBMS (in ordering the tables in a cartesian product in the query).
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5.1. Netcarity

Netcarity1 is a European research project for helping older people to improve their safety

at home using modern technologies. Participants include academic institutions (e.g.

Czech Technical University in Prague (CTU), Eberhard Karls Universitaet Tuebingen

and Universita degli Studi di Pavia), organisations (e.g. Provincia Autonoma di Trento

in Italy), firms (e.g. Stichting Verpleging en Verzorging Eindhoven e.o. De Archipel in

Netherlands), and other companies and authorities.

The project investigates ways how to make living of elderly people on their own possible,

without the need to aggregate them in care homes. Because self-sustainability of older

people is usually somehow impaired, there are some problems when living alone, e.g. the

risk of injury (when falling down, etc.), and other every-day problems that older people

find often difficult. These problems must be taken care of, and Netcarity attempts to

resolve them using new and existing modern electronic technologies. It tries to improve

elderly people wellbeing, independence, safety and health at home.

The main task of CTU within the project is to build the central server for the system,

accessed through several web services as well as web interface. The developed server

is using PostgreSQL database for data storage and GlassFish application server. The

stored data consist mainly of messages between the household and central server which

are mostly observations of sensors, and commands.

The result of this thesis can be applied to the sensoric data stored within the Netcarity

system, in order to allow intelligent and efficient data retrieval and complex querying.

This means developing an appropriate structure of sensors, represented in a sensor on-

tology. The ontology must include the information about the actual sensors (type, man-

ufacturer, location, range, operating conditions, etc.), ontologies of the quantities they

measure (time ontology, representing vectors, arrays, binary data, etc.), and some rela-

1http://www.netcarity.org/
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tions of physical principles they use for measuring. The interconnection of this extension

with the current system of storing sensor data, i.e. the ABox storage model, needs to

be as seamless as possible, to allow for efficient retrieval and querying, and to reduce the

original DB scheme modifications.

The choice of a suitable TBox constructed is a matter in Section 5.2.1. Next, Owlgres

(the only open source implementation available) was selected as the reasoning and query

answering system. It had to undergo some modifications, to allow a smooth integration.

The implemented adaptation of Owlgres is in Section 5.3.

5.2. Sensors

A brief introduction to sensors used in the Netcarity project follows, as described in its

internal documentation. Currently, the sensor system is focused towards people protec-

tion against an accident of falling down and fire protection. The fall detection is based

on three kinds of information:

• Motion acceleration of the monitored person

• Sound recording

• Visual surveillance

Combination of the three information gives high rate of reliability, eliminating false

alarms. It might seem the readings of the motion acceleration of a person would be

enough for detecting a fall, but it also would give some false alarms (false positive results).

The appropriate sensors are obvious: an accelerometer attached to the monitored per-

son, and a camera and a microphone installed in every room. The topology of the system

has a root in a communication device called “home gateway” (HGW), which is connected

to the Internet, and distributes information between all devices installed in the house and

the central server.

The accelerometer is a tree axes type, connected with a preprocessing CPU unit and

wireless transmitter, sending the measured and processed values to an embedded PC.

The embedded PC is in every room, combining the wirelessly received acceleration data

with image data from a camera and waveforms from a microphone installed in every room

as well. The camera and the microphone have their preprocessing units also. The pre-

processing units reduce the data flow in the system by extracting the usefull information
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from the measured data – a case of data extraction. Note that the camera is 3D – among

standard 2D color information it also senses the depth of the scanned area.

5.2.1. State of the Art in Sensor Ontologies

In order to categorize the sensors, their properties, and the data obtained from them,

a suitable ontology TBox had to be found. It must support defining different sensor

properties (e.g. range, location, physical principle), their interfaces, physical processes

they measure, and representation of sampled data and their properties (e.g. time data,

vectors, arrays), etc. Because developing such ontology is not easy and takes a lot of time,

first some research was conducted, which is described in the following list of interesting

efforts found.

W3C Incubator

The Semantic Sensor Network Incubator Group, part of the W3C2 Incubator Ac-

tivity, is an interesting website leading to a few other sites concerned with semantic

description of sensors, and it is a prove that this task is an up-to-date problem,

which is widely interesting, since the W3C is a leading organisation of developing

standards for the Internet.

Here are some interesting links to projects regarding sensor ontologies, and an

ontology prototype

• http://www.w3.org/2005/Incubator/ssn/ – the incubator main site

• http://www.w3.org/2005/Incubator/ssn/charter – Semantic Sensor Net-

work Incubator charter, with some interesting references

• http://www.w3.org/2005/Incubator/ssn/wiki/Semantic_Sensor_Network_

Ontology – a not very useful sensor ontology by Nguyen (follows OWL-S sig-

nificantly)

• http://en.wikipedia.org/wiki/Semantic_Sensor_Web – an unrelated site,

Semantic Sensor Web – a Wikipedia article with some interesting links

The W3C Incubator is currently alive, with its end planned on 2.3.2010.

2The World Wide Web Consortium (W3C), at http://www.w3.org/, is an organisation developing

interoperable technologies for the Web
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SensorML

SensorML is a very good standard for sensor description defined by Open Geospatial

Consortium3. It is very detailed and general, which allows many sensor ontologies

to use this standard. Unluckily, it does not come in the form of a formal ontology,

but it is a definition of modeling and XML encoding of sensor systems. Basically

all ontologies found during this research follow this standard in some way.

• http://www.opengeospatial.org/projects/groups/sensorweb

– Open Geospatial consortium - Sensor Web Enablement

• http://www.opengeospatial.org/standards/sensorml – SensorML – a very

good standard for sensor systems (not in OWL)

• http://portal.opengeospatial.org/files/?artifact_id=21273 – link for

downloading the standard

• http://lists.opengeospatial.org/pipermail/sensorml/2008-March/

000392.html – a mailing list conversation asking whether there is “SensorML

model in OWL or RDF format ?”, containing some interesting references

Marine Metadata

Marine Metadata Interoperability4 develops the “Ontology for Devices,” an ontol-

ogy of oceanographic sensors and samplers. It is still a work in progress, with

the current version of the ontology in its SVN, but apparently not complete yet.

Web site contains a lot interesting UML diagrams, term dictionaries etc., and more

importantly – links to other similar standards (the way the OntoSensor, the best

ontology found, was discovered).

