
Czech Technical University in Prague
Faculty of Electrical Engineering

Diploma thesis

Evaluation of Safety and Security Properties of Automotive

Motor Control Software

2014 Michal Kreč

Poděkováńı

Na tomto mı́stě bych rád poděkoval své rodině za jejich neutuchaj́ıćı podporu během
doby mého studia – bez nich bych tuto práci nikdy nezačal.

Také zde chci poděkovat svému vedoućımu diplomové práce – Michalu Sojkovi – za
jeho vstř́ıcnost a ochotu vždy poradit – bez něj bych tuto práci nidky nedokončil.

České vysoké učení technické v Praze
Fakulta elektrotechnická

Katedra kybernetiky

ZADÁNÍ DIPLOMOVÉ PRÁCE

Student: Bc. Michal K r e č

Studijní program: Kybernetika a robotika (magisterský)

Obor: Robotika

Název tématu: Vyhodnocování bezpečnosti softwaru pro řízení motorů v automobilových
 aplikacích

Pokyny pro vypracování:

1. Seznamte se se softwarovým modulem eMotor firmy Infineon, který slouží k řízení
 elektrických BLDC motorů v automobilových aplikacích vyvíjených dle standardu AUTOSAR.
 Dále se seznamte s vývojovou sadou TriBoard a procesorem TC1798, pro které je eMotor
 vyvíjen.
2. Za pomoci prostředí Matlab/Simulink vytvořte testovací stolici pro software-in-the-loop a
 hardware-in-the-loop simulace. Změřte časové parametry eMotor softwaru (doba vykonávání
 jedné iterace regulátoru apod.).
3. Na testovací stolici implementujte testy pro ověření správnosti funkcí zajišťujících bezpečný
 provoz motoru (tzv. safety measures).
4. Integrujte eMotor s protokolem MaCAN (Message Authenticated CAN) a ověřte opět funkci
 safety measures za přítomnosti kybernetických útoků přes sběrnici CAN.
5. Výsledky přehledně zdokumentujte.

Seznam odborné literatury:

[1] Infineon: TC1798 32-bit single-chip microcontroller user's manual
[2] Infineon: MC-ISAR_AUDO_UM_EmoDriver documentation, Release V1.3

Vedoucí diplomové práce: Ing. Michal Sojka, Ph.D.

Platnost zadání: do konce letního semestru 2014/2015

 L.S.

doc. Dr. Ing. Jan Kybic
vedoucí katedry

 prof. Ing. Pavel Ripka, CSc.
děkan

V Praze dne 10. 1. 2014

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

DIPLOMA THESIS ASSIGNMENT

Student: Bc. Michal K r e č

Study programme: Cybernetics and Robotics

Specialisation: Robotics

Title of Diploma Thesis: Evaluation of Safety and Security Properties of Automotive Motor
 Control Software

Guidelines:

1. Make yourself familiar with the eMotor software module developed by Infineon company
 in compliance with AUTOSAR standard, that is used to control electric BLDC motors in
 automotive applications. Next make yourself familiar with TriBoard development kit and
 TC1798 processor, for which is the eMotor developed.
2. Using the Matlab/Simulink environment create a testbed for software-in-the-loop and
 hardware-in-the-loop simulations. Measure time parameters of eMotor software (duration of
 execution of one controller iteration and similar).
3. Implement tests for verification of eMotor safety measures on the testbed.
4. Integrate eMotor with MaCAN protocol (Message Authenticated CAN) and verify again the
 functionality of the safety measures in the presence of cybernetic attacks via CAN bus.
5. Document the results.

Bibliography/Sources:

[1] Infineon: TC1798 32-bit single-chip microcontroller user's manual
[2] Infineon: MC-ISAR_AUDO_UM_EmoDriver documentation, Release V1.3

Diploma Thesis Supervisor: Ing. Michal Sojka, Ph.D.

Valid until: the end of the summer semester of academic year 2014/2015

 L.S.

doc. Dr. Ing. Jan Kybic
Head of Department

 prof. Ing. Pavel Ripka, CSc.
Dean

Prague, January 10, 2014

Prohlášeńı autora práce

Prohlašuji, že jsem předloženou práci vypracoval samostatně a že jsem uvedl veškeré
použité informačńı zdroje v souladu s Metodickým pokynem o dodržováńı etických
princip̊u při př́ıpravě vysokoškolských závěrečných praćı.

V Praze dne .

Podpis autora práce

Abstrakt

V automobilovém pr̊umyslu bylo vždy d̊uležité zaručit bezpečnost vyv́ıjených pro-
dukt̊u a v posledńı době je nutné zaručit i zabezpečeńı proti neoprávněné manipulaci.
V současné době se tyto dvě aktivity řeš́ı odděleně. V této práci se zabývám tes-
továńım ř́ıd́ıćıho softwaru v rámci architekrutry AUTOSAR z heldiska bezpečnosti
i zabezpečeńı a snaž́ım se ukázat, že toto odděleńı neńı v některých fáźıch vývoje
nutné. Za t́ımto účelem jsem vyvinul testovaćı stolice pro software-in-the-loop a
hardware-in-the-loop simulaci, které se daj́ı použ́ıt pro testováńı jak bezpečneosti
tak zabezpečeńı. Jako př́ıklad testovaného produktu použ́ıvám softwarový modul
pro ř́ızeńı elektromotor̊u, v současnosti vyv́ıjený firmou Infineon, a provád́ım na
něm množstv́ı test̊u pro ověřeńı funkčnosti bezpečnostńıch opatřeńı. Výslekdy na-
značuj́ı, že s výjimkou několika drobných problémů, bezpečnostńı opatřeńı funguj́ı
správně.

Abstract

In automotive domain, it is paramount to ensure safety, and lately also security,
of developed products. So far safety and security are handled separately. In this
work we deal with safety and security testing and validation of control software in
the AUTOSAR architecture and try to show that the separation of those two issues
is not necessary. We do that by developing software-in-the-loop and hardware-in-
the-loop testbeds and showing that they can be used for both safety and security
testing. We use a SW module for control of electromotors, that is currently under
development by Infineon Technologies, as an example of tested product and execute
number of tests to verify correct functionality of implemented safety measures. The
results show, that apart from few minor problems, the safety measures function
correctly.

Contents

Terms and definitions 14

1. Introduction 17

2. eMotor driver prototype 21
2.1. Current sensor configurations . 21
2.2. Position acquisition . 22
2.3. Safety measures . 23

3. PMSM motor model 25

4. Developed testbeds 27
4.1. Software-in-the-loop testbed . 27

4.1.1. eMotor block . 27
4.1.2. Fault simulation . 28

4.2. Hardware-in-the-loop testbed . 29
4.2.1. Humusoft MF624 I/O card . 30
4.2.2. Humusoft MF624-related Simulink blocks 31
4.2.3. Simulink model . 32
4.2.4. TriCore application . 33
4.2.5. Interface board . 33
4.2.6. CAN bus & message authentication 33

5. Experiments 35
5.1. Configuration parameters . 35

5.1.1. PMSM motor model parameters 35
5.1.2. eMotor parameters . 35

5.2. Software-in-the-loop experiments . 36
5.2.1. No fault test case . 37
5.2.2. Position sensor fault . 38
5.2.3. Phase A current measurement fault 38
5.2.4. Phase B current measurement fault 39
5.2.5. Phase C current measurement fault 40
5.2.6. PWM wire break . 40

5.3. Hardware-in-the-loop experiments . 42
5.3.1. Test cases . 42
5.3.2. No safety measure enabled . 43

12

5.3.3. Single safety measure enabled . 46
5.3.4. All safety measures enabled . 48
5.3.5. CAN bus flooding . 52

6. Conclusion 61

Bibliography 62

A. Contents of the enclosed CD 63

List of Figures 64

13

Terms and definitons

Here we describe terms and abbreviations used in this work. First and foremost we must
define two crucial terms:

safety – freedom from the risk of causing death, injury or damage to the environment

security – resistance of the system against outside attacks

Simply put safety prevents the system from causing damage to the outside and secu-
rity prevents the outside from causing damage to the system.

Other than that, this document uses mostly terminology defined in ISO 26262 [1],
definitions of most important terms are listed below. For the full list of terms please see
the standard.

anomaly – condition that deviates from expectations, based, for example, on require-
ments specifications, design documents, user documents, standards, or on experi-
ence

detected fault – fault whose presence is detected within a prescribed time by a safety
mechanism that prevents the fault from being latent

error – discrepancy between a computed, observed or measured value or condition, and
the true, specified, or theoretically correct value or condition

failure – termination of the ability of an element, to perform a function as required

fault – abnormal condition that can cause an element or an item to fail

functional safety – absence of unreasonable risk due to hazards caused by malfunction-
ing behaviour of E/E systems

safety measure – activity or technical solution to avoid or control systematic failures
and to detect random hardware failures or control random hardware failures, or
mitigate their harmful effects

systematic failure – failure, related in a deterministic way to a certain cause, that can
only be eliminated by a change of the design or of the manufacturing process,
operational procedures, documentation or other relevant factors

testing – process of planning, preparing, and operating or exercising an item or an
element to verify that it satisfies specified requirements, to detect anomalies, and
to create confidence in its behaviour

14

List of abbreviations:

ADC – analog to digital converter/conversion

AUTOSAR – automotive open system architecture

BC – block commutation

BLDC – brush-less direct current (motor)

CAN – controller area network

FOC – field oriented control

PMSM – permanent magnet synchronous motor

15

1. Introduction

If a builder build a house for some one, and does not construct it properly,
and the house which he built fall in and kill its owner, then that builder shall
be put to death.

