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Abstrakt

Koordinace multiagentńıch cest je zásadńı pro navigaci robot̊u ve společném prostřed́ı.

V této praci studujeme problém koordinace multiagentńıch cest ve spojitém prostoru

s polygonálńımi překážkami. Tento problém je těžký, protože může vyžadovat plánováńı

ve stavovém prostoru exponencálńım k počtu agent̊u. Dobře známé techniky, které řeš́ı

tento problém, jsou reaktivńı techniky pro vyhýbáńı robot̊u a plánováńı založené na

vzorkováńı (sampling based planning). V této práci uvád́ıme přehled často použ́ıvaného

př́ıstupu k reaktivńım technikám - rychlostńı překážky (velocity obstacle). Také studu-

jeme plánováńı založené na vzorkováńı, zaměřujeme se na dobře známý algoritmus RRT*.

Nejmoderněǰśı reaktivńı technika pro vyhýbáńı robot̊u - ORCA, i RRT* algoritmus

maj́ı omezené pokryt́ı prostoru instanćı problému. Navrhujeme nový algoritmus - ORCA-

RRT*, který kombinuje obě zmı́něné techniky. Zjistili jsme, že tento př́ıstup těž́ı z obou

svých část́ı, d́ıky čemuž poskytuje lepš́ı pokryt́ı prostoru instanćı problému spolu s vyšš́ı

kvalitou poskytnutých řešeńı.

Srovnáváme výkon našeho ORCA-RRT* algoritmu s reaktivńı technikou a s plánovaćım

algoritmem RRT*. Experimentálně ukazujeme, že a) ORCA-RRT* je schopen překonat

lokálńı minima, která se vyskytuj́ı v mnoha instanćıch problému s hustš́ım prostřed́ım

a zp̊usobuj́ı zásadńı pokles výkonu reaktivńı techniky pro vyhýbáńı a b) ORCA-RRT*

řeš́ı mnoho instanćı s vysokým počtem agent̊u, které jiné algoritmy založené na RRT*

nemohou vyřešit kv̊uli exponenciálńımu r̊ustu stavového prostoru s počtem agent̊u.
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Abstract

Multi-agent path coordination is essential for navigation of multiple robots in a com-

mon environment. In this thesis we study a problem of multi-agent path coordination

in a continuous space with polygonal obstacles. This problem is challenging because it

may require planning in a state space exponential to the number of agents. The well

known techniques that are able to solve this problem are reactive collision avoidance and

sampling based planning. In this thesis we provide an overview of a widely used approach

for reactive collision avoidance - a velocity obstacle. We also study the sampling based

planning approach, focusing on a well known RRT* algorithm.

A state of the art reactive collision avoidance technique - ORCA, as well as the RRT*

algorithm both have limited coverage of the problem instance space. We propose a new

algorithm - ORCA-RRT*, which combines both mentioned techniques. We find that this

approach is able to benefit from both its parts resulting in better coverage of the problem

instance space along with higher quality of the provided solutions.

We compare the performance of our ORCA-RRT* algorithm with the reactive tech-

nique as well as the RRT* planning algorithm. We experimentally show that a) ORCA-

RRT* is able to overcome local minima, which occur in many dense problem instances

and cause a significant decrease in the performance of the local reactive collision avoid-

ance technique and b) ORCA-RRT* solves many instances with high number of agents,

which other RRT*-based algorithms are not able to solve due to the exponential growth

of the state space with the number of agents.
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Chapter 1

Introduction

Nowadays we can witness an increasing usage of robots working in teams, for instance

Automatic Guided Vehicle Systems - systems composed of multiple robots that operate

in shared environment without a need of a human driver. According to (Miller, 2012), the

industry’s leading suppliers of automatic guided vehicle systems, in 2012 the market saw

dollar sales of more than $100 million, which compared to 2007 is nearly a 25% increase

in sales. Given this statistic an issue of coordination between robots on various levels

arises.

In this thesis we address a problem of path coordination between multiple physical

agents. We assume disc-shaped physical agents with holonomic kinematics that navigate

in 2-d environment with polygonal obstacles. The task is to navigate the agents through

the environment in order to reach their goal positions such that the collisions between

the agents are avoided. We will refer to this problem as a multi-agent path coordination

problem.

The problem of finding coordinated non-conflicting paths for a group of objects in

restricted 2-d environment was proved to be in PSPACE-hard (Hopcroft et al., 1984).

Recently there have been accomplishments in solving a restricted problem, where the

agents move on a graph. Algorithms such as BIBOX (Surynek, 2009) or Push & Rotate

(de Wilde et al., 2013) solve the restricted problem in polynomial time. These algorithms

assume point like agents and therefore cannot be used in systems where the size of the

agents cannot be neglected. Prioritized planning (Erdmann and Lozano-Perez, 1986),

where agents plan their paths on a graph in the order of their priorities, is efficient

especially in uncluttered environments. It is not clear how to remove the graph con-

straint of prioritized planning so it could be used without discretization on continuous

environments. Path coordination between multiple agents in continuous environment is

1



CHAPTER 1. INTRODUCTION 2

usually solved with reactive collision avoidance techniques. Especially the research of

velocity obstacles (Fiorini and Shiller, 1998; van den Berg et al., 2011; van den Berg and

Manocha, 2008; Guy et al., 2009; Lalish and Morgansen, 2009) yields promising results

for agent coordination. Even though this approach is frequently applied, there are sev-

eral challenges associated with it such as its demand on fast online calculation, risk of

oscillations or risk of getting stuck in local minima. We will describe these challenges as

well as the extent to which they have been addressed in the previous research in Chap-

ter 2. Optimal path for a single agent in a continuous state space can be found using

some sampling-based algorithm such as a recently proposed RRT* (Karaman and Fraz-

zoli, 2011), an anytime extension of RRT (LaValle and Kuffner, 1999). RRT* addresses

the problem of single agent path finding, but can be extended to multiple agent path

coordination, as proposed in (Cap et al., 2013), which solves a restricted problem, where

the agents move towards their goals on a graph. While this approach is able to solve the

problem for several agents moving on a graph, its success rate decreases fast for higher

numbers of agents due to the exponential growth of its state space. We propose several

RRT* based algorithms capable of solving the multi-agent path coordination problem

in the continuous state space, i.e. without any of the above mentioned restrictions, in

Chapter 2.

We propose a new algorithm - ORCA-RRT*, which builds upon the reactive collision

avoidance techniques and extends them using RRT* planning. It uses planning to over-

come the above mentioned risk of the reactive collision avoidance techniques - getting

stuck in a local minima. We show that the ORCA-RRT* algorithm is able to benefit

from both its parts to overcome the mentioned problems and therefore it increases the

coverage of the problem instance space.

Our experiment results show that the coverage of the instance space by both RRT*

planning and reactive collision avoidance is significantly restricted in various parts of

the problem instance space. On the other hand our ORCA-RRT* algorithm is able to

cover the union of the coverage of its planning and reactive parts. Further we found that

ORCA-RRT* provides solutions of better quality than the reactive techniques and other

RRT* based algorithms.

This thesis is organized as follows: in Chapter 2 we summarize the related work

in reactive collision avoidance and multi-agent planning. Then, we define the multi-

agent path coordination problem in Chapter 3. Chapter 4 exposes the proposed ORCA-

RRT* algorithm, which we then analyze theoretically in Chapter 5 and experimentally

in Chapter 6. Finally we conclude the thesis in Chapter 7.



Chapter 2

Related Work

In this chapter we summarize the state of the art techniques used in the field of multi-

agent path coordination in continuous environments. In literature we can find two main

approaches to the problem: reactive collision avoidance and sampling based planning.

Both of these approaches can be used to solve the multi-agent path coordination problem,

which we formally define in Chapter 3. There are several differences in these approaches.

We summarize the main differences, advantages and disadvantages of reactive collision

avoidance and sampling based planning approaches in Table 2.1.

In Table 2.1 we state that sampling based planning is probabilistically complete and

asymptotically optimal, which was proved in (Karaman and Frazzoli, 2011). On the other

hand reactive collision avoidance techniques are incomplete, because they only search the

space locally. In the experimental analysis we found feasible problem instances that

cannot be solved by reactive collision avoidance (see Figure 4.1). The fact that sampling

based planning is not able to solve a problem for high number of agents comes from our

experimental analysis and the fact that the planning state space grows exponentially to

the number of agents.

In Section 2.1 we describe the frequently used reactive collision avoidance techniques.

In Section 2.2 we then briefly describe the sampling based planning approach to path

finding problem.

3



CHAPTER 2. RELATED WORK 4

Reactive Collision Sampling Based

Avoidance Planning

Continuous environment Yes Yes

Computation Online Offline

Complete No Yes - probabilistically

Optimal No Yes - asymptotically

Ability to solve the problem Yes No

for high number of agents (> 100)

Ability to compensate Yes No

sensors and actuators inaccuracy

Table 2.1: Main differences between reactive collision avoidance and plan-

ning

2.1 Reactive Techniques for Collision Avoidance

Collision avoidance is an online approach for solving multi-agent path coordination prob-

lem where multiple agents navigate through an environment applying a repeating se-

quence of sensing and acting in order to avoid collisions between each other and with

obstacles and reach their predefined goals. It is a decoupled approach, each robot de-

cides autonomously about its future actions. Vast majority of reactive collision avoidance

techniques in the literature is based on a velocity obstacle paradigm.

