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List of abbrevations 

HRCT (High Resolution Computed Tomography) 

HU (Hounsfield unit) – units describing CT density  

MPR (multiplanar reconstruction) – postprocessing procedure creating coronal, saggital or 

oblique planes from the original axial data 

MIP (Maximum Intensity Projection) – postprocessing procedure displaying the pixel of 

maximal intensity value along the line 

Ground-glass nodule – nodule having the appearance of opaque glass  

Axial (transversal) plane – any horizontal plane dividing the body into superior and inferior 

part 

Coronal (frontal) plane – any vertical plane dividing the body into ventral and dorsal part  

Sagittal plane – any vertical plane dividing the body into left and right part 

GT (ground truth) – information about real nodules and real non-nodule structures created 

in advance by an expert  

TPs (true positives) – all truly detected nodules 

TNs (true negatives) – all truly detected non-nodule structures   

FPs (false positives) – all non-nodule structures detected as nodules  

FNs (false negatives) – all missed nodules  

Partial volume artefact – CT artefact which occures when only a partial volume of the dense 

structure lying off-centre is in the way of the X ray beam 

PCA (Parcial Component Analysis) – dimensionality reduction method 

ROC (Receiver Operating Characteristic) – graphical curve plot ilustrating the performance of 

classifier system 

AUC (Area Under Curve) – area under ROC curve 
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Abstract 

Lung nodules are the lung parenchyma structures found by radiodiagnostic imaging 

methods, especially Computed Tomography. Lung nodules are of various etiologies and can 

be found in various lung diseases . At worst they represent a primary or secondary tumorous 

proces of the lung. That is why it is necessary to find all suspicious lung nodules. 

The aim of this study is to create the automatic lung nodule detection algorithm, based on 

the existing one. In my work I first analyse the baseline algorithm results to find all the 

shortcomings that can be improved to receive better output results. These findings are 

applied to create new classification method. This metod is based on reducing the number of 

existing nodule characteristics, modifying the training data and applying the suitable 

classifier to receive as good sensitivity and as low number of false positive detections as 

possible. For that purpose, combinations of several dimensionality reduction methods and 

several classifiers are studied. 

New method have the same sensitivity, but significantly lower number of false positives than 

the existing one. 

 

Keywords 

Lung nodule, computed tomography, computer aided diagnosis, binary classification 
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Abstrakt 

Plicní noduly jsou struktury nacházející se v plicním parenchymu, které lze zobrazit pomocí 

radiodiagnostických metod, nejlépe pomocí výpočetní tomografie (CT). Etiologie plicních 

nodulů může být různá. V nejhorším případě jsou součástí rakovinného procesu, ať už 

primárního, či sekundárního. Z tohoto důvodu je nutné všechny podezřelé plicní noduly 

spolehlivě najít a diagnostikovat. 

Cílem této práce je na základě již existujícího algoritmu sestavit nový automatický systém na 

detekci plicních nodulů.  Součástí práce je analýza dosavadních výsledků a postupů, která má 

za cíl najít všechny nedostatky, jejichž odstraněním by se výsledky algoritmu zlepšily. Na 

základě této pečlivé analýzy jsou všechny poznatky využity k tvorbě nového algoritmu. Ten je 

založený na snižování dimenze příznakového prostoru a použití vhodného klasifikátoru 

k redukci množství detekovaných dat. Testovány jsou kombinace několika metod snižujících 

dimenzi příznakového prostoru a několika různých klasifikátorů. 

Nový algoritmus má srovnatelnou senzitivitu, ale o poznání nižší hodnoty falešně pozitivních 

detekcí, než algoritmus současný. 
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1 INTRODUCTION 

1.1 Radiodiagnostic imaging tests 

Radiodiagnostic imaging tests are mostly noninvasive (not disturbing body tissue) 

procedures done when we suggest some patology. Imaging methods could help us find a 

suspicious area (leasion) that might be pathologic. They help us detect the lesion, visualize 

the spread of the lesion, determine other affected structures and based on all provided 

information they help us predict the curability and prognosis of the patient.  

1.1.1 Radiodiagnostic imaging of the lung 

The basic imaging methods and the gold standard of chest examination is plain radiograph 

(chest X-ray) and the Computed Tomography (CT scan). Both metods are based on 

absorbtion of X-ray beams passing through the human body.  

Plain PA (posteroanterior) radiograph is the most common imaging method with a small 

radiation dose (0.02-0.1 mSv). X-ray provides us a 2-dimensional image of the body, which 

means, that all the structures the X-ray beam passes through are summed. This limitation of 

plain chest radiograph is eliminated by CT. CT provides a 3D cross-sectional view of the body. 

Compared to the plain radiograph, the resolution of CT is much higher. On the other hand 

the radiation dose is higher too (about 5 mSv for one chest CT). 

These days High Resoluted Computer Tomography (HRCT) is commonly used for lung 

imaging. HRCT is a computed tomography method maximalizating the spatial resolution and 

ease the patology detection.  

Another imaging method for lung investigation is Pozitron Emission Tomography (PET). PET 

is a functional imaging method that provides the information about metabolic activity of the 

tissue. It is based on consumption of a radioactive tracer (mostly used is fluorodeoxyglucose 

- FDG). PET investigation is indicated in tumorous processes, because increased glucose 

metabolism indicates the malignant potential of the leasion. It is usually combined with CT 

(PET/CT method), where CT provides the anatomic information and PET provides the 

metabolic information. 

1.2 Lung nodule 

Lung nodule is one of many pathologies that could be found in CT scan. It is a small, mostly 

spherical area of solid tissue localized in the lung parenchyma. In X-ray or CT scan every 

nodule looks like a light „spot“ surrounded by the normal (dark) parenchyma of the lung. In 

both it is defined as a leasion of reduced transparency (or increased density).   
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1.2.1 Lung nodule imaging 

Most nodules are discovered as an incidental finding in X-ray or CT. X-ray could detect only 

nodules larger than circa 1 cm in diameter if they are not summated with mediastinal 

structures. When a nodule is first discovered on the plain X-ray, it needs further 

investigation (usually CT scan). CT helps us to find much smaller leasions, even the 

micronodules, smaller than 3 mm in diameter. Lung nodule is among the most commonly 

seen structures in CT scans. PET has it´s limitations too. Ideal lesions for PET are larger than 

circa 0.5 cm in diameter, smaller lesions cannot be reliably evaluated, because they could be 

false negative due to limited spatial resolution of the PET camera. 

1.2.2 Does the lung nodule always mean a cancer? 

There are two main types of pulmonary nodules – benign and malignant. In the population 

lung nodules are usually considered as a lung cancer. Everyone knows about the cancer and 

is afraid of it, the lung cancer is not an exception. Cancer in general is the leading cause of 

death worldwide with about 7.6 million deaths every year. Even though lung cancer is 

second most common fatal malignancy for both men and women, it accounts about 13% of 

all new diagnosed cancers and it is the leading cause of cancer deaths. Nowdays, the most 

important risk factor for the lung cancer is tobacco (1). 

1.2.3 Benign and malignant nodules 

When speaking about pulmonary nodule, lung cancer is only the „tip of an iceberg“. In fact, 

most of the nodules are benign. Approximately 50% of the nodules, that were surgically 

removed, turn out to be benign (2). It was reported, that only 1% of small nodules (<5 mm in 

diameter) in patients with no history of cancer are malignant and the risk of malignancy rises 

with the size of the nodule (3). On the other hand approximately 50% of incidentally 

detected nodules (>8 mm in diameter) are malignant (4). However, even the small nodule 

could be cancerous and might represent the primary lung cancer in it´s early state, or the 

secondary lung cancer, a metastase. Metastasis is a cancer with an origin somewhere else in 

the body which spread to the lungs. CT is the most sensitive modality for detecting lung 

metastases. Pulmonary metastases has its origin most commonly in the carcinoma of the 

breast, kidneys, colon, stomach, pancreas or thyroid gland. The mortality of both (primary 

and secondary lung cancer) can be reduced if they are detected and threated early.  

When we first find some suspiciuous nodule, we have to recommend the further testing 

(HRCT, another CT scan in 3 months, PET scan, bronchoscopy, or even a biopsy).    

1.2.4 Various appearance of one structure 

We observe many signs, that could be very helpful to determine whether the nodule is 

probably malignant or not (Picture 1). This general knowledge of the lung nodule issue helps 

us understand how difficult is to find a reliable automatic algorithm for lung nodules 

detection. 
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Size 

One of the most important characteristics of the nodule is size. Mostly the size of first 

founded nodules are at intervals 5-10 mm. The bigger nodule, the worse prognosis. Nodules 

smaller than 2 mm are called the miliary nodules, nodules exceeding  3 cm in diameter are 

called mass, or the tumour.  

Density 

Nodules could differ in density (from the solid high bone density nodules with densities 

about hundreds of Hounsfield units (HU) to the non-solid nodules, such called „ground glass“ 

nodules, or even negative density nodules with fat deposits). The nodule density could be 

homogenoeous (which means that it does not change in the whole mass of the nodule), or 

heterogeneous (we could find various densities because of cavities, or calcifications).  

Shape 

The shape of typical pulmonary nodule is usually spherical or round, but we can see irregular 

shapes, or even the spiculated nodes, which are very suspect to be malignant. The margins 

could be lobulated, or smooth. 

Localization 

Localization of the leasion have to be taken into consideration too. We see nodules 

completely surrounded by lung parenchyma with no touch to the hilum, mediastinum or 

pleura (intraparenchymal nodules), or the leasions touched to the pleura (subpleural 

nodules). The distribution of multiple nodules could be perilymfatic, centrilobular or 

random. Single intraparenchymal nodule not associated with adenopathy, pleural effusion or 

atelectasis  is called the solitary pulmonary nodule. 

Dynamic of growth 

Important information provides us of course the dynamic of growth. Comparing the finding 

with prior images gives us an important information about etiology, or treatment success. 

Cancerous nodules grow fast, the doubling time of the malignant lesions is mostly 1-6 

months (5). On the other hand, nodules which stay same in shape and size more than two 

years are considered to be benign (6). 

Enhancement 

Another helpful information is the value of enhancement after intravenous bolus injection of 

the contrast agent (however most lung scans are „native“, without any intravenous 

contrast).  

