Knihovna pro ukládání, vyhledávání a porovnání pohybů lidského těla

Library for storing, searching and comparing movements of the human body

Diplomová práce

Studijní program: Biomedicínské inženýrství a informatika
Studijní obor: Biomedicínské inženýrství

Vedoucí práce: Mgr. Radim Krupička

Jan Tesař

Praha, květen 2014
ZADÁNÍ DIPLOMOVÉ PRÁCE

Student: Bc. Jan Tesář

Studijní program: Biomedicínské inženýrství a informatika (magisterský)

Obor: Biomedicínské inženýrství

Název tématu: Knihovna pro ukládání, vyhledávání a porovnání pohybů lidského těla

Pokyny pro vypracování:
Cílem diplomové práce je navrhnout a vytvořit knihovnu funkcí pro ukládání, vyhledávání a porovnání pohybů lidského těla a ověřit tuto knihovnu na porovnání a vyhledávání cviků snímaných hloubkovou kamerou.

1. Na základě rešerše navrhněte datový model reprezentace pohybových dat, implementujte ho do databáze a vytvořte metodiku a systém pro vkládání pohybů nasnímaných pomocí hloubkové kamery.

3. Pomocí hloubkové kamery zaznamenejte cviky. Cviky rozdělte na jednotlivé fáze pohybu a uložte do databáze. Při cvičení před hloubkovou kamerou by měl systém dokázat kvantifikovat míru správného provedení cviku a také by měl umožnit vyhledat prováděný cvik.

Seznam odborné literatury:

Vedoucí diplomové práce: Mgr. Radim Krupička

Platnost zadání: do konce letního semestru 2014/2015

L.S.

doc. Dr. Ing. Jan Kybic
vedoucí katedry
prof. Ing. Pavel Ripka, CSc.
děkan

V Praze dne 10. 1. 2014
Prohlášení autora práce

Prohlašuji, že jsem předloženou práci vypracoval samostatně a že jsem uvedl veškeré použité informační zdroje v souladu s Metodickým pokynem o dodržování etických principů při přípravě vysokoškolských závěrečných prací.

V Praze dne ……………… ...

Podpis autora práce
Obsah

Prohlášení autora práce .. 3
Obsah .. 4
Abstrakt .. 6
Abstract .. 6
1 Úvod ... 7
 1.1 Motivace .. 8
2 Analýza problematiky .. 9
 2.1 Technologie pro snímání pohybů ... 9
 2.2 Teorie rozpoznávání .. 12
 2.2.1 Klasifikace ... 12
 2.2.2 Výběr parametrů pro klasifikaci ... 13
 2.3 Popis pohybu lidské postavy ... 15
 2.4 Porovnání pohybů ... 17
 2.5 Shrnutí ... 21
3 Návrh implementace – řešení ... 22
 3.1 Záznam dat – skeletální model ... 23
 3.2 Výběr úhlů pro porovnávání cviků ... 23
 3.3 Relevantní úhly u cviků .. 24
 3.4 Příznaky pohybu ... 25
 3.4.1 Výběr příznaků ... 25
4 Uživatelský manuál .. 28
 4.1 Systémové požadavky ... 28
 4.2 Instalace Kinect for Windows Runtime ... 28
 4.3 Aplikace Skeleton Recorder ... 30
 4.3.1 Pokyny pro práci s hloubkovou kamерou .. 31
4.4 Aplikace Mova31 ... 32
4.5 Software pro testování .. 34
5 Implementace .. 34
 5.1 Použité technologie ... 34
 5.2 Aplikace Skeleton Recorder .. 34
 5.2.1 Přístup k datům z hloubkové kamery 34
 5.2.2 Struktura souboru pro ukládání dat 35
 5.3 Aplikace Mova31 ... 36
 5.4 Software pro testování .. 39
6 Experiment a otestování ... 39
 6.1 Výběr cviků pro klasifikaci .. 40
 6.1.1 Omezení hloubkové kamery ... 40
 6.1.2 Vhodné cviky ... 41
 6.2 Dostupná data ... 44
 6.3 Vyhodnocení klasifikace ... 44
7 Závěr ... 47
8 Použitá literatura .. 48
Abstrakt

