
Czech Technical University

Faculty of Electrical Engineering

Department of Cybernetics

MASTER’S THESIS

Efficient Construction of Relational
Features for Machine Learning

Prague, 2009 Author: Ondřej Kuželka

Acknowledgement

I would like to thank my supervisor, Ing. Filip Železný Ph.D., for his invaluable

guidance, interesting discussions and infinite patience when explaining theoretical basics

of ILP to me again and again until I converged to at least some sort of understanding.

I would also like to thank him for the opportunity to work on interesting and actual

problems. Of course, special thanks go also to my parents for their support.

ii

Abstrakt

Tato práce se zabývá efektivńı konstrukćı relačńıch rys̊u v kontextu induktivńıho

logického programováńı. Abychom zrychlili proces konstrukce relačńıch rys̊u, navrhu-

jeme a implementujeme dva algoritmy pro problém θ-subsumpce a dva algoritmy pro

propozicionalizaci pomoćı hierarchických rys̊u. Algoritmy pro θ-subsumpci nazvané Re-

SumEr a ReCovEr testujeme na reálných datech a ukazujeme, že v mnoha, nicméně

ne všech, př́ıpadech překonávaj́ı algoritmus Django považovaný za jeden z nejrychleǰśıch

algoritmů pro θ-subsumpci. Algoritmy RelF a HiFi určené pro propozicionalizaci se

oṕıraj́ı o teoretickou analýzu vlastnost́ı hierarchických rys̊u, která ukazuje, že neredun-

dance a relevance jsou pro hierarchické rysy monotónńı v určitém smyslu, což umožňuje

těmto algoritmům výrazně zmenšit počet rys̊u, které muśı být vygenerovány. V ex-

perimentech se třemi reálnými problémy je demonstrováno, že oba tyto algoritmy jsou

schopny konstruovat rysy s délkou nedosažitelnou existuj́ıćımi systémy RSD a Progol.

Dále je ukázáno, že prediktivńı přesnost pro tyto tři problémy je často bĺızká nejlepš́ım

výsledk̊um uváděným v literatuře. Dále je ještě studována výpočetńı složitost problému

generováńı rys̊u splňuj́ıćıch určité syntaktické podmı́nky.

iii

Abstract

This thesis aims at efficient construction of relational features in the context of in-

ductive logic programming. In order to speed up construction of relational features, we

devise and implement two algorithms for θ-subsumption and two algorithms for proposi-

tionalization for so called hierarchical features. The algorithms for θ-subsumption called

ReSumEr and ReCovEr are tested on real-life data. They are shown to be faster than

state-of-the-art θ-subsumption algorithm Django in many, but not all cases. The proposi-

tionalization algorithms called RelF and HiFi are based on a theoretical analysis, which

shows that relevancy and irreducibility properties of hierarchical features are monotone in

a certain sense, which enables the algorithms to considerably reduce numbers of features,

which need to be constructed. On three real-life datasets, RelF and HiFi are shown

to construct features of lengths achievable neither by state-of-the-art propositionaliza-

tion system RSD, nor by a general ILP system Progol. Predictive accuracies obtained

on these datasets are close to best results reported in literature. Finally, complexity of

feature construction is analyzed.

iv

Contents

List of Figures x

List of Tables xi

1 Introduction 1

2 Preliminaries 3

2.1 A Few Concepts from Complexity Theory 3

2.2 Constraint Satisfaction Problems . 4

2.3 θ-subsumption . 7

2.4 Propositionalization . 9

2.4.1 Feature Construction . 9

2.4.2 Extension Computation . 10

2.4.3 Feature Filtering . 11

2.4.4 State-of-the-Art Propositionalization Systems 11

2.4.4.1 RSD . 11

2.4.4.2 WARMR . 12

2.4.4.3 Feature Description Logics 12

2.4.4.4 Horn-SAT Reduction . 13

2.5 Runtime Distributions . 14

2.6 Restart strategies . 17

3 Two θ-subsumption Algorithms 21

3.1 Runtime Distributions . 22

3.1.1 Basic Algorithm . 22

3.1.2 Subsumption Test Runtime Distributions 24

3.2 ReSumEr: A Restarted θ-subsumption Algorithm 27

3.2.1 Designing a Restarted Subsumption Test Algorithm 27

vii

3.2.2 Experimental Evaluation . 34

3.2.2.1 Generated Data . 35

3.2.2.2 Predictive Toxicology Challenge Data 37

3.3 ReCovEr: A Restarted θ-subsumption Estimator 39

3.3.1 Derivation of Coverage Estimator 39

3.3.2 Experiments . 46

3.3.2.1 Sensitivity Analysis . 47

3.3.2.2 Experiments with Generated Graph Data 47

3.3.2.3 Experiments with Real-World Data 49

3.4 Discussion of Experiments with ReSumEr and ReCovEr 52

4 Two Propositionalization Algorithms 54

4.1 Analysis of Hierarchical Features . 55

4.1.1 Hierarchical Features . 55

4.1.2 Irreducibility . 57

4.1.3 Relevancy . 59

4.2 RelF . 62

4.2.1 Algorithm . 62

4.2.2 Experiments . 65

4.2.2.1 Mutagenesis . 66

4.2.2.2 CAD Documents . 67

4.2.2.3 Predictive Toxicology Challenge 68

4.3 HiFi . 68

4.3.1 Propositionalization Setting of HiFi 69

4.3.2 The Propositionalization Algorithm 69

4.3.3 Experimental Evaluation . 74

4.3.3.1 Predictive Toxicology Challenge 75

4.3.3.2 Mutagenesis . 76

4.3.3.3 CAD Documents . 77

4.3.3.4 Evaluation of HiFi for Feature Construction 78

4.4 Discussion of Experiments with RelF and HiFi 79

5 Complexity of Feature Construction 81

5.1 A Negative Result . 81

5.2 A Positive Result . 87

viii

6 Conclusions 89

A Algorithmic Details I

A.1 Generators of Random θ-subsumption problems I

A.2 Canonical ordering ≺c . III

B List of Software Used VI

C The Enclosed CD Contents VII

ix

List of Figures

2.1 Erratic convergence of mean of a heavy-tailed distribution 15

2.2 Pareto (+) and normal (◦) complementary probability distributions . . . 17

3.1 Complementary runtime distributions for random graph data 26

3.2 Effect of restarts for satisfiable (left) and unsatisfiable (right) instances . 28

3.3 Effect of individual restart strategies . 33

3.4 Comparison of ReSumEr2 (◦) and Django (2) on Erdos-Rényi random

graphs. 36

3.5 Simulation of ReCovEr with increasing cutoff sequences 44

3.6 Sensitivity of ReCovEr to violations of Assumption 3.1 46

3.7 Precision of ReCovEr (◦) and ReCovEr-E (+) 48

4.1 Illustration of reuse of pos features for computation of domains. 65

4.2 An example graph corresponding to template used in Example 4.5. Edge

labels are computed from Eq. 4.1. 73

4.3 Feature construction times for RSD (solid) and HiFi (dashed) 79

5.1 Illustration of proof of Theorem 5.2 . 84

x

List of Tables

3.1 Average runtimes for hypothesis search for the PTC dataset and max.

hypothesis size 10. 38

3.2 Average runtimes for hypothesis search for the PTC dataset and max.

hypothesis size 100. 38

3.3 Avg. estimation runtimes for the configurations from Fig. 3.7. 49

3.4 Average runtimes of the learner (Algorithm 10, p = 0.75, Tries = 10) for

real-world datasets. 51

3.5 Quality of learned hypotheses for ReCovEr 51

3.6 Quality of learned hypotheses for Django 52

4.1 Accuracies on Mutagenesis dataset. 67

4.2 Accuracies on CAD dataset. 67

4.3 Accuracies on PTC dataset for male rats. 68

4.4 Propositionalization runtimes and accuracies for the PTC dataset 75

4.5 Propositionalization results on PTC dataset for male rats. 76

4.6 Propositionalization runtimes and accuracies for the Mutagenesis dataset 76

4.7 Propositionalization results on Mutagenesis dataset. 77

4.8 Propositionalization runtimes and accuracies for the CAD dataset 78

4.9 Propositionalization results on CAD dataset. 78

xi

Chapter 1

Introduction

Inductive logic programming (ILP) [10] is a branch of machine learning which focuses

on learning first order theories from data. An ILP system is typically given a set of

positive examples E+, a set of negative examples E−, a background theory B and a

language bias and its task is to find a theory H such that ∀e+ ∈ E+ : (B ∧ H) |= e

and ∀e− ∈ E− : (B ∧ H) 2 e−, i.e. H and B explain (cover) all positive examples and

do not explain any negative example, and (H ∧ B) 2 2, i.e. H is consistent with B.

This setting is, however, very hard (undecidable in general because of the |= relation),

therefore several less complex and also less expressive modifications of the outlined setting

have been proposed in literature.

One such approach to make ILP more tractable is to restrict hypotheses H to be

function-free non-recursive Horn clauses with size smaller than some k and examples to be

ground Horn clauses. In such case, |= relation can be replaced by so-called θ-subsumption

and the corresponding ILP problem becomes decidable, though its complexity remains

extremely high: NPNP [15]. The inherent hardness of this restriction of the general

ILP problem is not the only reason why it is not practical for real-life data. Clearly,

not many real-life datasets are noise-free and a theory, which would correctly separate

positive examples from negative examples need not always exist. Even if such a theory

exists, it need not perform very well on unseen data because it could be overfitted to

training data. While this has been also studied in ILP since its beginning (e.g. in [31]),

it has been studied more extensively in literature on attribute value learning. It would

be therefore desirable to exploit the results from attribute value learning in ILP.

Propositionalization is a framework, which enables us to exploit results from attribute

value learning for classification learning in the context of ILP. The basic idea behind

propositionalization is to generate many first order formulas (called features) and to let

1

CHAPTER 1. INTRODUCTION 2

these formulas act as attributes for attribute value learners. While the basic concept

of propositionalization is quite straightforward, developing an efficient propositionaliza-

tion system remains a hard task because several subproblems, which are encountered

in propositionalization, are generally NP-hard. A propositionalization system needs to

solve basically the following three problems: feature construction, extension computation

(i.e. computation of examples, which are covered by a feature) and feature filtering. In

this thesis, we touch all three tasks, though, we do not address all of them in their full

generality.

This thesis is organized as follows. In Chapter 2, we describe the necessary background

and we briefly overview some existing propositionalization systems. In Chapter 3, we

develop two novel algorithms for θ-subsumption. In Chapter 4, we develop two novel

propositionalization algorithms for a limited class of features with so called hierarchical

bias. In Chapter 5, we study complexity of feature construction. Chapter 6 concludes

the thesis.

Bibliographical Notes

Since some parts of this thesis contain results which are based on material already pre-

sented in author’s bachelor’s thesis [23], we feel it is important to clarify originality of the

results presented here. Nothing in Chapter 2 is novel as this chapter is intended to make

the reader familiar with existing results, which are more or less exploited in the other

chapters. Chapter 3 presents two algorithms for θ-subsumption problem. Early versions

of these algorithms appeared also in authors’s bachelor thesis. However, the results in this

chapter have been significantly extended. A new restarted strategy was developed and

analyzed and new heuristics were developed and implemented. The algorithms were also

reimplemented from scratch, which caused considerable speed-up. Finally, experiments

with real world data were performed. Chapters 4 and 5 contain novel work, which was

not contained in the bachelor’s thesis.

Results presented in Chapter 3 were published in [26] and [24]. Results presented in

Chapter 4 were published in [27] and [25].

Chapter 2

Preliminaries

2.1 A Few Concepts from Complexity Theory

In this section, we provide definitions of several concepts from complexity theory. We

avoid definitions based on non-deterministic Turing machines, which, despite their ele-

gancy, are not necessary for problems discussed in this thesis. This section is mostly

based on material from books [42, 2].

Definition 2.1 (Big-O notation): We write f(n) = O(g(n)) if f(n) < k ·g(n) for some

k, for all n > n0. I

The next definition introduces the class of decision problems P, which roughly1 corre-

sponds to a class of efficiently decidable problems.

Definition 2.2 (P): Let DTIME(f(n)) be the set of decision problems computable

in time O(f(n)) by a deterministic Turing machine. Class P can be defined as P =

∪c≥1DTIME(nc), where n refers to length of the input. I

In the following definition, the class of decision problems NP is introduced. NP is

the class of decision problems, whose solution is easy to verify, i.e. in polynomial time.

It is an open question whether P = NP, but it is believed by most computer scientists

that P 6= NP.

Definition 2.3 (NP): A decision problem P is in NP if there exists a polynomial p :

N → N and a polynomial-time Turing machine M (called verifier): such that for every

1We say roughly corresponds, because an algorithm with complexity n100 would be no more useful

than an algorithm with exponential time complexity in practice.

3

CHAPTER 2. PRELIMINARIES 4

input x, a string c, |c| < p(|x|) (called certificate) exists such that M accepts (x, c) if

and only if the answer for the input x is yes. I

The class of decision problems co-NP, introduced through Definition 2.4, contains deci-

sion problems, for which the answer no can be easily verified, i.e. in polynomial time. It

holds NP ∩ co-NP 6= ∅ and it is commonly believed that NP 6= co-NP.

Definition 2.4 (co-NP): 2. A decision problem P is in co-NP if there exists a poly-

nomial p : N → N and a polynomial-time Turing machine M (called verifier): such that

for every input x and for every string c, |c| < p(|x|), M accepts (x, c) if and only if the

answer for the input x is yes. I

Definition 2.5 (Polynomial-time reduction): We say that a decision problem A is

polynomial-time reducible to a decision problem B denoted by A ≤p B if there is a

polynomial-time computable function f such that for every instance x of problem A,

f(x) is an instance of problem B and x has a solution if and only if f(x) has solution.I

Definition 2.6 (NP-completeness): We say that a decision problemB is NP-complete

if A ≤p B for every A ∈ NP and B ∈ NP. I

2.2 Constraint Satisfaction Problems

Many combinatorial search problems, among them θ-subsumption, which is important

for ILP, can be solved within the constraint satisfaction framework. The exposition of

constraint satisfaction, which is presented in this section, is based on the book [8].

The constraint satisfaction problem (CSP, sometimes also called constraint network)

is defined as follows [38].

Definition 2.7 (Constraint satisfaction problem): Let V be a set of variables

{V1, V2, . . . , Vn}, D a set of non-empty domains {D1, D2, . . . , Dn} for each variable Vi ∈ V
and let C be a set of constraints {C1, C2, . . . , Cm}. Each constraint Ci specifies the al-

lowable combinations of values that can be assigned to variables constrained by it. The

task is to find a mapping from V onto D such that after assigning values given by this

mapping to the respective variables no constraint Ci ∈ C is violated. I

2This is not the most commonly used definition of the class co-NP. However, a convenient property of

this definition is that it differs from the definition of NP only slightly and thus provides more intutition

about their relationship. This definition was taken from [2]

CHAPTER 2. PRELIMINARIES 5

One of the main advantages of the CSP framework is that it enables the search algo-

rithm to exploit the structure of constraints by so called constraint propagation methods.

We will briefly mention two such methods: forward checking (FC) and arc consistency

(AC), which are implemented in the θ-subsumption algorithms developed Chapter 3 and

in the state-of-the-art θ-subsumption algorithm Django.

Forward checking is a simple constraint propagation method, which is used during

backtracking search. Whenever a value is assigned to a variable V during the search, the

FC procedure propagates this assignment to all unassigned variables that share at least

one constraint with V and prunes their domains accordingly. The use of FC has several

advantages over plain backtracking. One of such advantages is that it makes it possible to

detect inconsistencies soon in the search process (when the domain of a variable becomes

empty after FC). It also enables it to use variable ordering heuristics based on domain

sizes.

Arc consistency is a method much more powerful than FC, though it pertains to

higher overhead. The arc consistency algorithm removes all values from their respective

domains, which are not 2-consistent according to Definition 2.8.

Definition 2.8 (Arc consistency): We say that value a ∈ Di is arc consistent (or 2-

consistent), if there is a value bj ∈ Dj for every Vj, for which there is a constraint c(Vi, Vj),

and (a, bj) satisfies the constraint c.

We say that a CSP is arc consistent if every variable Vi ∈ V has at least one arc

consistent value. I

The efficiency of arc consistency lies in its ability to reduce the variable domains.

Bessiere [3] shows that arc consistency can vastly outperform FC on hard problem in-

stances. A pleasant property of arc consistency is that showing that a CSP is arc consis-

tent is a necessary and sufficient condition to solve tree structured CSPs. Its drawback is,

however, its relatively high time complexity. The best currently known arc consistency

algorithms have worst case time complexity given by O(v2c), where v is the variable do-

main size and c the number of constraints. The most well-known algorithm is, however,

the AC-3 algorithm (Algorithm 2), which has worst case time complexity O(v3 · c) but

which has also quite favorable practical average performance [8]. AC-3 is used both in

Django and in our θ-subsumption algorithm.

Next, we define projection of constraints (projection networks), which can be used

for constraint propagation for non-binary CSP problems. Even though performing arc-

consistency propagation on a projected network is generally weaker than performing

CHAPTER 2. PRELIMINARIES 6

Algorithm 1 AC-3: Given a binary CSP problem, AC-3 filters domains of the CSP-

variables

1: Input: Set of variables V , Set of variable domains D, Set of constraints C;

2: queue← ∅
3: for every pair {xi, xj} which is contained in at least one constraint ck ∈ C do

4: queue← queue ∪ {(xi, xj), (xj, xi)}
5: end for

6: repeat

7: (xi, xj)← Pop(queue)

8: Revise(xi, xj)

9: if Revise(xi, xj) caused a change in some domain then

10: queue← {(xk, xi) : k 6= i, k 6= j}
11: end if

12: until queue = ∅

Algorithm 2 Revise: Given a pair of of CSP-variables, filters D1 such that V1 is arc-

consistent relative to Vj

1: Input: Variables V1, V2, Domains D1, D2;

2: for ∀ai ∈ D1 do

3: if there is no aj ∈ D2 such that (ai, aj) is consistent then

4: Delete ai from D1

5: end if

6: end for

general arc-consistency on the respective non-binary CSP problem, it is still quite useful

and has smaller overhead.

Definition 2.9 (Projection Network): Let ρ be a constraint over V = {V1, V2, . . . , Vn}.
The projected constraint network is a network composed from constraints ck over all pairs

of variables (Vi, Vj) ∈ V 2 such that ck contains pairs of values, which can be substituted

to the respective variables Vi, Vj without making ρ inconsistent. I

The constraint propagation methods as well as other methods used for solving con-

straint satisfaction problems are treated in more detail in [8].

CHAPTER 2. PRELIMINARIES 7

2.3 θ-subsumption

Inductive logic programming [32] relies heavily on testing whether a hypothesis C covers

an example e. In the learning from entailment setting [31], an example e is said to be

covered by a clause C if and only if C |= e. Because such tests are generally undecidable

in the first order logic, Plotkin [34] defined θ-subsumption, which can be viewed as an

approximation of implication.

Definition 2.10 (θ-subsumption): Let C, D and e be clauses. The clause C θ-

subsumes e, if and only if there is a substitution θ such that Cθ ⊆ e. If D �θ C

and C �θ D, we call C and D θ-equivalent (written C ≈θ D). I

θ-subsumption is incomplete, which means that there are clauses C and E, such that C

does not θ-subsume e, but C |= E [40]. Nevertheless it always holds that if C θ-subsumes

E, then C |= E, which immediately follows from the fact that both C and e are clauses,

i.e. disjunctions of literals, and therefore whenever C is true in an interpretation, e must

be true in this interpretation as well, because e contains Cθ.

In this thesis, we constrain ourselves to function-free non-recursive formulas, i.e. for-

mulas, which contain no function symbols other than constants.

θ-subsumption can be solved in the constraint satisfaction framework introduced in the

previous section. A constraint representation of the θ-subsumption test is very straight-

forward, if we allow n-ary constraints as shown later in this section. The most advanced

CSP algorithms were, however, developed for binary constraints. Luckily, as is shown in

[38], any CSP with n-ary constraints can be rewritten to a representation with just unary

and binary constraints. Two binarizations of θ-subsumption are described in [30].

The θ-subsumption algorithms presented in this thesis use neither binarization nor

more general methods for n-ary constraints. Instead, they use forward checking, which

applies to binary and non-binary cases in roughly the same manner, and arc-consistency

on projections (Def 2.9) of the generally non-binary constraint networks.

Both θ-subsumption and CSP problems with finite domain are instances of NP-

complete problems. Therefore it is not surpising that they can be converted between

each other in polynomial time. However, θ-subsumption and finite-domain CSP are more

similar to each other than e.g. the Hamiltonian path problem and finite-domain CSP. In

certain sense, they are the same problems with two different names, which is manifested

by the ease of conversion between them shown in the next two examples.

CHAPTER 2. PRELIMINARIES 8

Example 2.1 (Converting θ-subsumption to CSP): Let C = hasCar(C)∨
∨hasLoad(C,L) ∨ box(L) be a hypothesis and let e = hasCar(c) ∨ hasLoad(c, l1) ∨
hasLoad(c, l2) ∨ box(l2) be an example. We now show how we can convert the problem

of deciding C �θ e to a CSP problem (with n-ary constraints in general).

Let V = {C,L} be a set of CSP-variables and let D = {DC , DL} be a set of do-

mains of variables from V such that DC = {c} and DL = {l1, l2}. Further, let C =

{ChasCar(C), ChasLoad(C,L), Cbox(L)} be a set of constraints such that ChasCar(C) ≈ {(c)},
ChasLoad(C,L) ≈ {(c, l1), (c, l2)} and Cbox(L) ≈ {(l1), (l2)}. Then the constraint satisfaction

problem given by V , D and C represents the θ-subsumption problem C �θ e as it has

solution if and only if C �θ e holds. 4

The above example shows that converting θ-subsumption to CSP is really straightfor-

ward. This is not very surprising. However, the conversion from CSP to θ-subsumption

is also similarly easy. In such a conversion, each CSP-variable becomes a first-order-logic

(FOL) variable and each constraint becomes a FOL-literal. The allowed n-tuples of val-

ues determined by the constraints are then represented by literals in an example e - each

n-tuple gives rise to one literal in e.

Example 2.2 (Converting graph coloring to θ-subsumption): In this example, we

will show how to convert an instance of graph coloring, which is easily solved using CSP,

to an instance of θ-subsumption. The conversion of graph coloring will also enlighten

the conversion from CSP to θ-subsumption. Let G be an undirected graph consisting of

three vertices forming a cycle of length 3. We ask whether this graph can be colored with

three colors. The next θ-subsumption problem corresponds to this problem.

C = diff(A,B) ∨ diff(B,C) ∨ diff(C,A)

e = diff(red, green) ∨ diff(green, red) ∨ diff(red, blue) ∨ diff(blue, red)∨

∨diff(blue, green) ∨ diff(green, blue)

C �θ e

It holds C �θ e if the coloring exists and the valid colorings are given by the respective

substitutions θ such that Cθ ⊆ e. 4

The example above showed how natural a conversion from a CSP instance can be. In

fact, it showed a bit more. It showed that θ-subsumption can be NP-complete even if

we fix the clause e. Indeed, any instance of graph 3-coloring, which is an NP-somplete

problem, may be converted into a θ-subsumption problem with the fixed e from the

example above.

CHAPTER 2. PRELIMINARIES 9

2.4 Propositionalization

In Chapter 1, we have described informally what is propositionalization and why it is of

interest. In this section, we discuss propositionalization in more detail. First, we describe

the basic parts of propositionalization: feature construction, extension computation and

feature filtering. Then, we briefly describe basic principles of several state-of-the-art

propositionalization systems.

2.4.1 Feature Construction

Feature construction is one of two core problems that every propositionalization system

must face (the other one is extension computation). Input to a feature construction

procedure is a set of syntactical constraints, which must be satisfied by the generated

features. A form of syntactical constraints, which is very popular in ILP, are mode

declarations, well-known from ILP system Progol [31]. For our purposes it will suffice to

note that mode declarations define, which predicate symbols can be used in the generated

features, and also the way in which the literals can be connected to each other (through

share of variables) in these features. In [46], it has been shown that, for the purposes of

feature construction, mode declarations can be replaced by so-called templates.

