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List of abbrevations

HRCT (High Resolution Computed Tomography)
HU (Hounsfield unit) — units describing CT density

MPR (multiplanar reconstruction) — postprocessing procedure creating coronal, saggital or
oblique planes from the original axial data

MIP (Maximum Intensity Projection) — postprocessing procedure displaying the pixel of
maximal intensity value along the line

Ground-glass nodule — nodule having the appearance of opaque glass

Axial (transversal) plane — any horizontal plane dividing the body into superior and inferior
part

Coronal (frontal) plane — any vertical plane dividing the body into ventral and dorsal part
Sagittal plane — any vertical plane dividing the body into left and right part

GT (ground truth) — information about real nodules and real non-nodule structures created
in advance by an expert

TPs (true positives) — all truly detected nodules

TNs (true negatives) — all truly detected non-nodule structures

FPs (false positives) — all non-nodule structures detected as nodules
FNs (false negatives) — all missed nodules

Partial volume artefact — CT artefact which occures when only a partial volume of the dense
structure lying off-centre is in the way of the X ray beam

PCA (Parcial Component Analysis) — dimensionality reduction method

ROC (Receiver Operating Characteristic) — graphical curve plot ilustrating the performance of
classifier system

AUC (Area Under Curve) — area under ROC curve



Abstract

Lung nodules are the lung parenchyma structures found by radiodiagnostic imaging
methods, especially Computed Tomography. Lung nodules are of various etiologies and can
be found in various lung diseases . At worst they represent a primary or secondary tumorous
proces of the lung. That is why it is necessary to find all suspicious lung nodules.

The aim of this study is to create the automatic lung nodule detection algorithm, based on
the existing one. In my work [ first analyse the baseline algorithm results to find all the
shortcomings that can be improved to receive better output results. These findings are
applied to create new classification method. This metod is based on reducing the number of
existing nodule characteristics, modifying the training data and applying the suitable
classifier to receive as good sensitivity and as low number of false positive detections as
possible. For that purpose, combinations of several dimensionality reduction methods and
several classifiers are studied.

New method have the same sensitivity, but significantly lower number of false positives than
the existing one.

Keywords

Lung nodule, computed tomography, computer aided diagnosis, binary classification



Abstrakt

Plicni noduly jsou struktury nachazejici se v plicnim parenchymu, které lze zobrazit pomoci
radiodiagnostickych metod, nejlépe pomoci vypocetni tomografie (CT). Etiologie plicnich
nodulll mdze byt rdzna. V nejhorsim pripadé jsou souéasti rakovinného procesu, at uz
primarniho, ¢i sekunddarniho. Z tohoto dlivodu je nutné vSechny podezrelé plicni noduly
spolehlivé najit a diagnostikovat.

Cilem této prace je na zakladé jiz existujiciho algoritmu sestavit novy automaticky systém na
detekci plicnich nodulll. Soucasti prace je analyza dosavadnich vysledkud a postup, kterd ma
za cil najit vSechny nedostatky, jejichZ odstranénim by se vysledky algoritmu zlepSily. Na
zakladé této peclivé analyzy jsou vSechny poznatky vyuZity k tvorbé nového algoritmu. Ten je
zaloZeny na snizovani dimenze pfiznakového prostoru a pouziti vhodného klasifikatoru

k redukci mnozstvi detekovanych dat. Testovany jsou kombinace nékolika metod snizujicich
dimenzi pfiznakového prostoru a nékolika rlznych klasifikatord.

Novy algoritmus ma srovnatelnou senzitivitu, ale o poznani nizsi hodnoty falesné pozitivnich
detekci, nez algoritmus soucasny.
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1 INTRODUCTION

1.1 Radiodiagnostic imaging tests

Radiodiagnostic imaging tests are mostly noninvasive (not disturbing body tissue)
procedures done when we suggest some patology. Imaging methods could help us find a
suspicious area (leasion) that might be pathologic. They help us detect the lesion, visualize
the spread of the lesion, determine other affected structures and based on all provided
information they help us predict the curability and prognosis of the patient.

1.1.1 Radiodiagnostic imaging of the lung

The basic imaging methods and the gold standard of chest examination is plain radiograph
(chest X-ray) and the Computed Tomography (CT scan). Both metods are based on
absorbtion of X-ray beams passing through the human body.

Plain PA (posteroanterior) radiograph is the most common imaging method with a small
radiation dose (0.02-0.1 mSv). X-ray provides us a 2-dimensional image of the body, which
means, that all the structures the X-ray beam passes through are summed. This limitation of
plain chest radiograph is eliminated by CT. CT provides a 3D cross-sectional view of the body.
Compared to the plain radiograph, the resolution of CT is much higher. On the other hand
the radiation dose is higher too (about 5 mSv for one chest CT).

These days High Resoluted Computer Tomography (HRCT) is commonly used for lung
imaging. HRCT is a computed tomography method maximalizating the spatial resolution and
ease the patology detection.

Another imaging method for lung investigation is Pozitron Emission Tomography (PET). PET
is a functional imaging method that provides the information about metabolic activity of the
tissue. It is based on consumption of a radioactive tracer (mostly used is fluorodeoxyglucose
- FDG). PET investigation is indicated in tumorous processes, because increased glucose
metabolism indicates the malignant potential of the leasion. It is usually combined with CT
(PET/CT method), where CT provides the anatomic information and PET provides the
metabolic information.

1.2 Lung nodule

Lung nodule is one of many pathologies that could be found in CT scan. It is a small, mostly
spherical area of solid tissue localized in the lung parenchyma. In X-ray or CT scan every
nodule looks like a light ,,spot” surrounded by the normal (dark) parenchyma of the lung. In
both it is defined as a leasion of reduced transparency (or increased density).



1.2.1 Lung nodule imaging

Most nodules are discovered as an incidental finding in X-ray or CT. X-ray could detect only
nodules larger than circa 1 cm in diameter if they are not summated with mediastinal
structures. When a nodule is first discovered on the plain X-ray, it needs further
investigation (usually CT scan). CT helps us to find much smaller leasions, even the
micronodules, smaller than 3 mm in diameter. Lung nodule is among the most commonly
seen structures in CT scans. PET has it’s limitations too. Ideal lesions for PET are larger than
circa 0.5 cm in diameter, smaller lesions cannot be reliably evaluated, because they could be
false negative due to limited spatial resolution of the PET camera.

1.2.2 Does the lung nodule always mean a cancer?

There are two main types of pulmonary nodules — benign and malignant. In the population
lung nodules are usually considered as a lung cancer. Everyone knows about the cancer and
is afraid of it, the lung cancer is not an exception. Cancer in general is the leading cause of
death worldwide with about 7.6 million deaths every year. Even though lung cancer is
second most common fatal malignancy for both men and women, it accounts about 13% of
all new diagnosed cancers and it is the leading cause of cancer deaths. Nowdays, the most
important risk factor for the lung cancer is tobacco (1).

1.2.3 Benign and malignant nodules

When speaking about pulmonary nodule, lung cancer is only the ,tip of an iceberg”. In fact,
most of the nodules are benign. Approximately 50% of the nodules, that were surgically
removed, turn out to be benign (2). It was reported, that only 1% of small nodules (<5 mm in
diameter) in patients with no history of cancer are malignant and the risk of malignancy rises
with the size of the nodule (3). On the other hand approximately 50% of incidentally
detected nodules (>8 mm in diameter) are malignant (4). However, even the small nodule
could be cancerous and might represent the primary lung cancer in it’s early state, or the
secondary lung cancer, a metastase. Metastasis is a cancer with an origin somewhere else in
the body which spread to the lungs. CT is the most sensitive modality for detecting lung
metastases. Pulmonary metastases has its origin most commonly in the carcinoma of the
breast, kidneys, colon, stomach, pancreas or thyroid gland. The mortality of both (primary
and secondary lung cancer) can be reduced if they are detected and threated early.

When we first find some suspiciuous nodule, we have to recommend the further testing
(HRCT, another CT scan in 3 months, PET scan, bronchoscopy, or even a biopsy).

1.2.4 Various appearance of one structure

We observe many signs, that could be very helpful to determine whether the nodule is
probably malignant or not (Picture 1). This general knowledge of the lung nodule issue helps
us understand how difficult is to find a reliable automatic algorithm for lung nodules
detection.
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Size

One of the most important characteristics of the nodule is size. Mostly the size of first
founded nodules are at intervals 5-10 mm. The bigger nodule, the worse prognosis. Nodules
smaller than 2 mm are called the miliary nodules, nodules exceeding 3 cm in diameter are
called mass, or the tumour.

Density

Nodules could differ in density (from the solid high bone density nodules with densities
about hundreds of Hounsfield units (HU) to the non-solid nodules, such called ,,ground glass*”
nodules, or even negative density nodules with fat deposits). The nodule density could be
homogenoeous (which means that it does not change in the whole mass of the nodule), or
heterogeneous (we could find various densities because of cavities, or calcifications).

Shape

The shape of typical pulmonary nodule is usually spherical or round, but we can see irregular
shapes, or even the spiculated nodes, which are very suspect to be malignant. The margins
could be lobulated, or smooth.

Localization

Localization of the leasion have to be taken into consideration too. We see nodules
completely surrounded by lung parenchyma with no touch to the hilum, mediastinum or
pleura (intraparenchymal nodules), or the leasions touched to the pleura (subpleural
nodules). The distribution of multiple nodules could be perilymfatic, centrilobular or
random. Single intraparenchymal nodule not associated with adenopathy, pleural effusion or
atelectasis is called the solitary pulmonary nodule.

Dynamic of growth

Important information provides us of course the dynamic of growth. Comparing the finding
with prior images gives us an important information about etiology, or treatment success.
Cancerous nodules grow fast, the doubling time of the malignant lesions is mostly 1-6
months (5). On the other hand, nodules which stay same in shape and size more than two
years are considered to be benign (6).

Enhancement

Another helpful information is the value of enhancement after intravenous bolus injection of
the contrast agent (however most lung scans are ,,native”, without any intravenous
contrast).