Tato diplomová práce se zabývá snímáním, zpracováním a porovnáváním pohybů lidského těla. Pro snímání byla použита hloubková kamera Kinect a vytvořena aplikace SkeletonRecorder. Pro ukládání dat byl navrhnut a implementován datový formát, který usnadňuje práci s pohyby a jejich vyhledávání. Vytvořená aplikace Mova31 umožňuje editaci a prohlížení nasnímaných pohybů. Pohyb je převeden na změnu úhlů v jednotlivých částech těla. Tyto signály jsou použity pro výpočet příznaků, na základě nichž umožňují vytvořené funkce porovnávat pohyby. Pro porovnávání byly použity čtyři vzorové cviky. Z pěti nahrávek pro každý cvik byly vytvořeny průměrné šablony. Pro klasifikaci 44 nahrávek byla použita implementace k-nn klasifikátoru. Úspěšnost klasifikace byla 95,5 %.

Klíčová slova

Porovnání pohybů, pohybová data, zaznamenání pohybu, hloubková kamera

Abstract

This thesis focuses on scanning, processing and comparing the movements of the human body. In order to scan the movement, Kinect depth camera was used and an application by SkeletonRecorder was created. For data storage was designed and implemented data format which facilitates processing of the movements and their detection. Created application Mova31 allows editing and viewing scanned movements. The movement is transferred to the change of the angles in different parts of the body. These signals are used for calculation of the features which further allows for the created functions to compare the movements. Four sample exercises were used for comparison. Average templates were created out of five recordings for each exercise. For the classification of the 44 recordings was used implementation of k-NN classifier. The success of the classification was 95.5%.

Key Words

Motion comparision, motion data, motion capture, depth camera
1 Úvod

Co se týče lékařského odvětví, zkušenosti s využíváním snímání pohybu se objevují především z klinických center působících v oblasti fyzioterapie nebo ortopedie. Cílem této diplomové práce je navrhnout řešení v oblasti fyzioterapie, jež by se v budoucnu mohlo stát součástí každodenního života, a které by umožňovalo správné zdravotní cvičení v domácí péči i bez dozoru kvalifikované osoby.

1.1 Motivace

2 Analýza problematiky

Snímání pohybových dat je možno provádět rozličnými systémy, které se liší přesností a kvalitou snímaných dat. Liší se těž cenou a složitostí instalace. Nejekvátnější systémy se používají například ve filmovém průmyslu. Pohodlně a levně systémy se často využívají v průmyslu závěsným. V lékařství a fyzioterapii se využívají systémů různí dle účelu použití.

Systémy pro snímání pohybů se liší také ve formátu ukládaných dat (například formát C3D pro systém Vicon [1]). Metody porovnávání pohybů závisí na charakteru dat a účelem se kterým jsou data porovnávána. Pozice jednotlivých částí lidského těla v prostoru jsou do jisté míry korelovány (pohybuje-li se člověk doprava, pohybuje se všechny jeho části stejným směrem). Pro porovnávání tedy není vhodné využívat absolutní pozice, ale pozice relativní. Takovou relativní pozici může být třeba střed těla, nebo nějaký kloub nacházející se ve vyšší úrovni hierarchické struktury těla (například kloub ramenní je nadřazený kloubu loketnímu).

Z pozic bodů je možné vypočítat úhly, které svirají jednotlivé končetiny (například úhel v koleni). Porovnávání těchto hodnot má výhodu v tom, že úhly jsou částečně invariantní vůči různým typům a velikostem lidského těla. Úloha porovnávání trojrozměrného pohybu lidské postavy se tímto zredukuje na porovnávání jednorozměrných signálů.

Způsoby porovnávání časových řad se liší invariancí vůči času jednotlivých událostí, invariancí vůči vzorkování, či délce prováděného pohybu. Liší se kvalitou, která se odvíjí z typu dat, která jsou porovnávána a výpočetní náročností. Z časových řad je možné získat příznaky (například maximum, počet průchodů nulou, rozptyl,…) a porovnávat časové řady, potažmo pohyb lidského těla s jejich pomocí. Výhodou toho přístupu je možnost vypočítat příznaky v předstihu před samotným porovnáváním. Porovnávání probíhá s daleko menším počtem parametrů, je tedy méně výpočetně náročné.

