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Abstract

The thesis presents the location recognition method of a query image in a dataset of

images labelled with geo-location information. This is a challenging task as the imaged

appearance of the query image can be very different from the appearance of images in the

database due to changes in viewpoint, lighting, and partial occlusion by other objects.

In addition, the query image might be captured at a different time of the day, different

season or in a different year altogether.

We employ for this task the bag-of-visual-words approach with large vocabularies and

fast spatial matching previously used for object retrieval in large image collections. First,

the thesis reviews retrieval approaches and their relation to the localization problem.

Second, we discuss a method to create the visual vocabulary using the geolocation of

database images. Third, query expansion by a non-geotagged image database (such as

Panoramio or Flickr) as a way to enrich the query image and a significant improvement

of image enriching on extremely hard query images is presented. Fourth, an approach to

improving the localization using the automatic detection and suppression of confusing and

non-informative features in the geotagged database was developed. Finally, a localization

of an image sequence (video) based on Bayes filtering is presented and an improvement

of the localization is shown.

We experimentally evaluated image based localization performance and localization

stages benefits on several real city-streets different datasets of almost 20K images. We

also present the effect of choosing different detector/descriptor types and vocabulary

sizes.
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Resumé (Abstract in Czech)

Tato práce představuje metodu pro určeńı pozice neznámého obrázku pomoćı databáze

obrázk̊u se známým mı́stem źıskáńı. Jedná se o náročný problém, jehož složitost se

zvětšuje se zvětšuj́ıćım rozd́ılem mezi dotazovaným obrázkem a obrázćıch v databázi, což

může být zp̊usobeno rozd́ılem v úhlu pohledu, osvětleńım, či částečným zakryt́ım jiným

objektem. Neznámý obrázek může být také poř́ızen v jiném čase, nebo ročńım obdob́ı.

Pro řešeńı toho problému jsme použili bag-of-visual-words př́ıstup využ́ıvaj́ıćı velké

obrazové slovńıky s rychlým párováńım, toto řešeńı bylo již dř́ıve použito pro hledáńı

objekt̊u, či obrázk̊u, ve velkých obrázkových databáźıch. Práce nejprve osvětluje použit́ı

vyhledávaćı metody pro lokalizaci. Zadruhé je vysvětlen př́ıstup stavěńı obrazových

slovńık̊u z obrázk̊u obsahuj́ıćıch svou lokaci. Následně je prezentováno obohacováńı

neznámých obrázk̊u pomoćı obecné, s neznámými pozicemi, databáze obrázk̊u (např.

Panoramio nebo Flickr). Práce ukazuje výrazné vylepšeńı obohacováńım na některých

extrémně těžkých obrázćıch. Vylepšeńı lokalizace bylo také dosaženo pomoćı detekce a

následného vymazáńı “zmatečných” oblast́ı v obrázkové databázi. Lokalizace sekvence

obrázk̊u, tedy videa, založená na Bayesovu filtru je prezentována současně i s vylepšeńım,

které přináš́ı.

Výkonnost lokalizace je experimentálně ověřena na třech rozd́ılných sadách obsahuj́ıćıch

téměř 20K obrázk̊u. Jendou z daľśıch část́ı je také ukázka jak je výsledná lokalizace

ovlivněna použit́ım r̊uzných detektor̊u/deskriptor̊u, nebo i velikost́ı obrazového slovńıku.
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My very thanks must go to Josef Šivic for leading me in image indexing and large-scale

image retrieval approaches and for giving me a lot of important inventions and ideas. He

significantly affected my work as well.

I would like to thank to number of people who supported me on the research level:

Michal Havlena for a general computer vison support, Akihiko Torii for omni vision

support and Ondra Chum for geometry verification support. I also want to thank to

Kurt Cornelis and Mario Ausseloos who helped me when I encountered with a localization

problem.

Also so many thanks to all CMP staff for their friendliness and support.

Importantly, I have to thank to my family for their support and patience.

VII



Contents

1 Intoduction 1

1.1 Problem Formulation and Motivation . . . . . . . . . . . . . . . . . . . . 1

1.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Challenges of Image Based Localization . . . . . . . . . . . . . . . . . . . 2

1.4 Overview of the Presented Approach . . . . . . . . . . . . . . . . . . . . 4

1.5 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 State of the Art 6

2.1 Local Features Detectors and Descriptors . . . . . . . . . . . . . . . . . . 6

2.1.1 D. Lowe Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 H. Bay, T. Tuytelaars and L. van Gool Approach . . . . . . . . . 8
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List of Abbreviations

We need to use some mathematical symbols, here are their definitions.

Mathematical symbols:

M matrix. Computer vision used matrices: H - 3x3 homography matrix, E - 3x3

essential matrix, F - 3x3 fundamental matrix, K - 3x3 intrinsic camera matrix,

R - 3x3 rotation matrix.

v n-dimensional vector.

i ∈ I a set I and i is the element of I.

Ia ⊂ I a set I and Ia is the subset of I.

P (x) probability of x achieving. P (x|y) is condition probability, that means prob-

ability of x achieving when the y is achieved.

X



Chapter 1
Intoduction

1.1 Problem Formulation and Motivation

The goal is to localize the query image of a particular street or building facade, something

like:“Tell me where my photo was obtained?” We focus on the representing of cities by

collections of geo-tagged images. The task is then to find a corresponding image from a

geo-tagged image database, see Figure 1.1(b), depiciting the same location as the query

image, see Figure 1.1(a).

To obtain the geo-tagged image database we turn into the feature of Google Maps [map]

called Google Street-view [vie] which provides panoramic 180x360 deg views for many

streets. We implemented downloading of images from Google street-view to obtain com-

plete geotagged street image database of a part of Paris which was used in this work for

location recognition.

(a) Examples of test query images.

(b) Examples of geo-tagged images. (c) Locations of all geo-tagged images.

Figure 1.1: Formulation of image based localization problem. We downloaded Google
street view images (b) with known geo locations (c). Given a query image (a) at uknow position,
the goal is to find a corresponding database image (b) giving its location (c).
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1.2. Applications

In addition, there are large databases of visual data such as Flickr [Fli] with 3G images

in total at the end of year 2008 (they claim that 1G of images has been uploaded last

year) and Google’s Panoramio [Pan]. The hugest collection of images is managed at

FaceBook [Fac]. They claim being uploading 28M photos every day but significant amout

of images come from parties, faces, and other geo non-specific photos. We used public

Flickr and Panoramio image databases to improve the location recognition.

1.2 Applications

The solution of image based localization allows the following applications:

• Position recognition. The goal is to say where has the query image been obtained.

Such functionality might become a basis for location recognition from images taken

by a mobile phone.

• Geotag information correction. Flickr, Panoramio etc. collected a huge number

of images with geographical information. These geo tags, which are set manually,

are often (20%) incorrect. We can correct this information by our technique.

• Image clustering is the answer to the question “Which images are similar in

my database?” This clustering is a necessary part of automatic 3D reconstruction

algorithms. This work was successfully used in Havlena et al. [HTKP09] for images

similarity measuring as pre-processing of 3D reconstruction from image tripplets.

1.3 Challenges of Image Based Localization

Although querying for the most similar image (image mining or image retrieval) from

image collections is a hot computer vision field, many problems haven’t been solved yet.

In this thesis, we focus on the following challenges:

• Extremel daytime changes. Standard matching techniques are failing to find

similarities between day images and night images, see Figure 1.2(a) for examples.

• Partial occlusion by other objects. In many images the location disciminative

objects are occluded by trees, people, posters and so on, see Figure 1.2(b). These

confusing objects make the problem more challenging.
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1.4. Overview of the Presented Approach

(a) Very different illumiations.

(b) Viewpoint changes and partial occlusions by other objects.

(c) Many of nondisciminative objects in the database.

Figure 1.2: Image based localization challenges.

• Confusing objects. When the image database is constructed under realistic con-

ditions (as in this work), it will contain confusing objects such as trees and cars.

These confusers are everywhere and significantly decrease localization performance

because of their similarity with many other simialar objects. Examples are shown

in Figure 1.2(c).

• Fast querying in large image databases. This is an important computer science

problem. To search in a database of millions items, sublinear running time is

necessary.
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1.4. Overview of the Presented Approach

Figure 1.3: Structure of our localization recognition method. Figure shows database
preprocessing (off-line) as well as the on-line localization of the query image.

1.4 Overview of the Presented Approach

Here, we discuss the structure of the presented localization method wich is illustrated

in Figure 1.3. The proposed system could be separated into two parts: (i) off-line pre-

processing of database of images and (ii) on-line recognizing the location of the query

image.

Firstly, we assume to have a visual vocabulary representing possible visual features.

Each feature is a vector describing a small image area as corners, circles etc. The point

of using the features is that the similar feature vectors describe similar image segments.

In the off-line part, geo tagged and non-geo tagged images are described by features.

Each feature is then quantized by replacing it by the most similar feature from the visual

vocabulary. An image is represented as a weighted bag-of-visual-words model computed

from quantized features. This process is called a quantisation. With this knowledge, we

can easily and quickly compute image similarity. It also allows to detect and suppress

confusing features which are not informative for localization.

The goal of the on-line part is to retrieve the most similar geo tagged image containing
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1.5. Thesis Structure

the visual overlap with the query image. To achieve this goal, we compute the query image

features and quantise them using the visual vocabulary. After that, we aim at localization

improvement by turning to a collection of non-geotagged images and the query image is

expanded by using different viewpoints or different daytime images. This enriched query

image is then matched to geo-tagged image database with suppressed confusing features.

This matching could be separated into three stages: (i) Each database image is valuated

by the bag-of-visual-words image similarity with the query image. We called it the intial

retrieval process. (ii) Then, the first n most similar images are verified by estimating

matching local image geometry from the query image to the database image. It is called

the spatial verification and it results in image resorting by the number of matching

features. (iii) In the final stage, more precise verification between the top-ranked database

image and the query is done. As this algorithm is more computationally expensive we

used it only for the top-ranked image.