Individual patient anamnesis 

Last but not least when finding a lung nodule is the patient´s anamnesis, job anamnesis, the 

abusus (smoking), history of malignancy, age etc.  
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1.3 Lung nodule diferential diagnosis 

When finding any patological process, diferential diagnosis helps us to generate a list of 

diseases which have to be taken into consideration. In diferential diagnosis all processes 

(benign and malignant) have to be included. Benign nodules can be found in various lung 

diseases, they could be solitary benign neoplasms (hamartomas, chondromas), or multiple 

inflammatory granulomas (in tuberculosis, histoplasmosis, sarcoidosis). Septic emboli, or 

intrapulmonary lung nodes are nodule-like structures that could mimick nodules. Another 

nodule mimicking structures are rib fractures, costochondral junctions, or AV malformations.    

Malignant leasions include mainly peripherial bronchial carcinoma, alveolar cell carcinoma, 

pulmonary carcinoid tumor, lymphoma and metastases (2). 

 

 

Picture 1 – various appearance of the lung leasions a) stable benign solid nodule (7) b) two partly solid and partly ground-
glass cavitating leasions representing a mycotic infection called angioinvasive aspergilosis (8) c) spiculated cavitating 
mass representing adenocarcinoma (9) d) solid nodule with irregular borders representing the primary lung cancer (7) e) 
spiculated pulmonary mass representing the primary lung cancer (10) f) ground glass nodule could represent the 
bronchoalveolar cell carcinoma (BAL) (11) 
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1.4 MIP projection 

Nodules come in many forms, there are ones that are easy to detect (large, round, dense 

and sharply marginated nodules) and problematic ones hardly classified even for an 

experienced human eye. Readers sensitivity for detecting pulmonary nodules could be 

increased by using the special postprocessing volume rendering techniques such as 

Maximum Intensity Projection (MIP) (12). MIP displays the voxel of maximum density Zxy 

along the Z-axis of a given volume n. Reader looses the sense of depth of the original data, 

but receives the sense of 3D. Using this technique reader could easily differeciate between 

rounded (eg. nodules) and tubular structures (eg. vessels).  

 𝑍 =  𝑧1 , 𝑧2 , … 𝑧𝑛  

𝑍𝑥𝑦 ∈ 𝑛 

𝑍𝑥𝑦 = 𝑚𝑎𝑥 𝑍  

(1.1)  

In the Picture 2 it is possible to compare standard multiplanar reconstruction image (MPR) 

and maximal intensity projection image (MIP), both in axial and coronal plane. 

 

Picture 2 – MPR/MIP difference  
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1.5 Computer aided diagnosis 

Computer-aided diagnosis (CAD) is a term for all the technologies and procedures in 

medicine that help human professionals to interpretate the medical image. The CAD 

research begun in early 1980s and it is still one of a major research subjects in medical 

imaging and diagnostics. It is believed that CAD will serve as a useful tool for diagnostic 

examinations in everyday praxis, not to replace the human experts, but to help them focus  

on suspicious structures. 

1.5.1 No perfect results so far 

Huge number of CADs for automatic lung nodule detection appeared over the years, the 

sensitivity reported by the authors differs in various algorithms and data sets from 71 to 95% 

(Table 1). Performance rates depend on the dataset type, on number of true nodules, nodule 

characteristics and other variables. Bigger, round and solid solitary nodules are easy to 

detect, while small, irregular nodules often fall into the false negative group. It was reported, 

that CAD system still have problems with detecting ground-glass nodules (13). 

 

Picture 3 – examples of solid (left) and ground-glass (right) parenchyma nodules 

For finding all suspicious leasions we need as high sensitivity as possible. Over the years CAD 

systems reached really good sensitivity rate levels, but unfortunately, high sensitivities are 

associated with high numbers of false positive detections. All at once, the authors are trying 

to reduce FPs to minimum.  

We really need as good sensitivity as possible and we also need to reduce the FP rate, but 

not at the cost of sensitivity decreasing. But we don´t have to be perfectly sensitive in every 

case. When there are only few leasions, we need to find all of them, but when there are 

tens? It is not necessary to detect all of them, because nobody will care about the exact 

number. We also don´t need to get rid of all the FPs - not only nodules, but also other 

suspect findings have to be noticed.   
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1.5.2 Lung nodule detection algorithms compared 

In following table some authors and their presented results are mentioned.   

Author Sensitivity [%] FPs/scan Notes 

Bisheng Zhao et al. (14) 84.2 5 Only 60-80 slices per scan, 266 

simulated nodules 

Golosio et al. (15) 79 4 Combined scan database, nodules 

>3mm, performed on LIDC database  

Kyongtae et al. (16) 95.1 6.9 164 true nodules>3mm, 20 scans used  

Tan et al. (17) 87.5 4 259 true nodules>3mm 

Hirose et al. (18)  71.4 0.95 21 scans used, nodules in 15 scans 

El-Baz et al. (19) 82.3 12 130 true nodules 

Gori et al. (20) 85.2 6 102 true nodules>5mm 

Yuan et al. (21) 72.6 3.19 628 true nodules 

Choi (22) 95.28 2.27 151 nodules>3mm, LIDC database 

Cascio et al. (23) 88 2.5 148 nodules 

Dolejší et al. (24) 94.03 5.46 FPs/slice  

Dolejší et al. (25) 74.3 

89.6 

2.6 FPs/slice 

9 FPs/slice 

The presented baseline algorithm 

Table 1 – various algorithm results  

Zhao (14) published 84.2% sensitivity with 5 FPs/scan, the maximum number of slices per 

scan was 80, there were 266 nodules (2-7 mm in diameter) and all the nodules were 

simulated. The maximal detection sensitivity of 94.4% was reached, however the total 

number of FPs per scan was 906.  

Golosio (15) combined 83 scans from LIDC and 23 other scans, the mean number of slices 

was 310. He only included nodules >3mm in diameter. The overall sensitivity of 79% was 

reached with 4 FPs/scan. 

Tan (17) published 87.5% sensitivity with 4 FPs/scan in LIDC database. He used 235 scans for 

training and 125 scans containing 259 nodules (3-30 mm in diameter) for testing. He 

reported maximal detection sensitivity 88.8-98.8% with mean 457 FPs per scan. 

El-Baz (19) published 92.3% sensitivity with 12 FPs/scan, 200 scans were used, there were 

abnormalities in 21 of them. The total number of nodules was 130. 

Gori (20) reported 85.3% sensitivity with 6 FPs/scan for intraparenchymal nodules and 85.2% 

sensitivity with 13.6 FPs/scan for subpleural nodules. He used 39 CT scans with 300 slices per 

scan in average, 34 scans were containing the inraparenchymal nodules and 20 scan were 

conaining the subpleural nodules. The dataset consisted of 102 nodules. 

Yuan (21) published 72.6% sensitivity with 3 FPs/scan in 150 CT scans containing 628 true 

nodules. He was comparing CAD and reader sensitivity differences and found out, that CAD 

is much better in detecting hilar and central nodules, while human reader has higher 
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sesitivities in detecting peripheral and subpleural nodules. The average number of slices per 

CT scan was 404. 

Choi (22) used 58 LIDC nodule containing scans (with nodules >3mm in diameter) with 

average number of slices per scan about 200 were used for testing. The total number of 

nudules was 151. The maximal detection sensitivity of 97% was reached. The number of 

FPs/scan was 60. After the classification step the number of sensitivity was 95.28% with 

2.27FPs/scan. An SVM classifier was performed. 

Cascio (23) used 84 LIDC scans containing 148 nodules, the mean number of slices per one 

scan was 310. The detection sensitivity was 97% with 6.1 FPs/scan. After FPs reduction and 

classification process the values dropped to 88% sensitivity and 2.5FPs/scan. He performed a 

classifier based on neuronal network.  

Dolejší (24) published 94.27% sensitivity with 7.57 FPs/slice for TIME and LIDC datasets 

combined, then 94.03% with 5.46 FPs/slice for TIME only (containing two independent 

datasets), 89.62% with 12.03 FPs/slice for LIDC (containing 38 scans with the mean number 

of 223 slices per scan) and 78.68% sensitivity with 4.61 FPs/slice for ANODE09 dataset 

(containing 50 scans with 451 slices per scan in average).   

1.5.3 Future diagnostic tools for helping the experts 

There were many tries to automate the process of nodule-finding, but the daily routine of 

the human radiologists has not changed yet. The naked-eye-detection still remains the 

golden standard od the diagnostics, the MIP projection helps a lot.  

Automatic systems definitelly have it´s future in cooperation with human experts - in 

detecting suspicious structures, finding new leasions, rating the growth or evaluation the 

threatment effectivity.  It will ease the work of humans and decrease a time needed to 

examine the CT scans. It also can provide the „double reading“ of the diagnostic images. 
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2 REDUCTION OF FALSE POSITIVES IN LUNG NODULE DETECTION 

ALGORITHM 

The aim of my work is to analyse the existing lung nodule detection algorithm (12), to find its 

potential shortcomings and to analyse its results. At the same time to set up the parameters 

to receive required results and based on this findings to design new method for further 

nodule classification. 

2.1 Work process 

The whole work process is like finding the diagnosis. First of all we have to familiarize and 

get to know all the details, then it is turn for analysing the problem, find and consider all the 

pathologies and finally based on all the information to find the main diagnosis. When we 

know exactly, where the problem is, we can target it and initiate threatment.  

My work process will be the same. First I get to know how the original algorithm works and 

get familiar with the input data and functions. Then I analyse the primary results including 

the detected and classificated data (4.1), segmentation process (4.3) and the computed 

characteristics (4.4). Afterwards I create new classification algorithm using all the results of 

the previous analysis.  
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3 BASELINE METHOD 

3.1 Nodule detection algorithm 

I was given an access to the new CAD system designed and created by Ing. Martin Dolejší  

from the Czech Technical University in Prague (12). This fully automatic nodule detection 

algorithm is used to detect nodules in CT scans. The algorithm was implemented in MATLAB 

and it is divided into scripts and functions controlled by a single GUI. 

3.1.1 Algorithm overview 

The whole algorithm process consists of several separate steps. The major steps are two: 

finding the nodule candidates and eliminating the false positive detections by nodule 

classification. 

The algorithm first separates the lung parenchyma from other anatomic structures (lung 

segmentation process using simple thresholding method), then it finds the nodule 

candidates using the thresholding and blob detection (based on multi-scale filtering and 

Gaussian filter) techniques. The local maxima are treated as nodule candidates (24). Each 

detected nodule candidate is considered to be a probable center of a nodule. For each 

nodules candidate geometrical and image characteristics are counted. Nodule candidates 

detector was designed to have a good sensitivity and as small number of false positives as 

possible. To reduce the number of false positive detections the additional step of 

classification is used. The author applied two classifiers - the classifier based on Fisher Linear 

Discriminant (FLD classifier) and the classifier based on Multiple Thresholding (AdaBoost). 