2.1 Technologie pro snímání pohybů

Nejpřesnější technologie pro snímání lidského těla je technologie optická. Na snímanou osobu se umístí systém značek, které buď odráží (pasivní markery) nebo samy emitují infračervené záření, které je zachycováno systémem minimálně dvou kamer (v praxi však více, například 12 [2]) . Ze známé pozice kamer v prostoru a pozice markerů na snímcích z jednotlivých kamer je možné dopočíhat polohu značek v trojrozměrném prostoru. Výhodou tohoto systému je vysoká přesnost. Systém má ale také své nevýhody, mezi ty největší patří omezený prostor, ve kterém se smí snímaný subjekt pohybovat a relativně vysoké pořizovací náklady.
Přesné akcelerometry nalepené na tělo snímané osoby umožňují zjistit položku v prostoru. Systém využívající tyto senzory není tak přesný jako systém optický. Pro zkvalitnění záznamu kombinují výrobcí tento systém například s ultrazvukovým měřením vzdáleností. Výhodou tohoto systému je nízká prostorová náročnost a nižší pořizovací cena, než u systémů optických.

Hloubková kamera Kinect je primárně určena k ovládání her na konzoli XBOX. Hry se ovládají pomocí pohybů lidského těla. Kinect získává vedle běžného RGB obrazu též hloubkovou informaci o prostoru před ním. Dokáže určit vzdálenost každého z 307 200 (640x480) bodů s přesností přibližně jeden centimetr. Přesnost se mění v závislosti na vzdálenosti objektu (Graf 1).

Graf 1: Naměřené hodnoty vzdáleností (jednotka nemá vypovídající hodnotu, samotná velikost je vždy celé číslo) v závislosti na skutečné vzdálenosti objektu od kamery [3].
Hardware samotného Kinectu vyhodnocuje hloubkovou mapu a vyhledává v ní lidské postavy. V případě nalezení, vytváří skeletární model skládající se z 20 kloubů (Obrázek 1). U každého kloubu je dostupná informace o poloze v prostoru s počátkem souřadného systému na místě hloubkové kamery. Tato informace je aktualizována přibližně 30x za vteřinu (interval se neustále mění).

Obrázek 1: Položka Kinectem detekovaných kloubů na lidském těle [4].

Hloubková kamera Kinect umožňuje relativně přesné snímání lidské postavy. Omezením je jistá nepřesnost a neschopnost Kinectu analyzovat body nacházející se za jinými objekty. Při mnoha pohybech se stává, že samotná osoba znemožňuje svým postavením pohled na celou postavu. Další výhodou je nízká cena (přibližně 4000 Kč v závislosti na verzi), dobrá dostupnost a absence značek na lidském těle.
2.2 Teorie rozpoznávání

V běžném životě rozpoznává člověk svými smysly okolní svět. Lidský mozek, svojí výpočetní kapacitou a integrací zkušeností a znalostí okolního světa, dokáže velice kvalitně rozpoznávat okoli, ve kterém se pohybuje. Rozpoznávání je netriviální úloha strojového učení. Lidské smysly je možné do určité míry možné nahradit senzory, data z těchto senzorů poté využít pro učení a rozpoznávání objektů.

V biomedicíně se můžeme setkat s rozpoznáváním obrazů, například pro detekci a následné rozpoznávání obličejů, nebo rozpoznáváním zvuků, čehož se využívá především u lidské řeči. V biometrice se rozpoznávají různé identifikátory lidského těla, jako otisky prstů, duhovky, či rozličné chůze. Rozpoznávání elektrických signálů lidského těla slouží jako pomocná diagnostická metoda při analýze těchto signálů lékařem.

Pro zaznamenání pohybů lidského těla existuje několik technologií (kapitola 2.1), lišící se svou přesností, účelem použití a metodou ukládání pohybové informace. V této práci se zabývám rozpoznáváním a klasifikací pohybů lidského těla snímaných kamерou Kinect.

2.2.1 Klasifikace

Klasifikace znamená třídění objektů, kdy objekt je přiřazen do jisté třídy. V této práci klasifikují pohyby lidského těla do tříd jednotlivých cviků. Implementované metody s určitou přesností rozpoznávají cviky a přiřazují je ke správným šablonám. Šablona je ideálně provedený cvik, podle kterého se algoritmy naučí, jak správně klasifikovat. Jedná se o učení s učitelem.