As a result, there are two possibilities. First, the top-ranked image was verified and

then we know that it contains a visual overlap with the database image. Therefore, the

query image was obtained at a very similar location as the top-ranked database image.

Secondly, the query image was not verified and thus was not found in the database.

1.5 Thesis Structure

The thesis is organized as follows. The text continues in Chapter 2 with an overview

of the state of the art of the localization methods, which include image feature detec-

tion/description, efficient searching in huge collections of images, image clustering etc.

Comparision of our work with the state of the art is presented as well. Next, Chapter 3 de-

scribes three different collections of images which were used for localization experimets.

Chapter 4 briefly presents the localization and describes our representation of images

as well as the detection and suppression of confusing features. In Chapter 5, the lo-

calization method is described in detail. In addition, we present query expansion using

non-geotagged images and localization of the video input. Chapter 6 contains experimen-

tal evaluation and demonstrates the benefits and limitations of the presented approach.

In final Chapter 7, we summarize results and discuss further work.
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Chapter 2
State of the Art

In this chapter we will discuss previous work. Since localization is a complicated problem

touching on a variety of computer vision works, we will review several topics.

Firstly, Section 2.1 describes methods of extracting local features from the image.

Then, in Section 2.2, we present the state of the art of large scale image and object

retrieval. Approaches using tree structures, hashing algorithms and systems inspired by

text search engines are reviewed. Thirdly, Section 2.3 reviews results in image clustering,

image database summarizing and 3D modeling, which are also related to our work. In

Section 2.4, several very important approaches concerning image based localization are

presented. Finally, the differences between or work and the state of the art is given in

Section 2.5.

2.1 Local Features Detectors and Descriptors

More than twenty years ago, Moravec [Mor83] formulated the concept of the first corner-

like feature point detector. He proposed a method using small square shifting windows.

Corner points were defined as points with a large intensity variation in selected directions.

Most widely used detector developed by Harris and Stephens [HS88]. They proposed

keypoints detection using eigenvalues of a second movement matrix. The biggest prob-

lem of Harris corner detector is the lack of scale-invariance. After that, Lindberg [Lin98]

presented Harris detector with automatic scale selection. Importantly, Mikolajczyk and

Schmid [MS01, MS02] developed an approach based on an affine generalisation of the

standard Harris detector. They refined Lindberg’s work to create a scale-invariant fea-

ture detector called Harris-Laplace and Hessian-Laplace using convolutions with variable-

shaped Gaussians.

Next, we will discuss three main modern approaches in detail.

6



2.1. Local Features Detectors and Descriptors

(a) MSER (b) SIFT (c) SURF

Figure 2.1: Example of detected feture points and maximally stable regions.

2.1.1 D. Lowe Approach

David Lowe [Low99] aimed at speeding up the detection by using an approximation of the

Laplacian-of-Gaussian (LoG). This solution is invariant to scale, rotation and translation

changes. The algorithm was named SIFT (Scale Invariant Feature Transform) and it was

one of the most used computer vison algorithm.

Detector [Low99] was built on searching the extremes in the space of image Difference-

of-Gaussian (DoG) filter response. First, scale-space L(x, y, σ) of an image I(x, y)

is produced by the convolution of the variable-scale Gaussian G(x, y, σ) with an

image I(x, y),

L(x, y, σ) = G(x, y, σ) ∗ I(x, y). (2.1)

Then, Difference-of-Gaussian D(x, y, σ) can be computed from the difference of two

scales separated by a constant factor k,

D(x, y, σ) =
(
G(x, y, kσ)−G(x, y, σ)

)
∗ I(x, y) = L(x, y, kσ)− L(x, y, σ), (2.2)

to produce scale-space images and to find the extremes that represent significant

image areas [Low99]. They are represented by their x, y coordinates and the scale

σ and named as keypoints.

Descriptor [Low04]. By assigning a consistent orientation to each keypoint based on

local image properties, the keypoint descriptor can be constructed as relative to

the orientation and therefore invariance to image rotation can be achieved. An

orientation histogram is formed from the gradient orientations of sample points

within a region around the keypoint. Peaks in the orientation histogram correspond

to the dominant direction of local gradients.

7



2.1. Local Features Detectors and Descriptors

The local image gradients are measured to correspond the keypoint scale. Every

description is then a 128-dimension vector.

Various improvements of the SIFT detector and descripto have been proposed. Ke

and Sukthankar [KS04] used PCA of the gradient image. PCA-SIFT has only the 36-

dimensional descriptor which is faster for matching but reduces the accuracy [MS04].

The same paper [MS04] presented SIFT also with the 36-dimensional descriptor, called

GLOH, that have similar accuracy as the SIFT, but is computationally too expensive.

The last refinement of the SIFT, called SURF [BTVG06], is used in our work. We describe

it bellow in detail.

2.1.2 H. Bay, T. Tuytelaars and L. van Gool Approach

H. Bay, T.Tuytelaars and L. van Gool focused on how to speed up the SIFT detector and

descriptor, see last Section 2.1.1. Their algorithm is called Speed Up Robust Features

(SURF) [BTVG06]. The main idea is in using the integrate image,

I∑ (x, y) =
i<x∑
i=0

j<y∑
j=0

I (i, j) , (2.3)

which allows to compute an approximation of the second-order derivative of the image

in less than 16 memory accesses independently from the position and scale.

Detector is based on the Hessian matrix and it was called the Fast-Hessian Detector. It

finds extrema in the scale-space defined by the determinant of the approximation

of the Hessian matrix,

Happrox (x, y, σ) =

(
Dxx (x, y, σ) Dxy (x, y, σ)

Dxy (x, y, σ) Dyy (y, y, σ)

)
, (2.4)

where Dxx is the second partial derivative of the image in the x -direction. Dxy and

Dyy respectively.

Descriptor computes firstly the orientation assignment. This orientation for each fea-

ture point is estimated by computing the sum of all responses within a sliding

window in a feature point neighbourhood defined by the scale.

Then, in the neighbourhood squere region of the feature point, the descriptor vector

v for each 4x4 subregion is computed,

v =
(∑

dx,
∑

dy,
∑
|dx|,

∑
|dy|
)
, (2.5)

8



2.1. Local Features Detectors and Descriptors

where dx and dy are the first derivatives in each subregion. Directions of dx and dy

are defined in relation to the computed feature point orientation. This results in a

64-dimensional descriptor vector. The integrate image was used for fast derivative

computation.

SURF is almost ten times quicker than SIFT with similar results. This is a significant

advantage of SURF but it is only an approximation of SIFT. Therefore, for the matching

problem, SURF gives better results for two extreme viewpoint changes or illumination

changes. However, we observed that SURF gave the best localization performance in our

situation, see Section 4.1.

2.1.3 J. Matas and Š. Obdržálek Approach

This approach uses interest regions instead of interest points. These regions are defined

by a closed loop in the image which involves more information than a keypoint with the

scale.

Detector is trying to find maximally stable extremal regions (MSER) [MCUP02]. These

extremal regions are defined as the area including either higher or lower intensity

than the area out of the region. MSER are obtained by tresholding the image. We

start with the monotonic change of image intensities and changing the intensity

step by step. We are looking for compact regions which are maximally stable for

the intensity changes. The algorithm for detection of regions is nicely demonstrated

by the web animation1 by Henrik Stewenius.

Descriptor [OM02b] The affine frames are obtained by an affine invariant construction

on robustly detected maximally stable extremel regions of data-dependent shape.

In addition, many works as Nister et al. [NS06], Sivic et al. [SZ03] etc. successfully

describe MSER by the popular SIFT [Low04] descriptor.

Also, it is good to noted that MSER is not the only approach how to detect regions.

Mikolajczyk et al. [MTS+05] presented a comparison of several different region detectors

(IBR, EBR and Silent Regions). They found that MSER outperforms in the all other

region detectors.

1http://www.vis.uky.edu/∼stewe/animations/animation mser.gif
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2.2. Large Scale Image Retrieval

Figure 2.2: Object retrieval. Example of Video Google [SZ03] approach, shows retrieved
images from the Grounf Hog Day movie with highlited tie used as the query object.

2.2 Large Scale Image Retrieval

Retrieving an image/object from a huge number of images is a challenging task that has

became a very popular computer vision problem in recent years. Figure 2.2 illustrates

an example of the objecet retrieval result.

2.2.1 Text Search Based Method

J. Sivic and A. Zissermann [SZ03] published an image search technique inspirated by

Google web search. Their approach is based on feature descriptor vector assigment into

a vocabulary of k words which allows to describe the image as the tf-idf weighted vector

v = (t1 . . . tj . . . tk)
T . After that, searching an image database means a comparison of

these tf-idf vectors. The tf-idf image representation is shown in Figure 4.1, where is also

described a modification for position recognition.

tf-idf Weighting & Original Video Google Retrieval: The intuition behind the

tf-idf weighting is that tf-idf weights words occur more often in a particular image higher

and downweights words that appear often in database, because they do not help to

discriminative between different images. After that, weighting of word w for an image i

is defined as,

tj =
nwi
ni

log
N

Nwj

, (2.6)

where nwi is the number of occurences of the word w in the image i, ni is the total number

of words in the image i, N is the number of database images and Nw is the number of

images containing word wj.

At the retrieval stage, each database image is ranked by the cosine of angle between

database image vector vd and a query image vector vq which is efficiently computed as

the dot product,

fd = vd � vq =
vTq vd

‖vq‖2‖vd‖2

. (2.7)
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2.2. Large Scale Image Retrieval

Query Expansion: O. Chum et al. [CPS+07] presented a method how to improve

image/object search by a common text retrieval method named query expansion. The

approach uses the dataset images containing the same objects as the query image. The

qery image is then expanded by these database images. This method improve the retrieval

system significantly as papers [CPS+07, PCI+08] shows. The success of the method is

based on two key elements. First one is that the image database contains images of

the same object. Second element is that we enhance the query image after the careful

verification filtering of non-relevant images.