Definition 2.11 (Template): Given a setA of atoms, we denoteArgs(A) = {(a, n)|a ∈
A, 1 ≤ n ≤ arity(a)}, i.e. Args(A) is the set of all argument places in A. A pre-template

is a pair (γ, µ) where γ is a finite set of ground atoms and µ ⊆ Args(γ). Elements of µ

(Args(γ) \µ) are called inputs (outputs) in γ. A pre-template (γ, µ) is a template if there

is a partial irreflexive order ≺ on constants in γ such that c ≺ c′ whenever c appears as

an input and c′ as an output in some l ∈ γ. I

Definition 2.12 (Feature): Given a template τ = (γ, µ), a τ -pre-feature F is a finite

conjunction of literals containing no constants or functions, such that lits(Fθ) ⊆ γ for

some substitution θ. The occurrence of variable in the i-th argument of literal l in F is

an input (output) occurrence in F if the i-th argument of lθ is (is not) in µ. A variable

is neutral in F if it has [i] at least one input occurrence in F , and [ii] exactly one output

occurrence in F . A τ -pre-feature F is a τ -feature if all variables in F are neutral. I

The definition of templates and the definition of features provided above (Def. 2.11

and Def. 2.12) would not be valid if we did not require existence of a partial irreflexive

CHAPTER 2. PRELIMINARIES 10

order on constants in γ. Indeed, if we wanted to express the following incorrect template

p(+a,−a,−a), p(−a,+a,−a) in the theoretical framework given by the definitions, τ

would look as follows: τ = (γ = {p(a, a, a)}, µ = {(p(a, a, a), 1), (p(a, a, a), 2)}). However,

we could not decide which arguments of e.g. feature F = p(A,A,A) are inputs and which

are outputs given a substitution θ such that Fθ ⊆ γ. The problem is that the two declared

predicates p(+a,−a,−a), p(−a,+a,−a) give rise to only one literal in γ. On the other

hand, if a template satisfies the condition on the existence of a partial irreflexive order

on constants, then this cannot happen because any two literals in a template must have

differently typed arguments as, otherwise, there would be a cycle in the partial irreflexive

order, which contradicts the definition of partial irreflexive order.

For a correct τ -feature F , the assignment of inputs and outputs also need not be given

uniquely. However, in this case, it is not a problem, because, unlike in the previous case,

the assignment of inputs and outputs becomes unique given a substitution θ such that

Fθ ⊆ γ.

Existing propositionalization systems tackle the problem of feature construction for

features (as defined in Def. 2.12) by depth-first search, which brings an exponential factor

into propositionalization. As we show in Chapter 5, this super-polynomial runtime for

feature construction is unavoidable (unless P = NP).

2.4.2 Extension Computation

Given a set of examples E, extension of a feature F (extE(F)) is the set of examples

covered by F . Particular settings in ILP have different meaning of the notion covers [35].

Definition 2.13 (Learning from Entailment): If H (hypothesis) is a clausal theory

and e a clause, then H covers e under entailment if and only if H |= e. I

Definition 2.14 (Learning from Interpretations): IfH (hypothesis) is a clausal the-

ory and e is a Herbrand interpretation, then H covers e under interpretations if and only

if e is a model for H. I

Since the entailment relation is generally undecidable, it is typically approximated in

practice, e.g. by θ-subsumption or by limiting depth of resolution trees. If we restrict

ourseleves to learning a single predicate and if we restrict the hypotheses to be function-

free and non-recursive, then we may use a slightly simpler version of the learning from

interpretations setting, which is used in Chapter 4.

CHAPTER 2. PRELIMINARIES 11

Feature construction and extension computation do not need to be tackled separately.

In fact, a combinination of feature construction and extension computation can make the

propositionalization process much more efficient as we also show in Chapter 4. Nev-

ertheless, some state-of-the-art systems (e.g. RSD [44] or SINUS [21]) have separate

procedures for feature construction and extension computation.

2.4.3 Feature Filtering

Once a set of features together with features’ extensions is constructed, it is usually neces-

sary to reduce this set because the number of generated features is typically overhelming.

Propositionalization systems (e.g. RSD [44]) cope with this problem by discarding all but

one feature from each equivalence class corresponding to features with equal extensions.

Feature filtering can be also seen as feature selection and any of the wide range of

feature selection methods can be used. Also, feature filtering need not be done only after

both feature construction and extension computation take place. Instead, all these three

steps can be combined into one, typically more efficient, step. For example, frequent-

pattern discovery systems such as WARMR [9] can be seen as propositionalization sys-

tems, which combine feature construction, extension computation and filtering of infre-

quent features. In Chapter 4, we design propositionalization algorithms for a limited class

of features, which also combine these three steps but which can use more sophisticated

filtering than is mere filtering of infrequent features.

2.4.4 State-of-the-Art Propositionalization Systems

In this section, we describe several state-of-the-art propositionalization systems. One of

the systems, RSD, will be used in Chapter 4 for evaluation of our novel propositionaliza-

tion algorithms.

2.4.4.1 RSD

RSD [44] is a state-of-the-art system for propositionalization and subgroup discovery.

RSD is based on syntactically restricting the set of possible features. Its propositional-

ization procedure has two stages: feature construction and extension computation. In

the first stage, it constructs a set of all correct features w.r.t. some given template τ and

some n ∈ N . In the second stage, it computes extensions of the features generated in the

CHAPTER 2. PRELIMINARIES 12

first stage and processes constants.

Unlike templates considered in this thesis, RSD’s templates are not obliged to have the

partial order on types. Therefore RSD would allow e.g. template vertex(+a), vertex(−a),

edge(+a,−a), which would not be allowable in the feature-template framework used in

this thesis. RSD uses depth-first search to construct features correct w.r.t. some τ and n

and resolution in Prolog to compute their extensions. A detailed evaluation of RSD and

two other propositionalization systems (SINUS [21] and RELAGGS [22]) can be found in

[21].

2.4.4.2 WARMR

WARMR [9] is a prominent frequent query discovery system, whose output can also be

used for attribute value learning. WARMR constructs queries in a top-down manner

and exploits anti-monotonicity of query frequency. Several performance optimizations

have been proposed and implemented to WARMR. Therefore WARMR might seem as

a good candidate for comparison with our novel algorithms HiFi and RelF, however,

the way WARMR prunes discovered queries introduces a hardly interpretable bias into

propositionalization. The problem is that WARMR prunes every query, which is θ-

equivalent to some already discovered query [33]. For example, if WARMR found feature

F1 =← car(C) ∧ hasLoad(C,L1) ∧ hasLoad(C,L2) and if it had already found feature

F2 =← car(C) ∧ hasLoad(C,L), it would prune F1, because F1 ≈θ F2. It follows that

e.g. query← car(C)∧hasLoad(C,L1)∧hasLoad(C,L2)∧ triangle(L1)∧ box(L2) would

never be found3. This would make comparison of WARMR and our algorithms hard to

intepret.

2.4.4.3 Feature Description Logics

In [7], a propositionalization method based on feature description logics was introduced.

It used so called concept graphs for efficient (polynomial-time) subsumption computation.

However, this approach differs in several aspects from ours. First, features correspond to

distinct substitutions of variables in feature templates in this approach, e.g. using similar

example as given in paper [7], template (AND name (father name)) might give rise

to the following two features (AND name(Homer) (father name(Lisa))) and (AND

name(Homer) (father name(Bart))) in some appropriate interpretation. While such

3This particular example could be remedied by representing load shapes by constants, however, in

more complex settings no such simple remedies exist.

CHAPTER 2. PRELIMINARIES 13

features are also expressible in our framework, templates, used in our algorithms and e.g.

in RSD or WARMR, are much more flexible.

2.4.4.4 Horn-SAT Reduction

In [52], a reduction of feature construction problem to enumeration of solutions of Horn-

SAT problem was shown. Horn-SAT is a subclass of NP-complete SAT [42] problem,

which is solvable in polynomial time. It is possible to find a polynomial-time conversion

e.g. for tree-like features. The reduction is a two-phase process. First, a bottom clause

⊥ complying to a given template τ and respecting maximum allowed size of features is

constructed. In the second phase, a set of Horn clauses H is created, which encodes the

set of possible τ -features. Each literal l ∈ ⊥ gives rise to a boolean variable Pl. The set

of Horn clauses then encodes all constraints given by τ . Each solution of H represents

one feature, where a literal is added if and only if the respective boolean variable has

value false. Rather than discussing this approach in its full generality, we show here an

example from [52].

Example 2.3: Let

τ = hasCar(−c), hasRoof(+c), hasLoad(+c,−l), box(+l), triangle(+l)

be a template and let n = 3. The corresponding bottom clause is

⊥ =← hasCar(C) ∧ hasRoof(C) ∧ hasLoad(C,L) ∧ box(L) ∧ triangle(L).

We assign to each literal from ⊥ a boolean variable, consecutively: P1 ≈ hasCar(C),

P2 ≈ hasRoof(C), P3 ≈ hasLoad(C,L), P4 ≈ box(L), P5 ≈ triangle(L).

The respctive set of Horn clauses will contain the following clauses: ¬P2∨¬P3∨P1 (if

car(C) is in a feature F , then either hasRoof(C) or hasLoad(C,L) must be in F , which

corresponds to the condition that there must be an input occurence of each variable in

any correct τ feature), ¬P4 ∨ ¬P5 ∨ P3 (if hasLoad(C,L) is in a feature F , then either

triangle(L) or box(L) must be in F), ¬P1∨P2, ¬P1∨P3, ¬P3∨P4, ¬P3∨P5 (if a child of

some literal is in a feature F , then its parent must be in F), ¬P1∨¬P2∨¬P3∨¬P4∨¬P5

(any feature must have at least one literal). 4

An obvious drawback of this approach is that without some symmetry breaking, which

is not considered in [52], the same feature can be generated many times.

CHAPTER 2. PRELIMINARIES 14

2.5 Runtime Distributions

The runtime distribution function which expresses the probability that a given algorithm

stops before t time units (or before t searched nodes depending on the context), is defined

as

F (t) = P [T ≤ t], (2.1)

The complementary distribution function (also known as survival function), which is

another frequently used characteristics of the behavior of search algorithms, is defined as

S(t) = 1− P [T ≤ t]. (2.2)

We note that there are basically two distinct things, for which we will use terms run-

time distribution and complementary runtime distribution in this thesis. First, assuming

that we have a generator of random instances (e.g. pairs of clauses for θ-subsumption

check), the runtime distribution and survival function will refer to runtimes of a given

search algorithm on the instances generated by this generator. Second, assuming that we

have a single fixed problem instance and a search algorithm, which possesses some kind

of randomness, the probability distribution of the time needed to solve the problem will

refer to runtime distribution of the randomized algorithm on the fixed instance.

The quantity characterizing the runtime distribution that is most important for eval-

uation of the performance of a search algorithm is naturally its mean, as it expresses the

average amount of time needed to solve a sufficiently high number of problem instances.

The mean sometimes behaves in a rather strange way. As shown in [14], it sometimes

does not stabilize in a reasonable number of runs (Fig. 2.1). To explain such an erratic

behavior of mean and to gather better insight into behavior of search algorithms, one

needs to focus on the whole runtime distribution.

CHAPTER 2. PRELIMINARIES 15

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
50

100

150

200

250

300

350

runs

m
ea

n

Figure 2.1: Erratic convergence of mean of a heavy-tailed distribution

Runtime distributions of search algorithms have wide range of possible forms [13], but

despite such a variability there are basically two main classes of distributions into which

they can be divided according to the decay of their tails: exponential and heavy tailed

distributions.

The former ones are quite common in physics and engineering. The tails of their

survival functions are bounded by exponential functions. A typical example is the well-

known normal distribution, whose probability density function is given by

f(t) =
1

σ
√

2π
e−

(t−µ)2

2σ2 , (2.3)

and whose tail for µ = 0 is approximately [53]

1− F (t) ∼ 1

t
√

2π
e
−t2
2σ2 . (2.4)

The distributions with exponentially decaying tails cannot explain the encountered

erratic behavior of the expected runtime in Fig. 2.1. Such a phenomenon, however, nat-

urally appears for the latter class of runtime distributions, the heavy tailed distributions.

Using the definition from [49], a distribution function F (t) is said to be heavy tailed if

P [T > t] ∼ C · t−α,where t→∞, 0 < α < 2, C > 0 (2.5)

CHAPTER 2. PRELIMINARIES 16

The heavy tailed distributions have some intriguing properties. The heavy tailed dis-

tributions with α < 1 have infinite mean and all higher moments. For α ∈ (1, 2), the

distributions have finite mean but variance and all higher moments are again infinite.

This is the reason for the encountered erratic behavior of the expected runtime. How-

ever, in practice, the runtime distributions are bounded, because the search spaces have

finite size, and therefore also finite mean and all higher moments. On the other hand, the

size of the search space might be often so high that it is no difference from the point of

view of someone who waits for the solution whether the runtime really has infinite mean

or whether it has mean as high as the age of universe.

The simplest heavy tailed distribution is the Pareto distribution defined as

F (t) = 1− t−α, α > 0, t ≥ 1 (2.6)

Another example is the Weibull distribution defined as

f (x, k, λ) =
k

λ

(x
λ

)k−1

e−(x/λ)k , (2.7)

which is heavy-tailed for c < 1 and a > 0.

There is a simple visual method for quickly estimating whether a sample of values be-

longs to a heavy tailed distribution. It is based on the fact that the tail of a heavy tailed

distribution looks approximately linearly when plotted in log-log scale, whereas distribu-

tion with the exponential tail exhibits a sharp decay and looks like an exponential curve.

The difference between log-log plots of a heavy tailed distribution and a distribution with

exponentially decaying tail is shown in Fig. 2.2

CHAPTER 2. PRELIMINARIES 17

10
0

10
1

10
2

10
3

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

1−
F

(x
)

x

Figure 2.2: Pareto (+) and normal (◦) complementary probability distri-

butions

Heavy tailed distributions have been identified in various domains, for example in

economy, statistical physics, in characterization of hyperlinks on the web, in sociology,

biology etc.

2.6 Restart strategies

When the runtime distribution of a search algorithm is heavy tailed, the mean runtime of

the search process may become extremely high. Fortunately, there is a way to overcome

this deficiency by so called rapid randomized restart strategies (RRRS) first used by

Harvey [17], which consists of randomization of the value and variable ordering heuristics

and repeated restarting of the search after a given cutoff time. The cutoff time can be

either constant (fixed cutoff strategy) or might be given by a function f : N → R.

The feasibility of RRRS is due to their ability to eliminate heavy tails from arbitrary

runtime distributions [29], which has been empirically proven on many real-world and

randomly generated problems [49]. The theoretical justification of the fixed cutoff strategy

is given by Theorem 2.1 [14].

CHAPTER 2. PRELIMINARIES 18

Algorithm 3 A restarted search algorithm

Input: A problem instance instance.

n← 1

repeat

Answer← Run SearchAlgorithm(instance) with number of searched nodes limited

to R(n)

n← n+ 1

until Solution is found

return Solution

Theorem 2.1: For an arbitrary distribution F (t), the strategy with a fixed cutoff tc guar-

antees that the survival function S(t) of the restarted search algorithm with statistically

independent runs decays exponentially.

Proof: Lets assume that the problem instance, we are going to solve, has at least one

solution and that the probability of finding one of them in time t ≤ tc is psucc = F (tc).

Then the probability that the restarted search procedure finds a solution in its r-th run

follows the geometric distribution and is given by

Prestarts(Runs = r) = psucc · (1− psucc)r−1 (2.8)

The survival function is then

Srestarts(r) = Prestarts(Runs > r) = (1− psucc)r, (2.9)

which is already exponential with respect to number of restarts r. To show that the

survival function S(t) also decays exponentially it suffices to show that

S(t) = P (Time > t) ≤ P (Time > bt/tcc · tc) =

= Prestarts(Runs > bt/tcc) = (1− psucc)bt/tcc ≤ (1− psucc)t/tc−1, (2.10)

which finishes the proof, as it shows that the survival function S(t) is bounded by expo-

nential 2.10. 2

Luby et al [29] proved that there is a cutoff value t∗c such that the restart strategy

with this cutoff is optimal over all static restart strategies. Even though the derivation of

the optimal value for the cutoff is quite straightforward, we will not present it here and

instead show only the main result.

CHAPTER 2. PRELIMINARIES 19

Theorem 2.2: The cutoff t∗c is optimal, i.e. the mean runtime of the restarted search

E[Trestarted] is minimal, under assumption that

E[Trestarted] =
1− F (t∗c)

f(t∗c)
, (2.11)

where F (t) is the original continuous runtime distribution of the non-restarted search

algorithm and f(t) its respective probability density function.

Despite its optimality, the restart strategy with a fixed cutoff has two serious draw-

backs. The first one is concerned with proving that no solution to a search problem

actually exists, because without storing the information about already explored nodes of

the search tree, the search might run forever. On the other hand, if such information

is stored, the runs of the algorithm are no longer independent and the analysis of the

restarted strategy becomes more complicated.

The second drawback lies in the fact, that we cannot determine the optimal cutoff

without prior knowledge about the distribution. An incorrectly chosen cutoff can then

decrease the performance of the restarted algorithm. Furthermore, solutions to certain

problems cannot in principle be found without searching a minimum number of nodes. If

the cutoff happens to be smaller than this number, the expected runtime will obviously

be infinite. Although it is unlikely that one would choose such a small cutoff that would

result in the infinite expected runtime, it is generally less harmful to choose the cutoff

too high rather than too small.

A way to get rid of the above-mentioned drawbacks, is to use a varying cutoff instead

of the fixed one. Luby [29] proposed a universal strategy with varying cutoff given by the

sequence

(t0, t0, 2t0, t0, t0, 2t0, 4t0, t0, t0, 2t0, t0, t0, 2t0, 4t0, 8t0, t0, . . .) (2.12)

He has proven a bound on the expected runtime E[Tuniversal] of this strategy with respect

to the expected runtime l∗ of an optimal restart strategy

E[Tuniversal] ≤ 192 · l∗(log2(l
∗) + 5) (2.13)

and showed that this strategy is optimal in the sense that no other restart strategy can

do any better up to a multiplicative constant if no information about the distribution is

known. Note that to make statements about performance of Strategy 2.12 sensible, one

must work with t0 equal to the smallest amount of time being considered. In an extreme

setting, when t0 is too high, Luby’s strategy might even reduce to a non-restarted search.

CHAPTER 2. PRELIMINARIES 20

In practice, the choice of t0 can greatly affect the performance of Luby’s universal

strategy. By incorrectly choosing t0 too high, the restart strategy could even lose its

optimality and the bound 2.13 would be no longer valid. On the other hand, by making it

too small, the overall search time could be penalized by costs needed for the initialization

of new runs of the algorithm, which is not considered in Luby’s analysis.

Another restart strategy called geometric restart strategy was proposed by Walsh [47]

and has the form

(t0, r · t0, r2 · t0, r3 · t0, r4 · t0, . . .) (2.14)

There is no theoretical bound on the performance of this strategy, so it might be arbitrar-

ily worse than the optimal fixed cutoff strategy on some (hopefully pathological) runtime

distributions. It, however, exhibits good average runtime on many real problems [49] on

which it usually outperforms Luby’s universal strategy. This is also the reason why we

prefer the geometric restart strategy to Luby’s strategy in our experiments in Chapter 3.

Chapter 3

Two θ-subsumption Algorithms

In this chapter, we develop two algorithms for the θ-subsumption problem - a complete

ranodmized restarted θ-subsumption algorithm ReSumEr2 [26] and a heuristic coverage

estimation algorithm ReCovEr [24]. In Section 2.3 we have shown that θ-subsumption

is equivalent to finite-domain constraint satisfaction problems. It might therefore seem

that there is no need for dedicated θ-subsumption algorithms and that it would suffice

to use state-of-the-art methods from the field of constraint satisfaction. This is true only

to some extent, as there are several important differences between general constraint sat-

isfaction problems and θ-subsumption problems encountered in real applications. First,

CSP algorithms are typically designed for solving as large (and hard) problems as possi-

ble in as short time as possible. A typical CSP task is to solve a hard problem within a

given time limit. On the other hand, in ILP, the respective θ-subsumption problems are

usually not particularly hard and we are not interested in solving the hardest instances

in as short time as possible, rather, we are interested in solving hundreads of thousands

(typically small) problems as fast as possible. Therefore, in ILP, we also care about the

easy problems, as we try to solve as many problems as possible in a given time limit.

Second, a specific feature of CSP problems in ILP (corresponding to θ-subsumption prob-

lems) is that we typically solve a number of problems with a fixed constraint structure,

but with different constraint languages, i.e. we try to solve θ-subsumption problems for

a fixed hypothesis and different examples. In this chapter, we try to exploit these special

properties of θ-subsumption at least to some extent.

21

CHAPTER 3. TWO θ-SUBSUMPTION ALGORITHMS 22

Algorithm 4 SubsumptionCheck(C, e): A simple subsumption test algorithm

1: Input: Clause C, example e;

2: if C ⊆ e then

3: return YES

4: else

5: Choose variable V from C using a heuristic function /* see main text */

6: for ∀S ∈ PossibleSubstitutions(V,C, e) /* see main text */ do

7: SearchedNodes← SearchedNodes+ 1

8: /* SearchedNodes is a global variable initiated to 0 prior to executing this algo-

rithm. */

9: C’ ← Substitute V with S

10: /* Method LookAhead is described in main text */

11: if LookAhead(C ′, V, S) = Y ES then

12: if SubsumptionCheck(C ′, e) = YES then

13: return YES

14: end if

15: end if

16: end for

17: return NO

18: end if

3.1 Runtime Distributions

3.1.1 Basic Algorithm

In this subsection, we describe a simple heuristic algorithm (Algorithm 4) for verify-

ing whether a clause C θ-subsumes an example e. This simple algorithm will be used

in subsequent sections to develop restarted randomized algorithms ReSumEr and Re-

SumEr2. Similarly to Django [30] this algorithm is inspired by the CSP framework. It

is a backtracking search algorithm with a variable selection heuristic and randomization.

The heuristic function aims at choosing variables whose substitution makes it likely that

an inconsistency, if one exists, is detected soon. If no variable has been selected yet (i.e.

we are on the start of the search), the first variable to be substituted is selected randomly

with probability proportional to number of its occurences in the given clause. Other-

CHAPTER 3. TWO θ-SUBSUMPTION ALGORITHMS 23

Algorithm 5 SubstitutionPossible(V, T, C, e): Returns NO if C cannot subsume e when

V is grounded to T . (The reverse implication may not hold, see main text.)

1: Input: Variable V , constant T , clause C, example e;

2: for ∀A ∈ C such that atom A contains variable V do

3: A′ ← replace all occurrences of variable V in atom A by T .

4: if ∀θ.A′θ * e /* easy to check for a single atom A */ then

5: return NO

6: end if

7: end for

8: return YES

Algorithm 6 LookAheadFC(C, V, S, e): Returns NO if C cannot subsume e when V is

grounded to S. (The reverse implication may not hold.)

1: Input: Clause C, variable V , constant S, example e;

2: if ∀W ∈ Adjacency(V) : PossibleSubstitutions(W,P ′, e) 6= ∅ then

3: return YES

4: end if

5: return NO

wise, for a variable V , the heuristic function computes weighted sum of occurrences of

variables in clause C that have already been grounded and that share at least one literal

with V . The weights are proportional to rareness of the particular literals in which the

variable is contained. This sum is then multiplied by 1 + 1
D

, where D is an upper bound

on the size of the domain of V computed in the initialisation phase of the algorithm’s

run. The variable which maximizes this function is selected; in case of a tie, a random

choice is made with uniform probability among the highest scoring variables. Func-

tion PossibleSubstitutions(V,C, e) returns all constants T (in random order) for which

SubstitutionPossible(V, T, C, e) (Algorithm 6) returns YES. The function prunes away a

subset of possible groundings for V whose inclusion in θ would imply Cθ * e. In general

though, not all such groundings are detected by the function. Function LookAhead used

on line 11 of Algorithm 4 may be one of the look-ahead methods from CSP framework:

nothing or forward checking (Algorithm 6). Arc-consistency can be also applied to reduce

domains of variables prior to search, which is not shown in Algorithm 4 for simplicity.

CHAPTER 3. TWO θ-SUBSUMPTION ALGORITHMS 24

3.1.2 Subsumption Test Runtime Distributions

To obtain runtime distributions of the algorithm, we tested it on randomly generated

hypotheses and examples. We devised two different graph generators for this purpose.

The first generates Erdos-Rényi random graphs where any two vertices are connected

with a probability p (by an edge of a random orientation). The second produces scale-free

graphs; here, an edge is attached to a vertex with probabibility increasing with the number

of edges already connected to the vertex. In both algorithms, all vertices are colored as

black with probability 0.5 and red otherwise. We will refer to parameter p (k, respectively)

of a random graph as the connectivity of the class of random graphs. Instances of θ-

subsumption problem will be created by converting the graph representations to first

order logic representations. In what follows, we will speak about numbers of variables (for

hypotheses) and numbers of constants (for examples) instead of numbers of vertices. On

the other hand, we will use the term connectivity even in first order logic representations

of the generated data.