Přehledný a snadno interpretovatelný klasifikátor je rozhodovací strom. Jednoduchá úloha pro tento klasifikátor je rozhodování, zdali se objeví srážky, na základě vstupních parametrů jako je teplota vzduchu, vlhkost, či sluneční svit. Data pro klasifikaci jsou rozdělena na trénovací a testovací množinu. Uzel ve stromu vždy reprezentuje nějaký parametr, který určitým způsobem rozděluje množinu (například, rozdělí množinu na objekty s teplotou menší než 20 °C a větší než 20°C). Pro kofenový uzel se vybírá takový atribut, který nejlépe rozděluje celou množinu. List stromu reprezentuje třídu klasifikace (v tomto případě, jestli bude pršet či nikoliv). Výhodou rozhodovacích stromů je možnost klasifikovat i s chybějícími daty. Pro rozpoznávání pohybů lze rozhodovací strom použít dvě metody. Metody se liší způsobem extrakce parametrů z pohybových dat.

k-NN klasifikátor (K - Nearest Neighbors) vytváří parametrický prostor. Body v tomto prostoru jsou jednotlivé objekty trénovací množiny. Neznámý objekt je klasifikován do té třídy,
do které patří k nejbližších sousedů. Číslo k je zpravidla liché. Tímto způsobem je možné klasifikovat lineárně neseparabilní data.

Obrázek 2: Příklad 5-NN klasifikátoru v prostoru o dvou parametrech. Klasifikace bodu x_j spadá do ω_1 množiny.

Umělá neuronová síť vychází z fungování lidského mozku. Na základě vstupů do jednotky neuronové sítě (neuronu) a prahu, na který je neuron nastaven, se rozhoduje o vyslání, či nevyslání signálu dále po síti. V každou chvíli má neuron pouze jednu hodnotu výstupu, zatímco vstup přichází z několika různých neuronů současně. Neuronovou síť je možné naučit rozeznávat objekty. Síť je inicializována (náhodnými) prahy a jsou ji předkládány objekty z trénovací množiny. Pokud je objekt klasifikován chybně, jsou prahy upraveny a trénování sítě se opakuje. Důležitým parametrem při konstrukcích neuronových sítí je volba počtu vnitřních vrstev (mezi vstupem a výstupem) a celkový počet neuronů.

2.2.2 Výběr parametrů pro klasifikaci

Za parametry je možné považovat pohyb samotný a rozhodovat se na základě pozice v jistém čase samotného pohybu. Vypočítáním úhlů v různých částech těla se získá soubor jednorozměrných signálů, parametry pro výpočet jsou hodnoty těchto signálů v čase. Tento přístup se využívá například při hodnocení kvality chůze pomocí GDI (Gait Deviation Index) [5]. Nahraná data jsou rozdělena dle chůzového cyklu, signály interpolovány na stejnou délku. Hodnota signálu v čase každého signálu je jeden parametr pro analýzu hlavních komponent (PCA), pomocí níž se sníží počet parametrů, které jsou využity v následné analýze. Parametry je možné získat výpočtem příznaků z pohybu (viz kapitola 3.4). Počet parametrů se značně sníží a klasifikace zjednoduší. Pohybové příznaky mohou být získány z jednorozměrných signálů reprezentující úhel v dané části těla v čase. Příznaky mohou být lokální (omezují se...
na jistou část signálu) a globální (jedna hodnota pro celý signál). V následujícím přehledu je vyobrazen jednoduchý signál a popsány příznaky, které je možné z něho vypočítat.

Obrázek 3: Ukázka signálu, na kterém jsou prováděny ukázkové výpočty příznaků (níže).

<table>
<thead>
<tr>
<th>Příznak</th>
<th>Hodnota</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum</td>
<td>77,9</td>
</tr>
<tr>
<td>Minimum</td>
<td>55,9</td>
</tr>
<tr>
<td>Střední hodnota</td>
<td>70,7</td>
</tr>
<tr>
<td>Rozptyl</td>
<td>27,4</td>
</tr>
<tr>
<td>Průchod nulou</td>
<td>4</td>
</tr>
<tr>
<td>Výkon</td>
<td>477660</td>
</tr>
<tr>
<td>Délka signálu (počet snímků)</td>
<td>95</td>
</tr>
<tr>
<td>Maximum derivace</td>
<td>9</td>
</tr>
<tr>
<td>Minimum derivace</td>
<td>-11</td>
</tr>
<tr>
<td>Střední hodnota derivace</td>
<td>0,13</td>
</tr>
<tr>
<td>Rozptyl derivace</td>
<td>5</td>
</tr>
<tr>
<td>Průchody nulou u derivace</td>
<td>4</td>
</tr>
<tr>
<td>Výkon derivace</td>
<td>467</td>
</tr>
</tbody>
</table>
2.3 Popis pohybu lidské postavy

<table>
<thead>
<tr>
<th>HIERARCHY</th>
<th>ROOT Hips</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFFSET</td>
<td>0.00 0.00 0.00</td>
</tr>
<tr>
<td>CHANNELS</td>
<td>6 Xposition Yposition Zposition Zrotation Xrotation Yrotation</td>
</tr>
<tr>
<td>JOINT</td>
<td>Chest</td>
</tr>
</tbody>
</table>

Obrázek 4: Fragment BHV souboru zobrazující hierarchické rozložení kloubů. Informace o pohybu je uložena po definici hierarchické struktury.