The paper presents and compares several different expansion models. They show that

the recursive average query expansion is a very efficient method where top m < 50

verified results returned from the standard search engine are selected and new tf-idf query

vavg is then formed by taking the average of the original query v0 tf-idf vector and the

m results,

vavg =
1

m+ 1

(
v0 +

m∑
i=1

vi

)
. (2.8)

In addition, the union of the verified image features are taken to enrich the query image.

The expansion is recursively applied to generate queries, where each new iteration uses

the last computed vavg as the new v0 for the expansion.

Soft Assignment: James Philb et al. [PCI+08] did not construct tf-idf by a hard

assigment to only one nearest neighbourh visual word, but by more. Given the feature

descriptor vector, the assignment is computed as the weighted distances to close visual

words. Although this method really improves retrieval performance, the improvement is

not too significant as the Query Expansion [CPS+07].

Vocabulary Tree: David Nisteur et al. [NS06] presented the method based on the tree

structure. To construct the vocobulary tree the feature descriptors were hierarchically

quantized in a tree structure and then the image similarity is computed as the similarity

of the way in this tree. Note that the time cost of this approach is the same as standard

Video Google retrieval due to the approximate nearest neighbourhood searching using

KD-tree or hierarchical k-means.

2.2.2 Hash Function Based Methods

Although locality-sensitive hashing [IM98] has perfect theoretical performance properties,

a standard implementation would be still unacceptably slow. Ke et al. [KH04] shows
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2.2. Large Scale Image Retrieval

Figure 2.3: Spatially related cluster. Part of Chum and Matas [CM08] related cluster
discovered from the 100K imagase database.

LSH improvement of the index access as a way to efficiently query databases containing

a million of keypoints. Note that our approach using the text retrieval method works

with more than four hundred millions of keypoints.

Chum et al. [CPIZ07] show a different way to measure the similarity of images. They

represented an image as a set of visual words. This is a weaker representation than a

bag-of-visual-words since they do not store the number of occurences but only whether

a word occured or not. For the estimation of the similarity of two images, the multiple

independent min-Hash functions are used. The fraction of the min-Hash functions that

assigns an identical value to the two sets gives an unbiased estimate of the similarity of

the two images.

2.2.3 Approaches using Tree Structures

Using tree structures is another option for subliner time image retrieval. Shao et al. [SSF+03]

presented Vantage Point Tree, which recursively organizes the feature vectors into a tree

sorted according to their median distance of vantage point.

Re-rendering of image patches to train decision trees to index keypoints was presented

by Lepetit et al. [LLF05]. This tree was used as the robust classification technique and

it was fast enought for real-time application.

Obdrazalek et al. [OM02b] aimed at on efficient organisation of the object database,

which allows fast recognition response. They proposed a method to learn the tree from

12



2.3. Landmark Clustering & Photocollections Summarizing

Figure 2.4: Photo Tourism [SSS06]. From the collection of images (camera view triangles
in left image) the scene is reconstructed. It allows to create 3D photo album (right image).

the LAF or SIFT features to significantly improve recognition performance.

2.3 Landmark Clustering & Photocollections Summarizing

James Philbin et al. [PCI+08] used bag-of-visual-words model to select image clusters

from a image collection containing million of images. This approach is similar to our

method as it is also based on the text search based image retrieval system. But they

were interest more in the image clustering then in the recognition or retrieval. The paper

presents experimets on a one million of imagaes.

Till Quack et al. [QLVG08] shows image gathering from internet, clustering retrieved

photos to same object or events, classification of clusters into object/event, unsupervised

linking with the text-information (Wikipedia) and a verification of those links. How-

ever complex the approach looks and the approach is, they use standard image-to-image

matching resulting in extremely long computation times.

Previously cited Chum et al. [CPIZ07] work used min-Hash algorithm for fast detec-

tion of so-called cluster seeds. The seeds were than used as queries to obtain the cluster

of images/objects. Figure 2.3 shows a part of a cluster of related images. The paper

presents min-Hash for clustering as well as for automatic object labeling or detection of

near duplicated images.

One of the most known 3D modeling system Photo Tourism [SSS06] includes image

retrieval and image clustering. Their approach is based on the Video Google frame-

work [SZ03] pruned to contain 3D consistent matches with the twenty cameras closest to

the initial location of a new photograph.
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2.4. Image Based Localization

Figure 2.5: GPS estimation from the single image. Hays and Efros [HE08] approach. For
the query image (left) the geo-location is estimated as the earth probability map (three spheres
on the right side).

2.4 Image Based Localization

2.4.1 Localization using Reconstructed Scenes

Nister et al. [NS04] build dense 3D models (similar as Structure from Motion problem)

out of incoming data based on multi-view linking, which is computationally and memory

demanding and also not running well with planar objects.

Se et al. [SLL01] and Davison [Dav03] constructed the world only by the special

features called visual landmarks. Despite of the better memory demanding, it is still not

available for huge datasets. In addition, the metric error is accumulating.

Goedeme et al. [GNTvG07] presented a complete omni-images using autonomous

mobile robot system for in-door as well as outdoor environment. They used world repre-

sentation as the collection of connected nodes (topological map).

2.4.2 Large Scale Location Recognition

Finally, and the most importantly, most previous work on image based location recog-

nition aimed on a small-scale settings [RR04, SSTvG03]. An exception is is the work of

Schindler et al. [SBS07] who proposed information therotical criteria for choosing infor-

mative features to built vocabulary trees [NS06] for location recognition in a database of

30K images. They aimed at finding the specific (most informative) features occuring in

all images of a specific location but rarely occur anywhere outside of this location. They

defined for each location li ∈ L and visual word wj ∈ W the information gain,

I(li|wj) = H(li)−H(li|wj). (2.9)

They were interested in finding those visual words for each location that maximize infor-

mation gain I(li|wj) which is equvalent to minimizing H(li|wj) entropy due to constant
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2.5. Comparison of Our Work with the State of the Art

H(li). In the end, the visual vocabulary was then constructed only from these most

informative features. Importantly, paper [SBS07] shows the significant overlap in image

database as the key property to determine features which are most informative about

each location.

Hays and Efros [HE08] used scene category matching to retrieve images of similar

scene from geotagged databes of several million Flickr images. The significant contribu-

tion of the cited work lies in ability to work with extremely huge image databases. Hays

and Efros downloaded about 20 millions images from which they excluded all photos

containing text-labbel such as birthday,cameraphone” and so on. In the end they arrived

at a database of almost 6,5M images. They were interested in a world-scale (continents

or cities rather then city location) localization, see Figure 2.5 showing the world location

probability grid for a given query image. Also, comparing to our work, they used several

methods for image matching dominantly based on image color-histograms. Our work

shows localization using the matching based on geometry verification.

2.5 Comparison of Our Work with the State of the Art

This section describes the differences between the state of the art (presented in the

previous text) and our approach to image based localization. We summarize the main

contributions of the thesis and our modifications of the previous work. In addition, we

provide brief motivation for our approach.

2.5.1 Cascade for the Location Recognition

The most similar work by Schindler et al. [SBS07] uses the standard image retrieval

approach [SZ03] to obtain the location of the query image. Our localization model, see

Section 1.4, could be presented as a three stages cascade of filters, where each stage

filters a defined number of images with the goal to keep at least one correct image. Our

first localization stage is identical with Schindler et al. [SBS07] approach but we also

append the verification stages as well as we used tf-idf weighting compared to using

the vocabulary tree approach in the cited paper. Verification is an important part of

our method as we will present its necessary for the localizaton of the challenging query

images. Additional differences to their work are discussed bellow.
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2.5. Comparison of Our Work with the State of the Art

2.5.2 Visual Vocabulary & Detectors/Descriptors Investigation

Several works [MTS+05, BTVG06] present the comarision of performance of feature de-

tectors/descriptors on general matching problem, 3D reconstruction and recognition. We

show how different local detectors/descriptors types (presented at Section 2.1) affect the

localization.

In [SZ03, CPS+07, PCI+08, NS06, SBS07] parameters of text based object retrieval

method were experimentally evaluated on object retrieval approaches. We tested these

parameters on the problem of the location recognition with the aim to select these pa-

rameters to maximize the localization performance. These results could be found through

the whole thesis.

2.5.3 Visual Vocabulary Construction

Visual vocabulary is constructed as the set of k-means cluster centers on all image descrip-

tors. When the number of dataset images increase significantly, it becomes impossible

to cluster all data at once. Chum et al. [CPS+07] or Philbin et al. [PCI+08] selected a

subset of images and then constructed visual vocabulary from this subset. On the other

hand, Schindler et al. [SBS07] presented the solution for geo-loccated images based on the

selecting features occuring in all images of specific location, but rarely occur anywhere

outside of this location. They aimed at selecting the most informative visual words for

each location based on informative gain defined in Equation 2.9.

Importantly, visual overlap of close database images is significiant assumption for

successfull use of Equation 2.9. We generalize Schindler et al. [SBS07] work to geo-

tagged image databases without the extreme visual overlap of images. The method is

presented in Section 4.2.4 in detail.

2.5.4 Suppression of Confusing Regions

Locations in city-street image database contain significant amount of features on ob-

jects like trees, pavement, sky or water, which are not informative for recognizing a

particular location as either (i) they appear frequently throughout the city, or (ii) they

cannot be reliably matched by current local features based algorithms. We aim at de-

tecting and suppressing these features. Note that our approach is complementary to

Schindler et al. [SBS07] where they select the most informative features.
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2.5. Comparison of Our Work with the State of the Art

2.5.5 Location Query Expansion

In image/object retrieval the query expansion [CPS+07] (briefly described at Section 2.2.1)

was shown to significantly improve retrieval performance when multiple database images

of same place/object as the quereid one occure in the database. Query image is enhanced

using spatially verified images in the database.