We performed experiments with random sets of hypotheses and examples generated

by both of the random graph generators, under various settings of n and p (n and k,

respectively). Algorithm 4 was used with forward checking as its look-ahead method for

the experiments. Our objective was to verify the presence of heavy tails in the runtime

distributions F (t). For a t > 0, F (t) is the probability that the tested algorithm resolves

a random subsumption instance with at most t explored search nodes. Recall that, infor-

mally, a heavy-tailed distribution indicates the non-negligible probability of subsumption

instances with extremely long runtime.

Recall from Section 2.5, that the presence of a heavy tail in an empirical runtime

distribution F (t) may be approximately checked graphically, by plotting 1−F (t) against t

on a log-log scale. In the case of a power-law distribution, this plot acquires a linear shape

[14]. Even though more sophisticated statistical methods for checking heavy-tailedness

of a distributions exist, we will not need them in this thesis, as we are mainly interested

in speeding-up the search and not in the distributions itself. Interested reader may

find a short discussion of these issues in [23], where parameters of generalized Pareto

distributions for subsumption test runtimes were estimated.

We have performed a series of experiments in the phase transition framework, which

was imported to relational learning by Giordana et. Saitta [12]. Phase transition frame-

work studies the correspondence between parameters of hypotheses and probability psubs

that a randomly selected hypothesis C with these parameters θ-subsumes an example e.

CHAPTER 3. TWO θ-SUBSUMPTION ALGORITHMS 25

A phase transition spectrum is divided into three disjoint regions: the YES region, the

NO region and the PT (phase transition) region. For hypotheses correponding to the

YES region the probability psubs is close to 1, as hypotheses are mostly underconstrained

in this region, while it is nearly 0 for hypotheses corresponding to the NO region, as these

are mostly overconstrained. The PT region then corresponds to the region where psubs

usually quickly drops from being close to 1 to being almost 0 and subsumption checking is

usually computationally most expensive for hypotheses in this region. The computational

difficulty in the transition region is due to hypotheses being neither overconstrained nor

underconstrained. For an extensive general introduction to phase transitions in compu-

tational complexity, see the seminal paper [20].

Our experiments in phase transition framework revealed a systematic progression

from heavy-tailed regimes corresponding to configurations located in the YES region

(low connectivity in hypotheses) of the phase transition spectrum to non-heavy-tailed

regimes corresponding to configurations located in the NO region (high connectivity in

hypotheses). This observation agrees with the previous study [6]. This progression is

shown in Fig. 3.1 for the Erdos-Renyi graph data (Algorithm 15). The same trends

were observed for the small-world graph data. The complementary runtime distributions

plotted refer to subsumption checks between examples with fixed numbers of variables and

with fixed connectivity and hypotheses with fixed numbers of constants and connectivity

changing among particular distributions.

The complementary runtime distributions plotted in the top left panel of Fig. 3.1

refer to satisfiable problem instances, i.e. those where the hypotheses θ-subsume the ex-

amples. The hypotheses had n = 15 variables (vertices in the underlying random graphs)

and connectivity consecutively p = 0.1, p = 0.15, p = 0.2, p = 0.25. The examples had

n = 50 constants and connectivity p = 0.3. The complementary distributions in the

top right panel of Fig. 3.1 refer to unsatisfiable problem instances with hypotheses with

n = 15 variables and connectivity consecutively p = 0.15, p = 0.2, p = 0.25, p = 0.3,

p = 0.35. The examples had n = 50 constants and connectivity p = 0.3. The bottom

left panel displays the phase transition spectrum corresponding to the complementary

runtime distributions displayed in the top panels. Finally, the bottom right panel dis-

plays complementary runtime distributions for basic restarted algorithm on satisfiable

and unsatisfiable instances. The runtime distributions for both satisfiable and unsatis-

fiable instances have heaviest tails when the problem instances are located in the YES

region and they decay faster as the problem instances get closer to the NO region. A dif-

ference between runtime distributions for satisfiable and unsatisfiable problem instances

CHAPTER 3. TWO θ-SUBSUMPTION ALGORITHMS 26

10
0

10
2

10
4

10
−3

10
−2

10
−1

10
0

nodes searched

1
−

F
(x

)

YES region (p ≤ 0.1)

NO region (p ³ 0.25)

10
0

10
2

10
4

10
−3

10
−2

10
−1

10
0

nodes searched

1
−

F
(x

)

YES region (p ≤ 0.1)

NO region (p ³ 0.35)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
10

0
10

1
10

2
10

3
10

4
10

5
10

6
10

−3

10
−2

10
−1

10
0

nodes searched

1
−

F
(x

)

unsatisfiable

satisfiable

Figure 3.1: Complementary runtime distributions for random graph data

CHAPTER 3. TWO θ-SUBSUMPTION ALGORITHMS 27

is observed in the probability of very short runs, which is high for the satisfiable instances

located in the YES region, but which is negligible for the unsatisfiable instances in that

region. As a consequence, individual distributions cross each other in the top left panel

of Fig. 3.1 whereas this effect is not observed in the top right panel of Fig. 3.1.

3.2 ReSumEr: A Restarted θ-subsumption

Algorithm

In this section, we develop a randomized restarted θ-subsumption algorithms ReSumEr

and ReSumEr2. Restarting search process of a backtracking-style algorithm has been

shown very useful empirically (e.g. [14]) and theoretically [13] when runtime distribu-

tions exhibited heavy-tailed behaviour. We show that restarts can significantly decrease

runtime of the basic θ-subsumption algorithm (Algorithm 4). We also propose and test

several heuristic techniques to speed-up the search even more. We allow a limited com-

munication between subsequent restarts. We make the strength of constraint propagation

increase with the number of unsuccesful restarts. Finally, we also allow the algorithm to

exploit information about successful variable orders in previous subsumption checks with

the same hypothesis but with a different example.

3.2.1 Designing a Restarted Subsumption Test Algorithm

While the presence of heavy tails for some classes of subsumption instances indicates

possible large runtime benefits achievable by a restarting strategy [14], its effect on the

non-heavy-tailed classes may not be necessarily very detrimental. We thus decided to

assess the overall impact of restarting empirically. For this sake we designed a complete

restarted randomized subsumption algorithm ReSumEr (Algorithm 7). Its completeness

is guaranteed by the assumption that for the cutoff sequence R(n), R(n)→∞ as n→∞,

because then there is always such n0, for which the cutoff R(n0) enables Algorithm

7 to explore the whole search tree. Recall that variable selection heuristic on line 5 of

Algorithm 4 is randomized and that randomization of the ordering of possible groundings

is used.

The complementary runtime distributions for ReSumEr, with an ad-hoc chosen

CHAPTER 3. TWO θ-SUBSUMPTION ALGORITHMS 28

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
−4

10
−3

10
−2

10
−1

10
0

nodes searched

1−
F

(x
)

10
0

10
2

10
4

10
−3

10
−2

10
−1

10
0

nodes searched

1−
F

(x
)

Figure 3.2: Effect of restarts for satisfiable (left) and unsatisfiable (right)

instances

restart sequence

R(n) = b10 · en + 100c

are plotted in Fig. 3.2 for two of the cases exemplified also in Fig. 3.1. The hypotheses

have n = 15 variables and connectivity p = 0.15. In both cases, examples had n =

50 constants and connectivity p = 0.3. Both hypotheses and examples were randomly

generated by a generator of Erdos-Rényi random graphs. In both of these cases, restarts

reduce runtime, although the difference is much more significant in the satisfiable case.

Of relevance, the times taken by ReSumEr on the unsatisfiable instances were in some

of our experiments, where examples were significantly larger than hypotheses, about 102

times higher than on the satisfiable ones, which will be further exploited in Section 3.3.1

where algorithm ReCovEr is developed. This has two main reasons. First, the ‘iterative’

character of ReSumEr has to be taken into account; while satisfiability can in principle

be shown in any single restart, unsatisfiability can only be shown after n restarts making

R(n) sufficiently high. Second, when dealing with satisfiable and unsatisfiable problems

generated with the same parameters, satisfiable instances seem to be easier even for the

non-restarted basic algorithm.

It is further possible to increase the performance of ReSumEr by a heuristic modi-

fication of the basic restarted strategy (Algorithm 8), which repeatedly calls Algorithm

4. The idea is to allow a certain transfer of knowledge between individual restarts by

guiding the initial selection of a variable to be substituted in Algorithm 4 (line 4). In

particular, when this algorithm is called from ReSumEr, we choose the variable which

caused the last backtrack in the previous restart, i.e. the last variable V which yielded

CHAPTER 3. TWO θ-SUBSUMPTION ALGORITHMS 29

Algorithm 7 ReSumEr(C, e,R): A restarted subsumption algorithm

1: Input: Hypothesis C, example e, cutoff sequence R;

2: n← 1

3: repeat

4: Answer ← Run SubsumptionCheck(C, e) with number of searched nodes limited

to R(n)

5: n← n+ 1

6: until Answer YES or NO is returned

7: return Answer

an empty set PossibleSubstitutions(V, P, e). The rationale for this modification is that

the variable which caused backtracking is more likely to be highly constrained than a

randomly chosen variable. As such it is a good candidate to start the search with.

This straightforward modification (called restart strategy with dependent runs) has the

consequence that pairs of restarts are no longer statistically independent trials. In general,

this might represent a problem. It is known that a restarted strategy exhibits the desirable

property of exponentially decaying runtime if individual restarts are independent. For

this reason we can allow the above described transfer of knowledge only from odd restarts

into the subsequent even restarts, resulting in a series of restart pairs, which are mutually

independent. Thus we maintain the exponential decay guarantee.1 Although we prefer

to use this outlined odd/even strategy, here, we also show that the first strategy, where

the first variable picked by the algorithm in a restart is equal to the variable on which the

previous restart failed, also guarantees exponential decay of the complementary runtime

distribution under some natural assumptions.

We will analyze the problem in the idealized setting where the respective probability

density of runtime may be non-zero even for values higher than is the size of the whole

search space, because this will allow us to work in the asymptotical setting. While this

assumption typically holds for randomized restarted algorithms with cutoffs that do not

allow the algorithm to search through the whole search space, it usually does not hold in

other cases. However, if we did not stick to this idealized model, claims such as 1−R(t)

decays exponentially fast would not be very informative because any 1 − R(t), which is

zero for t > t0 for some t0, is bounded by c · e−αt for some α, c ∈ R+.

1Not all sequences of cutoffs lead to an exponential decay guarantee, but the strategy with knowledge

transfer between each two consecutive restarts does not necessarily possesses this property even if the

respective cutoff sequence guarantees it for the case of independent restarts.

CHAPTER 3. TWO θ-SUBSUMPTION ALGORITHMS 30

Algorithm 8 ReSumEr2(C, e,R): A modified restarted subsumption algorithm

1: Input: Hypothesis C, example e, cutoff sequence R;

2: n← 1

3: repeat

4: if n is odd then

5: Answer← Run SubsumptionCheck(C, e) with number of searched nodes limited

to R(n) and record LastV ariable ← the last variable that caused backtracking

there in.

6: else

7: Answer← Run SubsumptionCheck(C, e) with number of searched nodes limited

to R(n) and the first checked variable set to LastV ariable

8: end if

9: n← n+ 1

10: until Answer YES or NO is returned

11: return Answer

The next theorem does not refer directly to our θ-subsumption algorithms. It rather

treats the general case when we have an algorithm with some runtime distribution. We

will suppose that the runtime distribution of the algorithm is a mixture of at most k

runtime distributions, where each component of the mixture corresponds to some fixed

initial conditions. Note that in the case of our θ-subsumption algorithms initial conditions

refer to selection of the first variable to be assigned a value.

Theorem 3.1: Let g(t) be a real valued function and let A be the set of all α ∈ R such

that g(α · t) is a decreasing function of t. Let C(n) : N → N be a sequence of cutoffs

having the property that, for any runtime distribution with positive probability of finding

a solution within C(n) time units for all n ∈ N , C(n) guarantees that there is α ∈ A such

that the restarted distribution decays as O(g(α · t)) (e.g. exponentially). Then a strategy,

which uses C(n) as its restart sequence and which may select initial conditions of each

restart deterministically using information about previous restarts, also guarantees that,

for any runtime distribution, which has k ∈ N possible initial conditions each leading to a

run with positive probability of finding a solution in C(n) time units for all n ∈ N , there

is β ∈ A such that decay of the restarted runtime distribution is of order O(g(β · t)).

Proof: Let F (t) =
∑k

i=1 pifi(t) be the probability that a non-restarted algorithm fails

to find solution within t time units (where fi(t) is the probability that the algorithm fails

CHAPTER 3. TWO θ-SUBSUMPTION ALGORITHMS 31

to find solution within t time units conditioned that it started with initial conditions i)

and let fi(t) > 0 for all t > 0. First, we bound the probability Rdep(t) that the restarted

algorithm with dependent runs fails to find solution within t time units.

Rdep(t) ≤ max
j
fj(t−

m∑
l=1

C(l)) ·
m∏
i=1

max
j
fj(C(i)), m = max

i
{i :

i∑
j=1

C(j) ≤ t} (3.1)

Now, we will proceed indirectly. Instead of playing with Eq. 3.1, we will construct such

a runtime distribution (non-restarted) whose complementary runtime distribution after

application of independent restarts will be equal to the right-most expression in Eq. 3.1.

The next complementary distribution2 has the desired properties

Rsynth(t) = max
j
fj(t)

Indeed, the probability that the restarted algorithm with independent runs does not find

solution within t time units is

Rrest(t) = Rsynth(t−
m∑
l=1

C(l)) ·
m∏
i=1

Rsynth(C(i)) = (3.2)

= max
j
fj(t−

m∑
l=1

C(l)) ·
m∏
i=1

max
j
fj(C(i)) ≥ Rdep(t), m = max

i
{i :

i∑
j=1

C(j) ≤ t}

Since we have assumed that C(i) guarantees to make runtime distribution of any restarted

algorithm with independent restarts to be of order O(g(α · t)) for some α ∈ A, we also

have that Rdep(t) decays like O(g(β · t)), which finishes the proof. 2

A key assumption of the above theorem is that there is always non-negligible proba-

bility of finding a solution for any initial conditions. It is easy to see that this is satisfied

for our randomized θ-subsumption algorithm (Algorithm 4) as the value ordering heuris-

tic returns values in random order (selecting permutations with uniform probability).

If the algorithm is given enough time (i.e. if it can search more than |vars(C)| nodes

of the search tree) then for probability psucc of finding a solution of C �θ e it holds

psucc ≥ |vars(e)|−|vars(C)|.

It might seem from the discussion above that allowing communication between sub-

sequent restarts does not harm theoretical guarantees. However, if we weaken the as-

sumptions and assume that there may be countably many distinct initial conditions then

the strategy with dependent restarts may give rise to a heavy-tailed distribution even for

2It is easy to check that Rsynth(t) is indeed a complementary distribution.

CHAPTER 3. TWO θ-SUBSUMPTION ALGORITHMS 32

fixed-cutoff strategy. On the other hand, the strategy with independent restarts will still

guarantee exponential decay if there is a positive probability of finding a solution in a

single restart. This is illustrated by the next example.

Example 3.1: Let there be a countable set C of possible initial conditions of a random-

ized algorithm A and let F = {1, 1
2
, 2

3
, 3

4
, . . . } be probabilities of A failing to find solution

within t time units when started with initial conditions i. Further, we assume that the

randomized algorithm A selects initial conditions i with probability (1 − p)i−1 · p. We

now compute the probability that A does not find any solution within t time units:

pfail =
∞∑
i=1

i

i+ 1
(1− p)i−1 · p = −p ·

∞∑
i=1

d

dp

(1− p)i

i+ 1
= −p · d

dp

(
1

1− p

∞∑
i=2

(1− p)i

i

)
=

= −p · d
dp

(
p− 1− ln p

1− p

)
=

1 + p · ln p− p
(1− p)2

Note that the derivation shown above is correct for p ∈ (0, 1) as the power series∑∞
i=1

i
i+1

(1 − p)i−1 converges uniformly on every closed interval [ε, 1] where ε ∈ (0, 1).

The reason why we performed this tiresome derivation was to show that 0 < pfail < 1

for p ∈ (0, 1), i.e. that the algorithm behaves well. From this we can deduce that the

complementary runtime distribution of the restarted strategy with fixed cutoff t and

independent runs decays exponentially (cf. Theorem 2.1).

Now, suppose that the restarted algorithm with dependent runs has the property that

if solution is not found in i-th restart, the next run starts with initial conditions i + 1.

The probability that no solution is found within first k restarts is3

Rdep(k) =
1

2
· 2

3
· 3

4
· · · · · k

k + 1
=

1

k + 1

So, we see that in spite of the fact that the series of cutoffs t, t, t, . . . leads to exponentially

decaying tail for statistically independent runs, it leads to a heavy-tailed distribution for

the restart strategy with dependent runs.

In order to better understand the differences between the setting assumed in Theorem

3.1 and the setting used in this example, it is illustrative to see where the proof of Theorem

3.1 fails for the latter setting. It is the fact that since F is infinite, there need not exist

maxj fj(t), which is also the case in this example. 4
3For the restart strategy with fixed cutoff it suffices to show that the complementary runtime distri-

bution decays exponentially (has a heavy tail, respectively) as a function of number of restarts because

the case for complementary runtime distributions as a function of time follows from it.

CHAPTER 3. TWO θ-SUBSUMPTION ALGORITHMS 33

10
1

10
2

10
3

10
4

10
−3

10
−2

10
−1

10
0

nodes searched

1−
F

(x
)

Modified Restarted Strategy

Basic Restarted Strategy

Modified Strategy with Dependent Runs

10
0

10
2

10
4

10
−2

10
−1

10
0

Modified Restarted Strategy

Basic Restarted Strategy

Modified Strategy with Dependent Runs

Figure 3.3: Effect of individual restart strategies

The examples above showed that the strategy with dependent restarts may be in

some sense weaker than the strategy with independent restarts in situations when there

are infinitely (countably) many initial conditions from which the algorithm may start its

restarts. In spite of the fact that this setting does not seem to emerge in any practical

situation, it suggests that we should be cautious when designing restart strategies with

dependent restarts. The reason is that if there is a sufficient number of possible initial

conditions, there could be a t0 making the distribution decay at a power-law rate for

t < t0. Furthermore, no real distribution considered in this thesis is heavy-tailed in the

strong sense, as discussed in Section 2.5, because runtime of the basic complete non-

restarted θ-subsumption algorithm is always bounded by size of the particular search

tree. Nevertheless, it is still very helpful to use restarts for the distributions with tails

decaying at power-law rate only for a limited range of t. Hence, it might be the case that

an algorithm using the strategy with dependent runs would have a runtime distribution

whose mean could be decreased by restarting this restarted strategy. And in fact, this is

a possible way to view the odd/even strategy - as a restarted version of the strategy with

dependent runs.

The effect of using the basic restarted strategy, the strategy with dependent runs and

the odd/even strategy is shown in Fig. 3.3 for satisfiable (left panel) and unsatisfiable

instances (right panel). The hypotheses have n = 20 variables and connectivity p = 0.2.

In both cases, examples had n = 100 constants and connectivity p = 0.3. The restart

sequence was C(n) = b10 · en + 100c. Both hypotheses and examples were randomly

generated by Algorithm 15. It seems clear that the additional gain of the strategy with

CHAPTER 3. TWO θ-SUBSUMPTION ALGORITHMS 34

dependent runs over odd/even strategy is marginal and does not seem to be significant

enough to face its undesirable properties discussed in the paragraphs above.

We can speed up the restarted algorithm even more by considering two additional

heuristic improvements. First, notice that since the variable ordering heuristic is random-

ized, it produces variable orderings of different quality, i.e. producing bigger or smaller

search trees. We might assume that typically if a solution was found in some restart (or

it was proven that there is no solution), the variable ordering used in this restart was

not very bad. Therefore we might transfer this ordering to the next θ-subsumption check

between the same hypothesis and the next example. Thus we exploit the fact that in

ILP, we usually need to decide subsumption relation for a hypothesis and a set of exam-

ples. This is typical for ILP and is not typically encountered in the field of constraint

satisfaction. Second, not all instances of θ-subsumption problems encountered in ILP are

generally very hard (compared to problems typical in constraint satsifaction), so it can

be undesirable to use immediatelly the strongest propagation methods as these methods

have a non-negligible overhead and become favorable only for sufficiently hard problem

instances. Therefore we associate with each implemented propagation method (nothing,

forward-checking and arc-consistency on binary projection of constraints) a natural num-

ber denoting the first restart4, in which the particular propagation should be applied.

Thus, we avoid using overly strong methods for easy problems. On the other hand, we

do not face the burden caused by having a big search tree, which could likely be pruned

by sufficiently strong propagation methods, for harder problem instances.

We denote the version of the algorithm with the described knowledge transfer between

odd and even restarts and enriched with other heuristic improvements described above

as ReSumEr2. In the next section, we evaluate ReSumEr2 on artificial and real-world

data and compare it with a state-of-the-art θ-subsunption algorithm Django.

3.2.2 Experimental Evaluation

We subjected ReSumEr2 to a comparative empirical evaluation with a state-of-the-

art θ-subsumption algorithm Django [30]. All experiments were conducted on the same

computer. Django was implemented in C while ReSumEr2 was implemented in Java.

In [26], we performed experiments with a version of ReSumer2 implemented in C. Since

C is generally faster than Java, the C version may outperform the Java version for small

4These are parameters that the user can tune for a particular application.

CHAPTER 3. TWO θ-SUBSUMPTION ALGORITHMS 35

problem instances, where the implementation actually matters, even though it does not

use all the heuristics, which are present in the Java version. Therefore, we evaluate also

the C version of ReSumEr2 in Section 3.2.2.2 where we show that ReSumEr2 can

outperform Django even for small hypotheses, which are in reach of current ILP systems.

We used Django version 11.

3.2.2.1 Generated Data

In this section, we evaluate ReSumEr2 and Django on generated random graph data.

We aim at measuring the runtime distributions both for the case when there is a big

difference between sizes of hypotheses and examples and for the case when there is not a

very big difference.

Figure 3.4 displays the results for hypotheses and examples generated as Erdos-Rényi

random graphs. The comparative runtimes (top panels) are accompanied by the corre-

sponding phase transition diagrams (bottom panels). The left (right, respectively) panels

correspond to a smaller (larger, respectively) size difference between the hypotheses and

the examples. Size is understood as the number of contained vertices in the underlying

graphs (variables in the respective hypotheses or constants in the respective examples).

The connectivity parameter of random graphs was p = 0.3 for examples and it varied for

hypotheses (shown on the horizontal axis). In the top left panel, the hypotheses have

30 variables and examples have 100 constants. In the top right panel, hypotheses have

10 variables and examples have 200 constants. All shown points are averages of 50 com-

putations of subsumption of a random hypothesis against 20 random examples. In the

bottom, the phase transition landscapes (i.e. the probability that a random hypothesis

with connectivity p subsumes a random example) for the respective settings from the top

panels are shown.

We now note on the principled trends apparent from the results. First, ReSumEr2

outperformed Django in the YES region of the phase transition spectrum. This region

corresponds to the left parts of all diagrams in Figure 3.4. Although the observed absolute

difference is larger in the NO region, in relative terms it is much smaller than the difference

in the YES region. Second, in the experiments with a larger size-difference between the

hypotheses and the examples (examples much larger), ReSumEr2 was faster across the

entire phase transition domain. Third, heavy-tailed behavior of Django was observed: in

spite of its typical measured runtimes in the order of milliseconds to seconds, occasional

runs in satisfiable instances took up to tens of minutes and had to be curtailed. This

CHAPTER 3. TWO θ-SUBSUMPTION ALGORITHMS 36

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3
x 10

4

p

tim
e
 [
m

s]

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7
x 10

4

p

tim
e
 [
m

s]

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p

Figure 3.4: Comparison of ReSumEr2 (◦) and Django (2) on Erdos-

Rényi random graphs.

CHAPTER 3. TWO θ-SUBSUMPTION ALGORITHMS 37

resulted in Django’s excessive runtimes in the top-left panel of Fig. 3.4 for p ≤ 0.1. Heavy-

tailed behavior is prevented by ReSumEr2 resulting in its vast superiority in the p ≤ 0.1

region of Fig. 3.4, top-left panel. In some of our experiments, however, ReSumEr2’s

averaged runtimes were also excessive and Django outperformed it. Unlike for Django,

here the reason was not in occasional excessive runs, but rather in the systematic increase

of runtime required to complete the unsatisfiable subsumption instances.

3.2.2.2 Predictive Toxicology Challenge Data

Next, we studied performance of ReSumEr2 on a real-life dataset from the Predictive

Toxicology Challenge (PTC) [18]. The PTC dataset consists of 344 organic molecules

marked according to their carcinogenicity on male and female mice and rats. Our

relational-logic representation of these molecules consisted of ternary literals for atomic

bonds bond(at1, at2, bondName), unary literals representing types of particular bonds

singleBond(bondName), doubleBond(bondName), tripleBond(bondName) and

resonantBond(bondName) and unary literals for atom types c(atom), h(atom), n(atom)

etc.