—Code of Hammurabi, law 229, ∼1772 BC

The quotation above shows us, that the notion, that professionals should be responsible
for the quality of their work, is as old as mankind itself. This concept is, of course, part
of modern law as well and, together with professional pride and desire to deliver quality
products, provides a strong incentive to test newly developed products to confirm that
they meet all necessary criteria. The automotive industry is a prime example of this,
because automobiles have one of the highest potentials to cause damage and harm, given
their wide-spread use.

With the boom of electronic systems in cars came also the need to ensure their safety,
i.e. reduce the probability of their failure and severity of damage that can be caused by
it as much as possible. This led to development of safety standards like ISO 26262 [2].
These safety standards provide detailed guidelines and procedures for development of
safe electronic systems and respective software. All these procedures involve extensive
testing in multiple stages of development and this is the main area of interest of this
work.

Later, with the continuing integration of various electronic systems present in modern
cars, that brought the ability to access most (if not all) on-board systems from a single
entry point (or even remotely), emerged a whole new area of concern – security. It is
no longer sufficient to prevent system faults and minimize their impact, but now we
need to defend against intentional attacks or misguided efforts to “upgrade” the con-
trol software as well. At this point there were already security standards developed
(e.g. ISO 15408 [3]), but they were developed for “normal” IT applications, not auto-
motive applications, and therefore lack the necessary degree of consideration for safety
features

Because safety is already well-known and well-established in the automotive indus-
try but security is something new and imported from outside, the safety and security
issues are usually solved separately. There are separate teams responsible for safety
and security incorporation and testing of safety and security measures are usually sepa-
rate processes. This leads to increased development costs, prolonged development time
and possibly even to conflicts between safety and security measures, which may lead to
decrease in their efficiency or even thwart their function altogether.

17

In this work we try to show, that such separation of safety and security is not necessary.
We develop a reusable Matlab/Simulink-based testbeds for software- and hardware-in-
the-loop simulations [4] for the automotive domain and show that it can be used to test
both safety and security measures. We were given the opportunity to test an actual
software module prototype, a complex device driver for AUTOSAR architecture named
eMotor, currently being developed by Infineon Technologies, so we do have a practical
example in this work. The eMotor is a software module for controlling several types
of electric motors and is meant to run on TriCore TC1798 processor also developed by
Infineon. For the purpose of security testing we integrate the eMotor software with the
message authenticated protocol on the CAN bus [5] implemented1 in our group2 and use
this external interface to execute attacks on the eMotor software.

ISO 26262, as well as number of other standards, suggests the so called V-model as
a method to control product development and testing. The V-model describes recom-
mended stages of product development and how they are connected, i.e what are their
inputs and outputs and what must be fulfilled in order to advance from one to another.
An illustration of the section of the V.model dealing with SW module development taken
from ISO 26262 is shown in Figure 1.1, the red circle indicates stages covered in this
work. We focus on testing, i.e. executing the evaluated software under different condi-
tions and measuring important parameters, rather than on static analysis. We believe
that testing is becoming more and more important, because increasing amount of soft-
ware modules present in modern cars and interactions between them make the static
analysis more difficult and less reliable.

Safety and security testing and their unification is also the topic of European SESAMO
(SEcurity and SAfety MOdelling) project3, to which this work also contributes.

This work is structured as follows. In Chapter 2 we give an overview of Infineon’s
eMotor driver. Chapter 3 describes the dynamic model of a PMSM motor that we use
in our simulations. Chapter 4 describes software- and hardware-in-the-loop testbeds
developed for this project. The results of the experiments run on those testbeds are
given in Chapter 5 and we conclude with Chapter 6.

1https://github.com/CTU-IIG/macan
2Industrial Informatics Group, DCE FEE CTU
3http://sesamo-project.eu/

18

https://github.com/CTU-IIG/macan
http://sesamo-project.eu/

Figure 1.1.: V model for SW development from ISO 26262 and our place in it

19

2. eMotor driver prototype

The eMotor driver is a software module – more specifically a complex device driver
– for the AUTOSAR software architecture [6], currently being developed by Infineon
Technologies. Its place in the AUTOSAR architecture is shown in Figure 2.1. It is
meant to control electric Permanent Magnet Synchronous Motors (PMSM) and Brushless
Direct Current motors (BLDC). It implements two control algorithms: Field Oriented
Control (FOC) for PMSMs and Block Commutation (BC) for BLDC motors, providing
torque control using PI controller(s). Motors are controlled by generating a PWM signal
for the inverter. BLDC motors use 1-phase PWM signal and PMSM use 3-phase PWM
signal. In this work, we consider only PMSM motors and therefore only FOC, because
that is the new algorithm being developed, the BC comes from previous products.

The eMotor requires measurement of electrical current in the controlled motor (see
Section 2.1). It supports several methods and sensor types for determining the position of
the motor shaft, including a sensorless option (Section 2.2). The driver is also equipped
with a prototype implementation of several safety measures that should detect hazardous
states. For example, the generated PWM signal is also read back in order to validate
the function of the PWM unit. More details can be found in Section 2.3.

The eMotor has an interrupt based design, where the actual control algorithm is
executed in a hardware interrupt handler, which is invoked at the end of the analog-to-
digital conversion (ADC) for current measurement [7].

The eMotor is designed to run on the 32-bit TriCore TC1798 microcontroller [8] de-
veloped by Infineon in compliance with the ISO 26262 [2]. It was supplied together with
ISO 26262 compliant TASKING TriCore VX-toolset1, which contains C/C++ compiler
for TriCore series microcontrollers as well as all other necessary tools (IDE, assembler.
linker, etc.). Its configuration is handled by Tresos Studion by ElectroBit2, which is a
configuration management tool designed specifically for AUTOSAR architecture.

2.1. Current sensor configurations

The eMotor driver supports following current measurement configurations:

1. Two phase parallel – in this configuration, currents of two phases (ia and ib)
are measured using two ADCs that measure simultaneously. The current through
the third phase ic is calculated from equation ia + ib + ic = 0.

1http://www.tasking.com/products/tricore/
2http://automotive.elektrobit.com/ecu/eb-tresos-studio

21

http://www.tasking.com/products/tricore/
http://automotive.elektrobit.com/ecu/eb-tresos-studio

Figure 2.1.: AUTSOAR architecture with eMotor

2. Two phase sequential – in this configuration two phases are measured using
only one ADC. One phase is measured, then second one and then the first one
again, averaging the result, to estimate the value of the first current at the time
of the second phase measurement. Then the equation ia + ib + ic = 0 is used to
calculate the current through the third phase.

3. Three phase measure – in this configuration all three phases are measured
with two parallel ADCs using the combination of the previous two configurations.
One ADC is used to measure ia, then both ADCs measure ib and ic and finally
ia is measured again and averaged with the first measurement. The equation
ia + ib + ic = 0 can be than used to check for anomalous behaviour.

4. DC link measurement – this configuration is used with the Block Commutation
algorithm.

2.2. Position acquisition

The eMotor driver supports following motor shaft angle acquisition methods:

1. Resolver – with the PMSM a resolver can be used to acquire position of the motor
shaft and it can be used either directly, by connecting the resolver to the TriBoard
so that clock signal generation and position resolving are done by the TriBoard,
or with external resolver-to-digital converter (AD2S1200).

22

2. Encoder – a standard encoder can be used to measure PMSM shaft angle, but it
has to be backed by a Hall sensor to provide position before the first zero crossing
happens.

3. Hall – a Hall sensor can be used to determine commutation state for BLDC motors.

4. Sensorless – the eMotor driver provides a sensorless option to calculate shaft
position based on internal motor model and current measurements. This can be
used for both PMSMs and BLDC motors. Note that when this option is not used
for position acquisition it can be used for validation of the actual measurement.

2.3. Safety measures

The eMotor driver prototype implements four main mechanisms to detect anomalous,
potentially dangerous, situations. They serve only to detect anomalous situation, re-
sponses to the errors were not yet implemented in the version available to us. These
features are optional and can be turned off via compile-time configuration. The four
safety measures are:

1. Current validation – this safety measure calculates the sum of all phase currents
and checks it against a given limit (theoretically it should be zero, but practically
one should allow for measurement and numerical inaccuracy) and if it is outside
of limits an error is reported. This safety measure is meant for PMSMs only and
it only works with three phase current measurement, because in other modes the
third current is calculated from the other two, so the sum is always zero.

Besides the above check, there is an option to set upper and lower limits for each
phase current, and if the current stays outside of these bounds for a given period
of time a different error is reported. Note that this check cannot be disabled via
configuration.

2. Position validation – when an actual sensor is used for position acquisition the
mathematical model of motor, implemented in eMotor driver for sensorless mode,
can be used to detect anomalous behaviour. If enabled, the motor shaft position
is both read by the sensor and calculated by the model and if these two values
differ more than a predefined threshold an error is reported. Note that for the first
roughly 10 seconds of eMotor driver execution, the offset between the model and
the sensor is being calibrated. During this time no position error can be reported.

3. PWM diagnostics – this safety measure reads back the physical PWM signal
generated by the controller (an appropriate physical connection outside of the
CPU must be established) in order to verify the correct function of the PWM
generating hardware and/or connecting wiring (based on where the measurement
is taken from). If the read duty cycle differs from the expected one by more than
predefined threshold an error is reported.