Fisher Linear Discriminant uses only one linear discriminant function. The value of this 

function can be is positive or negative. If positive, the detection is classified as „nodule“. 

The number of thresholds in Multiple Thresholding method is 2n, when n features is used. If 

the detection point is between the two borders, this detection is classified as „nodule“. 

Results of the existing algorithm is 95.9% sensitivity with 12 FPs/slice for the detector only, 

74.3% sensitivity with 2.6 FPs/slice for FLD classifier and 89.6% sensitivity with 9 FPs/slice for 

the multi-threshold classifier. 

Knowing the coordinates of real nodules and the non-nodule structures (the GT data) we can 

compare this data with the algorithm results and find out how successful the algorithm is. 

The GT information was created by an expert in Scan View1. 

                                                      

1
 created by RNDr. Jan Krásenský, jkras@lf1.cuni.cz, http://www.scanview.cz/ 

mailto:jkras@lf1.cuni.cz
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3.1.2 Implementation 

First I used the algoritm as it was provided and tried to understand the steps. I did not use all 

the scripts, only those that offer required information. 

„PrepareNodDetection.m“ is a first script responsible for the data input, it reads the data. In 

„nodDetParalelScript.m“ the own detection and then the classification of the nodules takes 

place. Classificator is used there to estimate if the detected structure is a nodule or not. 

„PrepareREGanalysis.m“ is the statistical analysis of all detected structures. This script 

compares all the detections with the ground truth (GT). It determines true positives (TPs), 

false positives (FPs) and false negatives (FNs), if there are any. It counts the sensitivity rate 

and number of FPs for each CT scan and for the whole set. Then I used the grafic interface 

„nodVizGUI.m“ to visualize the detected structures.  

3.2 CT imaging data 

The data used for algorithm testing is provided by the Faculty Hospital, Motol, Prague. There 

are 4 data sets available. I only choose one, the biggest one including the human adult CT 

scans (PND0). This set could be considered as a representative sample. 

All input 3D data are composed of N slices of standart size (512 x 512 pixels). Where N 

depends on the length of scanning data (N=386±172), the section thickness is 1 mm, voxel 

size (0.6 x 0.6 x 1). There are 98 scans in the database, with a total number of images=34036. 

The data contains 229 nodules of different size (1-11mm in diameter), shape and in different 

localities. 

All the data is available on the cmp.server /mnt/datagrid/Motol  
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4 ANALYSIS OF THE BASELINE RESULTS 

The first aim of this work is to analyse the results of the existing algorithm, which are still not 

perfect. Finding the possible deficiencies of detection and classification process can improve 

the results. The analysis is devided into 3 steps – the analysis of detected structures, the 

analysis of data segmentation and the analysis of computed features.  

4.1 Analysis of detected structures 

The basic problem of all CADs is to distinguish true nodules from nodule-like structures (such 

as vessels, shadows, rib margins, etc.). Checking the detected structures visually we are able 

to find out, what structures are mostly marked as nodule candidates, how they look like and 

what could be done to classify them truly as nodules or non-nodules in future. For visual 

scoring the detected structures I was using the included grafic interface nodVizGUI.m. 

4.1.1 Necessity of the classification step 

Using only the detection method without classification, there are hundreds of nodule 

candidates detected. The number of candidates (and also the number of FPs) decreased a lot 

after the classification step. For example in the chosen scan the number of FP detections 

decreased from 3575 to 33. After the classification step only TP markers remain in the 

displayed slide (Picture 4). We still can remove some of the remaining incorrectly detected 

structures to get better results.  
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Picture 4 - comparison of the number of detections a) using only the detection step b) using the detection followed by 
the classification step. This test was performed on the PND060 scan. The red crosses indicate the ground truth data, blue 
crosses are the nodule candidates detected by the algorithm 

4.1.2 True positives 

TPs are the real nodules truly detected by the algorithm. When looking at all the TPs, we can 

devide them into two groups: 

„Examplary“ nodules look like a nodule, they have the typical nodular shape and high 

density, they are bigger in size (usually 3-10mm), intraparenchymal and sharply separated 

from the surroundings. These nodules could be benign or malignant. All the exemplary 

nodules I have found in the data were detected, none was missed (Picture 5). 

„Atypical“ nodules don´t have the properties mentions above (Picture 6). Most of them are 

small, subpleural localized, elongated, low density structures and could be easily missed. The 

small rounded subpleural ones look benign. (Picture 7). 
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Picture 5 – „exemplary“ nodules and their coordinates a) big parahilar node, PND007 (182,263,57) b) subpleural node not 
connected to pleura, PND007 (45,282,191) c) subpleural node connected to pleura, PND024 (134,383,61) d) big dense 
oval node, PND024 (164,168,124) e) subpleural node, PND024 (76,357,162) f) parenchymal node, PND024 (391,239,193) 

 

Picture 6 –„atypical“ nodules and their coordinates a) small pleural benign looking nodule, PND041 (341,392,42) b) apical 
low dense nodule, PND051 (170,262,12) c) subpleural nodule connented to pleura, PND075 (137,345,30) d) small benign 
looking micronodule, PND007 (130,192,32) e) small oval nodule, PND007 (427,338,104) f) nodule connected to the 
mediastinum, PND024 (253,275,173) 
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4.1.3 False negatives 

FNs are the real nodules missed by the algorithm. These nodules were always small, 

hypodense, or they did not have the typical nodular shape (mostly the „atypical“ ones).  

 

Picture 7 – missed nodules in various localities a) basal nodules, PND007 (41,281,252) b) node in the right hilus of the 
lung, PND024 (200,301,92) c) subpleural structures, PND075 (70,282,9), (133,387,90) 

There also were some structures I can´t sign as nodules although they were in GT group. The 

algorithm didn´t find them and I agree with it. Unfortunatelly they raise the number of FNs 

(Picture 8). All of the undetected structures in this picture look benign.

 

Picture 8 – non-nodules signed as nodules in GT data, all are the areas of increased density, but not nodular, PND075 

 

4.1.4 False positives 

FPs are the non-nodule structures detected as nodules. Browsing the scans one by one and 

seeking the shortcomings I found out that some of the structures signed as nodules looked 

similar. There were the same FP structures in all patients - vascular structures (pulmonary 

veins and arteries), pleural adhesions, small dense areas of hypoventilation or postspecific 

changes. Even structures with non-nodular appearance were detected (trachea, fibrous 

bands, pleural structures, ribs or mediastinum margins). The known CT artefacts (above all 

the involuntary motion artefacts caused by breathing or the heart beat, or partial volume 

effect artefacts) also increase the FPs. 

Mediastinal structures 

Mediastinal structures are parts of the mediastinum, the big area in the middle of the chest 

between the two lungs. It contains the heart, big vessels (aorta, pulmonary vessels, vena 
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cava), trachea and principal bronchi, esophagus and lymhatic nodes. Mostly the margins of 

mediastinum were detected, but there were also some detections localized into the center 

of the dense huge mass of mediastinum. We could reduce the mediastinal structures 

detections by enhancing the segmentation process, mediastinal structures such as heart, 

hilar structures, or other mediastinal soft tissues will be removed (Picture 9). 

 

Picture 9 – FPs mediastinal structures a) left marginally part od the upper mediastinum, PND002 (312,272,19) b) vena 
cava superior, PND004 (219,285,56) c) mediastinal structure detection between aorta and the left principal bronchus, 
PND098 (269,283,71) d) margin of the heart, PND002 (379,244,120) e) margin of the heart, PND002 (396,162,161) f) 
margin of the heart, PND049 

  

Lung margins and ribs 

Another often seen FP detections belong to pleura and the inner margins of ribs, especially 

in terrain of CT artefacts. These FPs are widely attached to the border of the lung and there 

are not nodular (Picture 10). Multiple detections of the same structure were also seen. For 

example in c) the same rib was detected 4 times. 
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Picture 10 – pleural margins and bone structures a) partial volume of the left sternoclavicle joint, PND024 (332,242,25) b) 
left margin of the sternum, PND041 (308,210,49) c) inner rib margin, PND041 (347,285,12) d) partial volume of the apical 
rib margin, PND024 (167,297,6) e) ventral rib PND002 (171,168,114) f) two detections of the pleura in the presence of the 
movement artefact PND004 (172,167,169), (188,161,169) 

 

Vessels, vessel branching points and bronchovascular structures 

Vessel could be on 2D mistaken to the nodule because of its round shape and smooth 

borders, but in 3D the shape is different – if we trace the vessel we can get from perifery to 

hilus and back, it passes through the whole lung from the centre to the periphery giving the 

branches and changing the diameter gradually. In 3D space, nodules have a near spherical 

shape, whereas vessels have a tubular shape. The shape descriptors in all three planes could 

help to recongise these two (Picture 11). 
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Picture 11 – vessels a) vessel branching, PND002 (330,240,68) b) PND002 (386,246,118) c) PND002 (79,306,178) d) 
perifery vessels PND002 (409,197,159), (459,262,159) d) PND075 (117,350,111) f) central vessel PND004 (176,286,45) 

 

Thin structures 

The rest of detected structures have the thin shape in common, they could be long or short 

and they are mostly fibrous bands, adhesions, scars or interlobia. They are usually attached 

to the lung parenchyma border. The help to differentiate these thin structures from real 

nodules could be the same as for avoiding the vessels (shape characteristics in all planes). 

Examples of thin structures are shown in Picture 12. 

 

Picture 12 – thin structures examples a) pericardial, PND007 b) pleural, PND090 c) PND004 
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Usually there are two lung lobes in the left lung and three in the right lung, between the lung 

lobes we can find interlobia. There is one interlobium in the left lung and two or three (when 

a variant accessory lobe is present) in the right one.  

 

Picture 13 – interlobia a) two detections of the left interlobium, PND007 (384,187,227), (400,177,227) b) PND049 
(285,266,107) c) diaphragm, PND002 (411,276,169) 

Bundles connecting pericardium to the posterior surface of the sternal bone 

(sternoperidcardial ligaments) were repeatedly detected as nodules (Picture 14). 

 

Picture 14 – sternopericardial ligaments a) PND007 (254,141,75) b) PND024 (260,180,71) C) PND041 (275,165,95) 

Another mistaken structure was trachea (Picture 15). 