In the localization domain, city-street image databases contain only a small number

(1-4) of particular location images. We turn to download images from public photo-

sharing sites to obtain multiple images of the same places captured at different times or

from different viewpoints.

2.5.6 Video Localization

As the related work (see Chapter 2) shows, the majority of image localization works are

focused on small-scales problems. They used Bayes rule to process information from the

whole video as these images from the video contain more location information.

We present a modification of our large-scale position recognition algorithm using

the same approach as small-scale localization approaches which allows to estimate the

position from videos.

2.5.7 Implementation

Here, we summarize which parts of the presented work were re-implemented ourselves

and, on the other hand, which algorithms were used in the original implementation.

Firstly, we were very interested in understanding previous work. To achive this goal

we implemented the state of the art image retrieval and several localization methods

(Schindler et al. [SBS07], Sivic et al. [SZ03] etc.). As the advantage, it allowed us to

compare our method with the state of the art. In addition, our method is built on

several elements of previous approaches.

We used in our localization approach the algorithm for approximate nearest neigh-

borhood searching [ML09], local features detectors/descriptors [BTVG06] and the LO-

RANSAC [CMK03] including the homography estimation [HZ00].
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Chapter 3
Image Datasets

In this chapter we describe three different datasets which were used for experiments

throughout the whole thesis. Several datasets were downloaded during the evolution

of our downloading script as the improvement of the script allowed to download better

datasets. In the following chapters, we present that we are able to localize hard images

in real world datasets.

The script for downloading city-street images is described in Section 3.1. Each dataset

is then presented in the following sections, one section for one dataset.

3.1 Downloading Google Street-View Images

We firstly presents our method to obtain city-street images. To obtain the collection of

geo-tagged images we used public google street-view API [vA] allowing to figure images

specified by the GPS coordinates and the camera angles.

Full-automatic downloading script could by separated into several parts. (i) Goggle

Maps was used to obtain GPS coordinates from a specified area using an automatic

clicking algorithm; (ii) these coordinates generate queries for the Google Street View

engine to get the corresponding street image in a flash web page; (iii) after that, image is

saved based on a print-screen like method. As a result, each downloaded image contains

the location information (GPS) as well as the camera view direction.

3.2 Prague Omni-Images Database (POI)

First image dataset was used from the reconstruction problem solved in CMP. This is

the only dataset where the Google Street View downloading script wasn’t used to obtain

city images. Therefore, we manually obtained 13K Prague omni-images [SP02] during
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3.3. Paris Landmarks Image Database (PL)

Figure 3.1: Examples of Prague dataset images. Figure shows database omni images
(top) and the slected Flickr query images (bottom).

the walk from Old Town Square to the Prague Castle. After that, every tenth image was

selected to create the image database of about 1,300 images.

First 30 query images were selected from downloaded Flickr images using the “Prague”

keyword to have visual overlap with some images in the training set. In addition, we

photographed another 433 omnidirectional query images. These omni-images were also

taken to have the visual overlap.

Only a portion of query images (11 omnidirectional and 14 perspective) were manually

assigned to datasets images to create a ground truth.

An example of images from this image dataset is shown in Figure 3.1.

3.3 Paris Landmarks Image Database (PL)

Second image collection was crawled from the Google street-view image database. As it

was automatically created by the downloading algorithm (see Section 3.1), it does not

cover the area uniformly. Dataset consist of about 19,000 images, which cover several

Paris streets with many landmarks as Moulin Rouge, Louvre, Arc de Triomphe, Panthéon,

Bastille etc.

Separately, we downloaded a collection of Paris Flickr images and we then manually

selected a group of 50 images with visual overlap with our database to create 50 positive

queries. Another 50 negative queries were constructed by taking images without any

visual overlap.

Huge advantage of this dataset is that we have manually labeled ground truth, which

was step-by-step created for the 50 queries. Figure 3.2 shows image examples.
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3.4. Paris Islands Image Database (PI)

Figure 3.2: Examples of Paris Landmarks datset. Figure shows the slected query images
(top row) and database images (bottom row).

3.4 Paris Islands Image Database (PI)

This image collection is the last download dataset. It was created as the collection of all

Google street-view images crawled from the selected Paris area covering about 1.7x0.5

kilometers. Dataset consists of about 17,000 images. In addition, we used the location

and keyword search to Panoramio photo-sharing site to receive public non-geotagged

photos downloaded from roughly same area as was covered by the geotagged images.

Majority of important experiments was evaluated on this dataset.

200 non-geotagged images were randomly chosen as the queries to measure the per-

formance of our location recognition algorithm. Query images could were divided into

five groups: (i) challenging queries which in principle can be localized but may either

have very small visual overlap or the overlap not sufficiently discriminate them; (ii) easy

localizable queries; (iii) images where we are not able to decide if they were obtained in

the database area; (iv) images that were out of database; (v) ambiguous position images

which do not contain the relevant information about the location. Table 3.4 summarizes

the query data.

First Figure 1.1 presents query images as well as the position of downloaded Google

street-view images with their thumbnails.

Image type Short name # of images

i. Challenging queries HR 81

ii. Easy queries ES 61

iii. Unknow position queries UP 23

iv. Out of database queries OD 21

v. Ambiguous position queries AM 14

Table 3.1: Summary of query image set.
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Chapter 4
Representation of City Images

This chapter is focused on efficient image representation for fast image querying. The

goal is to prepare the database for returning the most similar database image to the

query image as fast as we can.

We used the approach based on popular text retrieval method which is used, for

example, in Google web search engine. The chapter presents the used database image

indexing step by step.

Section 4.1 describes the feature extraction method and its comparison with the state

of the art of feature detectors/descriptors. Then, why and how the image is quantized

into visual words is shown in Section 4.2. It includes the description of visual vocabu-

lary construction and parameters setting. Section 4.3 is concerned with detection and

suppression of confusing features.

4.1 Feature Extraction

Very often, images are represented by three matrices, one matrix for each color: Red,

Green, Blue, but these matrices are not the applicable structure for image processing.

Images can be very efficiently represented by a suitable set of image features [MTS+05].

This section also compares different feature detectors and descriptors for the task of im-

age retrieval previously described in Section 2.2.1, which is exactly the same as our initial

location recognition method (describe leter and introduced in Section 1.4). For each con-

sidered combination of a region detector and a descriptor (see Table 4.1) the localization

performance was investigated on the geotagged omni-image POI dataset of about 1,300

images.

Similar to evaluation in object retrieval, detector/descriptor performance is measured

using the precission-recall curve [PCI+07]. To report the single number performance

21



4.1. Feature Extraction

Short name Detector Descriptor Implementation # of desc.

MSER MSER [MCUP02] SIFT [Low04] CMP (in-house) 1.53M

HessAffCMP Hessian Affine [MTS+05] SIFT [Low04] CMP (in-house) 2.34M

DoG DoG [Low04] SIFT [Low04] CMP (in-house) 3.55M

SURF SURF [BTVG06] SURF [BTVG06] ETH/Leuven [sur] 1.92M

HessLap Hessian Laplace [MTS+05] SIFT [Low04] Oxford [CbVC] 4.77M

HessAffOx1 Hessian Affine [MTS+05] SIFT [Low04] Oxford [CbVC] 4.46M

HessAffOx2 Hessian Affine [MTS+05] SIFT [Low04] Oxford (J. Philbin) [PCI+07] 2.57M

Table 4.1: Local invariant feature detectors and descriptors in our benchmark. The
last column shows the number of detected features on the training set of about 1,300 images.

# of features Detection [s] Description [s] Det.+Descr. [s]

MSER 1231 0.16 4.8 4.96

HessAffCMP 978 3.96 5.4 9.36

DoG 2605 3.1 3.1 6.2

SURF 2034 0.93 0.41 1.34

HessLap 1874 N/A N/A 1.82

HessAffOx1 1773 N/A N/A 3.44

HessAffOx2 2689 2.16 6.11 8.27

Table 4.2: Comparison of running times on an example image for different feature
detectors and descriptors. With the exception of the SURF detector, which uses its own
SURF descriptor, all extracted features are described using the SIFT descriptor. Different
implementations of the SIFT descriptor have, however, different running times.

1 2 3 4 5 6 8 9 10 11 Avg.

SURF 0.42 0.74 0.51 0.33 0.95 0.41 0.44 0.45 0.38 0.57 0.55

DoG 0.45 0.29 0.20 0.10 0.96 0.29 0.31 0.37 0.51 0.63 0.44

HessAffOx2 0.23 0.81 0.20 0.25 0.89 0.15 0.10 0.39 0.32 0.54 0.41

MSER 0.45 0.55 0.23 0.13 0.79 0.31 0.09 0.03 0.19 0.56 0.36

HessAffOx1 0.05 0.05 0.06 0.02 0.50 0.29 0.29 0.38 0.03 0.58 0.27

HessAffCMP 0.06 0.36 0.09 0.02 0.81 0.23 0.03 0.20 0.03 0.43 0.24

HessLap 0.05 0.08 0.18 0.08 0.45 0.08 0.10 0.03 0.03 0.10 0.14

Table 4.3: Location recognition performance. It was measured by average precision for 14
omnidirectional query test images and different local feature detectors/descriptors.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 Avg.