23

4. Memory validation – with this feature enabled a complete copy of eMotor con-
figuration parameters (motor and controller parameters, safety thresholds, etc.) is
stored in the memory and before every major operation (measurements, control ac-
tion calculation, etc.) the working and backup copies are compared by calculating
a checksum with CRC32 algorithm and in case of a mismatch an error is reported.
This enables detecting HW memory faults as well as unauthorized manipulation
of eMotor parameters.

24

3. PMSM motor model

In this work a Simulink model of a Permanent magnet synchronous motor (PMSM)
is used instead of an actual motor in both SW-in-the-loop and HW-in-the-loop test
methods. This allows us to see the influence of hardware on the eMotor behaviour,
because both the software and the motor model are the same in both test methods.
This also allows greater flexibility in terms of tested motor parameters as well as greater
control over the simulated faults and the ability to run SW-in-the-loop tests not in real
time speed in exchange for minor simplification of things like friction and increased
computational requirements.

The model was downloaded from MATLAB Central1. It directly implements differ-
ential equations describing a simplified PMSM in the d-q plane:

ud = Rid + sλd − ωrλq (3.1)

uq = Riq + sλq − ωrλd (3.2)

Te = 3P [λaf iq + (Ld − Lq) idiq] /2 (3.3)

where

λq = Lqiq

λd = Ldid + λaf

To convert the voltages and currents from phase values (abc) to d-q plane and vice
versa the Park’s transformation and its inverse is are implemented in the model. Park’s
transformation is defined for voltages ua,b,c as:uqud

u0

 = 2/3

cos θ cos(θ − 2π/3) cos(θ + 2π/3)
sin θ sin(θ − 2π/3) sin(θ + 2π/3)
1/2 1/2 1/2

uaub
uc

 , (3.4)

where θ is rotor angle w.r.t phase A.
Inverse Park’s transformation is then defined as:uaub

uc

 =

 cos θ sin θ 1
cos(θ − 2π/3) sin(θ − 2π/3) 1
cos(θ + 2π/3) sin(θ + 2π/3) 1

uqud
u0

 . (3.5)

The same transformations apply for currents [9],[10].

1http://www.mathworks.com/matlabcentral/fileexchange/38804-pmsm-simulation.

25

http://www.mathworks.com/matlabcentral/fileexchange/38804-pmsm-simulation

Used symbols

ud, uq – d, q axis voltages [V]

ua, ub, uc – a, b, b phase voltages [V]

id, iq – d, q axis currents [A]

ia, ib, ic – a, b, b phase currents [A]

s – derivative operator

P – number of pole pairs

R – stator resistance [Ω]

Ld, Lq – d, q axis inductances [H]

ωr – rotor speed [rad/s]

Te – electric torque [Nm]

λaf – mutual flux [Wb]

λd, lambdaq – d, q axis flux linkage [Wb]

26

4. Developed testbeds

This chapter describes the two testbeds developed as part of this work – the software-
and hardware-in-the-loop testbeds.

The SW-in-the-loop testbed runs completely on a PC, simulating both the controlled
motor and eMotor software. It is used for functionality testing of eMotor software and its
safety functions and integration testing of said functions. This testbed does not contain
the MaCAN module.

The HW-in-the-loop testbed utilizes actual hardware that the eMotor is intended to
run on – TriCore TC1798 microcontroller. Only the controlled motor is simulated in a
PC. This testbed contains the MaCAN module and is in fact used for integration testing
of said module, as well as for SW/HW interaction and subsystem functionality testing.

We use R2012b version of Matlab/Simulink for all Simulink models used in this work
[11].

4.1. Software-in-the-loop testbed

The SW-in-the-loop testbed is a Simulink model (see Figure 4.1), that contains the
PMSM model described in Section 3, S-function block with the eMotor code and blocks
that simulate various faults. It is designed to work with all current measurements meth-
ods except DC link (we focus on FOC rather than on BC) and with all position sensors.
The sensorless mode is currently not supported. The eMotor S-function reads shaft
angle and 3-phase currents from the motor model and outputs a vector of three PWM
duty cycle values, which is converted to voltage in order to act as an input for the motor
model. There is also a standard Simulink PI controller block, serving as speed controller.
In other words, it controls the eMotor’s torque input in order to follow reference speed.

4.1.1. eMotor block

The eMotor block shown in Figure 4.1 is implemented as a C MEX S-function. This
means that the block is implemented in C language. It comprises of Infineon’s eMotor
driver code and Simulink interface code. The eMotor code is modified so that instead
of accessing the hardware (e.g. ADC and PWM peripherals) directly it uses Simulink
interfaces to read inputs and write outputs. Moreover, the eMotor code is invoked from
S-function callback functions rather than by hardware interrupts. This allows us to
simulate as much of eMotor behaviour as possible.

The Simulink glue code comprises of Simulink callback functions. The mdlInitialize-
Conditions callback initializes the eMotor and enables the motor control. The actual

27

Figure 4.1.: SW-in-the-loop testbed

control algorithm is called in the mdlOutputs callback, together with the code that sim-
ulates the current measurement and position acquisition and setting of PI controller set
point. This callback is called with S-function block sampling frequency, which was set
to 20 kHz, the recommended value for eMotor control frequency.

The S-function was compiled with Microsoft C compiler from Visual Studio 10. The
eMotor files had to be compiled with this compiler as well, which resulted in the need to
modify them in some minor way. This was done by utilising C preprocessor and having
separate code modules for Simulink and for TriBoard targets, allowing the same source
files to be used for both targets. It was also necessary to handle numerous direct register
read/writes in code. In order to minimize the differences between the Simulink and
TriBoard targets a dedicated memory area is allocated in the S-function and register
addresses are modified to point to that memory. The actual written values are usually
of no interest because in most cases they control low level hardware behaviour irrelevant
in Simulink simulation. Register reads are, when needed, replaced by setting the local
variables directly to the values from Simulink input ports.

4.1.2. Fault simulation

The testbed naturally supports simulation of sensor and/or control faults. This is accom-
plished by variant subsystem blocks inserted between the motor model and the eMotor
block. These subsystems allow for different behaviour based on the value of a control
variable. We introduced several fault locations in the Simulink model where faults can be
simulated. The locations are: current measurement, position measurement and PWM
diagnosis. At each location we are able to simulate several fault types (e.g. additive or
multiplicative) and for each fault location there is a vector of start and stop times (e.g.
the fault can be active at times 1–5 and 7–9 s). Additionally, for some fault types, their
magnitude can altered. Different fault types are described below.

28

Faults types common to all fault locations

1. No fault – no fault is introduced in this setting.

2. Additive error – a constant amount, specified by the fault magnitude is added
to the signal.

3. Multiplicative error – the signal is multiplied by amount specified by the mag-
nitude.

Fault types specific to current measurement

1. Short circuit – the current signal is set to zero.

Fault types specific to position measurement

1. Stuck – the position is held at the value it had at start of the fault.

2. Slipping – maximum rate at which can the position change is limited to the fault
magnitude.

Fault types specific to PWM diagnosis

1. Wire break – the PWM duty cycle is set to 0.

2. Min – the PWM duty cycle cannot drop below fault magnitude.

3. Max – the PWM duty cycle cannot rise above fault magnitude.

4.2. Hardware-in-the-loop testbed

In a hardware-in-the-loop simulation, the tested software runs in real time on real hard-
ware. In our case the eMotor driver runs on Infineon’s TriBoard.

Our HW-in-the-loop testbed is depicted in Figure 4.2. The TriBoard1 is connected
to a PC via a PCI-based Humusoft MF624 I/O card2. PMSM motor model and fault
simulation are run on the PC and the I/O card is used to connect the simulated motor
with the board.

For real-time simulation, we use so called external simulation mode. In this mode
C code is generated from the Simulink model, the code is compiled and run in real-
time on the host. Simulink provides only the user interface, i.e. it is possible to tweak
model parameters at run time or to see graphs of various signals. In our group3 a
custom code generation target [12] was developed and we run all simulations on Linux
with PREEMPT RT patches. With such a setup, we can run the simulation without a

1Infineon Order Nr. KIT TC1798 SK
2http://www.humusoft.cz/produkty/datacq/mf624/
3Industrial Informatics Group, DCE FEE CTU

29

http://www.infineon.com/cms/de/product/microcontrollers/development-tools,-software-and-kits/tricore%E2%84%A2-development-tools,-software-and-kits/starterkits-and-evaluation-boards/starter-kit-tc1798/channel.html?channel=db3a304333b8a7ca0133cfa3d73e4268
http://www.humusoft.cz/produkty/datacq/mf624/

Infineon TriBoard
PC Motor & fault simulation

M
F

62
4

I/
O

 c
ar

d

PC
Linux, CAN

Linux, preempt_rt

PC
Infoneon Device Access Server (DAS)

CAN bus

In
te

rf
ac

e
bo

ar
d

USB
(serial line, JTAG, ...)

Figure 4.2.: Block diagram of the HW-in-the-loop testbed

deadline miss at 20 kHz sampling frequency. This is the same frequency at which eMotor
driver runs on TriBoard.

The computer with CAN interface card was added later, in order to test the influence
of CAN communication and message authentication on the eMotor’s safety and time
properties. This computer was used only in tests covered in Section 5.3.5.