 

Picture 15 – tracheal ring a) PND002 (258,285,34) b) PND002 (241,226,54) c) PND024 (256,291,26) 
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4.1.5 Repeated detections 

Some structures were detected repetitively. These were usually fibrous bands, interlobia or 

other long thin structures. These multiple detections also raise the number of FPs.  

 

Picture 16 - Multiple detections of the same structure catched on one slideInteresting findings 

 

4.1.6 Shortcomings found in GT data  

Observing the scans I have found some suspicious structures not marked as GT nodules. 

These structures, even they are maybe not the typical nodules, deserve an attention. They 

have to be detected and at least they will deserve further observation. 

Big parahilar nodule-shaped masses 

In the patient PND051, there were 72 GT nodules, the algorithm found 61 of them, it missed 

11. There were many nice „exemplary“ nodules, but there also were the big nodule-shape 

masses in both hila, which were not signed as a GT nodules. The algorithm detected each of 

this „big ball“ even more than 10 times. In any case it is necessary to find these big 

structures. They could be large lymphatic nodes, that often indicate a serious pathology 

(Picture 17). 
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Picture 17 - big parahilar nodules in PND051 a) also the dorsal mediastinal structures are sign as nodules b) two 
detections of the big nodule with no GT sign, however there is a smaller GT nodule close c) three detections of the big 
nodule in one scan, other smaller GT nodules in perifery (they were also detected in other slices) 

 

Other suspect pathologies 

The other mentioned pathologies can represent the nodular hypoventilations, pleural 

nodules, postspecific changes and others. In any case they all are suspicious and should be 

noticed (Picture 18), (Picture 19). It also depends on the number of these structures. The 

judgement will differ whether there are more pathologies or if the whole rest lung 

parenchyma is normal. This decision is sometimes hard even for the human expert and the 

judgement differ based on the experience of the radiologist.  
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Picture 18 – FPs detected structures not signed as GT nodules, but suspect to be problematic a) subpleural nodule, 
PND004 (133,396,52) b) pleural changes, PND004 (81,260,111) c) subpleural nodule, PND004 (302,401,113) d) nodular 
structure situated on the basis of the left lung, PND004 (365,392,186), (369,399,186) e) small oval nodule, PND024 
(137,380,79) f) small nodule close to the bigger one, which was also detected, PND024 (193,163,126) 

 

Picture 19 – FPs detected structures not signed as a GT a) apical plastic pleural changes or a nodule? PND004 (134,335,23) 
b) small nodule? PND004 (93,388,72) c)  postinfiltrative changes, pleural mass, hypoventilation or a nodule? PND004 
(64,386,126)) 

 

Lung segmentation 

Some of the scans I have checked contain nodules, but I have found no pleural effusion, no 

infiltration, no large tumourous processes or post-lobectomies, no lung fibrosis or other 

common pathologies that could lead to missclassification. I only found the paramediastinal 

condensation (atelectasis or infiltration) in the right lung and a big (tumorous or better 

atelectatic) basal pleural mass (Picture 20). I was surprised these pathologies did not 

increase the number of FPs at all and FP rate didn´t differ from the others scans. This may 
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reflect the good segmentation process when lungs are separated from other anatomic 

structures. On the other hand if the important pathological process is segmented away, it 

could be missed. 

 

Picture 20 – PND051 a) large paramediastinal condensation in the right lung and only one detection of this dense mass, 
probably it was segmented away b) big dense pleural mass in the basis of the right lung with no false positive detection 

 

4.1.7 Detection results 

Next to the typical shortcomings of all CAD systems such as vessels, fibrous bands, scars and 

motion artifacts (26) our FPs were also related to the tracheal ring, mediastinal structures or 

rib margins. A recent study demonstrated, that radiologist will accept 11% of FP marks in 

nodule candidates they are not sure being a nodule (27). Radiologists will not miss any big 

nodule (>5 mm) as well as they will not accept a FP mark of an evident non-nodule 

candidate. This follows, that only FPs of small nodule-like structures can influence the 

radiologist´s judgement – maybe we should keep these FPs. 

In every case, we need to get rid of all typical and unnecessary FPs. Detecting mediastinal 

and hilar structures could be fixed by improving the segmentation method. Counting the 

shape characteristics could be used to differentiate between nodules and vessels or scars. 

Typical nodular structures were found among the FPs too, this finding resulted to the GT 

data correction (7.2). 
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4.3 Analysis of the structure segmentation 

The algorithm classifies detected candidates according to their characteristics (features). 

Features are computed for every candidate based on the segmentation process, that 

provides us the information which pixel belongs to the area of interest and which one is 

„outside“. Segmentation process uses thresholding method and produces a binary 

segmentation mask. Correct segmentation is the first step to get correct feature values that 

fit the reality. 

4.3.1 Data segmentation 

For each detected nodule candidate a set of features is computed. Some features (such as 

size, density, volume) are computed from the whole detected structure using the 

„individual“ segmentation mask for each candidate. Some are computed from selected areas 

using the „universal“ segmentation masks (ballmasks, masks for the detection point, 

annulus, octants). The aim of segmentation analysis is to find out if the segmentation masks 

reflect the reality and features are computed from the well segmented area. All masks were 

received from the original algorithm in „getNodFeatures.m“ script. All the masks are 3D, but 

in following pictures only 2D axial planes are displayed. 

Universal masks 

Examples of binary „universal“ masks are drawn in the cutouts. There are universal masks of 

balls, annular rings and octants used (Figure 1, Figure 2). All the various ball and annular ring 

masks have the centre at the detecion point and differ in diameter (d1=2mm, d2=4mm, 

d3=8mm for balls, d1=2-4mm, d2=4-8mm for rings). The octant masks are counted for 8 

regions that are created dividing the three-dimensional space by planes x,y,z with the 

detection point in the centre D(0,0,0) (Picture 21). 

 

Figure 1 - examples of „universal“ binary ballmasks of various diameter values used for segmentation 

 

Figure 2 – exmaples of „universary“ binary octant masks  
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Picture 21 – octants created by x,y,z axes in 3 dimensional space
2
 

Individual masks 

The „individual“ masks (Figure 3, Figure 4) are visualized in slices together with the 

corresponding anatomic structures. For tracing boundaries (boundaries are drawn as red 

curves) a MATLAB function bwtraceboundary is used.  

 

Figure 3 - shows 24 axial slice example of the detected real nodule and its segmentation mask in each slice, the red curve 
defines the binary mask boundaries 

 

Figure 4 - picture shows 24 axial slice example  of the detected non-nodule structure and its segmentation mask in each 
slice, the red curve defines the binary mask boundaries 

                                                      

2
 Provided by: http://mathworld.wolfram.com/Octant.html 
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Another examples show well and bad segmented candidates. Nearly all the real nodules are 

segmented well (Figure 5). Nodules in a) and d) and their masks have nearly rounded shape 

with low variance in radius in all axes while non-nodules in b) and c) have irregular shape 

with big radius differences. Features using individual masks are computed from areas 

defined by the segmentation mask. 

 

Figure 5 – 4 randomly chosen good segmented exaples of the detected nodule and non-nodule structures (above) and 
their segmentation binary masks (under), both with the segmentation curve 

Nearly all bad segmented candidates are non-nodules (Figure 6). When looking on the 

pictures showing the real image of the candidate (above), there is no doubt they all are non-

nodules. But when looking at the segmentation binary masks of each candidate (under), 

nearly all, but at least b) and c) have a typical „nodular-shaped“ mask and are easily 

mistaken. These are also the typical FPs in our data – vessels and lung margins. 

 

Figure 6 – 4 randomly chosen bad segmented examples of the detected structures, non-nodules in all cases (above) and 
it´s segmentation binary mask (under), both with the segmentation curve 

 

4.3.2 Segmentation analysis results 

Data segmentation for the real nodules and also for most examined non-nodule structures 

correspond to reality. But there were also bad segmented structures, mainly non-nodules, 

whose segmentation mask doesn´t fit the real shape. Nodules joining other dense structures 

(mostly in subpleural, or paravascular locality) were mostly problematic. These problems 

relate to the segmentation process which is based on thresholding. Because of this 

segmentation imperfections neither the computed features reflect the reality. These 

candidates can be easily mistaken for nodules and generates the majority of FPs.  
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Described segmentation problem is gone when universal masks are used. The universal 

masks with the centre placed to the detection point (ballmask, annulus ring mask) fit all the 

candidates. They could be helpful especially when the nodule candidate is attached to the 

border of the lung, or if it is not perfectly segmented. We only have to be careful about the 

mask diameter (d=2mm and d=4mm fit the smaller nodules and d=8mm fit the bigger ones).  

The octant masks are of disputable significance. When used, features are counted only from 

the part of the structure and from the out-of-nodule surroundings. This I find useless or even 

harm. 

In further computation, I prefer universal masks and individual masks.  
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4.4 Feature analysis 

List of computed features 

For each nodule candidate a feature vector including 482 features is computed in the 

baseline algorithm (28). Features describe the characteristics of detected candidates and 

help the algorithm classify them. They describe size, intensity, homogenity, shape, curvature 

and dimension on several scales, localization and distance to the boundary of the lung. In 

most cases mean, median, variation, maximal and minimal values are computed. Some 

characteristics (size and volume parameters) are computed from the outer ellipsoid 

obtained from the covariance matrix eigenvalues (24), the rest from the segmented areas. 

All types of segmentation masks are used. 

Feature number Feature describing 

1-16 Size, diameter, volume parameters 

17-58 Intensity parameters  

59-184 Curvature in 3 scales (σ=2,4,8 mm)  

185-310 Shape index in 3 scales (σ=2,4,8 mm) 

311-436 Dimension in 3 scales (σ=1,2,3mm) 

437-478 Local scale (LSC) 

479-482 Location 

Table 2 – short list of all the features
3
 

Some of the feature computation is shown below: 

An elipsoid E is fitted to each candidate and the size is expressed as the length of 3 half-axes 

of an ellipse (a,b,c) rotatet by angles α, β in 3-coordinate system.  

Effective radius: 𝑟 =  𝑎𝑏𝑐
3

 (1.2)  

 

Intensity values are representing the HU grayscale densities in real CT image. When n is the 

number of all voxels N within the nodule area.  

Mean intensity: 
𝐼 =

 𝑁 ∈ 𝐸

𝑛
 

(1.3)  

 

When parameters k1 and k2 are the principal curvatures computed for each voxel in the 

segmented lung parenchyma, then shape index and curvature are computed as: 

Shape index: 
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3
 designed and computed by Dolejší M.  
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Curvature: 

 

2

1

2

1 kkCV   (1.5)  

 

Dimension is estimated based on eigenvalues of Hessian matrix  𝜔1 >  𝜔2 >  𝜔3  and tells 

us if the object is darker or lighter than the background.  