In [26], we performed experiments in this domain, in which we generated hypotheses by

random walking through the subsumption lattice. These experiments demonstrated that

ReSumEr2 was significantly faster for long hypotheses in this real-world domain. This

was possible due to the fact that random walks enabled us to encounter long hypotheses

during the search. On the other hand, here we also want to demonstrate that ReSumEr2

can significantly outperform Django even for relatively short hypotheses. Therefore we

performed a series of experiments with a naive exhaustive best first search algorithm

with limit on size of hypotheses |lits(C)\{l ∈ lits(C) : pred(l) = different}| ≤ 10 and

|lits(C)\{l ∈ lits(C) : pred(l) = different}| ≤ 100. We let the search algorithm expand

50 search nodes in each run and let it run 152 times each time with different bottom

clause (i.e. once for each positive example). The runtimes in Table 4.5 refer to average

time of a single run of the search algorithm with the particular subsumption algorithm.

The results of the PTC dataset experiments, summarized in Table 4.5, differ according

to the chosen relational logic representation of the molecules. The first version PTC-

v1 uses a rather naive representation. Here, each molecular bond is represented by two

literals bond(at1, at2, bondName), bond(at2, at1, bondName). A source of imprecision of

this representation is that two variables in a hypothesis may represent the same atom,

which does not make intuitive sense. For this setting, the difference in performance

CHAPTER 3. TWO θ-SUBSUMPTION ALGORITHMS 38

Algorithm PTC-v1 [s] PTC-v2 [s] PTC-v3 [s]

ReSumEr2 (Java) 12.9 318 28.6

ReSumEr2 (C) 5.9 1580 11.8

Django (C) 8.2 n.a. 120.3

Table 3.1: Average runtimes for hypothesis search for the PTC dataset

and max. hypothesis size 10.

Algorithm PTC-v1 [s] PTC-v2 [s] PTC-v3 [s]

ReSumEr2 (Java) 19.3 494 42.5

ReSumEr2 (C) 8.8 2712 18.8

Django (C) 11.2 n.a. 297.2

Table 3.2: Average runtimes for hypothesis search for the PTC dataset

and max. hypothesis size 100.

of ReSumEr2 and Django was not significant. The PTC-v2 version deals with the

deficiencies of the PTC-v1 data representation. Here, every bond is again represented

by two literals bond(at1, at2, bondName) and bond(at2, at1, bondName). Furthermore,

we added literals different(a, b) for all pairs of atom-representing constants a and b in

examples. In this setting, the representation size of examples grew to thousands of atoms.

In this case, ReSumEr2 was significantly faster than Django, whose runtime exceeded

time limit 5 hours. In the PTC-v3 experiment we reduce the size of the representation

of examples by inserting the different(a, b) literal only for atoms a, b that both have a

bond with a common atom. In this last case, ReSumEr2 was again significantly faster

than Django (about one order of magnitude for the C version).

The results of the PTC dataset experiments, summarized in Table 3.2 refer to the

setting with sizes of hypotheses bounded by 100. It is important to note that despite the

fact that relatively long hypotheses are allowed, the actual lengths of these hypotheses

are governed by the search algorithm. This explains why the speed-up achieved by

ReSumEr2 is not as high as in the random walk setting used in [26]. On the other

hand, the speed-up is still very significant (orders of magnitude for the more complex

settings).

While results achieved in Section 3.2.2.1 on generated graph data indicated that Re-

sumer2’s performance superiority over Django grows with increasing size of examples,

CHAPTER 3. TWO θ-SUBSUMPTION ALGORITHMS 39

the PTC domain experiments clearly confirm this observation.

3.3 ReCovEr: A Restarted θ-subsumption

Estimator

One line of research in developing efficient θ-subsumption algorithms focuses on complete

algorithms such as Django or ReSumEr presented in the previous section. Another line

of research concentrates on approximation of θ-subsumption. Sebag et al. [41] presented

a tractable approximation of θ-subsumption called stochastic matching. Arias et al.

[1] developed a randomized table-based approximation method. The algorithm, termed

ReCovEr, introduced in this section is an example of the latter class of algorithms. It

utilizes randomized restarted strategies to estimate coverage of a hypothesis with repsect

to a set of examples.

Algorithm ReCovEr cannot be used in propositionalization for computing extensions

because it returns only a single number - estimate of coverage. On the other hand,

whenever there is e.g. a constraint on minimum frequency of generated features, it can

be immediately used to estimate this frequency. Furthermore, we develop a modification

of ReCovEr, which may be used for estimating extensions of features. This modification

is more suitable for propositionalization than ReCovEr.

3.3.1 Derivation of Coverage Estimator

Let us first explain the intuition underlying ReCovEr. Recall that the times taken by

ReSumEr on the unsatisfiable instances were in some of our experiments much higher

than on the satisfiable ones. One of the reasons for this behaviour is the ‘iterative’

character of ReSumEr2; unsatisfiability can only be shown after n restarts making R(n)

sufficiently high. It would be thus advantageous if we could avoid proving non-existence

of a solution. While this does not seem possible in general, we will develop a heuristic

estimation method that will at least try to achieve this.

We are given a clause C, and example set E and we would like to estimate the coverage

cov(C,E) = |{e ∈ E |C �θ e}|. Let us run Algorithm 4 on C and e, successively for

all e ∈ E. For each e, we however stop the algorithm if no decision has been made in

R steps. Let E ⊆ E be the subset of examples proven to be subsumed by C in this

CHAPTER 3. TWO θ-SUBSUMPTION ALGORITHMS 40

experiment. Denote s1 = |E|. We now remove all examples in E from E and repeat this

experiment, obtaining analogical number s2. Further such iterations generate numbers

s3, s4, etc. Clearly, for the desired value cov(C,E), we have that cov(C,E) = limj→∞ Sj

where Sj =
∑j

i=1 si.

The main idea of ReCovEr is that the limit of Sj for j →∞ should be estimated by

extrapolating the series from its first few elements S1, S2, Thus we achieve a coverage

estimate without excessive effort to prove non-existence of a solution for the examples

not subsumed by C. In order to precisely derive an estimation algorithm following the

above idea, we first need to make the following assumption5.

Assumption 3.1: Given a clause C and a set of examples E, the probability p > 0 that

Algorithm 4 finds a solution (i.e. returns YES as its answer) before it explores more than

R nodes of the search tree, is the same for all e ∈ E such that C subsumes e. I

In other words, we assume that properties of particular examples such as their size

are not dramatically different. The assumption will be empirically validated in the next

section. We assume a given clause C and we fix a constant cutoff value R. In the first

step, for each e ∈ E we run SubsumptionCheck(P, e) (Algorithm 4), stopping it as soon

as the number of searched nodes has reached R. Then, after |E| restarts (each time with

a different e ∈ E), we can derive the probability that the algorithm has produced exactly

m1 ‘YES’ responses in this first step. In particular, this probability P (m1) is

P (m1) =

(
A

m1

)
pm1(1− p)A−m1 (3.3)

where A = |{e ∈ E|C �θ e}|. In the next step, all m1 examples shown to be subsumed

in the first step are removed from E and the procedure is repeated with the remaining

examples. In general, we can derive the probability that exactly mi YES answers are

generated in the i-th step. Thus for i = 2, we obtain

P (m2|m1) =

(
A−m1

m2

)
pm2(1− p)A−m1−m2 (3.4)

and similarly for an arbitrary i ≥ 1, we have

P (mi|mi−1, . . . ,m1) =

(
A−

∑i−1
j=1mj

mi

)
pmi(1− p)A−

∑i
j=1mj (3.5)

5Naturally, the derived estimator will be correct only for situations where this assumption holds, but

this does not neccesarilly mean that it will not work in practice for other situations.

CHAPTER 3. TWO θ-SUBSUMPTION ALGORITHMS 41

Algorithm 9 ReCovEr(C,E,R,M,∆): Algorithm for coverage estimation

1: Input: Clause C and set of examples E, Integers R (‘cutoff’), M , ∆;

2: tries← 0

3: Unknown← Examples

4: CoveredInIthTry ← []

5: repeat

6: tries← tries+ 1

7: CoveredInThisTry ← 0

8: for ∀E ∈ Unknown do

9: Answer ← Run SubsumptionCheck(C,E) with number of searched nodes lim-

ited to R

10: if Answer = PositiveMatching then

11: CoveredInThisTry ← CoveredInThisTry + 1

12: Unknown← Unknown\E
13: end if

14: end for

15: CoveredInIthTry[tries]← CoveredInThisTry

16: until TerminationCondition

17: return LikelihoodEstimate(tries)

The probability of a sequence (m1, . . . ,mk), where mi is the number of examples for

which YES was produced in the i-th step, is given by

P (m1, . . . ,mk) =
k∏
i=1

P (mi|mi−1, . . . ,m1) (3.6)

Substituting for P (mi|mi−1, . . . ,m1) from Eq. 3.5 and taking the logarithm Eq. 3.6

results in

ln (P (m1, . . . ,mk)) =
k∑
i=1

(α +mi ln p+ β) (3.7)

where

α = ln

(
A−

∑i−1
j=1mj

mi

)

CHAPTER 3. TWO θ-SUBSUMPTION ALGORITHMS 42

and

β =

(
A−

i∑
j=1

mj

)
ln(1− p)

To find the parameters A and p for which P (m1, . . . ,mk) is maximized, we take the

partial derivative of Eq. 3.7 with respect to p and then find its roots, yielding

p =

∑k
i=1mi∑k

i=1mi +
∑k

i=1

(
A−

∑i
j=1mj

) (3.8)

Finding the global maximum of P (m1, . . . ,mk), if it exists, from Eq. 3.6 on the set

D = {(A, p)|A ∈ {1, 2, . . . , |E|} ∧ p ∈ (0; 1)} (3.9)

is now straightforward, since using (3.8) we can find the maximum on every line

Li = {(i, p)|p ∈ (0; 1)} (3.10)

If there is a maximum on line Li, it is located at the value of p given by (3.8). If there is

not a maximum on Li, we need to inspect the limits for p → 0+ and p → 1−. We can

exclude p → 0+ because if the algorithm finds no solutions in first k restarts, it cannot

decide whether no example is covered by the hypothesis or whether the probability of

finding a solution is just too close to zero (and if some examples were covered, p could

not be zero). Therefore if no example is covered in first k restarts, the algorithm chooses

to answer that there is no example covered. On the other hand, if some examples are

covered, it suffices to evaluate (3.6) at the points given by (3.8) and the limit for p→ 1

on Li for every i (1 ≤ i ≤ |E|). The estimate of A then equals the index i of the Li for

which a maximum value was obtained (in any of the two points).

The described estimator is used in ReCovEr (Algorithm 9). The question how to

choose k, i.e. how long a sequence (m1, . . . ,mk) should be generated as the input to

the estimator, is tackled iteratively: the sequence is being extended until a termination

condition is met. We have considered several termination conditions, of which two turned

out to be quite useful. The first termination condition stops generating the sequence when

two subsequent estimates differ by less than some ∆e, specified as a parameter. The

second termination condition stops generating the sequence when estimate and number

of examples already shown to be covered by the clause differ again by less than some

∆c, which ensures that the estimator will never overestimate the actual coverage by more

CHAPTER 3. TWO θ-SUBSUMPTION ALGORITHMS 43

than ∆c. A minimum length M of the sequence is however imposed in both previous

cases, to avoid premature estimates coinciding by chance.

Another degree of freedom in Algorithm 9 is the cutoff R, which may significantly

affect the performance of the restarted algorithm. A heuristic method suggests itself that

first tries to find a suitable cutoff. Unlike Algorithm 9 it starts with a base cutoff value,

and then doubles it after every single restart. If at any restart Algorithm 4 with cutoff

set to R does not cover more examples than the same algorithm at previous restart with

cutoff set to R
2

, then we can accept cutoff R
2

.

An obvoius drawback of algorithm ReCovEr is that a fixed cutoff strategy must be

used. This drawback is partially overcome by the heuristic method for selecting a good

cutoff described above. Nevertheless, if we restrict ourselves to estimating extensions,

which is in fact of higher importance for propositionalization than estimating coverage,

we can implement a modification of ReCovEr, which can be used with increasing cutoff

sequences. This is good news especially because increasing cutoff sequences are much

more robust than those with a fixed cutoff.

The restarted extension estimator is, in fact, just a slight modification of ReCovEr

algorithm. It is ReCovEr with stoping condition, which stops restarts when the esti-

mated coverage is equal to number of already covered examples, and with an increasing

cutoff sequence. We do not provide full theoretical justification for this algorithm. We

will only show an indirect evidence based on Theorem 3.2 and on simulations in Mat-

lab. Theorem 3.2 says basically that if the estimated probability p̂, that in any restart

subsumption is decided for a given example, is smaller than the average probability

p = 1
k

∑k
i=1 pi, where pi is probability that subsumption is decided in i-th restart (with

cutoff ci), then the estimate will be equally good as if we knew exact values of pi.

Of course, the question remains whether really p̂ ≤ p. To answer this question we

performed experiments with simulation of ReCovEr in Matlab. We genarated k random

values uniformly distributed on (0, 0.1) and we sorted them so that they would form an

increasing sequence (pi)
k
i=1. Then we simulated ReCovEr with probability of finding a

solution in i-th restart equal to pi. Then we the computed estimate p̂ and we checked

whether p̂ ≤ 1
k

∑k
i=1 pi. Figure 3.5 displays results of this simulation. The dashed

line corresponds to average fraction of examples covered in k restarts. The solid line

corresponds to probability that p̂ ≤ 1
k

∑k
i=1 pi. It seems encouraging that the assumption

is valid, for example, in about 80% cases for k (number of restarts), which is otherwise

sufficient to cover only about 50% of examples on average.

CHAPTER 3. TWO θ-SUBSUMPTION ALGORITHMS 44

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of restarts

fr
ac

tio
n

of
 p

os
iti

ve
 c

as
es

Figure 3.5: Simulation of ReCovEr with increasing cutoff sequences

Lemma 3.1 (Jensen’s inequality): Let f be a real concave function defined on Df ⊆
R, let xi ∈ Df be real numbers and let ai ∈ R be weights. Then following holds

f

(∑
i ai · xi∑
i ai

)
≥
∑

i ai · f(xi)∑
i ai

Proof: Proof can be found in [37]. 2

Theorem 3.2: Let (pi)
∞
i=1 be unknwown probabilities that a solution is found for an

example in a restart with cutoff ci. Let us assume that pi is the same for all examples

(cf. Assumption 3.1). Further, let an instance of the ReCovEr algorithm be used with

cutoff sequence (ci)
∞
i=1 in the setting where new restarts are performed until the number of

covered examples is equal to the estimated coverage. Let (mi)
k
i=1 be a sequence of counts

of examples covered by this algorithm. Let e, (p̂, respectively) be a maximum-likelihood

estimate of coverage (of probability of finding a solution in a single restart, respectively)

given the sequence (mi)
k
i=1 under assumption of use of a fixed-cutoff strategy with cutoff

c1. If for the estimated probability p̂ it is true that p̂ ≤ 1
k
·
∑k

i=1 pi, then e is also

a maximum-likelihood estimate of coverage under assumption that the increasing cutoff

sequence (ci)
∞
i=1 is used and the probabilities (pi)

∞
i=1 are known.

Proof: Let L(A, p1, . . . , pk) be logarithm of probability that sequence

(m1, . . . ,mk) was generated by algorithm R with probabilities of finding a solution in

CHAPTER 3. TWO θ-SUBSUMPTION ALGORITHMS 45

i-th restart equal to pi. For A =
∑k

i=1mi, we have

L(
k∑
i=1

mi, p1, . . . , pk) =
k∑
i=1

[
ln

(∑k
j=imj

mi

)
+mi ln pi + ln (1− pi)

k∑
j=i+1

mj

]
,

and for general A, we have

L(A, p1, . . . , pk) =
k∑
i=1

[
ln

(
A−

∑i−1
j=1mj

mi

)
+mi ln pi + ln (1− pi)

(
A−

i∑
j=1

mj

)]
.

The assumption that A =
∑k

i=1mi is a maximum likelihood estimate for pi = p̂ gives us

L(
k∑
i=1

mi, p̂, . . . , p̂)− L(A, p̂, . . . , p̂) =
k∑
i=1

(
αp̂i + β p̂i

)
≥ 0,

αp̂i = ln

(∑k
j=imj

mi

)
(
A−

∑i−1
j=1mj

mi

) , β p̂i = ln (1− p̂)

(
k∑
j=1

mj − A

)

where β p̂i ≥ 0 for A ≥
∑k

i=1mi. Note that it would not make sense to consider A <∑k
i=1mi as this would mean estimating lower coverage than is the number of already cov-

ered examples. What we need to prove is that L(
∑k

i=1mi, p1, . . . , pk)−L(A, p1, . . . , pk) ≥
0 if L(

∑k
i=1mi, p̂, . . . , p̂)− L(A, p̂, . . . , p̂) ≥ 0, i.e. that

L(
k∑
i=1

mi, p1, . . . , pk)− L(A, p1, . . . , pk) =
k∑
i=1

(αi + βi) ≥ 0,

αi = ln

(∑k
j=imj

mi

)
(
A−

∑i−1
j=1mj

mi

) , βi = ln (1− pi)

(
k∑
j=1

mj − A

)

Since αi does not depend on pi, it will suffice to show that
∑k

i=1 β
p̂
i ≤

∑k
i=1 βi for p̂ ≤ p.

The next derivation uses Jensen’s inequality.

k∑
i=1

ln (1− p̂) ≥
k∑
i=1

ln

(
1− 1

k

k∑
j=1

pj

)
≥

k∑
i=1

k∑
j=1

1

k
ln (1− pj) =

k∑
i=1

ln (1− pi)

It follows (assuming
∑k

i=1mi ≤ A, i.e. that
∑k

i=1mi − A ≤ 0) that

k∑
i=1

β p̂i =
k∑
i=1

(
k∑
j=1

mj − A

)
ln (1− p̂) ≤

k∑
i=1

(
k∑
j=1

mj − A

)
ln

(
1− 1

k

k∑
j=1

pj

)
≤

CHAPTER 3. TWO θ-SUBSUMPTION ALGORITHMS 46

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

2

3

4

5

6

7

8

9

p

P
ro

b
a
b
ili

ty
 d

e
n
s
it
y
 o

f
p

0 0.01 0.02 0.03 0.04 0.05 0.06

1

2

3

4

5

6

7

var(p)

R
o
o
t
m

e
a
n
 s

q
u
a
re

 e
rr

o
r

Figure 3.6: Sensitivity of ReCovEr to violations of Assumption 3.1

≤
k∑
i=1

(
k∑
j=1

mj − A

)
k∑
j=1

1

k
ln (1− pj) =

k∑
i=1

(
k∑
j=1

mj − A

)
ln (1− pi) =

k∑
i=1

βi

This finishes the proof because 0 ≤
∑k

i=1

(
αp̂i + β p̂i

)
≤

∑k
i=1 (αi + βi) =

= L(
∑k

i=1mi, p1, . . . , pk)− L(A, p1, . . . , pk). 2

The above theorem justifies (at least to some extent) the use of an increasing cutoff

sequence in ReCovEr in the setting where no extrapolation is performed and estima-

tion is limited to deciding whether the current number of covered examples equals the

overall number of covered examples. This no extrapolation setting is basically extension

estimation and it will be called ReCovEr-E in what follows.

3.3.2 Experiments

In this section, we first investigate the sensitivity of ReCovEr to a violation of Assump-

tion 3.1. Then we evaluate its performance and precision on random graph data and on

real-world data from organic chemistry and from engineering. We compare performance

of ReCovEr with that of the state-of-the-art θ-subsumption algorithm Django. We have

chosen Django, and not any of the existing approximate algorithms, for comparisons be-

cause in [1] it has been shown to perform similarly well or even better than one of the

approximate methods: the table-based incomplete heuristic method.

CHAPTER 3. TWO θ-SUBSUMPTION ALGORITHMS 47

3.3.2.1 Sensitivity Analysis

Here we address Assumption 3.1. We first want to verify to what extent the assumption

is satisfied, and subsequently, how much the deviations from the assumption influence

ReCovEr’s precision. To this end we performed a series of experiments, in which we

measured empirical distributions of probabilities p and we run simulations of ReCovEr.

According to Assumption 3.1, probability p ∈ (0; 1] would be a constant. Now, we

assume that p is a random variable with some distribution on [0; 1], which we would like

to estimate. A standard approach to this task is to parameterize a Beta distribution

on [0; 1] from empirical data. To obtain the data, we experimented with the random

graph data with parameters of generated hypotheses p = 0.35, n = 10, parameters of

generated examples p = 0.3, n = 50 and ReCovEr’s cutoff R = 75. This resulted in

Beta distributions plotted in dashed lines in Fig. 3.6. For comparisons, we plotted also

Beta distributions with mean µ = 0.5 and variance consecutively 0, 0.005, . . . , 0.06 (solid

lines).

Then we investigated ReCovEr’s sensitivity to the modeled deviations. We assumed

to have n = 100 examples, of which 50 were covered by a clause C. Further, probabilities

pi that Algorithm 4 finds a solution for a covered example ei in time less than R were

sampled from the Beta distribution with given mean µ = 0.5 and variance consecutively

0, 0.005, . . . , 0.06 (corresponding to those displayed in Fig. 3.6). Then, we simulated Re-

CovEr’s estimation procedure on these data in Matlab. We used the stopping condition

based on difference of estimate and lower bound, the parameters were M = 3, ∆ = 1.

The right panel of Fig. 3.6 displays the dependence of root mean square error on the

variance of the beta distributions. It is encouraging to see that the root mean square error

grows roughly linearly with growing variance in p’s distribution, indicating ReCovEr’s

robustness towards this variance.

3.3.2.2 Experiments with Generated Graph Data

Figure 3.7 demonstrates the precision of ReCovEr and ReCovEr-E on the Erdos-

Rényi graph data by showing 1000 pairs (estimated coverage, actual coverage). Hypothe-

ses and examples were generated with p = 0.2 for hypotheses and p = 0.3 for examples.

The graphs corresponding to hypotheses had 20 vertices, and the graphs corresponding

to examples had 100 vertices. The left panel refers to estimates obtained by ReCovEr

enhanced by cutoff selection with base cutoff R = 100 (◦) and by ReCovEr-E with the

same base cutoff R = 100, while the right panel refers to estimates obtained by the same

CHAPTER 3. TWO θ-SUBSUMPTION ALGORITHMS 48

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

real count

e
s
ti
m

a
te

d
 c

o
u
n
t

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

real count

e
s
ti
m

a
te

d
 c

o
u
n
t

Figure 3.7: Precision of ReCovEr (◦) and ReCovEr-E (+)

algorithms with base cutoff R = 200. A bias towards coverage under-estimation can be

observed, as well as a positive effect of the higher base cutoff on estimation precision.

The under-estimation bias is caused by the used stopping condition. Table 3.3 shows

average runtimes of ReCovEr, ReCovEr-E and Django for these settings.

It is interesting to note that while root mean squared error of ReCovEr-E was lower

for base cutoff 100 (err = 6.4) than root mean squared error of ReCovEr (err = 8.7),

it was higher for the setting with base cutoff 200 (err = 6.4 for ReCovEr-E and

err = 5.9 for ReCovEr for R = 200). On the other hand, ReCovEr-E estimated

correct coverage (extension) in significantly larger fraction of cases (81% for R = 100

and 81% for R = 200) than ReCovEr (38% for R = 100 and 48% for R = 200). This

discrepancy may be explained by the fact that while ReCovEr-E usually estimates

correct coverage, sometimes, if it underestimates the correct value, it underestimates

it more than ReCovEr. This is mostly because the cutoff selection method used in

ReCovEr causes, for first few restarts, more rapid growth of cutoff than is the growth

of the cutoff sequence in ReCovEr-E for the base cutoff R = 200 (2 ·200 > 200+10 ·e2,
4·200 > 200+10·e3). Therefore ReCovEr-E does not always catch as fast as ReCovEr

in situations where probability of finding a solution is very small for low values of cutoff.

While this could definitely be fixed by using a more fine-tuned cutoff sequence, we do not

consider it necessary to do this fine tuning here.

Whether the observed estimation variance is tolerable for the task of clause ranking

usual in inductive logic programming is the subject of the experiments in the next section.

CHAPTER 3. TWO θ-SUBSUMPTION ALGORITHMS 49

Algorithm Avg. Time [s]

ReCovEr, R = 100 13.5

ReCovEr, R = 200 14.7

ReCovEr-E, R = b100 + 10 · erc 18.2

ReCovEr-E, R = b200 + 10 · erc 19.4

Django 1230

Table 3.3: Avg. estimation runtimes for the configurations from Fig. 3.7.

