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Abstract
Cardiotocography (CTG) consists of fetal heart rate (FHR) and uterine pressure measurements.
CTG has become a standard in obstetrics and is widely used in clinical settings nowadays. Fetal
distress during labour causes firstly a loss of FHR variations, and secondly an occurrence of
long lasting decelerations after uterine contractions. Automatic assessment of these changes is,
however, not fully reliable. This thesis focused on assessment of fetal behaviour using non-
linear methods, such as fractal dimension, entropy and complexity measures. Performance of
these methods was examined on short segments of fetal heart rate and evaluated in terms of
ability to distinguish between normal and pathological fetuses. Using Mann-Whitney U test, it
was found that all employed methods revealed a difference in feature’s median values of sig-
nificance p < 0.01. Performed feature selection rated following methods as the most suitable
for further classification task: Lempel Ziv complexity, waveform fractal dimension, and sample
entropy. The classification results proved that nonlinear methods provide useful information
of fetus status even for fetal heart rate segment of short duration. The achieved classification
performance, by support vector machine, was in terms of sensitivity and specificity 78 % and
70 %, respectively.

Keywords Cardiotocography, Fetal heart rate, Time series analysis, Chaos, Nonlinear meth-
ods, Feature selection, Classification

Abstrakt
Kardiotokografie se stala nedílnou součástí při monitorování plodu v průběhu porodu. Jedná se
o záznam srdeční variability plodu a děložních kontrakcí. V průběhu porodu se nedostatečné
zasobování plodu kyslíkem projevuje změnami v srdečním rytmu, a to jednak ztrátou variabi-
lity či dlouho trvajícími deceleracemi po stahu dělohy. Vyhodnocování srdeční variability je
subjektivní a nespolehlivé. Proto se tato práce zabývá automatickým hodnocením srdečního
rytmu plodu. Pro analýzu srdečního rytmu byly použity nelineární metody fraktální dimenze,
entropie a komplexity. Výsledky těchto metod byly porovnány z hlediska schopnosti rozlišení
normálních a patologických plodů. Pomocí Mann-Whitney U statistického testu byla na hladině
významnosti p < 0.01 zamítnuta nulová hypotéza, že mediány stanovených příznaků normál-
ních a patologických plodů jsou stejné. Dále byla vykonána selekce příznaků, která ukázala,
že nejdůležitějsí příznaky pro následnou klasifikaci srdečního rytmu plodu jsou: Lempel Ziv
komplexita, fraktální dimenze signálu a sample entropie. Výsledky klasifikace dokazují, že ne-
lineární příznaky jsou vhodné i pro analýzu krátkého úseku srdečního rytmu plodu. Klasifikací
pomocí support vector machine bylo dosaženo sensitivity 78% a specificity 70%.

Klíčová slova Kardiotokografie, Srdeční rytmus plodu, Analýza časových řad, Chaos, Ne-
lineární metody, Selekce příznaků, Klasifikace
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Chapter 1

Introduction

"I am not discouraged because every wrong attempt discarded is another step forward."
Thomas Alva Edison

Being born is one of the most crucial events in our life. After intrauterine growth and
development a baby is going to establish itself as an independent individual. To handle the
labour stress a fetus has to be equipped with a defence mechanism. Good understanding of how
an individual fetus reacts to the labour stress helps us to intervene in appropriate manner when
the fetal defense has been activated but before risk of long-term consequences increases. To
be more specific, during labour, fetus can repetitively suffer from oxygen insufficiency and, as
a consequence, a metabolic acidosis could be developed. Severe hypoxic injuries can lead to
neuro-development disability, cerebral palsy, neonatal encephalopathy or even death. We are
trying to prevent these adverse outcomes using methods of electronic fetal monitoring (EFM).

The predecessor of EFM was auscultation where fetal heart rate (FHR) was sensed by fetal
stethoscope. However, the stethoscope could not detect subtle changes in FHR and continuous
monitoring was also impracticable. Introduction of EFM overcomes these disadvantages and
offers continuous fetal surveillance. Nowadays, EFM has become a generally accepted method
used during pregnancy and labour and gives important information about fetal behaviour. EFM
involves recording of the cardiotocogram (CTG) and, recently introduced, ST analysis of the
fetal electrocardiogram (FECG). The CTG consists of two signals the instantaneous activity of
the fetal heart and uterine pressure.

The introduction of CTG monitoring in clinical settings significantly reduced the incidence
of birth asphyxia, however, it has also contributed to the rise in cesarean sections and, as a con-
sequence, potential maternal morbidity (Steer, 2008). The main reason of the failure to meet
expectations was poor interpretation of CTG; therefore, guidelines for CTG were introduced in
order to improve interpretation and thus to lower the number of asphyxiated neonates and also to
decrease incidence of cesarean sections (FIGO, 1986; NIH, 1997). Although the guidelines are
available a poor interpretation of CTG still persists (Doria et al., 2007; Westerhuis et al., 2007a)
and variations in assessment are not only inter-observer but also intra-observer (Bernardes et al.,
1997; Palomaki et al., 2006). Moreover, it has been reported that guidelines are sometimes
violated which results in inconsistent assessment and possibly incorrect interventions. The
assessment of CTG still remains subjective and difficult to reproduce and standardize. The
introduction of ST analysis of FECG, provided by STAN (Neoventa Medical, Moelndal, Swe-
den), in clinical practice improved the labour outcomes (Amer-Wahlin et al., 2001; Noren et al.,
2003). This method involves evaluation of morphological changes in fetal ECG. More specifi-
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2 Chapter 1. Introduction

cally, it has been observed that fetal oxygen deficiency is pronounced in increased T/QRS1 ratio
and changes in ST segment morphology (Amer-Wahlin, 2003). Despite the proven benefit of
this approach, it has also been reported that ST analysis not always decreases the number of
neonates with developed acidemia (Ojala et al., 2006). Nonetheless, only this study disproved
the contribution of ST analysis.

A recently published paper (Steer, 2008) concluded that weakness of EFM still lies in gen-
erally poor standard of CTG interpretation and the contribution of human factor as well. There-
fore, a more education and intense training on CTG interpretation should be performed (Doria
et al., 2007; Westerhuis et al., 2007a) or one should use more cost-effective solution by develop-
ing an expert system serving as source of additional information helping to validate or invalidate
a hypothesis about fetus status (Steer, 2008).

1.1 The goals of thesis
As being explained above, an automatic assessment and interpretation of labour progress is of
major importance. Therefore, this thesis focuses on the automatic analysis of signals recorded
during labour. The thesis purpose is to analyse fetal heart rate by nonlinear methods and then
select the most suitable methods for fetal heart rate. In addition, the results of analysis are classi-
fied and decision whether is fetal behaviour normal or abnormal is performed. This information
could be in future provided to obstetricians to help them with labour progress. According to
the CTG assessment and other aspects such as fetal blood samples (FBS), ST segment analysis,
and mother’s behaviour, obstetricians decide if the labour progress continues in order or if an
intervention is needed. The aims of this work and steps to successful implementation are as
follows:

• familiarization with fetal physiology and behaviour during labour (chapter 2)

• review of current methodologies for computerized CTG assessment (chapter 3)

• data processing and analysis

– pre-processing – noise reduction, resampling, and interpolation (chapter 4)

– nonlinear methods – choice of suitable and descriptive nonlinear methods, applica-
tion to fetal heart rate (chapter 4 and 5)

– data analysis, feature selection, and classification – analysis of fetal heart rate, se-
lection of the best performing methods, classification (chapter 6)

The classification was performed on database of CTG recordings acquired at Charles Uni-
versity hospital in Prague during June 15th 2006 - January 12th 2009. This database contains
pregnancies with different risk of possible labour complications. The broad spectrum of labour
outcomes was necessary to be able to prove statistical significance of our solution.

1Waves in ECG signal are marked in alphabetical order (P,Q,R,S,T). QRS complex consists of Q,R, and S wave
and represents depolarization of the fetal heart while repolarization is described by T wave



Chapter 2

General background

Labour is a very stressful period for fetus as well as for mother. Fetus is affected by mother’s
behaviour and condition. The way fetus reacts to its changing environment gives an important
information about its status. For instance, a change in fetal heart rate can be caused by nervous
system that is activated by receptors reacting to the change of internal environment.

One of the major fetus’s tasks is to handle reoccurring hypoxic events that could lead to
severe consequences for further child development. Fetus has its own physiological protec-
tive mechanism able to sustain repetitive hypoxic episodes. However, if the fetus is not able
to adequately response or to recover from hypoxic stage, the hypoxia could be developed into
the next stage of oxygen deficiency called asphyxia that could lead to cerebral palsy, neonatal
encephalopathy or even to death. (Pierrat et al., 2005) reported prevalence of birth asphyxia
to be 0.86 per 1000 term live births. Moreover, they examined ninety neonates with moderate
or severe newborn encephalopathy with prevalence 1.64 per 1000 term live birth. The main
cause of newborn encephalopathy was birth asphyxia, diagnosed in 52% cases. From these
cases, asphyxia was caused intrapartum in 56% of cases, antepartum in 13%, ante-intrapartum
in 10%, and postpartum in 2%. In 19% of cases, no underlying cause was identified during the
neonatal course. The following risk factors, occurring antepartum or intrapartum, contribute
to high prevalence of neonatal encephalopathy and to perinatal mortality as well. Antepartum
risk factors are: preeclampsia, fetal hypertrophy, prematurity1, multiple pregnancies, and dia-
betes mellitus. More important factors are those occurred intrapartum because 56% of cases
with born asphyxia were caused intrapartum. These factors involve: bleeding during labour,
epidural analgesia, intrauterine infection, meconium-stained liquor, post-term delivery, induced
labour, and cesarean section (NIHCE, 2007). In presence of some risk factors, electronic fetal
monitoring is necessary for fetal surveillance. On the other hand, for low risk pregnancies the
use of electronic fetal monitoring does not offer significant contribution to fetal outcomes (Cun-
ningham, 2005).

This chapter is organized as follows: first, we outline the basics of fetal physiology and
fetus response to different stages of oxygen deficiency - hypoxanemia, hypoxia, and asphyxia.
Next, we describe an interaction between mother and fetus during gestation with emphasis on
the antepartum and intrapartum period. Finally, we introduce methods for the fetal hypoxia di-
agnostics with focus on electronic fetal monitoring that involves observation of CTG or FECG
changes. We stress the significance of signal interpretation and describe advantages and disad-
vantages of respective methods.

1the birth of a premature infant

3



4 Chapter 2. General background

2.1 Fetal physiology
Fetal development lasts about 40 weeks. Complex systems, such as circulatory, respiratory,
nervous, gastrointestinal, etc. are being developed during that time. In this work we discuss in
detail only the circulatory system; the rest are mentioned only to give overall insight into fetal
behaviour.

Fetal heart begins beating approximately at 4th week of pregnancy with frequency about
65 beats per minute (BPM). This frequency increases during a gestation up to 140 bpm before
delivery. The main function of fetal heart is to pump oxygenated blood from placenta to the
organs and, in turn, to carry carbon dioxide back to placenta, where an exchange between
mother and fetus is maintained. The exchange is not limited to gases only, but is performed for
all substances such as nutrition and fetus’ waste products.

Fetal circulation The oxygenated blood from mother’s aorta is distributed to the uterine ar-
teries and further to the spiral arteries that deliver blood to placenta. Here, in the thin capillaries
membranes, the exchange of gases and substrates is performed. The fetus respiration system is
non-functional and placenta works as the fetal lungs. Therefore, blood flows bypass lungs by
ductus arteriosus. The same situation applies for liver, only with the difference, that liver are
partially functioning and blood is not completely bypassed by ductus venous. The whole orga-
nization of the fetal circulation is illustrated in figure 2.1. The oxygenated blood from placenta
enters the right atrium and continues directly to the left atrium throughout foramen ovale. From
there it is pumped into aorta and then back to placenta via umbilical arteries. The deoxygenated
blood returning from the upper part of the body enters the right atrium and is pumped into the
right ventricle. Then, after ventricle contraction, blood is pumped through ductus arterious into
the descending aorta.

2.1.1 Energy metabolism
Placenta maintains an exchange of oxygen and carbon dioxide between mother and fetus. This
exchange can only be performed due to different partial pressures of gases. In placenta, oxy-
gen is bound to haemoglobin and released in the capillaries in the fetal circulatory system.
There the carbon dioxide replaces the oxygen and is carried back to placenta. Depending on
oxygen availability we distinguish aerobic and anaerobic metabolism. These are illustrated in
figure 2.2. The aerobic metabolism utilises glycogen (or fatty acids), oxygen, adenosine diphos-
phate (ADP), and phosphate (P) in order to create adenosine triphosphate (ATP) which serves
as energy source. The waste product are carbon dioxide and water.

glycogen or fatty acids+ P + ADP +O2 −→ CO2 +H2O + ATP

The anaerobic metabolism is also used for glycolysis but with the difference that the oxygen
is not available and cannot be used. The reaction for creating adenosine triphosphate is as
follows:

glycogen or glucose+ P + ADP −→ lactic acid+ ATP

The waste product of anaerobic metabolism is lactic acid. The anaerobic metabolism only
provides energy for basal (vital) activity and, as a consequence, fetus growth is restricted.
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Figure 2.1: Organization of the fetal circulation. The difference between fetal and neonatal circulation
lies in so called "blood shortcuts". It involves ductus venous, ductus arterious and foramen ovale. If
these are not closed at the first breath, there is a serious risk for new born child and his/hers further
development (Guyton 2005).

(a) aerobic metabolism

(b) anaerobic metabolism

Figure 2.2: Energy metabolism. The aerobic metabolism is oxygen dependent. In cases of oxygen in-
sufficiency, the so called anaerobic metabolism produces enough energy to cover basal activity (modified
from (Sundstrom et al., 2000)).

Therefore, the anaerobic metabolism should not last for hours. If the supply of oxygen is not
re-established, hypoxanemia, hypoxia, and sequentially asphyxia are developed. These terms
express different stages of decreased oxygen saturation of the fetal artery blood. Asphyxia is
the last and worst stage that might occur. Before describing the individual stages, it is neces-
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sary to explain autonomic nervous system and its reaction to oxygen deficiency. This system
adapts fetal heart rate to changing environment and regulates blood distribution. It consists of
humoral and neural (parasympathetic and sympathetic) systems that function antagonistically.
Parasympathetic system reacts rapidly on abrupt changes, whereas the sympathoadrenal system
works at more fundamental level prevailing during stage of fetal hypoxia (Amer-Wahlin, 2003).
Parasympathetic activation causes reduction in fetal heart rate called bradycardia, while sym-
pathetic activation leads to surge of stress hormones from the adrenals and FHR may increase
up to tachycardia. It is worth to mention that transition between sympathetic and parasym-
pathetic system is not linear, i.e. changing constantly in time, but rather shows non-linear
behaviour (Goldberger et al., 2002). In figure 2.3 is illustrated how the nervous systems reflect
a change in blood gases.

Figure 2.3: Relationship between blood gases and heart function (Amer-Wahlin, 2003).

2.1.2 Hypoxanemia

Hypoxanemia is an initial stage of oxygen deficiency. The oxygen is depleted in the arterial
blood at the periphery. Central organs and peripheral tissues are intact and enough oxygen is
provided to maintain aerobic metabolism. The fetal response is activated by chemoreceptors
located in major vessels. It involves several safety precautions. First, the more efficient uptake
of oxygen is performed by increased blood flow or increased number of erythrocytes. Second,
the fetal movements are reduced and also growth is restricted in order to save the oxygen. The
fetus can sustain hypoxanemia for days and weeks. However, in presence of fetal hypoxanemia
before labour, fetus has less ability to handle labour stress because of restriction of energetic
reserves.

2.1.3 Hypoxia

Hypoxia represents second stage of oxygen deficiency when the peripheral tissues are affected.
Blood flow is redistributed in favour of central organs guaranteeing aerobic metabolism. On the
contrary, anaerobic metabolism is utilised at peripheral tissues. The prime reaction to hypoxia
is surge of stress hormones (adrenalin, noradrenalin) and sympathetic activation. Without any
damage to fetus, hypoxia can last several hours.
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2.1.4 Asphyxia
Asphyxia is the most critical stage. The oxygen is depleted and high priority organs utilise
anaerobic metabolism. The energy is created from glucose stored in liver and myocardium.
Brain has very low glucose level, therefore glucose is supplied by liver. The fetal response
to asphyxia involves release of stress hormones and activation of sympathetic nervous system.
The fetus attempts to maintain function of central organs as long as possible. The final stage
of asphyxia is the collapse of system with brain and heart failure. Asphyxia that lasts only few
minutes might cause irrecoverable damage.

2.2 Diagnosis of hypoxia
In the previous section we described the fetal behaviour. The reliable assessment and diagno-
sis of changes in fetus condition is of major importance. The fetus hypoxia activate defense
mechanism and anaerobic metabolism is utilised at the peripheral tissues. Using diagnostic
tools we detect and evaluate these changes. The diagnosis can be roughly split into two groups:
fetal blood measurement (fetal blood sampling, pulse oximetry) and electronic fetal monitoring
(cardiotocogram, fetal electrocardiogram).

Let us now focus on the invasive (fetal blood sampling) and non-invasive (pulse oximetry)
measurement of oxygen content in fetal blood. The EFM is described in detail later in this
section.

Fetal blood sample FBS is used in conjunction with EFM and serves as an accurate tool for
measurement of metabolic acidosis. In case of non-reassuring patterns on CTG or FECG the
FBS might be performed in order to acquire precise value of pH. The small sample is obtained
from fetal scalp capillary. The amnioscope is inserted into the vagina and fetal scalp is cleaned.
Then a small stab incision is made and fetal blood sample obtained. Eventually, the automatic
blood-gas analysis is performed and value of pH is obtained. If abnormalities of EFM persist,
the whole procedure is repeated. The whole process of fetal blood sampling is presented in
figure 2.4.