Dimension: 

1

 i i
DIM  

(1.6)  

 

Local scale is an invariant descriptor of shape and translation obtained from the eigenvalues 

of Hessian matrix. 

4.4.1 Visual feature analysis 

False positives are classified as nodules based on characteristics that are similar to their 

„nearest“ real nodule neighbours from the training data. On the other hand false negatives 

are classified as non-nodules due to similarities to the non-nodule training samples. In some 

computed characteristics we can easily use the naked eye to qualify if the values reflect the 

reality or not and to estimate differences.  

To verify, if the descriptors are consistent with visual assessment, I chose some examples of 

random FP detections and found first four nearest neighbours (in 482-dimensional feature 

space) from the TP data set for each FP. The observed features describing size, volume, 

density, shape and curvature were compared with the structure appearance. 

 Features that can differentiate presented FP and TP structures are shown in tables below 

the pictures. The original feature values are of different scales and units. To make the data 

more informative normalization process was performed. „Example 1“  shows both original 

(orig) and normalized (norm) feature values. In examples 2, 3 and 4 only normalized values 

can be found. 

Example 1 

The first structures (Picture 22) are the same density and almost all of them are localized 

subpleuraly, but they can be visually differentiated by shape. These structures did not 

significantly differ in observed features describing neither curvature or shape index, nor 

dimension. The biggest difference between FP and TPs was found in the feature nb.16 

describing the variance of radius, in the table below it is evident that this feature in FP is 

much higher then in TPs. This corresponds to the FP´s nonregular shape. 
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Picture 22 - randomly selected FP and the four nearest TPs (example 1) 

Feature nb. FP TP1 TP2 TP3 TP4 

16 - orig 11.0437 0.2727 0.0417 4.3895 0.5664 

16 - norm 0.2145 0.0050 0.0006 0.0851 0.0107 

Table 3 – chosen feature values (example 1), original data (orig) and normalized data (norm) for feature nb. 16 (variance 
of radius)  

Example 2 

Another FP sample (Picture 23) is visually different in all observed features, mainly in size, 

intensity and curvature. Numerically it differs in mean intensity of the segmented structure 

(feature nb.17) and in the variance of intensities (feature nb.18), in mean curvature in all 3 

scales (features nb.59, 101, 143) and also in variance of dimension in all 3 scales (features 

nb.312, 354, 396). TPs have higher curvature values and lower dimension variance. 

Surprisingly there was no significant difference in shape index.  

 

Picture 23 – randomly selected FP and the four nearest TPs (example 2) 

Feature nb. FP TP1 TP2 TP3 TP4 

17 0.3469 0.1515 0.1870 0.1412 0.2490 

18 0.1192 0.0634 0.0913 0.0516 0.0584 

59 0.3118 0.7402 0.4084 0.7770 0.4712 

101 0.2960 0.8085 0.4787 0.5797 0.5747 

143 0.4899 0.9017 0.6677 0.7710 0.7367 
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312 0.6950 0.3159 0.4727 0.3656 0.5259 

354 0.6568 0.0959 0.4102 0.5558 0.4362 

396 0.4275 0.0467 0.3422 0.0222 0.2999 

Table 4 - chosen feature values (example 2) 

Example 3 

Structures in another picture (Picture 24) visually differ in size and shape. Numerically they 

can be differentiated mainly by radius variety and shape index values. The mean shape index 

(feature nb. 185, 227) and shape index variance (feature nb.186) is lower in FP, while the 

variance of radius (feature nb.16), curvature (feature nb.60) and dimension (feature nb.396) 

is much higher. I find interesting that even if the nodules TP1, TP2 and TP3 look similar, there 

is quite a big difference in shape index value and curvature variance, the other features 

don´t differ at all. 

 

Picture 24 - randomly selected FP and the four nearest TPs (example 3) 

Feature nb. FP TP1 TP2 TP3 TP4 

16 0.1387 0.0079 0.0001 0.0001 0.0395 

60 0.5071 0.0940 0.1791 0.2877 0.0839 

185 0.0441 0.1055 0.1960 0.0025 0.0003 

186 0.0001 0.0006 0.0023 0.0025 0.0003 

227 0.0803 0.1197 0.1313 0.1702 0.3422 

396 0.1495 0.0275 0.0124 0.0077 0.1167 

Table 5 - chosen feature values (example 3) 

Example 4 

Last example (Picture 25) shows FP (vessel in this case) that visually differs in curvature and 

shape, it is nearly the same size and density as all the TP nodules. Contrary to the visual 

parameters, the computed values differ mainly in size parameters – in volume (feature 

nb.10), surface (feature nb.13) and radius variance (feature nb.16), another differences are 

in variance of dimensions (features nb.312, 354). The values for size parameters are much 

higher for FP and it seems to be tubular shaped and much bigger than all the TPs. There is 

simple explanation for this – we only check the one (axial) plane and have no visual 
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information about z-axis. This finding resulted in need of multiplanar imaging (3D) in further 

investigation (6.2). 

Checking these 5 structures we can also notice, that they are all situated in perifery of the 

left lung not far from the dense rib structure. It is clear that the localization and 

surroundings of the nodule candidate is not as important as its density, shape and other 

features describing the nodule itself. This finding can lead to the same conclusion as in 

chapter (Chyba! Nenalezen zdroj odkazů.), to concentrate to nodule itself and don´t care for 

urroundings. 

 

Picture 25 - randomly selected FP and the four nearest TPs (example 4) 

Feature nb. FP TP1 TP2 TP3 TP4 

10 0.1006 0.0252 0.0099 0.0125 0.0435 

13 0.3182 0.0452 0.0230 0.0302 0.1096 

16 0.4079 0.0231 0.0267 0.0716 0.3003 

312 0.6181 0.0989 0.1155 0.5223 0.6182 

354 0.6893 0.0481 0.3839 0.3242 0.6391 

Table 6 - chosen feature values (example 4) 

Visual feature range 

Last visual analysis included sorting the detections in right order depending on the selected 

characteristics – volume (Picture 26, Picture 27), surface (Picture 28, Picture 29), mean 

intensity of the whole structure (Picture 30, Picture 31) and the intensity just in the 

detection point (Picture 32, Picture 33). Randomly chosen structures from the whole 

candidate nodule set and only from TP set were used. The results are shown in following 

pictures. 
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Picture 26 – nodule candidates sorted by the volume 

 

Picture 27 – true nodules sorted by the volume 

 

Picture 28 - nodule candidates sorted by the surface 

 

Picture 29 – true nodules sorted by the surface 
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Picture 30 – nodule candidates sorted by the mean intensity value 

 

Picture 31 – true nodules sorted by the mean intensity value 

 

Picture 32 – nodule candidates sorted by the intensity in the detection point 

 

Picture 33 – true nodules sorted by the intensity in the detection point 

It can be mentioned, that the intensity in the detection point describes the intensity value 

better then the mean intensity in the whole segmented structure. 
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4.4.2 Visual analysis results 

Visual analysis verified, that most of chosen feature values are consistent with visual 

assessment, so the features are counted well. The „nearest“ structures look similar, but 

differencies can be found. There are characteristics that can separate these examples and 

assign them to the correct class. The reason why the classificator did not use these „useful“ 

characteristics may be that there are many other features which can´t differ the structures 

(for example candidate localization or measurements in structure surroundings).  

In future we need to train only with effective descriptors to prevent misclassifications. 

It is evident that only axial planes are not enought for visual valuating and we need 

multiplanar imaging.  

4.4.3 Computed feature analysis 

Another part of characteristics analysis is checking how they can estimate the inter-class 

diferences. I separated the detected structures into two classes (nodule/non-nodule) and for 

each feature I calculated histograms for both classes. Then I applied a simple thresholding 

method and for each feature found the ideal threshold (boundary), that maximizes the class 

separability. Once the threshold is found we can use it for predicting the class of new points 

by checking on which side of the boundary it falls. For each threshold the classification error 

(err) is computed Separability =1-error. It determines the success of data separation.  

1 − 𝑒𝑟𝑟 =
  𝑛𝑜𝑑𝑢𝑙𝑒𝑠 > 𝑡𝑕𝑟𝑒𝑠𝑕𝑜𝑙𝑑 +  (𝑛𝑜𝑛𝑛𝑜𝑑𝑢𝑙𝑒𝑠 < 𝑡𝑕𝑟𝑒𝑠𝑕𝑜𝑙𝑑)

 𝑛𝑜𝑑𝑢𝑙𝑒𝑠 +  𝑛𝑜𝑛𝑛𝑜𝑑𝑢𝑙𝑒𝑠
 

 

(1.7)  

 

Histograms examples 

Three characteristics well separating both classes are chosen in following pictures. Each 

picture consists of two charts presenting histograms (above) and classification error (below) 

in the whole feature range. 

Feature value interval range is divided into 10 subintervals and histograms of both classes 

are displayed (nodules are in red and non-nodules in blue), the total number of all 

detections in each class is considered to be 100%. X axis shows intervals, y axis shows how 

much of the total sum is represented by this subinterval group (see above charts). 

Line-plot representing the classification error in y axis for each feature value in x axis was 

created (see below charts). 

Numbers between the charts show the minimal found classification error and the feature 

value that fits this error. 
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Picture 34 – data distribution (nodules=red, non-nodules=blue) for the feature nb. 3 (maximal eigenvalue for segmented 
nodule candidate), minimal classification error err=0.31 for threshold value thr=8.00 was found  

 

 

Picture 35 - data distribution (nodules=red, non-nodules=blue) for the feature nb. 202 (mean shape index for ballmask 
with diameter d=4 mm), minimal classification error err=0.26 for threshold value thr=0.48 was found 
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Picture 36 - data distribution (nodules=red, non-nodules=blue) for the feature nb. 212 (mean shape index in annulus with 
diameter d=4-8 mm with the centre in the detection point), minimal classification error err=0.26 for  threshold value 
thr=0.48 was found 

 

This analysis helped us find out, how the single feature can separate the data. We can use 

this method later to select required characteristics and to remove the redundant. 

Selecting features 

Table 7 shows how many features remain in the feature matrix when different thresholds for 

the separation error is set. There is only one feature with classification error err<0.25, this is 

the feature nb.229 which describes the shape index in the annulus ring mask of diameter 

d=4-8 mm.  