4.2.1. Humusoft MF624 I/O card

The MF624 is a PCI expansion card designed for interconnection of a PC and real world
signals. It features 8 channel 14 bit A/D converter, 8 channel 14 bit D/A converter,
8 bit digital input port, 8 bit digital output port, 4 quadrature encoder inputs and 5
timers/counters as well as fully 32 bit architecture. Only D/A converter, digital input
and timers are used in the HW-in-the-loop testbed. Specifications are as follows [13].

A/D converter

Resolution: 14 bit
Number of channels: 8 single ended
Conversion time: 1.6 µs single channel

3.7 µs 8 channels
Input range: ±10 V
Input protection: ±18 V
Input impedance: > 1010 Ohm

30

D/A Converter

Resolution: 14 bit
Number of channels: 8
Output range: ±10 V
Settling time: max. 31 µs
Slew rate: 10 V/ µs
Output current: min. ±10 mA
Differential nonlinearity: ±1 LSB

Digital Inputs

Number of bits: 8
Input signal level: TTL
Logic 0: 0.8 V max.
Logic 1: 2.0 V min.

Digital Outputs

Number of bits: 8
Output signal level: TTL
Logic 0: 0.8 V max. @ 24 mA (sink)
Logic 1: 2.0 V min. @ 15 mA (source)

Counters/Timers

Number of channels: 5, 4 of them available on I/O connector, one for internal use
Resolution: 32 bits
Clock frequency: 50 MHz
Triggering: software, external
Clock source: internal, prescalers, external
Inputs: TTL, Schmitt triggers
Outputs: TTL

4.2.2. Humusoft MF624-related Simulink blocks

Several Simulink blocks and corresponding S-functions were written in order to access
the used I/O card from Simulink under Linux. These blocks are described in this section.

Analog Input

This block reads specified analog input channels of the MF624 card. This S-function has
no inputs and number of outputs is equal to the number of selected channels. Output
ranges from −10 to 10 and is equal to measured voltage in Volts.

31

Analog output

This block controls an analog output channel. The controlled channel is selected with
the block’s parameter. It has one input, values higher than 9.9988 result in output value
of 9.9988 V, values lower than −10 result in output value of −10V , all values in between
result in same output value ± 1/2 LSB. Values are sent to the card in every time step
this block is called (more precisely its mdlOutputs function is called). It has no outputs.

Digital Output

This block sets value of a digital output bit specified by its parameter. It has one input
and no outputs. Input values lower than or equal to 0.5 result in logical 0, inputs higher
than 0.5 result in logical 1.

Digital Input

This block reads specified bit of a digital input and produces output value 0 if the input
signal was logical 0 and output value 1 if the input signal wan logical 1.

Read PWM

This block is used to read PWM duty cycles of 3-phase PWM utilizing MF624’s timers.
Three channels of PWM should be connected to timers input 0, 1 and 2, which are used
to gate corresponding timers. The internal timer – number 4 – is running continuously
and time counted by those timers between two simulation steps is measured. The duty
cycle of phase A (B and C respectively) is then calculated as a ratio of the value counted
by timer 0 (1 and 2 respectively) and timer 4. Programming limitations unfortunately
do not allow simultaneous read of all timers, so values higher than 1 can occur. These
are not filtered in this block, but can be afterwards.

4.2.3. Simulink model

The model used for HW-in-the-loop simulation contains the model of the motor described
in Section 3, read PWM block described above, one subsystem called Current outputs
that converts phase current values to signals fed to Analog output blocks and measured
by TriBoard, one subsystem called Resolver, that imitates resolver function and, of
course, fault simulation. The fault simulation was modified to allow fault control from
the TriBoard by means of a logical signal that is controlled by eMotor software and read
by MF624’s digital input. A preset fault is active whenever is this signal in logical 1.
This allows precise time measurement of fault response times, because the precise time of
fault initiation can be saved alongside the time measurements. Faults used here have the
same types as those used in SW-in-the-loop testbed (see Section 4.1) with the exception
of PWM fault which is not implemented, because it requires a HW implementation
rather than SW one.

32

The model is compiled into an executable using Simulink Coder with custom code gen-
eration target – Linux with PREEMPT RT patch – and then run in external simulation
mode, allowing live data viewing while maintaining real time properties.

Figure 4.3.: HW-in-the-loop testbed

4.2.4. TriCore application

The eMotor demo application supplied by Infineon was taken as a basis for testing
program. This demo application uses the eMotor driver and extends it with a PI speed
controller and a simple command line interface accessed over virtual serial port. The
user interface allows for switching the motor control on and off, setting the reference
speed, reading from position sensors and calibrating them. We extended the application
to allow for direct PWM control, safety measures diagnostics (see Section 2.3), time
measurement control, fault control and transfer of measured values to a PC.

4.2.5. Interface board

A custom made interface board is used to connect the TriBoard with the MF624 card. It
has two 40-pin connectors for MF624’s X1 and X2 connectors and seven 16-pin connec-
tors to connect to TriBoard. Connections realized by the interface board are described
in Table 4.1 and the board itself can be seen in Figure 4.4.

4.2.6. CAN bus & message authentication

The eMotor driver was enhanced with Infineon’s AUTOSAR compatible CAN driver
[14] for the purposes of testing the effects of the CAN communication on the eMotor.
At first only the effects of presence of a CAN traffic were tested, with 3 different ways
of handling message reception (for details see Section 5.3.5). Then, the message au-
thentication extension for CAN (MaCAN [5]) implemented in our 4 utilizing TriCore’s
Secure Hardware Extension (SHE) was integrated with the eMotor. The necessary time
server and key server run on the PC with the CAN interface [15], together with simple
application allowing secure motor control by means of an authenticated signal conveying
the reference speed.

4Industrial Informatics Group, DCE FEE CTU

33

Figure 4.4.: Interface board

MF624 port TB port descr.

T0 IN 1.6 COUT60

T1 IN 6.12 COUT61

T2 IN 6.13 COUT62

DA4 AN0 resolver cos

DA3 AN16 resolver sin

DA0 AN2 I-A

DA1 AN18 I-B

DA2 AN4 I-C

T0 IN 4.0 PWM Diag

T1 IN 4.2 PWM Diag

T2 IN 4.3 PWM Diag

AGND VAGND0 common ground

DIN2 1.4 fault control

Table 4.1.: MF624 to TriBoard connections

34

5. Experiments

This chapter documents executed tests and their results. It is divided into three sec-
tions. First we list testbed and eMotor parameters common in all experiments – motor
configuration – and then software-in-the-loop and hardware-in-the-loop experiments –
experiments are further grouped based on the focus of the tests.

5.1. Configuration parameters

Below are listed parameters used during the testing.

5.1.1. PMSM motor model parameters

Parameter names and units are kept the same as in original model, with the exception
of fixing a typo in friction vicious gain → friction viscous gain.

Stator resistance: 1.2 Ω
Inductance Ld: 0.013 H
Inductance Lq: 0.013 H
Rotor flux constant λaf : 0.1546 V rad−1 s
Moment of inertia J: 0.00176 kg m2

Friction viscous gain B: 0.00038818 Nm rad−1 s
Number of poles P: 6

5.1.2. eMotor parameters

Because eMotor has dozens of parameters, only those, that are relevant to the measure-
ments or crucial to the functionality are listed. Names of the parameters are left the
same as they are in the ElectroBit Tresos tool, used to configure the eMotor.

EmoAlgorithm: EMO FOC
EmoCurrentMeasurement: EMO THREE PHASE MEASURE
EmoPolePairs: 3
EmoPhaseResistance: 1.2
EmoPhaseInductance: 0.013
EmoMaxSpeed: 16000
EmoMaxCurrentLimit: 50
EmoMinPulse: 0

35

EmoAdcTriggerVariance: 0
EmoIdCurrentPi

EmoKp: 0.00132645
EmoKi: 0.5
EmoLimit: 1.0

EmoIqCurrentPi
EmoKp: 0.00132645
EmoKi: 0.5
EmoLimit: 1.0

EmoCurrentPhaseA/B/C
EmoCurrentGain: -40
EmoShuntResistance: 0.01
EmoCurrentOffset: 2040
EmoLowerCurrentLimit: -10
EmoUpperCurrentLimit: 10

EmoPaInputSensor: EMO PA RESOLVER
EmoPaSpeedMeasureInterval: 998
EmoPaResIf: EMO PA RES GPTA USED

EmoPwmPeriod: 4998
EmoPwmTimerOffset: 0
EmoPwmDeadTime: 1

EmoPt1FilterGain: 20
EmoPt1FilterTimeConst: 0.00005

5.2. Software-in-the-loop experiments

The SW-in-the-loop testbed can be used only for validation of properties that are not
related to either hardware or real-time execution. SW-in-the-loop simulation is best used
for verifying logical correctness of the executed software. In the test cases described in
this chapter we simulated various faults and observed which errors are detected.

We automated the execution of test cases with a Matlab script that loads the test cases
(see below) from another m-file, executes them and saves simulation results. For each
test case type, fault locations, types, start times, stop times and magnitude can be set.
Also reference speed for the PI controller and motor load can be specified independently
for each test case, but for simplicity we used the same values for all test cases. As can
be seen in Figure 5.1, reference speed starts at 0 and increases linearly to 3000 rpm
between time 0.2 and 4 s. The motor load starts at 0.1 Nm, then it linearly increases to
5 Nm in time from 1 to 4 s and then linearly decreases back to 0.1 Nm from 8 to 10 s. All
simulations described below had duration of 10 s.