Individual patient anamnesis

Last but not least when finding a lung nodule is the patient’s anamnesis, job anamnesis, the
abusus (smoking), history of malignancy, age etc.
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1.3 Lung nodule diferential diagnosis

When finding any patological process, diferential diagnosis helps us to generate a list of
diseases which have to be taken into consideration. In diferential diagnosis all processes
(benign and malignant) have to be included. Benign nodules can be found in various lung
diseases, they could be solitary benign neoplasms (hamartomas, chondromas), or multiple
inflammatory granulomas (in tuberculosis, histoplasmosis, sarcoidosis). Septic emboli, or
intrapulmonary lung nodes are nodule-like structures that could mimick nodules. Another
nodule mimicking structures are rib fractures, costochondral junctions, or AV malformations.

Malignant leasions include mainly peripherial bronchial carcinoma, alveolar cell carcinoma,
pulmonary carcinoid tumor, lymphoma and metastases (2).

Picture 1 — various appearance of the lung leasions a) stable benign solid nodule (7) b) two partly solid and partly ground-
glass cavitating leasions representing a mycotic infection called angioinvasive aspergilosis (8) c) spiculated cavitating
mass representing adenocarcinoma (9) d) solid nodule with irregular borders representing the primary lung cancer (7) e)
spiculated pulmonary mass representing the primary lung cancer (10) f) ground glass nodule could represent the
bronchoalveolar cell carcinoma (BAL) (11)
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1.4 MIP projection

Nodules come in many forms, there are ones that are easy to detect (large, round, dense
and sharply marginated nodules) and problematic ones hardly classified even for an
experienced human eye. Readers sensitivity for detecting pulmonary nodules could be
increased by using the special postprocessing volume rendering techniques such as
Maximum Intensity Projection (MIP) (12). MIP displays the voxel of maximum density Z,,
along the Z-axis of a given volume n. Reader looses the sense of depth of the original data,
but receives the sense of 3D. Using this technique reader could easily differeciate between
rounded (eg. nodules) and tubular structures (eg. vessels).

zZ= {Zl,Zz, Zn} (1-1)
Zyy EN
Zyy = max(Z)

In the Picture 2 it is possible to compare standard multiplanar reconstruction image (MPR)
and maximal intensity projection image (MIP), both in axial and coronal plane.

Picture 2 — MPR/MIP difference
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1.5 Computer aided diagnosis

Computer-aided diagnosis (CAD) is a term for all the technologies and procedures in
medicine that help human professionals to interpretate the medical image. The CAD
research begun in early 1980s and it is still one of a major research subjects in medical
imaging and diagnostics. It is believed that CAD will serve as a useful tool for diagnostic
examinations in everyday praxis, not to replace the human experts, but to help them focus
on suspicious structures.

1.5.1 No perfect results so far

Huge number of CADs for automatic lung nodule detection appeared over the years, the
sensitivity reported by the authors differs in various algorithms and data sets from 71 to 95%
(Table 1). Performance rates depend on the dataset type, on number of true nodules, nodule
characteristics and other variables. Bigger, round and solid solitary nodules are easy to
detect, while small, irregular nodules often fall into the false negative group. It was reported,

\

that CAD system still have problems with detecting ground-glass nodules (13).

A

For finding all suspicious leasions we need as high sensitivity as possible. Over the years CAD

Picture 3 — examples of solid (left) and ground-glass (right) parenchyma nodules

systems reached really good sensitivity rate levels, but unfortunately, high sensitivities are
associated with high numbers of false positive detections. All at once, the authors are trying
to reduce FPs to minimum.

We really need as good sensitivity as possible and we also need to reduce the FP rate, but
not at the cost of sensitivity decreasing. But we don’t have to be perfectly sensitive in every
case. When there are only few leasions, we need to find all of them, but when there are
tens? It is not necessary to detect all of them, because nobody will care about the exact
number. We also don’t need to get rid of all the FPs - not only nodules, but also other
suspect findings have to be noticed.
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1.5.2 Lung nodule detection algorithms compared

In following table some authors and their presented results are mentioned.

Author Sensitivity [%] | FPs/scan Notes

Bisheng Zhao et al. (14) | 84.2 5 Only 60-80 slices per scan, 266
simulated nodules

Golosio et al. (15) 79 4 Combined scan database, nodules
>3mm, performed on LIDC database

Kyongtae et al. (16) 95.1 6.9 164 true nodules>3mm, 20 scans used

Tan et al. (17) 87.5 4 259 true nodules>3mm

Hirose et al. (18) 71.4 0.95 21 scans used, nodules in 15 scans

El-Baz et al. (19) 82.3 12 130 true nodules

Gori et al. (20) 85.2 6 102 true nodules>5mm

Yuan et al. (21) 72.6 3.19 628 true nodules

Choi (22) 95.28 2.27 151 nodules>3mm, LIDC database

Cascio et al. (23) 88 2.5 148 nodules

Dolejsi et al. (24) 94.03 5.46 FPs/slice

Dolejsi et al. (25) 74.3 2.6 FPs/slice The presented baseline algorithm

89.6 9 FPs/slice

Table 1 - various algorithm results

Zhao (14) published 84.2% sensitivity with 5 FPs/scan, the maximum number of slices per
scan was 80, there were 266 nodules (2-7 mm in diameter) and all the nodules were
simulated. The maximal detection sensitivity of 94.4% was reached, however the total
number of FPs per scan was 906.

Golosio (15) combined 83 scans from LIDC and 23 other scans, the mean number of slices
was 310. He only included nodules >3mm in diameter. The overall sensitivity of 79% was
reached with 4 FPs/scan.

Tan (17) published 87.5% sensitivity with 4 FPs/scan in LIDC database. He used 235 scans for
training and 125 scans containing 259 nodules (3-30 mm in diameter) for testing. He
reported maximal detection sensitivity 88.8-98.8% with mean 457 FPs per scan.

El-Baz (19) published 92.3% sensitivity with 12 FPs/scan, 200 scans were used, there were
abnormalities in 21 of them. The total number of nodules was 130.

Gori (20) reported 85.3% sensitivity with 6 FPs/scan for intraparenchymal nodules and 85.2%
sensitivity with 13.6 FPs/scan for subpleural nodules. He used 39 CT scans with 300 slices per
scan in average, 34 scans were containing the inraparenchymal nodules and 20 scan were
conaining the subpleural nodules. The dataset consisted of 102 nodules.

Yuan (21) published 72.6% sensitivity with 3 FPs/scan in 150 CT scans containing 628 true
nodules. He was comparing CAD and reader sensitivity differences and found out, that CAD
is much better in detecting hilar and central nodules, while human reader has higher

15




sesitivities in detecting peripheral and subpleural nodules. The average number of slices per
CT scan was 404.

Choi (22) used 58 LIDC nodule containing scans (with nodules >3mm in diameter) with
average number of slices per scan about 200 were used for testing. The total number of
nudules was 151. The maximal detection sensitivity of 97% was reached. The number of
FPs/scan was 60. After the classification step the number of sensitivity was 95.28% with
2.27FPs/scan. An SVM classifier was performed.

Cascio (23) used 84 LIDC scans containing 148 nodules, the mean number of slices per one
scan was 310. The detection sensitivity was 97% with 6.1 FPs/scan. After FPs reduction and
classification process the values dropped to 88% sensitivity and 2.5FPs/scan. He performed a
classifier based on neuronal network.

Dolejsi (24) published 94.27% sensitivity with 7.57 FPs/slice for TIME and LIDC datasets
combined, then 94.03% with 5.46 FPs/slice for TIME only (containing two independent
datasets), 89.62% with 12.03 FPs/slice for LIDC (containing 38 scans with the mean number
of 223 slices per scan) and 78.68% sensitivity with 4.61 FPs/slice for ANODEQ9 dataset
(containing 50 scans with 451 slices per scan in average).

1.5.3 Future diagnostic tools for helping the experts

There were many tries to automate the process of nodule-finding, but the daily routine of
the human radiologists has not changed yet. The naked-eye-detection still remains the
golden standard od the diagnostics, the MIP projection helps a lot.

Automatic systems definitelly have it’s future in cooperation with human experts - in
detecting suspicious structures, finding new leasions, rating the growth or evaluation the
threatment effectivity. It will ease the work of humans and decrease a time needed to
examine the CT scans. It also can provide the ,,double reading” of the diagnostic images.
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2 REDUCTION OF FALSE POSITIVES IN LUNG NODULE DETECTION
ALGORITHM

The aim of my work is to analyse the existing lung nodule detection algorithm (12), to find its
potential shortcomings and to analyse its results. At the same time to set up the parameters
to receive required results and based on this findings to design new method for further
nodule classification.

2.1 Work process

The whole work process is like finding the diagnosis. First of all we have to familiarize and
get to know all the details, then it is turn for analysing the problem, find and consider all the
pathologies and finally based on all the information to find the main diagnosis. When we
know exactly, where the problem is, we can target it and initiate threatment.

My work process will be the same. First | get to know how the original algorithm works and
get familiar with the input data and functions. Then | analyse the primary results including
the detected and classificated data (4.1), segmentation process (4.3) and the computed
characteristics (4.4). Afterwards | create new classification algorithm using all the results of
the previous analysis.
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3 BASELINE METHOD

3.1 Nodule detection algorithm

| was given an access to the new CAD system designed and created by Ing. Martin Dolejsi
from the Czech Technical University in Prague (12). This fully automatic nodule detection
algorithm is used to detect nodules in CT scans. The algorithm was implemented in MATLAB
and it is divided into scripts and functions controlled by a single GUI.

3.1.1 Algorithm overview

The whole algorithm process consists of several separate steps. The major steps are two:
finding the nodule candidates and eliminating the false positive detections by nodule
classification.

The algorithm first separates the lung parenchyma from other anatomic structures (lung
segmentation process using simple thresholding method), then it finds the nodule
candidates using the thresholding and blob detection (based on multi-scale filtering and
Gaussian filter) techniques. The local maxima are treated as nodule candidates (24). Each
detected nodule candidate is considered to be a probable center of a nodule. For each
nodules candidate geometrical and image characteristics are counted. Nodule candidates
detector was designed to have a good sensitivity and as small number of false positives as
possible. To reduce the number of false positive detections the additional step of
classification is used. The author applied two classifiers - the classifier based on Fisher Linear
Discriminant (FLD classifier) and the classifier based on Multiple Thresholding (AdaBoost).