Při použití hloubkové kamery Kinect a oficiálního Kinect for Windows SDK je možné rovnou získat rotaci jednotlivých kostí. Hierarchická struktura je znázorněna na následujícím obrázku.

Základním „kloubem“ ve výše zobrazené struktuře je střed mezi kyčlem (Hip Center). Rotace ve všech ostatních kloubech jsou rotací relativní vůči nadřazenému kloubu.

Obrázek 6: Rotace v kloubu HipLeft je definována relativně vůči HipCenter [6].

Z pozic kloubů (atť už jsou uloženy v jakémkoliv formátu) je možné vypočítat úhly, které svírají jednotlivé kosti. Úhly nejsou závislé na absolutní pozici měřené osoby. Velikost závisí pouze na třech klubech, které úhel definují. Teoreticky je možné vypočítat úhel mezi kterýmikoliv třemi body v prostoru.

U lidské postavy má smysl počítat ty úhly, jejichž klouby jsou propojeny kostmi. Tedy například úhel v lokti se spočítá z kloubů lokte, ramene a zápěstí. Úhly je možné použít k hodnocení kvality chůze [7]. Lékař hodnotí kvalitu chůze na základě vizuální informace (Obrázek 7).
Obrázek 7: Hodnocení kvality chůze na základě informace o úhlech, které svírají jednotlivé části těla. Šedý interval značí průběh úhlu během chůzového cyklu u zdravého člověka. Červená a modrá křivka zobrazují průběh úhlu pro obě končetiny u měřeného pacienta [7].

2.4 Porovnání pohybů

vypočítat vhodné příznaky, které signál jistým způsobem reprezentují. Tento způsob snižuje výpočetní náročnost při samotném porovnávání.

Při porovnávání je možné využít předem známé informace o charakteru pohybu. Například pro chůzi je vhodné použít jiný způsob než pro porovnávání rehabilitačních cviků.

Rozpoznávání pohybů může být prováděno z běžného videa, například extrakcí nejrůznějších pohybových příznaků [8]. Využití běžné RGB kamery spotřebovává výkon a čas k úloze rozpoznávání lidské postavy v obraze. Trojrozměrné systémy pro zachycení pohybu rovnou pracují s informací o pozicích částí lidského těla v prostoru.

Trajektorie jednotlivých kloubů extrahovaných z videa či zachycených z motion capture systémů mohou být použity k výpočtu příznaků jako je rychlost pohybu jednotlivých kloubů, zrychlení, či křivka kterou daný kloub opisuje [9]

K rozlišení pohybů jako je chůze, běh, skákání, či stoj je možné využít pouze jeden trojrozměrný akcelerometr [10]. Při využití diskrétní cosinové transformace (DCT) pro extrakci příznaků. Analýzy hlavních komponent (PCA), pro redukci příznakového prostoru a metody support vector machines je možné dosáhnout úspěšnosti klasifikace až 97%. Tato metoda je však omezena na výše popsané činnosti. Absence více snímačů zabraňuje sledovat komplexnější pohyby, kterými jsou cviky prováděné ve fyzioterapeutické péči. Princip snímání a vyhodnocení pohybu je podobný jako u herní konzole Wii [11], jejíž ovladač obsahuje zmíněný akcelerometr. Za jistých okolností je možné využít akcelerometry k sledování a vyhodnocování dalších každodenních aktivit (jízda na kole, psaní, hovor) [12]. Nevýhodou použitých bezdrátových akcelerometrů je jejich nutnost dobíjení a samotná přítomnost na lidském těle.