• http://marinemetadata.org/community/teams/ontdevices – Main website

of the project

• http://marinemetadata.org/node/2307/documents/General+Documents

– General documents

3The Open Geospatial Consortium (OGC), at http://www.opengeospatial.org/, is a non-profit, in-

ternational, voluntary consensus standards organization that is leading the development of standards

for geospatial and location based services
4Marine Metadata Interoperability, at http://marinemetadata.org/, is a project promoting the ex-

change, integration and use of marine data through enhanced data publishing, discovery, documen-

tation and accessibility

50

http://www.opengeospatial.org/projects/groups/sensorweb
http://www.opengeospatial.org/standards/sensorml
http://portal.opengeospatial.org/files/?artifact_id=21273
http://lists.opengeospatial.org/pipermail/sensorml/2008-March/
000392.html
http://marinemetadata.org/community/teams/ontdevices
http://marinemetadata.org/node/2307/documents/General+Documents
http://www.opengeospatial.org/
http://marinemetadata.org/


5. Application

• http://marinemetadata.org/community/teams/ontdevices/ontdevrel

– Website linking to other websites with device related ontologies

• http://sourceforge.net/svn/?group_id=170123 – MMI SVN link (or run

svn co https://mmi.svn.sourceforge.net/svnroot/mmi mmi)

Marine Metadata Device Ontologies Working group is currently alive.

OntoSensor

Probably the most advanced sensor ontology found. Though its development is still

in progress, it contains many useful things from SensorML, data representation etc.

May be neccesary to extend, but a very good base for developing ontology for our

needs. An article (below) describes a use-case similar to the case of this thesis –

data storage in DB, which are queried.

There had been a problem with the ontology regarding the hasValue property

– the ontology editor Protege 4.0 Beta5 reports an error upon loading it. It is

because the authors used Protege of version 3.3.1, which is more benevolent in

OWL parsing. They defined the hasValue property as an object property with the

range of CapabilitiesDescription concept, but then used it as a datatype role

with string values. We we changed the definition to datatype role with the string

range, and Protege 4.0 Beta loads the ontology without any error.

• http://www.memphis.edu/eece/cas/projects.php

– its project homepage at Memphis university

• http://www.memphis.edu/eece/cas/onto_sensor/OntoSensor.txt

– the ontology itself

• http://www.ontologyportal.org/translations/SUMO.owl.txt

– the SUMO ontology, which is a dependency of the OntoSensor ontology (but

not accessible at its standard URL)

• http://ipsn.acm.org/2006/WIP/goodwin_1568983444.pdf – the interest-

ing article (2 pages) regarding using the OntoSensor in conjunction with stor-

ing sensor data in DB, etc.; in references as (Goodwin and Russomanno, 2006)

The OntoSensor project at the Memphis University seems dead, since no documents

are available on the project website, except the ontology itself. The interesting

article was written in the year 2006.

5http://protege.stanford.edu/

51

http://marinemetadata.org/community/teams/ontdevices/ontdevrel
http://sourceforge.net/svn/?group_id=170123
http://www.memphis.edu/eece/cas/projects.php
http://www.memphis.edu/eece/cas/onto_sensor/OntoSensor.txt
http://www.ontologyportal.org/translations/SUMO.owl.txt
http://ipsn.acm.org/2006/WIP/goodwin_1568983444.pdf
http://protege.stanford.edu/


5. Application

5.3. Owlgres Implementation

Owlgres is a logical choice for the sensor ontology reasoning, because it is open source,

provides an API, and is extensible. The implementation used for integrating into Net-

carity project is based on Owlgres extended with the multiple table ABox data scheme

(not the QuOnto version), because of two reasons:

• The testing proved it is the most efficient scheme for most cases (combinations of

datasets and queries used), see Section 4.4

• As opposed to the single tabel model, it allows to have different database data

representation of values of different data property roles, i.e. each data property role

assertions table can have different type of its value column (e.g. types of double

(floating point numeric), text, binary array, timestamp, etc.); the single table model

has to have a single datatype of the common value column of all data property

role assertions (typically of type text)

For the base of multiple table scheme implementation, see Section 3.1.2. Now follows

the description of two main features added to the system: support for data property role

ranges and the mapping of TBox entities to their corresponding assertion tables.

In order to store measured observations from sensors efficiently, it is necessary to sup-

port data property ranges. For example, it is inappropriate to store scalar values obtained

from a thermometer (temperature values) and image data acquired by a camer in the same

table. Therefore the sensor ontology should contain data property range axioms for the

relevant data property roles, e.g. binary array type as data range for the data property

role hasDataImage (associating an individual representing an image taken by a camera

to its actual picture data), or double precision number type for the data property role

hasScalarValue (used e.g. for associating a single numeric value to a thermometer or

single axis accelerometer observations).

When there is such data property range axiom in the TBox, not only the table corre-

sponding to the entity occurring in the axiom has to have an appropriate value column

(having an SQL data type according to the type specified in the axiom), but also it has

to be stored somewhere permanently, where from it could be retrieved easily. This is

required because of the query builder class, which needs to know data role datatypes, for

formulating an SQL query, and for exporting the output from an SQL result. The easiest

way was used – to store the data property ranges into the table tbox_name, where all
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TBox entities appear. Thus the rangedatatype column was added, containing a string

applicable only to data property roles, stating data type their ranges.

The other feature added is the mapping of entities to their assertion tables. In the

original multiple table scheme, as described in Section 3.1.2, every ABox assertion table

was named with a prefix (representing what type is the entity of – concept, object/data

property, or annotation), followed by a number, which was equal to the corresponding

entity ID (as written in tbox_name table). This is not practical, first because it is un-

readable (lot of tables with similar names, differing only in a number in it), and mainly

because it is hard to interconnect such mechanism with existing tables already filled in

with data.

Therefore, a mapping had to be developed. In order to store the mapping information

(which entity is mapped to what table), the tbox_name table was chosen again. Another

column, called aboxmapping, was added. It defines the table name used for assertions for

each TBox entity. If no value is given, the system automatically uses the default name

as before, consisting of a prefix and the ID number.

There needs to be a way, how to formulate such mapping information in sensor ontology

TBox. There is no designated axiom for it defined in standard OWL languages (to

which the implementation sticks, since it uses a parser for OWL, the OWLAPI), like

in the previous case with data property range axioms. A suitable way is to use an

annotation property. For this, a new annotation property aboxMapping was assigned. It

can be used in a TBox for an entity, defining in what table are its assertions. For an

example see Listing 5.1, line 4, which defines that all assertions of the object property

role hasObservation are in a table called observations.