2.1.1 Velocity Obstacle for navigating a single agent among

dynamic obstacles

Robot path finding among dynamic obstacles has been studied for over twenty years,

but mainly using offline planning techniques. A breakthrough result in reactive collision

avoidance appeared in 1998, when P. Fiorini and Z. Shiller proposed a velocity obstacle

concept (Fiorini and Shiller, 1998). Velocity obstacle approach was first that was able to

find a path for a single agent in a dynamic environment using velocities of moving objects.

The method was described as being a first order method - a method that uses velocities of

objects for collision detection and avoidance. Until then the robot path finding problem

was solved by zero order methods which used only position information to determine

possible collisions (Fiorini and Shiller, 1998). The robot path finding problem was usually
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solved by time extended visibility-graph approach (Reif and Sharir, 1985). By relying on

velocity information the velocity obstacle approach is able to consider robot dynamics.

The velocity obstacle is defined in (Fiorini and Shiller, 1998) as a first-order approx-

imation of the robot’s velocities that would cause a collision with a static or dynamic

obstacle at some future time, within a given time horizon. The velocity obstacle for an

agent A induced by a moving obstacle B is created as depicted in Figure 2.1. We first

map B into the configuration space of A by extending the radius of B with the radius of

A and assuming that A has a zero radius. A set of relative collision velocities - a collision

cone for an agent A induced by an obstacle B is then formally defined as (Fiorini and

Shiller, 1998):

CCA|B = {vA,B|λA,B ∩D(pB, rA + rB) 6= ∅}, (2.1)

where vA,B is the relative velocity of A with respect to B, vA,B = vA − vB, λA,B is a line

of vA,B, rA, rB are the radii of the agent A and the obstacle B respectively, pB is the

position of the obstacle B and D(pB, rA + rB) denotes a disc centered in pB with radius

rA + rB, which is the disc extended from B by rA (see Figure 2.1).

Any relative velocity vA,B that lies in CCA|B will lead to a collision and we call

it conflicting velocity. Since the agent has to deal with multiple moving obstacles, it

is convenient to create a set of absolute conflicting velocities of the agent - a velocity

obstacle. This is done by translating the collision cone by velocity vB. Formally the

velocity obstacle for an agent A induced by an obstacle B is defined as:

V OA|B = CCA|B ⊕ vB, (2.2)

where ⊕ is the Minkowski sum operator 1.

The agent A creates a velocity obstacle for all obstacles in the environment. The

resulting set of conflicting velocities - the velocity obstacle for the agent A, is created by

a union of all computed obstacles:

V OA =
m⋃
i=1

V OA|Bi , (2.3)

where m is the number of obstacles in the environment.

Since this velocity obstacle restricts the velocity space significantly, it is convenient

to introduce a time horizon parameter τ and only consider collisions that happen before

1Minkowski sum of two sets of vectors A and B is defined as A⊕B = {a+ b|a ∈ A, b ∈ B}
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pA

pB vB

(vB)

-vB

vA

vA,B

CCA|B
VOA|B

B

A

D(pB,rA+rB)
λA,B

Figure 2.1: Velocity obstacle for agent A induced by obstacle B

the time τ . This adds an additional condition to the velocity obstacle definition in

Equation 2.3. The specific way of formalizing such a condition differs in the various

papers on velocity obstacles mentioned in this thesis, (Fiorini and Shiller, 1998) defines

the velocity obstacle with respect to the time horizon as

V Oτ
A = V OA \ {vA|vA ∈ V OA, ‖vA,B‖ ≤

dist(A,B)

τ
}, (2.4)

where dist(A,B) is the Euclidean distance between A and B.

This velocity obstacle divides the space into two parts - conflicting and not conflicting

velocities. As we mentioned earlier, reactive collision avoidance is typically assumed to

be an online approach, where the agents are computing the velocity obstacles and new

velocities while they are navigating in the environment. Therefore, from all the non-

conflicting velocities v 6∈ V OA one velocity vector has to be chosen in each time step.

This velocity will be applied by the agent. There are several ways of choosing this new

velocity based on the computed velocity obstacles, some desired velocity and possibly

some other constraints which arise from the dynamic model of the robot. In (Fiorini

and Shiller, 1998) the authors also present a search based approach, where the space

of non-conflicting velocities is discretized and the agent plans the actions offline, before

navigating through the environment. The later papers on velocity obstacles (van den
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Berg and Manocha, 2008; van den Berg et al., 2011; Lalish and Morgansen, 2009) only

consider the online approach.

2.1.2 Reciprocal Velocity Obstacle

So far the concept of velocity obstacles was used to navigate a single agent in an envi-

ronment with static and dynamic obstacles, where the dynamic obstacles do not react in

any way to movements of other obstacles. If the velocity obstacle approach from (Fiorini

and Shiller, 1998) is used for multi-agent navigation, where each agent would consider all

other agents as moving obstacles, an oscillation behavior may occur between the agents

because they all take full responsibility for the collision avoidance. If two agents were

close to a collision, they would both change their velocities. This would move their veloc-

ity obstacles and thus put their old velocities outside of the constrained velocity space. In

the next step the agents would therefore again choose their old velocities, which creates

an oscillation loop (van den Berg and Manocha, 2008).

An adaptation of the velocity obstacle concept that attempts to deal with the os-

cillation phenomenon was presented as a Reciprocal Velocity Obstacle (RVO) (van den

Berg and Manocha, 2008). Reciprocal velocity obstacle is an approach similar to veloc-

ity obstacle, that further assumes that all the agents make a similar collision avoidance

reasoning. Under this assumption each agent takes a partial responsibility for the colli-

sion avoidance and therefore the RVO is guaranteed to generate safe and oscillation-free

motions.

The reciprocal velocity obstacle works as follows. Lets first assume that each agent will

take half of the responsibility for the collision avoidance. Therefore instead of choosing

a new velocity outside of the velocity obstacle, it chooses a velocity that is an average of

a velocity outside of the velocity obstacle and its current velocity. This choice is equivalent

to a translation of the velocity obstacle such that its apex lies in vA+vB
2

instead of vB.

The situation is depicted in Figure 2.2.

The reciprocal velocity obstacle for agent A induced by agent B is defined as (van den

Berg and Manocha, 2008)

RV OA|B = {v′A|2v′A − vA ∈ V OA|B}. (2.5)

The approach can be generalized in a way that allows us to assign priorities to agents

according to which they would be responsible for the collision avoidance. The definition
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pA

pB vB

(vB)

vA

VOA|B

B

A

RVOA|B

vA'

vA'

-vA

Figure 2.2: Reciprocal velocity obstacle for agent A induced by agent B

of generalized RVO is (van den Berg and Manocha, 2008)

RV OG
A|B = {v′A|

1

αA,B
v′A + (1− 1

αA,B
)vA ∈ V OA|B}, (2.6)

where αA,B is the share of effort agent A takes to avoid agent B.

2.1.3 Optimal Reciprocal Collision Avoidance

A method that further improves the RVO was published recently in (van den Berg et al.,

2011). The authors propose a locally optimal approach called optimal reciprocal collision

avoidance - ORCA. They differentiate from (van den Berg and Manocha, 2008) by stating

that RVO guarantees collision avoidance only under specific conditions. While both

agents selecting a velocity inside each other’s RVO is a sufficient condition to result in

a collision, the converse does not hold.

Before describing the ORCA algorithm, we note that the way the velocity obstacles

are computed in ORCA is slightly different from (Fiorini and Shiller, 1998). Figure 2.3

shows how the velocity obstacle is computed, given the time threshold τ . Also note that



CHAPTER 2. RELATED WORK 9

pA

pB vB

-vB

vA
vA,B

CCA|B

B

A

D(pB,rA+rB)

pB/τ
D(pB/τ,(rA+rB)/τ)

Figure 2.3: Velocity obstacle created by ORCA for agent A induced by

agent B

the ORCA algorithm only computes the relative velocity obstacle, which in our notation

is called a collision cone (see Figure 2.1).

While the way ORCA calculates the velocity obstacles does not differ from the method

used in (Fiorini and Shiller, 1998; van den Berg and Manocha, 2008) significantly, the

method for computing the agent’s new velocity is different. After the agent computes

a velocity obstacle, an ORCA line is created. An ORCA line is a linear velocity space

constraint which divides the velocity space into two half planes, one of non-conflicting

velocities, the other of conflicting velocities. Note that while the ORCA algorithm builds

upon the velocity obstacle concept, it uses ORCA lines instead of the velocity obstacles

to constraint the velocity space. First a vector u from the relative velocity vA,B to the

closest point on the velocity obstacle boundary is found. Then a vector n normal to the

boundary is constructed from the end point of the vector u. The ORCA line is then

given by a point vA + 1
2
u and a vector perpendicular to n as the direction of the line.

The process is shown in Figure 2.4. The second term in the formula - 1
2
u, formalizes the
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pA

pB vB

-vB

vA
vA,B

CCA|B

B

A

vA-vBun u/2

ORCAτA|B

-u/2 ORCAτB|A

Figure 2.4: ORCA lines for agents A and B. The half-planes of permitted

velocities for both agents are marked with the grey lines

assumption that every agent takes half responsibility for the collision avoidance. Formally

the vector u and a set of non-conflicting velocities ORCAτA|B is defined as follows (van den

Berg et al., 2011):

u = ( arg min
v∈∂V Oτ

A|B

‖v − (vA − vB)‖)− (vA − vB), (2.7)

ORCAτA|B = {v|(v − (vA +
1

2
u)) · n ≥ 0}. (2.8)

This way every agent calculates ORCA lines induced by every other agent and all

obstacles in the environment, having a set of linear constraints on the velocity as a result.