For err<0.3, there are 16 features describing mainly mean and maximal shape index values 

(mean and maximal shape index value for the whole segmented structure, mean and 

maximal shape index for the segmented ball with diameter d=2 mm and d=4 mm and the 

same characteristics for segmented annulus ring with dimeter=4-8 mm and d=2-4 mm) and 

maximal dimension for the whole segmented structure on all 3 scales. 

For err<0.33, features describing size are added (eigenvalues for segmented nodule, 

effective radius, volume, surface, variance of diameter. 

Class. Err <0.25 <0.3 <0.33 <0.35 <0.4 <0.45 <0.5 ≤0.5 

Features 1 16 60 81 145 207 452 482 

Table 7 – number of features in the feature matrix for various classificatio error value 

There are 30 features with the highest classifacation error (err=0.5). They are only the 

features describing the curvature values in balls or annuli and local scale (LSC) values. 
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Displaying histograms of these characteristics, the data for both classes overlaps heavily. 

These features are not able to separate data well.  

The results correspond to the segmentation analysis, there are group of features separating 

the data well (shape index, variance of radius, size) and the group of features separating the 

data bad (LSC values, or features counted using octant masks). 
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5 PROPOSED METHOD 

The whole algorithm consists of two main parts, nodule candidates detection and nodule 

candidates classification respectively. The process of candidates detection is completely  

adopted from baseline method (25) with no changes in algorithm. The detection process was 

only analysed (see previous chapters). My own work is the data classification part. It was 

processed independently on the baseline method. The classification process consists of 

three steps: data preparation, data dimensionality reduction and finall classification.   

5.1 Dimensionality reduction 

Reducing the dimensionality leads to noise reduction and removing the redundant 

attributies. Dimensionality reduction methods select features or creates new features based 

on the existing ones. Both methods solve the problem of large number of variables, which 

could lead to overfitting and lack of memory space. 

5.1.1 Feature selection 

Selecting the subset of relevant features is called the „feature selection“ method. It sets a 

subset of features that are capable to place the sample to the right class. In supervised 

learning (learning on the labeled dataset) it is easy to find these features. Feature selection 

shorten the training time and could prevent overfitting. To select features we can use 

wrapper, filter, embedded or hybrid models (29). I chose the filter model, which selects the 

features with the highest score. Each feature was evaluated independently (univariate 

feature evaluation). 

Chosen features 

The features were chosen based on the value of the classification error described in (4.4.3). 

Training dataset of nodule containing scans was created and sensitivity and specificity rates 

were couned for all error thresholds (𝑒𝑟𝑟 = 0.25 → 0.5) in this dataset. The threshold with 

best results (err<0.3) was chosen. Using this threshold, 16 features remain in the feature 

matrix. For counting the sensitivity and specificity values for comparing the feature subsets, 

the kNN classifier with k=100 was used.  

Picture 39 shows the sensitivity and specificity rates for 7 used classification thresholds 

[0.250, 0.275, 0.300, 0.325, 0.350, 0.375, 0.400]. X axis shows the threshold value, y axis the 

performance rate. The experiment was performed on all nodule containing scans (n=18). 

Specificity rates are stable, reaching 80-90%, but there are differences in sensitivity rates. It 

is evident, that best sensitivities are reached for err=0.3, with no sensitivity drop under 45%. 

Next two pictures are showing the same comparison of performances, but only for one 

chosen scan (PND060). The threshold values are of various value range. 
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Picture 37 – sensitivity and specificity rates achieved when using different values of classification thresholds (at interval 
0.25-0.4), performed on each of 18 nodule containing scans, kNN classifier with k=100 applied, threshold set at 0.3 has 
significantly the highest sensitivity values than the others 

 

 

Picture 38 – number of features used for each classification error rate in the range 0.25-0.5 (above), comparison of 
sensitivity and specificity rates (under), data for PND060 
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Picture 39 - number of features used for each classification error rate in the range  0.25-0.36 (above), comparison of 
sensitivity and specificity rates (under), data for PND060 

 

Independent significance feature test 

Significance feature test is a simple test, which removes obviously useless features. 

Sometimes it is used as pre-processing phase to reduce the number of characteristics. This 

method was invented by Weiss and Indurkhya (30) and the Fisher´s discriminant ratio is used 

to count the significance power of each feature. Features are sorted according to their 

power and only the most powerful ones are chosen (31).  
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(1.8)  

 

5.1.2 Principal component analysis 

Principal Component Analysis (PCA) is a method used for reducing the dimension of 

characteristics and when we want to get rid of relationships among variables. It creates a 

new set of features based on the existing one.  

The principal components can be found by calculating the eigenvectors and eigenvalues of 

the data covariance matrix after removing the mean from each sample Xi (it is supposed the 

sum of the samples is zero). Zi is the approximation of Xi. Residuum res should be minimal. 

  i kiX 0...1 ;     RX i   (1.9)  
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The eigenvector with the largest eigenvalue corresponds to the direction of largest variation 

(32). The total variance is defined as a sum of the variances of all components and could be 

expressed as a sum of all the eigenvalues. 

PCA finds a direction that corresponds to maximal variance among the data points, then it 

rotates the original data to the new coordinate space (the space is given by this principal 

direction) and it generates new feature matrix with the same size as the original one where 

the features are reordered based on the decreasing variance (33).  

Chosen features 

Features were chosen based on their data variance description. The variance threshold was 

set as 1% and all features describing more than 1% of the data variance were chosen into the 

new reduced feature matrix. Using this criterium, 15 features create the new feature data. In 

Picture 40 features are sorted by their ability to describe the variance of the data (in %). Best 

50 features are shown.   

 

Picture 40 – features sorted by their ability to describe the data variance, each „o“ point represents one feature 
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5.2 Classifiers 

The last part of the data evaluation is to apply the classification method. Classifier is a device 

with n inputs and y=1 output, which consists of two classes 𝑦 ∈ {1,0}. We are using a binary 

classifier.  

In baseline method the Fisher Linear Discriminant and Multithreshold method were applied 

(3.1.1), in this work classifiers based on Nearest Neighbours and Decision Trees were chosen. 

5.2.1 Nearest Neighbours 

K-nearest-neighbour classification is one of the most simple and fundamental „supervised“ 

classification methods (34). It is commonly based on the Euclidean distance between the 

training samples and the test samples. The Euclidean distance between two samples (a,b) 

with f1,f2...fn features is defined as: 

        22

22

2

11 ..., fnfnffff babababad   (1.10)  

 

The predicted class of the test sample b is set equal to the class of its nearest neighbour 

training sample a. The distance of the nearest samples is defined as: 

 )},({min),( badbad nni   (1.11)  

 

5.2.2 Decision trees 

Decision tree learning method creates a tree-shaped model based on provided train data for 

predicting values of the test data. Having the data of two classes, each tree is represented by 

several binary splits with two possible results „1“ or „0“. Classification trees are adaptive and 

robust, but weak and do not generalize well. To enhance their performance, we can perform 

bagging or boosting (both improving prediction and reducing the variance of unstable 

procedures). Bagging uses simple averaging and combines results of based classifiers by 

voting, the final predicted class is the class with most „votes“. Boosting uses weighted 

averages and traines the base classifiers on weighted data. Weights are based on the 

performance of previous classifier, with increasing the weights for misclassified data (35). 

Boosting is typically aplied to weak learners that don´t have to be much better than random 

guess (36). Bagging usually construct deep trees while boosting shallow trees. 

Random forest is a method using many decision trees as classifiers and random sample of 

features (typically  𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠) at each tree split.  
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5.2.3 ROC curve 

ROC curve (Receiver Operating Characteristic Curve) describes the performance of a model 

across the entire range of classification threshold. It is an excellent tool for assessing class 

separation. It shows the relationship between sensitivity and specificity values - the true 

positive rate (sensitivity) versus false positive rate (1-specificity).  

ROC curve in binary classifiers 

Binary classifier (such as kNN) separates data into 2 classes (true/false = 0/1), it produces 

discrete outputs. For plotting the ROC curve, these outputs have to be scored (else the ROC 

curve produces only one-point). The score is a value that corresponds to the probability that 

the data point belongs to the chosen class. Simply, the score value express how certain the 

algorithm is.  A high score signifies that the instance is more likely from the positive data 

class, low score signifies that it is more likely from the negative class. 

When using kNN, I defined scores based on the ratio of classes in the neighbourhood. I 

counted the score values as a sum of positive data class in all found neighbours. 

5.2.4 AUC 

AUC (Area Under Curve) is the area under the ROC curve. It is a single number, which sets 

the performance. AUC=1 indicates perfect performance when all positive examples xn={1} 

are classified as positive ones, any deviation from this ranking decreases the AUC value, 

AUC=0.5 indicates the random performance. 

Let n is the number of positive examples, and m is the number of negative examples. Then  

x1...xn={1}  is the output of positive examples of the classifier and y1...ym={0} is the output 

of negative examples of the classifier and fx is the indicator function. Then AUC is given by 

(37): 
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(1.12)  

 

In MATLAB ROC and AUC could be easily received using perfcurve command. 
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6 IMPLEMENTATION 

The data analysis and the whole algorithm was implemented in MATLAB 2011b run under 

the Unix system. It is divided into several scripts and functions, all available in provided 

archive. 

6.1 Archive description 

The principal algorithm scripts, functions and data are attached. This data is provided on CD 

and consists of these files: 

Nodule  - root folder contaning all the data 

Nodule/data – subfolder containing all the input data  

Nodule/results – subfolder containing exampes of output data 

Nodule/code – subfolder containing used scripts and functions 

Readme_code.txt - operating instructions to all scripts 

Readme_data.txt – description of provided input and output data  

Dipl.pdf – diploma thesis text 

6.2 3D visualization 

First it was possible to view the data only in 2D space, in transversal (axial) plane. In praxis, it 

is routine to examine CT data in 3 orthogonal planes: axial, coronal and sagittal (Picture 41). 

For providing a cutout view in all 3 planes a simple script zobraz3.m was made. The 

resolution in x and y axes (the axial plane) is higher than the resolution in z axis (coronal and 

sagittal planes), this is influenced by the slice thickness and the voxel size. 

 

 

Picture 41 – 3 fundamental planes of sectioning in medicine imaging 
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Using all 3 planes we can easily get a grasp of structure appearance (Picture 42, Picture 43). 

Both pictures are divided into 4 parts, we can see the whole axial slice (with scan number 

and xyz coordinates above) and the three cutout views (in axial, coronal and sagittal plane). 