Listing 5.1: An RDF/XML snippet, defining an ABox mapping for an object property

1 <owl:AnnotationProperty rdf:about="#aboxMapping"/>

2

3 <owl:ObjectProperty rdf:about="#hasObservation">

4 <aboxMapping >observations </aboxMapping >

5 <rdfs:range rdf:resource="#Observation"/>

6 <rdfs:domain rdf:resource="#Sensor"/>

7 </owl:ObjectProperty >

To continue the example, a query asking all observations taking part in the hasObser-

vation role is in Listing 5.2, with the resulting SQL in Listing 5.3. Note the second line

in the SQL listing, where the table name is observations, as defined in the annotation

above.
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Listing 5.2: An example query asking all observations from a sensor ontology

SELECT ?s ?o

WHERE {

?s s:hasObservation ?o .

}

Listing 5.3: The generated SQL for an example query on a sensor ontology

SELECT ora_0.a AS x1 , ora_0.b AS x2

FROM observations ora_0

The suitable ontology (OntoSensor) found during the the research in Section 5.2 was

not used for testing the implementation; instead a simple ontology was developed as part

of this thesis. Its concept hierarchy is in Fig. 5.1 (as displayed in Protégé6). It has the

object role hasObservation with the domain Sensor, and the range Observation. It

contains the following data roles (with their domains and ranges noted):

hasImageData domain: Observation, range: binarydata

hasScalarValue domain: Observation, range: double

hasTime domain: Observation, range: dateTime

hasWaveformData domain: Observation, range: binarydata,

where the binarydata datatype is a custom datatype for representing binary data (of e.g.

an image or a waveform).

The datatypes (as data role ranges) used in an ontology used for the Netcarity Owlgres

extension has to be translated into SQL datatypes by the extension – they are used for

the value columns of data role assertion tables. Currently, only the following datatypes

are supported: binarydata (a custom datatype), double, and dateTime (standard XSD7

datatypes).

The DL−Lite language allows the sensor ontology for example to use the class hierar-

chies and role restrictions (e.g. role domains, role ranges).

6http://protege.stanford.edu/
7http://www.w3.org/TR/xmlschema11-2/
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Figure 5.1.: Concept hierarchy of a simple ontology for Netcarity implementation

testing
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As part of this thesis, the original Owlgres relational scheme (single table model) was

extended by two other schemes: the multiple table model, and the multiple table QuOnto

style model. It is planned to include the models implemented within this thesis into the

Owlgres distribution.

A few QuOnto bugs allowed us to see its database relational scheme, as well as the SQL

queries generated from the queries posed to the system, as described in Section 3.2. It uses

a scheme similar to the multiple table scheme without the individual names table Since

QuOnto is unable to parse standard RDF/XML format (does not use OWLAPI), and

reads only functional syntax of limited notation, a utility was implemented for converting

RDF/XML files into the necessarily simplified functional syntax.

One of the implemented extensions (the multiple table scheme) was further extended,

in order to be used for a real-life application within the NetCarity project (described in

Section 5.1). First, some research was performed to find a suitable ontology for sensors

– their properties, relations between them, and for data measured by them. The sensor

information and data representation is one of the tasks NetCarity has to solve. During

the research described in Section 5.2, one of a few ontologies found was selected as the

best, though still needing some extension. The implemented Owlgres extension includes

the support for data role ranges (reflecting in the data type of the value column of

the corresponding assertion table), and the support for user definable mapping of TBox

entities to their corresponding assertion tables, which is described in Section 5.3.

For testing purposes two datasets, UOB and DBpedia, were used. Two queries per

dataset were developed. Section 4.2 compares the three different database schemes im-

plemented in Owlgres, tested on two platforms (Windows, Linux), showing the results

in charts. Section 4.3 uncovers the tests performed on QuOnto (only for its original

database scheme, only on Windows). The test results are summarized in Section 4.4,

with the key observations: QuOnto showed only poor results (may be because of not

very strong QuOnto query optimization, or poor H2 database performance), with one

exception: for a certain test it did much better then for its other tests, while for Owlgres
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that certain test was slower than most of its other tests, probably meaning that QuOnto

has good optimization for this certain query (it is the UOB query 2). The Owlgres system

showed good overall performance, with the winner of multiple table scheme (not QuOnto

style) as being the fastest for most of the tests. An interesting thing is that a query did

not finish at all for the single table scheme; because of this and also the other tests it

ended up as the worst. In our future work we would like to perform in-depth analysis of

ROWLKit.

As a part of the future work, the first version of DL−Lite integration into Netcarity

presented in Section 5.3 will be extended and tested on real data.
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A. Contents of the Enclosed CD

A CD is enclosed to this thesis, containing source codes of the implemented extensions,

the testing datasets, and this thesis. Its directory structure with brief description of each

directory follows.

• thesis: A folder containing this thesis in electronic form (a PDF document) in-

cluding the scanned signed declaration page and the diploma thesis assignment.

• source codes: A folder containing source codes with the following subfolders:

– owlgres: Complete Java source codes of the extensions made to the Owlgres

system

– owlgres er diagrams: E-R diagrams implemented in Owlgres, designed in

MySQL Workbench 5.0

– owl conversion utilities: A few Java utilities for converting ontologies in

different formats, and tools for data preprocessing for QuOnto

– matlab: Matlab scripts for displaying charts of Owlgres results

– CPUloadTimer: A Java utility monitoring CPU load, recording the times

when the CPU load changes

• test results: A folder containing results of Owlgres – the measured times, both in

CSV format and charts exported from Matlab

• datasets: Contains data both for UOB and DBpedia datasets; the source RD-

F/XML ABox and TBox data, the data converted to functional syntax for QuOnto,

and also the test queries are included

• sensors: A structured folder containing some of the materials found out during

sensor ontology research

I



B. Generated SQL for the Test Queries

A shortened listing of generated SQL queries for different DB models (Single Table,

Multiple Table, Multiple Table QuOnto) for all four testing queries (two for UOB, two

for DBpedia) posed to DB by Owlgres and QuOnto, and shortened SQL queries generated

by QuOnto for the same four testing queries.