V případě činností a jejich modelování skeletálním modelem je možné si povšimnout, že různé činnosti vyžadují zapojení různých kloubů s různou intenzitou. Díky seřazení kloubů podle jejich aktivity je možné sestrojit histogram (Obrázek 8), který dává hodnotnou informaci o různých činnostech [13].
Tato metrika je časově invariantní. Nezáleží na délce prováděné činnosti. Z histogramů vytvořených rozdělením pohybu na jednotlivé segmenty, je možné vyjádřit reprezentaci pohybu jako sekvenci nejinformativnějších kloubů (Sequence of the Most Informative Joints (SMIJ)), která má dvě hlavní komponenty: soubor nejinformativnějších kloubů pro každý časový úsek a časový vývoj nejinformativnějších kloubů v čase. Jednotlivé reprezentace jsou porovnávány pomocí metody nejbližších sousedů (v tomto případě 1-NN), nebo support vector machines.

se úloha zjednodušuje na porovnávání časových řad. Toto porovnávání se v biomedicíně využívá při porovnávání biosignálů jako EEG, či EKG.

Nejjednodušší metodou porovnávání časových řad je prostý výpočet vzdálenosti pomocí vzorce:

$$D(Q, C) = \sqrt{\sum_{i=1}^{n} (q_i - c_i)^2}$$

V této formě lze metodu použít pouze v případě, že jsou signály stejně dlouhé. Pokud nejsou, je možné signály interpolovat na stejnou délku. Další nevýhodou tohoto porovnávání je, že jednotlivé události v signálu (například pík) se musí nacházet na naprosto stejných místech. Pomocí algoritmu DTW (dynamické borceň času) je možné zarovnat signál podle událostí, které v signálu nastaly (Obrázek 9).

![Euclidian vs DTW comparison](image)

Obrázek 9: Rozdíl při porovnávání signálu pomocí euklidovské vzdálenosti a DTW. Převzato z [15]

Tento přístup se často používá při porovnávání řečových signálů [16], [17], avšak není vhodné ho používat v případech, že signály jsou si z principu zcela nepodobné (například při porovnávání zcela odlišných pohybových dat).

V případě snímání biologických dat jako je EKG, či EMG je nutné signály filtrovat, například kvůli sít’ovému rušení. Při snímání pohybových se nezaznamenává elektrická aktivita. Filtrace se provádí v případě nedokonalostí snímacího systému. Před samotným porovnáváním signálů, je vhodné signál normalizovat odečtením průměru a vydělením směrodatnou odchylkou.

$$s = (s - \text{mean}(s))/\text{std}(s)$$ \hspace{1cm} (1)
Korelace je bezměřitková shoda dvou signálů. Pomocí korelace je možné vyhledávat určitý vzor v signálu. Toho postupu se využívá například k detekci části EKG signálů:

\[r(n) = \sum_{k= -\infty}^{\infty} s(-k) \cdot h(n - k), \]

kde \(s \) je signál, ve kterém se vyhledává vzor \(h \). Nalezením maximum ve vzniklé korelační funkci \(r(n) \) je možné určit, ve kterých místech se vzor nachází. Pokud je porovnávaný signál stejný jako vzor, hovoříme o autokorelací.

2.5 Shrnutí

Porovnávání pohybů u dat získaných ze skeletálního modelu lidského těla (tato data poskytují v různých formách výše uvedené systémy) může být prováděno na základě porovnávání absolutních hodnot pozic kloubů v čase, nebo porovnáváním vypočtených hodnot z pozice (klasicky úhly v jednotlivých klubech). Vývoj úhlů v čase je jednorozměrný signál. Porovnávání takovýchto signálů se provádí po celé jejich délce (například výpočet vzdálenosti), nebo extrakcí a porovnáváním příznaků, kterých je zpravidla daleko méně, než hodnot v samotném signálu. Výhodou porovnávání signálů pomocí globálních příznaků, je možnost vypočítat příznaku před samotným porovnáváním. Výpočetní náročnost se tímto snižuje a umožňuje porovnávání s velkou databází cviků v reálném čase.

V této práci porovnávám pohyby nasnímané hloubkovou kamerou Kinect, na základě extrakce příznaků z úhlů popsaných na lidském těle.
3 Návrh implementace – řešení

Porovnávání cviků na základě pohybových dat je v této práci řešeno následujícím způsobem.