Fisher Linear Discriminant uses only one linear discriminant function. The value of this
function can be is positive or negative. If positive, the detection is classified as ,nodule”.

The number of thresholds in Multiple Thresholding method is 2n, when n features is used. If
the detection point is between the two borders, this detection is classified as ,,nodule”.

Results of the existing algorithm is 95.9% sensitivity with 12 FPs/slice for the detector only,
74.3% sensitivity with 2.6 FPs/slice for FLD classifier and 89.6% sensitivity with 9 FPs/slice for
the multi-threshold classifier.

Knowing the coordinates of real nodules and the non-nodule structures (the GT data) we can
compare this data with the algorithm results and find out how successful the algorithm is.
The GT information was created by an expert in Scan View™.

! created by RNDr. Jan Krasensky, jkras@If1.cuni.cz, http://www.scanview.cz/
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3.1.2 Implementation

First | used the algoritm as it was provided and tried to understand the steps. | did not use all
the scripts, only those that offer required information.

»PrepareNodDetection.m" is a first script responsible for the data input, it reads the data. In
,hodDetParalelScript. m” the own detection and then the classification of the nodules takes
place. Classificator is used there to estimate if the detected structure is a nodule or not.
»PrepareREGanalysis.m* is the statistical analysis of all detected structures. This script
compares all the detections with the ground truth (GT). It determines true positives (TPs),
false positives (FPs) and false negatives (FNs), if there are any. It counts the sensitivity rate
and number of FPs for each CT scan and for the whole set. Then | used the grafic interface
,nodVizGUl.m“ to visualize the detected structures.

3.2 CT imaging data

The data used for algorithm testing is provided by the Faculty Hospital, Motol, Prague. There
are 4 data sets available. | only choose one, the biggest one including the human adult CT
scans (PNDO). This set could be considered as a representative sample.

All input 3D data are composed of /V slices of standart size (512 x 512 pixels). Where N
depends on the length of scanning data (N=386+172), the section thickness is 1 mm, voxel
size (0.6 x 0.6 x 1). There are 98 scans in the database, with a total number of images=34036.
The data contains 229 nodules of different size (1-11mm in diameter), shape and in different
localities.

All the data is available on the cmp.server /mnt/datagrid/Motol
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4 ANALYSIS OF THE BASELINE RESULTS

The first aim of this work is to analyse the results of the existing algorithm, which are still not
perfect. Finding the possible deficiencies of detection and classification process can improve
the results. The analysis is devided into 3 steps — the analysis of detected structures, the
analysis of data segmentation and the analysis of computed features.

4.1 Analysis of detected structures

The basic problem of all CADs is to distinguish true nodules from nodule-like structures (such
as vessels, shadows, rib margins, etc.). Checking the detected structures visually we are able
to find out, what structures are mostly marked as nodule candidates, how they look like and
what could be done to classify them truly as nodules or non-nodules in future. For visual
scoring the detected structures | was using the included grafic interface nodVizGUl.m.

4.1.1 Necessity of the classification step

Using only the detection method without classification, there are hundreds of nodule
candidates detected. The number of candidates (and also the number of FPs) decreased a lot
after the classification step. For example in the chosen scan the number of FP detections
decreased from 3575 to 33. After the classification step only TP markers remain in the
displayed slide (Picture 4). We still can remove some of the remaining incorrectly detected
structures to get better results.
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Picture 4 - comparison of the number of detections a) using only the detection step b) using the detection followed by
the classification step. This test was performed on the PNDO060 scan. The red crosses indicate the ground truth data, blue
crosses are the nodule candidates detected by the algorithm

4.1.2 True positives

TPs are the real nodules truly detected by the algorithm. When looking at all the TPs, we can
devide them into two groups:

»Examplary” nodules look like a nodule, they have the typical nodular shape and high
density, they are bigger in size (usually 3-10mm), intraparenchymal and sharply separated
from the surroundings. These nodules could be benign or malignant. All the exemplary
nodules | have found in the data were detected, none was missed (Picture 5).

LAtypical” nodules don’t have the properties mentions above (Picture 6). Most of them are
small, subpleural localized, elongated, low density structures and could be easily missed. The
small rounded subpleural ones look benign. (Picture 7).
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Picture 5 — ,,exemplary” nodules and their coordinates a) big parahilar node, PND007 (182,263,57) b) subpleural node not
connected to pleura, PND007 (45,282,191) c) subpleural node connected to pleura, PND024 (134,383,61) d) big dense
oval node, PND024 (164,168,124) e) subpleural node, PND024 (76,357,162) f) parenchymal node, PND024 (391,239,193)

1

Picture 6 —,atypical” nodules and their coordinates a) small pleural benign looking nodule, PND041 (341,392,42) b) apical
low dense nodule, PND051 (170,262,12) c) subpleural nodule connented to pleura, PND075 (137,345,30) d) small benign
looking micronodule, PND007 (130,192,32) e) small oval nodule, PND007 (427,338,104) f) nodule connected to the
mediastinum, PND024 (253,275,173)
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4.1.3 False negatives

FNs are the real nodules missed by the algorithm. These nodules were always small,
hypodense, or they did not have the typical nodular shape (mostly the ,atypical” ones).

i€

Picture 7 — missed nodules in various localities a) basal nodules, PND007 (41,281,252) b) node in the right hilus of the
lung, PND024 (200,301,92) c) subpleural structures, PND075 (70,282,9), (133,387,90)

There also were some structures | can’t sign as nodules although they were in GT group. The
algorithm didn’t find them and | agree with it. Unfortunatelly they raise the number of FNs
(Picture 8). All of the undetected structures in this picture look benign.

N i, EE—
V
b) L._c)

Picture 8 — non-nodules signed as nodules in GT data, all are the areas of increased density, but not nodular, PND075

4.1.4 False positives

FPs are the non-nodule structures detected as nodules. Browsing the scans one by one and
seeking the shortcomings | found out that some of the structures signed as nodules looked
similar. There were the same FP structures in all patients - vascular structures (pulmonary
veins and arteries), pleural adhesions, small dense areas of hypoventilation or postspecific
changes. Even structures with non-nodular appearance were detected (trachea, fibrous
bands, pleural structures, ribs or mediastinum margins). The known CT artefacts (above all
the involuntary motion artefacts caused by breathing or the heart beat, or partial volume
effect artefacts) also increase the FPs.

Mediastinal structures

Mediastinal structures are parts of the mediastinum, the big area in the middle of the chest
between the two lungs. It contains the heart, big vessels (aorta, pulmonary vessels, vena
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cava), trachea and principal bronchi, esophagus and lymhatic nodes. Mostly the margins of
mediastinum were detected, but there were also some detections localized into the center
of the dense huge mass of mediastinum. We could reduce the mediastinal structures
detections by enhancing the segmentation process, mediastinal structures such as heart,
hilar structures, or other mediastinal soft tissues will be removed (Picture 9).

Picture 9 — FPs mediastinal structures a) left marginally part od the upper mediastinum, PND002 (312,272,19) b) vena
cava superior, PND004 (219,285,56) c) mediastinal structure detection between aorta and the left principal bronchus,
PNDO098 (269,283,71) d) margin of the heart, PND002 (379,244,120) e) margin of the heart, PND002 (396,162,161) f)
margin of the heart, PND049

Lung margins and ribs

Another often seen FP detections belong to pleura and the inner margins of ribs, especially
in terrain of CT artefacts. These FPs are widely attached to the border of the lung and there
are not nodular (Picture 10). Multiple detections of the same structure were also seen. For
example in c¢) the same rib was detected 4 times.
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Picture 10 — pleural margins and bone structures a) partial volume of the left sternoclavicle joint, PND024 (332,242,25) b)
left margin of the sternum, PND041 (308,210,49) c) inner rib margin, PND041 (347,285,12) d) partial volume of the apical
rib margin, PND024 (167,297,6) e) ventral rib PND002 (171,168,114) f) two detections of the pleura in the presence of the
movement artefact PND004 (172,167,169), (188,161,169)

Vessels, vessel branching points and bronchovascular structures

Vessel could be on 2D mistaken to the nodule because of its round shape and smooth
borders, but in 3D the shape is different — if we trace the vessel we can get from perifery to
hilus and back, it passes through the whole lung from the centre to the periphery giving the
branches and changing the diameter gradually. In 3D space, nodules have a near spherical
shape, whereas vessels have a tubular shape. The shape descriptors in all three planes could
help to recongise these two (Picture 11).

25



Picture 11 — vessels a) vessel branching, PND002 (330,240,68) b) PND002 (386,246,118) c) PND002 (79,306,178) d)
perifery vessels PND002 (409,197,159), (459,262,159) d) PND075 (117,350,111) f) central vessel PND004 (176,286,45)

Thin structures

The rest of detected structures have the thin shape in common, they could be long or short
and they are mostly fibrous bands, adhesions, scars or interlobia. They are usually attached
to the lung parenchyma border. The help to differentiate these thin structures from real
nodules could be the same as for avoiding the vessels (shape characteristics in all planes).

'c)
-

Picture 12 — thin structures examples a) pericardial, PND007 b) pleural, PND090 c) PND004

Examples of thin structures are shown in Picture 12.

B

a)
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Usually there are two lung lobes in the left lung and three in the right lung, between the lung
lobes we can find interlobia. There is one interlobium in the left lung and two or three (when
a variant accessory lobe is present) in the right one.

a) b)

Picture 13 —interlobia a) two detections of the left interlobium, PND007 (384,187,227), (400,177,227) b) PND049
(285,266,107) c) diaphragm, PND002 (411,276,169)

Bundles connecting pericardium to the posterior surface of the sternal bone
(sternoperidcardial ligaments) were repeatedly detected as nodules (Picture 14).

-

Picture 14 - sternopericardial ligaments a) PNDO07 (254,141,75) b) PND024 (260,180,71) C) PND041 (275,165,95)

Another mistaken structure was trachea (Picture 15).