SURF 0.03 0.21 0.04 0.66 0.14 0.29 0.55 0.68 0.53 0.14 0.07 0.18 0.18 0.76 0.32

DoG 0.02 0.40 0.03 0.75 0.06 0.39 0.60 0.44 0.57 0.03 0.05 0.05 0.03 0.79 0.30

HLap 0.03 0.04 0.03 0.28 0.16 0.39 0.11 0.39 0.46 0.17 0.02 0.73 0.04 0.46 0.24

HAffOx2 0.05 0.05 0.03 0.28 0.05 0.35 0.28 0.39 0.22 0.08 0.04 0.23 0.02 0.37 0.17

HAffCMP 0.02 0.03 0.01 0.19 0.02 0.06 0.40 0.02 0.34 0.04 0.12 0.02 0.01 0.02 0.09

HAffOx1 0.02 0.04 0.02 0.08 0.03 0.07 0.06 0.03 0.02 0.03 0.01 0.03 0.03 0.02 0.04

Table 4.4: Location recognition performance. It was measured by average precision for 14
perspective query test images and different local feature detectors/descriptors.
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4.2. Image Indexing

measure for entire set, we compute the mean average precision (mAP) as the arithmetic

mean of AP across all queries. Note that a perfect performance (AP equivalent to 1) is

obtained where the query is match to all database images that have a visual scene overlap

(they are ranked as the first).

We decided to use SURF [BTVG06] features, because of their speed, robustness and

good result compared to others [BTVG06, QLVG08, KSP09] and mainly the best local-

ization performance results for SURF as is shown in Table 4.3 and Table 4.4. As a result,

images are described by the collection of keypoints given by keypoint image position,

scale and 64-dimension descriptor vector.

4.2 Image Indexing

Our database contains more than 20K images, where each image has about 2K SURF

features. This involves about 400M keypoints in total. Searching this huge set is a

not completly solved problem but some approximate methods with logarithmic time and

acceptable results exist.

We decided to use visual vocabulary [SZ03] approach, inspired by the success of

textual search, for example google web search engine.

4.2.1 Problem Formulation

In this paragraph, we present a more formal definition of the localization problem than

in the previous discussion in the introduction Chapter 1.

We assume the image database I of geo-located images i ∈ I. In this work, the image

database covers a part of a city. After that, we can formulate the location l ∈ L as

the group of images taken at the place l. The location l is also connected to x and y

GPS coordinates. Each image i includes detected SURF features. Each SURF feature is

described by the description vector d. The set D is then the union of all feature descriptor

vectors d from the image database. A visual vocabulary is a collection of discriminative

descriptor vectors w ∈ W and is often smaller than D. These discriminative descriptor

vectors w are called visual words.

After that, given the query image iq described by features dq, we focused on selecting

the most similar database image is ∈ I described by ds vectors. If the most similar

image is contains identical 3D object with the query image iq, we assume that the query

image iq was obtained at the very close location to is database image. In the beginning,

we suppose that searching for the most similar database image is equivalent to finding
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4.2. Image Indexing

Figure 4.1: Image representation using original Video Google [SZ03] approach. We
forget about images with descriptors and we will represent images by tf-idf weighted bag-of-
visual-words vector.

the database image containing the set of the most similar descriptor vectors ds to query

descriptor vectors dq.

4.2.2 Overview of the Text Search Inspired Image Retrieval

In this section, we present a brief and unified review of the work by Sivic et al. [SZ03].

Next sections then discuss it step by step as well as our modifications.

Given the localization problem, Section 4.2.1, we (i) compute the set of SURF fea-

tures da for each database image ia ∈ I. Work [SZ03] computed visual vocabulary

by k-means clustering. The cluster centers in the D constitute the visual vocabu-

lary W . (ii) The query image descriptor vectors dq and all database images descriptor

vectors d ∈ D are quantized by replacing them by the closest cluster center w ∈ W .

Note that each SURF 64-dimensional descriptor vector could be represented as a single

number mapping it into the visual vocabulary: di → wj. It is sufficient to remember

only the index of the assigned visual word instead of the vector d. It also allows to

forget about images and to remember only vectors of visual word occurences for each

image, called the bag-of-visual-words image representation. This image indexing stage is

illustared in Figure 4.1. (iii) Both, the query and the database images, are represented

using tf-idf weighted visual word vectors, computed from the vector of visual words oc-

curences, see State of the art Section 2.2.1 where it is described in detail. This tf-idf

vector favours discriminative viusual words and downweights visual words which do not

help in retrieval. Therefore, the similarity between the query and each database image is

efficiently measured using the normalized dot product of two tf-idf vectors (query image

tf-idf and database image tf-idf). This dot product is identical with the cosine of the
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Figure 4.2: Visual vocabulary size investigation. Mean average precision recall as the
function of number of visual words.

angle between these vectors, as was shown in Section 2.2.1. Database image ranking by

the dot product of tf-idf vectors is our initial localization stage. It will be also discussed

in the Chapter 5 focused on details of localization.

4.2.3 K-Means Clustering to Create a Visual Vocabulary

Visual vocabulary is constructed by k-means clustering of all image descriptors D. In

this section we investigate location recognition performance as a function of k-means

algorithm parameters. We show the localization performance on the same image dataset

as detectors/descriptors experiment described in Section 4.1. On large-scale data, we

measure real localization performance (the same as the Section 4.1) instead of the clusters

distortion.

Vocabulary size. Figure 4.2 shows the location recognition performance, measured by

mean average precision for different vocabulary sizes. The vocabulary is built from 1.92M

SURF descriptors and the k-means algorithm was run for 20 iteration from a random

initialization. Similar to [SZ03, SBS07] we observed a peak in performance at around

0.5M visual words. The intuition of the existence of the peak is that when the number of

clusters is too small, the resulting visual words are non-discriminative (different features

are assigned into the same visual word). On the other hand, large number of clusters

allows to assign the feature of the same scane/object into the different visual words.

Although the performance peak is at around 0.5M, we decided to used visual vocab-
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Figure 4.3: Average precision as a function of the number of k-means iterations. (a)
Two examples of query images. Each plot shows the average precision (red) and the k-means
distortion (blue). Note that the distortion steadily decreases with a small level of noise due to
the approximate nearest neighbour search. The average precision is highly variable, but there
seems to be slight increase with the number of iterations better visible in (b) where the mean
AP through all queries is shown.

ulary of 130K visual words. It does not decreas the performence significantly (note that

x-axis in Figure 4.2 has logarithmic scale) and we observed that image indexing using

smaller vocabularies is faster than with larger vocabularies.

The number of k-means iterations. We investigate location recognition perfor-

mance with respect to the number of k-means iterations. Figure 4.3(a) shows the average

precision as a function of the number of k-means iterations for two location test queries

and Figure 4.3(b) shows the mean average precision over all test queries. Note that the

performance seems to level of at around 20 iterations.

4.2.4 Visual Vocobulary as the Set of Most Informative Words

When the number of dataset images increase significantly, it becomes impossible to cluster

all data at once. The most popular method [CPS+07, PCI+08] is to select a uniform by

distributed subset of images (training data). Unfortunately, we have to assume that our

image subset is the representative one, it means that features have the same distribution

through the whole database. Although it carries out in the cited papers, it does not in

this work. If we work with city-street image database, each image subset would miss
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4.2. Image Indexing

Figure 4.4: Most informative features selection. Left top image is an example of image and
then continue in images with highlighted informative features for greater number of selected
informative features sorted by information gain. Black color signalize detected features and
red-yellow represent selected informative visual words for the specific threshold. We can see
informative features on buildings (informative locations objects) and not on trees, payments etc.

method, vis. voc. size
# correct # correct # correct # correct # correct # correct

n=1 n=10 n=50 n=500 n=2000 n=10000

a. original Schindler, 2M 9 11 15 23 37 50

b. original Schindler, 6M 16 17 22 30 40 50

c. expanded neighborohood, 6M 9 17 21 31 39 50

Table 4.5: Summary of different parameters for the informative features selection.
Performance for informative features selection and the number of informative features to create
visual vocabulary on initial retrieval (original Video Google) method as the number of correctly
returned images in the first n retrieved entites. Ideal localization algorithm correctly sets 50
queries.

images of the missing locations. Therefore, every place contains characteristic features

and we are not able to obtain these features without the images of the missing location.

Schindler et al. [SBS07] presented a solution without sampling subsets. The goal is to

find specific (most informative) features occuring in all images of a specific location but

rarely occuring anywhere outside of this location. Visual vocabulary is then constructed

only from these most informative features. Process of finding the informative features

is: Firstly, the image database is divided into small groups with the sufficient size for

features clustering. Thus, all geo-tagged images I are divided into several groups of

position close images Ia (La respectively, where L represents locations of images I),

Figure 4.5 highlighted these groups by different colors. Importantly, the group size has

to be sufficient for k-means clustering to create the visual vocabulary Wa. It results in
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4.2. Image Indexing

La i1... in        l

Ki       La

Ei

∈

La

∈

Figure 4.5: Image location clustering. Figure shows image position (dots) and clusters in
which the were assigned, each cluster has a unique colour.

the specific visual vocabularies Wa for every group Ia (La). Secondly, each group Ia is

again divided into a small subgroups Ki ⊂ La of (1-5) locations, it is also illustared in

Figure 4.5. Finally, we focused on the selection of most informative visual words wj ∈ Wa

for the location Ki based on informative gain define as,

I(Ki|wj) = H(Ki)−H(Ki|wj), (4.1)

where the location entropy H(Ki) is constant across all visual words at the group of

locations La. Next, the probability of being at the location Ki when observing the visual

word wj will be defined,

P (Ki | wj) =
occur(Ki + Ei, wj)

occur(La, wj)
, (4.2)

where occur(A,B) represents the number of occurrences of visual word B at location A.

Ei is the set of images closer than 28m to the location Ki, illustared in Figure 4.5.

In the end, we select features of most informative visual words per each location Ki.

6M of informative features are then taken to construct the visual vocabulary. 6M is an

experimentally evaluated maximum number of features for running k-means clustering.

Figure 4.4 shows an image with increasing number of informative visual words.
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4.3. Detecting and Suppressing Confusing Features

(a) (b) (c) (d)

Figure 4.6: Example of detected confusing regions. (a) Original image. (b) Detected
confusing image regions. Not how areas such as trees and roads are covered. (c) Local confusion
score. Intensity indicates confusion score ρ. (d) Selected four mismatched images from different
locations.