Red circle is always placed at the detection point. 

 

Picture 42 - Example of a nodule structure visualized by zobraz3.m 
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Picture 43 - example of a non-nodule structure (margin of a sternocostal junction) visualized by zobraz3.m 

 



56 
 

7 RESULTS / EXPERIMENTS 

7.1 Data preparation 

Data containing all the detected nodule candidates are available on cmp.server as: 

scratch/dolejm1/nodclassdata.  Script zparudomatice.m converts this data from struct to 

one well-arranged matrix used for further computation. Created input data matrix is saved in 

enclosed CD archive as: Nodule/data/detdata.mat. There are two matrices, the first is 

containing normalized data and the second original data without normalization (see 

readme_data.txt for more details). Finally I used the normalized data only for visual feature 

analysis (4.4.1) to make the feature values clear and easy comparable. The original data was 

used for the rest of my work, not to misrepresent the computed values.  

 Each column of input „detdata“ matrix represents one detected point, rows row(1) 

represent the number of set row(1), scan row(2), 3 coordinates row(3,4,5), true class label 

row(6) and 482 features row(7-489). The whole data consists of 2 sets and the overall 

number of detected nodule candidates is 410994.  

For further experiments only data for the first set counting 98 patients was used row(1)==1.  

7.1.1 Data normalization 

Normalization is a process rescaling the numeric variables in the range 𝑦 ∈  0,1 . Xmax and 

Xmin are the maximal and minimal values for variable x. 

 𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
 (1.13)  

 

7.2 Ground truth correction 

First of all the GT data was corrected due to shortcomings discussed in (4.1.6).  Script for 

excluding non-nodule structures and including new nodules (nodules missed by the 

supervisor) was constructed. All the included and excluded structures were visually checked 

using zobraz3.m. 

GT data will never be the same and perfectly correct, when more than one radiologist is 

examining the scans – they can interpret the same observations differently . Some experts 

can target the sensitivity and mark better all of the suspicious structures and the others can 

target on specificity and notice only the real pathologies. This different judgement is caused 

by different experiences, praxis length and other parameters. This is one of the reason, why 

the results of supervised learning differ (supervisors are the inconsiderable reason) and why 

it is necessary to provide the chance to change the GT data again. 
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For preserving the original GT information, the existing GT data was not totally changed. 

Functions for changing GT data (readinouts.m, upravGT.m, upravkres.m, velikost_pixelu.m) 

were inserted into the existing script prepareREGanalysisNaseData.m. For further individual 

changes it is possible to use new GT, the original GT data or to create your own new re-

corrected data. 

7.2.1 Original and corrected GT comparison 

According to the original ground truth, nodules were present in 18 of the patients, each 

counting 1 - 72 nodules. After the GT data correction 34 new nodules were inserted into the 

GT data and 37 nodules were removed. As a whole there are now 232 nodules in 18 

(different) patients, each counting 1 - 78 nodules.  

For comparing the results before and after GT correction, the classificaton process described 

in 7.5 was used. PCA dimensionality reduction method followed by kNN classification was 

applied. This test was performed on the whole dataset containing 98 scans. Table 8 shows 

the increase of resulted sensitivity values and number of false positive detections per scan. 

Method (PCA followed by kNN, k=100) Sensitivity (%) FPs/scan 

Results before GT correction 87.8 148 

Results after GT correction 91.4 151 

Table 8 – comparison of original and new GT data classification process  

7.3 Data validation 

For ensuring that the process operates on correct and clean data, we have to use some 

model validation technique. This divides data to the training set (data used to train the 

classifier) and the testing set (unknown data used to estimate effect and error rate of the 

trained classifier).  

7.3.1 Cross-validation 

Cross-validation method divides data randomly into k equal size subsamples. Due to random 

division, results of our classification process using k-fold-cross-validation method is 

influenced by multiple detections of the same structure. The same structure can be found in 

training and testing data at the same time and leads to false low error rate (38). The error 

rate E is estimated as the average of separated error rates Ei.  
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(1.14)  

 

 To avoid this it is necessary to split the data into disjoint subsets.  
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7.3.2 Per-patient division 

I applied per patient division using one patient scan for testing and the rest 97 scans for 

training. The training data were then partly reduced by removing the randomly chosen 1/10 

of the data (leave-part-out method).  

 𝑑𝑎𝑡𝑎 = 𝑠𝑒𝑡1 𝑠1 , 𝑠2 …𝑠98  

𝑡𝑒𝑠𝑡 = 𝑠𝑥 ;     𝑠𝑥 ∈ 𝑠𝑒𝑡1 

𝑡𝑟𝑎𝑖𝑛 = 𝑠𝑦 ;     𝑠𝑦 ∈ 𝑠𝑒𝑡1 − 𝑠𝑥 −
1

10
∗ 𝑠𝑒𝑡1  

(1.15)  

 

7.4 Evaluation criteria 

In the input data (detdata.mat), each detection of a real nodule structure is marked as „1“, 

that means it is a nodule. Each detection of a non-nodule structure is marked as „0“. All 

detections, even the multiple detections of the same structure are used (this raises the 

number of real nodule structures in training group). Results of the classification process are 

compared with the real class of the testing data.  

Nodules found by the algorithm are considered to be the true positive detections (TPs), 

missed nodules are considered to be the false negative detections  (FNs). False positives 

(FPs) are all the non-nodule structures detected as nodules. 

To measure the performance of the classifier, sensitivity and specificity rates are counted 

based on the number of true positives, false positives and false negatives. 
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To make my results comparable with the results from baseline algorithm, I used a modified 

original script prepareREGanalysisNaseData.m. It computes the overall sensitivity rate and 

number of FPs for the whole used dataset and gives results in the same form as the baseline 

algorithm. Nodule is considered to be a TP if exists any detection point DETi  from the set of 

detections DETn that matches any nodule point GTi  in the nodule area GTn. If it does not 

exist the nodule is marked as FN. All out-lying detections are considered as FPs. GTn area is 

delimitated by the elipse with x,y,z half axes lenghts enlarged of 10% with the centre in the 

x=0,y=0,z=0. 

 𝑇𝑃 =  𝐷𝐸𝑇𝑖 ∈ 𝐺𝑇𝑛  

𝐹𝑃 =  𝐷𝐸𝑇𝑖 ∉ 𝐺𝑇𝑛  

𝐹𝑁 =  𝐺𝑇𝑖 ∉ 𝐷𝐸𝑇𝑛  

(1.18)  
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7.5 Experiment 1 – dimensionality reduction methods 

As a first experiment I compared dimensionality reduction methods. Training and testing 

data were prepared as mentioned in 7.3. For classification, the kNN (k=100) classifier was 

performed. Sensitivity rate, number of FPs and AUC were counted for each of the 98 scans, 

the final results are reported as a mean. From feature selection methods I chose two. 

Selecting features based on the classification error threshold and feature selection method 

based on Fisher´s discriminant ratio (both described in 5.1.1). The third dimensionality 

reduction method is PCA. 

7.5.1 Experiment 1 - results 

For threshold based feature selection method only features with classification error<0.3 

were used (16 features used).  

For Fisher´s discriminant method the significance power threshold for choosing features was 

set at median value of all significances. It means that only features of higher significancies 

than a median of significancy for all features are used (146 features used). 

 𝑠𝑖𝑔𝑓 > 𝑚𝑒𝑑𝑖𝑎𝑛 𝑠𝑖𝑔𝐹 ;   𝑓 ∈ 𝐹 

 

(1.19)  

PCA is a part of Statistics Toolbox and could be computed using various commands in 

MATLAB: pca, pcacov, princomp. „Princomp“ was chosen and features that each interpret 

more than 1% of the data variability were included (15 features included using this 

criterium). 

Method  Sensitivity (%) FPs/scan AUC 

Threshold based feature selection method4 

„fselection“ 

88.8 367 0.87 

Fisher´s discriminant test for selecting features5 

„signiffeat“ 

83.2 361 0.77 

nPCA6 91.4 151 0.94 

Table 9 - results for comparing dimensionality reduction methods (experiment 1)  

From all three methods PCA has the highest sensitivity and the lowest number of FPs per 

scan. Method based on Fisher´s discriminant was the worst, one possible reason can be the 

huge number of used nodule features (146 used features, while the other two methods have 

comparable number of used features). This method was rejected and it is not used in further 

experiments.  

                                                      

4
 Results saved as: vysledkyfselectionkNN100 

5
 Results saved as: vysledkysigniffeatkNN100 

6
 Results saved as: vysledkynPCA15kNN100 
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7.6 Experiment 2 – classification methods 

For classification step classifiers based on Nearest Neighbours search and DecisionTrees 

were performed. I applied quick and available MATLAB knnclassify, TreeBagger and 

fitensemble commands. For this experiment only scans containing nodules were included 

(nscans=18) into the testing set, the training data remains the same. 

7.6.1 Finding the optimal number of nearest neighbours (k) 

To find the ideal number of nearest neighbours I computed the equal error rate for first 

1000 nearest neighbours for each test sample. The mean lowest error rate falls into interval 

𝑘 ∈ (100,200) with the lowest k=130 value. Therefore kNN classifier with k=100 nearest 

neighbours were applied in further tests. Equal error rate was counted as: 

 )1()1( yspecificitysensitiviterr   (1.20)  

 

Picture 44 shows that the error rate first decreases very fast, then it starts to increase slowly. 

When the number of nearest neighbours is raising, values of sensitivity and false positive 

rate are increasing and the value of specificity is decreasing (Picture 45).  

 

 

Picture 44 – error rate depending on number of used k-nearest neighbours, performed on the dataset of 18 scans 
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Picture 45 – sensitivity and specificity rate depending on number of used k-nearest neighbours 

7.6.2 Bagging method 

For creating bagged decision trees, command TreeBagger was used. For finding the optimal 

number of grown trees I applied the algorithm with 100 trees for the dataset. Then I 

displayed the out-of-bag-error (error of unused trees) for each tree. The out-of-bag error is 

decreasing with increasing number of used decision trees. The optimal number of used trees 

was set as 30, because there is no steep decrease of error rate when more than 30 trees are 

used. 

 

Figure 7 – out-of-bag error for each of 18 scans, TreeBagger classifier performed 
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When the input data is not balanced or we need to favour one of the classes, 

misclassification cost have to be set. Cost matrix is a square matrix [0 a;b 0] which sets the 

cost of placing an observation into bad class. The classifier prefers „costly“ class which is 

oversampled, while the „less costly“ class is undersampled by the computer (39).  