In the figures below, we can see the results of simulations. The bottom part of each

36

0

2

4

6

8

T
or

qu
e

[N
m

]

0

1000

2000

3000

S
ha

ft
sp

ee
d

[r
pm

]
Motor load Referrence speed Actual speed

0 1 2 3 4 5 6 7 8 9 10
Time [s]

fa
ul

t &
 e

rr
or

 s
ta

tu
s

Fault simulated Memory error Position error Current error PWM error

Figure 5.1.: Test case results when no fault is simulated.

figure shows the status of when the faults were simulated and when various errors were
detected. Thin line means that no fault was simulated or no error was detected while
thick line means the opposite. Colors denote different errors (see the legend in the
figures).

5.2.1. No fault test case

In this test there are no faults simulated in order to test the normal operation and
susceptibility to false errors.

In Figure 5.1 we can see a false position validation error occurring near the end of the
simulation. This error is signalled when there is inconsistency between simulated motor
and eMotor’s internal motor model. This inconsistency only appears when the motor
torque decreases and it causes the measured and calculated position to slowly diverge.
The false error occurs when the two position differ more than a predefined threshold.

Because we cannot run tests with actual motor as of yet, we are unable to determine
which model is correct or even whether we configured the eMotor properly. This being
said, we think that the current version of the eMotor documentation is not clear enough
with regards to the eMotor’s motor model parameters (particularly definitions of used
terms and vague description of filter parameters). It will be necessary to specify what
are the valid operating conditions for the motor load and how to set the parameters of
the eMotor’s internal motor model.

37

0

2

4

6

8
T

or
qu

e
[N

m
]

−2

−1

0
x 10

5

S
ha

ft
sp

ee
d

[r
pm

]
Motor load Referrence speed Actual speed

0 1 2 3 4 5 6 7 8 9 10
Time [s]

fa
ul

t &
 e

rr
or

 s
ta

tu
s

Fault simulated Memory error Position error Current error PWM error

Figure 5.2.: Position fault

5.2.2. Position sensor fault

In this case the position sensor becomes stuck at time 4 s, outputting the last value read
before that event. Then it reverts back to the normal operation at 8 s.

Results in Figure 5.2 show, that the position sensor fault was successfully detected.
The detection delay was 6.5 ms. It is worth mentioning that a current error was also
reported (with delay of 3.5 ms) this is caused by the motor currents exceeding the range
of simulated ADC, thus invalidating the measurements.

5.2.3. Phase A current measurement fault

In this test case we simulated short circuit fault for current measurement of phase A
between 4 and 8 s.

Figure 5.3 shows that the current measurement fault was successfully detected and in
this case immediately as it was introduced (in the same simulation step). It also shows
that a position error is reported simultaneously with the current error. The reason is
described in the next section (5.2.4).

If the figure is zoomed enough, one can see that the reported current error is period-
ically interrupted. This is expected, because when the actual current crosses zero the
sum of currents calculated from the measurement is valid. Since the error detection uses
a threshold greater than zero, the current is valid in a small surrounding of the zero
crossing.

38

0

2

4

6

8

T
or

qu
e

[N
m

]

0

1000

2000

3000

S
ha

ft
sp

ee
d

[r
pm

]
Motor load Referrence speed Actual speed

0 1 2 3 4 5 6 7 8 9 10
Time [s]

fa
ul

t &
 e

rr
or

 s
ta

tu
s

Fault simulated Memory error Position error Current error PWM error

Figure 5.3.: Current phase A short-circuit fault

5.2.4. Phase B current measurement fault

In this test case we simulated short circuit fault for current measurement of phase B
between 4 and 8 s.

Figure 5.4 shows that the current measurement fault was successfully detected and in
this case immediately as it was introduced (in the same simulation step). Similarly to
the previous test case the reporting of the current error is periodically interrupted.

Now you can see that, unlike in the previous case, the position error was not reported in
this case permanently, but only for a short time. This is caused by the implementation of
Clarke’s transformation used for position estimation. Clarke’s transformation transforms
phase currents ia, ib and ic to α–β currents iα, iβ as follows:

iα =
3

2
(ia − 1/2ib − 1/2ic), (5.1)

iβ =
1√
3

(ib − ic), (5.2)

but when one assumes that ia + ib + ic = 0 the calculation of iα can be simplified to

iα = ia (5.3)

and this is exactly what is implemented in the eMotor. The consequence is that when
ia = 0, iα = 0 as well. When iα = 0 the internal motor model used for position
validation stops, resulting in discrepancy between measured and estimated position.

39

0

2

4

6

8

T
or

qu
e

[N
m

]

0

1000

2000

3000

S
ha

ft
sp

ee
d

[r
pm

]
Motor load Referrence speed Actual speed

0 1 2 3 4 5 6 7 8 9 10
Time [s]

fa
ul

t &
 e

rr
or

 s
ta

tu
s

Fault simulated Memory error Position error Current error PWM error

Figure 5.4.: Current phase B short-circuit fault

However when one of the ib, ic = 0 the iβ only changes from one sinusoid to another
with slightly different amplitude and phase but same frequency. This results in some
drift in estimated position but this drift falls under the set threshold so no position error
is reported.

As a consequence of this the correct functionality of position validation depends on
correct functionality of current measurements. So in the final implementation this must
be taken into account. Suppressing the position errors when current error is reported
seems like one simple solution, but more complex one may be required.

5.2.5. Phase C current measurement fault

In this test case we simulated short circuit fault for current measurement of phase C
between 4 and 8 s.

Figure 5.5 shows that the results are almost the same as for phase B described in the
previous section.

5.2.6. PWM wire break

In this test case the PWM signal wires for all phases break at 4 s, outputting duty cycle
of 0, which results in maximum voltage applied to all phases, and then they revert back
to normal operation at 8 s.

Results can be seen in Figure 5.6. In this figure we replaced the load profile, which
was the same as in previous cases, with phase A PWM signal sent out by the eMotor

40

0

2

4

6

8
T

or
qu

e
[N

m
]

0

1000

2000

3000

S
ha

ft
sp

ee
d

[r
pm

]

Motor load Referrence speed Actual speed

0 1 2 3 4 5 6 7 8 9 10
Time [s]

fa
ul

t &
 e

rr
or

 s
ta

tu
s

Fault simulated Memory error Position error Current error PWM error

Figure 5.5.: Current phase C short-circuit fault

0

0.5

1

1.5

D
ut

y
cy

cl
e

−2000

0

2000

S
ha

ft
sp

ee
d

[r
pm

]

Phase A PWM without fault Referrence speed Actual speed

0 1 2 3 4 5 6 7 8 9 10
Time [s]

fa
ul

t &
 e

rr
or

 s
ta

tu
s

Fault simulated Memory error Position error Current error PWM error

Figure 5.6.: PWM fault

41

– so this signal is fed to the motor only when the fault is not simulated. The other
two phase signals had similar shape so we left them out of the picture for the sake of
readability. The PWM fault was successfully detected and the detection delay was one
eMotor algorithm cycle (50 µs). This is the minimal possible delay, because the PWM
diagnostic is implemented as a two step process alternating reading and validation in
each algorithm cycle. At the beginning of the fault there are current and position
errors reported, these are caused by the reaction of the motor to the loss of control and
maximal voltage applied to all phases. After a short delay the motor stabilizes and those
errors disappear. Because there eMotor driver does not react to safety errors yet, the
implemented the controller is not stopped and as soon as the fault is over the signals
affected by controller wind-up are fed to the motor and this results in erratic behaviour
and reported current and position errors that can be seen in the figure.

5.3. Hardware-in-the-loop experiments

The main goal of these experiments is to measure the execution time of the eMotor
controller and see how it is influenced by the implemented safety and security functions
as well as by possible faults and attacks.

The execution time of the main controller loop (the one called by periodic ADC
interrupt) is measured using on-board system timer (STM) and with each measurement
the information whether each error was reported during that cycle is stored. Also the
fault initiation time and the time when an error was first reported are measured, allowing
exact measurement of the fault detection delay.

The STM runs at 100 MHz thus having 10 ns resolution. The timer itself is 56 bit
wide but only the lowest 32 bits are read and stored, because the overflow (which in the
lowest 32 bits occurs every 42.9 s) can be easily handled during data post-processing.
The start and end times of each loop and 4 error flags are stored in on-board RAM.

By using 1 MiB of available SRAM (unused by the original eMotor software) we can
store 87 381 measurements, which at the 20 kHz control frequency results in slightly
under 4.5 s of run time. Each measurement needs 12 bytes of memory – two 32 bit un-
signed integers for timestamps and four 8 bit unsigned integers for error flags. Although
it should be possible to use bit variables for error flags, the size of the measurement
structure would not be multiple of 4 bytes, which would cause aligned memory access
exceptions.

After the end of the experiment, the measured data are transferred to the PC via
virtual serial port provided by the TriBoard.

5.3.1. Test cases

The tests consisted of starting the idle motor with constant 1 Nm load to 1000 rpm and
holding it there for the entire measurement. In all experiments, the reference speed was
set to 1000 rpm. Unless said otherwise all measurements were initiated after the motor
speed stabilized.