Table 4.5 shows location recognition performance. Unfortunately, the presented

method doesn’t give a significant improvement for the top-ranked image (n = 1) when

increasing the number of selected features to create a visual vocabulary (from 2M to

6M). More testing and selecting better parameters could be one of the ways to make the

method more useful.

4.3 Detecting and Suppressing Confusing Features

Images in city-street databases contain objects like trees, pavement, sky or water, which

are not informative for recognizing a particular location as either (i) they appear fre-

quently throughout the city, or (ii) they cannot be reliably matched by the current local

feature based algorithms. To address this issue we aim at detecting and removing these

features automatically. We used the fact that an image should not match too well to

images from distant locations.

4.3.1 Local Confusion Score

Given the database image ik ∈ I we find a set In ⊂ I of top confused images. This is

achieved by retrieving the most similar images, which are further than 370 meters away
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4.3. Detecting and Suppressing Confusing Features

(a) (b) (c)

Figure 4.7: Improvement in location recognition based on suppressing confusing
features. (a) The query image. (b) The top ranked image after initial retrieval and spatial
verification. (c) The top ranked images after suppressing confusing image regions in the geo-
tagged database. Note that the highly ranked false positive images shown in (b) are suppressed
in (c).

from ik location. It allows to retrieve similar images with no correct matches.

We defined a sliding windows w on a dense image grid. We evaluate local confusion

score as,

ρw =
1

n

n∑
k=1

Mk
w

Nw

, (4.3)

within a sliding window w by counting the number of matching visual words Mk
w weighted

by the number of detected visual words Nw within a sliding window w. The score ρ is high

when a large portion of visual words (within a sliding window) matches to “confused” im-

ages. We used sliding windows of size 75x75 pixels on a 5 pixels grid. Figure 4.6 illustrates

the distribution of the local confusion score for several selected database images.

Note that our local confusion score is different from the tf-idf weighting, see Sec-

tion 2.2.1, as the presented approach allows to remove features (tf-idf globally removing

visual words) confusing for a particular image.

4.3.2 Suppressing Confusing Features

We off-line precomputed local confusion score for the whole city-street database and all

features with the score greater than a threshold were removed. The remaing features
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4.3. Detecting and Suppressing Confusing Features

were then quantized using visual words. Although the initial retrieval stage runs only

on non-suppresed features, verification, see Section 5.2, uses all image features as the

matching object can be situated inside a confusing region.

Figure 4.7 presents how suppressing of confusing features improves final localization

on selected images. We show several query images containing many confusers (trees, brics,

etc.) which appear in the top-ranked confusers images. When confusers in city-street

image database are suppressed, the correct images are found.
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Chapter 5
Location Recognition

Previous chapter have been concerned with the indexing of image databases. In this chap-

ter, we describe localization of the query image using this indexing approach. The chapter

is structured as the whole localization pipeline, where each section represents each lo-

calization stage, except that the last two sections focus on image expansion and video

localization.

One of the correct views at our approach is that each stage of the processing re-

sorts database images to start with the most promising ones and rejects some portion of

the least promising. Thus latter stages process gradually less and less images and can

Figure 5.1: Location recognition as the cascade filtering. Each stage (represented as the
arrow) resorts the image database. After that, the selected number of images is kept (highlighted
by green colour) for the next stage and remainder images (red) are omitted once for all.
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5.1. Initial Retrieval of Candidate Locations

therefore spend more and more time on each image. This is a classical cascaded decision,

which is our situation works as long as the right image does not get rejected. Figure 5.1

illustrates localization stages.

Firstly, Section 5.1 describes finding a small set of candidate images from the en-

tire geotagged database. Then, top-ranked candidate images are re-ranked taking into

account the spatial layout of local quantized image features, Section 5.2. Section 5.3

presents the final localization stage describing original features matching aiming at deci-

sion if the query image is obtained in our database at all. In addition, Section 5.4 shows

significant localization improvement using query image enriching and finally, the method

for localization of video is presented in Section 5.5.

5.1 Initial Retrieval of Candidate Locations

The first part of the localization cascade is a standard text search based image retrieval

system [SZ03]. The goal is to find a small set (50) of images contains at least one correct

database image to the query one as fast as we can. The stage has to work on extremely

large number of images (millions).

The initial retrieval stage retrieved the top 50 images ranked by the similarity score

computed as the dot product (see Equation 2.7) of tf-idf (described in Section 2.2.1)

query and database images representation, discussed in Section 4.2.2. This dot product

of two normalized vectors is identical with the cosine of the angle between these two

vectors. Thus, a higher score represents higher image similiarity.

Table 5.1 presents times for the first stage, which includes previously discussed image

representation (see Section 4.2.2) and matching to database. The experiment was run on a

3Ghz Xeon and PI dataset. Note that features detection/description and the quantisation

(feature matching to visual vocabulary) are slower in the order of magnitude, but these

processes are independent from the size of the city image database. It also highly depends

on the image resolution, i.e. we found that detection/description of SURF features takes

200images [s] mean for one image [s]

SURF detection/description 132 0.660

quntisation 148 0.740

tfi-idf computing 0.297 0.00148

tfi-idf based matching 7.95 0.00398∑
288.24 1.44

Table 5.1: Time cost of initial location recognition method.
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5.2. Filtering by Spatial Verification

Figure 5.2: Example of city-street image scores after the initial retrieval process
on 1,3K Prague images dataset. For each pair of and database images the value of the
dot product is computed. Blue circles represent the ground-truth for selected query images.
Therefore, the ideal location recognition algorithm should return high values in the blue circles.

about 170ms for the 500x400 resolution image (compared to 660ms for the 900x700

image).

Figure 5.2 illustrates the result of the initial retrieval. For every database image, the

similarity score is computed by the dot product with the query image (dot product of

the tf-idf vectors). Figure 5.2 shows dot products computed on POI dataset.

5.2 Filtering by Spatial Verification

Here, we focused on the verification of the 50 top-ranked images after the initial retrieval.

To achive this goal, we assume that the 3D structure visible between the query image and

each candidate image can be approximated by a small number of planes (1-5). For the

candidate correspondences obtained based on quntisation on visual words we estimated

number of homography mappings H to find inliers from the detected image features.

First image features x1 were projected into the second image,

αx2 = Hx1. (5.1)
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5.2. Filtering by Spatial Verification

Figure 5.3: Example of estimated multiple homographies. Query and selected street-
view image, inliers of each homography (verified SURF features) are highlighted by colored
squares.

(a) (b) (c)

Figure 5.4: Projection using the estimated homography. (a,b) Query image and the
database image. The first row shows the original images, the second one presents images with
estimated inliers satifying homography H (inliers are inside the heighlighted bounding box). (c)
Query image with the projected bounding box by H. This bounding box (green color) covers
the area with inliers.

The homography H was estimated from the LAF [OM02a] keypoint representation ob-

tained from the feature point position and scale. This LAF representation allows faster

computation time [OM02b] as the H matrix could be estimated from a single pair of

correspondences using LO-RANSAC [CMK03].

Then, the multiple homographies are fitted to 50 top-ranked images and candidates
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5.3. Verification of Top-Ranked Location

(a) (b) (c) (d)

Figure 5.5: Comparision of matching based on visual vocabularies with standart
techniques. Query image (top) with the top-ranked street-veiw image (bottom). We show
several results, (a) matches based on visual vocabulary matching, (b) estimated inliers from vi-
sual vocabulary matches, (c) matches obtained after the second nearest neighborhood matching
on feature descriptors and (d) inliers after the 2nd nearest neighborhood matching.

are re-ranked based on the number of inliers. We seek to select only the first top-ranked

image as the input for the next stage.

Figure 5.3 shows an image pair with the detected multiple homographies. Figure 5.4

illustrates that the homography is the projection such that H mapping points of the first

image into the second image as is formulated in Equation 5.1. We show the projected

first image region to the second image based on the estimated homography.

5.3 Verification of Top-Ranked Location

The goal of the final stage is to decide if the top-ranked image is the correct one or

not. We verify the top-ranked image from the spatial filter by matching on the original

(non-quantised) features.

Second nearest neighborhood matching was used as the matching technique to find

tentative matches between images. A query image SURF feature descriptor vector x is

assigned as the match with the nearest database image SURF descriptor vector ynnx if,

|x− ynnx | < τ |x− y2nn
x |, (5.2)

where y2nn
x is the second nearest descriptor to x and τ is the parameter affecting the

number of matches, which was set to 0.91 in this work.

Note that the verification of the previous Section 5.2 could valuate the top-ranked

image on the number of inliers as well. In contrast to Section 5.2, the verification using
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5.4. Location query expansion using non-geotagged images

Figure 5.6: Example of image with a stadard set (red) and a enriched set (yellow)
of features. Note that the majority of features were added to the relevant structure - Arc de
Triomphe.

the correspondences computed from the original SURF features has better performance

than when using the quantized features, see Figure 5.5. As this verification is much more

time expensive it is applied only to the top-ranked candidate images.

In the final localization stage, the number of these non-quantised inliers is estimated

between the query image and the top-ranked street-view image. We consider exparimen-

taly defined treshold as the minimal number of inliers to decide whether is the top-ranked

image depicit the same location as the query image.

In Chapter 6 we show how this approach filters negative locations.

5.4 Location query expansion using non-geotagged images

Here, we describe the approach to improve localization using ungeotagged image database.

Considering that standard matching techniques are useless for extreme view-point, light-

ing changes or partial occlusions by other objects, we turn to a collection of images down-

loaded from photo-sharing sites (Flickr, Panoramio...). These images are not geotagged

but might contain multiple images of the same places captured by different photographers

from different viewpoints or at different times.