3.3.2.3 Experiments with Real-World Data

In this section, we describe experiments with algorithm ReCovEr in two real-world

domains. We do not evaluate performance of ReCovEr-E, since it is intended to be

an algorithm suitable for propositionalization, while here we want to test the coverage

estimation algorithm in hypothesis search. We use the C version of ReCovEr described

in [24].

In order to assess performance in conditions of a real-life learning setting, we decided

not to generate clauses entirely randomly. Our intention was to simulate general principles

of clause production in an inductive logic programming system, while avoiding an overfit

to a specific clause search strategy (which would e.g. be a result of adhering to a specific

heuristic function for selecting literals). Thus we developed a simple relational learner,

which we use for further experiments with ReCovEr. The learner (Algorithm 10) is

a randomized variation of a specific-to-general beam search. It starts with the most

specific clause ⊥ and at each search step, it generates at least n · |Beam| new hypotheses

by removing random subsets of literals from the hypotheses already present in Beam.

The output of the algorithm is one best clause, which is why we assess its quality through

precision and recall.

The first set of experiments, which we have conducted with Algorithm 10, deals

with the Mutagenesis dataset [43]. This dataset consists of descriptions of 188 or-

ganic molecules, which are marked according to their mutagenicity. In our experi-

ments, we used only the information about atom-bond relationships and about types of

atoms. We did not consider numerical parameters such as lumo or logp. Our relational-

logic representation of these molecules consisted of ternary literals for atomic bonds

bond(at1, at2, bondType), unary literals representing types of particular bonds and unary

literals for atom types. As in our experiments with algorithm ReSumEr in the PTC

CHAPTER 3. TWO θ-SUBSUMPTION ALGORITHMS 50

Algorithm 10 Learner(⊥, p, BeamSize, Tries): A Clause Learner

1: Input: Most specific clause ⊥, Real numbers p, Integers BeamSize, MaxSearched

2: Beam← {⊥}
3: BestClause← ⊥
4: repeat

5: Candidates← Beam

6: for ∀hi ∈ Beam do

7: for i = 1 . . . BeamSize do

8: GenerateClause(hi)

9: C ← connected components of c

10: Evaluate each ci ∈ C
11: Candidates← candidates ∪ C
12: end for

13: end for

14: for ∀h ∈ Candidates such that h is estimated to be better than BestClause do

15: if h is shown to be better than BestClause by a deterministic subsumption

algorithm then

16: BestClause← h

17: end if

18: end for

19: Choose BeamSize best hypotheses from Candidates and add them to Beam

20: Explored← Explored+ 1

21: until Beam = {} or Explored = Tries

domain described in Section 3.2.2.26, we have considered three variants of relational logic

description of the molecules, with growing complexity (size of examples). The first ver-

sion Muta-v1 uses a naive representation. Here, each molecular bond is represented by

a single literal bond(at1, at2, bondType), thus imposing a bond orientation (atom order)

chosen at random. The second source of imprecision of this representation is that two

variables in a clause may represent the same (chemical) atom, which does not make in-

tuitive sense. The second version Muta-v2 deals with the first source of imprecision,

as it represents every atomic bond with a pair of literals bond(at1, at2, bondType) and

6The settings described in this section are slightly different from those shown in Section 3.2.2.2.

CHAPTER 3. TWO θ-SUBSUMPTION ALGORITHMS 51

bond(at2, at1, bondType). The third version Muta-v3 solves the second source of impre-

cision by adding literals different(a, b) for all pairs of atom-representing constants a, b.

The second set of experiments pertains to class-labeled CAD data (product structures)

described in [51], consisting of 96 CAD examples each containing several hundreds of first-

order literals.

The main observation provided by the experiments is that ReCovEr becomes quickly

superior to Django as the example size grows, whereas the two algorithms do not sig-

nificantly differ in terms of the training-set7 accuracy of the discovered clauses. It is

interesting to note that Django’s poor runtime performance on the learning tasks with

large examples (CAD data and Muta-v2) was often due to occasional subsumption

cases. Clearly, this is a manifestation of heavy tails present in Django’s runtime distri-

bution. Unlike Django, ReCovEr was exhibiting steady performance.

Dataset ReCovEr [s] Django [s]

Muta-v1 42 29

Muta-v2 513 1627

Muta-v3 1695 >5h

CAD 121 >2h

Table 3.4: Average runtimes of the learner (Algorithm 10, p = 0.75,

Tries = 10) for real-world datasets.

Dataset Avg. Precision Avg. Recall

Muta-v1 0.84 0.61

Muta-v2 0.81 0.65

Muta-v3 0.83 0.84

CAD 0.92 0.7

Table 3.5: Quality of learned hypotheses for ReCovEr

7As this paper is not concerned with improving generalization performance, we did not measure

accuracies on hold-out test sets.

CHAPTER 3. TWO θ-SUBSUMPTION ALGORITHMS 52

Dataset Avg. Precision Avg. Recall

Muta-v1 0.86 0.6

Muta-v2 0.82 0.65

Muta-v3 n.a. n.a.

CAD n.a. n.a.

Table 3.6: Quality of learned hypotheses for Django

3.4 Discussion of Experiments with ReSumEr and

ReCovEr

The algorithms presented in this chapter were designed to exploit special properties of θ-

subsumption. Experiments on both artificially generated and real-life data showed that

both ReSumEr2 and ReCovEr are competitive with state-of-the-art θ-subsumption

algorithm Django, which is considered the fastest θ-subsumption engine.

The experiments showed wide ranges of speed-up achieved by our novel algorithm

ReSumEr2 in comparison to Django. On real-life data, the speed-up ranged from ac-

tually a slow-down of tens of percent to a speed-up of several orders of magnitude for

large examples. While the results are encouraging, we expect that there is also a vast

number of datasets where Django could outperform our algorithms. The reason is that

Django uses a CSP encoding of θ-subsumption, which is dual to the encoding used by our

algorithms. Order parameters, which determine worst-case time complexity of the algo-

rithms, are different for the two encodings [1]. Therefore empirical performance could also

differ significantly depending on a given dataset. Based on experiments, which showed

that ReSumEr2 outperformed Django especially in the YES region, we conjecture that

ReSumEr2 or some similar algorithm could be beneficial in a relational learner, which

would construct hypotheses in a general-to-specific manner.

Evaluation of our second algorithm, ReCovEr, is a bit harder because we need to

take into account both runtime and accuracy of estimation. Nevertheless, the experi-

ments, which we have performed, indicate that ReCovEr or some similar algorithm

could be beneficial in the situations when very complex hypotheses and examples are

encountered. It is question whether existing publicly-available datasets are challenging

enough from this point of view. For example, in order to test the ability of ReCovEr to

cope with complex hypotheses from a real-life dataset, we had to devise a (naive) specific-

CHAPTER 3. TWO θ-SUBSUMPTION ALGORITHMS 53

to-general-style algorithm because such an algorithm typically produces long hypotheses

already in early stages of its run.

An interesting property of ReCovEr, which we have not tested, is that the core

algorithm need not be complete but that some incomplete algorithm could be used as

well. For example, it would be interesting to see how ReCovEr would work with the

randomized table-based method described in [1].

Chapter 4

Two Propositionalization Algorithms

As we have already explained in Section 2.4, propositionalization aims at converting

structured descriptions of examples1 into attribute-value descriptions which can be then

processed by most established machine learning algorithms. In this chapter, we work in

the learning from interpretations setting [35]. We assume that examples are represented

as first-order logic interpretations, features are first-order conjunctions and some Horn

background theory B (possibly empty) is available. Feature F acquires value true for

example I (is covered by the example) if m(B) ∪ I |= F where m(B) is the minimal

model of B, otherwise it has the false value. With slight abuse of notation, we will write

this relation simply as B ∧ I |= F .

Current systems (e.g. RSD [44], SINUS [21]) construct conjunctions iteratively in

a level-wise manner by adding one literal at time. Monotonicity of frequency (if F is

not frequent then F ∧ l is not frequent for any literal l) is exploited for pruning by

numerous algorithms, e.g. by a well-known frequent query discovery system WARMR

[9]. Unfortunately, relevancy and irreducibility which are another properties of interest in

propositionalization are in general not monotone in this level-wise approach. In this chap-

ter we introduce two novel propositionalization algorithms for construction of hierarchical

features, which construct feature sets by composition of smaller conjunctions of literals

(‘building blocks’). The two algorithms exploit a form of monotonicity of relevancy and

irreducibility, which is preserved in the block-wise approach. This enables them to vastly

outperform existing state-of-the-art systems by orders of magnitude in runtime even in

situations where these systems work also only with hierarchical features.

This chapter is organized as follows. First, we study properties of hierarchical features

1The structired representation of examples may have different forms depending on used learning

setting - e.g. learning from interpretations as used here or learning from entailment.

54

CHAPTER 4. TWO PROPOSITIONALIZATION ALGORITHMS 55

regarding extension computation, reducibility and relevancy. The obtained theoretical

results are then used to develop the two propositionalization algorithms. The first of

these algorithms (RelF) exploits mostly the properties of relevancy and reducibility of

features, while the second algorithm (HiFi) focuses more on restricting the feature space

syntactically.

4.1 Analysis of Hierarchical Features

4.1.1 Hierarchical Features

The set of literals in a conjunction C is written as lits(C), |C| = |lits(C)| is size of C. A

set of conjuctions is said to be standardized-apart if no two conjunctions in the set share a

variable. Given a set A of atoms, we denote Args(A) = {(a, n)|a ∈ A, 1 ≤ n ≤ arity(a)},
i.e. Args(A) is the set of all argument places in A. We will assume that no conjunction

contains two equal literals, i.e. p(X) ∧ p(Y) will be allowed, but p(a) ∧ p(a) will not.

For an atom a, argi(a) is its i-th argument. The admissible features syntax will be

constrained by means of hierarchical templates, which will be a slight modification2 of

templates described in Section 2.4.1.

Definition 4.1 (Hierarchical Template): A pre-template is a pair (γ, µ) where γ is

a finite set of ground atoms and µ ⊆ Args(γ). Elements of µ (Args(γ) \ µ) are called

inputs (outputs) in γ. A pre-template (γ, µ) is a hierarchical template if every atom in γ

has at most one input argument and there is a partial irreflexive order ≺ on constants in

γ such that c ≺ c′ whenever c appears as an input and c′ as an output in some l ∈ γ. I

A hierarchical template τ = (γ, µ) is conveniently shown by writing γ with input (output)

arguments marked with the sign + (-), such as τ ≈ {hasCar(−c), hasLoad(+c,−l), box(+l),

large(+l), triangle(+l)}.

Definition 4.2 (Hierarchical Feature): Given a hierarchical template τ = (γ, µ), a

τ -pre-feature F is a finite conjunction of literals containing no constants or functions,

such that lits(Fθ) ⊆ γ for some substitution θ. The occurrence of variable in the i-th

argument of literal l in F is an input (output) occurrence in F if the i-th argument of lθ is

(is not) in µ. A variable is neutral in F if it has [i] at least one input occurrence in F , and

2This modified definition is not work of the author of this thesis but of author’s advisor.

CHAPTER 4. TWO PROPOSITIONALIZATION ALGORITHMS 56

[ii] exactly one output occurrence in F . A variable is pos (neg) in F if it complies only

with [i] ([ii]). A τ -pre-feature is a hierarchical τ -feature F if all its variables are neutral

in F ; it is a pos (neg) τ -feature F if it has exactly one pos (neg) variable, denoted p(F)

(n(F)), and the remaining variables are neutral; it is a pos-neg τ -feature if it has exactly

one pos variable and exactly one neg variable and the remaining variables are neutral.I

For example, using the τ defined under Def. 4.1 the following conjunction is a hierarchical

τ -feature

hasCar(C) ∧ hasLoad(C,L1) ∧ hasLoad(C,L2)∧

∧box(L1) ∧ large(L1) ∧ triangle(L2)

hasCar(C) is a neg τ -feature, hasLoad(C,L1)∧box(L1) is a pos τ -feature and hasLoad(C,L1)

is a pos-neg τ -feature. It is important to note that the only pos (neg) variable p(F+)

(n(F−)) in a pos (neg) feature is uniquely given despite the fact that inputs and outputs

are not given uniquely in general.

Wherever we shall deal with a single fixed template τ , we will simply speak of (hierar-

chical, pos, neg, pos-neg) features instead of (hierarchical, pos, neg, pos-neg) τ -features.

Given the assumed partial order in templates, a hierarchical feature F corresponds to a

tree graph TF , here called the F -tree, with vertices vi corresponding to literals li. There

is an edge between vi and vj if there is a variable which has an output occurrence in li

and an input occurrence in lj. We say that a (hierarchical, pos, neg) feature has depth d

if the corresponding F -tree has depth d. Analogically, we say that a literal l is in depth d

in (hierarchical, pos, neg) feature if it is in depth d in the corresponding F -tree (if d = 0,

we call l root of F).

Definition 4.3 (Graft): Let F− be a neg (pos-neg) feature and φ+ = {F+
i } be a

standardized-apart (possibly with exception n(F−) = p(F+
i)) set of pos features. We

define the graft F−⊕n(F−)φ
+ = F−∧iFiθi, where each substitution θi = {p(F+

i)/n(F−)}.
A pos feature F+ is said to be contained in hierarchical (pos) feature F if and only if

F+ ⊂ F and F\F+ is a neg (pos-neg) feature. I

In what follows, the variable in the subscript of the graft operator will be uniquely

determined by context. Hence we will mostly drop the subscript for simplicity.

Example 4.1 (Running Example): Let us have a set of two positive examples E+

and a set of two negative examples E−

E+ = {{hasCar(c1), hasLoad(c1, l1), circ(l1), box(l1), hasLoad(c1, l2), tri(l2)},

CHAPTER 4. TWO PROPOSITIONALIZATION ALGORITHMS 57

{hasCar(c2), hasLoad(c2, l3), box(l3), tri(l3)}}

E+ = {{hasCar(c3), hasLoad(c3, l4), box(l4), circ(l4)},

{hasCar(c4), hasLoad(c4, l5), tri(l5), circ(l5)}}

We define a very simple hierarchical template τ ≈ {hasCar(−c), hasLoad(+c,−l), box(+l), tri(+l),

circ(+l)} to constrain the features for this data. Although there is an infinite number of

features correct w.r.t. τ , there are only finitely many features, which are not H-reducible,

as we will see in the next section. 4

4.1.2 Irreducibility

To define the reducibility property of conjunctive features, we will use the notion of

θ-subsumption.

Definition 4.4 (Reducibility): If D �θ C, we call C and D θ-equivalent (written

C ≈θ D). We say that C is reducible if there exists a clause C ′ such that C ≈θ C ′ and

|C| > |C ′|. A clause C ′ is said to be a reduction of C if C ≈θ C ′ and C ′ is not reducible.I

An example of a θ-reducible conjunction of literals is C = hasCar(C)∧hasLoad(C,L1)∧
hasLoad(C,L2) ∧ box(L1). Let D = hasCar(C) ∧ hasLoad(C,L1) ∧ box(L1), then

Cθ ⊆ D, where θ = {L2/L1}, and |D| < |C|.
In this thesis we cannot rely directly on the established notion of reducibility as

defined above. This is because a reduction of a hierarchical τ -feature may not be a

τ -feature itself. For example, for τ ≈ {car(−c1), hasLoad(+c1,−l), hasLoad(−c2,+l),
hasCar(+c2)}, the conjunction car(C1) ∧ hasLoad(C1, L1) ∧ hasLoad(C2, L1) ∧ car(C2)

is a correct τ -feature but its reduction hasCar(C1) ∧ hasLoad(C1, L1) is not.

The fact that reduction does not preserve correctness of feature syntax may represent a

problem because, to avoid redundancy, we would like to work only with reduced features.

The next definition introduces H-reduction, which has the property that H-reduction

of a hierarchical τ -feature is always a hierarchical τ -feature. While there is an infinite

number of hierarchical τ -features for a sufficiently rich template τ , there is always only a

finite number of non-H-reducible ones.

Definition 4.5 (H-reduction): We say that hierarchical (pos) τ -feature f H-subsumes

hierarchical (pos) τ -feature g (written f �H g) if and only if there is a substitution

(called H-substitution) θ such that fθ ⊆ g and for every literal l ∈ lits(f) it holds

CHAPTER 4. TWO PROPOSITIONALIZATION ALGORITHMS 58

depthf (l) = depthg(lθ) for some correct assignment of inputs and outputs of f and g. If

further g �H f , we call f and g H-equivalent (written f ≈H g). We say that hierar-

chical (pos) τ -feature f is H-reducible if there is a hierarchical (pos) τ -feature f ′ such

that f ≈H f ′ and |f | > |f ′|. Hierarchical feature f ′ is said to be an H-reduction of f if

f ≈H f ′ and f is not H-reducible. I

In the proof of Theorem 4.1 we will speak interchangeably about substitution θ from

variables to terms and about the induced substitution from literals to literals.

Theorem 4.1: Let F+ be a pos feature and let F− be a neg feature. Then following

holds: (i) F+ is H-reducible if and only if F+ contains pos features F+
1 , F

+
2 such that

F+
1 6= F+

2 , p(F+
1) = p(F+

2) and F+
1 �H F+

2 . (ii) If F+ is H-reducible, then F− ⊕ F+

is also H-reducible. (iii) Whether a hierarchical (pos) feature F is H-reducible can be

computed in polynomial time (in |F |).

Proof: In this proof we will use the following observation. Let A,B be pos features

and let θ be a H-substitution such that Aθ ⊆ B. Observe that if l ∈ B\Aθ, then also

l′ ∈ B\Aθ for any literal l′ contained in pos feature F+
l ⊆ B, where F+

l has l as its root. (i

⇒) Let F+
r be H-reduction of F+ and let θ1, θ2 be H-substitutions such that F+

r θ1 ⊆ F+

and F+θ2 ⊆ F+
r . Substitution θ3 = θ2θ1 is a mapping θ3 : lits(F+) → lits(F+). Since

F+θ2 ⊆ F+
r , |F+θ2| ≤ |F+

r | and consequently |F+θ3| ≤ |Fr| < |F+|, because applying a

substitution to a feature cannot increase its size. Therefore there is a literal l ∈ F+\F+θ3

and, as we have observed, also a whole pos feature F+
1 ⊆ F+\F+θ3. Thus, there is a pos

feature F+
2 (F+

2 6= F+
1) such that F+

1 θ3 ⊆ F+
2 . It remains to show that for some such

F+
1 , F

+
2 , p(F+

1) = p(F+
2). If p(F+

1) 6= p(F+
2), then there must be pos features F+′

1 , F+′

2

such that F+
1 ⊂ F+′

1 , F+
2 ⊂ F+′

2 and F+′

1 θ3 ⊆ F+′

2 . For such F+′

1 , F+′

2 with maximum

size, p(F+
1) = p(F+

2). (i ⇐) Let θ be a H-substitution such that F+\F+θ = F+
1 , then

F+θ ≈H F+ and |F+θ| = |F+| − |F+
1 | < |F+|. (ii) This follows from (i). (iii) An

approach, which tests whether F+
1 �H F+

2 for all pairs of pos features F+
1 , F

+
2 contained

in F+ with equal pos variables, runs in polynomial time in |F | (cf. Algorithm 11). 2

The second property of H-reduction stated in Theorem 4.1 allows us to filter H-

reducible pos features during propositionalization process.

Example 4.2 (Running Example): Let us return to our running example from Sec-

tion 4.1.1. As we have already mentioned, there is an infinite number of hierarchical fea-

tures, but only a finite number of non-H-reducible ones. An example of an H-reducible

CHAPTER 4. TWO PROPOSITIONALIZATION ALGORITHMS 59

Algorithm 11 domI,B(S)

1: Input: Pos feature F+, Interpretation I, Background theory B;

2: litsDom← {l|pred(l) = pred(root(F+)) ∧ ((I ∧B) |= l)}
3: for ∀ output variables outi of F+’s root do

4: argDomi ← ∩c∈childrenouti (l)domI(c)

5: litsDom← litsDom ∩ {l|argi(l) ∈ argDomi}
6: end for

7: return {t|t is term at input of l ∧ l ∈ litsDom}

hierarchical feature for template τ is

Freducible = hasCar(C) ∧ hasLoad(C,L) ∧ box(L)∧

∧hasLoad(C,L2) ∧ box(L2) ∧ circ(L2) ∧ tri(L2).

This feature is indeed H-reducible as may be seen from the following fact

hasLoad(C,L) ∧ box(L) �H

�H hasLoad(C,L2) ∧ box(L2) ∧ circ(L2) ∧ tri(L2)

When all H-reducible hierarchical features are removed, there remain only 18 correct

τ -features for τ from our running example. 4

4.1.3 Relevancy

Definition 4.6 (Domain): Let I be an interpretation, B be a background theory, τ be

a hierarchical template and T be a set of terms. Let S be a standardized-apart set of pos

τ -features. Then, domain w.r.t. I and B (domI,B) is a mapping domI,B : S → 2T such

that domI,B(F+) contains all terms t such that (I ∧B) |= F+θ, where θ = {p(F+)/t}.I

Domain assigns to each pos feature a set of terms {ti}, for which there is a grounding

of S such that p(S) = ti and the grounding of S is true in I ∧ B. In order to allow

efficient computation of domains of pos features, we make the assumption that for every

literal l with a subset of output arguments out1, . . . , outi grounded, it is possible to find

the set of all possible groundings of this literal efficiently. If this assumption holds, then

an algorithm exists, which correctly computes domain and works in time polynomial in

the size of F+ (Algorithm 11). This algorithm is not novel, for B = ∅ it corresponds

CHAPTER 4. TWO PROPOSITIONALIZATION ALGORITHMS 60

to an algorithm known as directed-arc-consistency algorithm in the field of CSP and as

conjunctive acyclic query algorithm in database theory [50].

Once we have established how domain of a pos feature is computed, it is easy to

use this method to decide whether (I ∧ B) |= F , where F is a hierarchical feature. If

l = pred(X1, . . . , Xn) is root of F , it suffices to replace l by l′ = pred(X0, X1, . . . , Xn) in F

and extend background theory to B′ = B∪{pred(yes,X1, . . . , Xn)← pred(X1, . . . , Xn)}.
If domain of this newly created pos feature feat+(F) is non-empty, then (I ∧ B) |= F .

This simplifies notation because we do not need to treat neutral features separately.

Example 4.3: Let us have hierarchical feature F and interpretation I

F = hasCar(C) ∧ hasLoad(C,L) ∧ tri(L) ∧ box(L),

I = {hasCar(c), hasLoad(c, l1), hasLoad(c, l2), tri(l1),

circ(l1), tri(l2), box(l2), hasLoad(c, l3), box(l4)},

B = ∅.

First, we modify F so that we could use Algorithm 11 to decide whether (I ∧ B) |= F ,

i.e. we replace hasCar(C) by hasCar(X,C) and extend the background theory B =

{hasCar(yes,X) ← hasCar(X)}.3 Then we may proceed as follows: (i) We compute

domains of pos features box(L) and tri(L), i.e. domI(box(L)) = {l2, l4}, domI(tri(L)) =

{l1, l2}. (ii) Then we compute domain of pos feature with root hasLoad(C,L), i.e.

domI(hasLoad(C,L)) = {l1, l2, l3}∩{l2}∩{l1, l2} = {l2}. (iii) Since no domain is empty

so far, we proceed further and compute domain of pos feature with root hasCar(X,C),

which becomes domI(hasCar(X,C)) = {yes} ∩ {yes}. So, we see that (I ∧B) |= F . 4

The next definition introduces irrelevancy of boolean attribute [28], which enables one

to filter such irrelevant attributes from dataset.

Definition 4.7 (Irrelevant Attribute): LetA be a set of boolean attributes, let cov(a)

denote subset of examples covered by a ∈ A and let pos(a) (neg(a)) denote subset of

positive (negative) examples covered by a ∈ A. A boolean attribute a ∈ A is said

to be E+-irrelevant (E−-irrelevant) if and only if there is a′ ∈ A, a 6= a′ such that

pos(a) ⊆ pos(a′) and neg(a′) ⊆ neg(a) (neg(a) ⊆ neg(a′) and pos(a′) ⊆ pos(a)). If one

of the inclusions, for at least one example, is strict, a is said to be strictly E+-irrelevant

3We assume that there had been no literals hasCar(X, C) before we added them to the original

feature and to background theory.

CHAPTER 4. TWO PROPOSITIONALIZATION ALGORITHMS 61

(E−-irrelevant). A boolean attribute a is called irrelevant if it is both E+-irrelevant and

E−-irrelevant. It is called strictly irrelevant if it is irrelevant and strictly E+-irrelevant

or strictly E−-irrelevant. I

In this section, we develop methods for detection of pos features, which give rise to

irrelevant features when grafted with neg features.