B.1. SQL for UOB Query 1

Listing B.1: Owlgres, Single Table Model SQL
SELECT name_0.name AS x1, x2

FROM (

SELECT ora_1.a AS x1, dra_0.value AS x2

FROM concept_assertion ca_0 , concept_assertion ca_1 , object_role_assertion ora_0 , object_role_assertion ora_1 ,

object_role_assertion ora_2 , object_role_assertion ora_3 , data_role_assertion dra_0

WHERE ora_0.object_role =62

AND ca_0.concept =27

AND ora_1.object_role =94

AND ca_0.individual=ora_1.b

AND ora_2.object_role =62

AND ca_0.individual=ora_2.a

AND ora_0.b=ora_2.b

AND dra_0.data_role =96

AND ora_1.a=dra_0.individual

AND ora_3.object_role =91

AND ora_0.a=ora_3.a

AND ca_0.individual=ora_3.b

AND ca_1.concept =22

AND ora_0.a=ca_1.individual

UNION

SELECT ora_1.a AS x1, dra_0.value AS x2

FROM concept_assertion ca_0 , concept_assertion ca_1 , object_role_assertion ora_0 , object_role_assertion ora_1 ,

object_role_assertion ora_2 , object_role_assertion ora_3 , data_role_assertion dra_0

WHERE ca_0.concept =33

AND ora_0.object_role =62

AND ca_0.individual=ora_0.a

AND ora_1.object_role =94

AND ora_2.object_role =62

AND ora_1.b=ora_2.a

AND ora_0.b=ora_2.b

AND ca_1.concept =29

AND ora_1.b=ca_1.individual

AND dra_0.data_role =96

AND ora_1.a=dra_0.individual

AND ora_3.object_role =91

AND ca_0.individual=ora_3.a

AND ora_1.b=ora_3.b

II
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UNION

-- and other 13 similar blocks follow ...

) as innerRel , individual_name name_0

WHERE innerRel.x1=name_0.id

Listing B.2: Owlgres, Multiple Table Model SQL
SELECT name_0.name AS x1, x2

FROM (

SELECT ora_1.a AS x1, dra_0.value AS x2

FROM objrole_62 ora_0 , objrole_94 ora_1 , objrole_63 ora_2 , objrole_62 ora_3 , objrole_72 ora_4 , objrole_91 ora_5 ,

datarole_96 dra_0

WHERE ora_1.b=ora_2.b

AND ora_1.b=ora_3.a

AND ora_0.b=ora_3.b

AND ora_1.a=dra_0.individual

AND ora_0.a=ora_4.a

AND ora_0.a=ora_5.a

AND ora_1.b=ora_5.b

UNION

SELECT ora_1.a AS x1, dra_0.value AS x2

FROM concept_27 ca_0 , objrole_62 ora_0 , objrole_94 ora_1 , objrole_62 ora_2 , objrole_72 ora_3 , objrole_91 ora_4 ,

datarole_96 dra_0

WHERE ca_0.individual=ora_1.b

AND ca_0.individual=ora_2.a

AND ora_0.b=ora_2.b

AND ora_1.a=dra_0.individual

AND ora_0.a=ora_3.a

AND ora_0.a=ora_4.a

AND ca_0.individual=ora_4.b

UNION

-- and other 13 similar blocks follow ...

) as innerRel , individual name_0

WHERE innerRel.x1=name_0.id

Listing B.3: Owlgres, Multiple Table QuOnto Model SQL
SELECT ora_1.a AS x1, dra_0.value AS x2

FROM objrole_62 ora_0 , objrole_94 ora_1 , objrole_63 ora_2 , objrole_62 ora_3 , objrole_72 ora_4 , objrole_91 ora_5 ,

datarole_96 dra_0

WHERE ora_1.b=ora_2.b

AND ora_1.b=ora_3.a

AND ora_0.b=ora_3.b

AND ora_1.a=dra_0.individual

AND ora_0.a=ora_4.a

AND ora_0.a=ora_5.a

AND ora_1.b=ora_5.b

UNION

SELECT ora_1.a AS x1, dra_0.value AS x2

FROM concept_27 ca_0 , objrole_62 ora_0 , objrole_94 ora_1 , objrole_62 ora_2 , objrole_72 ora_3 , objrole_91 ora_4 ,

datarole_96 dra_0

WHERE ca_0.individual=ora_1.b

AND ca_0.individual=ora_2.a

AND ora_0.b=ora_2.b

AND ora_1.a=dra_0.individual

AND ora_0.a=ora_3.a

AND ora_0.a=ora_4.a

AND ca_0.individual=ora_4.b

UNION

-- and other 13 similar blocks follow ...

Listing B.4: QuOnto generated SQL

III



B. Generated SQL for the Test Queries

SELECT DISTINCT alias_2.term1 AS p , alias_2.term2 AS pn

FROM httpuobiodtibmcomunivbenchliteowlpublicationAuthor alias_0 , httpuobiodtibmcomunivbenchliteowllike alias_1 ,

httpuobiodtibmcomunivbenchliteowlname alias_2 , httpuobiodtibmcomunivbenchliteowllike alias_3 ,

httpuobiodtibmcomunivbenchliteowlisFriendOf alias_4 , httpuobiodtibmcomunivbenchliteowlisAdvisedBy alias_5 ,

httpuobiodtibmcomunivbenchliteowltakesCourse alias_6

WHERE alias_0.term1=alias_2.term1 AND alias_0.term2=alias_3.term1 AND alias_1.term2=alias_3.term2 AND alias_1.term1

=alias_4.term1 AND alias_3.term1=alias_4.term2 AND alias_4.term2=alias_5.term2 AND alias_4.term1=alias_6.term1

UNION

SELECT DISTINCT alias_3.term1 AS p , alias_3.term2 AS pn

FROM httpuobiodtibmcomunivbenchliteowlAssistantProfessor alias_0 , httpuobiodtibmcomunivbenchliteowlpublicationAuthor

alias_1 , httpuobiodtibmcomunivbenchliteowllike alias_2 , httpuobiodtibmcomunivbenchliteowlname alias_3 ,

httpuobiodtibmcomunivbenchliteowllike alias_4 , httpuobiodtibmcomunivbenchliteowlisFriendOf alias_5 ,

httpuobiodtibmcomunivbenchliteowltakesCourse alias_6

WHERE alias_0.term=alias_1.term2 AND alias_1.term1=alias_3.term1 AND alias_1.term2=alias_4.term1 AND alias_2.term2=

alias_4.term2 AND alias_2.term1=alias_5.term1 AND alias_4.term1=alias_5.term2 AND alias_5.term1=alias_6.term1

UNION

-- and other 10 similar blocks follow ...