42

5.3.2. No safety measure enabled

In this section, we describe the experiments when no safety measure was configured in
the eMotor driver, i.e. the safety measures are not compiled into the eMotor binary.
Therefore, we measure the properties of the control algorithm itself. In these experi-
ments, error information was not saved, because it is impossible for eMotor to report
any errors in this configuration, resulting in increased number of measurements.

No fault

In this case no fault was simulated. With this test, we want to investigate the properties
of normal operating conditions.

The results can be seen in Figure 5.7. Figure 5.7a shows distribution of execution
time over experiment time and figure 5.7b shows a histogram of those execution times.

Most eMotor invocations have execution time between 10.2 and 10.7 µs. Although it
may not be clear from the figure it is exactly every 20th invocation that is cca 1 µs longer
than the rest. This is most likely caused by the speed PI controller that runs at 1 kHz
and causes cache trashing.

We have also measured the time interval between two control algorithm invocations.
Result of this measurement can be seen in Figure 5.7c. The bins in this histogram are
across all distinct values and one interesting thing to note is, that when the invocation
is off, it is more likely to be off by an even number of ticks, than by an odd number of
ticks. We don’t know what causes this behaviour and it is most pronounced in this case
– when there are no safety measures enabled and no faults present.

Current phase A fault

In this case phase A fault was simulated to check the effects of a fault on the timing
properties of the eMotor driver.

The results can be seen in Figure 5.8. Algorithm execution time is the same as in the
previous case. Therefore, it can be claimed that with no safety measures the current
measurements faults do not interfere with the algorithm execution.

Position fault

In this case the “stuck” position fault (see Section 4.1.2) was simulated from 0.9 s onward
to check the effects of a fault on the timing properties of the eMotor driver.

Results can be seen in Figure 5.9. These results differ from all others, because there is
significant change in execution time from the moment the fault was initiated, although
this change seems to be positive – there are no slightly longer executions after the fault
– it is abnormal and only occurs with position faults and we were unable to find out
what causes it, so we think that someone with better understanding of TriBoard’s and
eMotor’s architecture should look into it. Moreover after short time (cca 0.7 s) all PWM
channels were set to maximal duty cycle resulting in stopped motor. We are not sure
what caused this behaviour, but one possibility is controller wind-up.

43

0 0.5 1 1.5 2 2.5 3 3.5 4
10.2

10.4

10.6

10.8

11

11.2

11.4

11.6

11.8

E
xe

cu
tio

n
tim

e
[µ

s]

Experiment time [s]

(a) Execution time

10.2 10.4 10.6 10.8 11 11.2 11.4 11.6 11.8
10

0

10
1

10
2

10
3

10
4

10
5

Execution time [µs]

nu
m

be
r

of
 in

vo
ca

tio
ns

(b) Histogram of execution time

49.6 49.7 49.8 49.9 50 50.1 50.2 50.3 50.4
10

0

10
1

10
2

10
3

10
4

10
5

Period [µs]

nu
m

be
r

of
 in

vo
ca

tio
ns

(c) Histogram of invocation period

Figure 5.7.: No safety measure, no fault

44

0 1 2 3 4 5 6
10.2

10.4

10.6

10.8

11

11.2

11.4

11.6

11.8

E
xe

cu
tio

n
tim

e
[µ

s]

Experiment time [s]

Figure 5.8.: No safety measure phase A fault

0 0.5 1 1.5 2 2.5 3 3.5 4
10

10.5

11

11.5

E
xe

cu
tio

n
tim

e
[µ

s]

0 0.5 1 1.5 2 2.5 3 3.5 4
−5000

0

5000

sh
af

t s
pe

ed
 [r

pm
]

motor speed

0 0.5 1 1.5 2 2.5 3 3.5 4
−40

−20

0

20

40

vo
lta

ge
 [V

]

Experiment time [s]

phase A phase B phase C

Figure 5.9.: No safety measure position fault

45

5.3.3. Single safety measure enabled

In this section, we perform experiments with only one safety measure enabled (compiled
in) and without faults. This allows us to see the overhead caused by the respective safety
measure.

Current validation, no fault

In this case only the current validation was enabled and no fault was simulated.

0 1 2 3 4 5 6
10.4

10.6

10.8

11

11.2

11.4

11.6

11.8

12

E
xe

cu
tio

n
tim

e
[µ

s]

Experiment time [s]

Figure 5.10.: Current validation, no fault

Results in Figure 5.10 show that the current validation has negligible effects on the
timing properties of the control algorithm. Compare the figure with Figure 5.7.

Position validation, no fault

In this case only the position validation was enabled and no fault was simulated.

0 1 2 3 4 5 6
12

12.5

13

13.5

14

E
xe

cu
tio

n
tim

e
[µ

s]

Experiment time [s]

Figure 5.11.: Position validation, no fault

From results in Figure 5.11 can be seen that the position validation prolongs the
execution of the control algorithm roughly by 1.5–2 µs and adds more jitter.

46

PWM diagnostic, no fault

In this case only the PWM diagnostic was enabled and no fault was simulated.

0 0.5 1 1.5 2 2.5 3 3.5 4

10.8

11

11.2

11.4

11.6

11.8

12

12.2

E
xe

cu
tio

n
tim

e
[µ

s]

Experiment time [s]

Figure 5.12.: PWM diagnostic, no fault

As can be seen from Figure 5.12 the PWM validation prolongs the execution of the
control algorithm roughly by 0.5 µs and it makes every other execution take slightly
more time, because it is implemented as a two step process – read back and validate –
and only one step is performed per control algorithm execution alternating the executed
code branch every time.

Memory validation, no fault

In this case only the memory validation was enabled and no fault was simulated.

0 1 2 3 4 5 6
13.4

13.6

13.8

14

14.2

14.4

14.6

14.8

15

E
xe

cu
tio

n
tim

e
[µ

s]

Experiment time [s]

Figure 5.13.: Memory validation, no fault

Results in Figure 5.13 show that the memory validation prolongs the execution of the
control algorithm roughly by 3 µs making it the most demanding safety measure.

47

0 0.5 1 1.5 2 2.5 3 3.5 4
15.4

15.6

15.8

16

16.2

16.4

16.6

16.8

17
E

xe
cu

tio
n

tim
e

[µ
s]

Experiment time [s]

(a) Time series

49.6 49.7 49.8 49.9 50 50.1 50.2 50.3 50.4
10

0

10
1

10
2

10
3

10
4

10
5

Period [µs]

nu
m

be
r

of
 in

vo
ca

tio
ns

(b) Histogram of invocation period

Figure 5.14.: All safety measures, no fault

5.3.4. All safety measures enabled

Experiments in this section run with all safety measures enabled, as in a production
system. The purpose is to see how they operate together and how do various faults
influence the execution time.

No fault

In this case all four safety measures were enabled and no fault was simulated to measure
the combined effects of all safety measure on the eMotor driver timing properties.

Results can be seen in Figure 5.14a. All safety measures combined prolong the execu-
tion of the control algorithm roughly by 5 µs and slightly prolong every other cycle due
to the nature of PWM diagnostic (see Section 5.3.3).

Figure 5.15 shows a more detailed view of the same data and reveals a repeating pat-
tern in execution time. Period of this pattern is roughly 65.7 ms. We have no explanation
for why is the pattern there.

For this case we also made the period histogram – by period we mean the time interval
between two consecutive invocations. The histogram can be seen in Figure 5.14b. It
shows, that addition of all safety measures has some effect on how the invocation period

48

0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46
15.4

15.6

15.8

16

16.2

16.4

16.6

16.8

17
E

xe
cu

tio
n

tim
e

[µ
s]

Experiment time [s]

Figure 5.15.: All safety measures, no fault (detail)

is spread across the interval where most values are located but it does not significantly
broaden it (compare with Figure 5.7c), so it has little to no adverse effect on the control
algorithm invocation period.

Current phase A fault

In this case all four safety measures were enabled and phase A measurement fault was
simulated – measured phase A current was set to 0 roughly 0.9 s after the start of the
measurement.

As can be seen from results in Figure 5.16, the current fault was correctly reported –
the interruption of the error report is caused by the actual current entering the insen-
sitivity interval around 0 (see Section 5.2.3). The algorithm execution time is slightly
prolonged when the error is reported solely due to the calls of the reporting function.
Interesting fact is that unlike in SW-in-the-loop case (Section 5.2.3) the position error
was not reported simultaneously with the phase A fault. One possible explanation is,
that the added jitter in the measured value together with the correct information from
phases B and C was enough to keep the validation motor model spinning, whereas the
exact value used in SW-in-the-loop stopped it.

Current phase B fault

In this case all four safety measures were enabled and phase B measurement fault was
simulated – measured phase B current was set to 0 roughly 0.9 s after the start of the

49

0 0.5 1 1.5 2 2.5 3 3.5 4
15.5

16

16.5

17

17.5
E

xe
cu

tio
n

tim
e

[µ
s]

0 0.5 1 1.5 2 2.5 3 3.5 4
Experiment time [s]

F
au

lt
&

 e
rr

or
 s

ta
tu

s

Fault simulated Memory error Position error Current error PWM error

Figure 5.16.: All safety measures, phase A fault

measurement.

0 0.5 1 1.5 2 2.5 3 3.5 4
15.5

16

16.5

17

17.5

E
xe

cu
tio

n
tim

e
[µ

s]

0 0.5 1 1.5 2 2.5 3 3.5 4
Experiment time [s]

F
au

lt
&

 e
rr

or
 s

ta
tu

s

Fault simulated Memory error Position error Current error PWM error

Figure 5.17.: All safety measures, phase B fault

50

The results in Figure 5.17 are very similar to the previous experiment. This time it is
no surprise that the position error was not reported because it corresponds to the results
of SW-in-the-loop tests in Section 5.2.4.