£ 2 4

Picture 15 — tracheal ring a) PND002 (258,285,34) b) PND002 (241,226,54) c) PND024 (256,291,26)
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4.1.5 Repeated detections

Some structures were detected repetitively. These were usually fibrous bands, interlobia or
other long thin structures. These multiple detections also raise the number of FPs.

K

Picture 16 - Multiple detections of the same structure catched on one slidelnteresting findings

4.1.6 Shortcomings found in GT data

Observing the scans | have found some suspicious structures not marked as GT nodules.
These structures, even they are maybe not the typical nodules, deserve an attention. They
have to be detected and at least they will deserve further observation.

Big parahilar nodule-shaped masses

In the patient PND0O51, there were 72 GT nodules, the algorithm found 61 of them, it missed
11. There were many nice ,,exemplary” nodules, but there also were the big nodule-shape
masses in both hila, which were not signed as a GT nodules. The algorithm detected each of
this ,big ball“ even more than 10 times. In any case it is necessary to find these big
structures. They could be large lymphatic nodes, that often indicate a serious pathology
(Picture 17).
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Picture 17 - big parahilar nodules in PND051 a) also the dorsal mediastinal structures are sign as nodules b) two
detections of the big nodule with no GT sign, however there is a smaller GT nodule close c) three detections of the big
nodule in one scan, other smaller GT nodules in perifery (they were also detected in other slices)

Other suspect pathologies

The other mentioned pathologies can represent the nodular hypoventilations, pleural
nodules, postspecific changes and others. In any case they all are suspicious and should be
noticed (Picture 18), (Picture 19). It also depends on the number of these structures. The
judgement will differ whether there are more pathologies or if the whole rest lung
parenchyma is normal. This decision is sometimes hard even for the human expert and the
judgement differ based on the experience of the radiologist.
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Picture 18 — FPs detected structures not signed as GT nodules, but suspect to be problematic a) subpleural nodule,
PNDO004 (133,396,52) b) pleural changes, PND004 (81,260,111) c) subpleural nodule, PND004 (302,401,113) d) nodular
structure situated on the basis of the left lung, PND004 (365,392,186), (369,399,186) e) small oval nodule, PND024
(137,380,79) f) small nodule close to the bigger one, which was also detected, PND024 (193,163,126)

Picture 19 — FPs detected structures not signed as a GT a) apical plastic pleural changes or a nodule? PND004 (134,335,23)
b) small nodule? PND004 (93,388,72) c) postinfiltrative changes, pleural mass, hypoventilation or a nodule? PND004
(64,386,126))

Lung segmentation

Some of the scans | have checked contain nodules, but | have found no pleural effusion, no
infiltration, no large tumourous processes or post-lobectomies, no lung fibrosis or other
common pathologies that could lead to missclassification. | only found the paramediastinal
condensation (atelectasis or infiltration) in the right lung and a big (tumorous or better
atelectatic) basal pleural mass (Picture 20). | was surprised these pathologies did not
increase the number of FPs at all and FP rate didn’t differ from the others scans. This may
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reflect the good segmentation process when lungs are separated from other anatomic
structures. On the other hand if the important pathological process is segmented away, it
could be missed.

Picture 20 — PNDO51 a) large paramediastinal condensation in the right lung and only one detection of this dense mass,
probably it was segmented away b) big dense pleural mass in the basis of the right lung with no false positive detection

4.1.7 Detection results

Next to the typical shortcomings of all CAD systems such as vessels, fibrous bands, scars and
motion artifacts (26) our FPs were also related to the tracheal ring, mediastinal structures or
rib margins. A recent study demonstrated, that radiologist will accept 11% of FP marks in
nodule candidates they are not sure being a nodule (27). Radiologists will not miss any big
nodule (>5 mm) as well as they will not accept a FP mark of an evident non-nodule
candidate. This follows, that only FPs of small nodule-like structures can influence the
radiologist’s judgement — maybe we should keep these FPs.

In every case, we need to get rid of all typical and unnecessary FPs. Detecting mediastinal
and hilar structures could be fixed by improving the segmentation method. Counting the
shape characteristics could be used to differentiate between nodules and vessels or scars.
Typical nodular structures were found among the FPs too, this finding resulted to the GT
data correction (7.2).
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4.3 Analysis of the structure segmentation

The algorithm classifies detected candidates according to their characteristics (features).
Features are computed for every candidate based on the segmentation process, that
provides us the information which pixel belongs to the area of interest and which one is
,outside”. Segmentation process uses thresholding method and produces a binary
segmentation mask. Correct segmentation is the first step to get correct feature values that
fit the reality.

4.3.1 Data segmentation

For each detected nodule candidate a set of features is computed. Some features (such as
size, density, volume) are computed from the whole detected structure using the
yindividual” segmentation mask for each candidate. Some are computed from selected areas

III

using the ,,universal” segmentation masks (ballmasks, masks for the detection point,

annulus, octants). The aim of segmentation analysis is to find out if the segmentation masks
reflect the reality and features are computed from the well segmented area. All masks were
received from the original algorithm in ,,getNodFeatures.m* script. All the masks are 3D, but

in following pictures only 2D axial planes are displayed.

Universal masks

Examples of binary ,,universal” masks are drawn in the cutouts. There are universal masks of
balls, annular rings and octants used (Figure 1, Figure 2). All the various ball and annular ring
masks have the centre at the detecion point and differ in diameter (d;=2mm, d,=4mm,
d3=8mm for balls, d;=2-4mm, d,=4-8mm for rings). The octant masks are counted for 8
regions that are created dividing the three-dimensional space by planes x,y,z with the
detection point in the centre D(0,0,0) (Picture 21).
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“ binary ballmasks of various diameter values used for segmentation
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Figure 2 — exmaples of ,universary” binary octant masks
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Picture 21 - octants created by x,y,z axes in 3 dimensional space2

Individual masks

The ,,individual” masks (Figure 3, Figure 4) are visualized in slices together with the
corresponding anatomic structures. For tracing boundaries (boundaries are drawn as red
curves) a MATLAB function bwtraceboundary is used.
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Figure 3 - shows 24 axial slice example of the detected real nodule and its segmentation
defines the binary mask boundaries

10 20 30 40 50 10 20 30 40 50

10 20 30 40 50 10 20 30 40 50

10 20 30 40 G0 10 20 20 40 GO

10 20 30 40 G0 10 20 20 40 GO

Figure 4 - picture shows 24 axial slice example of the detected non-nodule structure and its segmentation mask in each
slice, the red curve defines the binary mask boundaries

? Provided by: http://mathworld.wolfram.com/Octant.html
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Another examples show well and bad segmented candidates. Nearly all the real nodules are
segmented well (Figure 5). Nodules in a) and d) and their masks have nearly rounded shape
with low variance in radius in all axes while non-nodules in b) and c) have irregular shape
with big radius differences. Features using individual masks are computed from areas
defined by the segmentation mask.
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Figure 5 — 4 randomly chosen good segmented exaples of the detected nodule and non-nodule structures (above) and
their segmentation binary masks (under), both with the segmentation curve

Nearly all bad segmented candidates are non-nodules (Figure 6). When looking on the
pictures showing the real image of the candidate (above), there is no doubt they all are non-
nodules. But when looking at the segmentation binary masks of each candidate (under),
nearly all, but at least b) and c) have a typical ,,nodular-shaped” mask and are easily
mistaken. These are also the typical FPs in our data — vessels and lung margins.
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Figure 6 — 4 randomly chosen bad segmented examples of the detected structures, non-nodules in all cases (above) and
it’s segmentation binary mask (under), both with the segmentation curve

4.3.2 Segmentation analysis results

Data segmentation for the real nodules and also for most examined non-nodule structures
correspond to reality. But there were also bad segmented structures, mainly non-nodules,
whose segmentation mask doesn’t fit the real shape. Nodules joining other dense structures
(mostly in subpleural, or paravascular locality) were mostly problematic. These problems
relate to the segmentation process which is based on thresholding. Because of this
segmentation imperfections neither the computed features reflect the reality. These
candidates can be easily mistaken for nodules and generates the majority of FPs.

34



Described segmentation problem is gone when universal masks are used. The universal
masks with the centre placed to the detection point (ballmask, annulus ring mask) fit all the
candidates. They could be helpful especially when the nodule candidate is attached to the
border of the lung, or if it is not perfectly segmented. We only have to be careful about the
mask diameter (d=2mm and d=4mm fit the smaller nodules and d=8mm fit the bigger ones).

The octant masks are of disputable significance. When used, features are counted only from
the part of the structure and from the out-of-nodule surroundings. This | find useless or even

harm.

In further computation, | prefer universal masks and individual masks.
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4.4 Feature analysis

List of computed features

For each nodule candidate a feature vector including 482 features is computed in the
baseline algorithm (28). Features describe the characteristics of detected candidates and
help the algorithm classify them. They describe size, intensity, homogenity, shape, curvature
and dimension on several scales, localization and distance to the boundary of the lung. In
most cases mean, median, variation, maximal and minimal values are computed. Some
characteristics (size and volume parameters) are computed from the outer ellipsoid
obtained from the covariance matrix eigenvalues (24), the rest from the segmented areas.
All types of segmentation masks are used.

Feature number Feature describing

1-16 Size, diameter, volume parameters
17-58 Intensity parameters

59-184 Curvature in 3 scales (0=2,4,8 mm)
185-310 Shape index in 3 scales (0=2,4,8 mm)
311-436 Dimension in 3 scales (0=1,2,3mm)
437-478 Local scale (LSC)

479-482 Location

Table 2 — short list of all the features®

Some of the feature computation is shown below:

An elipsoid E is fitted to each candidate and the size is expressed as the length of 3 half-axes
of an ellipse (a0,b,c) rotatet by angles «, 6 in 3-coordinate system.

Effective radius: r = Vabc (1.2)

Intensity values are representing the HU grayscale densities in real CT image. When n is the
number of all voxels NV within the nodule area.