B.2. SQL for UOB Query 2

Listing B.5: Owlgres, Single Table Model SQL
SELECT name_0.name AS x1, name_1.name AS x2, name_2.name AS x3, name_3.name AS x4, name_4.name AS x5, name_5.name AS

x6, name_6.name AS x7

FROM (

SELECT ora_1.a AS x1, ora_0.a AS x2, ora_0.b AS x3, ora_4.b AS x4, ora_2.b AS x5 , ora_3.b AS x6 , ora_1.b AS x7

FROM object_role_assertion ora_0 , object_role_assertion ora_1 , object_role_assertion ora_2 , object_role_assertion

ora_3 , object_role_assertion ora_4 , object_role_assertion ora_5 , object_role_assertion ora_6 ,

object_role_assertion ora_7 , object_role_assertion ora_8 , object_role_assertion ora_9 , object_role_assertion

ora_10

WHERE ora_0.object_role =94

AND ora_1.object_role =72

AND ora_2.object_role =77

AND ora_3.object_role =81

AND ora_0.b=ora_3.a

AND ora_4.object_role =63

AND ora_1.a=ora_4.a

AND ora_5.object_role =81

AND ora_0.b=ora_5.a

AND ora_1.b=ora_5.b

AND ora_6.object_role =82

AND ora_0.b=ora_6.a

AND ora_2.a=ora_6.b

AND ora_7.object_role =82

AND ora_1.a=ora_7.a

AND ora_2.a=ora_7.b

AND ora_8.object_role =92

AND ora_2.b=ora_8.b

AND ora_9.object_role =94

AND ora_0.a=ora_9.a

AND ora_1.a=ora_9.b

AND ora_10.object_role =89

AND ora_1.a=ora_10.a

AND ora_3.b=ora_10.b

UNION

SELECT ora_3.a AS x1, ora_4.a AS x2, ora_1.b AS x3, ora_5.b AS x4, ora_0.b AS x5 , ora_1.a AS x6 , ora_3.b AS x7

FROM object_role_assertion ora_0 , object_role_assertion ora_1 , object_role_assertion ora_2 , object_role_assertion

ora_3 , object_role_assertion ora_4 , object_role_assertion ora_5 , object_role_assertion ora_6 ,

object_role_assertion ora_7 , object_role_assertion ora_8 , object_role_assertion ora_9 , object_role_assertion

ora_10

WHERE ora_0.object_role =65

IV



B. Generated SQL for the Test Queries

AND ora_1.object_role =66

AND ora_2.object_role =77

AND ora_0.b=ora_2.b

AND ora_3.object_role =72

AND ora_4.object_role =94

AND ora_1.b=ora_4.b

AND ora_5.object_role =63

AND ora_3.a=ora_5.a

AND ora_6.object_role =82

AND ora_1.b=ora_6.a

AND ora_2.a=ora_6.b

AND ora_7.object_role =81

AND ora_1.b=ora_7.a

AND ora_3.b=ora_7.b

AND ora_8.object_role =82

AND ora_3.a=ora_8.a

AND ora_2.a=ora_8.b

AND ora_9.object_role =94

AND ora_4.a=ora_9.a

AND ora_3.a=ora_9.b

AND ora_10.object_role =89

AND ora_3.a=ora_10.a

AND ora_1.a=ora_10.b

UNION

-- and other 14 similar blocks follow ...

) as innerRel , individual_name name_0 , individual_name name_1 , individual_name name_2 , individual_name name_3 ,

individual_name name_4 , individual_name name_6 , individual_name name_5

WHERE innerRel.x1=name_0.id

AND innerRel.x2=name_1.id

AND innerRel.x3=name_2.id

AND innerRel.x4=name_3.id

AND innerRel.x5=name_4.id

AND innerRel.x6=name_5.id

AND innerRel.x7=name_6.id

Listing B.6: Owlgres, Multiple Table Model SQL
SELECT name_0.name AS x1, name_1.name AS x2, name_2.name AS x3, name_3.name AS x4, name_4.name AS x5, name_5.name AS

x6, name_6.name AS x7

FROM (

SELECT ora_2.a AS x1, ora_1.a AS x2, ora_0.b AS x3, ora_4.b AS x4, ora_3.b AS x5 , ora_0.a AS x6 , ora_2.b AS x7

FROM objrole_66 ora_0 , objrole_94 ora_1 , objrole_72 ora_2 , objrole_77 ora_3 , objrole_63 ora_4 , objrole_82 ora_5 ,

objrole_66 ora_6 , objrole_82 ora_7 , objrole_92 ora_8 , objrole_94 ora_9 , objrole_89 ora_10

WHERE ora_0.b=ora_1.b

AND ora_2.a=ora_4.a

AND ora_0.b=ora_5.a

AND ora_3.a=ora_5.b

AND ora_2.b=ora_6.a

AND ora_0.b=ora_6.b

AND ora_2.a=ora_7.a

AND ora_3.a=ora_7.b

AND ora_3.b=ora_8.b

AND ora_1.a=ora_9.a

AND ora_2.a=ora_9.b

AND ora_2.a=ora_10.a

AND ora_0.a=ora_10.b

UNION

SELECT ora_1.a AS x1, ora_2.a AS x2, ora_2.b AS x3, ora_4.b AS x4, ca_0.individual AS x5, ora_3.b AS x6, ora_1.b AS x7

FROM concept_45 ca_0 , objrole_77 ora_0 , objrole_72 ora_1 , objrole_94 ora_2 , objrole_81 ora_3 , objrole_63 ora_4 ,

objrole_82 ora_5 , objrole_81 ora_6 , objrole_82 ora_7 , objrole_94 ora_8 , objrole_89 ora_9

WHERE ca_0.individual=ora_0.b

AND ora_2.b=ora_3.a

AND ora_1.a=ora_4.a

AND ora_2.b=ora_5.a

AND ora_0.a=ora_5.b

AND ora_2.b=ora_6.a

AND ora_1.b=ora_6.b

AND ora_1.a=ora_7.a
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B. Generated SQL for the Test Queries

AND ora_0.a=ora_7.b

AND ora_2.a=ora_8.a

AND ora_1.a=ora_8.b

AND ora_1.a=ora_9.a

AND ora_3.b=ora_9.b

UNION

-- and other 14 similar blocks follow ...

) as innerRel , individual name_0 , individual name_1 , individual name_2 , individual name_3 , individual name_4 ,

individual name_6 , individual name_5

WHERE innerRel.x1=name_0.id

AND innerRel.x2=name_1.id

AND innerRel.x3=name_2.id

AND innerRel.x4=name_3.id

AND innerRel.x5=name_4.id

AND innerRel.x6=name_5.id

AND innerRel.x7=name_6.id

Listing B.7: Owlgres, Multiple Table QuOnto Model SQL
SELECT ora_2.a AS x1, ora_1.a AS x2, ora_0.b AS x3, ora_4.b AS x4, ora_3.b AS x5 , ora_0.a AS x6 , ora_2.b AS x7

FROM objrole_66 ora_0 , objrole_94 ora_1 , objrole_72 ora_2 , objrole_77 ora_3 , objrole_63 ora_4 , objrole_82 ora_5 ,

objrole_66 ora_6 , objrole_82 ora_7 , objrole_92 ora_8 , objrole_94 ora_9 , objrole_89 ora_10