This set is formally defined as (van den Berg et al., 2011):

ORCAτA = D(0, vmaxA ) ∩
⋃
B 6=A

ORCAτA|B. (2.9)

Note that the constraint on a maximal speed of the agent vmaxA was added.

Finding a non-conflicting velocity is then a quadratic optimization task
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Find vnewA s. t. (2.10)

vnewA ∈ ORCAτA∥∥vnewA − vdesA

∥∥ is minimal,

which given a desired velocity of the agent vdesA and the ORCAτA set of linear constraints

results in a new non-conflicting velocity vnewA . This optimization task can be solved by

a linear program with an asymptotic time complexity O(n), where n is the number of

agents, because ORCAτA is a convex region bounded by the ORCA linear constraints. The

optimization function is the distance to the desired velocity vdesA , which is a quadratic

function, but has only one local minimum and therefore it does not invalidate the linear

programming characteristics. The fact that a circular constraint for the maximal velocity

is included does not alter the linear program significantly (van den Berg et al., 2011).

An implementation of the optimal reciprocal collision avoidance is available at (van den

Berg et al., 2012), ORCA was successfully tested in simulations with thousands of agents.

2.1.4 Reactive Collision Avoidance for Non-Holonomic Robots

In order to make our survey more complete, in this section we will briefly mention variants

of the velocity obstacle concept designed for path coordination of non-holonomic agents.

We will describe two algorithms for non-holonomic path coordination. As a model

of the vehicle dynamics the first one - B-ORCA uses a bicycle model, the second one -

DRCA uses a more general double integrator.

Bicycle reciprocal collision avoidance - B-ORCA (Alonso-Mora et al., 2012) builds

upon the above mentioned ORCA algorithm. The main idea is that a robot with kine-

matic constraints is able to follow a holonomic trajectory within a certain maximum

error bound. Therefore when the radius of the agents is enlarged by this error bound,

we can treat the robot as holonomic and use ORCA algorithm for navigation. (Alonso-

Mora et al., 2012) presents both a way of computing the error bound and a trajectory

tracking controller that is able to track the holonomic path and provide continuity in

agent’s velocity and acceleration. B-ORCA was implemented and tested on bicycle and

car models.

Distributed reactive collision avoidance - DRCA (Lalish and Morgansen, 2009) uses

a more general double integrator to model the vehicle dynamics. It uses the concept
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of velocity obstacles to navigate vehicles in 2-d or 3-d environments. DRCA is a two

step algorithm. First, the agent creates a deconfliction maneuver. This maneuver keeps

the agent from colliding and results in a conflict-free state (DRCA defines a conflict as

a situation where a collision will occur at some time in the future if the agents keep their

velocities). Second, a deconfliction maintenance controller keeps the agents in a conflict-

free state. DRCA was succesfully tested in 2-d and 3-d environments.

2.2 Planning techniques for multi-agent path

coordination

Because of their online computation, reactive collision avoidance algorithms tend to find

only local minima and thus are not optimal or even complete. There exist many feasible

problem instances that cannot be solved by reactive techniques - see an example in

Figure 4.1. These scenarios are typically solved with a global method - planning.

Planning is usually done by A* search in a discretized state space. Recently new

sampling-based algorithms were proposed, which are able to find an optimal path in the

continuous state space.

There are significant differences between planning and reactive collision avoidance

approaches. Planning is usually centralized and offline, the coordinated paths are com-

puted beforehand and the individual agents then follow the computed paths towards their

goals. On the other hand reactive collision avoidance is decoupled and online, each agent

computes a new velocity in each step of the way to its goal.

2.2.1 Sampling-based planning

The single-agent path finding problem can efficiently be solved by a well known sampling-

based RRT* planning algorithm. RRT* (Karaman and Frazzoli, 2011) is based on Rapidly

exploring random tree algorithm - RRT (LaValle and Kuffner, 1999), which uses fast

random sampling of the state space to construct a tree in the state space rooted in the

start state by connecting the newly sampled states. If a solution exists, eventually the

goal state is connected to the tree and a path from the start state to the goal state can be

obtained. The RRT* is an anytime extension of the RRT algorithm, it keeps searching for

better solutions after the first solution is found. It has been proven that by rewiring the
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computed tree the RRT* algorithm is able to find solutions that almost surely converge to

optimal paths and therefore it is asymptotically optimal (Karaman and Frazzoli, 2011).

Even though the RRT* algorithm is in the path finding domain usually applied for single

agent path finding, it can also be used for multi-agent path coordination. A redefined

RRT* algorithm for multi-agent path coordination was presented in (Cap et al., 2013).

We show the redefined RRT* in Algorithm 1. We will describe the RRT* for multi-agent

domain in Section 2.2.2.

Algorithm 1 RRT* algorithm

1: V ← {xinit};E ← ∅;
2: while not interrupted do

3: T = (V,E);

4: s← Sample();

5: x← Nearest(T, s);

6: if Steer(x, s) then

7: Xnear ← Near(T, s, |V |);
8: xp ← FindBestParent(T,Xnear, s);

9: V ← V ∪ {x};E ← E ∪ {(xp,x)};
10: Rewire(T,Xnear, s);

11: end if

12: end while

The algorithm uses the following procedures to build a tree rooted in the start position

and expand randomly in the state space C:

• Sample procedure returns a randomly sampled state x ∈ C.

• Nearest(T, x) given a graph T = (V,E) and node x ∈ C the procedure returns

a node v ∈ V nearest to node x according to a defined metric

• Steer(x, y) is a domain specific local steering procedure that given states x, y ∈ C
creates an extension from x towards y. If it is able to create such an extension, it

returns true, otherwise it returns false.

• Near(T, x, n) given a graph T = (V,E), node x ∈ C and number n ∈ N the

procedure returns a set of nodes {v|v ∈ V ∧ dist(v, x) < γ(log n/n)1/d}, where γ is

a constant and d is the dimension of the state space C.
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• FindBestParent(T,X, x) given a graph T = (V,E), set of nodes X ⊆ V and node

x ∈ C the procedure returns a node v ∈ X, which is the best parent of x, i.e. a node

that yields the shortest path from the root node xinit to x.

• Rewire(T,X, x) given a graph T = (V,E), set of nodes X ⊆ V and node x ∈ C
the procedure switches the parent node to x for each node x′ ∈ X for which this

change would shorten the path from the root node xinit.

The algorithm works as follows: Until interrupted it samples the space and finds

a node in the graph nearest to the new sample. Then it tries to connect these two nodes

using the steering procedure. If the steering procedure fails, the algorithm samples again.

Otherwise a set of nodes that are near to the new sample according to a defined metric is

acquired. From this set the algorithm chooses the best new parent for the sample. Also

each of the nodes in the set can possibly be rewired if the rewiring yields a shorter path

to it from the root node. Even after a solution is found, the algorithm keeps sampling

the state space and rewiring the tree in order to get better solutions.

2.2.2 Multi-agent sampling-based planning

The idea of applying sampling-based techniques for mutli-agent path planning was first

articulated in (Cap et al., 2013), which presents a graph version of the RRT*, where two

samples can be connected by the local steering procedure if it is possible to find a valid

path between them by heuristic-guided greedy search in a motion graph. The multi-agent

version of the algorithm then searches a joint-state space of all agents

J = C1 × C2 × . . .× Cn, where Ci ⊆ R2 is a state space of the i-th agent.

However, this approach is able to solve only the discretized version of the multi-agent

path coordination problem where the agents’ motions take place on a graph. In Chapter 4

we propose several multi-agent RRT* based algorithms that use the same idea, but are

applicable for coordination of agents operating in a continous 2-d space with polygonal

obstacles. We develop the idea further by incorporating the ORCA method giving rise

to the ORCA-RRT* algorithm.



Chapter 3

Problem Statement

For the problem definition we first state our assumptions. We assume that the environ-

ment is fully observable i.e. the agents are equipped with sensors which provide the agents

with exact positions, radii and velocities of other agents in the environment as well as the

positions and shapes of all the polygonal obstacles. Further we assume a deterministic

environment, where the next state of the environment is completely determined by the

current state and the actions executed by the agents (Russell and Norvig, 2009). The

agents’ actuators are always able to move the agents to the calculated positions in the

environment. Finally we assume that the agents are able to communicate with each other

or a central server.

We define the multi-agent path coordination problem as follows. Consider n agents

operating in the 2 dimensional Euclidean space with polygonal obstacles. The starting

positions of agents are given as an n-tuple (s1, . . . , sn), where si ∈ R2 is the starting

position of the i-th agent. The n-tuple (d1, . . . , dn) gives the agents’ destinations. We

assume that the agents have disc-shaped bodies, we define an n-tuple (r1, . . . , rn) where

ri ∈ R is the radius of the body of the i-th agent. Also we define a set O ⊂ R2 which

represents the regions of the space occupied by obstacles. The final trajectory of the i-th

agent πi(t) is a mapping R → R2 from the time t to the 2 dimensional Euclidean space

of the agents.