Mean intensity: [ = XNEE (1.3)
n

When parameters k1 and k2 are the principal curvatures computed for each voxel in the
segmented lung parenchyma, then shape index and curvature are computed as:

Shape index: (1.4)
Sl = 3arctan(mj
T

1 2

: designed and computed by Dolejsi M.
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Curvature: CcV = /k12+k12 (1.5)

Dimension is estimated based on eigenvalues of Hessian matrix [w| > |w,| > |w5| and tells
us if the object is darker or lighter than the background.

Dimension: ) (1.6)
DIM 2@

Local scale is an invariant descriptor of shape and translation obtained from the eigenvalues
of Hessian matrix.

4.4.1 Visual feature analysis

False positives are classified as nodules based on characteristics that are similar to their
,hearest” real nodule neighbours from the training data. On the other hand false negatives
are classified as non-nodules due to similarities to the non-nodule training samples. In some
computed characteristics we can easily use the naked eye to qualify if the values reflect the
reality or not and to estimate differences.

To verify, if the descriptors are consistent with visual assessment, | chose some examples of
random FP detections and found first four nearest neighbours (in 482-dimensional feature
space) from the TP data set for each FP. The observed features describing size, volume,
density, shape and curvature were compared with the structure appearance.

Features that can differentiate presented FP and TP structures are shown in tables below
the pictures. The original feature values are of different scales and units. To make the data
more informative normalization process was performed. ,Example 1“ shows both original
(orig) and normalized (norm) feature values. In examples 2, 3 and 4 only normalized values
can be found.

Example 1

The first structures (Picture 22) are the same density and almost all of them are localized
subpleuraly, but they can be visually differentiated by shape. These structures did not
significantly differ in observed features describing neither curvature or shape index, nor
dimension. The biggest difference between FP and TPs was found in the feature nb.16
describing the variance of radius, in the table below it is evident that this feature in FP is
much higher then in TPs. This corresponds to the FP’s nonregular shape.
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Picture 22 - randomly selected FP and the four nearest TPs (example 1)

Feature nb. FP TP1 TP2 TP3 TP4
16 - orig 11.0437 0.2727 0.0417 4.3895 0.5664
16 - norm 0.2145 0.0050 0.0006 0.0851 0.0107

Table 3 — chosen feature values (example 1), original data (orig) and normalized data (norm) for feature nb. 16 (variance
of radius)

Example 2

Another FP sample (Picture 23) is visually different in all observed features, mainly in size,
intensity and curvature. Numerically it differs in mean intensity of the segmented structure
(feature nb.17) and in the variance of intensities (feature nb.18), in mean curvature in all 3
scales (features nb.59, 101, 143) and also in variance of dimension in all 3 scales (features
nbh.312, 354, 396). TPs have higher curvature values and lower dimension variance.
Surprisingly there was no significant difference in shape index.

i M i Pots’ e

358 168 2rz2
185 196 211

N

20 40 0 20 40 0 20 40 B0

FP TP1 P2 TP3 TP4

Picture 23 — randomly selected FP and the four nearest TPs (example 2)

Feature nb. FP TP1 TP2 TP3 TP4

17 0.3469 0.1515 0.1870 0.1412 0.2490
18 0.1192 0.0634 0.0913 0.0516 0.0584
59 0.3118 0.7402 0.4084 0.7770 0.4712
101 0.2960 0.8085 0.4787 0.5797 0.5747
143 0.4899 0.9017 0.6677 0.7710 0.7367
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312 0.6950 0.3159 0.4727 0.3656 0.5259
354 0.6568 0.0959 0.4102 0.5558 0.4362
396 0.4275 0.0467 0.3422 0.0222 0.2999

Table 4 - chosen feature values (example 2)

Example 3

Structures in another picture (Picture 24) visually differ in size and shape. Numerically they
can be differentiated mainly by radius variety and shape index values. The mean shape index
(feature nb. 185, 227) and shape index variance (feature nb.186) is lower in FP, while the
variance of radius (feature nb.16), curvature (feature nb.60) and dimension (feature nb.396)
is much higher. | find interesting that even if the nodules TP1, TP2 and TP3 look similar, there
is quite a big difference in shape index value and curvature variance, the other features
don’t differ at all.

FHIG41 PHDO7S PHDOO? PHI02S FNIGEG
213 G4 120 443 193
201
52

192 326 162
32 214 7

30

40

&0
0]

20 40 0

FP TP1 TP2 TP3 TP4

Picture 24 - randomly selected FP and the four nearest TPs (example 3)

Feature nb. FP TP1 TP2 TP3 TP4
16 0.1387 0.0079 0.0001 0.0001 0.0395
60 0.5071 0.0940 0.1791 0.2877 0.0839
185 0.0441 0.1055 0.1960 0.0025 0.0003
186 0.0001 0.0006 0.0023 0.0025 0.0003
227 0.0803 0.1197 0.1313 0.1702 0.3422
396 0.1495 0.0275 0.0124 0.0077 0.1167

Table 5 - chosen feature values (example 3)

Example 4

Last example (Picture 25) shows FP (vessel in this case) that visually differs in curvature and
shape, it is nearly the same size and density as all the TP nodules. Contrary to the visual
parameters, the computed values differ mainly in size parameters — in volume (feature
nb.10), surface (feature nb.13) and radius variance (feature nb.16), another differences are
in variance of dimensions (features nb.312, 354). The values for size parameters are much
higher for FP and it seems to be tubular shaped and much bigger than all the TPs. There is
simple explanation for this — we only check the one (axial) plane and have no visual

39



information about z-axis. This finding resulted in need of multiplanar imaging (3D) in further
investigation (6.2).

Checking these 5 structures we can also notice, that they are all situated in perifery of the
left lung not far from the dense rib structure. It is clear that the localization and
surroundings of the nodule candidate is not as important as its density, shape and other
features describing the nodule itself. This finding can lead to the same conclusion as in
chapter (Chyba! Nenalezen zdroj odkazl.), to concentrate to nodule itself and don’t care for
urroundings.

FHO0SS FHIOGL FHDOOT FHI024 FHOOSL

433
310
168

426 445
346 328
116 187

208 201
350 148
26 212

20 40 B0 20 40 60

FP TP1 TP2 TP3 TP4

Picture 25 - randomly selected FP and the four nearest TPs (example 4)

Feature nb. FP TP1 TP2 TP3 TP4

10 0.1006 0.0252 0.0099 0.0125 0.0435
13 0.3182 0.0452 0.0230 0.0302 0.1096
16 0.4079 0.0231 0.0267 0.0716 0.3003
312 0.6181 0.0989 0.1155 0.5223 0.6182
354 0.6893 0.0481 0.3839 0.3242 0.6391

Table 6 - chosen feature values (example 4)

Visual feature range

Last visual analysis included sorting the detections in right order depending on the selected
characteristics — volume (Picture 26, Picture 27), surface (Picture 28, Picture 29), mean
intensity of the whole structure (Picture 30, Picture 31) and the intensity just in the
detection point (Picture 32, Picture 33). Randomly chosen structures from the whole
candidate nodule set and only from TP set were used. The results are shown in following
pictures.

40



FHDO23 FHDOBY FNDOZ7 FNDOSE FHDO4E FNDOZ23 FHDOSL FNDO23 FNDO2E FHNDOZ3
271 366 200 114 268 342 ES 176

137 363 356 303 201 324 257
235 ] E7 98 8z 186 57

20

]

30

40

50

B0

20 40 &0 20 40 &0 20 40 60 20 40 B0 20 40 B0 20 40 B0 20 40 B0 20 40 60 20 40 60 20 40 60

Picture 26 — nodule candidates sorted by the volume
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Picture 27 — true nodules sorted by the volume
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Picture 28 - nodule candidates sorted by the surface
PNDOLL PNIG7S PHDOO PNDOST PNDOOT PNDOEO PNDOSL PHDOE0 PNDO7S PNIOEO
367 432 123 54 431 145 134 244 355 108
394 210 242 330 161 410 14 301 159 271
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20 20
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Picture 29 — true nodules sorted by the surface
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Picture 30 — nodule candidates sorted by the mean intensity value
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Picture 31 - true nodules sorted by the mean intensity value
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Picture 32 — nodule candidates sorted by the intensity in the detection point
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Picture 33 - true nodules sorted by the intensity in the detection point

It can be mentioned, that the intensity in the detection point describes the intensity value
better then the mean intensity in the whole segmented structure.
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4.4.2 Visual analysis results

Visual analysis verified, that most of chosen feature values are consistent with visual
assessment, so the features are counted well. The ,nearest” structures look similar, but
differencies can be found. There are characteristics that can separate these examples and
assign them to the correct class. The reason why the classificator did not use these ,usefu
characteristics may be that there are many other features which can’t differ the structures

III

(for example candidate localization or measurements in structure surroundings).
In future we need to train only with effective descriptors to prevent misclassifications.

It is evident that only axial planes are not enought for visual valuating and we need
multiplanar imaging.

4.4.3 Computed feature analysis

Another part of characteristics analysis is checking how they can estimate the inter-class
diferences. | separated the detected structures into two classes (nodule/non-nodule) and for
each feature | calculated histograms for both classes. Then | applied a simple thresholding
method and for each feature found the ideal threshold (boundary), that maximizes the class
separability. Once the threshold is found we can use it for predicting the class of new points
by checking on which side of the boundary it falls. For each threshold the classification error
(err) is computed Separability =1-error. It determines the success of data separation.

Y.(nodules > threshold) + Y;(nonnodules < threshold) (1.7)
Y nodules + Y, nonnodules

1—err=

Histograms examples

Three characteristics well separating both classes are chosen in following pictures. Each
picture consists of two charts presenting histograms (above) and classification error (below)
in the whole feature range.

Feature value interval range is divided into 10 subintervals and histograms of both classes
are displayed (nodules are in red and non-nodules in blue), the total number of all
detections in each class is considered to be 100%. X axis shows intervals, y axis shows how
much of the total sum is represented by this subinterval group (see above charts).

Line-plot representing the classification error in y axis for each feature value in x axis was
created (see below charts).