Position fault

In this case all four safety measures were enabled and a position fault was simulated –
the measured position was stuck on one value roughly at 0.9 s.

0 0.5 1 1.5 2 2.5 3 3.5 4
15

16

17

18

E
xe

cu
tio

n
tim

e
[µ

s]

0 0.5 1 1.5 2 2.5 3 3.5 4
−20

0

20

cu
rr

en
t [

A
]

phase A phase B phase C

0 0.5 1 1.5 2 2.5 3 3.5 4
Experiment time [s]

F
au

lt
&

 e
rr

or
 s

ta
tu

s

Fault simulated Memory error Position error Current error PWM error

(a) Time series

49.6 49.7 49.8 49.9 50 50.1 50.2 50.3 50.4
10

0

10
1

10
2

10
3

10
4

10
5

Period [µs]

nu
m

be
r

of
 in

vo
ca

tio
ns

(b) Histogram of invocation period

Figure 5.18.: All safety measures, position fault

As can be seen from results in Figure 5.18a, the position fault was correctly reported
and a current error was reported simultaneously, which has the same cause as in the
SW-in-the-loop test (see Section 5.2.2) – currents exceeding the range of used ADC,

51

thus invalidating the measurements.
The unexplained change in the execution time is present just like in the case of position

fault without any safety measures enabled (Section 5.3.2) and the subsequent controller
wind-up is present as well.

The period histogram was made for this case as well. It can be seen in Figure 5.18b
and it shows that the fault injection has made the period a little bit more erratic, but
it still does not have significant adverse effect.

Position fault during calibration of position validation

In order for the position validation safety measure to work, an internal motor model has
to be calibrated. The calibration starts simultaneously with the motor control and runs
roughly 10 s. In this experiment a position fault was simulated during these 10 s.

0 0.5 1 1.5 2 2.5 3 3.5 4
15

15.5

16

16.5

17

17.5

18

E
xe

cu
tio

n
tim

e
[µ

s]

0 0.5 1 1.5 2 2.5 3 3.5 4
Experiment time [s]

F
au

lt
&

 e
rr

or
 s

ta
tu

s

Fault simulated Memory error Position error Current error PWM error

Figure 5.19.: All safety measures, undetected position fault

As can be seen from results in Figure 5.19, the position fault was not reported at all.
The current error caused by the controller overreaction is present just like in previous
cases with position faults and even sporadic PWM errors are detected, those are caused
by noise present in the wiring, which got more pronounced with the abrupt changes in
signal values caused by the fault.

5.3.5. CAN bus flooding

While all the previous experiments were merely safety-related, this section covers even
security-related experiments. The main goal here is to determine how the additional

52

security measures interfere with normal operation and whether they do or do not pose
a safety problem.

In all experiments in this section except 5.3.5 the CAN bus was flooded by a continuous
stream of messages with random ID, random length (0 – 8 bytes) and random data sent
with the highest baud rate the TriBoard handles – 1 Mbps – to simulate an uniformed
attack trying either to guess the used verification key or to simply overload the bus and
disrupt normal operation. We are interested only in effects this has on the eMotor, the
effectiveness of used verification algorithm is not of interest in this work.

First 3 tests measured effects of different received message handling the AUTOSAR
CAN driver allows – polling or interrupt based – on the eMotor’s execution. Based
on these tests the polling method was selected as the only viable one and subsequent
MaCAN test were carried using only this message handling method.

No safety measures, no fault, polling

In this experiment, the CAN driver was configured to receive data in the polling mode1,
i.e. reception of a CAN message generates no interrupt. The main loop of our TriBoard
application does not read the messages out of the CAN controller. Therefore, this test is
only used to see the effect of CAN controller activity on the CPU executing the eMotor
driver.

Results in Figure 5.20a show that there is little effect on the CPU execution. Few
invocations were about 0.1 µs longer that others, but this is negligible.

Invocation period was also measured, results are shown in Figure 5.20b and they show
that this method of CAN message handling has no adverse effect on period of control
algorithm invocations.

No safety measures, no fault, high priority interrupt

In this experiment, the CAN driver was configured to use interrupts to signal frame
reception. However, our interrupt service routine just acknowledged that the received
frame was handled and no further processing of the frame was carried out. The CAN
receive interrupt priority was set higher than the priority of the ADC interrupt invoking
the eMotor control algorithm.

As can be seen from Figure 5.21a, this setting has significant impact on the control
algorithm, some invocations are delayed up to 2 µs and jitter is significantly increased.

As for the effect on period of control algorithm invocations Figure 5.21b clearly shows
that this method has significant adverse effect on it, same as on the execution time. The
period is up to 2.25 µs off (compare to max 0.3 µs off in other cases) and the number of
significantly delayed executions has also increased.

1This is common in automotive applications.

53

0 0.5 1 1.5 2 2.5 3 3.5 4
10.2

10.4

10.6

10.8

11

11.2

11.4

11.6

11.8

E
xe

cu
tio

n
tim

e
[µ

s]

Experiment time [s]

(a) Time series

49.6 49.7 49.8 49.9 50 50.1 50.2 50.3 50.4
10

0

10
1

10
2

10
3

10
4

10
5

Period [µs]

nu
m

be
r

of
 in

vo
ca

tio
ns

(b) Histogram of invocation period

Figure 5.20.: No safety measure, no fault, CAN flood, polling

54

0 0.5 1 1.5 2 2.5 3 3.5 4
10

10.5

11

11.5

12

12.5

13

13.5

14

E
xe

cu
tio

n
tim

e
[µ

s]

Experiment time [s]

(a) Time series

47.5 48 48.5 49 49.5 50 50.5 51 51.5 52 52.5
10

0

10
1

10
2

10
3

10
4

10
5

Period [µs]

nu
m

be
r

of
 in

vo
ca

tio
ns

(b) Histogram of invocation period

Figure 5.21.: No safety measure, no fault, CAN flood, high priority interrupt

55

No safety measures, no fault, low priority interrupt

In this experiment, the CAN driver was configured to use interrupts to signal frame
reception. However, our interrupt service routine just acknowledged that the received
frame was handled and no further processing of the frame was carried out. The CAN
receive interrupts priority was set lower than the priority of the ADC interrupt invoking
the control algorithm.

0 0.5 1 1.5 2 2.5 3 3.5 4
10.4

10.6

10.8

11

11.2

11.4

11.6

11.8

12

E
xe

cu
tio

n
tim

e
[µ

s]

Experiment time [s]

(a) Time series

47.5 48 48.5 49 49.5 50 50.5 51 51.5 52 52.5
10

0

10
1

10
2

10
3

10
4

10
5

Period [µs]

nu
m

be
r

of
 in

vo
ca

tio
ns

(b) Histogram of invocation period

Figure 5.22.: No safety measure, no fault, CAN flood, low priority interrupt

The results are shown in Figure 5.22a. It can be seen that this setting has negligible ef-
fects on the control algorithm execution time, just like the polling setting (Section 5.3.5),
but it has significant adverse effects on the invocation period. This can be seen in Fig-
ure 5.22b, which clearly shows that this setting has the same effect on invocation period
as the high priority interrupt setting (Case 5.3.5).

No safety measures, no fault, MaCAN control, no flood

In this case the reference speed was set remotely by sending messages to the TriBoard
over message authenticated CAN (MaCAN protocol [5]). CAN message handling was
set to polling, same as in Case 5.3.5 The reference speed was set to the same value as
in all previous cases – 1000 rpm. All safety measures were disabled and CAN bus was

56

not artificially flooded; only normal MaCAN traffic with time server, key serves and two
nodes was present. No artificial faults were simulated.

0 0.5 1 1.5 2 2.5 3 3.5 4
10

10.5

11

11.5

E
xe

cu
tio

n
tim

e
[µ

s]

Experiment time [s]

(a) Time series

49.6 49.7 49.8 49.9 50 50.1 50.2 50.3 50.4
10

0

10
1

10
2

10
3

10
4

10
5

Period [µs]

nu
m

be
r

of
 in

vo
ca

tio
ns

(b) Histogram of invocation period

Figure 5.23.: No safety measure, no fault, MaCAN control, no flood

As can be seen from results in Figures 5.23a and 5.23b, presence of MaCAN control
has no adverse effects on the timing properties of the eMotor control algorithm.

No safety measures, no fault, MaCAN control, CAN flood

In this case the reference speed was set over MaCAN and safety measures were disabled
as in the previous case, but CAN bus was flooded with continuous stream of messages
just like in Section 5.3.5. No artificial faults were simulated.

As can be seen from results in Figure 5.24a the increased load generated by validation
of those random messages has some effect on the execution time, presumably caused by
cache trashing, but the effects are minor. And Figure 5.24b shows that it has no effect
on invocation period.