15
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The task is to find an n-tuple (π1, . . . , πn) such that the agents never collide and the

sum of times agents spend on the path to their destinations is minimal. The problem

statement is defined in Equation 3.1.

Find (π1, . . . , πn) s. t. (3.1)

CF (π1, . . . , πn, O) = true
n∑
i=1

tdi is minimal

The CF (π1, . . . , πn, O) function denotes the collision free property of the multi-agent

system, it is defined in Equation 3.2. In the 2 dimensional space we use the Euclidean

distance distE(x, y). The D(πi(t), ri) denotes a disc of radius ri centered at πi(t). The

time tdi is defined in Equation 3.3 as a minimal time after which the i-th agent does

not leave its destination. The time tALL denotes the time when all agents reach their

destinations.

CF (π1, . . . , πn, O) = true iff (3.2)

∀i, j, t, i 6= j : distE(πi(t), πj(t)) ≥ ri + rj

and

∀i, t, o ∈ O : D(πi(t), ri) ∩ o = ∅

tdi = min(ti,x|∀t ∈ 〈ti,x, tALL〉 : πi(t) = di) (3.3)
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We define a quality of a solution of the multi-agent path coordination problem in the

means of suboptimality, using an idealistic solution cost, as follows:

• Idealistic solution cost, cost of a solution for which the CF function in equation

3.2 is relaxed in a way that it omits its first condition i.e. permits collisions between

agents. It’s a sum of goal arrival times of single agents,

tidealistic =
n∑
i=1

tdi . (3.4)

The goal arrival time tdi of the i-th agent is computed using the shortest path from

si to di on a visibility graph and assuming the speed of agents to be their maximal

speed.

• Suboptimality shows how many times the solution is worse than the idealistic

solution,

suboptimality =

∑n
i=1 t

d
i

tidealistic
. (3.5)



Chapter 4

Proposed algorithm

In this chapter we first analyze the reactive collision avoidance algorithm we chose as the

most promising state of the art method for the multi-agent path coordination - ORCA

(van den Berg et al., 2011). We will focus on its weaknesses in Section 4.1. Then in

Section 4.2 we formalize the use of the RRT* for multi-agent planning and propose two

RRT* based algorithms - Line-RRT* and VisibilityGraph-RRT*. The purpose of these

algorithms is first to study the applicability of the RRT* for multi-agent planning in

continous environments and second to provide a comparison methods based on the RRT*

for the proposed algorithm - ORCA-RRT*. We present our ORCA-RRT* algorithm in

Section 4.3. Finally in Section 4.4 we describe how the ORCA-RRT* could be deployed

on a team of robots.

4.1 Weaknesses of the Optimal Reciprocal Collision

Avoidance

As we mentioned in Chapter 2, most of the reactive collision avoidance methods including

ORCA are applied online i.e. during the actual motion of the agents. This approach can

be observed as greedy behavior since the agents decide about their new velocities in each

step without considering the future states of the environment. Due to the greediness of

the online reactive collision avoidance methods there is no guarantee that the agents will

reach their goals. A well known disadvantage of the greedy approach is its inability to

escape local minima. In the multi-agent path coordination problem a local minimum is

a situation where no agent is able to further decrease its distance to goal, but the overall

18
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goal state is not reached. This happens for example when the agents with opposite

goals are unable to exchange their positions. Even if the agents eventually escape such

a minimum and reach their goals, the resulting solution is suboptimal. Also note that

ORCA is only locally optimal - in each step the agents choose optimal velocities with

respect to the velocity constraints and the desired velocity. This however does not imply

that the algorithm would return optimal trajectories.

There are many instances of the multi-agent path coordination problem that ORCA

is not able to solve due to the lack of higher-level cooperation. An example of such an

instance is any scenario where an agent has to let another agent move through a certain

part of the environment first, before it can continue moving towards its goal. In Figure 4.1

we show an example of a problem instance that cannot be solved by ORCA reactive

technique, but is solved by the ORCA-RRT* algorithm. Observe how ORCA gets stuck

in the local minimum.

4.2 Proposed Multi-agent RRT* approach

In this section we first define the multi-agent RRT* approach for multi-agent path coor-

dination. Then we provide specific multi-agent RRT* based algorithms.

The general RRT* algorithm was revealed in Algorithm 1. We define the following

attributes of the algorithm that allow its use in the multi-agent domain:

• State space of the RRT* planning is defined for n agents as:

J = C1 × C2 × . . .× Cn, (4.1)

where Ci ⊆ R2 is a state space of the i-th agent. We call J a joint-state space.

Since C ⊆ R2, for the joint-state space it holds that J ⊆ R2n. A state x ∈ J is then

given as

x = ((x1, y1), (x2, y2), . . . , (xn, yn)) , (4.2)

where (xi, yi) ∈ Ci is a position of the i-th agent. We call such a state a joint state.

Note that other possible representation of the state space could include a time

variable for each state x ∈ C. This would increase the dimension of the search

space to Jt ⊆ R3n and therefore make the multi-agent path coordination problem

harder to solve. On the other hand our definition of the joint-state space brings
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(a) Solution found by ORCA-RRT*

(b) Partial solution found by ORCA. ORCA is unable to escape a local mini-

mum

Figure 4.1: Example of an instance solved by ORCA-RRT* that cannot

be solved by ORCA (two disk shaped agents exchange their

positions, points show trajectories πi(t))

a significant aspect to the resulting solution of the problem - since the times the

agents spend moving to their end positions in each extension differs and we require

all agents to be in their end positions at the end of the extension, the faster agents

have to wait in their end positions until the slower agents arrive at theirs. This

increases the cost of the solution.

• Distance function dist(x1,x2) gives a lower bound estimate on the distance be-
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tween the two joint states x1,x2. We use the following distance function:

dist(x1,x2) =
n∑
i=1

distE(x1(i),x2(i))

vmaxi

(4.3)

where distE(x1(i),x2(i)) is the Euclidean distance between positions of the i-th

agent in states x1 and x2 and vmaxi is the maximal speed of the i-th agent. Note

that this way the distance expresses a sum of minimal times in which the agents

can move between the states assuming no conflicts occur.

• Steering procedure Steer(x1,x2) is an essential part of the RRT* algorithm

that defines a way in which the states are connected to form the search tree - see

Algorithm 1, Line 6. We call the output of the steering procedure an extension

from x1 to x2.

We define the steering function as

Steer(x,y) = (4.4)

E(x,y, O) if

{πi} = E(x,y, O)

and CF ({πi}, O)

and ∀i : πi(tmax) = yi

∅ otherwise

where x,y ∈ J and πi(tmax) returns the last point in the trajectory of the i-th

agent. The function E(x,y, O) denotes the extension and is defined as

E(x,y, O) → π1 × . . . × πn, we assume that ∀i : πi(0) = xi. The CF ({πi}, O)

function which defines the collision free property of the multi-agent system, was

defined in Chapter 3. Note that this definition specifies the conditions that an ex-

tension has to satisfy in order to be accepted as valid. We propose three methods

for the extensions. In an ascending order of complexity those are Line-RRT*,

VisibilityGraph-RRT* and ORCA-RRT*.

4.2.1 Line-RRT*

The first extension method is Line-RRT*. The agents are allowed to move between states

only using straight line trajectories. The speed of the agents is considered constant. The

Line-RRT* extension is formally defined as follows:
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ELine(x,y, O) = (π1, . . . , πn) (4.5)

where πi = line(xi, yi).

The line(x, y) : R2 × R2 → Π is a function defined as

line(xi, yi)→ {πi} : (4.6)

πi(t) =

{
xi + vi · t yi−xi|yi−xi| for t < |yi−xi|

vi

yi otherwise

where vi denotes the speed of the i-th agent.

4.2.2 VisibilityGraph-RRT*

The Line-RRT* extension does not use any information about the static obstacles in the

environment. Therefore many extensions computed by the Line-RRT* are rejected (see

Equation 4.4) because of the second condition in the CF function in Equation 3.2 which

requires that the trajectories do not intersect with any obstacle. In the VisibilityGraph-

RRT* extension we therefore include a specific navigation that connects the start and

end positions of the agents in each extension in a way that satisfies the CF function. For

this task we use a visibility graph navigation.

The visilibity graph is a graph of so called intervisible locations. This means that

whenever an edge connects two vertices, this edge does not intersect any obstacle. The

vertices in the graph correspond to the vertices of the obstacles in the environment, which

are moved away from the obstacles by the radii of agents’ bodies. The visibility graph

is constructed using vertices created by inflating each obstacle. We also add start and

goal positions of all agents. We then add an edge between any two vertices if it does not

intersect with any obstacle. Finally the shortest path for each agent is obtained using an

A* search in the visibility graph. This way we use the information about positions and

shapes of the obstacles to deal with the obstacle constraint in Equation 3.2. Single agent

planning in an environment with polygonal obstacles using visibility graph algorithm is

complete and optimal (LaValle, 2004).

VisibilityGraph-RRT* extension is obtained by applying visibility graph navigation

for obstacle avoiding. The agents move on a piece-wise linear path composed of one or

more line segments. VisibilityGraph-RRT* extension is formally defined as
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EV isibilityGraph(x,y, O) = (π1, . . . , πn) (4.7)

where πi = lineSegments(xi, yi).