WHERE ora_0.b=ora_1.b

AND ora_2.a=ora_4.a

AND ora_0.b=ora_5.a

AND ora_3.a=ora_5.b

AND ora_2.b=ora_6.a

AND ora_0.b=ora_6.b

AND ora_2.a=ora_7.a

AND ora_3.a=ora_7.b

AND ora_3.b=ora_8.b

AND ora_1.a=ora_9.a

AND ora_2.a=ora_9.b

AND ora_2.a=ora_10.a

AND ora_0.a=ora_10.b

UNION

SELECT ora_1.a AS x1, ora_2.a AS x2, ora_2.b AS x3, ora_4.b AS x4, ca_0.individual AS x5, ora_3.b AS x6, ora_1.b AS x7

FROM concept_45 ca_0 , objrole_77 ora_0 , objrole_72 ora_1 , objrole_94 ora_2 , objrole_81 ora_3 , objrole_63 ora_4 ,

objrole_82 ora_5 , objrole_81 ora_6 , objrole_82 ora_7 , objrole_94 ora_8 , objrole_89 ora_9

WHERE ca_0.individual=ora_0.b

AND ora_2.b=ora_3.a

AND ora_1.a=ora_4.a

AND ora_2.b=ora_5.a

AND ora_0.a=ora_5.b

AND ora_2.b=ora_6.a

AND ora_1.b=ora_6.b

AND ora_1.a=ora_7.a

AND ora_0.a=ora_7.b

AND ora_2.a=ora_8.a

AND ora_1.a=ora_8.b

AND ora_1.a=ora_9.a

AND ora_3.b=ora_9.b

UNION

-- and other 14 similar blocks follow ...

Listing B.8: QuOnto generated SQL
SELECT DISTINCT alias_10.term2 AS L , alias_9.term2 AS E , alias_8.term2 AS A , alias_9.term1 AS Q , alias_8.term1 AS

Z , alias_5.term2 AS Z2 , alias_0.term2 AS B

FROM httpuobiodtibmcomunivbenchliteowlisAdvisedBy alias_0 , httpuobiodtibmcomunivbenchliteowlisMemberOf alias_1 ,

httpuobiodtibmcomunivbenchliteowlsubOrganizationOf alias_2 , httpuobiodtibmcomunivbenchliteowlpublicationAuthor

alias_3 , httpuobiodtibmcomunivbenchliteowlteachingAssistantOf alias_4 ,

httpuobiodtibmcomunivbenchliteowlteacherOf alias_5 , httpuobiodtibmcomunivbenchliteowlisMemberOf alias_6 ,

httpuobiodtibmcomunivbenchliteowltakesCourse alias_7 , httpuobiodtibmcomunivbenchliteowlisTaughtBy alias_8 ,

httpuobiodtibmcomunivbenchliteowlpublicationAuthor alias_9 ,

httpuobiodtibmcomunivbenchliteowlhasDoctoralDegreeFrom alias_10
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WHERE alias_1.term2=alias_2.term1 AND alias_1.term1=alias_3.term2 AND alias_0.term1=alias_4.term1 AND alias_3.term2

=alias_5.term1 AND alias_4.term2=alias_5.term2 AND alias_4.term1=alias_6.term1 AND alias_2.term1=alias_6.term2

AND alias_6.term1=alias_7.term1 AND alias_7.term2=alias_8.term1 AND alias_5.term1=alias_8.term2 AND alias_3.

term1=alias_9.term1 AND alias_7.term1=alias_9.term2 AND alias_2.term2=alias_10.term2

UNION

SELECT DISTINCT alias_3.term2 AS L , alias_10.term2 AS E , alias_9.term2 AS A , alias_10.term1 AS Q , alias_8.term1 AS

Z , alias_9.term1 AS Z2 , alias_0.term2 AS B

FROM httpuobiodtibmcomunivbenchliteowlisAdvisedBy alias_0 , httpuobiodtibmcomunivbenchliteowlisMemberOf alias_1 ,

httpuobiodtibmcomunivbenchliteowlsubOrganizationOf alias_2 , httpuobiodtibmcomunivbenchliteowlhasMasterDegreeFrom

alias_3 , httpuobiodtibmcomunivbenchliteowlpublicationAuthor alias_4 ,

httpuobiodtibmcomunivbenchliteowlteachingAssistantOf alias_5 , httpuobiodtibmcomunivbenchliteowlisMemberOf

alias_6 , httpuobiodtibmcomunivbenchliteowltakesCourse alias_7 , httpuobiodtibmcomunivbenchliteowlisTaughtBy

alias_8 , httpuobiodtibmcomunivbenchliteowlisTaughtBy alias_9 ,

httpuobiodtibmcomunivbenchliteowlpublicationAuthor alias_10

WHERE alias_1.term2=alias_2.term1 AND alias_2.term2=alias_3.term2 AND alias_1.term1=alias_4.term2 AND alias_0.term1

=alias_5.term1 AND alias_5.term1=alias_6.term1 AND alias_2.term1=alias_6.term2 AND alias_6.term1=alias_7.term1

AND alias_7.term2=alias_8.term1 AND alias_4.term2=alias_8.term2 AND alias_5.term2=alias_9.term1 AND alias_8.

term2=alias_9.term2 AND alias_4.term1=alias_10.term1 AND alias_7.term1=alias_10.term2

UNION

-- and other 10 similar blocks follow ...

B.3. SQL for DBP Query 1

Listing B.9: Owlgres, Single Table Model SQL
SELECT DISTINCT name_0.name AS x1, name_1.name AS x2

FROM (

SELECT DISTINCT ora_0.b AS x1, dra_1.individual AS x2

FROM object_role_assertion ora_0 , object_role_assertion ora_1 , object_role_assertion ora_2 , object_role_assertion

ora_3 , object_role_assertion ora_4 , object_role_assertion ora_5 , object_role_assertion ora_6 ,

data_role_assertion dra_0 , data_role_assertion dra_1 , data_role_assertion dra_2 , data_role_assertion dra_3

WHERE ora_0.object_role =463

AND dra_0.data_role =900

AND dra_1.data_role =900

AND ora_1.object_role =483

AND dra_1.individual=ora_1.b

AND ora_2.object_role =668

AND ora_0.a=ora_2.a

AND ora_3.object_role =668

AND ora_1.a=ora_3.a

AND ora_4.object_role =467

AND ora_0.b=ora_4.b

AND dra_2.data_role =779

AND ora_0.b=dra_2.individual

AND dra_0.value=dra_2.value

AND ora_5.object_role =668

AND ora_2.b=ora_5.b

AND ora_6.object_role =668

AND ora_5.a=ora_6.a

AND ora_3.b=ora_6.b

AND dra_3.data_role =779

AND dra_1.value=dra_3.value

) as innerRel , individual_name name_0 , individual_name name_1

WHERE innerRel.x1=name_0.id

AND innerRel.x2=name_1.id

Listing B.10: Owlgres, Multiple Table Model SQL
SELECT DISTINCT name_0.name AS x1, name_1.name AS x2