Numbers between the charts show the minimal found classification error and the feature
value that fits this error.
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Picture 34 — data distribution (nodules=red, non-nodules=blue) for the feature nb. 3 (maximal eigenvalue for segmented
nodule candidate), minimal classification error err=0.31 for threshold value thr=8.00 was found
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Picture 35 - data distribution (nodules=red, non-nodules=blue) for the feature nb. 202 (mean shape index for ballmask
with diameter d=4 mm), minimal classification error err=0.26 for threshold value thr=0.48 was found
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Picture 36 - data distribution (nodules=red, non-nodules=blue) for the feature nb. 212 (mean shape index in annulus with
diameter d=4-8 mm with the centre in the detection point), minimal classification error err=0.26 for threshold value
thr=0.48 was found

This analysis helped us find out, how the single feature can separate the data. We can use
this method later to select required characteristics and to remove the redundant.

Selecting features

Table 7 shows how many features remain in the feature matrix when different thresholds for
the separation error is set. There is only one feature with classification error err<0.25, this is
the feature nb.229 which describes the shape index in the annulus ring mask of diameter
d=4-8 mm.

For err<0.3, there are 16 features describing mainly mean and maximal shape index values
(mean and maximal shape index value for the whole segmented structure, mean and
maximal shape index for the segmented ball with diameter d=2 mm and d=4 mm and the
same characteristics for segmented annulus ring with dimeter=4-8 mm and d=2-4 mm) and
maximal dimension for the whole segmented structure on all 3 scales.

For err<0.33, features describing size are added (eigenvalues for segmented nodule,
effective radius, volume, surface, variance of diameter.

Class. Err <0.25 <0.3 <0.33 <0.35 <0.4 <0.45 <0.5 <0.5

Features 1 16 60 81 145 207 452 482

Table 7 — number of features in the feature matrix for various classificatio error value

There are 30 features with the highest classifacation error (err=0.5). They are only the
features describing the curvature values in balls or annuli and local scale (LSC) values.
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Displaying histograms of these characteristics, the data for both classes overlaps heavily.

These features are not able to separate data well.

The results correspond to the segmentation analysis, there are group of features separating
the data well (shape index, variance of radius, size) and the group of features separating the
data bad (LSC values, or features counted using octant masks).
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5 PROPOSED METHOD

The whole algorithm consists of two main parts, nodule candidates detection and nodule
candidates classification respectively. The process of candidates detection is completely
adopted from baseline method (25) with no changes in algorithm. The detection process was
only analysed (see previous chapters). My own work is the data classification part. It was
processed independently on the baseline method. The classification process consists of
three steps: data preparation, data dimensionality reduction and finall classification.

5.1 Dimensionality reduction

Reducing the dimensionality leads to noise reduction and removing the redundant
attributies. Dimensionality reduction methods select features or creates new features based
on the existing ones. Both methods solve the problem of large number of variables, which
could lead to overfitting and lack of memory space.

5.1.1 Feature selection

Selecting the subset of relevant features is called the ,feature selection” method. It sets a
subset of features that are capable to place the sample to the right class. In supervised
learning (learning on the labeled dataset) it is easy to find these features. Feature selection
shorten the training time and could prevent overfitting. To select features we can use
wrapper, filter, embedded or hybrid models (29). | chose the filter model, which selects the
features with the highest score. Each feature was evaluated independently (univariate
feature evaluation).

Chosen features

The features were chosen based on the value of the classification error described in (4.4.3).
Training dataset of nodule containing scans was created and sensitivity and specificity rates
were couned for all error thresholds (err = 0.25 — 0.5) in this dataset. The threshold with
best results (err<0.3) was chosen. Using this threshold, 16 features remain in the feature
matrix. For counting the sensitivity and specificity values for comparing the feature subsets,
the kNN classifier with k=100 was used.

Picture 39 shows the sensitivity and specificity rates for 7 used classification thresholds
[0.250, 0.275, 0.300, 0.325, 0.350, 0.375, 0.400]. X axis shows the threshold value, y axis the
performance rate. The experiment was performed on all nodule containing scans (n=18).
Specificity rates are stable, reaching 80-90%, but there are differences in sensitivity rates. It
is evident, that best sensitivities are reached for err=0.3, with no sensitivity drop under 45%.

Next two pictures are showing the same comparison of performances, but only for one
chosen scan (PNDO60). The threshold values are of various value range.
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Picture 37 — sensitivity and specificity rates achieved when using different values of classification thresholds (at interval
0.25-0.4), performed on each of 18 nodule containing scans, kNN classifier with k=100 applied, threshold set at 0.3 has
significantly the highest sensitivity values than the others
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Picture 38 — number of features used for each classification error rate in the range 0.25-0.5 (above), comparison of
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rates (under), data for PND060
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Picture 39 - number of features used for each classification error rate in the range 0.25-0.36 (above), comparison of
sensitivity and specificity rates (under), data for PND060

Independent significance feature test

Significance feature test is a simple test, which removes obviously useless features.
Sometimes it is used as pre-processing phase to reduce the number of characteristics. This
method was invented by Weiss and Indurkhya (30) and the Fisher’s discriminant ratio is used
to count the significance power of each feature. Features are sorted according to their
power and only the most powerful ones are chosen (31).

(mean, —mean, } (1.8)
var,— var,

Sig =

5.1.2 Principal component analysis

Principal Component Analysis (PCA) is a method used for reducing the dimension of
characteristics and when we want to get rid of relationships among variables. It creates a
new set of features based on the existing one.

The principal components can be found by calculating the eigenvectors and eigenvalues of
the data covariance matrix after removing the mean from each sample Xi (it is supposed the
sum of the samples is zero). Zi is the approximation of Xi. Residuum res should be minimal.

D X, =0; X;eR (1.9)
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Z;=> wY;; YieR

res=> |X, -z’

The eigenvector with the largest eigenvalue corresponds to the direction of largest variation
(32). The total variance is defined as a sum of the variances of all components and could be
expressed as a sum of all the eigenvalues.

PCA finds a direction that corresponds to maximal variance among the data points, then it
rotates the original data to the new coordinate space (the space is given by this principal
direction) and it generates new feature matrix with the same size as the original one where
the features are reordered based on the decreasing variance (33).

Chosen features

Features were chosen based on their data variance description. The variance threshold was
set as 1% and all features describing more than 1% of the data variance were chosen into the
new reduced feature matrix. Using this criterium, 15 features create the new feature data. In
Picture 40 features are sorted by their ability to describe the variance of the data (in %). Best
50 features are shown.
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Picture 40 - features sorted by their ability to describe the data variance, each ,,0“ point represents one feature
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5.2 Classifiers

The last part of the data evaluation is to apply the classification method. Classifier is a device
with n inputs and y=1 output, which consists of two classes y € {1,0}. We are using a binary
classifier.

In baseline method the Fisher Linear Discriminant and Multithreshold method were applied
(3.1.1), in this work classifiers based on Nearest Neighbours and Decision Trees were chosen.

5.2.1 Nearest Neighbours

K-nearest-neighbour classification is one of the most simple and fundamental ,,supervised”
classification methods (34). It is commonly based on the Euclidean distance between the
training samples and the test samples. The Euclidean distance between two samples (a,b)
with f1,f2...fn features is defined as:

d(a’ b): \/(afl _bfl)z +(af2 _bf2)2 +...+(afn —bfn)z (1.10)

The predicted class of the test sample b is set equal to the class of its nearest neighbour
training sample a. The distance of the nearest samples is defined as:

d(a,,b) = min_{d(a,,b)} (1.11)

5.2.2 Decision trees

Decision tree learning method creates a tree-shaped model based on provided train data for
predicting values of the test data. Having the data of two classes, each tree is represented by
several binary splits with two possible results ,1“or ,0“ Classification trees are adaptive and
robust, but weak and do not generalize well. To enhance their performance, we can perform
bagging or boosting (both improving prediction and reducing the variance of unstable
procedures). Bagging uses simple averaging and combines results of based classifiers by
voting, the final predicted class is the class with most ,,votes”. Boosting uses weighted
averages and traines the base classifiers on weighted data. Weights are based on the
performance of previous classifier, with increasing the weights for misclassified data (35).
Boosting is typically aplied to weak learners that don’t have to be much better than random
guess (36). Bagging usually construct deep trees while boosting shallow trees.

Random forest is a method using many decision trees as classifiers and random sample of
features (typically ./ features) at each tree split.
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5.2.3 ROC curve

ROC curve (Receiver Operating Characteristic Curve) describes the performance of a model
across the entire range of classification threshold. It is an excellent tool for assessing class
separation. It shows the relationship between sensitivity and specificity values - the true
positive rate (sensitivity) versus false positive rate (1-specificity).

ROC curve in binary classifiers

Binary classifier (such as kNN) separates data into 2 classes (true/false = 0/1), it produces
discrete outputs. For plotting the ROC curve, these outputs have to be scored (else the ROC
curve produces only one-point). The score is a value that corresponds to the probability that
the data point belongs to the chosen class. Simply, the score value express how certain the
algorithm is. A high score signifies that the instance is more likely from the positive data
class, low score signifies that it is more likely from the negative class.

When using kNN, | defined scores based on the ratio of classes in the neighbourhood. |
counted the score values as a sum of positive data class in all found neighbours.

5.2.4 AUC

AUC (Area Under Curve) is the area under the ROC curve. It is a single number, which sets
the performance. AUC=1 indicates perfect performance when all positive examples xn={1}
are classified as positive ones, any deviation from this ranking decreases the AUC value,
AUC=0.5 indicates the random performance.

Let n is the number of positive examples, and m is the number of negative examples. Then
x1..xn={1} is the output of positive examples of the classifier and y1...ym={0} is the output
of negative examples of the classifier and fx is the indicator function. Then AUC is given by
(37):

AUC =

Zinzl ern:l fyj<><i (1-12)
nm

In MATLAB ROC and AUC could be easily received using perfcurve command.
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6 IMPLEMENTATION

The data analysis and the whole algorithm was implemented in MATLAB 2011b run under
the Unix system. It is divided into several scripts and functions, all available in provided
archive.