In our dataset cost matrix did not work well and even the high cost of „nodule“ class did not 

change the results. To increase the cost of this class I added duplic.m script for re-sampling 

the input data manually. User can manually modify the size of training data seting the 

parameters for oversampling the „nodule“ trains  and undersampling the „nonnodule“ 

trains. 

7.6.3 Boosting method 

In MATLAB it is possible to perform many methods using a number of weak learners into one 

high-quality predictor (40). As a third method I applied fitensemble command with decision 

tree used as a weak learner. 

For binary classification AdaBoostM1, GentleBoost and LogitBoost method is required (40). 

For choosing the best one, resubstitution error and ROC curves were drawn up for each 

(Picture 46, Picture 47). Resubstitution is testing the data on the provided set already used 

for training, the error rate received from this testing is called the resubstitution error. It says 

how good the results are when applied on training data. Based on this parameter Logit Boost 

was chosen for the further testing. 

 

Picture 46 – resubstitution error values for 3 tested boosting algorithms 
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Picture 47 – ROC curves for 3 tested boosting algorithms 

7.6.4 Experiment 2 - results  

For classification I chose classifier based on nearest neighbours and classifiers based on 

decision trees (enhanced by bagging and boosting method).  

Results of the classifier performances are shown in following tables. Method (performed 

classifier), dim. Reduction (performed dimensionality reduction method), Sensitivity, 

FPs/scan and AUC results are presented in the columns. Column „Number“ presents the 

number of used nearest neighbours or decision trees. Methods with „duplic“ in the title are 

applied on the modified training data (see 7.6.2) received undersampling and oversampling 

the classes. 

Tables are showing the first results and results recalculated into the same sensitivity rate. 

Charts are displayed for every method to compare the results. 

Some of the resulted data used for creating the ROC curves are available in data archive in 

subfolder Nodule/results. 
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kNN classifier 

Method Number 

of kNN 

Dimensionality 

reduction 

Sensitivity 

[%] 

Specificity 

[%] 

FPs/scan AUC 

kNN 100 Fselection 77.0 91.3 426 0.87 

kNN 1000 Fselection 93.1 61.4 1909 0.93 

kNN 100 nPCA 88.8 96.0 186 0.94 

kNN7 1000 nPCA 96.0 82.8 838 0.97 

Table 10 – classification results (test data=18 scans), kNN method used 

Method Number 

of kNN 

Dimensionality 

reduction 

Specificity rates for chosen sensitivities 

Sens=77% Sens=90% Sens=95% 

kNN 100 Fselection 91.3 - - 

kNN 1000 Fselection 94.3 73.9 - 

kNN 100 nPCA 99.3 - - 

kNN 1000 nPCA 99.2 95.1 86.9 

 

The best results are reached using kNN classifier with 100 or 1000 nearest neighbours. PCA is 
better dimensionality reduction method, than feature selection. 

 

 

Picture 48 – performance curves for kNN classifier 

 

                                                      

7
 Results saved as: vysledkynPCAkNN1000 



65 
 

Bagged trees 

Method Number 

of trees 

Dimensionality 

reduction 

Sensitivity [%] FPs/scan AUC 

TreeBagger 100 Fselection 55.5 2 0.94 

TreeBagger-duplic 30 Fselection 79.4 107 0.94 

TreeBagger-duplic 100 Fselection 63.0 127 0.93 

TreeBagger-duplic 30 nPCA 74.1 30 0,96 

TreeBagger8 100 nPCA 46.8 2 0,96 

Table 11 - classification results (test data=18 scans), bagged trees method used 

Method Number 

of trees 

Dimensionality 

reduction 

Specificity rates for chosen sensitivities 

Sens=77% Sens=90% Sens=95% 

TreeBagger 100 Fselection 98.7 90.5 - 

TreeBagger-duplic 30 Fselection 96.2 85.1 59.0 

TreeBagger-duplic 100 Fselection 94.4 78.1 57.7 

TreeBagger-duplic 30 nPCA 98.5 91.1 87.7 

TreeBagger 100 nPCA 98.7 90.0 78.0 

 

The best results are reached using both TreeBagger classification methods with PCA 
dimensionality reduction. 

 

 

Picture 49 – performance curves for TreeBagger classifier 

                                                      

8
 Results saved as: vysledkynPCATreeBagger100 
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Boosting method 

Method Number 

of trees 

Dim.reduction Sensitivity [%] FPs/scan AUC 

LogitBoost9 100 Fselection 58.2 6 0.96 

LogitBoost10 100 nPCA 54.3 4 0.96 

LogitBoost-duplic 100 nPCA 94.4 1169 0.96 

LogitBoost-duplic 200 nPCA 94.4 946 0.96 

Table 12 - classification results (test data=18 scans), LogitBoost method used with decision trees as a weak lerners 

Method Number 

of trees 

Dim.reduction Specificity rates for chosen sensitivities 

Sens=77% Sens=90% Sens=95% 

LogitBoost 100 Fselection 97.0 88.2 73.6 

LogitBoost 100 nPCA 95.2 87.5 78.5 

LogitBoost-duplic 100 nPCA 94.7 87.5 80.0 

LogitBoost-duplic 200 nPCA 94.6 86.6 78.3 

 

There is no significant difference in performance rates among all presented LogitBoost 
methods. The only difference is in ROC curve shape. Methods based on PCA dimensionality 
reduction have better results when used in higher sensitivities.  

 

Picture 50 - performance curves for LogitBoost classifier 

  

                                                      

9
 Results saved as vysledkyfselectionfitensemble100 

10
 Results saved as: vysledkynPCA15fitensemble100 
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Classifiers comparison 

The best results are reached when bagging or boosting classifier with PCA as a 

dimensionality reduction method is used. For comparison of the performed methods see 

Picture 51.  

 

Picture 51 – comparison of the performed methods 
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7.7 Comparison with other works 

There is an evidence, that performances of CAD systems signifficantly differ when tested on 

different datasets. Based on Table 13 some results of the authors seem to be outstanding, 

even unreal. For example Hirose (18) reports 71% sensitivity with less than 0.95 FPs per scan 

and Choi (22) only 2.27 FPs per scan at more than 95% sensitivity rate. For better evaluation, 

the resulted number of false positives should be reported in slices, because the number of 

slides per one scan has a significant influence on the resulting number of FPs. Zhao (14) 

reports maximum 80 slices per scan, our average number of slices is more than 4 times 

higher (slices=350), numbers of our FPs/slide is in that case much smaller than 0.5. The 

results also depend on the input data set and the nodule size. Some of our nodules (>1mm) 

are much smaller than the nodule size reported by the others, even nodule>5mm for Gori et 

al. (20).  

Author Sensitivity [%] FPs/scan 

Bisheng Zhao et al. (14) 84.2 5 

Golosio et al. (15) 79 4 

Kyongtae et al. (16) 95.1 6.9 

Tan et al. (17) 87.5 4 

Hirose et al. (18)  71.4 0.95 

El-Baz et al. (19) 82.3 12 

Gori et al. (20) 85.2 6 

Yuan et al. (21) 72.6 3.19 

Choi (22) 95.28 2.27 

Cascio et al. (23) 88 2.5 

Dolejší et al. (24) 94.03 5.46 FPs/slice 

Dolejší et al. (25) 74.3 

89.6 

2.6 FPs/slice 

9 FPs/slice 

Table 13 – performance rates presented by other authors 

 

Results of the baseline algorithm my work was based on were 95.9% sensitivity with 12 

FPs/slice for the detector only, 74.3% sensitivity with 2.6 FPs/slice for FLD classifier and 

89.6% sensitivity with 9 FPs/slice for the multi-threshold classifier.Knowing the average 

number of slices per one scan FPs/slice can be recounted to FPs/scan.    

For comparison with the existing algorithm and other works see Picture 52. 
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Picture 52 – out algorithm compared to the baseline algorithm results (25) and the results reported in other works 
(14,15,16,17,19,20 – the numbers correspond to the reference in bibliography) 
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8 CONCLUSION 

Analysing the results of baseline algorithm carefully I found shortcomings in the process of 

nodule candidate detection, in feature computation and also in the ground truth 

information. All the findings were used for further work.  

First of all the shortcomings in GT data was corrected manually. Data correction improved 

the sensitivity rate, the specificity rate remains the same. The resulted difference between 

original and corrected data classification are 87,8% sensitivity rate with 148 FPs per scan for 

the original GT and 91,4% sensitivity rate with 151 FPs per scan for the corrected data. 

Then the input data dimension was reduced, redundant features were removed and only 

effective features were chosen using 3 independent dimensionality reduction methods 

(Feature Selection method, Fisher´s Discriminant analysis and Principal Component Analysis). 

The best results were saved and combined with 3 suitable classification methods (based on 

nearest neighbour search, bagged decision trees method and boosting method with decision 

trees used as a weak learners). The classification parameters were set to receive as good 

sensitivity and as low number of false positive structures as possible, methods were 

compared on the same sensitivity levels. 

The highest sensitivity rate together with low FPs were observed in kNN classifier (96% 

sensitivity with 838 FPs/scan, which corresponds to 2.4 FPs/slice, AUC=0.97). Both other 

methods (Treebagger and LogitBoost) reached AUC=0.96 and the results were more 

ballanced compared to kNN. The best results were achieved with dimensionality reduction 

process based on PCA.  

When comparing our results to other studies, we reached similar performance values, but 

not better, our number of FPs is still very high. However we have to consider that some of 

the authors have less slices per one scan, bigger nodules and different datasets, this all can 

lead to better results. When compared to the baseline algorithm the resulted performance 

values improved a lot. 
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9 FUTURE WORK 

Results of the algorithm are still not perfect, in future it is possible to improve it by: 

Improving the detection process to reduce definite non-nodule detections 

Improving the segmentation process to guarantee the precise contours of the structure and 

following feature computation 

Reducing the number of FPs. Performed pre-classification method to reduce the number of 

FPs (for example double-threshold cut)  

Categorization the detected data into several groups (not only „nodule“ and „non-nodule“) 

to provide information about possible etiology of detected structure (like „sure nodules“, 

„possible nodules“, „sure non-nodules“, „other non-nodule pathologies“ etc) 

Individualization. User can set the required sensitivity value based on the individual CT 

findings. For example individual performance rates depending on the final number of found 

nodules. 
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The materials were also searched in question and answer sites for people interested in 

statistics and data mining (Cross Validated11) and programming (stackoverflow12) 
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