FROM (
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SELECT DISTINCT ora_0.b AS x1, dra_1.individual AS x2

FROM objrole_463 ora_0 , objrole_483 ora_1 , objrole_668 ora_2 , objrole_668 ora_3 , objrole_467 ora_4 , objrole_668 ora_5 ,

objrole_668 ora_6 , datarole_900 dra_0 , datarole_900 dra_1 , datarole_779 dra_2 , datarole_779 dra_3

WHERE dra_1.individual=ora_1.b

AND ora_0.a=ora_2.a

AND ora_1.a=ora_3.a

AND ora_0.b=ora_4.b

AND ora_0.b=dra_2.individual

AND dra_0.value=dra_2.value

AND ora_2.b=ora_5.b

AND ora_5.a=ora_6.a

AND ora_3.b=ora_6.b

AND dra_1.value=dra_3.value

) as innerRel , individual name_0 , individual name_1

WHERE innerRel.x1=name_0.id

AND innerRel.x2=name_1.id

Listing B.11: Owlgres, Multiple Table QuOnto Model SQL
SELECT DISTINCT ora_0.b AS x1, dra_1.individual AS x2

FROM objrole_463 ora_0 , objrole_483 ora_1 , objrole_668 ora_2 , objrole_668 ora_3 , objrole_467 ora_4 , objrole_668 ora_5 ,

objrole_668 ora_6 , datarole_900 dra_0 , datarole_900 dra_1 , datarole_779 dra_2 , datarole_779 dra_3

WHERE dra_1.individual=ora_1.b

AND ora_0.a=ora_2.a

AND ora_1.a=ora_3.a

AND ora_0.b=ora_4.b

AND ora_0.b=dra_2.individual

AND dra_0.value=dra_2.value

AND ora_2.b=ora_5.b

AND ora_5.a=ora_6.a

AND ora_3.b=ora_6.b

AND dra_1.value=dra_3.value

Listing B.12: QuOnto generated SQL
SELECT DISTINCT alias_8.term2 AS a1 , alias_10.term2 AS a2

FROM httpdbpediaorgontologygenre alias_0 , httpdbpediaorgontologygenre alias_1 , httpxmlnscomfoaf01givenname alias_2 ,

httpdbpediaorgontologygenre alias_3 , httpxmlnscomfoaf01givenname alias_4 , httpdbpediaorgpropertydisambiguates

alias_5 , httpxmlnscomfoaf01surname alias_6 , httpdbpediaorgontologygenre alias_7 , httpdbpediaorgontologyartist

alias_8 , httpxmlnscomfoaf01surname alias_9 , httpdbpediaorgontologyassociatedMusicalArtist alias_10

WHERE alias_0.term2=alias_1.term2 AND alias_1.term1=alias_3.term1 AND alias_2.term1=alias_5.term2 AND alias_2.term2

=alias_6.term2 AND alias_3.term2=alias_7.term2 AND alias_7.term1=alias_8.term1 AND alias_5.term2=alias_8.term2

AND alias_4.term2=alias_9.term2 AND alias_0.term1=alias_10.term1 AND alias_9.term1=alias_10.term2

B.4. SQL for DBP Query 2

Listing B.13: Owlgres, Single Table Model SQL
SELECT DISTINCT name_0.name AS x1, name_1.name AS x2

FROM (

SELECT DISTINCT ora_0.b AS x1, ora_1.b AS x2

FROM concept_assertion ca_0 , object_role_assertion ora_0 , object_role_assertion ora_1 , object_role_assertion ora_2

, object_role_assertion ora_3 , object_role_assertion ora_4 , object_role_assertion ora_5 ,

object_role_assertion ora_6 , data_role_assertion dra_0 , data_role_assertion dra_1 , data_role_assertion dra_2 ,

data_role_assertion dra_3

WHERE ora_0.object_role =463

AND dra_0.data_role =900

AND ora_1.object_role =483

AND dra_1.data_role =900

AND ora_1.b=dra_1.individual

VIII
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AND ora_2.object_role =668

AND ora_0.a=ora_2.a

AND ca_0.concept =251

AND ora_0.b=ca_0.individual

AND ora_3.object_role =668

AND ora_1.a=ora_3.a

AND ora_4.object_role =467

AND ora_0.b=ora_4.b

AND dra_2.data_role =779

AND ora_0.b=dra_2.individual

AND dra_0.value=dra_2.value

AND ora_5.object_role =668

AND ora_2.b=ora_5.b

AND ora_6.object_role =668

AND ora_5.a=ora_6.a

AND ora_3.b=ora_6.b

AND dra_3.data_role =779

AND dra_1.value=dra_3.value

UNION

SELECT DISTINCT ora_0.b AS x1, ora_1.b AS x2

FROM concept_assertion ca_0 , object_role_assertion ora_0 , object_role_assertion ora_1 , object_role_assertion ora_2

, object_role_assertion ora_3 , object_role_assertion ora_4 , object_role_assertion ora_5 ,

object_role_assertion ora_6 , data_role_assertion dra_0 , data_role_assertion dra_1 , data_role_assertion dra_2 ,

data_role_assertion dra_3

WHERE ora_0.object_role =463

AND dra_0.data_role =900

AND ora_1.object_role =483

AND dra_1.data_role =900

AND ora_1.b=dra_1.individual

AND ora_2.object_role =668

AND ora_0.a=ora_2.a

AND ora_3.object_role =668

AND ora_1.a=ora_3.a

AND ora_4.object_role =467

AND ora_0.b=ora_4.b

AND dra_2.data_role =779

AND ora_0.b=dra_2.individual

AND dra_0.value=dra_2.value

AND ora_5.object_role =668

AND ora_2.b=ora_5.b

AND ora_6.object_role =668

AND ora_5.a=ora_6.a

AND ora_3.b=ora_6.b

AND ca_0.concept =245

AND ora_0.b=ca_0.individual

AND dra_3.data_role =779

AND dra_1.value=dra_3.value

UNION

-- and other 17 similar blocks follow ...