6.1 Archive description

The principal algorithm scripts, functions and data are attached. This data is provided on CD
and consists of these files:

Nodule - root folder contaning all the data
Nodule/data — subfolder containing all the input data
Nodule/results — subfolder containing exampes of output data
Nodule/code — subfolder containing used scripts and functions

Readme code.txt - operating instructions to all scripts

Readme data.txt — description of provided input and output data

Dipl.pdf — diploma thesis text

6.2 3D visualization

First it was possible to view the data only in 2D space, in transversal (axial) plane. In praxis, it
is routine to examine CT data in 3 orthogonal planes: axial, coronal and sagittal (Picture 41).
For providing a cutout view in all 3 planes a simple script zobraz3.m was made. The
resolution in x and y axes (the axial plane) is higher than the resolution in z axis (coronal and
sagittal planes), this is influenced by the slice thickness and the voxel size.

sagittal

Picture 41 — 3 fundamental planes of sectioning in medicine imaging
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Using all 3 planes we can easily get a grasp of structure appearance (Picture 42, Picture 43).
Both pictures are divided into 4 parts, we can see the whole axial slice (with scan number
and xyz coordinates above) and the three cutout views (in axial, coronal and sagittal plane).
Red circle is always placed at the detection point.
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Picture 42 - Example of a nodule structure visualized by zobraz3.m
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Picture 43 - example of a non-nodule structure (margin of a sternocostal junction) visualized by zobraz3.m
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7 RESULTS / EXPERIMENTS

7.1 Data preparation

Data containing all the detected nodule candidates are available on cmp.server as:
scratch/dolejm1/nodclassdata. Script zparudomatice.m converts this data from struct to
one well-arranged matrix used for further computation. Created input data matrix is saved in
enclosed CD archive as: Nodule/data/detdata.mat. There are two matrices, the first is
containing normalized data and the second original data without normalization (see
readme_data.txt for more details). Finally | used the normalized data only for visual feature
analysis (4.4.1) to make the feature values clear and easy comparable. The original data was
used for the rest of my work, not to misrepresent the computed values.

Each column of input ,,detdata” matrix represents one detected point, rows row(1)
represent the number of set row(1), scan row(2), 3 coordinates row(3,4,5), true class label
row(6) and 482 features row(7-489). The whole data consists of 2 sets and the overall
number of detected nodule candidates is 410994.

For further experiments only data for the first set counting 98 patients was used row(1)==1.

7.1.1 Data normalization

Normalization is a process rescaling the numeric variables in the range y € (0,1). Xmax and
Xmin are the maximal and minimal values for variable x.

_ X~ Xmin (1.13)

Xnormalized
Xmax — Xmin

7.2 Ground truth correction

First of all the GT data was corrected due to shortcomings discussed in (4.1.6). Script for
excluding non-nodule structures and including new nodules (nodules missed by the
supervisor) was constructed. All the included and excluded structures were visually checked
using zobraz3.m.

GT data will never be the same and perfectly correct, when more than one radiologist is
examining the scans — they can interpret the same observations differently . Some experts
can target the sensitivity and mark better all of the suspicious structures and the others can
target on specificity and notice only the real pathologies. This different judgement is caused
by different experiences, praxis length and other parameters. This is one of the reason, why
the results of supervised learning differ (supervisors are the inconsiderable reason) and why
it is necessary to provide the chance to change the GT data again.
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For preserving the original GT information, the existing GT data was not totally changed.
Functions for changing GT data (readinouts.m, upravGT.m, upravkres.m, velikost _pixelu.m)
were inserted into the existing script prepareREGanalysisNaseData.m. For further individual
changes it is possible to use new GT, the original GT data or to create your own new re-
corrected data.

7.2.1 Original and corrected GT comparison

According to the original ground truth, nodules were present in 18 of the patients, each
counting 1 - 72 nodules. After the GT data correction 34 new nodules were inserted into the
GT data and 37 nodules were removed. As a whole there are now 232 nodules in 18
(different) patients, each counting 1 - 78 nodules.

For comparing the results before and after GT correction, the classificaton process described
in 7.5 was used. PCA dimensionality reduction method followed by kNN classification was
applied. This test was performed on the whole dataset containing 98 scans. Table 8 shows
the increase of resulted sensitivity values and number of false positive detections per scan.

Method (PCA followed by kNN, k=100) Sensitivity (%) FPs/scan
Results before GT correction 87.8 148
Results after GT correction 91.4 151

Table 8 — comparison of original and new GT data classification process

7.3 Data validation

For ensuring that the process operates on correct and clean data, we have to use some
model validation technique. This divides data to the training set (data used to train the
classifier) and the testing set (unknown data used to estimate effect and error rate of the
trained classifier).

7.3.1 Cross-validation

Cross-validation method divides data randomly into k equal size subsamples. Due to random
division, results of our classification process using k-fold-cross-validation method is
influenced by multiple detections of the same structure. The same structure can be found in
training and testing data at the same time and leads to false low error rate (38). The error
rate F is estimated as the average of separated error rates Fi.

1

E= FZ:(:lEi

(1.14)

To avoid this it is necessary to split the data into disjoint subsets.
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7.3.2 Per-patient division

| applied per patient division using one patient scan for testing and the rest 97 scans for
training. The training data were then partly reduced by removing the randomly chosen 1/10
of the data (leave-part-out method).

data = set{sq,5; ... Sog} (1.15)
test =s,; Sy € set;

1
train = s,; s, € set; — Sy — 10 * Setq

7.4 Evaluation criteria

In the input data (detdata.mat), each detection of a real nodule structure is marked as ,, 1,
that means it is a nodule. Each detection of a non-nodule structure is marked as ,,0“. All
detections, even the multiple detections of the same structure are used (this raises the
number of real nodule structures in training group). Results of the classification process are
compared with the real class of the testing data.

Nodules found by the algorithm are considered to be the true positive detections (TPs),
missed nodules are considered to be the false negative detections (FNs). False positives
(FPs) are all the non-nodule structures detected as nodules.

To measure the performance of the classifier, sensitivity and specificity rates are counted
based on the number of true positives, false positives and false negatives.

i TPs (1.16)
Sensitivity = ———
(TPs + FPs)
1.17
Specificity = __TNs (1.17)
(FPs +TNs)

To make my results comparable with the results from baseline algorithm, | used a modified
original script prepareREGanalysisNaseData.m. It computes the overall sensitivity rate and
number of FPs for the whole used dataset and gives results in the same form as the baseline
algorithm. Nodule is considered to be a TP if exists any detection point DET; from the set of
detections DET, that matches any nodule point GT; in the nodule area GT,. If it does not
exist the nodule is marked as FN. All out-lying detections are considered as FPs. GT, area is
delimitated by the elipse with x,y,z half axes lenghts enlarged of 10% with the centre in the
x=0,y=0,z=0.

TP = {DET; € GT,} (1.18)
FP = {DET; ¢ GT,}
FN = {GT; ¢ DET,}
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7.5 Experiment 1 - dimensionality reduction methods

As a first experiment | compared dimensionality reduction methods. Training and testing
data were prepared as mentioned in 7.3. For classification, the kNN (k=100) classifier was
performed. Sensitivity rate, number of FPs and AUC were counted for each of the 98 scans,
the final results are reported as a mean. From feature selection methods | chose two.
Selecting features based on the classification error threshold and feature selection method
based on Fisher’s discriminant ratio (both described in 5.1.1). The third dimensionality
reduction method is PCA.

7.5.1 Experiment 1 - results

For threshold based feature selection method only features with classification error<0.3
were used (16 features used).

For Fisher’s discriminant method the significance power threshold for choosing features was
set at median value of all significances. It means that only features of higher significancies
than a median of significancy for all features are used (146 features used).

sigr > median(sigr); f €F (1.19)
PCA is a part of Statistics Toolbox and could be computed using various commands in

MATLAB: pca, pcacov, princomp. ,,Princomp” was chosen and features that each interpret
more than 1% of the data variability were included (15 features included using this

criterium).
Method Sensitivity (%) | FPs/scan AUC
Threshold based feature selection method* 88.8 367 0.87
fselection”
Fisher’s discriminant test for selecting features® 83.2 361 0.77
,Signiffeat”
nPCA® 91.4 151 0.94

Table 9 - results for comparing dimensionality reduction methods (experiment 1)

From all three methods PCA has the highest sensitivity and the lowest number of FPs per
scan. Method based on Fisher’s discriminant was the worst, one possible reason can be the
huge number of used nodule features (146 used features, while the other two methods have
comparable number of used features). This method was rejected and it is not used in further
experiments.

* Results saved as: vysledkyfselectionkNN100
> Results saved as: vysledkysigniffeatkNN100
® Results saved as: vysledkynPCA15kNN100
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7.6 Experiment 2 - classification methods

For classification step classifiers based on Nearest Neighbours search and DecisionTrees
were performed. | applied quick and available MATLAB knnclassify, TreeBagger and
fitensemble commands. For this experiment only scans containing nodules were included
(nscans=18) into the testing set, the training data remains the same.

7.6.1 Finding the optimal number of nearest neighbours (k)

To find the ideal number of nearest neighbours | computed the equal error rate for first
1000 nearest neighbours for each test sample. The mean lowest error rate falls into interval
k € (100,200) with the lowest k=130 value. Therefore kNN classifier with k=100 nearest
neighbours were applied in further tests. Equal error rate was counted as:

err = (1— sensitivity) + (1 — specificit y) (1.20)

Picture 44 shows that the error rate first decreases very fast, then it starts to increase slowly.
When the number of nearest neighbours is raising, values of sensitivity and false positive
rate are increasing and the value of specificity is decreasing (Picture 45).
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Picture 44 - error rate depending on number of used k-nearest neighbours, performed on the dataset of 18 scans
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Sensitivity and specificity depending on number of nearest neighbours
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Picture 45 — sensitivity and specificity rate depending on number of used k-nearest neighbours

7.6.2 Bagging method

For creating bagged decision trees, command TreeBagger was used. For finding the optimal

number of grown trees | applied the algorithm with 100 trees for the dataset. Then |
displayed the out-of-bag-error (error of unused trees) for each tree. The out-of-bag error is
decreasing with increasing number of used decision trees. The optimal number of used trees

was set as 30, because there is no steep decrease of error rate when more than 30 trees are

used.
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Figure 7 — out-of-bag error for each of 18 scans, TreeBagger classifier performed
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When the input data is not balanced or we need to favour one of the classes,
misclassification cost have to be set. Cost matrix is a square matrix [0 a;b 0] which sets the
cost of placing an observation into bad class. The classifier prefers ,costly” class which is
oversampled, while the ,less costly” class is undersampled by the computer (39).