Figure 2.4: The technique of fetal blood sampling using amnioscope (Cunningham, 2005).

The normal pH values of blood samples from fetal scalp capillary ranges from 7.25 to 7.35.
The borderline, i.e. low normal pH is between 7.20 – 7.25. When the pH value is below 7.20,
the intervention is needed and fetus should be immediately delivered. The fetal blood sampling
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requires expertise and is time-consuming. It may also cause complications (Cunningham, 2005)
but it is generally considered to be safe (Ojala et al., 2006).

Pulse oximetry This method uses light reflection from blood where light is differently re-
flected or inhibited depending on the oxygen saturation (FSp02) in fetal blood. The electrode
emitting and receiving light is placed against fetal scalp and continuous FSp02 is acquired.
However, as it was noted by (Cunningham, 2005; Steer, 2008), low oxygen saturation has poor
specificity for acidosis. Therefore, application of pulse oximetry made no significant contribu-
tion to any measures of fetal outcome and is not commonly used for fetal surveillance.

2.2.1 Cardiotocogram
As we already pointed out, the fetal heart rate reflects changes in fetal behaviour and condition.
The electronic fetal monitoring was introduced in 1960s and is a successor of auscultation
method where the FHR was monitored periodically by stethoscope. Cardiotocogram (CTG)
involves monitoring of fetal heart rate and uterine pressure. It offers valuable insight into fetal
condition and serves intrapartum as well as peripartum (the admission CTG) when it might
diagnose potential fetal compromise.

Cardiotocogram recording

We distinguish two types of CTG monitoring based on different stages of labour. Before rupture
of membranes the external ultrasound probe and transducer are used to acquire FHR and uterine
pressures (called TOCO), respectively. After the rupture of membranes the electrod is attached
at fetus scalp and FHR is computed directly from ECG’s R-R intervals. The uterine pressures
are obtained using internal electrode placed in vagina. The record is called intrauterine pressure
(IUP). The external and internal monitoring is shown in figure 2.5.

Figure 2.5: Recording of fetal heart rate and uterine activity (Sundstrom et al., 2000).

External monitoring has certain limitations in comparison to internal. In external monitor-
ing the ultrasound Doppler principle is utilised to detect fetal heart pulsations. Therefore the
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ultrasound probe must be located precisely at the position of fetal heart and any movement ei-
ther mother’s or fetus’ may cause distortions. The probe is usually held in the position by a belt.
Further problem is the separation of fetal and maternal heart. The fetal heart may be confused
by maternal aortic pulsation resulting in misleading monitoring. The great advantage of exter-
nal monitoring lies in easy application and non-invasibility. Internal monitoring is invasive and
can be used only when the fetal position is normal, i.e. head first presentation, and after fetal
membranes’ rupture. The electrode is screwed to fetal scalp without any damage to fetus and
complete electrocardiogram is acquired. Then the fetal heart rate is computed as difference of
successive beats. The pressure transducer is placed in vagina and intrauterine pressure (IUP) is
recorded. The internal monitoring has a higher signal to noise ratio than the external one and,
in addition, FECG and its morphological changes can be examined (Sundstrom et al., 2000).

Changes in fetal heart rate Let us focus on changes that affect fetal heart rate. These changes
either may occur during oxygen insufficiency or could be caused by aspects, such as mother
behaviour or external influences. The FHR changes and its causes are as follows:

• Normal changes – the FHR is different during quiet and active sleep (REM2). There are
rapid shifts in autonomic nervous system resulting in accelerations and increased heart
variability during active sleep.

• Changes in placental blood flow – mainly due to cord compression. When the cord is
compressed, the blood is pushed into fetus. The heart must pump more blood and the
heart rate increases. The increase in blood volume results to increase in blood pressure.
Hence, sensitive baro-receptors are activated and cause decrease in fetal heart rate. When
the compressed cord is released, the FHR returns to normal.

• Adaptation to oxygen insufficiency - when oxygen content decrease, chemo-receptors are
activated and stimulate sympathetic and parasympathetic nervous system. The changes
in fetal heart rate depends on the stages of hypoxia. In case of acute hypoxanemia, im-
mediate fall in FHR occurs while gradually developing hypoxia causes increase in FHR.

• External stimuli – due to the contraction there is an increase of head pressure that may
cause deceleration. Also pressure on eye bulb might induce bradycardia.

• Increase in mother’s temperature – in case of mother fever, the fetal metabolism increase
which leads to higher oxygen consumption and may result in fetal tachycardia.

• The effect of drugs – the fetus could be affected by various drugs and the ability to han-
dle labour stress may decrease, e.g. mother over-stimulation with oxycitocin results in
increased uterine activity and fetus is affected by more intensive contraction.

Assessment of fetal heart rate changes

As mentioned above, CTG records have certain patterns and features that are important for
fetus assessment and labour evaluation. Observation of these patterns and their correct inter-
pretation is of major task in CTG monitoring. The following patterns are usually assessed in
CTG records: baseline rate, variability, acceleration, and deceleration. These patterns and their

2rapid eyes movement
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properties are strictly defined in guidelines for fetal monitoring (FIGO, 1986; NIH, 1997) and
according to their occurrence the appropriate reaction is suggested. The normal CTG record is
presented in figure 2.6. It shows accelerations and normal heart variability that are markers of
fetal well-being.

Figure 2.6: Normal reactive trace. (a) Accelerations; (b) normal variability (Hinshaw 2005).

Baseline heart rate Baseline fetal heart rate is determined over time period of 5 or 10 minutes
when acceleration and deceleration are absent. Normal baseline rate is in range of 110 – 160
bpm. The decrease of heart rate below 110 bpm is called bradycardia and the increase of heart
rate up to 150 bpm is called tachycardia, see figure 2.7.

Figure 2.7: Normal baseline rate, bradycardia, and tachycardia (Sundstrom et al., 2000).

Variability FHR variability is defined as amplitude oscillations around baseline heart rate.
Normal values are between 5–25 bpm. Example of normal variability is shown in figure 2.6.
The so called saltatory pattern is an increase in variability of more than 25 bpm. Complete
loss of variability for more than 40 minutes is the most abnormal sign and fetus may no longer
finetune its circulation. The FHR could also have sinusoidal pattern with smooth, undulating
sinewave. In case of sinusoidal pattern, immediate intervention is required.

Accelerations Acceleration is a transient increase in the heart rate of more than 15 bpm lasting
15 seconds or more. This is associated with fetal movements or stimulation, and indicates fetal
well-being, see figure 2.6.
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Decelerations Deceleration is characterized as a transient decrease of FHR below the baseline
level of more than 15 bpm lasting at least 10 seconds. The decelerations are linked to uterine
activity and distinguished as uniform or variable. Uniform deceleration has the same pattern
and shape from one deceleration to another, whereas the variable decelerations might vary from
one contraction to another; for illustration see figure 2.8.

Figure 2.8: Uniform (rounded pattern, shape is similar) and variable (rapid loss of beats, pattern may
vary) decelerations (Sundstrom et al., 2000).

Uniform decelerations can be further divided into early and late depending on time of occur-
rence. Early deceleration represents transient decrease in FHR when the drop in FHR matches
the onset of contraction. On the contrary, late decelerations are characterized as those with dif-
ferent onset of the contraction and deceleration, see figure 2.9. Note that only late decelerations
are connected with hypoxia.

Figure 2.9: Early and late decelerations. For late deceleration the onset of contraction and drop in FHR
differs (Sundstrom et al., 2000).

The variable decelerations have different shape from one deceleration to another. As for
uniform deceleration, the variable can be also split into two groups: uncomplicated and com-
plicated. Uncomplicated deceleration are defined as deceleration lasting less than 60 seconds;
below this time fetus is able to sustain it. When the deceleration is complicated, i.e. the duration
exceeds 60 seconds, there is an increased risk of fetal hypoxia. Uncomplicated and complicated
deceleration are shown in figure 2.10.

Guidelines for CTG categorization The CTG interpretation and classification is very sub-
jective. To be able to characterize important patterns and features, the doctors have to be well
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Figure 2.10: Uncomplicated and complicated variable deceleration. A deceleration of duration longer
than 60 seconds is considered as complicated (Sundstrom et al., 2000).

educated and experienced. In order to standardize CTG interpretation, the status of fetus condi-
tion was divided into four categories: normal, intermediary, abnormal, and preterminal (FIGO,
1986; NIH, 1997; Sundstrom et al., 2000). These categories were developed during years and
are commonly applied. The classification of CTG is based on patterns and features explained
above. The occurrence of particular features or their combinations indicate either fetal well-
being or its adaptation to changing environment. The complete description of fetus status is
presented in table 2.1. When the CTG is intermediary, the fetus is suspected to compromise.
If the fetus’ condition changes and CTG features are evaluated as abnormal or preterminal, an
immediate intervention is needed.

Table 2.1: Categorization of CTG trace features into normal, intermediary, abnormal, and pretermi-
nal (Sundstrom et al., 2000).
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2.2.2 Fetal electrocardiogram analysis

ST analysis of fetal electrocardiogram was successfully introduced into clinical practise by
Neoventa Medical, Moelndal, Sweden. This technique is commonly referred to as STAN R©(ST
ANalysis). Contrary to CTG, the complete ECG curve is used to examine and evaluate morpho-
logical changes. The ST analysis is not intended to be used autonomously but only as addition
to standard CTG. It serves as source of additional information validating or invalidating hy-
pothesis of fetal condition and behaviour observed on CTG. The analysis of ST segment is well
established in detecting and monitoring of myocardial insufficiency in adults cardiology and the
development of ST analysis of fetal ECG has been based on this experience and knowledge. The
fetal brain and heart are equally sensitive to changes in oxygen content; therefore, myocardial
function serves as indirect measurement of brain condition.

The ECG signal is acquired by internal electrodes screwed into the fetal scalp without any
damage to fetus. The continuous ECG is displayed and important markers of ECG are auto-
matically computed. These markers involve changes in T wave amplitude and ST segment. For
illustration of important ECG waves and intervals see figure 2.11.

Figure 2.11: The representation of ECG curve and its important features (Sundstrom et al., 2000).

The T wave amplitude is used for computation of T/QRS ratio. This is performed peri-
odically on ensamble average of several consequent beats. An increase in T wave reflects to
fetus hypoxia and the degree of rise corresponds to degree of hypoxia. The second important
feature of ECG is ST segment where its changes are examined. The biphasic ST is defined as a
downward-leaning ST segment. We distinguish different degrees of biphasic ST segment start-
ing at Grade 1 and continuing to Grade 2 and 3. With progression of disturbance in myocardial
function, there is a shift in degree from Grade 1 to Grade 2 or even to the worst Grade 3. The
morphologies of particular biphasic degrees are shown in figure 2.12.

As mentioned above, the ST analysis should be performed after occurrence of suspected
patterns on CTG. The sole assessment of ST segment could lead to misleading results and rise in
the labour intervention (Sundstrom et al., 2000) and potential adverse outcomes for fetus as well
as for mother. As for the CTG, the interpretation of ST segment was standardized and guidelines
were created in order to avoid subjective assessment of ST changes. In this guidelines, see
table 2.2, we distinguish three types of events: episodic T/QRS rise, baseline T/QRS rise, and
biphasic ST. The T/QRS rise is considered as episodic when the T/QRS rises and returns to the
baseline in time period no longer than 10 minutes. The degree of change indicates the fetal stress
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Figure 2.12: The morphology of biphasic ST. In Grade 1 the ST segment is above isoelectric line whereas
in Grade 3 is completely below (Sundstrom et al., 2000).

and corresponds to short lasting hypoxia. The T/QRS increased of more than 0.10, in connection
with abnormal CTG, is considered as significant and registered as an ST event. Baseline T/QRS
rise is similar to episodic rise with exception that increase of T/QRS has duration longer than
10 minutes. The baseline T/QRS rise of 0.05 with CTG classified as abnormal, is consider
as significant and indicates persistent stress and zero opportunity to recover. The last event
assessed is the biphasic ST with different degrees where the degree corresponds to the degree
of abnormality. The grade 2 and 3 are generally considered as abnormal. The above mentioned
events are connected with CTG interpretation in guidelines that are called STAN simplified
guidelines; see table 2.2.

Table 2.2: ST analysis guidelines in association with CTG classification (Sundstrom et al., 2000).

2.3 Assessment of labour and neonate outcome
In the previous section we introduced electronic fetal monitoring as the methodology to identify
fetal distress and oxygen insufficiency. When child is born, we need to assess its status in order
to acquire additional information wheather to what extent baby suffered. The commonly used
methods for assessment are Apgar score, cord acid-base analysis, and the occurrence of neonatal
complications.

2.3.1 Apgar score
This method was devised by Virginia Apgar in 1953. It was not initially intended to asses
neonates that suffered from asphyxia. However, this methodology was established in clinical
settings and is widely used. The Apgar score includes five parametres that are examined at the
neonate’s age of 1, 5, and 10 minutes. These parametres are heart rate, breathing, skin color,
muscular tone, and excitability. Each parameter is given score in range of 0 - 2 points and then
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all parametres are summed up giving the score at particular child’s age. The maximum score
that could be achieved is 10 points. Note that the assessment of child is subjective.

There is a high correlation between low Apgar score and neonates that suffered from as-
phyxia during labour. However, there are also many reasons for low Apgar score that are not
related to asphyxia, such as immaturity, labour trauma, drugs, infection, the activation of re-
flexes through manipulation of the upper airways, meconium aspiration or carbon dioxide nar-
cosis (Sundstrom et al., 2000).

The Apgar score below or equal to 7 at 5 minutes is generally considered as an indicator of
metabolic acidosis (Doria et al., 2007; Westerhuis et al., 2007b).

2.3.2 Acid-base analysis
The acid-base analysis is used to directly estimate the degree of metabolic acidosis. When child
is born, the cord is immediately clamped and samples are taken from artery and vein. From
these samples the value of artery and vein pH is calculated. The value of pH is evaluated solely
or could be also used with value of carbon dioxide content for further analysis of base deficit
(BDecf). This marker is suggested in addition to pH and expresses the base deficit in the extra-
cellular fluid. BDecf indicates the amount of buffers3 in both blood and tissues which have been
utilised in order to buffer hydrogen ions that had caused the drop in pH.

The normal artery pH ranges from 7.05 up to 7.38 and value of BDecf from -2.5 to 12.0
mmol/l. The neonatal acidemia is defined as pH below 7.05 and BDecf exceeding 12 mmol/l.
These values were suggested in the following works (Sundstrom et al., 2000; Westerhuis et al.,
2007b). Nevertheless, long term observation is highly desireable to more precisely connect
values of pH and BDecf with severe consequences for further child development. (Pierrat et al.,
2005) examined neonates with newborn encephalopathy and assessed their outcomes at 2 years
of age, though, they did not included pH values into the study. Based on the computerized data
analysis, (Salamalekis et al., 2002) suggest the reasonable pH borderline to be at 7.15. This
value was also used previously in the work of (Chung et al., 1995). Considering these facts
and on recommendation by experienced obstetricians at the 1st Faculty of Medicine, Charles
University, Prague we used pH borderline of 7.15.

3haemoglobin, protein, and bicarbonate





Chapter 3

Automatic assessment of CTG – a review

A lot of attempts have been made to tackle the unresolved problem of reliable automatic anal-
ysis of CTG signal but, unfortunately, none of them were successful enough to be able to meet
demands and expectation of clinicans. The automatic classification of fetus behaviour and con-
dition is still challenge for many researches. In this chapter we briefly introduce solutions that
were developed and used for automatic assessment of CTG records. The description of par-
ticular methods is concise and should serve rather as an introduction and overview than an
exhaustive description. It is important to mention that none of the complete systems we are
going to describe is widely applied in clinical settings. Each system is used merely used in the
place or in the country where it was developed.

A first attempt for automatic CTG analysis was to follow the clinical guidelines used for
CTG assessment (FIGO, 1986). These guidelines involved morphological changes in CTG and
(Mantel et al., 1990a,b) developed an iterating procedure for their extraction. Note that these
morphological features became fundamental for almost all methods that try to classify fetal
status. The extraction of morphological features were improved by (Bernardes et al., 1991) and
resulted in development of automatic system, SisPorto, for CTG analysis. This system is briefly
described below. Linear and nonlinear methods used for FHR analysis were mostly derived
from adults HRV research. This field was thoroughly investigated and a general agreement
on HRV analysis exists (Task-Force, 1996). The statistical description of CTG tracings was
employed in work of (Magenes et al., 2000) and then in following study of (Goncalves et al.,
2006). Different approach of FHR analysis is to examine frequency content by spectral analysis.
This analysis was performed by many research groups. The recent paper (Laar et al., 2008) gives
a short overview of papers which analyzed spectrum to FHR either antepartum or intrapartum.
Here, let us mention only the first attempt of (Cerutti et al., 1989). The wavelet transform can be
considered as an extension of spectral analysis. The FHR is analyzed by different wavelets with
different properties. This approach was utilised by (Salamalekis et al., 2002) and (Georgoulas
et al., 2005).

Use of nonlinear methods for FHR analysis has also its roots in adults HRV research where
these methods has proven their usefulness. The measure of fractal dimension of reconstructed
attractor was performed by (Chaffin et al., 1991) and (Felgueiras et al., 1998). The later pa-
per also examined waveform fractal dimension. A slightly different approach was applied
by (Gough, 1993) who measured the length of FHR at different scales and thus estimated frac-
tal dimension. Another attempt to measure length of FHR curve but with Higuchi method was
made by (Kikuchi et al., 2005). However, they estimated fractal dimension during pregnancy
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and not during labour. The different estimation of fractal dimension were reviewed by (Hopkins
et al., 2006).