Lemma 4.1: Let I be an interpretation, B background theory and let

S1 = {F+
1 , F

+
2 , . . . , F

+
m} and S2 = {G+

1 , G
+
2 , . . . , G

+
n } be standardized-apart sets of pos

features such that ∩mi=1domI,B(F+
i) ⊆ ∩ni=1domI,B(G+

i), then for any pos-neg feature F−

domI,B(F− ⊕V S1) ⊆ domI,B(F− ⊕V S2)

Proof: Let us first consider the case when depthF−(V) = 0. The only place, where

domains of Fi ∈ S1 (Gi ∈ S2 respectively) are used, is line 4 in Algorithm 11. Clearly

argDomS1 = ∩mi=1domI,B(F+
i) ⊆ argDomS2 = ∩ni=1domI,B(G+

i) and consequently

litsDomS1 ⊆ litsDomS2 and therefore also domI,B(F ⊕V S1) ⊆ domI,B(F ⊕V S2). The

general case of lemma may be proved by induction on depth of V . (i) The case for

depth 0 has been already proved. (ii) Let us suppose that lemma holds for depth

d. Now, we suppose that depthF−(V) = d + 1. We may take the pos-neg feature

T ⊂ F− which contains V as output such that depthT (V) = 0, W = p(T) (respect-

ing inputs/outputs of F− and n(F−) = V) and graft it with S1 (S2, respectively).

We have domI,B(T ⊕V S1) ⊆ domI,B(T ⊕V S2) and by induction argument finally also

domI,B(F−⊕V S1) = domI,B((F−\T)⊕W {T ⊕V S1}) ⊆ domI,B((F−\T)⊕W {T ⊕V S2}) =

domI,B(F− ⊕V S2), which finishes the proof. 2

Theorem 4.2: Let E+ be a set of positive examples, let E− be a set of negative examples

and let B be background theory. Let S = {F+
i }ni=1 be a set of distinct pos features with

equal types of input arguments such that for all i 6= j there is an example I ∈ E+∪E− with

domI,B(F+
i) 6= domI,B(F+

j). Let domI,B(F+
1) ⊆ ∩ni=2domI,B(F+

i) be true for all I ∈ E+

(I ∈ E−) and let ∩ni=2domI,B(F+
i) ⊆ domI,B(F+

1) be true for all I ∈ E− (I ∈ E+). (i)

For any neg feature F−, F− ⊕ {F+
1 } is E+-irrelevant (E−-irrelevant). (ii) Let S ′ be a

set of pos features obtained from S by repeatedly removing irrelevant pos features. Set S ′

is unique.

Proof: We will prove only the case forE+-irrelevancy because the proof forE−-irrelevancy

is analogous.

CHAPTER 4. TWO PROPOSITIONALIZATION ALGORITHMS 62

(i) Let F− be a neg feature and let F± = feat+(F−) be the corresponding pos-

neg feature, which has unique p(F±). By application of Lemma 4.1, if domI,B(F+
1) ⊆

∩ni=2domI,B(F+
i) for all I ∈ E+, then domI,B(F±⊕{F+

1 }) ⊆ domI,B(F±⊕{F+
2 , . . . , F

+
n })

for all I ∈ E+. Similarly, if ∩ni=2domI,B(F+
i) ⊆ domI,B(F+

1) for all I ∈ E−, then

domI,B(F±⊕{F+
2 , . . . , F

+
n }) ⊆ domI,B(F±⊕{F+

1 }) for all I ∈ E−. Therefore if (I∧B) |=
F− ⊕ {F+

1 } , then (I ∧ B) |= F− ⊕ {F+
2 , . . . , F

+
n } for all I ∈ E+ and similarly if

(I ∧ B) |= F− ⊕ {F+
2 , . . . , F

+
n }, then (I ∧ B) |= F− ⊕ {F+

1 } for all I ∈ E−. This

means that F+
1 is E+-irrelevant.

(ii) It could happen that by removing some irrelevant pos features from S, F+
1 could

become relevant. We need to show that this is not the case. Let G+ be a graph with

vertices corresponding to Si. Let there be an edge (vi, vj) if and only if domI,B(F+
i) ⊆

∩k∈AdomI,B(F+
k) for all I ∈ E+ and ∩k∈AdomI,B(F+

k) ⊆ domI,B(F+
i) for all I ∈ E− and

j ∈ A, i /∈ A. Let vi be a vertex corresponding to pos feature F+
i . Any vertex with

non-zero in-degree corresponds to an irrelevant pos feature. If we show that G is acyclic,

then it is easy to find the unique set of relevant pos features as the set of pos features

corresponding to vertices with zero in-degree. To show that G is acyclic, we first notice

that if two distinct vertices vi, vj ∈ G are connected by a directed path, then there is

also the edge (vi, vj). Therefore if there was a directed cycle containing (v1, v2), there

would have to be also two edges (v1, v2) and (v2, v1). This would mean that for each

positive example it would be true that domI,B(F+
2) ⊆ ∩ni=3domI,B(F+

i)∩domI,B(F+
1) and

domI,B(F+
1) ⊆ ∩ni=3domI,B(F+

i) ∩ domI,B(F+
2), but then domI,B(F+

1) = domI,B(F+
2) and

the same would be true for negative examples implying domI,B(F+
1) = domI,B(F+

2) for

all examples, which contradicts assumption that no two distinct pos features have equal

domains for all examples. Therefore G must be acyclic and the set of irrelevant pos

features (in a given set) must be unique. 2

4.2 RelF

4.2.1 Algorithm

In this section, we design a propositionalization algorithm RelF (Relevant Feature

Construction). RelF (Algorithm 12) merges the two usual phases of propositionalization,

i.e. feature construction and extension computation. Specifically, the core algorithm

accepts a set of learning examples and a hierarchical feature template. The hierarchical

CHAPTER 4. TWO PROPOSITIONALIZATION ALGORITHMS 63

features are obtained by combinatorial composition of pos features, which act as the

primitive building blocks. The advantage of this assembly approach is that H-redundant

or irrelevant pos features may be removed from the set of pos features while guaranteeing

that all relevant features will be found. In the filtering phase, the algorithm first filters pos

features, which have equal domains for all examples, and only after that it also removes

irrelevant pos features (thus satisfying conditions of Theorem 4.2). The rules used for

detection of E+-irrelevant (E−-irrelevant) pos features are based on Theorem 4.2. That

means S1 is E+-irrelevant if there is set of pos features {Si} and Ind ⊂ N such that

domI,B(S1) ⊆ ∩i∈InddomI,B(Si) on positive examples and ∩i∈InddomI,B(Si) ⊆ domI,B(S1)

on negative examples.

The algorithm exploits the partial irreflexive order, which is imposed on types of

arguments by Def. 4.2. Due to existence of this order it is possible to sort all declared

predicates l ∈ γ topologically with respect to a graph induced by the partial order. When

the topological order is found, it is possible to organize generation of features in such a

way that pos features are built iteratively by combining smaller pos features into larger

ones. With input arguments τ and E, where τ is a template and E is a set of examples,

it returns a set of hierarchical features TAlg ⊆ Tτ , where Tτ is set of all correct τ -features.

An important property of Algorithm 12 is that for any hierarchical feature F ∈ Tτ , which

is not strictly irrelevant, there is a hierarchical feature F ′ ∈ TAlg such that F and F ′ cover

the same set of examples. In other words, RelF correctly outputs all relevant boolean

attributes, which means that it is complete in a well-specified sense.

Example 4.4 (Running Example): In Section 4.1.2, we have made the set of correct

hierarchical τ -features finite. We have shown that, for our particular template τ , there

are only 18 features. We will now demonstrate how RelF constructs the E+-relevant

features. We first generate and filter the following three pos features: box(L), tri(L),

circ(L). We may check that circ(L) is E+-irrelevant (due to box(L)), so we may safely

throw it away. The next pos features created by grafting with box(L) and tri(L) are

pos features F+
1 = hasLoad(C,L) ∧ box(L), F+

2 = hasLoad(C,L) ∧ box(L) ∧ tri(L) and

F+
3 = hasLoad(C,L) ∧ tri(L). Notice that if we had not removed circ(L), there would

have been seven such pos features. We can now filter also F+
1 , F

+
2 , F

+
3 in the exactly same

manner as we filtered box(L), tri(L), circ(L). In this case, F+
2 is E+-irrelevant because

domI1(F
+
2) = ∅ ⊆ domI1(F

+
1) ∩ domI1(F

+
3) = {c1},

domI2(F
+
2) = {c2} ⊆ domI2(F

+
1) ∩ domI2(F

+
3) = {c2},

CHAPTER 4. TWO PROPOSITIONALIZATION ALGORITHMS 64

Algorithm 12 RelF (Sketch of Algorithm): Given a template and a set of examples,

RelF computes the propositionalized table.

1: Input: template τ , examples E;

2: PosFeats← {}
3: OrderedDefs← topologically ordered predicate definitions computed from τ

4: for ∀pred ∈ OrderedDefs do

5: NewPosFeats← {}
6: NewPosFeats← Combine(pred, PosFeats)

7: Filter H-reducible pos features

8: Filter pos features with equal domains for all examples

9: Filter irrelevant pos features

10: Add NewPosFeats to PosFeats

11: end for

12: Save all correct hierarchical features from PosFeats

Algorithm 13 Combine (Procedure used by RelF): Given a predicate symbol and a set

of pos features, Combine constructs pos features.

1: Input: predicate, PosFeats;

2: Constructed← {}
3: ArgCombinations← []

4: for ∀ output arguments outi of predicate do

5: Smaller ← pos features from PosFeats with type of input equal to type of outi

6: ArgCombinations [outi]← all combinations without repetition of F+ ∈ Smaller
7: end for

8: Constructed ← all possible graftings of predicate(X1, . . . , Xk) with the respective

combinations from ArgCombinations

9: return Constructed

domI3(F
+
1) ∩ domI3(F

+
3) = ∅ ⊆ domI3(F

+
2) = ∅,

domI4(F
+
1) ∩ domI4(F

+
3) = ∅ ⊆ domI4(F

+
2) = ∅.

Finally, we may graft these pos features with car(C ′) to obtain the resulting set of

hierarchical features. 4

Generating features in this manner can be conveniently combined with computation

CHAPTER 4. TWO PROPOSITIONALIZATION ALGORITHMS 65

of domains. Brief inspection of Algorithm 11 reveals that in order to compute domain of

a pos feature we only need to know the domains of its children. However, the domain of

any pos feature F+ can be computed when F+ is added to the set of already generated

pos features and then it can be reused many times. This is exemplified in Fig. 4.1. In

this particular example, when pos features are reused (top panel), Algorithm 11 needs to

compute domains of only 9 literals as opposed to domains of 15 literals when pos features

are not reused (bottom). Naturally, this is magnified for larger feature spaces. Note that

for simplicity we assume that subsumption is not rejected for any of the four features.

b o x (+ l) t r i a n g l e (+ l)

h a s L o a d (+ c , - l)h a s L o a d (+ c , - l) h a s L o a d (+ c , - l)

c a r (- c)
c a r (- c)

c a r (- c)

b o x (+ l) t r i a n g l e (+ l)

h a s L o a d (+ c , - l)h a s L o a d (+ c , - l) h a s L o a d (+ c , - l)

c a r (- c) c a r (- c)c a r (- c) c a r (- c)

b o x (+ l) t r i a n g l e (+ l)b o x (+ l)

h a s L o a d (+ c , - l)

t r i a n g l e (+ l)

h a s L o a d (+ c , - l)

c a r (- c)

Figure 4.1: Illustration of reuse of pos features for computation of do-

mains.

4.2.2 Experiments

In this section we evaluate perfomance and accuracy of RelF. We evaluate RelF in three

relational learning domains in comparison to RSD [44] and Progol [31]. Our intention is

to demonstrate (i) that RelF can propositionalize relational data orders of magnitude

CHAPTER 4. TWO PROPOSITIONALIZATION ALGORITHMS 66

faster than standard algorithms and (ii) that classifiers built using features generated by

RelF are competitive with those built using more general feature declarations.

In [21] extensive experiments were conducted to compare three state-of-the-art propo-

sitionalization systems: RSD, SINUS and RELAGGS. In this study each of the systems

obtained best predictive accuracy on exactly two out of six domains. RELAGGS proved

itself superior especially in domains where numerical attributes were essential. On the

other hand SINUS and RSD performed well in typical ILP tasks such as predicting muta-

genicity or learning legal positions of chess-end-games. However, in all experiments RSD

was several times faster than SINUS. That is why we chose RSD for comparisons. We

also conduct experiments comapring RelF to state-of-the-art ILP system Progol and we

also compare our results with those presented in literature.

In all experiments described in this section random forest classifiers4 are used [5].

We follow suggestions given in [39] to obtain unbiased estimate of quality of learned

classifiers. We perform experiments both with RSD having the same feature declaration

bias as RelF and with RSD allowing cyclic features. While for RelF the only necessary

restriction on hierarchical features is given by the templates (which implicitly restrict

their depth), for RSD we also need to bound maximum size of features. We use stratified

10 fold cross-validation. In the experiments with molecular data (Mutagenesis and PTC),

we generate propositionalized representation for various maximum depths of features. For

each fold, we determine an optimal feature depth by cross-validation on remaining nine

folds and then record accuracy obtained on the test fold.

4.2.2.1 Mutagenesis

Our first set of experiments was done on the well-known Mutagenesis dataset [16], which

consists of 188 organic molecules marked according to their mutagenicity. We used atom-

bond descriptions and numerical attributes lumo and logP. The longest features found

by RelF had over 20 bond-literals and were found in 116 seconds. The longest features

found by RSD had 3 bond-literals and RSD needed 272 seconds. Bigger features could

not be found in 15000s by RSD. RSD without acyclic feature bias was not able to find

more features than with the acyclic bias.

Table 4.7 displays predictive accuracies obtained on the Mutagenesis dataset. The

third column refers to Progol with maximum number of searched nodes set to 10000 and

maximum clause length set to 4. Theory construction runtime was 398s. All clauses

4We used the random forest classifier from Weka package [48].

CHAPTER 4. TWO PROPOSITIONALIZATION ALGORITHMS 67

found by Progol were acyclic. The third column displays accuracy obtained by an ensem-

ble method with a set of theories found by Progol reported in [16], which is to date the

highest predictive accuracy for this dataset. However, in this last experiment more infor-

mation about moleculs was used (functional groups and indicator variables). Therefore

we repeated our experiments, but we added also the indicator variables and functional

groups and obtained accuracy 87.4%. Adding functional groups was not very useful in

this case, because RelF was already able to capture the functional groups due to its

ability to construct long features.

Algorithm RelF RSD Progol Progol Ens.

Accuracy [%] 89.8 87.8 82.0 95.8

Table 4.1: Accuracies on Mutagenesis dataset.

4.2.2.2 CAD Documents

The second set of experiments was conducted in a domain describing CAD documents

(product structures) [51]. The dataset consists of 96 class-labeled examples. This dataset

is interesting because long features are needed to obtain reasonable classification accuracy.

For RSD we used both the same template (acyclic bias) and a slightly more general

template. We needed to significantly constrain size of RSD’s features to 12 literals for

acyclic case (resulting in runtime 12324s) and 11 literals for cyclic case (resulting in

runtime 2198s). This is in contrast with RelF, whose longest features had over 50

literals (with runtime 108s). Importantly, the single feature that separated the dataset

best was discovered only by RelF. The accuracy of Progol is low due to the fact that

Progol is unable to find clauses with sufficient lengths within 15000s limit, which agrees

with findings reported in [51].

Algorithm RelF RSD RSD (cyclic) Progol

Accuracy [%] 96.7 95.5 91.2 81.1

Table 4.2: Accuracies on CAD dataset.

We have performed an additional experiment on CAD dataset to make clear to what

extent the speedup achieved by RelF compared to RSD is due to filtering of irrelevant pos

CHAPTER 4. TWO PROPOSITIONALIZATION ALGORITHMS 68

features. With enabled irrelevancy filtering RelF ran 108 seconds, whereas with disabled

irrelevancy filtering it crashed after running for several minutes because of lack of free

memory. This shows that the key concept, which makes RelF efficient, is irrelevant pos

feature filtering.

4.2.2.3 Predictive Toxicology Challenge

The last set of experiments was done with data from the Predictive Toxicology Challenge

[18]. The PTC dataset consists of 344 organic molecules marked according to their car-

cinogenicity on male and female mice and rats. Our experiments were done for male rats.

Longest features constructed by RelF had over 20 bond-literals and were constructed in

762 seconds, while longest features constructed by RSD had only 4 bond-literals in 2971

seconds.

Table 4.5 refers to predictive accuracies obtained on the PTC dataset. With Progol,

we were unable to obtain any theory compression. The third column in Table 4.5 refers

to approach based on optimal assignment kernel [11]. The fourth column also refers to

approach based on kernels [36]. Predictive accuracy reported for this last approach is

the highest presented in literature, however, it is a leave-one-out estimate as opposed to

10-fold cross-validation estimates of the other discussed results.

Algorithm RelF RSD Kernel1 Kernel2

Accuracy [%] 62.5 64.0 63.0 65.7

Table 4.3: Accuracies on PTC dataset for male rats.

4.3 HiFi

In this section, we describe propositionalization algorithm HiFi (Hierarchical Feature

construction), which relies more on syntactical restrictions of the set of correct features

than on the irrelevancy filtering. Although HiFi is not able to reach feature lengths achiev-

able by RelF, it does not need the information about class labels of examples, therefore,

unlike RelF it can be used in unsupervised and semisupervised learning settings.

CHAPTER 4. TWO PROPOSITIONALIZATION ALGORITHMS 69

4.3.1 Propositionalization Setting of HiFi

Here, we formally define the propositionalization setting of HiFi because we will pose

more constraints on the output set of features. First, we need to state what properties

any canonical ordering ≺c on pos features must have. We describe a simple canonical

ordering complying to this definition in the Appendix. The reason why we need an

ordering on features is the fact that, if we did not have one, the output of HiFi could be

arbitrary to some extent5.

Definition 4.8 (Canonical ordering): Canonical ordering ≺c is a total order on hier-

archical (pos) features satisfying the following two conditions:

1. If |F+
1 | < |F+

2 |, then F+
1 ≺c F+

2 .

2. If F+
1 ≺c F+

2 , then F− ⊕ {F+
1 } ≺c F− ⊕ {F+

2 }.

Here, F+
1 , F+

2 are hierarchical (pos) features and F− is a neg feature. I

Definition 4.9 (HiFi Propositionalization): Let τ = (γ, µ) be a hierarchical tem-

plate, let n ∈ N and E be an arbitrarily ordered set of examples. Let Φ be the set of all

hierarchical τ -features with size not greater than n. Hierarchical feature F1 ∈ Φ is said

to be redundant w.r.t. E and Φ if F1 is irrelevant and there is F2 ∈ Φ, which covers the

same set of examples, and F2 ≺c F1. The set P = {(f, ext(f))|f ∈ F∧ f is not redundant

w.r.t. E and Φ} is then called H iFi propositionalization. I

Note that demanding non-redundancy of features is a weaker assumption than de-

manding relevancy features, which is demanded in RelF.

4.3.2 The Propositionalization Algorithm

In this section, we design a propositionalization algorithm HiFi (Algorithm 14 and more

detailed description in Algorithm 17). Similarly as RelF, HiFi merges the two usual

phases of propositionalization, i.e. feature construction and extension computation. It

produces all features complying to a given template and subsuming some examples. These

features are obtained by combinatorial composition of pos features, which act as the

primitive building blocks.

5Another reason is based on an yet unimplemented modification of HiFi, which we do not discuss in

this thesis.

CHAPTER 4. TWO PROPOSITIONALIZATION ALGORITHMS 70

The algorithm again exploits the partial irreflexive order, which is imposed on types

of arguments by Def. 4.2. First, it sorts all declared predicates l ∈ γ topologically with

respect to a graph induced by the partial order. When the topological order is found, it is

possible to organize generation of features in such a way that hierarchical (pos) features

are built iteratively by combining smaller pos features into larger ones. Redundant pos

features are filtered in a manner analogical to the way RelF filters irrelevant pos features.

Theorem 4.3: Let F+
1 , F

+
2 be pos features with equal domains and let F+

2 ≺c F+
1 . Then

any hierarchical feature G1 = F− ⊕ {F+
1 } is redundant.

Proof: First, notice that any two hierarchical features G1 = F− ⊕ {F+
1 } and G2 =

F−⊕{F+
2 } will necessarilly have equal domains, which follows directly from Lemma 4.1.

From definition of canonical ordering ≺c, it follows that G2 ≺c G1 and therefore any such

G1 must be redundant. 2

Now, we may turn our attention to the problem of bounding the maximum size of

a feature. Despite the fact that this may seem as a trivial problem, it is not as trivial.

On the other hand, it is not very hard either. In Chapter 5, we show that for general

features, bounding features’ size is one of the factors that makes it NP-hard even to

decide whether at least one feature exists. This problem is no longer NP-hard if we

constrain ourselves to hierarchical features as shown in [46]. However, it is important to

stress that an obvious approach, which would discard pos features with size greater than

the maximum size limit n, would not be very efficient because it could often leave many

pos features untouched, which could not be extended to sufficiently small hierarchical

features. Here, we develop methods to check whether a pos feature may be extended to a

hierarchical feature with size not greater than some n ∈ N efficiently. The methods will

be summarized through the next two lemmas.

Before we step towards stating and proving the lemmas, let us first make some ter-

minology conventions, which will be needed only in the rest of this section. In the next

lemmas and in Theorem 4.4, we will talk about declared predicates from template τ .

If τ = (γ, µ) is a template, term declared predicate will refer to a ground atom l ∈ γ

together with the respective argument places µl ⊆ µ, e.g. hasLoad(+c,−l) will be a

declared predicate. We do this mainly to make the rest of this section more readable

since the theoretical framework does not fit here (at least when it comes to readability)

very well because we need to talk not only about pos or neg features, but also about the

declared predicates alone.

CHAPTER 4. TWO PROPOSITIONALIZATION ALGORITHMS 71

Algorithm 14 HiFi (Sketch of Algorithm): Given a hierarchical template and a set of

examples, HiFi computes the propositionalized table.

1: Input: template τ , Integer n (maximum feature size), examples E;

2: PosFeatures← {}
3: OrderedDefs← topologically ordered predicate definitions computed from τ

4: for ∀predicate ∈ OrderedDefs do

5: NewPosFeatures← {}
6: for ∀e ∈ E do

7: Add all pos features having predicate as its root and covering e, which were built

using pos features from PosFeatures to NewPosFeatures.

8: Record pos eatures with equal domains w.r.t. e

9: end for

10: Filter redundant pos features (Lemma 4.3) from NewPosFeatures based on infor-

mation, which pos features have equal domains for every e ∈ E
11: Add pos features from NewPosFeatures to PosFeatures

12: end for

13: Output all hierarchical τ -features from PosFeatures

Lemma 4.2: Let m denote the number of predicates declared in a template τ and let

a denote maximum arity of the predicates. Then for all types t, we can find sizes of

the smallest pos features F+
min such that F+

min has t as input type of its root in time

O(m2 +m · a).

Proof: We start by finding a topological order of the graph induced by the template. As

this graph surely has less than m2 edges, it is possible to find its topological ordering in

time O(m2). When the topological ordering is found, we can take the declared predicates

starting with input-only predicates and for every such predicate, we can compute size of

the corresponding smallest pos feature. To accomplish this, we sum sizes of smallest pos

features whose subroots have input types equal to output types of the processed predicate

declaration. These sizes must have been already computed due to the topological order

assumed. Since this is done for all m declared predicates, it follows that computing sizes

of the desired smallest pos features takes time O(m2 +m · a). 2

Lemma 4.3: Let m denote the number of predicates declared in a template τ and let a

denote maximum arity of the predicates. Then, for all predicates p, we can find sizes of

CHAPTER 4. TWO PROPOSITIONALIZATION ALGORITHMS 72

the smallest hierarchical features Fmin containing p in time O(m2 +m · a).