We present the method to enrich the query image aimed at having the same informa-

tion in the query image as in the close database images. The method is based on image

retrieval method known as the Query Expansion [CPS+07]. The location expansion pro-

cess is as follows: (i) firstly, we match the query image to the public non-geotagged image
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5.5. Video Localization

(a) (b) (c) (d)

Figure 5.7: Matching improvement using location expansion. Query image (top) with
the top-ranked street-veiw image (bottom). Figure shows several results: (a) original image,
(b) tentative matches based on assigment to visual vocabulary, no inliers were found for this
matches due to only two good matches in the scene, (c) expanded features were added to
the query image, (d) estimated inliers using the expanded features. The number of tentative
matches incrased from 56 to 153.

database by tf-idf vectors similarity (the same as the initial retrieval); (ii) we use the 50

top-ranked non-geotagged images containing more than 18 inliers to enhance the query

image. The inlier threshold was set to 18 to be conservative and not to expand with the

non-matching images as they would pollute the query. (iii) All features within a rect-

angular region enclosing inliers are transferred using the computed homography. After

that, the query image is expanded by the features, see Figure 5.6 presenting detected and

expanded features. In addition, query image tf-idf vector is then updated as the mean of

all verified tf-idf vectors as in Chum et al. [CPS+07] approach, described in Section 2.2.1.

The expanded query image contain original and expanded features. Image is repre-

sented as the new (mean) tf-idf vector as well. It is then used as the standard single

image input to the whole location recognition algorithm.

Figure 5.7 illustrates the improvement of the spatial verification using the enriched

image descriptors. Figure 5.8 presents the selected query images and the improvement

of the location recognition after the location expansion.

5.5 Video Localization

There are several video sharing sites such as YouTube [You] on the internet. This section

is focused on position recognition of videos. General videos should contain more loca-

tion information thanks large number of images capturing each viewpoint and camera
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(a) (b) (c) (d)

Figure 5.8: Improvement based on enriching from non-geotagged database. (a) The
query image. (b) The top match (incorrect) obtained from the geotagged database using the
original query. (c) Example matches found in the non-geotagged database. Note the variation
in lighting and viewpoint. Features from these images are added to the original query. (d)
The top found image (correct) found in the geotagged database after expanding the query with
non-geotagged images in (c). Note the matches in (b) are corrected after the query expansion.

movement.

We used the formulation for the location recognition of video as the localization of

sequence of images. This allows us to use a modification of the presented single image

localization approach.

Firstly, this section present Bayes Filtering [GNTvG07] as the theory for position

estimation from the upcoming images. Secondly, we show how we used it for video

localization using previously presented methods.

5.5.1 Bayes Filtering

The Belief function that estimates for each world place l ∈ L how we belief that we are

occurring at l at time t, given by all previous observations ii...t, can be defined as,

Bel(l, t) = η P (it|lt)
∑
lt−1∈L

[
P (lt|lt−1) Bel(l, t− 1)

]
. (5.3)

Equation 5.3 depends on the probability that we see i at time t at position l (ensor model)

and also on the probability that we are at l in t if we were at the same location l in t− 1

(motion model) and recursively for observations till the start of data acquisition. The

sensor and the motion models are part of the final solution of the video localization.
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5.5. Video Localization

Figure 5.9: Sample from the input sequence. These images have extremly poor quality.
Their resolution is 470x350 which makes the localization more challenging.

Sensor Model defines the probability of acquiring query image it at known location

lt. At a certain time t. Previous sections show how we match query images to street-view

images I, where each image i ∈ I is connected to a specific locations l. Therefore, the

problem is to match the query image to the database of geo-tagged images, which is given

by the number of inliers. Also, using the similarity score based on the dot product of two

tf-idf vectors is another possibility when the inliers are not estimated. Thus, the senzor

is modeled by a Gaussian,

P (it|lt) =
1

β
esim(it,idt )/σ, (5.4)

where β and σ are parameters estimated experimentally. sim corresponds to the mea-

surement of the image similarity, e.g. the number of inliers.

Motion Model models the distance between the geo-location lt of the actual top-

ranked image and the geo-location lt−1 of the last top-ranked image. The correct way to

compute it is to use the distance between two points (lt and lt−1) and take into account

all streets. It means to model the city streets. As this street modeling is very challenging

task, we decided to use an approximate solution as the clearence,

|lt, lt−1| =
√

(xt − xt−1)2 + (yt − yt−1)2, (5.5)

where the location l is defined as the map position: l = [x, y]T . The motion model is

then realized with a Gaussian too,

P (lt|lt−1) =
1

β
e−|lt,lt−1|/σ. (5.6)

As the motion model depends only on the datasbe of city images, the complete model

was precomputed off-line. Computation time took about 55s.

Note that all functions model probabilites. So values have to be weighted and the

maximal number has to be one.
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5.5. Video Localization

(a)

(b)

(c)

t=1 t=6 t=11

Figure 5.10: Improvement based on using bayes filtering for localization of the image
sequence. Each column presents results for one specific time. (a) query image from the video.
(b) top-ranked image without bayes filtering after the initial retrieval. (c) top-ranked image
with bayes filtering after the initial retrieval.

5.5.2 Localization of Upcomming Images

At the beginnig, every location is equally probable before the firts input image comes.

The probability will be updated based on images as they come. For each new input image

the senzor model P (it|lt) is computed and the precomputed motion model with the last

Bel(l, t−1) values is used to re-estimate current Bel(l, t) for the incoming images. Similar

to previous localizations mehods, we are looking for the location with the maximum of

the belief function value as our result.

Figure 5.9 presents an example of our video input from a collection of images crawled

from the YouTube site. Results are illustrated in Figure 5.10. You will notice that the

first image found (obtained at time t = 1) is the same as the image obtained by single

image localization described in Section 5.1 and in Section 5.2, see Figure 5.10. This is

because the first image is processed as a single image without using any information

about the consecutive images in the sequence. Consequently, the belief function of the

second input image is computed from its senzor model and the previous result. Benefits

are shown in the Figure 5.10.
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Chapter 6
Experimental Evaluation

In this chapter the performance of the proposed image based localization method is

evaluated. We aim at testing the whole localization method.

Firstly, Section 6.1 discusses the way of showing limitations of the datasets. Secondly,

Section 6.2 presents the evaluation of our approach on the location recognition problem.

Last Section 6.3 suggests a way how to obtain the GPS coordinates and the street name

of the query image.

6.1 Gold Standard Method

Here, we investigate the limitations of our database. Is it really possible to successfully

localize all query images? To answer this question, we scored each database image by the

number of original feature inliers with the query images. This is currently the best way to

find the most similar database images, however it is an expensive method. It takes more

(a)

(b)

Figure 6.1: Examples of not correctly localized query images after the Gold standard
method. (a,b) All these images have visual overlap with the image database, but they were not
localized. The second row images (b) were correctly localized when our localization approach
was used.
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6.2. Location Recognition

than 1 second for one image matching which results in about 6 hours of computing for

one query. It used the verification procedure described in Section 5.3 in detail. The goal

of all image/object retrieval approaches (f.e. Sivic et al. [SZ03], Chum et al. [CPIZ07],

or our first and second localization stages) is to obtain the best approximation of this

method.

In this experiment, we computed the number of inliers for each pair of query and

database images on PI dataset. The dataset contains 200 query images and the subset of

142 images contains a visual overlap with the database of street-view images, described in

Section 3.4 in detail. In the gold standard method, the most similar image corresponds to

the one with the highest number of inliers. Then, after the manual inspection, we observed

that 109 out of 200 query images have visual overlap with images in our database. Note

that 109 is the maximal achievable number of correctly localized images based on image

features and it is the number we are trying to achieve.

We found 91 not correctly localized query images. Although most of them were taken

at a different location. Some of them have visual overlap with the database images

but they represent extreme occlusions or view point changes, see Figure 6.1(a,b). In

addition, we found 4 not correctly localized images by the Gold standard method, but our

improvement of the localization algorithm (location expansion + suppression of confusing

regions) results in the correct localization of these 4 images, see Figure 6.1(b). Although

4 looks like an extremely small number, we observed it as enough as this Gold Standard

method correctly localized very challenging images with for example lighting changes.

6.2 Location Recognition

Note that we presented a sequence of results on the location recognition to demonstrate

the improvements when using confusing regions suppression, Figure 4.7, and the location

expansion, Figure 5.8. Both experiments were run on PI dataset

In this section, the main localization test is presented. We used PI dataset because it

is large enough and street-view images were downloaded fully automatically. Two main

experiments are shown here. Firstly, the results after the initial retrieval, see Section 5.1,

and spatial verification, described in Section 5.2, are shown in Table 6.1. The performance

of the location recognition after these methods was measured as the number of correctly

retrieved top-ranked images. Note that it is the input to the final verification stage of our

localization cascade, see Section 5.3. The evaluation of the top-ranked image verification

is shown in the second experiment in Table 6.2. Considering the manual inspection, the

43



6.2. Location Recognition

performance after the this final localization stage was measured as the number of verified

street-view images containing a visual overlap with the query image (true positive-TP).

On the other hand, we also computed the number of verified street-view images without

a visual overlap with the query image (false positives-FP). Results are discussed below.

6.2.1 Initial Retrieval & Spatial Verification

Localization performance after each localization stage is presented in Table 6.1. The

performance is measured by the number of correctly matched images. Remember that

only 142 out of 200 query images have visual overlap with the database, see Section 3.4,

and 109 query images were localized after the Gold standard method.

Spatial verification outperforms initial bag-of-visual-words matching in all stages,

which means that the correct match is included within the fifty top-ranked initial re-

trieval entities and spatial verification founds it.

All presented new techniques: (b) query expansion and (c) confuser suppresion, signif-

icantly improve the baseline localization, from 56 correct results to 78 and 65 respectively.

Note that original Video Google approach correctly localized only 38 query images. We

also find both methods complementary because together they (d) correctly localized 88

queries. Figure 6.2 illustrates correctly recognized locations.

Considering the previous Section 6.1, we localized 84 out of 109 images which were lo-

calized using the Gold Standard method (77% query images were localized). In addition,

we correctly localized another 4 images although they were not localized using the Gold

Standard method. Note that these 4 images plus 84 images make together 88 correctly

localized query images in Table 6.1(d).