Probably the most successful nonlinear methods for FHR analysis are approximate entropy
(ApEn) and sample entropy (SampEn). They are widely used for examination of nonlinear sys-
tems and also proved their applicability in FHR analysis. Let us mention only few studies that
employed ApEn or SampEn (Pincus and Viscarello, 1992; Lake et al., 2002; Goncalves et al.,
2006; Georgoulas et al., 2006). Another methods for nonlinear analysis are detrend fluctuation
analysis applied by (Echeverria et al., 2004) and Lempel Ziv complexity used by (Ferrario et al.,
2005).

So far we briefly introduced linear and nonlinear methods for FHR analysis. These methods
are used either solely or in the combination. It is convenient to combine some methods to-
gether and then use a classifier to discriminate individual instances. Note that the combination
of features forms a feature space that could have very high dimension. This problem is referred
to as a curse of dimensionality. In order to reduce the dimension the feature selection or ex-
traction are usually performed prior to the classification. (Georgoulas et al., 2006) employed
principal component analysis (PCA) for dimensionality reduction and then used support vector
machine for classification. (Magenes et al., 2000) employed artificial neural networks for the
classification of linear features. (Chung et al., 1995) devised an algorithm for analysis and pre-
diction of fetal acidosis. The exhaustive work of CTG analysis were performed by Georgoulas
et al. For CTG classification they used Markov Models (Georgoulas et al., 2004), support vector
machines (Georgoulas et al., 2005), and recently a hybrid approach utilising grammatical evo-
lution (Georgoulas et al., 2007). They compared the classification performance of respective
methods to conventional methods, such as k-nn (k-nearest neighbors), qdc (quadratic discrim-
inant classifier), and ldc (linear discriminant classifier). Moreover, in the work of (Georgoulas
et al., 2007) a synthetic minority oversampling technique (SMOTE) was used in order to balance
number of normal and abnormal fetus’ outcomes.

The complete systems used for fetal assessment mostly employ an expert system. The brief
description of each system follows. NST-Expert (Non-Stress Test) (Alonso-Betanzos et al.,
1995) is a noninvasive method used for fetal assessment by analysing fetal heart rate and uterine
pressure. The main part of this software is an expert system that is capable of proposing a
diagnose and treatment. Moreover, it might also estimate the potential problems of neonate.
CAFE (Computer Aided Fetal Evaluation) (Guijarro-Berdinas et al., 2002) is successor of NST-
Expert. It is an intelligent and hybrid system developed for CTG analysis in La Coruna, Spain.
A neural net (NN) and rule based system are used for records classification. Moreover, they
are also utilised for artefacts elimination and recognition of decelerations. SisPorto system has
being developed by prof. Bernandes at al. at University of Porto, Portugal, since 1990. It
consists of expert system which evaluates individual features described according to guidelines
for CTG assessment. The description of system could be found in (de Campos et al., 2000).
Nowadays, the SisPorto is in its 3rd version. K2 Medical Systems (Greene and Keith, 2002) has
been developed at Plymouth University in Great Britain. It is distributed system consisting of
central PC and local units that are situated at the patient’s bed and gathering information, such
as CTG and results of blood sample analysis. The alarm is evoked in case of abnormalities. The
advantage of K2MS is its distributive character when mother can comfortably lie in the bed and
still be under control.



Chapter 4

Signal processing and analysis

One of the most important aspects of signal processing is the quality of input data collection. In
order to develop system for reliable classification of fetus status, the experimental data has to
contain wide spectrum of fetal outcomes ranging from normal, healthy fetuses, to abnormal with
serious metabolic acidosis. The further processing stages strongly depend on available data set.
The data, we had available, includes variety of fetal outcomes and was collected during June
15th 2006 – January 12th 2009 at Charles University in Prague. The clinical description, fetus
assessment and labour evaluation are available. CTG data usually contains artefacts caused by
mother or fetal movements and displacements of the ultrasound transducer.

The traditional approach to CTG analysis is to study morphological changes of signal, i.e.
baseline, variability, accelerations, and decelerations. The more advanced methods use either
statistical theory of linear process or some transformation to have better insight into the data
structure. Statistical analysis, used in time domain, examine changes in RR intervals and eval-
uate them either as a function of time or as a scalar value. The very useful insight into data,
specifically to its frequency content, offer signal decomposition by Fourier transform. Frequen-
cies are extracted from signal and can be individually analysed. Usually the frequency spectrum
is divided into the frequency bands where each band corresponds to a particular physiological
fetus behaviour.

Next approach, that has been recently introduced, is to consider FHR as a fractional Brown-
ian motion (fBm). We would like to remark here that almost all methods used for FHR analysis
have their roots in adults HRV research. (Goldberg et al., 1985) observed that human heart beat
is self-similar, i.e. a signal observed at different scales has the same properties irrespective on
the scale. Therefore, tools for examination of chaos and its dynamics can be used for measuring
properties of FHR. Note that the time series can be analysed as monofractal or multifractal.
The monofractal has same fractal properties irrespective on the time, whereas for multifractal
properties are varying over time. Despite the fact that multifractal approach could be useful, in
our work we considered FHR as monofractal since we are mainly focused on minutes preceding
the delivery.

The above mentioned linear methods have proven their usefullness either in analysis of FHR
or HRV. Nevertheless, in our work we especially focus on nonlinear methods that could reveal
important clinical information hidden in time and frequency domain.

Estimated values of linear and nonlinear methods are, in machine learning field, called fea-
tures. Individual methods are called attributes. The combination of features creates something
what is called feature space with dimension equal to the number of features. A classifier oper-
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ates in this space and try to discriminate two different classes, normal and pathological fetuses.
The whole scheme of signal processing is shown in figure 4.1.

Figure 4.1: The overall scheme of signal processing.

Chapter at a glance. First, we present the available data set from medical and technical
point of view. Second, we outline the preprocessing stage and then describe linear and nonliner
methods for fetal heart rate analysis. The nonlinear methods are explained in more detail since
are fundamental in this work. Next, we describe the concept of state space reconstruction and
methods for dimension analysis in this space. We also introduce methods that estimate fractal
dimension directly in the time domain. Other methods, useful for fetal heart rate analysis, are
described as well. At the end of this chapter we introduce methods for feature selection and
classification.

4.1 Data collection
For this work we used data set collected during June 15th 2006 – January 12th 2009 at the 1st
Faculty of Medicine, Charles University, Prague. These records were acquired by device STAN
S21 (Neoventa Medical, Moelndal, Sweden) that is capable to acquire either external or internal
records. In this section we describe the used data from medical and technical point of view. In
figure 4.2 we present sample record of fetal heart rate and uterine pressure. The record is shown
in the raw form without any preprocessing.

Medical point of view

The used data set contains 189 records and clinical description is available for each record
describing the labour progress and newborn with the following parametres: maternal age, ges-
tational age, gestational pathology, weight, sex, Apgard score, artery pH, and vein pH. These
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Figure 4.2: Raw record of CTG. (a) fetal heart rate, (b) intrauterine pressure.

clinical parameters and their association to adverse fetal outcomes were thoroughly described
in chapter 2. Note that the clinical description is not complete for all records, though, our main
interest is centered on the artery pH value which is presented in all clinical records. Hence this
inconsistency of clinical description can be abandoned as insignificant.

In the clinical description the artery pH and Apgar score at 5 minutes are of major im-
portance because it divides the data set into two groups: normal and abnormal. Fetuses are
classified as normal if having pH above or equal to 7.15 or Apgar score at 5 min. higher than
7 and abnormal if having pH lower than 7.15 or Apgar score below or equal to 7. For more
information about the pH borderline see section 2.3.2 where we referenced several studies that
examined pH of newborns.

In table 4.1 we present summary of outcomes measures of all records (n = 189). From these
records 94 are considered as normal and 95 as abnormal. Values of gestational age, Apgar score
and pH are expressed as mean ± standard deviation. Statistical analysis showed that Apgar
score and pH are significant on p < 0.01 confidence level.

normal (n = 94) abnormal (n = 95)
Gestational age (weeks) 39.2 ± 2 39.8 ± 1.3
Apgar at 1 min.a 8.53 ± 1.25 5.62 ± 2.82
Apgar at 5 min.a 9.66 ± 0.56 7.93 ± 2.33
Apgar at 10 min.a 9.88 ± 0.33 8.91 ± 1.77
pH - arterya 7.25 ± 0.06 7.04 ± 0.09
pH - veina 7.32 ± 0.06 7.14 ± 0.1

Table 4.1: Summary of outcome measures of neonates. Data are presented as mean ± standard devia-
tion. avalues are significant on p < 0.01 confidence level.
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Technical point of view

STAN S21 automatically records all signals during a labour. If the labour progress is in order,
FHR and uterine pressures are acquired using Doppler ultrasound. If suspicious, non-reassuring
patterns occurs a scalp electrode is screwed into the fetal scalp and fetal electrocardiogram
(FECG) is recorded. The uterine pressure is acquired using pressure sensors placed directly
in vagina. Note that the scalp electrode can be attached only after fetal membrane rupture. In
some records FECG has short duration or was not acquired, hence, we used ultrasound signals to
properly classify these records. Note that STAN device is also equipped with second ultrasound
probe for twins monitoring.

The acquired fetal hear rate by Doppler ultrasound is non-uniformly sampled. STAN S21 re-
sample FHR with the sampling frequency fs = 2 Hz and uniformly sampled FHR is provided.
On the other hand, the computed RR intervals from FECG are provided with non-uniformly
spaced time instances.

4.2 Data preprocessing
Preprocessing is the main part in every signal processing task and is always the first step to
be made. Values of extracted features and further classification are highly dependent on the
preprocessing quality. For instance preprocessing steps could distorts the deterministic nature
of the data and add some stochastic components. The ideal signals for analysis would be those
measured directly in the heart. This is, however, not possible and signals are measured either
externally using Doppler ultrasound or internally by scalp electrode. As mentioned above,
signals recorded externally have lower signal to noise ratio than those recorded internally but
even internal records are contaminant with noise and artefacts.

In our case, the preprocessing is divided into four steps: artefacts removal, interpolation,
choice of appropriate segment, and detrend. The segment should be chosen as close as possible
to delivery because during last minutes a major changes in fetal condition occurs. However,
as it is shown in figure 4.3, FHR directly preceding the delivery is largely contaminant with
artefacts and noise. Therefore, we evaluate signal in terms of quality and choose the segment
with sufficient quality that is closest to delivery. The segments are 20 minutes long which means
4800 samples for 4 Hz sampled signal.

4.2.1 Artefacts removal
The FHR signal contains a lot of artefacts caused by mother and fetal movements or dis-
placements of the transducer. In general, the amount of data being removed as artefacts are
in the range between 20% – 40% of all data. We employed the artefacts removal developed
by (Bernardes et al., 1991). The algorithm for artefacts replacement is as follows: first, the
successive five beats with difference lower than 10 bpm among them are considered as a stable
segment. Then, whenever the difference between adjacent beats is higher than 25 bpm, the sam-
ple is substituted by linear interpolation between previous beat and new stable segment. Thus,
all abrupt changes in FHR are removed and replaced by line. The result of artefacts removal is
present in figure 4.3. Notice that the artefacts occur mostly at the end of labour.

We shall emphasize here the importance of missing data replacement. The results of analysis
are affected by the way we treat gaps. We used Hermit interpolation of missing data which is
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Figure 4.3: Removing of artefacts. (a) the raw signal with artefacts, (b) signal after artefacts removal.

possibly correct for fetal heart rate but holds only for gaps of short duration tgap ≤ 20 s. Instead
of Hermit interpolation we could employ nonlinear prediction which is the best way for data
replacement (Sprott, 2003). If the gap is of long duration, tgap > 20 s, none of these methods
work, and we have to skip the data and do not compute across the gap (Sprott, 2003).

4.2.2 Resampling the fetal heart rate
As mentioned above, the fetal heart rate is non-uniformly sampled. This might affect the re-
sults of nonlinear methods, such as fractal dimension and entropy, though, since sampling is
deterministically non-uniform, everything is possibly correct (Sprott, 2003). Note that fractal
dimension may increase because of additional equations that comes into play. (Eke et al., 2002)
also stated that nonlinear methods work on non-uniformly sampled time series too but great
caution is required. In order to examine effect of non-uniform sampling, we analysed results
for both equidistant and non-equidistant data sets.

In order to resample data we applied Cubic Hermite Spline Interpolation (Store and Bu-
lirsch, 1993). This method allows to find piecewise approximation of signal x1, x2, . . . , xn by
polynomial H(x). First we find H(x) such that

Hi(x1) = f(x1)

Hi(x2) = f(x2)

H ′i(x1) = f ′(x1)

H ′i(x2) = f ′(x2)

(4.1)

Then we need a cubic polynomial to fit the four degreeds of freedom:

H(x) = a+ b(x− x1) + c(x− x1)2 + d(x− x1)2(x− x2)

H ′(x) = b+ 2c(x− x1) + d[2(x− x1)(x− x2) + (x− x1)2]
(4.2)
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now consider x = x1 and x = x2, i.e.:

y1 = H(x1) = a

y′1 = H ′(x1) = b

y2 = H(x2) = a+ b(x2 − x1) + c(x2 − x− 1)2

y′2 = H ′(x2) = b+ 2c(x2 − x1) + d(x2 − x1)2

(4.3)

a, b, c, d could be solved. The approximation is then sampled with equidistantly time space
instances.

4.2.3 Detrend
Physiological time series are generally considered as nonstationary, i.e. statistical properties of
physiological signal (mean, variance, and correlation structure) vary during time. We describe
stationarity and nonstationarity in section 4.4.1. Here let us mention that we work with segments
of short duration. Therefore, we can carefully detrend signal using third order polynomial and
consider it as stationary. This polynomial is estimated, such that uninteresting trend is removed
but interesting dynamics preserved.

4.3 Linear time series analysis
We examine oscillation in intervals between consecutive beats and also variations in difference
of adjacent beats. For data analysis we use statistical methods in the time domain, such as
first and second order statistics (Task-Force, 1996). Another approach is to examine frequency
spectrum by Fourier transform. A signal is decomposed to its single frequencies where each
frequency is represented either by amplitude or power.

4.3.1 Time domain
There exists a large amount of statistical methods used in heart rate variability analysis. In
our work we mainly adopt those methods that have proven their usefulness in fetal heart rate
analysis (Magenes et al., 2000). Let x(i) be defined as the FHR signal for n = 1, 2, . . . , N
where N is a length of FHR. The time domain features representing the variation between
consecutive R-R intervals are as follows:

• The mean heart rate:

mFHR = x̄ =
1

N

N∑
i=1

x(i) (4.4)

• Standard deviation of the FHR:

SD =

√√√√ 1

N − 1

N∑
i=1

(x(i)− x̄)2 (4.5)
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• The Delta value:

∆ =
1

M

M∑
i=1

[
max
i∈M

(x(i))−min
i∈M

(x(i))

]
, (4.6)

where M is the number of minutes of a signal.

• Short term variability:
1

24

24∑
i=1

|(sm(i+ 1)− sm(i))|, (4.7)

where sm(i) is a value of x(i) taken every 2.5 s.

• Long term irregularity:
LTI = IQR

√
x2(i)− x2(i+ 1), (4.8)

where IQR is inter-quartile range with i = 1, . . . , N − 1.

• Interval index:

II =
STV

STD[sm(i)]
, (4.9)

where STD expresses standard deviation and sm(i) is again a value of x(i) taken every
2.5 s.

• Total value of the Delta:

∆total = max
i∈[1,N ]

(x(i))− min
i∈[1,N ]

(x(i)), (4.10)

4.3.2 Frequency domain
Signal decomposition into frequency components is very useful in signal processing field. With
this approach we lose the notion of time and only frequency components of signal are provided.
The power as a function of frequency constitutes to what is known as power spectral density
(PSD). The PSD could be estimated by various methods. One of them is Fourier transformation
which considers signal as a composition of cosine waves with different amplitudes, phases, and
frequencies.

The PSD is usually divided into non-overlapping energy bands. These bands represent
underlying physiological activity of either mother or fetus. The division of power spectrum
into individual bands is not such straightforward as for adult heart rate variability and exact
bands for fetal monitoring still remain unknown (Laar et al., 2008). Slightly different spectral
bands were examined and described by (Sibony et al., 1994) and (Signorini et al., 2003). The
former approach divides spectra into four bands: very low frequency VLF : 0 – 0.03 Hz, low
frequency LF: 0.03 – 0.15 Hz that reflects sympathetic activity, mild frequency MF: 0.15 –
0.5 Hz which is associated with fetal movement and maternal breathing, high frequency HF: 0.5
– 1 Hz that represents fetal breathing1, and LF/(MF + HF) ratio that corresponds with balance
of two autonomous systems. Other frequency bands were proposed by Sibony et.al. They
partitioned spectra similarly as Signorini et.al., with the modification that number of bands was

1Note that fetal lungs are non-functional and only movements are performed



26 Chapter 4. Signal processing and analysis

reduced into three and boundaries of bands changed : very low frequency VLF : 0 – 0.05 Hz,
low frequency LF: 0.05 – 0.15 Hz, high frequency HF: 0.15 – 0.5 Hz, and LF/HF ratio.