Proof: Using Lemma 4.2, we can translate this problem to a problem of finding shortest

paths in an acyclic graph G. Let V be a set of vertices of G and let each vertex correspond

to a predicate declared in τ . Let there be an oriented edge e between predicates p1 and p2

if and only if type t of the input argument of p2 equals to the type of some of the output

arguments of p1. Further, let the weight of each edge be defined according to Eq. 4.1,

where MinSize(t) refers to minimum size of a feature with input-type of its root equal

to t.

w(p2, p1) = 1−MinSize(Input(p2)) +
∑

t∈Outputs(p1)

MinSize(t) (4.1)

The size of the smallest feature, which contains p, is then given as the length of the

shortest path from p to the only vertex with no inputs plus the size of the smallest

subfeature having p as its subroot. The number of edges of G is bounded by m2 and the

graph is acyclic, thus we can compute all the shortest paths in time O(m2). Combining

this with Lemma 4.2, we see that it is possible to compute smallest sizes of features

containing some declared predicate in time O(m2 +m · a). 2

Lemma 4.3 enables us to decide whether a pos feature F+ can be extended to a correct

hierarchical feature with size less than some n. This is because the minimum possible

size of a hierarchical feature containing F+ can be computed as the size of the smallest

feature containing root of F+, from which we subtract the size of the smallest pos feature

having F+ as its subroot and to which we add the size of F+.

Example 4.5: Let us compute sizes of the smallest features, which contain some de-

clared predicate, which are defined by the following template.

← car(−c), has1Load(+c,−l), has2Loads(+c,−l,−l),

box(+l), triangle(+l)

First we find the topological ordering on types, which is (L,C). Then we can compute

sizes of smallest pos features with given roots:

box(+l)→ 1, triangle(+l)→ 1, has1Load(+c,−l)→ 2,

has2Loads(+c,−l,−l)→ 3, car(−c)→ 3

CHAPTER 4. TWO PROPOSITIONALIZATION ALGORITHMS 73

c a r (- c)

h a s 1 L o a d (+ c , - l) h a s 2 L o a d s (+ c , - l , - l)

b o x (+ l) t r i a n g l e (+ l)

2

2

1

1 1

1

Figure 4.2: An example graph corresponding to template used in Example

4.5. Edge labels are computed from Eq. 4.1.

Now, we need to compute sizes of hierarchical features which contain given declared

predicates. In order to do so, we build the corresponding graph (Fig. 4.2) and com-

pute shortest paths. It follows that e.g. the smallest feature containing predicate

has2Loads(+c,−l,−l) has size 1 + 3 = 4 (1 is the length of the path from has2loads to

car and 3 is the size of the smallest subfeature having has2loTad as subroot) and e.g.

the smallest feature containing predicate box(+l) has size 2 + 1 = 3.

Being able to decide whether a pos feature F+ can be extended to a correct feature F

with size less than n is an important factor that enables us to prove Theorem 4.4, which

states that HiFi runs in time polynomial in n, whenever the number of generated features

is polynomial in n.

Theorem 4.4: Let τ be a template and n ∈ N . Let τ(n) = (γ(n), µ(n)) be a tem-

plate such that the number of features correct w.r.t n and τ(n) is polynomial in n, then

Algorithm 17 generates the set of non-redundant features in time polynomial in n.

Proof: Let us first ignore computation of domains on line 18 of Algorithm 17 and on line

18 of Algorithm 18. Any pos feature, which is stored in the set PosFeatures, and any

combination of pos features, which is generated by procedure BuildCombinations(.),

is used at least once in the resulting set of generated features. Thus at any time, we

CHAPTER 4. TWO PROPOSITIONALIZATION ALGORITHMS 74

can bound the number of pos features in both of these sets by n · P (n), where P (n) is

number of correct features, because no feature can contain more than n pos features.

Brief combinatorial reasoning, which is sketched in proof of Theorem 5.3, implies that

generating pos features with root equal to a given predicate p using already generated

pos features takes time polynomial in the number of pos features just being generated.

As there are only m declared predicates, time complexity of Algorithm 17 is polynomial

in n. Now let us consider also computation of domains, which we have ignored so far. We

have a guarantee that computation of domains of pos features takes time polynomial in

size of the tested features. Lastly, it is also possible to efficiently (in time polynomial in

n) decide H-reducibility on line 19 of Algorithm 18 and also to efficiently filter redundant

pos features. 2

4.3.3 Experimental Evaluation

In this section we evaluate perfomance and accuracy of HiFi. We evaluate HiFi in three

relational learning domains in comparison to RSD [44] and Progol [31]. Similarly as for

RelF, our intention is to demonstrate (i) that HiFi can propositionalize relational data

orders of magnitude faster than standard algorithms for exhaustive propositionalization

and (ii) that classifiers built using features generated by HiFi are not much worse than

those built using more general feature seclarations.

In all experiments described in this section random forest classifiers [5] were used.

We follow suggestions given in [39] to obtain unbiased estimate of quality of learned

classifiers. We use stratified 10 fold cross-validation. For each pair of training and test

sets we generate propositionalized representation for various lengths (detailed in each

subsection). For each fold, we determine an optimal feature length by cross-validation

on remaining nine folds and then record accuracy obtained on the test fold. For each

dataset we also present runtimes and accuracies as functions of feature lengths.

We perform experiments both with RSD having the same feature declaration bias

as HiFi (constraining features to hierarchical ones) and both with RSD allowing non-

hierarchical features. In the case when HiFi and RSD have the same bias, their predic-

tive accuracies are nearly identical, because with the same bias they output equivalent

propositionalized tables. This is true despite the fact that HiFi filters redundant pos

features, because these redundant pos features (respectively features containing these

poz features) are also filtered from RSD’s propositionalized tables in its post-processing

step. The only difference between propositionalized tables generated by HiFi and RSD

CHAPTER 4. TWO PROPOSITIONALIZATION ALGORITHMS 75

is the order in which features are listed and the canonical ordering used for filtering of

redundant features, which causes minor differences between their accuracies. We now

note on the meaning of the feature length parameter in presence of constants. To allow

comparability with RSD, we adopted RSD’s convention to count every constant as one

literal, therefore we also report the highest number of atomic bonds in chemical domains

or some similar measure of complexity in other domains to provide more intuition about

feature sizes.

4.3.3.1 Predictive Toxicology Challenge

The first set of experiments was done with data from the Predictive Toxicology Challenge

[18]. The PTC dataset consists of 344 organic molecules marked according to their car-

cinogenicity on male and female mice and rats. Our experiments were done for male rats.

Table 4.4 displays runtimes of HiFi and RSD and their predictive accuracies as functions

of the feature lengths (right panel). Despite the fact that we have also performed experi-

ments with RSD without hierarchical feature bias (RSD NH), feature length achievable in

reasonable times (under 15000s) with RSD was not enough to find more relevant features

than in the case with hierarchical bias (i.e. no cyclic molecular substructures were found),

thus we do not report separate predictive accuracies for RSD without hierarchical feature

bias. Longest features generated by HiFi had six bond-literals.

Length 5 10 15 20 25

HiFi [s] 43 44 56 93 347

RSD (H) [s] 1.6 4.6 73 2971 n.a.

RSD (NH) [s] 1.2 35.5 n.a. n.a. n.a.

HiFi/RSD [%] 62.2 64.6. 65.5 64.6 63.4

Table 4.4: Propositionalization runtimes and accuracies for the PTC

dataset

Table 4.5 refers to predictive accuracies obtained on the PTC dataset. The first

column refers to HiFi’s predictive accuracy using feature length selection described in

previous subsection. The second column refers to Progol with which we were unable to

obtain any theory compression. The third column refers to approach based on optimal

assignment kernel [11]. The fourth column also refers to approach based on kernels [36].

Predictive accuracy reported for this last approach is the highest presented in literature,

CHAPTER 4. TWO PROPOSITIONALIZATION ALGORITHMS 76

however, it is a leave-one-out estimate as opposed to 10-fold cross-validation estimates of

the other discussed results.

Algorithm HiFi RSD Progol Kernel1 Kernel2

Accuracy [%] 64.5 64.0 n.a. 63.0 65.7

Table 4.5: Propositionalization results on PTC dataset for male rats.

4.3.3.2 Mutagenesis

Our second set of experiments was done on the well-known Mutagenesis dataset [43],

which consists of 188 organic molecules6 marked according to their mutagenicity. We

used atom-bond descriptions and numerical attributes lumo and logP. We used neither

functional group descriptions nor indicator attributes inda and ind1. The predicates,

which we used for Mutagenesis dataset, were different from those used for PTC dataset,

which is a reason why features with the same feature length in Mutagenesis domain have

less bond-literals than features from PTC domain with the same feature length. However,

the longest features in the Mutagenesis domain had nine bond-literals, which is more than

for the PTC dataset. Table 4.6 displays runtimes and predictive accuracies for Mutageneis

dataset. As in the experiments with the PTC dataset, RSD without hierarchical feature

bias (RSD NH) was not able to find more features than with the hierarchical bias.

Length 5 10 15 20 25 30 35 40 45 50 55 60 65

HiFi [s] 15 16 17 19 22 33 47 55 85 146 179 230 377

RSD (H) [s] 1.5 2 8 272 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.

RSD (NH) [s] 1 5 5303 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.

HiFi/RSD [%] 87.2 88.3 87.2 89.3 89.9 90.9 88.3 87.7 89.2 88.1 88.7 87.0 86.5

Table 4.6: Propositionalization runtimes and accuracies for the Mutagen-

esis dataset

Table 4.7 displays predictive accuracies obtained on the Mutagenesis dataset. The

first column refers to HiFi’s predictive accuracy. The third column refers to Progol. The

displayed accuracies refer to maximum number of searched nodes set to 10000 and maxi-

mum clause length set to 4. Theory construction runtime then was 398s. It is interesting

to note that: (i) all clauses found by Progol were hierarchical and (ii) unlike in the case

6We work with the regression friendly part of the Mutagenesis dataset.

CHAPTER 4. TWO PROPOSITIONALIZATION ALGORITHMS 77

of the PTC dataset, Progol was able to find a theory with reasonable accuracy within

time limit of 15000s. The success of Progol on the Mutagenesis dataset is mainly due

to the presence of lumo and logP parameters and also due to finer description of atom

types (e.g. aromatic carbon atom), which enables short clauses to describe more complex

molecular structures than in the case where only simple atom-bond information is avail-

able. The third column displays accuracy obtained by an ensemble method with a set of

theories found by Progol [16], which is to date the highest predictive accuracy reported for

this dataset. However, in this last experiment more information about moleculs was used

(namely functional groups and indicator variables). Therefore we repeated our experi-

ments, but we added also the indicator variables and obtained predictive accuracy 89.3%

(HiFi+IND), which is, however, only slightly higher than accuracy obtained without the

indicator attributes. So, finally we added also functional groups and obtained accuracy

87.3%. We may conclude that adding functional groups was not very useful in this case,

which might have been caused by the fact that HiFi was already able to capture these

functional groups due to its ability to construct long features.

Algorithm HiFi HiFi+IND RSD Progol Progol Ensemble

Accuracy [%] 88.1 89.3 87.1 82.0 95.8

Table 4.7: Propositionalization results on Mutagenesis dataset.

4.3.3.3 CAD Documents

The third set of experiments was conducted in a domain describing CAD documents

(product structures) [51]. The dataset consists of 96 class-labeled examples ech contain-

ing several hundreads of literals. Table 4.8 displays propositionalization runtimes and

obtained accuracies for this dataset. The differences between runtimes of RSD with and

without the hierarchical feature bias are not so dramatic as in the other experiments,

which is mainly due to the fact that the examples are nearly hierarchical.

Table 4.9 displays predictive accuracies obtined for the CAD dataset. The first column

refers to accuracies obtained by using features found by HiFi. The second column refers to

accuracy obtained by Progol. The accuracy is low due to the fact that Progol is unable

to find clauses with sufficient lengths within 15000s limit, which agrees with findings

reported in [51].

CHAPTER 4. TWO PROPOSITIONALIZATION ALGORITHMS 78

Length 6 7 8 9 10 11 12 13 14

HiFi [s] 9 9 10 10 12 15 23 39 70

RSD (H) [s] 0.5 2 8 45 310 1749 12324 n.a. n.a.

RSD (NH) [s] 0.5 2 8 48 324 2198 n.a. n.a. n.a.

HiFi/RSD (H) [%] 88.4 85.2 96.8 96.8 97.8 95.6 95.6 94.5 95.6

RSD (NH) [%] 85.4 92.7 92.7 96.8 94.8 96.8 n.a. n.a. n.a.

Table 4.8: Propositionalization runtimes and accuracies for the CAD

dataset

Algorithm HiFi RSD Progol

Accuracy [%] 94.5 95.5 81.1

Table 4.9: Propositionalization results on CAD dataset.

4.3.3.4 Evaluation of HiFi for Feature Construction

In this section, we do not evaluate HiFi on another dataset, but insetad we evaluate

ability of HiFi to construct relational features without extension computation7. For this

experiment, we stick to Michalski’s train domain. Let the template τ be defined as follows

τ = car(−c), hasRoof(+c), twowheels(+c), threewheels(+c),

hasLoad(+c[3],−load), triangle(+load), box(+load), circle(+load)

where number 3 denotes the fact that only three hasLoad-literals can be used. Fig.

4.3 displays runtimes of HiFi and RSD needed to generate all correct features. HiFi

is about two orders of magnitude faster than RSD. Fig. 4.3 indicates that runtime of

both evaluated algorithms is bounded. However, while for RSD this is due to the limit

of maximum three loads and without this limit runtime of RSD would be unbounded,

for HiFi runtime would remain bounded even if no limit on number of loads was set.

The reason is pruning of H-reducible (pos) features done by HiFi, which causes that the

number of generated features is bounded.

7In HiFi we make all subsumption checks between (pos) features and examples return true.

CHAPTER 4. TWO PROPOSITIONALIZATION ALGORITHMS 79

2 4 6 8 10 12 14 16
10

−3

10
−2

10
−1

10
0

10
1

Maximum size of feature

T
im

e
to

 c
on

st
ru

ct
 fe

at
ur

es
 [s

]

Figure 4.3: Feature construction times for RSD (solid) and HiFi (dashed)

4.4 Discussion of Experiments with RelF and HiFi

Experiments presented in the preceding sections clearly indicate that RelF and HiFi

outperform state-of-the-art systems by several orders of magnitude for propositional-

ization with the hierarchical bias. RelF and HiFi were also shown to be significantly

faster than Progol. Although Progol is a much more general system, it did not find any

non-hierarchical features in our experiments and thus did not come up with anything

unachievable by RelF or HiFi.

In most cases, we have been also able to achieve predictive accuracies close to the best

results reported in literature. On two out of three datasets, RelF outperformed HiFi.

RelF’s ability to construct very long features makes it also quite appealing also from

the datamining point of view. On the other hand, HiFi is appliable also to unsupervised

or semi-supervised learning, which is not possible for RelF. Therefore we believe that

both RelF and HiFi should have its place.

Although there are definitely datasets where cyclic features could provide better pre-

dictive accuracies, one can always merge results from different propositionalization al-

gorithms and feed the propositional learners with such merged propositionalized tables.

Algorithms for construction of a limited class of features such as RelF and HiFi would

CHAPTER 4. TWO PROPOSITIONALIZATION ALGORITHMS 80

be useful also in such cases.

Chapter 5

Complexity of Feature Construction

In this chapter, we elaborate complexity of feature construction. We will ignore exten-

sion computations and the fact that it is possible to prune some features, which do not

cover any example, i.e. we will focus solely on the generation of features constrained by

templates. We believe it is useful to elaborate complexity of this problem because the

setting with syntactical constraints given by templates, which is used throughout this

thesis, has already been used in ILP [44], but its complexity was unknown1.

In the technical discussion in this chapter, we will use unary representation of numbers

used to bound sizes of features. This is because a number n can be represented by O(log n)

bits, which could allow existence of features with size exponential in the input size (in

the combined size of the template and of the binary representation of n). By choosing

to use the unary representation of numerical parameters, we will be dealing with the so

called strong NP-completeness [42].

5.1 A Negative Result

Lemma 5.1: Let τ = (γ, µ) be a template and n ∈ N be a number represented in unary

notation (i.e. number n is represented by a string 111 . . . 1 with n ones). The problem of

deciding, whether there is at least one feature correct w.r.t. τ and n, is in NP.

Proof: (Sketch) It suffices to show how to construct a polynomial-sized certificate and

a polynomial-time verifier. The certificate will be a pair (F, θ), where F is a conjunction

1A proof of NP-hardness of the feature existence problem was promised to be given soon in a work-

in-progress paper [45], but it has not been shown since then.

81

CHAPTER 5. COMPLEXITY OF FEATURE CONSTRUCTION 82

of literals such that |F | ≤ n and θ is a substitution. Clearly, the certificate has size

polynomial in |τ | and in the unary representation of n.

Now, it remains to show how we can verify correctness of the solution in polynomial

time, but this is easy. First, we check that |F | ≤ n and that lits(Fθ) ⊆ γ. Then we check

whether every variable appears both as an input and as an output and whether every

variable appears only once as an output, which is easy because θ uniquely determines,

which variable appearance is an input and which is an output. If none of these checks

fails, we may output yes and accept the feature. 2

Lemma 5.2: Let τ = (γ, µ) be a template and n ∈ N be a number represented in unary

notation (i.e. number n is represented by a string 111 . . . 1 with n ones). The problem of

deciding, whether there is at least one feature correct w.r.t. τ and n, is NP-hard.

Proof: (Sketch) We will prove this theorem by reduction from the graph coloring prob-

lem. LetG = (V,E) be the graph to be colored and let the set of colors be {red, green, blue}.
First, we make the edges oriented such that an edge between two vertices vi, vj will be

pointing from vi to vj if i < j. The template τ will be constructed as follows. The first

declared predicate will be

graph(−e1,−e2, . . . ,−e|E|,−v1, . . . ,−v|V |)

where each ei will correspond to one edge e ∈ E (n = |E|). We add the six following

declared predicates (called edge predicates)

edgerb(+routek ,+ek,−binek), edgebr(+boutek ,+ek,−rinek), edgerg(+routek ,+ek,−ginek),

edgegr(+goutek ,+ek,−rinek), edgebg(+boutek ,+ek,−ginek), edgegb(+goutek ,+ek,−binek)

for each edge ek ∈ E pointing from vi to vj. Next, for each vertex vi we add three declared

predicates (called vertex predicates)

redi(+vi,+rinei1 , . . . ,+rinein ,−routej1 , . . . ,−routejm)

greeni(+vi,+ginei1 , . . . ,+ginein ,−goutej1 , . . . ,−goutejm)

bluei(+vi,+binei1 , . . . ,+binein ,−boutej1 , . . . ,−boutejm),

where each of the above declared predicates corresponds to a vertex vi and vi1 , . . . , vin

correspond to vertices from which an edge points to vi and vertices vj1 , . . . , vjm correspond

to vertices to which an edge points from vi. Finally, we set the maximum feature size

n = 1 + |V |+ |E|.

CHAPTER 5. COMPLEXITY OF FEATURE CONSTRUCTION 83

It is trivial to check that the above construction is polynomial-time in the size of G.

Now, it remains to show that a feature F , |F | ≤ 1 + |V | + |E| exists, which complies to

the above constructed template, if and only if a 3-coloring of G exists.

(⇒) First, notice that there must be exactly one edge predicate for each e ∈ E and

exactly one vertex predicate for each v ∈ V in a correct feature F . Otherwise, there

would be an unsatisfied output vi or ei. Therefore each vertex has exactly one color

represented by a vertex predicate. Furthermore, colors of two adjacent vertices must be

different due to types of input and output arguments of the respective vertex predicates.

So, the coloring given by the vertex predicates represents a correct coloring of G.

(⇐) If we have a coloring of G = (V,E), we may construct a correct feature with size

bounded |F | = 1+|V |+|E|. We add one literal graph(−e1,−e2, . . . ,−e|E|,−v1, . . . ,−v|V |).
Next, we add one vertex literal for each v ∈ V (choosing the particular predicate according

to the coloring of the given vertex). Finally, we add one edge literal for each e ∈ G (again,

we choose the particular predicate according to the coloring of the vertices connected by

this edge). It is easy to check that this corresponds to a correct feature. 2

Theorem 5.1: Let τ = (γ, µ) be a template and n ∈ N be a number represented in unary

notation (i.e. number n is represented by a string 111 . . . 1 with n ones). The problem

of deciding, whether there is at least one feature correct w.r.t. τ and n (called feature

existence problem), is NP-complete.

Proof: Follows directly from Lemmas 5.1 and 5.2. 2

.

The next example shows a conversion of an instabnce of the graph coloring problem

to an instance of the feature existence problem.

Example 5.1: Let us assume that we should find a coloring of the graph shown in the

left-most panel of Fig. 5.1. First, we make the graph directed as shown in the center

panel of Fig 5.1. Then, the template constructed according to the proof of Lemma 5.2

will look as follows:

graph(−e1,−e2,−e3,−e4,−e5,−e6,−e7,−v1,−v2,−v3,−v4,−v5)

red1(+v1,−route1 ,−route2 ,−route3), green1(+v1,−goute1 ,−goute2 ,−goute3),

blue1(+v1,−boute1 ,−boute2 ,−boute3), red2(+v2,+rine1 ,−route4),

red2(+v2,+gine1 ,−goute4), blue2(+v2,+bine1 ,−boute4),

CHAPTER 5. COMPLEXITY OF FEATURE CONSTRUCTION 84

v 2

v 1

v 3

v 4

v 5

e 1

e 2

e 3

e 4

e 5

e 6

e 7

v 2

v 1

v 3

v 4

v 5

e 1

e 2

e 3

e 4

e 5

e 6

e 7

Figure 5.1: Illustration of proof of Theorem 5.2

red3(+v3,+rine3 ,+rine4 ,−route5 ,−route6), green3(+v3,+gine3 ,+gine4 ,−goute5 ,−goute6),

blue3(+v3,+bine3 ,+bine4 ,−boute5 ,−boute6), red4(+v4,+rine2 ,+rine5 ,−route7),

green4(+v4,+gine2 ,+gine5 ,−goute7), blue4(+v4,+bine2 ,+bine5 ,−boute7),

red5(+v5,+rine6 ,+rine7), green5(+v5,+gine6 ,+gine7), blue5(+v5,+bine6 ,+bine7),

edgerb(+route1 ,+e1,−bine1), edgebr(+boute1 ,+e1,−rine1), edgerg(+route1 ,+e1,−gine1),

edgegr(+goute1 ,+e1,−rine1), edgebg(+boute1 ,+e1,−gine1), edgegb(+goute1 ,+e1,−bine1),

edgerb(+route2 ,+e2,−bine2), edgebr(+boute2 ,+e2,−rine2), edgerg(+route2 ,+e2,−gine2),

edgegr(+goute2 ,+e2,−rine2), edgebg(+boute2 ,+e2,−gine2), edgegb(+goute2 ,+e2,−bine2),

edgerb(+route3 ,+e3,−bine3), edgebr(+boute3 ,+e3,−rine3), edgerg(+route3 ,+e3,−gine3),

edgegr(+goute3 ,+e3,−rine3), edgebg(+boute3 ,+e3,−gine3), edgegb(+goute3 ,+e3,−bine3),

edgerb(+route4 ,+e4,−bine4), edgebr(+boute4 ,+e4,−rine4), edgerg(+route4 ,+e4,−gine4),

edgegr(+goute4 ,+e4,−rine4), edgebg(+boute4 ,+e4,−gine4), edgebg(+boute4 ,+e4,−gine4),

edgerb(+route5 ,+e5,−bine5), edgebr(+boute5 ,+e5,−rine5), edgerg(+route5 ,+e5,−gine5),

edgegr(+goute5 ,+e5,−rine5), edgebg(+boute5 ,+e5,−gine5), edgegb(+goute5 ,+e5,−bine5),

edgerb(+route6 ,+e6,−bine6), edgebr(+boute6 ,+e6,−rine6), edgerg(+route6 ,+e6,−gine6),

edgegr(+goute6 ,+e6, rine6), edgebg(+boute6 ,+e6,−gine6), edgegb(+goute6 ,+e6,−bine6),

edgerb(+route7 ,+e7,−bine7), edgebr(+boute7 ,+e7,−rine7), edgerg(+route7 ,+e7,−gine7),

edgegr(+goute7 ,+e7,−rine7), edgebg(+boute7 ,+e7,−gine7), edgegb(+goute7 ,+e7,−bine7).

CHAPTER 5. COMPLEXITY OF FEATURE CONSTRUCTION 85

Now, any correct feature represents a coloring of the graph in Fig. 5.1. Let us

construct a feature that will represent the particular coloring shown in the right-most

panel as an example. The feature will look as follows

graph(E1, E2, E3, E4, E5, E6, E7, V1, V2, V3, V4, V5), blue1(V1, Boute1 , Boute2 , Boute3),

red2(V2, Rine1 , Route4), green3(V3, Gine3 , Gine4 , Goute5 , Goute6),

red4(V4, Rine2 , Rine5 , Route7), blue5(V5, Bine6 , Bine7), edgebr(Boute1 , E1, Rine1),

edgebr(Boute2 , E2, Rine2), edgebg(Boute3 , E3, Gine3), edgerg(Route4 , E4, Gine3),

edgegr(Goute5 , E5, Rine5), edgegb(Goute6 , E6, Bine6), edgerb(Route7 , E7, Bine7)

Even though showing that the feature existence problem is NP-complete could suffice

for our discussion here, we believe that it is also interesting to see what is the obstacle

which prevents us from being able to solve the general case of feature existence problem

by the Horn-SAT reduction described in 2.4.4.4. The problem is that in order to decide

whether a feature with length less than n exists, it is necessary (in the worst case) to

generate a model of the respective Horn-SAT problem, which would maximize number

of variables with value true (recall that false value means that a literal is added to a

feature). This problem can be shown to be NP-hard by reduction from MAX Horn-SAT,

which is an NP-hard problem [19].