) as innerRel , individual_name name_0 , individual_name name_1

WHERE innerRel.x1=name_0.id

AND innerRel.x2=name_1.id

Listing B.14: Owlgres, Multiple Table Model SQL
SELECT DISTINCT name_0.name AS x1, name_1.name AS x2

FROM (

SELECT DISTINCT ora_0.b AS x1, ora_1.b AS x2

FROM objrole_463 ora_0 , objrole_483 ora_1 , objrole_668 ora_2 , objrole_668 ora_3 , objrole_570 ora_4 , objrole_467 ora_5 ,

objrole_668 ora_6 , objrole_668 ora_7 , datarole_900 dra_0 , datarole_900 dra_1 , datarole_779 dra_2 , datarole_779

dra_3

WHERE ora_1.b=dra_1.individual

AND ora_0.a=ora_2.a

AND ora_1.a=ora_3.a

AND ora_0.b=ora_4.a

AND ora_0.b=ora_5.b

AND ora_0.b=dra_2.individual

AND dra_0.value=dra_2.value

IX
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AND ora_2.b=ora_6.b

AND ora_6.a=ora_7.a

AND ora_3.b=ora_7.b

AND dra_1.value=dra_3.value

UNION

SELECT DISTINCT ora_0.b AS x1, dra_1.individual AS x2

FROM objrole_463 ora_0 , objrole_415 ora_1 , objrole_483 ora_2 , objrole_668 ora_3 , objrole_668 ora_4 , objrole_467 ora_5 ,

objrole_668 ora_6 , objrole_668 ora_7 , datarole_900 dra_0 , datarole_900 dra_1 , datarole_779 dra_2 , datarole_779

dra_3

WHERE ora_0.b=ora_1.a

AND dra_1.individual=ora_2.b

AND ora_0.a=ora_3.a

AND ora_2.a=ora_4.a

AND ora_0.b=ora_5.b

AND ora_0.b=dra_2.individual

AND dra_0.value=dra_2.value

AND ora_3.b=ora_6.b

AND ora_6.a=ora_7.a

AND ora_4.b=ora_7.b

AND dra_1.value=dra_3.value

UNION

-- and other 17 similar blocks follow ...

) as innerRel , individual name_0 , individual name_1

WHERE innerRel.x1=name_0.id

AND innerRel.x2=name_1.id

Listing B.15: Owlgres, Multiple Table QuOnto Model SQL
SELECT DISTINCT ora_0.b AS x1, ora_1.b AS x2

FROM objrole_463 ora_0 , objrole_483 ora_1 , objrole_668 ora_2 , objrole_668 ora_3 , objrole_570 ora_4 , objrole_467 ora_5 ,

objrole_668 ora_6 , objrole_668 ora_7 , datarole_900 dra_0 , datarole_900 dra_1 , datarole_779 dra_2 , datarole_779

dra_3

WHERE ora_1.b=dra_1.individual

AND ora_0.a=ora_2.a

AND ora_1.a=ora_3.a

AND ora_0.b=ora_4.a

AND ora_0.b=ora_5.b

AND ora_0.b=dra_2.individual

AND dra_0.value=dra_2.value

AND ora_2.b=ora_6.b

AND ora_6.a=ora_7.a

AND ora_3.b=ora_7.b

AND dra_1.value=dra_3.value

UNION

SELECT DISTINCT ora_0.b AS x1, dra_1.individual AS x2

FROM objrole_463 ora_0 , objrole_415 ora_1 , objrole_483 ora_2 , objrole_668 ora_3 , objrole_668 ora_4 , objrole_467 ora_5 ,

objrole_668 ora_6 , objrole_668 ora_7 , datarole_900 dra_0 , datarole_900 dra_1 , datarole_779 dra_2 , datarole_779

dra_3

WHERE ora_0.b=ora_1.a

AND dra_1.individual=ora_2.b

AND ora_0.a=ora_3.a

AND ora_2.a=ora_4.a

AND ora_0.b=ora_5.b

AND ora_0.b=dra_2.individual

AND dra_0.value=dra_2.value

AND ora_3.b=ora_6.b

AND ora_6.a=ora_7.a

AND ora_4.b=ora_7.b

AND dra_1.value=dra_3.value

UNION

-- and other 17 similar blocks follow ...

Listing B.16: QuOnto generated SQL
SELECT DISTINCT alias_9.term2 AS a1 , alias_11.term2 AS a2

X
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FROM httpdbpediaorgontologygenre alias_0 , httpdbpediaorgontologygenre alias_1 , httpdbpediaorgontologyassociatedBand

alias_2 , httpxmlnscomfoaf01givenname alias_3 , httpxmlnscomfoaf01givenname alias_4 , httpdbpediaorgontologygenre

alias_5 , httpxmlnscomfoaf01surname alias_6 , httpdbpediaorgpropertydisambiguates alias_7 ,

httpdbpediaorgontologygenre alias_8 , httpdbpediaorgontologyartist alias_9 , httpxmlnscomfoaf01surname alias_10 ,

httpdbpediaorgontologyassociatedMusicalArtist alias_11

WHERE alias_0.term2=alias_1.term2 AND alias_2.term1=alias_3.term1 AND alias_1.term1=alias_5.term1 AND alias_3.term2

=alias_6.term2 AND alias_3.term1=alias_7.term2 AND alias_5.term2=alias_8.term2 AND alias_8.term1=alias_9.term1

AND alias_7.term2=alias_9.term2 AND alias_4.term2=alias_10.term2 AND alias_0.term1=alias_11.term1 AND

alias_10.term1=alias_11.term2

UNION

SELECT DISTINCT alias_9.term2 AS a1 , alias_11.term2 AS a2

FROM httpdbpediaorgontologyassociatedMusicalArtist alias_0 , httpdbpediaorgontologygenre alias_1 ,

httpdbpediaorgontologygenre alias_2 , httpxmlnscomfoaf01givenname alias_3 , httpxmlnscomfoaf01givenname alias_4 ,

httpdbpediaorgontologygenre alias_5 , httpxmlnscomfoaf01surname alias_6 , httpdbpediaorgpropertydisambiguates

alias_7 , httpdbpediaorgontologygenre alias_8 , httpdbpediaorgontologyartist alias_9 , httpxmlnscomfoaf01surname

alias_10 , httpdbpediaorgontologyassociatedMusicalArtist alias_11

WHERE alias_1.term2=alias_2.term2 AND alias_0.term2=alias_3.term1 AND alias_2.term1=alias_5.term1 AND alias_3.term2

=alias_6.term2 AND alias_3.term1=alias_7.term2 AND alias_5.term2=alias_8.term2 AND alias_8.term1=alias_9.term1

AND alias_7.term2=alias_9.term2 AND alias_4.term2=alias_10.term2 AND alias_1.term1=alias_11.term1 AND

alias_10.term1=alias_11.term2

UNION

-- and other 10 similar blocks follow ...
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