We shall note here that power spectral density of fetal heart rate has power law scaling
relationship. The energy as a function of frequency decreases in power low fashion 1/fβ .
The spectral index β is estimated as a slope of line fitted to the spectrum estimate. The β
equals 0 for white noise, 1 for pink noise, and 2 for fBm (Eke et al., 2002). Spectral analysis
performed on the whole record obscures detailed information about autonomic modulation of
RR intervals (Furlan et al., 1990). Nevertheless, since we focus on the FHR segment directly
before delivery, the spectral analysis may reveal usefull clinical information about the fetus
condition.

4.3.3 Morphological features
The folowing group of descriptive features is based on guidelines for CTG evaluation (FIGO,
1986; NIH, 1997). These features and patterns are used by clinicans for CTG assessment and
were previously described in section 2.2.1. The set of features is defined as follows:

• baseline – the mean level of fetal heart rate where acceleration and deceleration are absent

• number of accelerations

• number of decelerations

• percentage of time occupied by decelerations

• number of uncomplicated decelerations

• number of complicated decelerations

• number of early decelerations

• number of late decelerations

Baseline is the most fundamental morphological feature. The improper baseline estimation
destroys subsequent analysis of accelerations and decelerations. (Taylor et al., 2000) developed
an iterative procedure for determination of baseline and extraction of acceleration and deceler-
ations.

4.4 Nonlinear time series analysis
Fetal heart is controlled by both linear and nonlinear mechanisms and as a consequence the
FHR signal contains both linear and nonlinear components. Therefore, it is eligible and nat-
ural to use nonlinear methods for dynamics estimation of the FHR. The nonlinear approach
may also reveal relevant clinical information of FHR, not apparent in the time and frequency
domain (Van Leeuwen and Bettermann, 2000).

Since heart beat fluctuates on different time scales and is self-similar, fractal dimension is
useful estimator of FHR dynamics. Methods for estimation of fractal dimension are described in
this section and brief introduction to fractal theory is given as well. Furthermore, we concentrate
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on other nonlinear methods, such as entropy and complexity measures. It is worth of mentioning
that application of nonlinear methods is not such straightforward as linear one. Differences
between nonlinear methods are sometimes subtle but could turn out to be crucial.

4.4.1 Chaos dynamics and fractal properties
Fractals geometry is closely related to chaos dynamics where chaos always results in the for-
mation of fractal but not all fractals are associated with chaos. In physiological time series,
in our case FHR, fluctuations exhibit a long-range correlation that extends across many time
scales and underlying dynamics is nonlinear "driven by" deterministic chaos (Van Leeuwen and
Bettermann, 2000).

Fractals are complex geometrical objects which can be iteratively generated from simple
structures, such as a line, a triangle, a square, or a cube resulting to the ideal, mathematical
fractals. Simple forms are called initiators and rules transforming them are called generators.
Examples of such structures are well known Koch curve, Sierpinski gasket, and Menger sponge
presented in figure 4.4.

Figure 4.4: Ideal, mathematical fractals. These structures are generated by iterative application of gen-
eration rule to the initiator object (Eke et al., 2002).

These objects can be described, in traditional way, by Euclidian geometry but this descrip-
tion is cumbersome since the complex structure has to be broken down into large number of
Euclidian objects assembled according to an equally large set of corresponding spatial coor-
dinates. Thus, use of Euclidean geometry does not grab the essence of object design neither
characterize its complexity.

Unlike Euclidean geometry, the complex structures can be characterized using dimension of
non-integer range. Mandelbrot named these structures fractals and defined them not by axioms,
but with set of properties instead, whose presence indicates that a structure is fractal.

Self-similarity

Self-similarity is essential property of fractals. Basically, it means that same features of complex
object are observed independently on scale. If observed features are exactly the same a fractal
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is ideal, exact. When statistical properties at smaller scale are geometrically similar to those at
a bigger scale, a fractal is statistical.

Note that physiological time series are usually self-affine, instead of self-similar. When a
structure is self-affine the scaling is anisotropic. In one direction the proportion of enlarged
pieces does not coincide from those in the other. This distinction is, however, often smeared
and term self-similarity is used when self-affinity is meant (Eke et al., 2002). Figure 4.5 shows
the example of self-affinity in fetal heart rate.

Figure 4.5: Self-affinity of fetal heart rate. Fluctuations of FHR at different time scales that are statisti-
cally self-similar (self-affine).

Scaling

Self-similarity of fractals is inherent and is behind the scaling relationship. In principle, a
measured quantitative property q is dependent on the scale s according to following scaling
relationship:

q = f(s) (4.11)

In case of nonfractal object, estimation of q at finer scale s converge to a single value.
However, for fractals q exhibits a power law scaling relationship with s. For finner scale it
increases without any limit (Eke et al., 2002)

q = psε (4.12)

where p is a proportionality factor and ε is the scaling exponent. The value of ε can be estimated
as the slope of linear regression line fit to a data points on the plot of log p versus log s

log q = log p+ ε log s (4.13)

Another important term is scale-invariance. It is addition to the power scale relationship and
basically says that two estimates q1 and q2 at the two different scales s1 and s2 depends merely
on the scales ratio and not on the absolute scale
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q2/q1 = psε2/ps
ε
1 = (s2/s1)ε (4.14)

This equation is commonly referred as the scale-invariant property of fractals.

Stationarity and nonstationarity - a dichotomous model

The properties of fractals described above are fundamental for their characterisation. Let us
consider stationary and nonstanionary time series. The discrimination to stationary and nonsta-
tionary is useful not only in fractal analysis but is essential in every signal processing. Each
signal, either stationary or nonstationary, requires different method for the analysis. For station-
ary time series the statistical measures, i.e. mean, variance, and correlation structure, are the
same irrespective of time. On the other hand, the nonstationary time series do not possess this
property and statistical measures are fluctuates over time.

According to the dichotomous model (Eke et al., 2002), signals are seen as realization of
one of two temporal processes: fractional Brownian motion (fBm) and fractional Gaussian
noise (fGn). The fBm signal is nonstationary with stationary increments. Physiological signals
are generally consider as fBm, e.g. see figure 4.5, where statistical properties of FHR varies
over time. The fGn is considered as stationary. The transition between these two models was
proposed by (Eke et al., 2000) where summation of stationary fGn signal leads to nonstationary
fBm and in turn, the increments yi = xi − xi−1 of nonstationary fBm result in stationary fGn.
In figure 4.6 the stationary and nonstationary time series are illustrated.

Figure 4.6: The stationary and nonstationary time series. Presented signals are pure-monofractal. These
two signals differ in variance shown in lower panels. Stationary fGn has constant variance, unlike fBm
which variance increases with time (Eke et al., 2002).

Since FHR is generally accepted as to be fBm methods able to overcome long-term statisti-
cal fluctuation should be applied. Nevertheless, we focus on signal segments directly preceding
the delivery and due to this truncation we consider FHR as fGn.
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4.4.2 State space reconstruction
Before we get to particular methods used for fractal dimension analysis, we have to define in
which space is fractal dimension estimated. There are two principal approaches to estimate
dimension of time series either by direct measurement of waveform or by operating in recon-
structed state space. The former approach considers signal in R2 as a geometric object and
directly uses it without any further transformation. Thus estimated dimension is always in
range between 1 to 2 because the geometrical representation of signal is more complicated than
line but never covers the whole 2D space. In this work, we used box counting, Higuchi, and
variance method for estimating waveform fractal dimension.

The estimation of fractal dimension in reconstructed state space is similar to waveform,
however, the state space reconstruction is not so straightforward; therefore, we properly define
state space and its reconstruction in order to underline its importance for fractal dimension
analysis. Note that waveform fractal dimension and dimension of reconstructed state space are
usually different and should not be reversed.

The state space is sometimes called phase space. It is an abstract mathematical space in
which coordinates represent the variables needed to specify the state of dynamical system. As
time evolves, a system moves from one state to another creating a trajectory which provides a
geometrical interpretation of system dynamics. The trajectories that never intersect and touch
each other are called strange attractors and are typical for chaotic systems. In figure we illustrate
the state space for the famous Lorenz system 4.7.

Figure 4.7: The state space reconstruction of Lorenz system. The attractor of chaotic systems are called
strange.

The structure of dynamical system that is not seen in plot of time series comes out usually
in the state space plot. In order to study dynamics of a system, we first need to reconstruct the
state space. As there is no mathematical definition of the underlying dynamics of the heart,
the state space has to be reconstructed from the time series. (Packard et al., 1980) showed that
it is possible to reconstruct state space from scalar time series and this reconstructed space is
diffeomorphically2 equivalent to the original state space. The reconstruction of the state space
is defined by embedding theorems (Takens, 1981). Taken’s embedding theorem says that it
is possible to reconstruct state space from time series x(t) delayed by time τ as long as the
embedding dimension m is larger than 2d + 1, where d is a box counting dimension of strange
attractor. In other words, the time delay embedding provides one-to-one image of the original

2A diffeomorphism is a map between manifolds which is differentiable and has a differentiable inverse
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time series, providedm is large enough. The time delayed sequence y(t) is computed according
to following equation:

x(t)→ y(t) = [x(t), x(t+ τ), . . . , x(t+ (m+ 1) · τ)] (4.15)

Different choice of τ and m leads to different reconstruction. Optimal embedding parame-
tres cannot be established in general but are connected to specific application. This means
that no single method is superior to others. However, regarding our application, a suitable
search is performed and sufficient parameters are found. We adopted mutual information ap-
proach (Fraser and Swinney, 1986) to search the time delay and Cao’s method (Cao, 1997) for
examination of the embedding dimension. For other methods see any literature about nonlinear
time series analysis, e.g. (Kantz and Schreiber, 2004).

The time delay

The terms redundancy and irrelevance are used to characterize the problem of choosing time de-
lay. If τ is too short, vector elements are strongly correlated and reconstruction is concentrated
around the diagonal of the embedding space (redundancy). On the other hand, long delays yield
to (almost) uncorrelated vector elements and attractor is excessively overfolded (irrelevance).
In figure 4.8 we show reconstruction of Lorenz attractor with different time delays.
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Figure 4.8: Dependence of time-delay reconstruction of the Lorenz system on the choice of the time
delay. (a) Small τ leads to redundancy, (b) proper choice of τ , the attractor is successfully reconstructed.
However, this is not an embedding because embedding dimension is small m = 2. The embedding
dimension of m ≥ 3 is required. (c) very large τ results in irrelevance.

An auto mutual information (AMI), used for finding optimal time delay, was proposed
by (Fraser and Swinney, 1986) and is similar to autocorrelation function with difference that
account also nonlinear correlation. The AMI expresses the average information gained when
the time series is delayed by time τ . The formula for AMI computation is following:

S =
∑
t

ptτ (xt, xt+τ ) log
ptτ (xt, xt+τ )

pt(xt)pτ (xt+τ )
, (4.16)

where pt is marginal probability of time series being in t-th interval and ptτ is the joint prob-
ability that an observation falls into the t-th interval and the observation time τ later falls into
τ -th interval. The optimal time delay is suggested as a first marked minimum of the auto mutual
information when the x(t + τ) adds a maximal information to the knowledge based solely on
x(t).



32 Chapter 4. Signal processing and analysis

The embedding dimension

Recall that to ensure one-to-one reconstruction the embedding dimension m should be m ≥
2d+ 1, where d is a box counting dimension. Unfortunately, we have no idea of value of d and
we have to find an optimal m.

The Cao’s method searches for minimal sufficient embedding. It is based on nearest neigh-
bor approach (Kennel et al., 1992) where false nearest neighbors are defined as a set of points
that are close to each other in dimension m but are apart in dimension m + 1. The false neigh-
bors are close to each other due to projection rather than actual closeness. To define the distance
between points we used Euclidean distance measure ‖ · ‖. The distance between points in m is
defined as ‖ym(t) − ymNN(t)‖ and in m + 1 as ‖ym+1(t) − ym+1

NN (t)‖. Then the ratio R(t,m)
between the two different m is computed and optimal embedding is determined as a value of
R(t,m) smaller than an empirical threshold.

R(t,m) =
‖ym+1(t)− ym+1

NN (t)‖
‖ym(t)− ymNN(t)‖

(4.17)

Setting of threshold value is sometimes cumbersome and subjective; therefore, Cao pro-
posed an extension when the mean of R(t,m), eq (4.18), is computed over all t. He introduced
a new variable E(m) and stated that ratio of values E(m) and E(m + 1) stops changing when
the number of nearest neighbors is constant.

E(m) =
1

N − dτ

N−dτ∑
t=1

R(t,m) (4.18)

E1(m) =
E(m+ 1)

E(m)
(4.19)

Note that embedding dimension could be estimated as saturation in correlation dimension
for increasing m. For details on correlation dimension see section 4.4.3 and figure 4.13.

4.4.3 Fractal dimension
The term fractal dimension was briefly introduced above but without proper description. Fractal
dimension gives objective measure of structure complexity and is useful for fractals comparison.
For instance, fractal dimension could be estimated for various natural fractals: coastline, clouds,
trees, and physiological systems, such as networks of neurons, lungs and for temporal signals
reflecting physiological processes.

There are slightly different meanings of dimension usage (Kantz and Schreiber, 2004). The
dimensions measurements ordinary used are Euclidian and topological. For measurement of
fractals a non-integer "exponent" dimension is used and relates to a number of increments. This
exponent relationship is apparent below in the self-similarity dimension, equation (4.20). A lot
of methods exist for fractal dimension estimation. Some of these methods are introduced in
this section but before their presentation let us describe Euclidian and topological dimension.
Euclidian dimension is used in every day live and indicates that object is on a line (DE =
1), on a plane (DE = 2), or in three dimensional space (DE = 3). Euclidian dimension is
basically a space occupied by an object and says how many coordinates are needed to properly
determine position of a point of object. Topological dimension (DT ) indicates numbers needed
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to determine the position of a point on the actual geometrical structure. The difference between
DT and DE is apparent from figure 4.9.

Figure 4.9: The difference between topological, DT , and Euclidian, DE , dimension.

As we have said, fractal dimension D is non-integer number. According to Mandelbrot, a
structure is fractal when it satisfies condition that D > DT .

Basic fractal dimension is self-similarity dimension Dss which involves principles that are
essential for all types of exponent dimensions. It holds only for exact fractals and tells us how
many structural units N of the observed object, are seen at given resolution, r = 1/s

N = rDss this leads to Dss =
logN

log r
(4.20)

The ideal mathematical fractals were introduced above and showed in figure 4.4. For inexact
fractals, not exactly geometrically self-similar, Hausdorff introduced dimension measure which
has become one of the most important in classifying fractals. This dimension is rather theoret-
ical and is practically impossible to calculate it for real data. We therefore elucidate Hausdorff
dimension in order to give insight into dimension measure and later on we rather concentrate on
other fractals dimensions. Closely related to Hausdorff dimension is capacitance dimension es-
timated using box counting method. Note that it is better to begin description with capacitance
dimension and then continue with Hausdorff dimension and others.

Box counting dimension

The capacitance dimension is based on evaluation of signal’s capacity by covering it byN boxes
of the side length ε. A minimal number of boxes needed to cover whole signal is counted and
then the side length of boxes is increased. Thus, repetitively increasing size of boxes and count-
ing them we are able to estimate box counting dimension D0 as a slope of a linear regression fit
to pairs on a log-log plot of N as a function of ε

N = εDB

DB = lim
ε→0

logN

log(1/ε)
. (4.21)

Example of covering signal by boxes and linear regression fit line are shown in figure 4.10
and 4.11, respectively.
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Figure 4.10: Box counting method. Covering the signal by N boxes of side length ε.
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Figure 4.11: Box counting method. Linear regression fit to data points.

In real world time series, it is impossible to decrease length of box’s side towards zero ε ≈ 0,
hence the box counting method provides only estimation.

Computation of box counting dimension is slow and ineffective but if we limit ourselves
for functions only, which is exactly the waveform of FHR, the computational demands could
be significantly lowered. We describe the simplifications yielding to effective estimate of box
counting dimension in the next chapter 5.

Hausdorff dimension

This type of dimension is usually referred to when mathematicians talk about fractal dimension.
Hausdorff dimension is similar to capacitance dimension but instead of repetitively covering
object by boxes with increasing size, an object is covered with sets, e.g. balls with diameter
r. Then we compute sum of function applied to the diameter r of each covering set Ai. This
function raise the diameter of each set to the power s:

H(s, r) = inf
∑
i

(diameterAi)s. (4.22)

Let us examine behaviour of this sum when r → 0. The sum will grow very large if s is
smaller than certain number DH , and on the other hand, the sum approaches 0 if s is greater
than DH ; see expressions (4.23) and figure 4.12. The number DH which separates these two
states is called Hausdorff dimension.

lim
r→0

H(s, r) =∞ for all s < DH

lim
r→0

H(s, r) = 0 for all s > DH .
(4.23)
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Figure 4.12: The Hausdorff dimension, DH , is the critical value of s where the dimension jumps from
∞ to 0.

In practice, it is impossible to probe real world signal with non-integer objects and also
estimate the boundary when r approaches 0. Therefore, Hausdorff dimension is useful for
theoretical, mathematical context but not in practice.

Information dimension

The information dimension is basically extension of box counting method. Instead of simply
computing the number of points that fall in particular hypercube of side length ε, the approach
of information dimension weights number of points within hypercube by total number of points
that construct an attractor. The information dimension is formulated using Shannon entropy:

I(ε) = −
∑
i

pi(ε) log pi(ε), (4.24)

where pi describes the probability of some point being in the i-th hypercube of side ε. The
information dimension is expressed as:

D1 = lim
ε→0

I(ε)

log(1/ε)
(4.25)

Correlation dimension

The correlation dimension D2 is by far the most important dimension for numerical appli-
cations. It is based on estimation of correlation sum C(r), equation (4.26), which gives the
probability that two randomly chosen points are close to each other with distance smaller than
r.