Also, we have found 50 images captured in geotagged database area which were not

localized due to the large changes in viewpoint, scale, lighting condition and occlusion

by another object. Examples are shown in Figure 6.3(b). These 50 not localized images

Method
# correct # correct

initial retrieval spatial verification

a. Baseline location recognition 38 56

b. Query expansion 49 78

c. Confuser suppression 52 65

d. Confuser suppr.+Query exp. 59 88

e. Gold standard N/A 109

Table 6.1: Location recognition performance. The number of correctly localized test
queries for different location recogniton approaches.
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6.2. Location Recognition

Figure 6.2: Examples of correct location recognition results. Each image pair shows the
query image (left) and the best match from the geotagged database (right). Note that locations
of query images are recognized despite significant changes in viewpoint and lighting conditions.

(a)

(b)

(c)

Figure 6.3: Examples of not correctly localized query images, (a) images obtained
outside of our database area; (b) very challenging images; (c) ambiguous images.
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6.2. Location Recognition

are very challenging. Correct localization of these images is a difficult issue for people as

well. Unfortunately, we have also found 12 out of 61 images which are easy to localize,

but our algorithm did not find the correct match. These 12 query images are very similar

(almost identical) to other correctly localized images. We did not observe any correct

matches yet after the initial retrieval and these images do not get ranked among the 50

images after the first stage. Thus, the improvement of the image indexing looks like a

way to correctly localize these 12 images. More precise verification is a complementary

way for the future work as we also found several query images with a few correct tentative

matches and without correctly estimated homography.

6.2.2 Verification of the Top-Ranked Image

Table 6.2 presents differences between the second stage (spatial verification which uses

matches based on assignment into the visual vocabulary) and the third stage (verification

of top-ranked image where the matches were computed using original feature descriptors).

Both methods compute the number of inliers for the top-ranked database image and the

query image. Therefore, we measure the performance in these stages as follows: (i) we

compute the number of inliers between the top-ranked image and the query image; (ii)

threshold τ was experimentally estimated as the number of inliers to minimize the number

of the false positives while not significantly decreasing the number of true positives. We

estimated τ for each method. (iii) Finally, all top-ranked images with a visual overlap to

query image containing more inliers than τ were set as true positives (TP) and otherwise,

top-ranked images without the visual overlap and with also the higher number of inliers

than τ were set as false positive (FP).

localization method TP FP

a. Baseline location recognition 41 32

a’. Baseline location recognition + final. ver. 47 3

b. Query expansion 72 6

b’. Query expansion + final. ver. 75 2

c. Confuser suppression 54 6

c’. Confuser suppression + final. ver. 59 2

d. Confuser suppr.+Query exp. 86 9

d’. Confuser suppr.+Query exp. + final. ver. 85 0

Table 6.2: Evaluation after the top-ranked image verification. Number of correct-
ly/incorrectly retrived test queries decided by the comparision of number of inliers with the
experimentaly found treshold.
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6.3. Geo-location Estimation

(a)

(b)

Figure 6.4: Examples of estimation the map position for a query image. (a) Query
image, (b) the map including computed position heighlited by the callout with the geo location,
street name and some google informations. Google street-view preview is shown bellow the
map. This presents that we can obtain street name and panormatic view for the query image.

As a result, top-ranked image verification using the third localization stage (a’, b’, c’, d’)

improves results significantly. We observed the important decrease of the number of FP

after the third localization stage with the insignificant decrease of the number of TP,

unlike when using the number of inliers based on feature quantization into a visual vo-

cabulary (a, b, c, d in Table 6.2). Overall, (d’) confuser suppr.+query expansion method

with the top-ranked image verification correctly localized 85 images without any false

match assigned as the positive one. This is a significant improvement compared to (d)

method without final verification where the number inliers was computed only on quan-

tized features.

6.3 Geo-location Estimation

All results were presented as the image retrieval, which has to find the most similar image

obtained at the similar location. When the location of city-street images is known, the

problem defined as finding the map position becomes an elementary issue. Figure 6.4

shows the query image with the top-ranked database image and its estimated position.

It also allows to easily find the name of the street (asking the Google street view). In

addition, position re-estimating using the epipolar geometry [HZ00] could improve final

localization. Figure 6.4 illustrates the example where the correct match is found, but the

position is spatially far (e.g. other side of the river).
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Chapter 7
Conclusion & Future Work

The goal of this thesis is to localize the query image of a particular street or building

facade using the effective representation of the images.

We have implemented and tested current state of the art bag-of-visual-word model

with large vocabularies, spatial verification and modified them to solve the location recog-

nition problem efficiently on several city-street databases containing about tens of thou-

sands images crawled from the popular Google street-view engine and Panoramio/Flickr

photo sharing site.

Several methods were experimentally evaluated with the goal to obtain the best local-

ization performance. We have found that SURF features outperform other detectors/de-

scriptors (MSER, Hessian, Harris, SIFT) for the task of location recognition. Higher

number of clusters (visual vocabulary size) improves location recognition performance

until the peak around 0.5M visual words but then continually increasing visual vocabu-

lary size decreases the performance since descriptors from the same scene/object can be

assigned into the different cluster.

In particular, we have found that suppressing confusing regions and query image

expansion from collection of images significantly improved the localization. Both methods

complementarity was presented as well, which addresses improving localization of the

different query image types.

We plan to extend the query expansion and the suppresion of confusing regions for all

images. The first idea is to learn the classifier for automatic confusing regions suppresion

from the query image. Another future work lies in using the query expansion on all

city-street images.

In spite of the being able to localize many images correctly, unlocalized query images

were found as well. As the several images with the huge visual overlap were not correctly

localized, we plan to improve the initial retrieval and the verification parts in future work.
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[OM02b] Š. Obdržálek and J. Matas. Object recognition using local affine frames on

distinguished regions. In Proc. BMVC., pages 113–122, 2002.

[Pan] Google: Panoramio. http://www.panoramio.com/.

[PCI+07] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Object retrieval

with large vocabularies and fast spatial matching. In Proc. CVPR, 2007.

[PCI+08] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Lost in quanti-

zation: Improving particular object retrieval in large scale image databases.

In Proc. CVPR, 2008.

51



Bibliography

[QLVG08] T. Quack, B. Leibe, and L. Van Gool. World-scale mining of objects and

events from community photo collections. In Proc. CIVR, 2008.

[RR04] D. Robertson and Cipolla R. An image-based system for urban navigation.

In bmvc, 2004.

[SBS07] G. Schindler, M. Brown, and R. Szeliski. City-scale location recognition. In

Proc. CVPR, 2007.

[SLL01] S. Se, D. Lowe, and J. Little. Local and global localization for mobile robots

using visual landmarks. In IROS, 2001.

[SP02] T. Svoboda and T. Pajdla. Epipolar geometry for central catadioptric cam-

eras. IJCV, 2002.

[SSF+03] H. Shao, T. Svoboda, V. Ferrari, T Tuytelaars, and L. van Gool. Fast index-

ing for image retrieval based on local appearance with re-ranking. In Pro-

ceedings of the IEEE International Conference on Image Processing, 2003.

[SSS06] N. Snavely, S. Seitz, and R. Szeliski. Photo tourism: exploring photo collec-

tions in 3D. In Proc. ACM SIGGRAPH, pages 835–846, 2006.

[SSTvG03] H. Shao, T. Svoboda, T Tuytelaars, and L. van Gool. Hpat indexing for fast

object/scene recognition based on local appearance. In civr, 2003.

[sur] http://www.vision.ee.ethz.ch/∼surf/index.html.

[SZ03] J. Sivic and A. Zisserman. Video Google: A text retrieval approach to object

matching in videos. In Proc. ICCV, 2003.

[vA] Google: Street view API.

http://code.google.com/apis/maps/documentation/examples/.

[vie] Google: Street view. http://maps.google.com/help/maps/streetview/.

[You] Google: YouTube. http://www.youtube.com/.

52


	Intoduction
	Problem Formulation and Motivation
	Applications
	Challenges of Image Based Localization
	Overview of the Presented Approach
	Thesis Structure

	State of the Art
	Local Features Detectors and Descriptors
	D. Lowe Approach
	H. Bay, T. Tuytelaars and L. van Gool Approach
	J. Matas and Š. Obdržálek Approach

	Large Scale Image Retrieval
	Text Search Based Method
	Hash Function Based Methods
	Approaches using Tree Structures

	Landmark Clustering & Photocollections Summarizing
	Image Based Localization
	Localization using Reconstructed Scenes
	Large Scale Location Recognition

	Comparison of Our Work with the State of the Art
	Cascade for the Location Recognition
	Visual Vocabulary & Detectors/Descriptors Investigation
	Visual Vocabulary Construction
	Suppression of Confusing Regions
	Location Query Expansion
	Video Localization
	Implementation


	Image Datasets
	Downloading Google Street-View Images
	Prague Omni-Images Database (POI)
	Paris Landmarks Image Database (PL)
	Paris Islands Image Database (PI)

	Representation of City Images
	Feature Extraction
	Image Indexing
	Problem Formulation
	Overview of the Text Search Inspired Image Retrieval
	K-Means Clustering to Create a Visual Vocabulary
	Visual Vocobulary as the Set of Most Informative Words

	Detecting and Suppressing Confusing Features
	Local Confusion Score
	Suppressing Confusing Features


	Location Recognition
	Initial Retrieval of Candidate Locations
	Filtering by Spatial Verification
	Verification of Top-Ranked Location
	Location query expansion using non-geotagged images
	Video Localization
	Bayes Filtering
	Localization of Upcomming Images


	Experimental Evaluation
	Gold Standard Method
	Location Recognition
	Initial Retrieval & Spatial Verification
	Verification of the Top-Ranked Image

	Geo-location Estimation

	Conclusion & Future Work