All safety measures, no fault, MaCAN control, CAN flood

In this case the reference speed was set over MaCAN to be 1000 rpm as in the previous
cases. All safety measures were enabled and CAN bus was flooded with continuous

57

0 0.5 1 1.5 2 2.5 3 3.5 4
10.2

10.4

10.6

10.8

11

11.2

11.4

11.6

11.8

E
xe

cu
tio

n
tim

e
[µ

s]

Experiment time [s]

(a) Time series

49.6 49.7 49.8 49.9 50 50.1 50.2 50.3
10

0

10
1

10
2

10
3

10
4

10
5

Period [µs]

nu
m

be
r

of
 in

vo
ca

tio
ns

(b) Histogram of invocation period

Figure 5.24.: No safety measure, no fault, MaCAN control, CAN flood

58

stream of messages just like in Section 5.3.5. No artificial faults were simulated.

0 0.5 1 1.5 2 2.5 3 3.5 4
15.5

16

16.5

17

17.5

E
xe

cu
tio

n
tim

e
[µ

s]

0 0.5 1 1.5 2 2.5 3 3.5 4
Experiment time [s]

F
au

lt
&

 e
rr

or
 s

ta
tu

s

Fault simulated Memory error Position error Current error PWM error

Figure 5.25.: All safety measures enabled, no fault, MaCAN control, CAN flood

As can be seen from results in Figure 5.25 the increased load generated by validation
of those random messages has some effect on the execution time, just like in previous
case, but the effects are minor and no safety measure reports a false error.

59

6. Conclusion

In this work we presented the developed testbeds for safety and security testing and
demonstrated their functionality by testing the eMotor driver prototype. The safety
measures in this version of the eMotor software were just a prototype implementation
which limited the complexity of the tests. Nevertheless our testing revealed some defi-
ciencies that should be addressed in the final implementation. In short, those were:

� The state of eMotor’s internal motor model used for position validation sometimes
diverges from the state of the controlled motor, causing false errors to be reported.
See Section 5.2.1 for details.

� Correctness of position validation depends on correctness of current measurement.
See Section 5.2.4. This may lead to various failures at system level if one expects
these safety measures to be independent.

� Unexplained change in execution time after longer interval with active position
reading fault. See Figure 5.9 and Section 5.3.2 for details. This is not a problem
in itself, because the execution time stays in the expected range, but it may signal
a presence of an currently unknown problem.

� Documentation does not say that even lower-priority interrupts can delay the ex-
ecution of high-priority ADC interrupt used by eMotor. This can be clearly seen
by comparing Figure 5.22b with Figures 5.21b and 5.20b. If this blocking is not
bounded it can lead to various failures.

We also integrated the eMotor driver with an implementation of message authenti-
cated protocol on CAN bus called MaCAN. Our implementation of MaCAN uses the
Secure Hardware Extension (SHE) of the TriCore TC1798 CPU to accelerate crypto-
graphic operations needed for its function. We conducted several experiments with this
protocol to see the effect of envisioned attacks over CAN networks on the eMotor func-
tionality. Our results show that such attacks have no significant influence on the eMotor
functionality.

Based on the experience from this work, we argue that there is a big benefit in joining
safety and security activities in the testing and validation phase of the development
process. Development of the software- and hardware-in-the-loop testbeds consumes a
lot of resources. Since these testbeds can be used for validations of both safety and
security properties, there is little benefit of having two teams developing the same test
bed.

61

Bibliography

[1] International Organization for Standardization / Technical Committee 22 (ISO/TC
22), “ISO/DIS 26262-1:2010(e) – Road vehicles – Functional safety — Part 1 Glos-
sary”, Tech. Rep., 2010.

[2] ——, “ISO/DIS 26262:2010(e) – Road vehicles – Functional safety”, Tech. Rep.,
2010.

[3] ISO/IEC JTC 1/SC 27 IT Security techniques, “ISO/IEC 15408:2009 – Informa-
tion technology – Security techniques – Evaluation criteria for IT security”, Tech.
Rep., 2008/2009.

[4] R. Isermann, J. Schaffnit, and S. Sinsel, “Hardware-in-the-loop simulation for the
design and testing of engine-control systems”, Control Engineering Practice, vol.
7, no. 5, pp. 643–653, 1999, issn: 0967-0661. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0967066198002056.

[5] O. Hartkopp and R. Schilling, “MaCAN – message authenticated CAN”, in ESCAR
Conference, Berlin, Germany, Nov. 2012.

[6] AUTOSAR, Specification of the virtual functional bus, R3.1 rev 5, 2010. [Online].
Available: http://www.autosar.org/download/R3.1/AUTOSAR_SWS_VFB.pdf.

[7] Infineon Technologies AG, MC-ISAR AUDO UM EmoDriver Documentation, re-
lease V1.3, 2012.

[8] ——, TC1798 32-bit microcontroller – Data Sheet, V1.0, 2012.

[9] P. Pillay and R. Krishnan, “Modelling of permanent magnet motor drives”, IEEE
transactions on industrial electronics, 537-541, 1988.

[10] K. Belda, “Study of predictive control for permanent magnet synchronous motor
drives”, in Methods and Models in Automation and Robotics (MMAR), 2012 17th
International Conference on, Aug. 2012, pp. 522–527.

[11] Mathworks, inc., MATLAB Documentation, R2012b, 2012.

[12] DCE FEE CTU, Linux Target for Simulink Embedded Coder project. [Online].
Available: http://lintarget.sourceforge.net/.

[13] HUMUSOFT s.r.o, MF 624 Multifunction I/O card User’s manual, 2006. [Online].
Available: http://www2.humusoft.cz/www/datacq/manuals/mf624um.pdf.

[14] AUTOSAR, Specification of can driver, R3.0 rev 2, 2008. [Online]. Available: http:
//www.autosar.org/download/AUTOSAR_SWS_CAN_Driver.pdf.

[15] O. Hartkopp and Volkswagen, AG, “The can networking subsystem of the linux
kernel”, Proceedings of the 13th iCC, 2012.

62

http://www.sciencedirect.com/science/article/pii/S0967066198002056
http://www.sciencedirect.com/science/article/pii/S0967066198002056
http://www.autosar.org/download/R3.1/AUTOSAR_SWS_VFB.pdf
http://lintarget.sourceforge.net/
http://www2.humusoft.cz/www/datacq/manuals/mf624um.pdf
http://www.autosar.org/download/AUTOSAR_SWS_CAN_Driver.pdf
http://www.autosar.org/download/AUTOSAR_SWS_CAN_Driver.pdf

A. Contents of the enclosed CD

dp 2014 krec michal.pdf – electronic version of this document

eMotor testbed.slx – software-in-the-loop testbed developed in this work. Unfortunately
the NDA agreement with Infineon does not allow us to publish any part of eMotor
software, so the binary application for the eMotor S-function can not be enclosed
thus the model is not functional.

HW in the loop.slx – the model used as a part of hardware-in-the-loop testbed.

mf624 SIMULINK.c,mf624 SIMULINK.h – source files, that contain code needed to op-
erate the MF624 I/O card form a Simulink S-function.

sfAnalogInput.c,sfAnalogOutput.c,sfDigitalInput.c,sfDigitalOutput.c,sfReadPWM.c – source
files, that contain code for S-functions described in Section 4.2.2

63

List of Figures

1.1. V model for SW development from ISO 26262 and our place in it 19

2.1. AUTSOAR architecture with eMotor . 22

4.1. SW-in-the-loop testbed . 28
4.2. Block diagram of the HW-in-the-loop testbed 30
4.3. HW-in-the-loop testbed . 33
4.4. Interface board . 34

5.1. Test case results when no fault is simulated. 37
5.2. Position fault . 38
5.3. Current phase A short-circuit fault . 39
5.4. Current phase B short-circuit fault . 40
5.5. Current phase C short-circuit fault . 41
5.6. PWM fault . 41
5.7. No safety measure, no fault . 44
5.8. No safety measure phase A fault . 45
5.9. No safety measure position fault . 45
5.10. Current validation, no fault . 46
5.11. Position validation, no fault . 46
5.12. PWM diagnostic, no fault . 47
5.13. Memory validation, no fault . 47
5.14. All safety measures, no fault . 48
5.15. All safety measures, no fault (detail) . 49
5.16. All safety measures, phase A fault . 50
5.17. All safety measures, phase B fault . 50
5.18. All safety measures, position fault . 51
5.19. All safety measures, undetected position fault 52
5.20. No safety measure, no fault, CAN flood, polling 54
5.21. No safety measure, no fault, CAN flood, high priority interrupt 55
5.22. No safety measure, no fault, CAN flood, low priority interrupt 56
5.23. No safety measure, no fault, MaCAN control, no flood 57
5.24. No safety measure, no fault, MaCAN control, CAN flood 58
5.25. All safety measures enabled, no fault, MaCAN control, CAN flood 59

64

	Terms and definitions
	Introduction
	eMotor driver prototype
	Current sensor configurations
	Position acquisition
	Safety measures

	PMSM motor model
	Developed testbeds
	Software-in-the-loop testbed
	eMotor block
	Fault simulation

	Hardware-in-the-loop testbed
	Humusoft MF624 I/O card
	Humusoft MF624-related Simulink blocks
	Simulink model
	TriCore application
	Interface board
	CAN bus & message authentication

	Experiments
	Configuration parameters
	PMSM motor model parameters
	eMotor parameters

	Software-in-the-loop experiments
	No fault test case
	Position sensor fault
	Phase A current measurement fault
	Phase B current measurement fault
	Phase C current measurement fault
	PWM wire break

	Hardware-in-the-loop experiments
	Test cases
	No safety measure enabled
	Single safety measure enabled
	All safety measures enabled
	CAN bus flooding

	Conclusion
	Bibliography
	Contents of the enclosed CD
	List of Figures