C(m, r) =
1

N(N − 1)

N∑
i

N∑
i>j

Θ(r − ‖yi − yj‖), (4.26)

where y are m-dimensional delay vectors, N the number of points, and Θ is Heaviside function

Θ(x) =

{
0, for x < 0
1, for x ≥ 0

, (4.27)

Note that in correlation sum, by inequality j > i, we omitted the "self-distance" between a
point and the same point itself. If we consider the limit when r approaches zero (theoretically)
the correlation dimension is estimated as:

D2 = lim
r→0

logC(r)

log r
(4.28)
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This equation, of course, can not be applied for finite data set. The correlation dimension
is usually estimated as a slope on log-log plot where logC(r) is plotted as a function of log r.
The correlation dimension can not be estimated for all radii r but proper region of r have to
be chosen. The local slope approach offers a good insight into proper scaling region. The
equation 4.29 is plotted as a function of log r and D2 is estimated as a marked plateau.

D2 =
d logC(r)

d log r
(4.29)

In addition, the value of embedding dimension m can be altered and thus obtained several
curves for different embedding, see figure 4.13. Three distinct intervals are generally distin-
guished on this plot depending on the scale of r. At very large r, the limited size of recon-
structed attractor causes the slope approach zero. At small r the measurement noise smears
correct scaling. Due to infinite dimension of noise the embedding space is spanned by noise in
all directions tending to correlation dimension of m. Even without noise, quantization errors
and finite sampling introduce errors for small r. In order to avoid incorrect dimension estima-
tion, the proper scaling region has to be chosen. This regions are determined by rl and ru which
stand for lower and upper radius r, respectively.

Figure 4.13: Correlation dimension for z- coordinate of Lorenz attractor with additional noise calcu-
lated for m = 1, 2, . . . , 22 embedding dimensions. The proper scaling region is plateau of the slope of
correlation sum C(r).

Although the local-slope approach is useful and proper scaling region is easily estimated.
In real world application the derivative in equation 4.29 have to be numerically approximated.
In order to avoid heavy computation demands radius is sampled at few values. As a results,
the approximation of derivatives suffers from large fluctuations. To overcome this problem, the
correlation dimension can be estimated using logC(r) plotted as function of log r or by the
Takens estimator using maximum likelihood approach (Takens, 1984). Later, Takens estimator
was modified by (Theiler, 1988) and (Ellner, 1988) and resulted to the following formula:
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D2 =
C(ru)− C(rl)∫ ru

rl

C(r)
r
dr

(4.30)

There are some aspects that have to be considered when using correlation dimension. The
correlation sum should cover the random sample of points drawn independently but successive
samples of signal are not independent. To overcome this problem it has been proposed (Theiler,
1990) that only pairs of points should be account whose indices is more than w, where w
is known as Theiler window and should be chosen generously. (Kantz and Schreiber, 2004)
suggested space-time separation plot that helps to determine a sufficient value of w.

Higuchi’s dimension

The Higuchi method (Higuchi, 1988) calculates fractal dimension from estimated length of
curve. As a curve we consider temporal signal, fetal hear rate. Let us define time series
x(1), x(2), . . . , x(N) with length N . Then we construct a new time series, Xm

k such that:

Xm
k ;X(m), X(m+ k), X(m+ 2k), . . . , X(m+

[
N −m
k

]
) (m = 1, 2, . . . , k),

where [] denotes the Gauss’ notation, m defines the initial time, and k the time interval. The
k represents time displacement and number of new created subsets is equal to k. For example,
for k = 3 and N = 100 we create following sequences:

X1
3 ;X(1), X(4), X(7), . . . , X(97), X(100),

X2
3 ;X(2), X(5), X(8), . . . , X(98),

X3
3 ;X(3), X(6), X(9), . . . , X(99).

The length of curve, Xm
k , is defined as follows:

Lm(k) =


[ N−m

k
]∑

i=1

|X(m+ ik)−X(m+ (i− 1) · k)|

 N − 1

[N−m
k
· k]


/

k, (4.31)

where N − 1/[(N −m)/k] · k represent the normalization factor for the curve length of subset
time series. Then the length of curve for time interval k, 〈L(k)〉, is defined as average value
over k set of Lm(k):

〈L(k)〉 =

k∑
m=1

Lm(k)

k
(4.32)

The computed curve length 〈L(k)〉 for different k is related to the fractal dimension D by
exponential formula:

〈L(k)〉 ∝ k−D (4.33)

The fractal dimension is estimated as a slope of fitted regression to log-log plot of 〈L(k)〉
versus k.
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Dimension of Variance

The variance technique of fractal dimension calculation is based on properties of fractional
Brownian motion (fBm). It is a very useful approach because is robust to noise. Let the signal
X(t) be continuous in the time t and ∆t is the time increment. The variance σ2 is then related
to the ∆t according to the power law (Kinsner, 1994).

Var{∆X(tn,∆t)} = 〈X2(tn,∆t)〉 ∝ |∆t|2H (4.34)

where ∆X(tn,∆t) = X(tn + ∆t) − X(tn) and H is the Hurst exponent computed from a
log-log plot using

H = lim
∆t→0

log Var{∆X(tn,∆t)}
log(∆t)

(4.35)

Finally, the variance dimension is defined as

Dσ = E + 1−H (4.36)

whereE is the Euclidian dimension which equals to one for time series. The variance dimension
is robust to noise and suitable for our application.

4.4.4 Detrend Fluctuations Analysis
The detrend fluctuation analysis (DFA) was proposed by (Peng et al., 1995) and probes the
signal at different time scales. The result of the DFA is the fractal scaling exponent α. The
whole process of estimating α is as follows. First, the time series {Xi} = {X1, X2, . . . , XN} is
summed giving

Y (k) =
k∑
i=1

[
X(i)− X̄

]
, (4.37)

where Y (k) is the k-th of resulting series (k = 1, 2, . . . , N ), and X̄ is the averaged value of the
entire signal. Then Y (k) is divided into boxes, or windows, of equal size n. For each box a least
square line, Y (n), representing the trend in the box is then calculated. This line is subtracted
from summed Y (k) in order to reduce possible nonstationarity. The formula for computation
of fluctuations F (n) in given box is following:

F (n) =

√√√√ 1

N

N∑
k=1

[Y (k)− Yn(k)]2 (4.38)

This procedure is repeated for all time scale (different sizes of box n). Then the F (n) is
plotted on log-log graph against all size of box n. Typically, the relationship between F (n) and
n is exponential F (n) ∼ nα. This indicates the presence of self-similarity, i.e. for small boxes
size n the fluctuations are similar to those for large n.

The resulting scaling exponent α gives us information about origin of time series. For
instance, α = 0 indicates random process (white noise), 1/f pink noise has α = 1, and α = 1.5
indicates Brownian noise. Note the relation between α and spectral index β = 2α − 1. Also
note the relationship to the Hurst exponent H = α− 1 (Eke et al., 2002).
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4.4.5 Entropy
Entropy describes behaviour of system in terms of randomness, and quantifies information
about underlying dynamics. Entropy is simply a fancy word for the "disorder". A stochas-
tic, irregular, and less predictable signal has higher entropy than a completely deterministic. In
other words, entropy is amount of a energy in system that is unable to do work (Eckmann and
Ruelle, 1985).

There are number of definitions available to estimate entropy. The very basic one is Shannon
information entropy H(X) calculated by the equation (Shannon, 1948)

H(X) = −
∑
xi∈Θ

p(xi) log p(xi), (4.39)

where X is a single discreate random variable with a set of values Θ and probability mass func-
tion p(xi). It is obvious from the equation (4.39) that Shannon entropy depends on probabilities
of information contained in the signal.

Now let us consider time series which represent output of stochastic process. It is same as
for single variable but with difference that joint entropy for each representative is computed.
The time series consits of sequence of n random variables, {Xi} = {X1, X2, . . . , Xn}, with set
of values Θ1, . . . ,Θn, respectively, the joint entropy is calculated as

Hn = −H(X1, X2, . . . , Xn)

= −
∑
x1∈Θ1

· · ·
∑
xn∈Θn

p(x1, x2, . . . , xn) log p(x1, x2, . . . , xn),
(4.40)

where p(x1, x2, . . . , xn) is the joint probability for the n variables {X1, . . . , Xn}. Furthermore,
by application of the chain rule to eq. (4.40), the joint entropy can be rewritten as summation of
conditional entropy

Hn = −
n∑
i=1

H(Xi|Xi−1, . . . , X1). (4.41)

It is apparent that instanceXn is partially deduced from its history,X1, X2, . . . , Xn−1. Thus,
each state has particular information of the past variables and carries a certain amount of new
information as well.

The Kolmogorov–Sinai (KS) entropy is used to characterize system dynamics and it is an
extension of information entropy. KS expresses the mean rate of creation of information. Let
us divide state space into D-dimensional hypercubes of content εD. The term p(k1 . . . , kn)
represents joint probability that system is at hypercube k1 at time δ, in the cube k2 at t = 2δ
and etc. The ε is a content in each hypercube. Then, KS entropy is calculated according to
following equation (Eckmann and Ruelle, 1985)

HKS = lim
δ→∞

lim
ε→0

lim
n→∞

1

nδ

∑
k1,...,kn

p(k1 . . . , kn) log p(k1, . . . , kn)

= lim
δ→∞

lim
ε→0

lim
n→∞

1

nδ
Hn

= lim
δ→∞

lim
ε→0

lim
n→∞

(Hn+1 −Hn).

(4.42)



40 Chapter 4. Signal processing and analysis

The last equality in the previous equations (4.42) is derived for stationary process and after
application of the chain rule. From equation 4.42 we can conclude that KS entropy can be
estimated only for n going to infinity and ε approaching zero. As a result KS entropy is limited
of use for finite time series because it cannot be estimated precisely. For short noisy time
series, (Pincus, 1995) devised a theory and a method for entropy estimation. It belongs to a
family of statistics named approximate entropy (ApEn) with roots in work of (Grassberger and
Procaccia, 1983) and (Eckmann and Ruelle, 1985).

Before explaining the approximate entropy, let us introduce several formulas which were
proposed by above mentioned authors. Grassberger and Procaccia suggested estimation of
lower boundary of KS entropy. They named the estimation K2 and showed its applicability
for characterization of chaos of dynamic system.

Let us consider a time series Xn of length N again. This series is divided into a set of
m-length vectors um(i). Then the number of vectors um(i) and um(j), which are close to each
other in an Euclidean sense d[um(i), um(j)] ≤ r, is expressed by the number nmi (r). This
number is used to calculate of the probability of vectors being close according to Cm

i (r) =
nni /(N − m + 1). Note that template length m is also referred as the embedding dimension.
The final equation for estimation K2 is defined as

K2 = lim
N→∞

lim
m→∞

lim
r→0
− ln[Cm+1(r)− Cm(r)], (4.43)

where Cm(r) represents the average probability that vectors um(i) and um(j) are within r in di-
mension m and Cm+1(r) express also the average probability of close vectors but in dimension
m+ 1. The Cm(r) can be computed as

Cm(r) =
1

(N −m+ 1)

N−m+1∑
i=1

Cm
i (r). (4.44)

Eckmann and Ruelle showed that it is also possible to estimate KS entropy directly. Let us
define the function Φm(r) = 1/(N −m+ 1)

∑N−m+1
i=1 lnCm

i (r). Consequently the expression
Φm+1(r) − Φm(r) is average of the natural logarithm that sequences of length m are close to
each other even if new point is added. Eckmann and Ruelle introduced computation of KS
entropy as

HER = lim
N→∞

lim
m→∞

lim
r→0

[Φm+1(r)− Φm(r)]. (4.45)

Although the formula mentioned above has been useful in classifying dynamical chaotic
system its limitation, for real-world data series, lies with necessity of a vast amount of input
data. Moreover, these estimates badly compromised even with very small amounts of noise.
Therefore, Pincus proposed way of calculation entropy (ApEn) for relatively short and noisy
data sets.

Approximate entropy

In contrast to KS entropy, ApEn is not estimation of chaos dynamics but it is able to distinguish
low-dimensional deterministic system, chaotic system, stochastic and mixed systems (Pincus,
1995). Considering ER entropy, let us now define ApEn entropy as family of measures

HAE(m, r) = lim
N→∞

[Φm(r)− Φm+1(r)]. (4.46)



Section 4.4. Nonlinear time series analysis 41

For a deterministic time series the is HAE has lower entropy; whereas for stochastic time
series HAE is higher. The ApEn has its shortcomings in biased estimation of entropy and as a
consequence give higher number of entropy. In addition, the ApEn is also strongly dependent
on the series length.

Sample entropy

A slightly modified estimation of approximate entropy was proposed by (Richman and Moor-
man, 2000) and resulted in what is known as sample entropy (SampEn). This estimation over-
came the shortcomings of the ApEn mainly because the self-matches are excluded. Secondly,
conditional probabilities are not estimated by a template-wise approach. SampEn requires only
that one template finds a match of length m+ 1. The calculation of SampEn is as follows:

HSE(m, r) = lim
N→∞

− ln
Cm+1(r)

Cm(r)
. (4.47)

In the following figure 4.14, we present simulated time series and procedure for calculat-
ing sample entropy. We define the template length m = 2 and r as a positive value (usually
r = (0.1 − 0.2) · SD, where SD stands for standard deviation). The samples similar to first
sample u[1] are marked by filled squares, to second sample u[2] by filled square, and to third
sample by filled triangle. Then we count occurrence of two-patterns and three-patterns. These
are as follows: three two-patterns (u[1], u[2];u[9], u[10];u[24], u[25]) and two three-patterns
(u[1], u[2], u[3];u[9], u[10], u[11]). Since we do not count self-matches, they are reduced to two
and one, respectively. This is repeated for all two-patterns and three-patterns in sequence and
then computed using formula 4.47.

Figure 4.14: Simulated time series and its sample entropy estimation, for details see text. Modified
from (Costa et al., 2005).

4.4.6 Lempel Ziv Complexity

The Lempel Ziv Complexity (LZC) (Lempel and Ziv, 1976) is widely used in data compression.
It is based on information theory approach. The LZC estimates reoccurring patterns contained in
the time series irrespective of time. A periodic signal has the same reoccurring patterns and low
complexity while in random signal individual patterns are rarely repeated and signal complexity
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is high. To be more precise, (Lempel and Ziv, 1976) defined complexity as "a measure on the
extent to which the given sequence resembles a random one".

Let us consider time series x(1), x(2), . . . , x(n) and apply encoding procedure in order to
form sequences S of strings. For the binary encoding this sequence contains only {0,1}. The
increase in signal value, x(i + 1) > x(i), is encoded by 1 and decrease, x(i + 1) ≤ x(i),
by 0. To indicate that, substring of S starts at position i and ends at position j, we write
S(i, j). The vocabulary of the sequence v(S) contains all substring of S, e.g. for S = 101
the v(S) = {1, 0, 10, 01, 101}. Let S and Q denotes two strings and SQ their concatenation.
When the length of sequence is not specified a operator π is used to remove last string from
concatenated SQ. The operator π comes as a postfix SQπ.

The whole procedure of computation complexity c(n) is following: At the start the c(n) is
set to 1, S = s1, Q = s2, SQ = s1, s2, SQπ = s1, and the vocabulary v(SQπ) is empty. For
generalization purpose, let us assume that we moved in sequence to sample r. The v(SQπ)
is not empty and strings S and Q are following S = s1, s2, . . . , sr, Q = sr+1. If Q ∈ SQπ
then Q contains the substring of S and do not provide new information, therefore, the S remain
unchanged and a new character sr+2 is add to Q. Again, we check if Q ∈ SQπ, if Q is not
substring of SQπ we increase c(n) by one and concatenate S and Q, otherwise we continue in
adding the new characters to Q until the end of the sequence is reached

At the end the number of different strings is equal to c(n). By convention, when the se-
quence reaches its last element, the c(n) is increased by 1. It is apparent that c(n) is dependent
on the length of original sequence n. We use the normalization form to avoid this dependence
on the number of data points (Lempel and Ziv, 1976). The normalized c(n) is defined as

C(n) =
c(n)
n

log 2n

(4.48)

Note that another coding scheme can be used in order to encode signal. The above described
binary encoding can be extended to a ternary and even more quantizing encoding. However,
as (Kaspar and Schuster, 1987) pointed out, the higher encoding should not be used in order to
minimize the dependence of results on quantification criteria and normalization procedures.

4.5 Surrogate data test
So far we assumed that fetal heart rate is nonlinear driven by deterministic chaos. In order to
verify this hypothesis we use surrogate data test. In this test we formulate a null hypothesis
e.g. that data are generated by gaussian linear stochastic process. Then, if this hypothesis is
rejected on some significance level, we can conclude that data do not origin from such process
and nonlinear methods may reveal important information about underlying system dynamics.
As the test statistics, in order to discriminate nonlinear time series from surrogate data, we use
correlation dimension, see section 4.4.3.

There are many available null hypothesis against which we can test our time series. For
example, null hypothesis could be that data are independent, identically distributed random
variables of unspecified mean µ and variance σ2. In our work, we employed general hypothe-
sis that data are produced by gaussian linear stochastic process (AR(p) process). During data
generation we required that surrogate and original data have the same power spectrum and prob-
ability density function. There exists broad area of methods one can use for data generation.



Section 4.6. Feature selection and classification 43

The main idea behind creation of surrogate data is following: first, apply Fourier transform
to original time series. Second, replace the phases by random numbers ranging from (−π, π).
Finally, apply inverse Fourier transform to the Fourier coefficients. In our work, we used itera-
tively refined surrogates proposed by (Schreiber and Schmitz, 1996). For more information see
referenced paper or book of (Kantz and Schreiber, 2004).