In our dataset cost matrix did not work well and even the high cost of ,,nodule” class did not
change the results. To increase the cost of this class | added duplic.m script for re-sampling
the input data manually. User can manually modify the size of training data seting the
parameters for oversampling the ,nodule” trains and undersampling the ,nonnodule”
trains.

7.6.3 Boosting method

In MATLAB it is possible to perform many methods using a number of weak learners into one
high-quality predictor (40). As a third method | applied fitensemble command with decision
tree used as a weak learner.

For binary classification AdaBoostM1, GentleBoost and LogitBoost method is required (40).
For choosing the best one, resubstitution error and ROC curves were drawn up for each
(Picture 46, Picture 47). Resubstitution is testing the data on the provided set already used
for training, the error rate received from this testing is called the resubstitution error. It says
how good the results are when applied on training data. Based on this parameter Logit Boost
was chosen for the further testing.

-3

113( 10 T T T T T T T T T

~— HAdaBoost
LogitBoost

10 ;:iL Gent leBoost

Resubstitution error

5 | 1 1 1 1 1 1 | |
0 20 40 Ei a0 100 120 140 1E0 180 200

Humber of decizion trees

Picture 46 - resubstitution error values for 3 tested boosting algorithms
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ROC curve for Boosting methods
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Picture 47 — ROC curves for 3 tested boosting algorithms

7.6.4 Experiment 2 - results

For classification | chose classifier based on nearest neighbours and classifiers based on
decision trees (enhanced by bagging and boosting method).

Results of the classifier performances are shown in following tables. Method (performed
classifier), dim. Reduction (performed dimensionality reduction method), Sensitivity,
FPs/scan and AUC results are presented in the columns. Column ,Number“ presents the
number of used nearest neighbours or decision trees. Methods with ,,duplic” in the title are
applied on the modified training data (see 7.6.2) received undersampling and oversampling
the classes.

Tables are showing the first results and results recalculated into the same sensitivity rate.
Charts are displayed for every method to compare the results.

Some of the resulted data used for creating the ROC curves are available in data archive in
subfolder Nodule/results.
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kNN classifier

Method Number | Dimensionality | Sensitivity Specificity | FPs/scan AUC
of kNN reduction [%] [%]
kNN 100 Fselection 77.0 91.3 426 0.87
kNN 1000 Fselection 93.1 61.4 1909 0.93
kNN 100 nPCA 88.8 96.0 186 0.94
kNN’ 1000 nPCA 96.0 82.8 838 0.97
Table 10 - classification results (test data=18 scans), kNN method used
Method Number | Dimensionality | Specificity rates for chosen sensitivities
of kNN reduction Sens=77% Sens=90% Sens=95%
kNN 100 Fselection 91.3 - -
kNN 1000 Fselection 94.3 73.9 -
kNN 100 nPCA 99.3 - -
kNN 1000 nPCA 99.2 95.1 86.9

The best results are reached using kNN classifier with 100 or 1000 nearest neighbours. PCA is
better dimensionality reduction method, than feature selection.
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Picture 48 — performance curves for kNN classifier

7 Results saved as: vysledkynPCAKkNN1000

64

0,35

0.4 0,45

0.5




Bagged trees

Method Number | Dimensionality | Sensitivity [%] | FPs/scan AUC
of trees | reduction

TreeBagger 100 Fselection 55.5 2 0.94
TreeBagger-duplic 30 Fselection 79.4 107 0.94
TreeBagger-duplic 100 Fselection 63.0 127 0.93
TreeBagger-duplic 30 nPCA 74.1 30 0,96
TreeBagger8 100 nPCA 46.8 2 0,96
Table 11 - classification results (test data=18 scans), bagged trees method used

Method Number | Dimensionality | Specificity rates for chosen sensitivities

of trees | reduction Sens=77% Sens=90% Sens=95%
TreeBagger 100 Fselection 98.7 90.5 -
TreeBagger-duplic 30 Fselection 96.2 85.1 59.0
TreeBagger-duplic 100 Fselection 94.4 78.1 57.7
TreeBagger-duplic 30 nPCA 98.5 91.1 87.7
TreeBagger 100 nPCA 98.7 90.0 78.0

The best results are reached using both TreeBagger classification methods with PCA
dimensionality reduction.
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Picture 49 — performance curves for TreeBagger classifier

® Results saved as: vysledkynPCATreeBagger100
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Boosting method

Method Number | Dim.reduction | Sensitivity [%] | FPs/scan AUC
of trees

LogitBoost9 100 Fselection 58.2 6 0.96

LogitBoost° 100 nPCA 54.3 4 0.96

LogitBoost-duplic 100 nPCA 94.4 1169 0.96

LogitBoost-duplic 200 nPCA 94.4 946 0.96

Table 12 - classification results (test data=18 scans), LogitBoost method used with decision trees as a weak lerners

Method Number | Dim.reduction | Specificity rates for chosen sensitivities

of trees Sens=77% Sens=90% Sens=95%
LogitBoost 100 Fselection 97.0 88.2 73.6
LogitBoost 100 nPCA 95.2 87.5 78.5
LogitBoost-duplic 100 nPCA 94.7 87.5 80.0
LogitBoost-duplic 200 nPCA 94.6 86.6 78.3

There is no significant difference in performance rates among all presented LogitBoost
methods. The only difference is in ROC curve shape. Methods based on PCA dimensionality
reduction have better results when used in higher sensitivities.
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Picture 50 - performance curves for LogitBoost classifier

% Results saved as vysledkyfselectionfitensemble100
1% Results saved as: vysledkynPCA15fitensemble100
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Classifiers comparison

The best results are reached when bagging or boosting classifier with PCA as a
dimensionality reduction method is used. For comparison of the performed methods see
Picture 51.
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7.7 Comparison with other works

There is an evidence, that performances of CAD systems signifficantly differ when tested on
different datasets. Based on Table 13 some results of the authors seem to be outstanding,
even unreal. For example Hirose (18) reports 71% sensitivity with less than 0.95 FPs per scan
and Choi (22) only 2.27 FPs per scan at more than 95% sensitivity rate. For better evaluation,
the resulted number of false positives should be reported in slices, because the number of
slides per one scan has a significant influence on the resulting number of FPs. Zhao (14)
reports maximum 80 slices per scan, our average number of slices is more than 4 times
higher (slices=350), numbers of our FPs/slide is in that case much smaller than 0.5. The
results also depend on the input data set and the nodule size. Some of our nodules (>1mm)
are much smaller than the nodule size reported by the others, even nodule>5mm for Gori et
al. (20).

Author Sensitivity [%] | FPs/scan

Bisheng Zhao et al. (14) | 84.2 5

Golosio et al. (15) 79 4

Kyongtae et al. (16) 95.1 6.9

Tanetal. (17) 87.5 4

Hirose et al. (18) 71.4 0.95

El-Baz et al. (19) 82.3 12

Gori et al. (20) 85.2 6

Yuan et al. (21) 72.6 3.19

Choi (22) 95.28 2.27

Cascio et al. (23) 88 2.5

Dolejsi et al. (24) 94.03 5.46 FPs/slice

Dolejsi et al. (25) 74.3 2.6 FPs/slice
89.6 9 FPs/slice

Table 13 - performance rates presented by other authors

Results of the baseline algorithm my work was based on were 95.9% sensitivity with 12
FPs/slice for the detector only, 74.3% sensitivity with 2.6 FPs/slice for FLD classifier and
89.6% sensitivity with 9 FPs/slice for the multi-threshold classifier.Knowing the average
number of slices per one scan FPs/slice can be recounted to FPs/scan.

For comparison with the existing algorithm and other works see Picture 52.
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8 CONCLUSION

Analysing the results of baseline algorithm carefully | found shortcomings in the process of
nodule candidate detection, in feature computation and also in the ground truth
information. All the findings were used for further work.

First of all the shortcomings in GT data was corrected manually. Data correction improved
the sensitivity rate, the specificity rate remains the same. The resulted difference between
original and corrected data classification are 87,8% sensitivity rate with 148 FPs per scan for
the original GT and 91,4% sensitivity rate with 151 FPs per scan for the corrected data.

Then the input data dimension was reduced, redundant features were removed and only
effective features were chosen using 3 independent dimensionality reduction methods
(Feature Selection method, Fisher’s Discriminant analysis and Principal Component Analysis).
The best results were saved and combined with 3 suitable classification methods (based on
nearest neighbour search, bagged decision trees method and boosting method with decision
trees used as a weak learners). The classification parameters were set to receive as good
sensitivity and as low number of false positive structures as possible, methods were
compared on the same sensitivity levels.

The highest sensitivity rate together with low FPs were observed in kNN classifier (96%
sensitivity with 838 FPs/scan, which corresponds to 2.4 FPs/slice, AUC=0.97). Both other
methods (Treebagger and LogitBoost) reached AUC=0.96 and the results were more
ballanced compared to kNN. The best results were achieved with dimensionality reduction
process based on PCA.

When comparing our results to other studies, we reached similar performance values, but

not better, our number of FPs is still very high. However we have to consider that some of

the authors have less slices per one scan, bigger nodules and different datasets, this all can
lead to better results. When compared to the baseline algorithm the resulted performance
values improved a lot.
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9 FUTURE WORK

Results of the algorithm are still not perfect, in future it is possible to improve it by:
Improving the detection process to reduce definite non-nodule detections

Improving the segmentation process to guarantee the precise contours of the structure and
following feature computation

Reducing the number of FPs. Performed pre-classification method to reduce the number of
FPs (for example double-threshold cut)

Categorization the detected data into several groups (not only ,nodule“ and ,non-nodule”)
to provide information about possible etiology of detected structure (like ,,sure nodules”,
»possible nodules”, ,sure non-nodules”, ,other non-nodule pathologies” etc)

Individualization. User can set the required sensitivity value based on the individual CT
findings. For example individual performance rates depending on the final number of found
nodules.
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