Let the shortest path of the i-th agent in the visibility graph from a start vertex to

an end vertex (which denotes the start and end positions of the i-th agent) be denoted as

a sequence of edges (ei1, . . . , eimi). The lineSegments(x, y) : R2 × R2 → Π is a function

defined as

lineSegments(xi, yi)→ {πi} : (4.8)

πi(t) =


source(eij) + vi · t eij|eij |

for t ∈ (

j−1∑
k=1
|eik|

vi
,

j∑
k=1
|eik|

vi
), j ∈ 〈1,mi〉

yi otherwise

where the source(e) function returns the source vertex of the edge e.

4.2.3 Weaknesses of the Multi-agent RRT* approach

As mentioned above, the multi-agent RRT* planning takes place in a high dimensional

joint-state space J ∈ R2n. Therefore with the increasing number of agents n the dimen-

sionality of the joint-state space grows exponentially. This fact implies a large compu-

tational time, which can make the algorithm unfeasible for any real world application.

Our experiments in Chapter 6 show that the Line-RRT* and VisibilityGraph-RRT* al-

gorithms, when given the computational time limit of 5 seconds, are able to solve the

multi-agent path coordination problem for up to around 5 agents.

The reason for this drawback is the fact that the majority of the computed extensions

is rejected by the CF function (see Equations 4.4 and 3.2), because the Line-RRT*

does not consider any collision avoidance and the VisibilityGraph-RRT* only considers

collision avoidance with static obstacles. It would therefore be convenient to propose

an algorithm that would consider collision avoidance with both static obstacles and other

agents in the environment. Such an algorithm could significantly increase the proportion

of computed extensions that are collision free according to Equations 4.4 and 3.2 in the

set of all computed extensions.

We propose an algorithm that is able to produce extensions which keep the collision

free property, the ORCA-RRT* algorithm.
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4.3 Proposed ORCA-RRT* algorithm

We propose a new algorithm for solving the multi-agent path coordination problem.

Its challenge is to overcome the above mentioned disadvantages of both sampling-based

planning and reactive collision avoidance algorithms in order to increase the coverage

of problem instances. ORCA-RRT* combines the planning algorithm - RRT* with the

reactive collision avoidance algorithm - ORCA, in the following fashion. A central solver

runs the RRT* algorithm offline. As a way of connecting the randomly sampled nodes

the steering procedure uses ORCA for simulation of motions of the multiple agents. Note

that this way the reactive collision avoidance runs as a simulation instead of running

online, as it is mostly used. After a given time limit, if a solution is found, it can be

used for navigation of the physical agents towards their goals. In Section 4.4 we propose

a deployment of the ORCA-RRT* algorithm on a team of robots.

We described the ORCA algorithm in Chapter 2. While ORCA guarantees collision

free motions of the agents, it does not guarantee that the agents will ever reach their

goals. A controller has to be designed that is responsible for navigating an agent to its

goal position by providing a desired velocity vector for the ORCA algorithm in each of

its steps. If there were no static obstacles in the environment, such a controller could

simply return a vector pointing in the direction of the goal. Since we assume static

obstacles in the environment, we propose a more complex controller - a visibility graph

based controller.

The visibility graph based controller works as follows. The first step is a construction

of the visibility graph. This is done identically as for the VisibilityGraph-RRT* (see

Section 4.2.2). After that each agent assigns costs to all vertices in the visibility graph

based on their distance from its goal using the Dijkstra algorithm. In each step of the

ORCA algorithm the visibility graph based controller finds a best vertex in the graph i.e.

the vertex which cost added up to the distance from agents current position is minimal.

Also the line between agent’s position and the best vertex cannot intersect with any

obstacle. Finally the visibility graph based controller returns the desired velocity vector

which points to this best vertex.

The RRT* algorithm mentioned in Algorithm 1 used in ORCA-RRT* has the following

specific features:

• The Sample procedure in the first iteration of the RRT* algorithm returns the goal

state. In the following iterations it randomly samples the space with some higher

than average probability of sampling the goal state.
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• The Steer procedure (the local steering procedure) will run ORCA with the following

definition of the stopping criterion: The ORCA steering procedure stops if either

it reaches the goal state or the suboptimality of the computed partial solution is

higher than a suboptimality threshold α.

• Suboptimality threshold α is an upper bound on the suboptimality of a solution. If

the suboptimality is higher, the solution is rejected. The behavior of ORCA-RRT*

changes significantly for different suboptimality thresholds because it determines

the maximal length of the ORCA-RRT* extension.

This way we make sure that the ORCA-RRT* algorithm first runs the ORCA algorithm

as long as the solution is good enough with respect to the suboptimality threshold α.

This fact provides a good theoretical properties of the ORCA-RRT* algorithm which we

discuss in Chapter 5.

The ORCA-RRT* extension function is formally defined as

EORCA(x,y, O) = (π1, . . . , πn), (4.9)

where πi is a trajectory of the i-th agent obtained by ORCA method with x as start

positions and y as goal positions.

The ORCA-RRT* extension is exposed in Algorithm 2, the steering procedure takes

on the input start and goal states xs,xd ∈ J , where J is the joint-state space (see

Section 4.2), and returns a solution - an n-tuple (π1 . . . πn) of trajectories. Algorithm 1 -

the RRT* algorithm along with Algorithm 2 - the ORCA extension, show the proposed

ORCA-RRT* algorithm.
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Algorithm 2 ORCA-RRT* extension

1: Steer(xs, xd){
2: setupScenario(xs, xd)

3: solution ← ∅
4: suboptimality ← 0

5: while goal not reached by all agents and suboptimality < α do

6: for each agent do

7: desired velocity ← visibility graph based controller

8: compute ORCA lines

9: new velocity ← linear program with desired velocity as the objective function

and ORCA lines as linear constraints

10: agent’s position ← agent’s position + new velocity · time step length

11: end for

12: solution ← concatenate agents’ positions to the solution

13: suboptimality ← compute suboptimality of the partial solution

14: end while

15: return solution }

4.4 ORCA-RRT* deployment

In this section we describe the way the proposed ORCA-RRT* algorithm could be de-

ployed on a team of real robots. A use case can for instance be the Automatic Guided

Vehicle Systems. We have following assumptions about the robots:

• Each robot is equipped with sensors which are able to provide its position in the

given environment

• Each robot is able to communicate (send and receive messages) with all other robots

in the team

• Robots possess information about positions and shapes of all the obstacles in the

environment

• At least one of the robots is able to run the computation of the ORCA-RRT*

algorithm
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• Robots are able to navigate on a trajectory π(t) (see Chapter 3)

• Robots have disk shaped bodies (or their bodies can be circumscribed by a disk)

and are aware of the radius of the disk

Given these assumptions the ORCA-RRT* algorithm can be deployed on a team of

robots as follows. Consider an environment occupied by a number of holonomic robots

and static obstacles. In a situation where any of the robots is not at its goal position and

does not have a trajectory to follow, it asks all the other robots to send it their current and

goal positions. The robot also needs information about the radii and maximal velocities

of all robots. This can be either stored in its memory since it is constant or obtained

by communication. This robot then becomes a central server and runs the ORCA-RRT*

algorithm with the obtained parameters. Output of the ORCA-RRT* algorithm is a set

of non-conflicting trajectories π(t) for each robot in the team. Once computed, the robot

sends the trajectories to all other robots. Once a robot receives a trajectory, it starts

following it. Note that the trajectory specifies the position the robot has to be at in the

given time. A collision free motion is guaranteed for as long as the robots keep following

the trajectories and do not change their goals. Once a robot reaches its goal, it by default

stays at the goal location. If it acquires a new goal, it will become a central server and

the process is repeated.

The ORCA-RRT* is a centralized algorithm, which can be computed by any of the

robots or some other central server. Recently (Otte and Correll, 2010) proposed an RRT

based algorithm that distributes the computation load among all robots in the team. Each

robot builds its own tree and shares found solutions with other robots. The other robots

then prune the branches with higher costs than the minimal cost of shared solutions.

This approach is called Any-Com Intermediate Solution Sharing. It can be used in the

deployment of the ORCA-RRT* algorithm in order to reach lower computational times.

The main difference of our way of deploying the ORCA-RRT* algorithm and any

reactive collision avoidance technique is that the ORCA-RRT* is finding the coordinated

paths offline, before the actual robots motion takes place. It then provides trajectories

that the robots follow. In reactive collision avoidance techniques such as ORCA the

trajectories are not known beforehand, the robots always decide about their motion one

step ahead only.



Chapter 5

Theoretical Analysis

In this Chapter we theoretically analyze the proposed ORCA-RRT* algorithm. First we

provide a time complexity analysis of the algorithm. Then we prove that ORCA-RRT*

has better coverage of the instance space than the ORCA reactive technique. We also

prove this hypothesis experimentally in Chapter 6.

5.1 Time Complexity Analysis

In this Section we provide an average-case time complexity analysis of the proposed

algorithms. We first provide the time complexity of the multi-agent RRT* algorithm

and the proposed steering procedures. Then we show the time complexity of the two

multi-agent RRT* based algorithms and the ORCA-RRT*.