The level of significance is commonly set to be p ≤ 0.05, therefore we need at least 19
or 39 surrogate data for one- and two-sided test, respectively. Lastly, we compute the test
statistics. We use correlation dimension. If the results of correlation dimension are not different
for nonlinear time series and surrogate data, the null hypothesis could not be rejected. The
whole scheme of surrogate data test is presented in figure 4.15.

Figure 4.15: Scheme of surrogate date test, for the case of the null hypothesis of a linear process.
Modified from (Galka, 2000).

4.6 Feature selection and classification
The estimated values of fractal dimension and entropy are in machine learning field called
features. Combination of features create something what is called feature space with dimension
equal to number of features. A classifier operates in this space and try to discriminate the two
different classes normal and abnormal fetuses. We shall note here, that we employ nomenclature
used commonly in practice and by normal FHR records we mean those records when fetuses
were classified as healthy and with term at risk or abnormal FHR we consider records when
fetuses have developed metabolic acidosis. For more details about classification of fetus status,
see section 2.3.

The feature selection is considered as a reduction of dimension of feature space. By select-
ing appropriate features we first, trying to avoid the curse of dimensionality and second, choose
most relevant features for further classification task.

4.6.1 Feature selection
First of all, it is necessary to mention that feature selection is often considered as an art than
a science. There exist a lot of methods and algorithms one can use for feature selection; only
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few of them were used in our work. We start with very simple filter method, correlation cri-
teria, and continue with Correlation based feature selection, Information gain, and Wrapper of
Naive Bayes implemented in Weka data mining software (Witten and Frank, 2005). According
to (Guyon and Elisseeff, 2003) methods for feature selection can be divided into three groups:
filters, wrappers, and embed methods. Filters use a criterion of selection that does not make use
of the learning machine, whereas wrappers use learning machine for alternative subset evalua-
tion. In contrast of filters and wrappers, embedded method perform feature selection in learning
process. The output of this method are selected features and trained learning machine. In spite
of their power we do not use embedded methods in this work. The cross-validation method
was used for subset evaluation. We rank the features selected by different methods and then
combine all results together and chose features with highest rank.

Correlation criteria

The linear relationship between two random variables could be expressed by correlation co-
efficient. There are a lots of ways of coefficient computation, each one suitable for different
task. We choose Pearson correlation coefficient3 for its general applicability. Let us consider a
series of n measurements of variables X and Y written as xi and yi where i = 1, 2, . . . , n. The
Pearson correlation is defined as:

R =
cov(X, Y )√
var(X)var(Y )

(4.49)

where cov stands for the covariance and var for the variance. The estimate of R is given by

R =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n
i=1(xi − x̄)2(yi − ȳ)2

(4.50)

The coefficient ranges from −1 to 1. For coefficient values of 〈−1, 0〉 the two variables
are uncorrelated and for values of (0, 1〉 are correlated. We divide the last interval into three
equidistant subintervals and then describe correlation as weak (0, 0.33〉, moderate (0.33, 0.66〉,
and strong (0.66, 1〉. The two variables are identical if R = 1. When the correlation coeffi-
cient is estimated we need a tool to determine if the correlation between variables is statistical
significant. Therefore, we employ t-test for the following hypothesis:

H0 : R(i) = 0 There is no correlation between the variables x and y.

H1 : R(i) 6= 0 There is correlation between the variables x and y.

To perform t-test we compute t value for every coefficient:

t(i) = R(i)

√
N − 2

1−R(i)2
(4.51)

then using t we find p-value for N − 2 degrees of freedom. The p-value is the smallest level
of significance that would lead to rejection of the null hypothesis H0 with the given data. Note
that p = 0.05 is generally considered as significant.

3often referred as sample correlation coefficient
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Next we create a correlation matrix that describes relationship of all measured features by
correlation coefficient. Moreover we can also include the resulting class (normal, abnormal
FHR records) and easily observed which features are best correlated with class. Diagonal ele-
ments of correlation matrix consist of autocorrelated features which are always equal one. The
off-diagonal elements are coefficients between different features.

Correlation based feature selection

Correlation based feature selection (CFS) uses a heuristic evaluation function to rank feature
subsets. This algorithm chooses features that are in strong relationship with a class while having
low intercorrelation (Hall, 1998). It is a similar method we already used but with difference that
subsets of features are used.

Information gain

The information gain evaluates the attribute by measuring the amount of information gain with
respect to class. The mutual information, termed InfoGain, is computed using entropy H:

InfoGain(Class, Attribute) = H(Class)−H(Class|Attribute) (4.52)

The mutual information was already mentioned in section 4.4.2 where we used the auto
mutual information for determining optimal time delay for attractor reconstruction.

Wrapper method

We used Naive Bayes as a learning machine for feature subset evaluation. Naive Bayes assumes
that within each class the probability distributions of attributes are independent of each other.
Note that its performance on domains with redundant features can be improved by removing
such features (Hall, 1998).

4.6.2 Feature classification
Before we approach to classification, we have to emphasize that we work with balanced data set,
i.e. the number of all cases in both classes is almost the same (nnormal = 94, npathological = 95).
If the data set is unbalanced with favour to normal, healthy cases, there are two possible ap-
proaches to balance data: under sampling of the majority class or over sampling of the minority
class. The method of over-sampling the minority class called Synthetic Minority Over-sampling
Technique (SMOTE) (Chawla et al., 2002) was utilised in work of (Georgoulas et al., 2007).
Note that SMOTE operates in feature space and not in data space. The process of over-sampling
is following: new synthetic instances are created along any/all lines connecting the particular
instance from the minority class with its k nearest neighbors belonging also to the minority
class. In other words, the new instaces represent interpolation of neighbors from minority class.

Another approach to classify unbalanced data set is to utilise a penalty function. For the
pathological cases, the penalty of misclassification is higher than for normal case. Nevertheless,
since we worked with balanced data set we have not used any of above mentioned method.

Below, we briefly introduce the three models that were used for classification of fetal heart
rate records. Each method operates in the feature space. For more information about models,
see e.g. (Duda et al., 2000).
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Naive Bayes

Naive Bayes classifier is based on the Bayes theorem where posterior probability is computed
as:

p(D|X1, . . . , Xn) =
p(D)p(X1, . . . , Xn|D)

p(X1, . . . , Xn)
(4.53)

where D is the class variable and X1, . . . , Xn are features. The naive Bayes uses this theorem
but with strong (naive) assumption that features are conditionally independent given the class.
Therefore, we can estimate posterior probability as:

p(D|X1, . . . , Xn) =
p(D)

p(X1, . . . , Xn)

n∏
i=1

p(Xi|D) (4.54)

Then, to minimaze error classification, we chose the decision rule with maximum a posterior
probability referred as MAP:

DMAP = argmax
d

p(D = d)
n∏
i=1

p(Xi = xi|D = d) (4.55)

Decision tree - C4.5

The C4.5 algorithm was proposed by (Quinlan, 1992) and is used to generate a decision tree.
Generally, decision tree divides data into subgroups where it is desired that one class prevails in
each subgroup. The C4.5 employs the concept of information entropy for choosing the attribute,
see equation 4.39. First, we create root of tree using the attribute with highest information gain
(difference in entropy), eq. 4.52. Then we make decision and move to the sublists of the tree
until every example is covered. The decision tree is prone to overfitting, hence it has to be
pruned in order to ensure the generalization capabilities. The C4.5 utilises error based pruning.
The algorithm goes backwards and removes branches that do not help towards the goal by
replacing them with leaf nodes.

Support Vector Machine

The main purpose of Support Vector Machina (SVM) is to minimize the structural risk, i.e. the
risk of error prediction on unseen data. Let xi ∈ Rn are features and yi = {−1, 1} the re-
sulting class. The SVM algorithm searches the hyperplane (w, b) which maximize the distance
(margin) between the hyperplane and instances closest to it (Vapnik, 1995). These instances are
called support vectors. To find the optimal hyperplane we have to solve the primal optimization
task by minimizing following equation:

(w, b) =
1

2
‖w‖2 + C

n∑
i=1

ξi (4.56)

subject to

〈w · ϕ(xi)〉+ b ≥ +1− ξi, yi = +1,

〈w · ϕ(xi)〉+ b ≤ −1 + ξi, yi = −1,
(4.57)
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where ξi are called slack variables that allow the margin constraints to be violated and ϕ(·) is
kernel providing nonlinear feature mapping. Constant C is tradeoff between maximization of
margin and minimization of error. It is convenient to transform primal optimization task to dual
optimization task. The purpose is to find numbers αi, i = 1, . . . , n that are solution of dual
optimization task:

~α = argmax
~α

(
n∑
i=1

αi −
1

2

∑
i=1

n∑
j=1

αiαjyiyj〈ϕ(xi) · ϕ(xj)〉

)
, (4.58)

subject to

C ≤ α + i ≤ 0, i = 1, 2, . . . , n
n∑
i=1

αiyi = 0
(4.59)

Points that satisfy condition αi > 0 are called support vectors and determine the hyperplane.
By choosing mapping function ϕ(·) properly, the inner products ϕ(xi) · ϕ(xj) can be rewritten
using a kernel function k(xi, xj). Classification of instance x is then obtained as the sign of
following function:

f(x) =
n∑
i=1

αiyik(xi, xj) + b (4.60)

This is only determination on which side of hyperplane 〈w,ϕ(x)〉 + b = 0 is an instance
situated.

4.6.3 Estimating classification performance
Cross-validation is commonly used to estimate classification performance. The cross-validation
has determined number of folds, e.g 10-fold cross-validation. In each step, the data set is divided
into training and testing data. Then a learning machine is trained and performance evaluated on
testing data. This procedure is repeated in each fold of cross-validation with differently divided
data set.

A different performance measures may be used to evaluate classification performance. The
most common is represent performance by confusion matrix in figure 4.16. In the confusion
matrix, TN (true negative) expresses number of correctly classified negative examples, TP (true
positive) is number of correctly classified positive examples, FN (false negative) is number of
incorrectly classified negative examples, and FP (false positive) is the number of incorrectly
classified positive examples.

Actual Positive Actual Negative
Predicted Positive TP FP
Predicted Negative FN TN

Figure 4.16: Confusion Matrix.
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The overall classification accuracy is computed as a = (TP +TN)/TP +FP +TN+FP .
This could be further divided into accuracy a+ observed separately on positive examples a+ =
TP/(TP +FN) and accuracy a− observed only on negative examples a− = TN/(FP +TN).
The a+ and a− are called sensitivity and specificity, respectively. Furthermore, when dealing
with imbalanced dataset, these separate accuracies are combined to metric called geometric
mean g =

√
a+ · a−.

Other approach for classifiers comparison is to use receiver operation characteristic (ROC)
or simply ROC curve. The ROC curve is shown in figure 4.17. In this graphical plot the
sensitivity is plotted as a function of 1 – specificity.

Figure 4.17: The receiver operation characteristic. Sensitivity is plotted as function of 1 – specificity.
Ideal classifier is marked in the upper left corner with coordinates (0,1)

The line of random classification (random guess) is a straight line at a 45◦ diagonal. Suc-
cessful classifier is placed above this line and tends to upper left corner with coordinates (0,1),
that is, all positive examples are classified correctly and no negative example is misclassified.
Next usefull value for comparison is area under the ROC curve (AUC). The AUC expresses
probability that classifier rank randomly chosen positive instance higher than randomly chosen
negative instance.

We shall note here that we mainly focus on sensitivity and specificity. Classification is
usually a trade-off between high sensitivity and low specificity and vice versa. In our work,
we rather prefer those results with higher specificity, i.e. we are trying to avoid unnecessary
interventions.



Chapter 5

Application of nonlinear methods to fetal
heart rate

Before we present classification results of fetus status, let us consider and stress practical aspects
and limitations of nonlinear methods for fetal heart rate analysis.

As mentioned above, we are dealing with the data that has finite length, finite precision and
is sampled either equidistantly or non-equidistantly. Moreover, the data are contaminant with
noise which means that more robust tools have to be utilised in order to have unbiased results
or, on the other hand, if we are aware of sensitivity to noise we can either modify methods
to correct our results or carefully interpret them. We stress several restrictions resulting from
properties of data set and propose several possibilities how to deal with them. In some cases, we
alleviate demands on the data size and signal to noise ratio as we did for stationarity. Recall that
we are focused on minutes preceding the delivery, hence we may consider the data as stationary.
The main intention of this section is to show steps to successful nonlinear data analysis.

Before we approach nonlinear analysis we have to establish whether data contain nonlin-
earity or not. The surrogate data test was developed and is commonly used for this purpose.
We introduced this test in section 4.5; here let us mention that we created iteratively refined
surrogates as it was described by (Schreiber and Schmitz, 1996). The null hypothesis, we test
against time series, is that data were generated by gaussian linear stochastic process. We used
higher order statistics and correlation dimension for the null hypothesis testing. In order to
estimate correlation dimension of possible nonlinear time series we have to search for optimal
embedding parametres.

5.1 In search of optimal embedding parametres
The optimal embedding parametres are needed in order to reconstruct unfolded attractor of
given time series. The two parametres have to be estimated for proper embedding: time de-
lay τ and embedding dimension m. These parametres are coupled together, nevertheless, for
convenience, we evaluate them separately.

To find optimal time delay we used method of auto mutual information. As optimal time
we chose the time when the mutual information exhibits first marked minimum. If the mutual
information has no minimum, we choose time delay, such that S(τ) = S(τ)/S(0) ∼ 1/5.
As (Abarbanel et al., 1993) pointed out, "this is time delay in which some nonlinear decorrela-
tion is at work but not too much". In figure 5.1(a) we show the result of auto mutual information
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for sample record from database. It is apparent, the first minimum is at τ = 40 samples. Since
the sampling frequency is 4 Hz, the optimal time delay is τ = 10 s. The average value of first
minimum of all records was τ = 12.3± 9.5 s.

In order to find the optimal embedding parameter m we applied Cao’s method on the whole
data set. The result is shown in figure 5.1(b). It is obvious, that E1 stops changing at value of
m = 6 when the value of nearest neighbors is constant. We shall note here that for some records
sufficient embedding dimension is lower, m = 5. Nevertheless, since we will analyse correla-
tion dimension for different embedding, the estimated m rather indicates data dimensionality
and may be larger than necessary.
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Figure 5.1: Optimal embedding parametres for sample record. (a) Auto mutual information. The first
marked minimum, τ = 40 samples, determines optimal time delay. (b) Results of Cao’s method. When
the value of E1 stops changing, m = 6, the sufficient embedding dimension has been found.

5.2 Establishing nonlinearity - the surrogate data test
In order to establish nonlinearity of the fetal heart rate we performed surrogate data test. Recall
from section 4.5, we test null hypothesis that data originates from gaussian linear stochastic
process. To be able to reject this hypothesis on 95% confidence level, we generated 39 different
surrogates sequences. As the discrimination method we applied the correlation dimension.

The surrogate data have the same distribution and autocorrelation function as the original
data but the nonlinear properties are destroyed. We estimated correlation dimension, D2, for
all records and based on these estimations we rejected the null hypothesis on 95% confidence
level, i.e all estimates of D2 for original and surrogate data were different. In figure 5.2 we
present the difference of logC(r) for original and surrogate time series with different embed-
ding dimension m = 3, 4, 5. Notice that for m = 4, 5 the lower bound of surrogate data is very
close or even touches the solid line representing the logC(r) of original data. There are sev-
eral reasons for this behaviour. First, we might have not found optimal embedding parametres
(time-delay and embedding dimension). As a consequence, attractor was not properly recon-
structed. Second, the nonlinear determinism was partially destroyed by measurement process,
such as quantization, filtering, and averaging. Last, and most likely, the measurement noise and
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artefacts partially distorted the nonlinear determinism of data. We incline to this hypothesis
because the data we have available are of poor quality. We discuss this issue more thoroughly
in chapter 6.
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Figure 5.2: Surrogate data testing with correlation dimension. The d logC(r)/d log r is plotted as
function of log r for difference embedding dimension m = 3 − 5. Dashed lines represent confidence
interval of surrogate data and solid line represents original time series.

5.3 Practical consideration for using nonlinear methods

5.3.1 Dimension of attractor
We used estimated optimal embedding parametres for the state space reconstruction and then
analysed fractal dimension of attractor. The fractal dimensions of attractor D0, D1, and D2

are numerically so similar that there is no advantage to use them all (Abarbanel et al., 1993).
Therefore, we used only correlation dimension for attractor analysis since it is robust to noise.
To be able to reliably estimate the fractal dimension a certain data length is necessary. There
exists many theories about required data length with general agreement that needed data length
increase exponentially with data dimension. We followed data size requirements as were sug-
gested by (Rulle, 1990); for estimating a dimension d, a minimum data length is Nmin = 10d/2

required. Since the embedding dimension is m = 6, the maximum dimension is d = 6. There-
fore, required data length is Nmin = 10d/2 = 1000 samples. As was already mentioned, we
worked with segments of length 4800 samples, hence we can reliably estimate the correlation
dimension.

In addition to embedding parametres, we have to also establish correct scaling region as was
described in section 4.4.3. Recall that for Lorenz system we estimated proper scaling region us-
ing local slope approach when we searched for plateau on the log-log plot of d logC(r)/d log(r)
versus log r. In the following figure 5.3, we present estimated local slopes of logC(r) of normal
fetal heart rate record. The attractor was reconstructed with time delay τ = 5.5 s and embed-
ding dimension m = 2− 16. It is apparent that the proper scaling region ranges from log rl = 1
to log ru = 2 (rl = 2.7 to ru = 7.4) where D2 = 3.5. Note that embedding dimensions m = 2
and m = 3 are not sufficient to properly reconstruct the attractor. If we used low-dimensional
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embedding, the D2 would be underestimated. In the following figure 5.4, we also show the
logC(r) versus log r for different embedding dimension.