Theorem 5.2: Finding a solution to a Horn-SAT problem, which makes the maximum

number of variables true, is an NP-hard problem.

Proof: (Sketch) Let a given set H of Horn clauses contain the following clauses:

Pi1,1 ∨ ¬Pi1,2 ∨ · · · ∨ ¬Pi1,n

. . .

Pik,1 ∨ ¬Pik,2 ∨ · · · ∨ ¬Pik,n

¬Pik+1,2
∨ · · · ∨ ¬Pik+1,n

. . .

¬Pih,2 ∨ · · · ∨ ¬Pih,n

Let m be the number of boolean variables in the set. Our task (MAX Horn-SAT) is to

make as much of these clauses as possible satisfied. We create 2 ·m copies of each clause

CHAPTER 5. COMPLEXITY OF FEATURE CONSTRUCTION 86

and we add one negated variable Dj
i to each of these copies (variable Dj

i corresponds to

j-th copy of i-th clause). The new set NH of clauses will look as follows:

Pi1,1 ∨ ¬Pi1,2 ∨ · · · ∨ ¬Pi1,n ∨ ¬D1
1

. . .

Pi1,1 ∨ ¬Pi1,2 ∨ · · · ∨ ¬Pi1,n ∨ ¬D2·m
1

. . .

Pik,1 ∨ ¬Pik,2 ∨ · · · ∨ ¬Pik,n ∨ ¬D2·m
k

¬Pik+1,1
∨ · · · ∨ ¬Pik+1,n

∨ ¬D1
k+1

. . .

¬Pik+1,1
∨ · · · ∨ ¬Pik+1,n

∨ ¬D2·m
k+1

. . .

¬Pih,1 ∨ · · · ∨ ¬Pih,n ∨ ¬D2·m
h

We claim that a solution of this Horn-SAT problem, which maximizes the number of

variables with true value, also encodes a solution of the original MAX Horn-SAT problem.

Let us denote P the set of variables in the original set of clauses and D the set of the

new variables Dj
i . It holds (to simplify notation, we use 0 for false and 1 for true):

arg max
m∈models(NH)

(∑
Pi∈P

Pi +
∑
Di∈D

Di

)
=

= arg max
m∈models(NH)

(∑
Pi∈P

Pi + 2m ·#(clauses from H satisfied by model m)

)
(5.1)

The equality above holds because when a clause is satisfied, the best what we can do to

increase the criterion is to make all the corresponding variables Dj
i true as this increases

the criterion by 2 ·m. Also, notice that if the criterion in Eq. 5.1 is maximized, then

2m ·#(clauses from H satisfied by model m)

and consequently also

#(clauses from H satisfied by model m)

are maximized as well, because
∑

Pi∈P Pi < 2m. This finishes the proof. 2

CHAPTER 5. COMPLEXITY OF FEATURE CONSTRUCTION 87

Finding correct features with respect to some template τ is a hard problem, as we

have seen. Its inherent hardness is caused by the fact that for some templates τ , correct

τ -features have some minimum length. This is contrasted by numerous frequent pattern

mining systems (e.g. WARMR [9]), which do not bound size of possible features from

below. At first sight, the framework which we use could seem to bring us higher theoretical

complexity than is the complexity encountered by these systems. A more careful look,

however, reveals that this complexity exhibits also in WARMR where it is manifested

through bigger number of features (patterns), which are generated. Thus, if we have

apriori knowledge about possible structure of informative features, we may provide this

knowledge to a propositionalization system by means of templates. If no such knowledge

is available, it is possible to create such templates, which will lead to roughly the same

sets of features as the sets generated by WARMR.

5.2 A Positive Result

We have already seen that if the number of hierarchical features is polynomial in n,

the problem of enumerating the hierarchical features can be solved in time polynomial

in n and in the total number of hierarchical features even if we consider that some

examples are given (cf. Theorem 4.4). Here, we strengthen the results for the case of

sole feature construction and show that if HiFi does not consider examples, it runs in

output-polynomial time.

Theorem 5.3: Let τ(n) = (γ(n), µ(n)) be a template such that |γ(n)| = O(nc) for some

c ≥ 1, then the feature construction part of HiFi (Algorithm 17 without extension com-

putation and redundancy filtering) can construct all correct hierarchical features w.r.t. τ

and n in output-polynomial time.

Proof: Any pos feature, which is stored in the set PosFeatures, and any combination

of pos features, which is generated by procedure BuildCombinations(.), is used at least

once in the resulting set of generated features, which is guaranteed by Lemma 4.3. Thus

at any time, we can bound the number of pos features in both of these sets by n · P (n),

where P (n) is number of correct features, because no feature can contain more than n

pos features (recall that we say that a pos feature F+ is contained in a feature if and

only if F+ ⊂ F and F\F+ is a neg feature).

CHAPTER 5. COMPLEXITY OF FEATURE CONSTRUCTION 88

Brief combinatorial reasoning implies that generating pos features with root equal to

a given predicate p using already generated pos features takes time polynomial in the

number of pos features just being generated. In more detail: combinations of already

generated pos features are created iteratively. At each step the new combinations of

pos features are combined with single pos features from the set PosFeatures; each such

step takes time at most quadratic in the size of the already generated combinations

and, always, every generated combination of pos features appears at least in one correct

feature. Thus generation of combinations of pos features is polynomial in the total

number of features correct w.r.t. τ and n. An analogical reasoning can be applied also to

generation of pos features with a given predicate of their root from these combinations.

As there are only O(nc) declared predicates, time complexity of Algorithm 17 is

polynomial in P (n). 2

Chapter 6

Conclusions

In this thesis, we have studied several aspects of propositionalization. In Chapter 2, we

have described necessary background information and we have briefly described several

prominent propositionalization systems. In Chapter 3, we have developed θ-subsumption

algorithms ReSumEr2 and ReCovEr. The main principle behind these two algorithms

is utilization of randomized restarted strategies. ReSumEr2 is a complete heuristic ran-

domized algorithm, whose completeness is guaranteed by use of unbounded cutoff se-

quences. It uses a modified restarted strategy where subsequent pairs of restarts are sta-

tistically independent. On real-life data from PTC domain [18], ReSumEr2 was shown

to significantly outperform state-of-the-art θ-subsumption algorithm Django [30] for cases

of complex data. The other algorithm, ReCovEr, is a heuristic estimation algorithm,

which uses restarts to obtain a maximum-likelihood estimate of coverage (ReCovEr) or

extension (ReCovEr-E). In experiments, we have shown that ReCovEr’s accuracy can

be sufficient to achieve good accuracies and that its runtimes are favorable with respect

to Django.

In Chapter 4, we have developed algorithms RelF and HiFi for propositionalization

constrained to hierarchical features. The algorithms exploit properties of hierarchical

features. The first algorithm, RelF, exploits mostly monotonicity of irrelevancy and

redundancy. The second algorithm, HiFi, focuses more on syntactical restrictions of

features. In experiments on three real-life datasets, we have shown that RelF and HiFi

are able to achieve feature lengths unachievable by state-of-the-art systems RSD [44] and

Progol [31]. We have also shown that predictive accuracies obtained by RelF and HiFi

in conjunction with random forest classifiers [5] are close to the best results reported in

literature. A slightly higher accuracies were obtained with RelF.

Finally in Chapter 5, we have elaborated complexity of feature construction. We have

89

CHAPTER 6. CONCLUSIONS 90

shown that deciding whether a feature exists complying to a template τ and with size

less than some n ∈ N , is NP-complete for general features. We have also shown that

if we restrict ourselves to hierarchical features, all features with respect to a template τ

and with size less than some n ∈ N can be enumerated in output-polynomial time.

Bibliography

[1] Marta Arias, Roni Khardon, and Jerome Maloberti. Learning Horn expressions with

Logan-H. Journal of Machine Learning Research, 8:549–587, 2007.

[2] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach.

Cambridge University Press, 1 edition, 2009.

[3] Christian Bessiere and Jean-Charles Regin. MAC and combined heuristics: Two

reasons to forsake FC (and CBJ?) on hard problems. In Principles and Practice of

Constraint Programming, pages 61–75, 1996.

[4] Bela Bollobas. Modern Graph Theory. Springer, 1998.

[5] Leo Breiman. Random forests. Mach. Learn., 45(1):5–32, 2001.

[6] H. Chen, C. Gomes, and B. Selman. Formal models of heavy-tailed behavior in com-

binatorial search. In Proceedings of the 7th International Conference on Principles

and Practice of Constraint Programming, pages 408–421. Springer-Verlag, 2001.

[7] Chad M. Cumby and Dan Roth. Learning with feature description logics. In Induc-

tive Logic Programming, 12th International Conference, pages 32–47, 2002.

[8] Rina Dechter. Constraint Processing. Morgan Kaufmann Publishers, 2003.

[9] Luc Dehaspe and Hannu Toivonen. Discovery of frequent datalog patterns. Data

Min. Knowl. Discov., 3(1):7–36, 1999.

[10] Saso Dzeroski and Nada Lavrač. Relational Data Mining. Springer, 2001.

[11] Holger Fröhlich, Jörg K. Wegner, Florian Sieker, and Andreas Zell. Optimal assign-

ment kernels for attributed molecular graphs. In ICML ’05: Proceedings of the 22nd

international conference on Machine learning, pages 225–232, New York, NY, USA,

2005. ACM.

91

BIBLIOGRAPHY 92

[12] A. Giordana and L. Saitta. Phase transitions in relational learning. Machine Learn-

ing, 41(2):217–251, 2000.

[13] Carla P. Gomes, Cèsar Fernández, Bart Selman, and Christian Bessière. Statistical

regimes across constrainedness regions. Constraints, 10(4):317–337, 2005.

[14] Carla P. Gomes, Bart Selman, Nuno Crato, and Henry A. Kautz. Heavy-tailed phe-

nomena in satisfiability and constraint satisfaction problems. Journal of Automated

Reasoning, 24(1/2):67–100, 2000.

[15] Georg Gottlob, Nicola Leone, and Francesco Scarcello. On the complexity of some

inductive logic programming problems. New Gen. Comput., 17(1):53–75, 1999.

[16] S. Muggleton H. Lodhi. Is mutagenesis still challenging. In ILP-05 Late-Breaking

Papers, pages 35–40, 2005.

[17] W. D. Harvey. Nonsystematic backtracking search. PhD thesis, Standford University,

1995.

[18] C. Helma, R. D. King, S. Kramer, and A. Srinivasan. The predictive toxicology

challenge 2000-2001. Bioinformatics, 17(1):107–108, 2001.

[19] Brigitte Jaumard and Bruno Simeone. On the complexity of the maximum satisfia-

bility problem for horn formulas. Inf. Process. Lett., 26(1):1–4, 1987.

[20] S. Kirkpatrick and B. Selman. Critical behavior in the satisfiability of random

Boolean expressions. Science, 264(5163):1297–1301, 27 May 1994.

[21] Mark-A. Krogel, Simon Rawles, Filip Železný, Peter A. Flach, Nada Lavrač, and

Stefan Wrobel. Comparative evaluation of approaches to propositionalization. In

Proceedings of the 13th International Conference on Inductive Logic Programming,

pages 197–214. Springer, 2003.

[22] Mark-A. Krogel and Stefan Wrobel. Transformation-based learning using multirela-

tional aggregation. In ILP ’01: Proceedings of the 11th International Conference on

Inductive Logic Programming, pages 142–155, London, UK, 2001. Springer-Verlag.

[23] Ondřej Kuželka. A statistical study of a combinatorial problem. bachelor’s thesis,

czech technical university, 2007.

BIBLIOGRAPHY 93

[24] Ondřej Kuželka and Filip Železný. Fast estimation of first-order clause coverage

through randomization and maximum likelihood. In ICML 2008: 25th International

Conference on Machine Learning, 2008.

[25] Ondřej Kuželka and Filip Železný. Hifi: Tractable propositionalization through

hierarchical feature construction. In Filip Železný and Nada Lavrač, editors, Late

Breaking Papers, the 18th International Conference on Inductive Logic Programming,

2008.

[26] Ondřej Kuželka and Filip Železný. A restarted strategy for efficient subsumption

testing. Fundamenta Informaticae, 89(1):95–109, 2008.

[27] Ondřej Kuželka and Filip Železný. Block-wise construction of acyclic relational

features with monotone irreducibility and relevancy properties. In ICML 2009: The

26th International Conference on Machine Learning, 2009.

[28] N. Lavrač, D. Gamberger, and V. Jovanoski. A study of relevance for learn-

ing in deductive databases. Journal of Logic Programming, 40(2/3):215–249, Au-

gust/September 1999.

[29] Michael Luby, Alistair Sinclair, and David Zuckerman. Optimal speedup of las vegas

algorithms. Inf. Process. Lett., 47(4):173–180, 1993.

[30] J. Maloberti and M. Sebag. Fast theta-subsumption with constraint satisfaction

algorithms. Machine Learning, 55(2):137–174, 2004.

[31] S. Muggleton. Inverse entailment and Progol. New Generation Computing, Special

issue on Inductive Logic Programming, 13(3-4):245–286, 1995.

[32] Shan-Hwei Nienhuys-Cheng and Ronald de Wolf. Foundations of Inductive Logic

Programming (Lecture Notes in Computer Science). Springer, 1997.

[33] Sigfried Nijssen. Data mining using logic. Master’s thesis, Leiden University, 2000.

[34] G. Plotkin. A note on inductive generalization. Edinburgh University Press, 1970.

[35] Luc De Raedt. Logical settings for concept-learning. Artif. Intell., 95(1):187–201,

1997.

[36] Liva Ralaivola, Sanjay J. Swamidass, Hiroto Saigo, and Pierre Baldi. Graph kernels

for chemical informatics. Neural Netw., 18(8):1093–1110, 2005.

BIBLIOGRAPHY 94

[37] Walter Rudin. Real and Complex Analysis. McGraw-Hill, 1987.

[38] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.

Prentice-Hall, Englewood Cliffs, NJ, 2nd edition edition, 2003.

[39] Tobias Scheffer and Ralf Herbrich. Unbiased assessment of learning algorithms. In

In IJCAI-97, pages 798–803, 1997.

[40] Tobias Scheffer, Ralf Herbrich, and Fritz Wysotzki. Efficient theta-subsumption

based on graph algorithms. In Inductive Logic Programming Workshop, pages 212–

228, 1996.

[41] M. Sebag and C. Rouveirol. Tractable induction and classification in first-order logic

via stochastic matching. In IJCAI97, pages 888–893. MK, 1997.

[42] Michael Sipser. Introduction to the Theory of Computation, Second Edition. Course

Technology, 2005.

[43] A. Srinivasan and S. H. Muggleton. Mutagenesis: Ilp experiments in a non-

determinate biological domain. In Proceedings of the 4th International Workshop on

Inductive Logic Programming, volume 237 of GMD-Studien, pages 217–232, 1994.

[44] F. Železný and N. Lavrač. Propositionalization-based relational subgroup discovery

with RSD. Machine Learning, 62(1-2):33–63, 2006.

[45] Filip Železný. A bottom set strategy for tractable feature construction. In Work-in-

Progress Track of the 14th Int. Conf. on Inductive Logic Programming, 2004.

[46] Filip Železný. Tractable construction of relational features. In Znalosti 05,

Bratislava, 2005.

[47] Toby Walsh. Search in a small world. In IJCAI ’99: Proceedings of the Sixteenth

International Joint Conference on Artificial Intelligence, pages 1172–1177, San Fran-

cisco, CA, USA, 1999. Morgan Kaufmann Publishers Inc.

[48] Ian H. Witten and Eibe Frank. Data Mining: Practical machine learning tools and

techniques. Morgan Kaufmann, San Francisco, 2nd edition, 2005.

[49] Huauye Wu. Randomization and restart strategies. Master’s thesis, University of

Waterloo, 2006.

BIBLIOGRAPHY 95

[50] M. Yannakis. Algorithms for acyclic database schemes. In International Conference

on Very Large Data Bases (VLDB ’81), pages 82–94, 1981.

[51] Monika Žáková, Filip Železný, Javier Garcia-Sedano, Cyril Masia Tissot, Nada

Lavrač, Petr Křemen, and Javier Molina. Relational data mining applied to vir-

tual engineering of product designs. In ILP06, volume 4455 of LNAI, pages 439–453.

Springer, 2007.

[52] Filip Železný. Efficient construction of relational features. In Proceedings of the 4th

Int. Conf. on Machine Learning and Applications, pages 259–264. IEEE Computer

Society Press, 2005.

[53] Filip Železný, Ashwin Srinivasan, and C. David Page. Lattice-search runtime dis-

tributions may be heavy-tailed. In Proceedings of the 12th International Conference

on Inductive Logic Programming. Springer, 2002.

Appendix A

Algorithmic Details

A.1 Generators of Random θ-subsumption

problems

In this section, we describe generators of random data used in experiments in Chapter

3 to measure runtime distributions of θ-subsumption algorithms. The first algorithm

(Algorithm 15) is a variant of random graphs model by Erdos and Rényi [4]. This random

graph model is parametrized by two parameters: number of verices n and probability that

a pair of vertices is by an edge of random orientation (this parameter is denoted as the

connectivity parameter). A minor distraction from the directed version of the original

model of Erdos and Rényi is that there may be loops (i.e. cycles of length 2) in their

model whereas there are no loops in the model used in this thesis. The second algorithm

(Algorithm 16) creates so-called scale-free graphs1, which were developed to approximate

some of the properties of real world networks (social, biological, etc.) such as power-law

distribution of vertex degrees.

After a random graph is generated, each of its vertices is colored randomly either

red or black. A θ-subsumption problem is then constructed as follows. We generate two

random graphs GC and Ge with parameters (nC , pC , ne, pe). Then we create a first-order

representation of these graphs giving rise to clauses C ′ and e writing edge(v1, v2) for

vertices connected by a directed edge pointing from v1 to v2 and red(v1) (black(v1)) for

vertices colored red (black, respectively). Finally, we variabilize clause C ′ obtaining clause

1These graphs are sometimes denoted as small-world graphs, but the small world property, i.e. short

distance between nearly any two vertices is also inherent to Erdos-Rényi graphs with sufficient connec-

tivity parameter.

I

APPENDIX A. ALGORITHMIC DETAILS II

Algorithm 15 RandomGraph(n, p): A generator of uniform random graphs

1: Input: Integer n, Real p;

2: Let V be a set of n vertices and G an empty edge set.

3: for ∀ {vi ∈ V, vj ∈ V |vi 6= vj} do

4: With probability p, G← G ∪ {vi, vj}
5: end for

6: For all edges in G choose a random orientation, and for all vertices in V choose a

random color with uniform probability from {red, black}.
7: return graph with vertex set V and edge set G

C. The corresponding θ-subsumption problem is then to check whether C �θ e. In some

cases, however, creating pairs hypothesis-example is not sufficient (e.g. in evaluation of

algorithm ReCovEr and we need to have a fixed set of examples. In such case, we simply

generate one hypothesis C and m examples and the respective θ-subsumption problem

is then simply to compute the extension of C w.r.t. the m examples. It is also possible

to make the set of examples fixed. However, in this case the statistical parameters of the

experiments are different than in the other case.

Algorithm 16 ScaleFreeGraph(n, k): A generator of scale-free random graphs

1: Input: Integers n, k;

2: Let V be a set containing one vertex v1, G be an empty edge set.

3: for i← 2 to n do

4: k′ ← min (i− 1, k)

5: Create vertex vi

6: Connect vi to k′ distinct vertices v1, ..., vk chosen from the set V with probability

proportional to their degrees

7: G← G ∪ {(vi, vj)|j = 1...k}
8: end for

9: For all vertices in V choose a random color with uniform probability from {red, black}.

10: return graph with with vertex set V and edge set G

APPENDIX A. ALGORITHMIC DETAILS III

A.2 Canonical ordering ≺c
Definition 4.8 introduced properties every canonical ordering ≺c on (pos) features should

have, but we did not describe any such ordering. Such an ordering is given by the following

rules (F+
1 , F

+
2 , F

+
1 6= F+

2 are (pos) features):

• If |F+
1 | < |F+

2 |, then F+
1 ≺c F+

2

• If |F+
1 | = |F+

2 | and predicate(root(F+
1)) ≺L predicate(root(F+

2)), where ≺L denotes

lexicographic ordering of strings, then S1 ≺c S2.

• If |F+
1 | = |F+

2 | and predicate(root(F+
1)) = predicate(root(F+

2)), then let Sub(F+
1)

and Sub(F+
2) be sets containing direct subfeatures, where by direct subfeatures of a

(pos) feature F we mean pos features, whose roots consume output variables of F ,

of F+
1 and F+

2 ordered using ≺c. Let i be the index of the first direct subfeatures

such that F+
1i 6= F+

2i (F+
1i ∈ Sub(F+

1) and F2i ∈ Sub(F+
2)). Then F1 ≺c F2 if and

only if F+
1i ≺c F+

2i .

APPENDIX A. ALGORITHMIC DETAILS IV

Algorithm 17 HiFi: Given a template and a set of examples, HiFi computes the

propositionalized table.

1: Input: Template τ , Integer n (maximum feature size), Set examples;

2: PosFeatures ← [] /* PosFeatures is an associative array of sets, whose elements

are ordered according to canonical ordering ≺c */

3: OrderedDefs← topologically sorted predicate definitions computed from τ

4: for ∀d ∈ OrderedDefs do

5: predicate← d.predicate

6: for ∀example ∈ examples do

7: partiallyGroundedLits← {predicate(, , . . . ,)}
8: for i = 1 . . . arity(predicate) do

9: if d.modes [i] = OUTPUT then

10: Combinations← BuildCombinations(n, PosFeatures[d.types], example)

11: partiallyGroundedLiterals′ ← {}
12: for ∀pgLiteral ∈ partiallyGroundedLits (*) do

13: for ∀c ∈ Combinations do

14: newLiteral← copy of pgLiteral with i-th argument set to c

15: if CheckSize(newLiteral) = false then

16: goto (*)

17: end if

18: if CheckSubsumption(newLiteral, example) = true then

19: partiallyGroundedLits′ ← partiallyGroundedLits′ ∪ {newLit} f

20: Record domain of newLit w.r.t. example

21: end if

22: end for

23: end for

24: partiallyGroundedLits← partiallyGroundedLits′

25: end if

26: end for

27: Filter redundant pos features from PartiallyGroundedLits

28: PosFeatures [d.inputType] ← PosFeatures [d.inputType] ∪
partiallyGroundedLits

29: end for

30: end for

31: return {s| s has no inputs }

APPENDIX A. ALGORITHMIC DETAILS V

Algorithm 18 BuildCombinations: Given a set of already generated pos features, an

example and a limit on feature length, function BuildCombinations creates set of all

non-reducible pos features covering the example.

1: Input: Integer maxSize, Ordered set PosFeatures containing pos features with

given inputType, Example example;

2: PosFeatures ← {s|s ∈ PosFeatures and s �θ example}
3: Combinations1 ← {}
4: for ∀s ∈ PosFeatures do

5: if checkSize(s,maxSize) then

6: Combinations1 ← Combinations1 ∪ {s}
7: end if

8: end for

9: n← 1

10: repeat

11: Combinationsn+1 ← {}
12: for ∀c ∈ Combinationsn (*) do

13: for ∀s ∈ {s ∈ PosFeatures|s is in PosFeatures after last element of c} do

14: newComb← c ∪ {s}
15: if checkSize(c,maxSize) then

16: goto (*)

17: end if

18: if checkRedundancy(c, s) = true and

checkSubsumption(newComb, example) = true then

19: Combinationsn+1 ← Combinationsn+1 ∪ {newComb}
20: end if

21: end for

22: end for

23: n← n+ 1

24: until Combinationsn+1 = {}
25: return ∪ni=1Combinationsi

Appendix B

List of Software Used

• Java J2SE 6.0 and Netbeans 6.5.1

• Matlab R2007a

• Typesetting system LATEX

• WEKA (Waikato Environment for Knowledge Analysis)

VI

Appendix C

The Enclosed CD Contents

• Directory Thesis contains this thesis in PDF.

• Directory Source contains source codes in Java for the algorithms presented in this

thesis.

VII