The time complexity is a function of a number of agents n, a number of obstacles

m, a time length of trajectories t and a number of randomly sampled states s. We

show the time complexity analysis of the multi-agent RRT* in Table 5.1 and of proposed

steering procedures in Table 5.2. We note that in the RRT* algorithm a depth first

search algorithm is used, which given that we use a KD tree has the average-case time

complexity O(log s) for s nodes in the tree (Bentley, 1975), see Table 5.1. Each item

in the Algorithm column in Table 5.2 corresponds to a term in the Time complexity

column. Both columns are ordered. For the complexity of the linear program of the

ORCA algorithm we refer to (van den Berg et al., 2012).

Since RRT* is an anytime algorithm, we show the time complexity of one iteration

instead of the time complexity of the whole algorithm. The time complexity of one

28
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iteration of the proposed algorithms is in Table 5.3.

In the time complexities in Table 5.3 several terms occur. A collision checking proce-

dure is composed of mutual collision checking of agents’ trajectories, which has asymptotic

complexity O(s · n2 · t) - we check at most s times the pairs of trajectories of length t

of n agents, and collision checking of trajectories with obstacles with the complexity

O(s · n · m · t) - we check at most s times n trajectories of length t with m obstacles.

The ORCA-RRT* does not require collision checking, but the asymptotic complexity

of the linear program is also O(s · n2 · t) (van den Berg et al., 2012). Note that the

VisibilityGraph-RRT* does not have to check collisions with obstacles because the vis-

ibility graph algorithm already provides a path not conflicting with any obstacle. We

can therefore omit the second condition in the CF function in Equation 3.2. Find-

ing the shortest path in the visibility graph using a Dijkstra algorithm has complexity

O(s · n ·m logm) (Fredman and Tarjan, 1984) and the complexity O(s · n ·m2 · t) corre-

sponds to choosing the desired velocity in the ORCA algorithm, because we have to do

collision checking with m obstacles for the nodes in the visibility graph (see Section 4.3).

Procedure Algorithm Time

Complexity

Sample Random sampling O(1)

Nearest Depth first search with KD Tree O(log(s))

SteeringProcedure Line/VisibilityGraph/ORCA-RRT* see table 5.2

Near Depth first search with KD Tree O(log(s))

FindBest Steering procedure O(s · e)
Rewire Depth first search with KD Tree, O(log(s) · e)

Steering procedure

Table 5.1: Time complexity of Multi-agent RRT* procedures (with respect

to the number of randomly sampled states s)
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Extension Algorithm Time

Complexity O(e)

Line-RRT* Collision checking O(n2 · t+ n ·m · t)
with agents and obstacles

VisibilityGraph-RRT* Find shortest paths O(n ·m logm+ n2 · t)
Collision checking

with agents

ORCA-RRT* ORCA O(n ·m logm+

• Evaluate visibility graph +n2 · t+ n ·m2 · t)
• Linear program,

compute agents ORCA lines

• Find desired velocity,

compute obstacle ORCA lines

Table 5.2: Time complexity of Multi-agent RRT* steering procedures

(with respect to the number of agents n, the number of ob-

stacles m and the time length of the trajectories t)

Algorithm Time Complexity

Line-RRT* O(s · n2 · t+ s · n ·m · t)
VisibilityGraph-RRT* O(s · n2 · t+ s · n ·m logm)

ORCA-RRT* O(s · n2 · t+ s · n ·m logm+ s · n ·m2 · t)

Table 5.3: Time complexity of one iteration of the proposed algorithms

(with respect to the number of randomly sampled states s, the

number of agents n, the number of obstacles m and the time

length of the trajectories t)
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5.2 Problem Instances Coverage

We first provide the following definitions of a specific type of solutions of the multi-agent

path coordination problem, the coverage of the problem instance space itself and a specific

type of the coverage - the α-coverage.

Definition 5.1: α-solution of a problem instance is a solution with a suboptimality at

most α.

Definition 5.2: Coverage of a problem instance space given by an algorithm is a set

of instances, which are solved by the algorithm.

Definition 5.3: α-coverage of a problem instance space given by an algorithm is a set

of instances, which are solved by the algorithm and the solutions are α-solutions.

Recall how we defined the suboptimality in Chapter 3 and the suboptimality thresh-

old α in Section 4.3:

• Suboptimality shows how many times the solution is worse than the idealistic so-

lution,

suboptimality =

∑n
i=1 t

d
i

tidealistic
. (5.1)

• Suboptimality threshold α is an upper bound on the suboptimality of a solution.

If the suboptimality is higher, the solution is rejected.

The α-coverage is an important concept, since we are often interested only in solutions,

which are good in terms of quality or suboptimality. Note that with no suboptimality

threshold the coverage set and the α-coverage set are equal. We assume that for the

multi-agent path coordination problem there always exists a solution.
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Theorem 5.1 (α-coverage of ORCA-RRT* and ORCA): Given a multi-agent path

coordination problem, the α-coverage of the problem instance space given by ORCA-RRT*

is a superset of the α-coverage given by ORCA. Moreover when given a sufficient running

time limit, the α-coverage given by ORCA-RRT* is a proper superset of the α-coverage

given by ORCA.

Proof (Theorem 5.1): To prove this theorem, we first have to prove that for any in-

stance, for which the ORCA algorithm finds an α-solution, the ORCA-RRT* finds an

α-solution too. Further we prove that there exist instances for which ORCA does not

find an α-solution, while ORCA-RRT* does.

The first iteration of the ORCA-RRT* algorithm is equivalent to running the ORCA

algorithm as long as the suboptimality of the partial solution is lower than the subopti-

mality threshold α (see Section 4.3). This way if an α-solution exists which the ORCA

algorithm would find, the ORCA-RRT* algorithm will find it too. Due to the anytime

property of the RRT* algorithm the ORCA-RRT* keeps searching the state space even

when the first extension is not successful i.e. if the ORCA algorithm would fail to find

an α-solution. Note that this can happen since ORCA is not an optimal or complete

algorithm. Since there always exists a solution, it can be with a probability higher than

zero sampled by the Sample procedure of the RRT* algorithm. Therefore if the ORCA

algorithm fails, the ORCA-RRT* algorithm will still with a probability higher than zero

find a solution. 2



Chapter 6

Experimental Analysis

We test four algorithms for the multi-agent path coordination problem. Three RRT*

based - Line-RRT*, VisibilityGraph-RRT* and ORCA-RRT*, and one reactive collision

avoidance algorithm - ORCA. In this chapter we first describe the test setting - test

inputs that define the problem instance space and a benchmark set, a subset of the

problem instance space which we used for testing. We then define the measured test

outputs and finally we present the results along with their evaluation.

6.1 Test inputs

The test inputs define the multi-agent path coordination problem instance space. The

following parameters can be set to obtain different problem instances:

• Environment - our problem instance space contains four different environments

depicted in Figure 6.1. We designed these environments as representative examples

of difficult regions in common real world environments. The size of the environments

is 1000 × 1000.

• Number of agents is ranging from one to ten in our problem instance space. We

chose this selection because the RRT* based algorithms (Line-RRT* and

VisibilityGraph-RRT*) have very low success rate in higher dimensions. Note that

Theorem 5.1 states that the ORCA-RRT* algorithm is able to solve any instance

that ORCA is able to solve. Since ORCA performs well for up to several hundreds

of agents (van den Berg et al., 2011), ORCA-RRT* would be able to solve instances

33
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with higher number of agents as well.

• Agent body radius is ranging from 50 to 100. This is a significant parameter

since it determines whether the agents are able to exchange positions in narrow

corridors. Figure 6.2 shows the minimal and maximal radii of the agents along with

optimal single agent trajectories obtained by the visibility graph algorithm.

• Suboptimality threshold α determines how many times worse the cost of the

solution can be than the idealistic solution cost. If the cost is higher, the solution

is rejected. Recall the definition of the suboptimality threshold from Section 4.3.

Note that while the behavior of Line-RRT*, VisibilityGraph-RRT* and ORCA

does not depend on the suboptimality threshold, the behavior of ORCA-RRT*

changes significantly for different suboptimality thresholds because it determines

the maximal length of the ORCA-RRT* extension. We chose the following values

for the suboptimality threshold: 2.5, 5, 10 and 1000, where 1000 was used for

problem instances with no suboptimality threshold.

• Running time limit is set to 5 seconds, but we also provide results from tests with

1 second running time limit in order to show how the performance of the anytime

RRT* based algorithms depends on this limitation. We note that the experiments

were performed on AMD FX(tm)-8150 with 16 GB RAM.

(a) Empty environ-

ment

(b) Door environment (c) Cross environment (d) Maze environment

Figure 6.1: Problem environments
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(a) (b)

Figure 6.2: Example of the maze environment - 10 agents with radii a) 50,

b) 100, single agent optimal paths

6.2 Benchmark set

We produced a benchmark set of various scenarios for testing. For each combination

of the environment, the number of agents, the agent body radius and the suboptimal-

ity threshold the benchmark set contains 10 different settings of agents’ start and goal

positions.

We ran the ORCA algorithm 2400 times. Since RRT* is a stochastic algorithm, we

ran the RRT* based algorithms 10 times on each problem instance with different seeds.

We ran Line-RRT* and VisibilityGraph-RRT* each 24000 times. Because the behavior

of the ORCA-RRT* algorithm depends on the chosen suboptimality threshold, we ran

the ORCA-RRT* 4 times for each instance with different suboptimality thresholds. Alto-

gether this would mean 146400 executions, but some problem instances were impossible

to create due to the combination of high number of agents and large agent body radius.

Therefore altogether we executed 144212 runs.