Figure 5.3: Correlation sum of fetal heart rate for increasing embedding dimension m = 2 − 16.
Estimated correlation dimension by local slope approach. The proper scaling region ranges from rl = 2.7
to ru = 7.4, hence D2 = 3.5.

Figure 5.4: Estimated correlation dimension using logC(r) versus log r for increasing embedding
dimension m = 2− 16.

5.3.2 Wavefrom fractal dimension
Generally, these methods are based on applying measurement function in the selected interval
or region. For different size of interval we get different number of points satisfying given con-
dition. The fractal dimension is then estimated as a slope on the log-log plot of the intervals
length versus measuring function. We used following methods for waveform dimension estima-
tion: box counting, Higuchi’s, and variance. Note that Higuchi’s and variance method estimate
Hurst exponent, H , that is related to fractal dimension D = E + 1 − H , where E stands for
Euclidian dimension which is equal to one for time series. We also include detrend fluctuation
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analysis in this section although it used for estimation of fractal slope α. As mentioned before,
α is related to Hurst exponentH = α−1, hence we apply the same formula for dimension com-
putation as we did for Higuchi’s and variance method. We theoretically described all methods
above; here let us mention only practical considerations.

Recall that computation of box counting dimension is slow and ineffective but if we consider
functions only the whole procedure could be simplified. These simplifications were proposed
by Boshoff in his paper (Boshoff, 1992). The main considerations are as follows:

• We assume functions only; this means only boxes in columns are counted.

• Highest and lowest value is considered in each column and every box in between is en-
tered.

• Starting with a number of samples which is a power of two it allows the number of
columns to be halved recursively.

Since FHR is self-affine width and height of a box has to be unequal in favor of width or
FHR signal has to be normalized. We utilised the later approach and normalized signal by
mapping it into the unit square (Sevcik, 1998).

Other interesting property is size of interval where the measuring function is applied. This
feature is common for all respective methods. The interval size should not be chosen arbitrarily.
On the small scale, where size is very small, the measure may be biased due to noise. Moreover,
statistical significance have to be ensured (Kinsner, 1994). The restriction on the interval range
results in required data size in order to estimate dimension properly. We examined how the
data length affects estimate of fractal dimension for each method. Let w(t) be a Weierstrass
deterministic cosine function expressed as follows:

w(t) =
N∑
i=0

γ−iHcos(2πγit), 0 < H < 1, (5.1)

where γ > 1 and N is the data length, The fractal dimension of this function is given by
D = E+1−H . We generated a set of sequences of different lengths N with chosen dimension
D = 1.45. The length of sequences ranged from 1000 to 10000 samples. Then, for each length,
we generated 39 sequences in order to establish 95 % confidence intervals. The results are
shown in figure 5.5. The Higuchi method provides good estimates for all data lengths while
variance and box counting method offers biased estimate of fractal dimension.The DFA method
converges to theoretical value for increasing N . The different algorithms for estimation of
fractal dimension were probed by (Esteller et al., 1999). They also concluded that Higuchi’s
method is the most reliable but, also, the most sensitive to noise. Since FHR certainly contains
noise we will also take advantage of the variance method offering robustness to noise (Kinsner,
1994).

The estimated dimension is not dependent only on data length but also on the dimensionality
of data. We examined bias of estimated fractal dimension by varying dimension D = (1, 2) of
Weierstrass function w(t). For each value ofD we generated 39 sequences of lengthN = 5000.
The results in figure 5.6 show that dimension estimated by the box counting method is biased.
The Higuchi’s and variance method provide unbiased estimate of fractal dimension only for
dimension D ≥ 1.5. The DFA method offers biased estimation for D ≤ 1.3 and D ≥ 1.7.
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Figure 5.5: Dependence of waveform dimension estimation on the data length. The Weierstrass function
was generated with different lengths. Then fractal dimension was estimated by box counting, Higuchi’s,
variance, and DFA method.
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Figure 5.6: Estimated fractal dimension versus theoretical value. The sequences were generated by
Weierstrass function where each sequence has length of 5000 samples.

Next, we estimated the two scaling regions as were described by (Higuchi, 1988). He sug-
gested two scaling regions on the log-log plot of some measurement function, e.g. number of
boxes, versus size of region, e.g size of box. These two regions are illustrated in figure 5.7.
Higuchi named the time where the curve bends as critical time τc. This time separates short
Ds and long Dl scale waveform fractal dimension for ≤ τc and > τc, respectively. The region
of the short scale reflects the short time variability while the longer scale represents the long
time irregularity. To standardize estimated dimension we determined the τc for all methods.



Section 5.3. Practical consideration for using nonlinear methods 55

Needless to say that τc was approximately same for all methods, τc ≈ 3 s.

Figure 5.7: Short, Ds, and long, Dl, scale of waveform fractal dimension estimated by Higuchi’s
method. The curve breaks at log(k) = 2.5. This equals to critical time τc = ek/fs ≈ 3 s, where
sampling frequency is fs = 4 Hz.

To conclude this section, the data we use meets demands on required length and reliable
estimate of fractal dimension is provided by Higuchi’s method. The limitation of waveform
fractal analysis lies in biased estimate for low dimension as is shown in figure 5.6. In our work,
we mainly focus on 20 minutes directly before delivery which gives 4800 samples for sampling
frequency fs = 4 Hz. Performed analysis on synthetic Weierstrass function suggests that we
can reliably, by Higuchi’s method, estimate fractal dimension. It is necessary to point out, that
Weierstrass function does not completely reflects nonlinear and stochastic properties of fetal
heart rate. Hence, we have to carefully interpret results of estimated waveform fractal dimen-
sions. For instance (Peng et al., 1995) suggested the minimal data length, for DFA method, to
be N = 8200 samples. Nevertheless, we relax requirements on data size and use this method
anyway but great caution is needed.

5.3.3 Entropy

First of all, let us summarize basic facts about estimation of entropy which were explained
above in detail, see sec. 4.4.5. First, KS entropy is useless for a noisy time series of finite
length; therefore, ApEn was designed and proved its usefulness for a short and noisy time series.
However, it is biased estimation and dependent on data length. Lastly, suggested SampEn
eliminated drawbacks of ApEn by reducing bias and data length dependence.

Since FHR records have finite length, the entropy estimation in terms of length is of a ma-
jor interest. (Pincus, 1995) showed that ApEn is broadly applicable for data series of length
N > 100. Nevertheless, this was suggested for wide spectrum of applications. In our case,
meaningful data length for ApEn is N ≥ 1000 as it illustrated in figure 5.8(c). ApEn depen-
dence on data length is shown on random numbers with a uniform distribution. Figure 5.8 was
proposed by (Richman and Moorman, 2000) and also depicts ApEn and SampEn as a function
of r.
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(a) (b) (c)

Figure 5.8: SampEn and ApEn of random numbers with uniform distribution. (a) Frequency histogram
of 1000 numbers. (b) SampEn and ApEn as function of r,(m = 2). Straight line represents the theoretical
value. (c) SampEn and ApEn as function of N . For more details about data generation and theoretical
computation see (Richman and Moorman, 2000).

In the previous paragraph, we have shown entropy dependence on data length. Let us now
generate signal with variable regularity, Mix(p) process, and estimate entropy. The Mix(p)
process, figure 5.9, is defined as (1 − z) · x + z · y, where z is a random variable assuming
value 1 with probability p and 0 with probability 1 − p, x is a sequence generated as xj =√

2sin(2πj/12) and y is uniformly distributed variable on [
√

3,−
√

3].
The results of simulation are presented in figure 5.10. Generated sequence were with p(0÷1)

and N = 5000. The tolerance r is generally considered as r = (0.15 − 0.2) · SD, where SD
stands for standard deviation of time series. The choice of m was proposed by (Pincus and
Viscarello, 1992). They concluded, the best results are achieved when m = 2. However, this
holds only in cases when a dynamical system is not purely deterministic (Pincus, 1995).
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Figure 5.9: The Mix(p) process with p = 0.2 and 0.8.

Performed simulation met our expectations and for periodic and regular process the entropy
was lower; whereas, for more irregular and random process it was higher. Thus, we verified that
entropy is useful for the signal differention.
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Figure 5.10: Estimated ApEn and SampEn for Mix(p) process. Adjusted values: m = 2 and r =
{0.15, 0.2}.

5.3.4 Lempel Ziv Complexity
Lempel Ziv Complexity (LZC) examines reoccurring patterns in time series. The more reoc-
curring patterns, the less complex signal. The LZC method estimates complexity of encoded
signal so that dynamical changes of signal are replaced with particular character. As mentioned
in section 4.4.6, we used binary encoding in order to avoid dependence of results on quantifi-
cation criteria and normalization procedures. The required data length for LZC was examined
by (Ferrario et al., 2004). They concluded, the minimum length is 1000 samples for binary
encoded data. For the detailed information about used data see referenced paper. Here let us
present the estimated complexity of Mix(p) introduced above in section 5.3.3. As expected with
growing stochastic component the complexity increased. The encoded Mix(p) process is shown
in figure 5.11(a) and the results of estimated LZC are presented in figure 5.11(b).
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Figure 5.11: Results of estimated complexity for Mix(p) process. (a) encoded sequence of Mix(0.05),
(b) normalized complexity of Mix(p) where probability p ranges from 0 to 1. The sequence length is
N = 5000.





Chapter 6

Results

In this chapter, we present results of fetal heart rate analysis and classification. These results
are evaluated in terms of ability to discriminate normal and abnormal fetal heart rate signals.
We also perform feature selection in order to find the most suitable features for our domain
and, more importantly, reduce dimensionality of the data for further classification. We also
emphasize the reasons why some methods are superior to others. At the end of this chapter, a
comparison of achieved results with related works is carried out.

6.1 Analysis of fetal heart rate

We analysed all records in database by methods that were described in section 4.4. In table 6.1
we present the abbreviations of respective methods and thus our features.

D2 correlation dimension estimated from local slopes of correlation sum
D2 Takens est. correlation dimension estimated using Takens formula
ApEn Approximate Entropy, ApEn(2,0.15) - m = 2 and r = 0.15
SampEn Sample Entropy
LZC Lempel Ziv complexity with binary coding
Dσ Variance fractal dimension
D0 Box counting fractal dimension
DHiguchi fractal dimension estimated by Higuchi’s method
DDFA fractal dimension estimated by detrend fluctuation analysis method
Dsname fractal dimension estimated on short scale (below critical time τc)
Dlname fractal dimension estimated on long scale (above critical time τc)

Table 6.1: Abbreviations of features

The frequencies of all features for both normal and abnormal records are shown in figure 6.1.
The features of normal records are marked by grey color while features of abnormal records
are represented by black color. It is apparent that features have different estimated values for
different class. The discrimination of two classes is less obvious for features, e.g. Dlσ and
DsDFA while for features, e.g. DsHiguchi and LZC the difference between features obtained
from normal and abnormal class is evident.
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Figure 6.1: The distribution of features’ values for respective classes. Grey color represents features of
normal FHR tracings and black color represents features of abnormal FHR.

In order to be able to classify significance that these distributions are different, we employed
methods of statistical testing. Since the distributions do not follow normal distribution we used
Mann-Whitney U test statistics which does not require normal distribution. This test statistics
try to reject the null hypothesis that the two distributions differ by the median value on some
confidence level, usually p < 0.01. In table 6.2 we show mean value µ and standard deviation
σ, and Mann-Whitney U test statistics of estimated features.

The null hypothesis can be rejected for all methods. The distribution of normal and ab-
normal features are better visible on the boxplots shown in figure 6.2. The abnormal class is
represented by zero and normal by one. Considering Mann-Whitney U test the best performing
features areDsHiguchi, LZC, andDs0,D0,DHiguchi, SampEn(2,0.15), and SampEn(2,0.2). This
corresponds to observation of results distribution in figure 6.1 and figure 6.2. Note that conclu-
sion about performance are only preliminary. In the following section we will evaluate features
and, more importantly, their combination by various methods. It is probable that combination
of features will yield to selection of different features.

It is necessary to discuss the values of estimated correlation dimension D2, see table 6.2.
In section 5.1 we searched for optimal embedding dimension m. Cao’s method (false nearest
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Method normal (µ± σ) abnormal (µ± σ) Mann-Whitney
ApEn(2,0.15) 0.373 ± 0.162 0.245 ± 0.108 1.30e-008
ApEn(2,0.2) 0.284 ± 0.132 0.183 ± 0.089 1.50e-008
Sampen(2,0.15) 0.263 ± 0.131 0.169 ± 0.080 2.13e-008
Sampen(2,0.2) 0.198 ± 0.101 0.128 ± 0.063 5.79e-008
LZC 0.556 ± 0.150 0.419 ± 0.095 2.84e-011
Dσ 1.430 ± 0.105 1.348 ± 0.105 1.89e-007
Dsσ 1.319 ± 0.115 1.235 ± 0.081 2.62e-007
Dlσ 1.569 ± 0.156 1.476 ± 0.166 1.04e-004
D0 1.323 ± 0.081 1.251 ± 0.076 4.37e-009
Ds0 1.183±0.083 1.111±0.053 1.65e-010
Dl0 1.393±0.092 1.319±0.100 3.20e-007
DHiguchi 1.366±0.102 1.274±0.098 2.61e-009
DsHiguchi 1.216±0.096 1.129±0.057 1.51e-011
DlHiguchi 1.536±0.149 1.439±0.181 2.94e-005
DDFA 1.421 ± 0.118 1.338 ± 0.117 1.20e-006
DsDFA 1.226 ± 0.186 1.129 ± 0.162 3.34e-004
DlDFA 1.546 ± 0.139 1.462 ± 0.154 5.93e-005
D2 2.294 ± 0.633 1.902 ± 0.436 8.20e-006
D2 - Takens est. 2.279 ± 0.629 1.909 ± 0.415 6.64e-006

Table 6.2: Mean, µ, standard deviation, σ, and Mann-Whitney U test statistics for estimated features
values.

neighbors algorithm with additional stopping criteria) suggested sufficient m to be in range of
m = 5− 6. This implies rather high dimensional underlying dynamics but, as table 6.2 shows,
the value of D2 is small in comparison with found m. There are three possible explanations.
First, the algorithm of Cao provides sufficient integer m for proper embedding which is not
always necessary. Second, the RR intervals from external (ultrasound) records were smoothed.
Last, during preprocessing stage, artefacts were replaced by linear interpolation, i.e. a complex
behaviour was replaced by line which yielded to low correlation dimension. We verified the
later hypothesis on the Normal Sinus Rhythm RR interval database (Goldberger et al., 2000).
The estimated correlation dimension for the signal without artefacts was D2 = 4.5 while for
20% signal contaminated with artefacts the dimension decreased to D2 = 3.7. The additional
decrease of D2 was, most probably, caused by measurement process. To be more specific, the
external monitoring uses Doppler ultrasound for fetal heart beat detection. These heart beats are
usually determined from periodicity of Doppler envelope using autocorrelation function. This
function tends to average slight successive changes of heart beats resulting in lost of fetal heart
rate variability (Jezewski et al., 2006).

It is important to notice that results of waveform fractal dimension in table 6.2 resemblance
to the results achieved in section 5.3.2 where we analysed the synthetic Weierstrass cosine
function. We concluded that Higuchi method provides unbiased estimate of fractal dimension,
whereas the box conting method provides underestimated and box counting and DFA method
offer overestimated fractal dimension. This conclusion corresponds to the values present in
table 6.2.
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Figure 6.2: Box plots of features for different class. The pathological, abnormal class is represented by
the number 0 while normal class by the number 1.

6.2 Feature selection

The statistical analysis performed in the previous section can be considered as simple feature
selection where features with the lower p-value are considered to be more significant. In this
section we continue with features assessment and rank them according to their power to dis-
criminate normal and pathological fetuses and suitability for the further classification. In order
to evaluate the best features we rank features obtained from particular feature selection methods.
Those features with the best rank are selected for classification.

First, we examined correlation beetwen particular feature and class. In addition, we es-
timated the intercorrelations among all features and evaluated the significance of correlation.
The results form the correlation matrix where rows and columns are equal to number of fea-
tures plus class. Since this representation is cumbersome, we present it only in the appendix B.
To be able to better distinguish data we picture the correlation matrix as an image where color
scales are used to symbolize the values of correlation coefficients. Such representation is illus-
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trated in figure 6.3. The corresponding p-values were all p < 0.01. Hence, we can conclude
that correlations are statistically significant.
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Figure 6.3: Correlation matrix represented as image often referred as correlation map. Scale gives value
of R for each variable pair.

In general, we can conclude that fractal dimension estimated by various methods are more
or less correlated among themselves. However, some interesting properties can be find by
examining the correlation map and these are as follows: First, the fractal dimensions estimated
on short scale (Dsσ,Ds0,DsHiguchi,DsDFA) are, as it was expected, in strong correlation. This
hold also for long scale dimensions. Second, the long scale dimension Dl is more correlated
with dimension D than is the short scale dimension Ds. This is a consequence of imbalanced
number of points used for the short and long scale estimation. Due to finite data precision,
the size of region can not be decreased towards zero and fractal dimension is estimated only
for few lengths. Therefore, dimension D estimated across the whole scale tends to long scale
dimension Dl.

The entropy measures ApEn and SampEn are in strong relationship and also moderately
correlate with class. The best performance, in terms of correlation, achieved Lempel Ziv com-
plexity and waveform fractal dimension estimated on short scale by Higuchi’ and box counting
method DsHiguchi and Ds0, respectively.