The benchmark set was created by a Benchmark set generator which guarantees that

for each problem instance there is exactly one conflict cluster i.e. the path finding problem

cannot be divided into mutually non-conflicting groups of agents, which would be easier to

solve. This is guaranteed by adding agent’s random start and goal positions iteratively

only when a conflict occurs between agent’s shortest path from start to goal and any

other agent’s shortest path. The procedure that creates a problem instance is given in

Algorithm 3.
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Algorithm 3 Benchmark set generator: Create problem instance

1: for i in 1:numberOfAgents do

2: colliding = false

3: while not colliding do

4: start = randomSample

5: goal = randomSample

6: path = findShortestPath(start, goal, obstacles)

7: colliding = findConflict(path, allPaths)

8: end while

9: allPaths.add(path)

10: starts.add(start)

11: goals.add(goal)

12: end for

6.3 Test outputs

We measure several parameters that provide different views on the behavior of the algo-

rithms and their ability to solve the given problem instances. The measured parameters

are:

• Idealistic solution cost, cost of a solution for which the CF function in equation

3.2 is relaxed in a way that it omits its first constraint i.e. permits collisions between

agents. We defined the idealistic solution cost in Equation 3.4.

• Suboptimality shows how many times the solution is worse than the idealistic

solution. We defined the suboptimality in Equation 3.5.

• Success rate shows the percentage of scenarios solved by the algorithms. The

success rate depends on the suboptimality in a way that a solution is successful

only if its suboptimality is lower than α, the suboptimality threshold defined in

Section 4.3.

• α-coverage was defined in Section 5.2. It relates to the success rate in a way

that it is a set of successful solutions (successful in terms of the suboptimality and

the suboptimality threshold α). Note that with no suboptimality threshold the

coverage set and the α-coverage set are equal.
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6.4 Evaluation

In this section we provide an evaluation of our experiment results. First we show how

the proposed ORCA-RRT* algorithm behaves on one specific problem instance. Then

we compare the algorithms based on their success rate. Finally we assign ranks to the

algorithms based on the suboptimalities of their solutions.

6.4.1 ORCA-RRT* solution

We picked a problem instance - the cross environment occupied by 6 agents of body

radius 50 with a suboptimality threshold 10 and running time limit 5 seconds. On this

instance we show the behavior of the ORCA-RRT* algorithm. In Figure 6.3 we show the

solutions that the ORCA-RRT* provides during the 5 second running time. In Table 6.1

we show the times, iteration numbers and suboptimalities of the solutions. Note that

the suboptimality is monotonically decreasing with the increasing solution number. This

is a property of the RRT* algorithm. Also note that the first solution was found in the

18th iteration. This means that given the suboptimality threshold the ORCA algorithm

is not able to provide a solution. Otherwise the ORCA-RRT* algorithm would according

to Theorem 5.1 find the first solution in the first iteration. In Figure 6.4 we show time

snapshots of the simulation where the agents follow the trajectories from the best solution

from Figure 6.3.

6.4.2 Success rate of the algorithms

In this section we compare the algorithms by their success rate for various numbers of

agents, agent body radii, environments and suboptimality thresholds. Note that the

sucess rate closely relates to the concept of α-coverage. The most important experiment

results in this thesis are depicted in Figures 6.5, 6.6, 6.7 and 6.8. In these figures we show

the successrate for different suboptimality thresholds given the number of agents and

the agents’ bodies radii. Each of these figures shows results for different suboptimality

threshold. Three significant phenomena occur.

First, the success rate of RRT* based algorithms Line-RRT* and VisibilityGraph-

RRT* drops fast with increasing number of agents. This behavior was expected because

the planning takes place in a state space exponential to the number of agents. These
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algorithms are able to solve the defined problems for the number of agents up to approx-

imately 5.

Second, the success rate of the ORCA reactive technique drops with increasing agents’

radii. This is due to the nature of the reactive algorithm. The problem instances contain

local minima - states, where agents get stuck close to each other because they only

optimize their single agent behavior. Since reactive technique can be observed as greedy

approach, it is often unable to overcome these local minima. The significance of this

behavior increases in more cluttered environments, see for instance figures 6.8(c), 6.8(d),

where by increasing the radii of agents’ bodies we eventually make the corridors narrow

in a way that the agents are unable to swap their positions without leaving the corridor.

Such a situation is hard to solve locally.

Furthermore, the solutions provided by ORCA often have high suboptimality. A lower

suboptimality threshold significantly decreases the success rate - notice the difference

between Figures 6.5(a) and 6.6(a). This typically happens in cluttered environments,

where the agents are likely to get stuck in slowly evolving deadlock situations.

Third, the success rate of the ORCA-RRT* algorithm is close to one for both high

number of agents and high agent radius. It drops only with the combination of high

extremes of both parameters. This behavior is achieved by the combination of planning

and reactive approaches. The planning part is able to solve problem instances containing

local minima, while the reactive part is able to solve the poblem instances with high

number of agents. We can observe for example in Figure 6.8(c) that while the other

algorithms are only successful in parts of the instance space, the ORCA-RRT* benefits

from both its parts by covering the union of their α-coverage.

Furthermore, the solutions of the ORCA-RRT* algorithm often have lower subop-

timality than the solutions of ORCA, which we can observe in slower deterioration of

the α-coverage with decreasing suboptimality threshold. Since the first iteration of the

ORCA-RRT* is identical to running ORCA with the suboptimality threshold α as an up-

per bound for the solution suboptimality, the slower deterioration shows the ability of

the ORCA-RRT* algorithm to improve its solutions over time.

Finally, all our experimental data agrees with the Theorem 5.1, which states that

the α-coverage of the ORCA-RRT* is never worse than the α-coverage of ORCA, but

it can be better. Observe this phenomenon in Figures 6.5, 6.6, 6.7 and 6.8. Note that

the Figure 6.8 relates to the coverage of the instance space (Definition 5.2) without the

bound on the suboptimality in the form of the suboptimality threshold α.

Figure 6.9 and Tables 6.2 and 6.3 show the success rate separately for number of
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agents and agents’ body radii, given the suboptimality threshold α = 2.5. Figure 6.10

and Tables 6.4 and 6.5 show the same data for no suboptimality threshold. This view on

the data shows three significant phenomena.

First, the success rate of the VisibilityGraph-RRT* algorithm is often lower than the

success rate of the Line-RRT*. This fact is not intuitive, since we expected that with

the better use of environment knowledge (VisibilityGraph-RRT* uses information about

obstacles to create trajectories with no obstacle intersections) the success rate would

increase. The reason we believe is behind the lower success rate of the VisibilityGraph-

RRT* is a high overhead that comes with searching for trajectories with no obstacle

intersections as opposed to fast random sampling of the state space and simple line

trajectories computed by the Line-RRT*.

Second, the success rate of the ORCA algorithm depends significantly on the subop-

timality threshold. With no suboptimality threshold, the success rate of ORCA is almost

always better than the success rate of Line-RRT* and VisibilityGraph-RRT* (see Fig-

ure 6.10). On the other hand, with the low suboptimality threshold the success rate of

ORCA is lower than the success rate of all other measured algorithms (see Figure 6.9).

Reason for this fact is the above mentioned high suboptimality of the solutions provided

by the ORCA algorithm.

Third, the success rate of the ORCA-RRT* algorithm is higher for all numbers of

agents and agents’ bodies radii. This is again thanks to the combination of planning and

reactive approach.

6.4.3 Ranking of the algorithms by their suboptimality

Figure 6.11 and 6.12 show the histograms of ranks assigned to algorithms for run-time

limits 5 and 1 seconds. A rank from 1 to 4 is assigned to each algorithm for each

experiment according to its solution suboptimality compared to other algorithms. If two

algorithms achieve the same suboptimality, the ranks are assigned to them randomly.

If an algorithm was not able to find any solution, its rank is 4. Rank 1 means that

an algorithm achieved lowest suboptimality for particular problem instance. Difference

between figures 6.11 and 6.12 shows how the ranks of the algorithms (e.g. solution quality

– suboptimality) depend on the running time limit.

The results show that the VisibilityGraph-RRT* algorithm achieved the worst ranks.

Better ranks were achieved by the Line-RRT* algorithm due to its ability of fast sampling

of the state space. The ORCA algorithm shares the first rank with the ORCA-RRT* for
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the 1 second runtime limit, where the ORCA-RRT* cannot benefit from extra computa-

tion time. When the 5 second runtime limit is considered, the ORCA-RRT* algorithm is

dominant in terms of lower suboptimality.

From the difference between results for different runtime limits (see Figures 6.11

and 6.12) we can observe that ORCA finds a solution early, but does not benefit from

the remaining runtime limit. On the other hand, the performance of the RRT* based

algorithms including the ORCA-RRT* is more dependent on the runtime limit.

Altogether, the results in Figures 6.11 and 6.12 confirm that ORCA-RRT* has not

only the best α-coverage of the problem instance space, but also is dominant in terms of

better suboptimality of the solutions, which implies their better quality.
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(a) Solution 1 (b) Solution 2

(c) Solution 3 (d) Solution 4

Figure 6.3: Solutions found by ORCA-RRT*, running time: 5 seconds,

suboptimality threshold α: 10, number of agents n: 6, radius

of agents’ body r: 50

Solution Time [ms] Iteration Suboptimality

1 1629 18 10.0

2 1791 20 5.2

3 2173 23 3.8

4 3902 54 3.0

Table 6.1: Solutions found by ORCA-RRT*, running time: 5 seconds, sub-

optimality threshold α: 10, number of agents n: 6, radius of

agents’ body r: 50
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(a) Time 1 (b) Time 21

(c) Time 70 (d) Time 94

Figure 6.4: Simulated execution of the solution found by ORCA-RRT*,

running time: 5 seconds, suboptimality threshold α: 10, num-

ber of agents n: 6, radius of agents’ body r: 50
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Figure 6.5: Success rate of tested algorithms on test instances, running

time: 5 seconds, suboptimality threshold α: 2.5
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Figure 6.6: Success rate of tested algorithms on test instances, running

time: 5 seconds, suboptimality threshold α: 5



CHAPTER 6. EXPERIMENTAL ANALYSIS 45

50 60 70 80 90 100

2

4

6

8

10
Line RRT*

50 60 70 80 90 100

2

4

6

8

10
Visibility Graph RRT*

50 60 70 80 90 100

2

4

6

8

10
ORCA RRT*

50 60 70 80 90 100

2

4

6

8

10
ORCA

ag
en

ts

radius

(a) Empty environment

50 60 70 80 90 100

2

4

6

8

10
Line RRT*

50 60 70 80 90 100

2

4

6

8

10
Visibility Graph RRT*

50 60 70 80 90 100

2

4

6

8

10
ORCA RRT*

50 60 70 80 90 100

2

4

6

8

10
ORCA

ag
en

ts

radius

(b) Door environment

50 60 70 80 90 100

2

4

6

8

10
Line RRT*

50 60 70 80 90 100

2

4

6

8

10
Visibility Graph RRT*

50 60 70 80 90 100

2

4

6

8

10
ORCA RRT*

50 60 70 80 90 100

2

4

6

8

10
ORCA

ag
en

ts

radius

(c) Cross environment

50 60 70 80 90 100

2

4

6

8

10
Line RRT*

50 60 70 80 90 100

2

4

6

8

10
Visibility Graph RRT*

50 60 70 80 90 100

2

4

6

8

10
ORCA RRT*

50 60 70 80 90 100

2

4

6

8

10
ORCA

ag
en

ts

radius

(d) Maze environment

0.0 0.2 0.4 0.6 0.8 1.0

success
rate

Figure 6.7: Success rate of tested algorithms on test instances, running

time: 5 seconds, suboptimality threshold α: 10
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Figure 6.8: Success rate of tested algorithms on test instances, running

time: 5 seconds, no suboptimality threshold α
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Number of agents 1 2 3 4 5 6 7 8 9 10

Line-RRT* 100 98.8 93.8 78.8 56.7 32.4 10.9 4.2 1.4 0

Vis.Graph-RRT* 100 98.3 96.3 78.8 54.2 20.2 6.1 0.9 0 0

ORCA 100 81.7 59.2 48.3 41.7 24.8 21 12.9 6.6 6.6

ORCA-RRT* 100 99.6 96.3 86.7 75 63.5 57.6 52.1 44.1 32.3

Table 6.2: Success rate of the measured algorithms for various numbers of

agents, running time: 5 seconds, suboptimality threshold α: 2.5

Radius of agents’ bodies 50 60 70 80 90 100

Line-RRT* 59.5 54 47.8 46.6 46.1 43.4

VisibilityGraph-RRT* 58.3 52.3 46.3 45 40.3 41.6

ORCA 63 54.5 42.3 34.7 28.1 23.7

ORCA-RRT* 95.8 86 73.3 64.7 57.8 50

Table 6.3: Success rate of the measured algorithms for various radii of

agents’ bodies, running time: 5 seconds, suboptimality thresh-

old α: 2.5
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Figure 6.9: Success rate of the measured algorithms for various numbers

of agents and radii of agents’ bodies, running time: 5 seconds,

suboptimality threshold α: 2.5
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Number of agents 1 2 3 4 5 6 7 8 9 10

Line-RRT* 100 100 97.5 80.8 57.1 32.4 10.9 4.2 1.4 0

Vis.Graph-RRT* 100 100 99.2 80.8 54.6 20.2 6.1 0.9 0 0

ORCA 100 92.9 80.8 79.6 70.4 65.5 67.7 69.1 65.4 65.7

ORCA-RRT* 100 100 99.6 96.7 86.7 79.4 79.9 78.3 76.3 77.3

Table 6.4: Success rate of the measured algorithms for various numbers of

agents, running time: 5 seconds, no suboptimality threshold α

Radius of agents’ bodies 50 60 70 80 90 100

Line-RRT* 59.5 54.5 48.8 47.4 47.1 44.8

VisibilityGraph-RRT* 58.5 52.5 47.3 45.8 41.1 43.1

ORCA 93.8 90.5 82.8 68.4 58.3 59

ORCA-RRT* 100 99.3 96.3 80 77.1 71.1

Table 6.5: Success rate of the measured algorithms for various radii of

agents’ bodies, running time: 5 seconds, no suboptimality

threshold α
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Figure 6.10: Success rate of the measured algorithms for various numbers

of agents and radii of agents’ bodies, running time: 5 seconds,

no suboptimality threshold α
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Figure 6.11: Rank histograms, running time: 5 seconds, suboptimality

threshold α: 2.5
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threshold α: 2.5



Chapter 7

Conclusion

In this thesis we studied the problem of finding coordinated paths for holonomic agents in

2-d polygonal environments. This problem is challenging because it belongs to PSPACE-

hard and complete algorithms have to search for a solution in a state space exponential to

the number of agents. In this thesis we study the well known techniques that are able to

solve this problem - reactive collision avoidance techniques and a sampling based planning

approach. We provide an overview of the reactive techniques for collision avoidance,

focusing on a well known velocity obstacle approach. Also we study a sampling based

planning approach - the RRT* algorithm.

We studied a reactive technique ORCA and several RRT*-based algorithms for multi-

agent path coordination. We found typical instances of the multi-agent path coordination

problem that the ORCA reactive technique fails to solve. While both ORCA and RRT*

have limited coverage of the problem instance space, an approach combining planning

and reactive technique benefits from both its parts, providing a better problem instance

set coverage along with higher solution quality.

We call the new algorithm ORCA-RRT*. While reactive techniques are often unable

to solve problems containing local minima, due to its RRT* planning part the ORCA-

RRT* algorithm can avoid such local minima by random sampling of the state space.

On the other hand RRT*-based algorithms often suffer from the exponential growth of

the state space and thus are unable to solve instances with high number of agents. The

reactive part of ORCA-RRT* is able to overcome this problem.

We proved that, with respect to a given upper bound on the acceptable suboptimality

of a solution, the coverage of ORCA-RRT* is a superset of the coverage of ORCA i.e.

there is no instance that would be solved by ORCA and not solved by ORCA-RRT*,

while there are instances solved by ORCA-RRT* only. Our experiment results confirm
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this property of the algorithm.

ORCA-RRT* is an anytime algorithm, which can iteratively improve the solution

it provides. The choice of a running time limit can therefore significantly affect its

performance. We experimented with several running time limits and found that the

performance of the RRT* based algorithms including ORCA-RRT* is more dependent

on the running time limit than the performance of the ORCA reactive technique.

In the future work we plan to implement the ORCA-RRT* algorithm on hardware

agents and run tests in real environments. Another interesting research aim is an ORCA-

RRT* based algorithm capable of finding coordinated paths for non-holonomic agents.
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Appendix A

Source codes

A java implementation of the ORCA-RRT* algorithm along with the ORCA, Line-RRT*

and VisibilityGraph-RRT* algorithms is enclosed on the CD in the following directory:

• implementation/ORCA-RRT: The implemented ORCA-RRT project containing all

of the mentioned algorithms and the benchmark set generator along with the gen-

erated set of problem instances

• implementation/dependencies: dependencies required to run the ORCA-RRT project

in eclipse. Projects alite, trajectorytools and deconflictiontools were developed at

the Agent Technology Center, Czech Technical University in Prague

• implementation/export: The ORCA-RRT project exported in a runnable jar file

Please use the following arguments to run the project:

• In case of running the project in eclipse:

<instance-number> <problem-instance.xml> <algorithm> <random-seed>

<time-limit-in-ms> <suboptimality-threshold> <true/false-show-visualization>

<eclipse>

• In case of running the exported version from the command line:

<instance-number> <problem-instance.xml> <algorithm> <random-seed>

<time-limit-in-ms> <suboptimality-threshold> <true/false-show-visualization>

The instance number is arbitrary, it was used for tracking experiments, the problem

instance has to be an xml file with the same structure as the provided problem instance

files (ORCA-RRT/src/main/resources/instances), for algorithm choose from: ORCA-

RRT, ORCA, LINERRT, VGRRT.
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Appendix B

Paper for AAMAS 2014

Finding Coordinated Paths for Multiple Holonomic

Agents in 2-d Polygonal Environment

During the work on this thesis a paper on the ORCA-RRT* algorithm has been submitted

by Bc. Pavel Janovský, Bc. Michal Čáp MSc. and Ing. Jǐŕı Vokř́ınek Ph.D. to the 13th

International Conference on Autonomous Agents and Multiagent Systems AAMAS 2014.

The author notification date was after the submission of this thesis.

We include the paper on the enclosed CD:

• paper/ORCA-RRT-paper.pdf
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