Next, we performed feature selection in Weka data mining software (Witten and Frank,
2005). We used correlation based feature selection (CFS), information gain (InfoGain), and
wrapper method using Naive Bayes classifier, for details and theory see section 4.6.1. The
10-fold cross-validation technique was used for evaluation of features quality. Test statistics
of Mann-Whitney and correlation criteria assess features individually, i.e. each feature is eval-
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uated independently of all others. The rest methods, CFS, InfoGain, and Wrapper of Naive
Bayes, assess subset of features. Thus, redundant features are excluded but complementary
preserved. We evaluated the results of selection by a hybrid approach. First, the features from
Mann-Whitney statistics testing, correlation criteria, and InfoGain were ordered according to
performance and non-integer rank between zero and five was assigned. Second, for CFS and
wrapper method a feature was considered if appeared at least in one fold of cross-validation.
The best performing feature was assigned rank zero and for the worst feature, i.e. feature that
not appeared in any fold of cross-validation, rank five.

The results of feature’s rank for each method are presented in table 6.3. The best performing
features are those with the lowest overall score. It is necessary to point out that this score is
rather a suggestion than absolute order.

Method Mann-Whitney Corr. criteria CFS InfoGain Wrapper Overall score
ApEn(2,0.15) 1.58 1.05 3 1.84 4 11.47
ApEn(2,0.2) 1.84 1.84 4 2.89 3 13.58
SampEn(2,0.15) 2.11 2.11 1 2.37 3 10.58
SampEn(2,0.2) 2.37 2.63 3 3.68 4 15.68
LZC 0.53 0.53 0 0.26 0 1.32
Dσ 2.63 2.89 4 3.16 4 16.68
Dsσ 2.89 2.37 0 1.05 3 9.32
Dlσ 4.74 4.47 4 5 5 23.21
D0 1.32 1.58 0 0.53 2 5.42
Ds0 3.16 0.79 0 0.79 1 5.74
Dl0 0.79 3.16 4 2.63 3 13.58
DHiguchi 1.05 1.32 4 1.58 5 12.95
DsHiguchi 0.26 0.26 4 1.32 4 9.84
DlHiguchi 4.21 4.21 4 3.95 4 20.37
DDFA 3.42 3.68 4 4.21 3 18.32
DsDFA 5 5 4 4.74 5 23.74
DlDFA 4.47 4.74 4 4.47 3 20.68
D2 3.95 3.42 4 3.42 5 19.79
D2 - Takens est. 3.68 3.95 2 2.11 1 12.74

Table 6.3: Results of feature selection. Feature’s rank represents its suitability for our domain. Note that
the lower overall score the better feature performs in the domain. For details about ranking, see text.

We have chosen eight best performing features. These are as follows: LZC, D0, Ds0, Dsσ,
DsHiguchi, SampEn(2,0.15), ApEn(2,0.15), and D2 estimated by Takens. It is surprising that
short scale fractal dimension Ds is included three times. Since Ds is strongly correlated for
all methods, the inclusion to the eight best performing features is questionable. Considering
table 6.3 we can conclude that DsHiguchi has strong correlation with class and discrimination
of two classes as well, whereas Ds0 and Dsσ perform best when subset of features is consid-
ered. Considering feature subset, only InfoGain method ranks DsHiguchi as usefull feature, the
other methods, CFS and Wrapper, suggest it as insignificant. Based on this evidence we can not
exclude any ofDs. The situation is easier for SampEn and ApEn. They are also in strong corre-
lation among themselves but when subset of features is consider they turns out to be almost the
same. Therefore, we excluded ApEn(2,0.15) because it performed worst on CFS and Wrapper.
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Eventually, we have chosen seven features.
From all of features, the best performing was Lempel Ziv complexity. The complexity of

fetal heart rate decreases when repetitive patterns occurs, such as uniform and variable deceler-
ations. However, as we pointed out in section 2.2.1, only uniform late and complicated variable
decelerations are connected with marked fetal hypoxia. As a result, those records with early
uniform and uncomplicated variable decelerations had also decreased complexity. We shall
point out that these records are problematic for all methods and can be properly analysed only
if uterine pressure is considered. The short scale fractal dimension estimated by box counting,
variance, and Higuchi’s method suggests that decreased short time variability is important in-
dicator of metabolic acidemia. The worst results were achieved by DFA. It is a consequence
of relaxed requirements on data length. (Peng et al., 1995) proposed the minimal data length of
N = 8200 samples. However, we used segments of length N = 4800 samples.

6.3 Feature classification
A classifier operates in feature space and tries to discriminate features into two groups: normal
and pathological. Feature space is formed by the previously selected features (LZC, D0, Ds0,
Dsσ, DsHiguchi, SampEn(2,0.15), and D2 estimated by Takens) with dimension equal to the
number of features. As mentioned above, we utilised 10-fold cross-validation and then used
following classifiers: Naive Bayes, Support Vector Machine (SVM), and decision tree (C4.5).
For the SVM, the polynomial kernel and penalty parameter C = 1 were adjusted. The classifi-
cation results are present in table 6.4. From all performance measures, the specificity is of major
importance since a classifier with higher specificity causes lower number of false alarms that
leads to lower rate of unnecessary intervention. Regarding the specificity, the SVM performed
best. However, statistical tests revealed that difference between individual classifiers is statisti-
cally insignificant on p < 0.01 confidence level. Only accuracy of Naive Bayes is significant to
accuracy of C4.5.

Naive Bayes Support Vector Machine decision tree C4.5
accuracy [%] 73.08 72.25 65.2
sensitivity 0.84 0.78 0.74
specificity 0.64 0.7 0.57
geometric mean 0.73 0.74 0.65
AUC 0.79 0.74 0.69

Table 6.4: Results of feature classification.

We achieved classification results of 78% of sensitivity and 70% specificity using nonlinear
features only. These results are comparable to inter-observer variability (Amer-Wåhlin et al.,
2005). Let us, in detail, compare classification performance of nonlinear features with linear
and morphological ones (Chung et al., 1995; Salamalekis et al., 2002; Georgoulas et al., 2006,
2007). It is necessary to point out that direct comparison of these works, which also assessed
fetal heart rate intrapartum, is not feasible because different methodologies were used. (Chung
et al., 1995) reported sensitivity 88% and specificity 75%. They used the same pH threshold
7.15 but worked with small sample size (n = 73). (Salamalekis et al., 2002) achieved good
performance of 100% sensitivity and 92.5% specificity for pH borderline of 7.15. However,
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they worked also with small sample size (n = 61) and, in addition, employed combination of
fetal heart rate features and features from pulse oximetry signal that are not standard in clinical
settings. (Georgoulas et al., 2006) achieved 85% sensitivity and 70% specificity. They used
substantially larger data set than the two former works with (n = 130) records. However, from
the all records only 30 were pathological. Therefore, they used SMOTE technique to balance
number of examples in each class. Since this technique operates in feature space it is question-
able if the artificially created pathological features reflect the real fetal state. Moreover, they
employed the two pH thresholds. First determining pathological fetuses, pH < 7.10, and second
determining the normal fetuses, pH > 7.20. Records between these thresholds were excluded. In
the later work (Georgoulas et al., 2007), using grammatical evolution, they obtained sensitivity
93 % and specificity 87 %, though the same restriction applies.

Comparing with the results reported by (Chung et al., 1995; Georgoulas et al., 2006), they
achieved specificity and sensitivity are comparable to our results. Comparing with the results
of (Salamalekis et al., 2002; Georgoulas et al., 2007), they are superior to our. However, caution
is needed since it is not direct comparison.
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Conclusion

This work offers a thorough review of nonlinear methods (fractal dimension, entropy, complex-
ity) and examines their applicability to fetal heart rate analysis. The suitability of nonlinear
methods for heart rate analysis has already been proven in adults heart rate research. It is gener-
ally accepted that human heart is driven by deterministic chaos and fluctuates on different time
scales. Because segments of fetal heart rate of short duration were used, the surrogate date test
was performed. The null hypothesis that fetal heart rate is linear stochastic process was rejected
on p < 0.05 confidence level. Hence, the use of nonlinear methods even for fetal heart rate of
short duration has been justified.

The fetal heart rate is non-uniformly sampled signal and contains artefacts and noise. In
preprocessing stage, artefacts were removed and signal re-sampled in order to obtain evenly
spaced time instances. In addition, analysis without resampling was carried out. Based on
evidence, it was concluded that non-uniform sampling did not affect analysis results, because
sampling was deterministically non-uniform. Segments of 20 minutes length were used for
analysis. These segments were chosen as close as possible to delivery. All employed nonlinear
methods were theoretically proven only for infinite precision and, more importantly, for infinite
data size. Therefore, it was necessary to establish the required data size where minimal data
length was not established in literature. Only for the detrend fluctuation analysis the data length
was considered insufficient in advance and eventually resulted in poor performance.

In order to analyse fractal dimension of attractor, search for optimal embedding parametres
to properly reconstruct state space from fetal heart rate was carried out. The optimal time
delay was τ = 12.3 ± 9.5 s and optimal embedding dimension m = 6. Afterwards, the
correlation dimension of attractor was estimated. The fractal dimension of fetal heart rate was
found to be lower than expected. This is a consequence of artefacts interpolation and also of
measurement process where subtle variations of successive heart beats were smoothed. Next,
several methods for estimation of waveform fractal dimension were utilized. These methods did
not require underlying deterministic dynamics but only considered the signal as geometrical
representation in two-dimensional space. At last, approximate entropy, sample entropy, and
Lempel Ziv complexity were used for analysis.

The several possible approaches to measure outcome of neonates were discused and based
on literature, artery pH below 7.15 and Apgar score at five minutes below or equal 7 were used
as suitable markers of metabolic acidemia. The performed feature selection showed that most
suitable methods for fetal heart rate analysis were: Lempel Ziv complexity, waveform fractal
dimension estimated by the box counting method, sample entropy and correlation dimension of

67
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attractor. These methods were used for further classification. Lempel Ziv complexity assesses
reoccurring patterns of fetal heart rate and thus reduced variability and repetitive decelerations
of the signal resulted in lower complexity. Also the waveform fractal dimension of short scale
suggested that short term variability is important marker of fetal distress.

The results showed that nonlinear methods are useful even for classification of fetal heart
rate segments of short duration. With arbitrary classifier the achieved results are comparable
with inter-observer variability and with related works that used linear and morphological meth-
ods, although better results were published. The best performing classifier, in term of specificity,
was support vector machine. It achieved sensitivity 0.78 and specificity 0.7. Nevertheless, these
results turned as statistically insignificant in comparison with results of other classifiers (Naive
Bayes, C4.5).

In this work, using only nonlinear methods that are not commonly used, good performance
comparable to inter-observer disagreement was achieved. It is highly probable that inclusion of
linear and morphological features will lead to better performance. This is, however, open space
for further work.

7.1 Future work
Achieved results are promising for further research. It has been proven that nonlinear approach
is useful for fetal heart rate analysis. The performance could be increased by using uterine
pressure in connection with fetal heart rate which is not common practice and definitely worth
exploring. In addition, reconstructed state space could be used for nonlinear interpolation of
artefacts and, moreover, the prediction of fetal heart rate. The future work will also focus on
inclusion of linear and morphological features into the existing system.

It should be helpful to include other additional information about the state of the patient
such as age and possible risk factors as well as utilization of the information provided by the
STAN R© system such as T/QRS ratio or width of the QRS complex.

Measures of outcome, artery pH and Apgar score, were found to be not ideal. Also strict
division into two groups was not probably appropriate. A better division would be to sepa-
rate fetuses into three groups (FIGO, 1986): normal, suspicious, and pathological. As another
outcome measure assessment of records by experienced obstetricians will be used. Then the
two types of measure will be available: objective (pH and Apgar score) and subjective (doctors
assessment).
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Appendix A

Used software

This section serves as a review of software and packages that were used for analysis, feature
selection and classification. The whole program was implemented in MATLAB R© version 7.06
Natick, Massachusetts: The MathWorks Inc., 2008. For the nonlinear time series analysis two
packages were used. First, the TISEAN package (Hegger et al., 1999) written in C language
that offers a broad area of useful tools. This package is specially powerful in combination with
graphical software Gnuplot. The second is MATLAB R© toolbox, OpenTSTOOL (Merkwirth
et al., 2007). The source can be compiled to the mex functions and computationally heavy meth-
ods can be run more effectively. Note that the mex functions were compiled on Linux running
kernel 2.6.24-23 by gcc version 4.2.4. We used this package in implementation for estimation
of time delay, embedding dimension, and correlation dimension. We also used implementation
of (Kaplan and Staffin, 1998) and (Goldberger et al., 2002) for approximate and sample entropy,
respectively.

Feature subset selection and classification were performed in the data mining software
Weka (Witten and Frank, 2005). All graphs and figures of time series were printed using R-
project: A language and environment for statistical computing Vienna, Austria.
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Appendix B

Correlation matrix of features

Estimated correlations between individual features and class are represented by correlation ma-
trix shown in table B.1. The corresponding p-values were all p < 0.01. Hence, we can conclude
that correlations are statistically significant. The corresponding methods for the numbers in the
fist and row and column in table B.1 are as follows: 1. ApEn(2,0.15), 2. ApEn(2,0.2), 3. Sam-
pEn(2,0.15), 4. SampEn(2,0.2), 5. LZC, 6. Dσ, 7. Dsσ, 8. Dlσ, 9. D0, 10. Ds0, 11. Dl0, 11.
DHiguchi, 12. DsHiguchi, 13. DlHiguchi, 14. DDFA, 15. DsDFA, 16. DlDFA, 17. D2, 18. D2

Takens est., and number 19 represents the class.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 1 1.00 0.97 0.98 0.73 0.71 0.64 0.62 0.83 0.74 0.80 0.81 0.77 0.69 0.72 0.49 0.69 0.65 0.55 0.42
2 1.00 1 0.97 0.97 0.72 0.71 0.63 0.63 0.83 0.73 0.80 0.81 0.75 0.70 0.73 0.48 0.70 0.64 0.55 0.41
3 0.97 0.97 1 1.00 0.69 0.66 0.61 0.55 0.79 0.74 0.74 0.77 0.76 0.63 0.67 0.47 0.63 0.61 0.47 0.40
4 0.98 0.97 1.00 1 0.67 0.66 0.60 0.57 0.78 0.72 0.75 0.77 0.74 0.64 0.68 0.47 0.64 0.59 0.45 0.38
5 0.73 0.72 0.69 0.67 1 0.61 0.74 0.39 0.69 0.87 0.57 0.67 0.87 0.40 0.64 0.67 0.46 0.55 0.49 0.48
6 0.71 0.71 0.66 0.66 0.61 1 0.81 0.86 0.89 0.71 0.84 0.90 0.75 0.78 0.98 0.61 0.88 0.49 0.47 0.37
7 0.64 0.63 0.61 0.60 0.74 0.81 1 0.45 0.67 0.81 0.55 0.67 0.83 0.39 0.82 0.84 0.53 0.48 0.39 0.39
8 0.62 0.63 0.55 0.57 0.39 0.86 0.45 1 0.83 0.44 0.87 0.84 0.48 0.92 0.81 0.27 0.90 0.40 0.45 0.28
9 0.83 0.83 0.79 0.78 0.69 0.89 0.67 0.83 1 0.79 0.97 0.99 0.82 0.87 0.88 0.50 0.86 0.66 0.61 0.42

10 0.74 0.73 0.74 0.72 0.87 0.71 0.81 0.44 0.79 1 0.64 0.78 0.97 0.45 0.74 0.74 0.54 0.62 0.51 0.46
11 0.80 0.80 0.74 0.75 0.57 0.84 0.55 0.87 0.97 0.64 1 0.95 0.67 0.95 0.83 0.37 0.88 0.63 0.60 0.36
12 0.81 0.81 0.77 0.77 0.67 0.90 0.67 0.84 0.99 0.78 0.95 1 0.82 0.88 0.90 0.48 0.88 0.64 0.60 0.42
13 0.77 0.75 0.76 0.74 0.87 0.75 0.83 0.48 0.82 0.97 0.67 0.82 1 0.49 0.78 0.69 0.58 0.64 0.53 0.48
14 0.69 0.70 0.63 0.64 0.40 0.78 0.39 0.92 0.87 0.45 0.95 0.88 0.49 1 0.76 0.23 0.89 0.52 0.55 0.28
15 0.72 0.73 0.67 0.68 0.64 0.98 0.82 0.81 0.88 0.74 0.83 0.90 0.78 0.76 1 0.68 0.88 0.50 0.46 0.34
16 0.49 0.48 0.47 0.47 0.67 0.61 0.84 0.27 0.50 0.74 0.37 0.48 0.69 0.23 0.68 1 0.34 0.35 0.26 0.27
17 0.69 0.70 0.63 0.64 0.46 0.88 0.53 0.90 0.86 0.54 0.88 0.88 0.58 0.89 0.88 0.34 1 0.46 0.45 0.28
18 0.65 0.64 0.61 0.59 0.55 0.49 0.48 0.40 0.66 0.62 0.63 0.64 0.64 0.52 0.50 0.35 0.46 1 0.84 0.34
19 0.55 0.55 0.47 0.45 0.49 0.47 0.39 0.45 0.61 0.51 0.60 0.60 0.53 0.55 0.46 0.26 0.45 0.84 1 0.33
20 0.42 0.41 0.40 0.38 0.48 0.37 0.39 0.28 0.42 0.46 0.36 0.42 0.48 0.28 0.34 0.27 0.28 0.34 0.33 1

Table B.1: Correlation matrix for all features. The strongest relationship between feature and class
appears for Lempel Ziv complexity, waveform fractal dimension estimated on short scale by Higuchi’s,
DsHiguchi, and box counting, Ds0, method.
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