Předzpracování

1. U všech cviků jsou vypočítány všechny předem definované (kapitola 3.1) úhly.
2. Množina cviků se rozdělí na trénovací množinu a cviky pro vyhodnocení porovnávání (testovací množina)
3. U trénovací množiny se vyberou vhodné úhly pro každý cvik (kapitola 3.3)
4. Vypočítají se příznaky ze všech signálů (průběhy úhlů v čase) u testovací množiny. U trénovací se vypočítají příznaky u těch signálů, jejichž úhly byly označeny jako vhodné (respektive ostatní nebudou použity).
5. Příznaky se normují odečtením průměru a vydělením směrodatnou odchylkou.
7. Vytvoří se šablona každého cviku, zprůměrováním vektoru příznaků v každé výše zmíněné trénovací podmnožině.

Vlastní porovnávání

Porovnání probíhá mezi neznámo nahrávkou (instancí cviku) z testovací množiny a každou šablounou cviku. Níže je popsáno porovnávání jedné šablony a jedné neznámé nahrávky.

1. Vytvoří se parametrický prostor pro každý úhel, který je relevantní pro šablounu cviku.
2. V každém parametrickém prostoru budou dva body – šablona a neznámá nahrávka.
3. Vypočítá se vzdálenost mezi zminěnými body pro každý parametrický prostor.
4. Vzdálenosti pro všechny parametrické prostory se zprůměrují. Timto způsobem se vypočítá jedna hodnota, která definuje míru podobnosti šablony a neznámé nahrávky.

Porovnání se provede pro všechny šablony. Neznámá nahrávka je klasifikována podle nejmenší hodnoty vzdáleností k šablónám, které reprezentují cviky.
3.1 Záznam dat – skeletální model

\[d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2} \]

(3)

Ze známých stran trojúhelníku je možné vypočítat vnitřní úhly pomocí aplikace Kosínový věty

\[\alpha = \cos^{-1}\left(\frac{c^2 + b^2 - a^2}{2bc}\right) \]

(4)

Takto lze spočítat úhel, který svírají jakékoliv tři klouby lidské postavy. Pro porovnávání cviků jsou využity takové úhly, které respektují anatomičkou podobu člověka, nebo vypovídají o některém aktuálním stavu (například úroveň zvednutí horních končetin).

3.2 Výběr úhlů pro porovnávání cviků

V této podkapitole jsou popsány úhly, které jsou vhodné pro porovnávání níže zmíněných cviků. Úhel je definován pro pravou i levou stranu těla. V následujícím souhrnu je kloub, u kterého je úhel počítán, napsán v pořadí jako druhý. Klouby nemají v tomto kontextu kloub anatomický, ale místo, které je jistým způsobem důležité pro popis pohybu lidské postavy. Klouby páteř, střed ramen, střed kyčlí a hlava neodpovídají kloubům anatomickým.

Ohyb v lokti
Klouby definující úhel: zápěstí – loket – rameno

Úhel předpažení horní končetiny
Tento úhel slouží pro kontrolu předpažení horní končetiny. Je definován pomocí kloubů lokte – ramena – a druhého ramena. Úhel se mění v případě rotace horní končetiny podle vertikální osy.
Zvednutí horní končetiny

Pro kontrolu zvednutí horní končetiny je vytvořen úhel mezi loktem-ramenem- a kyčlí. Kyčel a rameno nemá anatomické propojení pomocí kosti, přesto je tento úhel nejvhodnější řešení jak kontrolovat miru zvednutí horní končetiny.

Úhel v rameni

Úhel vytvořený pro kontrolu zvednutí ramen, který je svírán mezi klouby rameno-ramena střed – páteř. Střed ramen a páteř by měli mít stejné horizontální pozici v případě stoje vzpřímeného.

Úhel v pravém rameni k lokti

Úhel v koleni

Klouby definující úhel: kotník-koleno-kyčel

Úklon

Pokud se postava předklání, hodnota úhlu se mění. Počítá se úhel mezi ramenem- kyčlí – a kolenem.

3.3 Relevantní úhly u cviků

3.4 Příznaky pohybu

3.4.1 Výběr příznaků

Nejvhodnější příznaky pro porovnávání jsou ty, které nejvíce rozdělují jednotlivé šablony cvíků, ale v konkrétních instancích zůstávají stejné. Jeden příznak může dobře rozlišovat dva cviky, zatímco u jiné dvojice je rozlišení špatné. Cviky, kterými je výběr příznaků podpořen jsou popsány v kapitole 6.1.2.

Průměr

Zprůměrováním všech hodnot po celém signálu vzniká jedna hodnota, která nevypovídá o průběhu signálu, ale o průměrném úhlu, který byl během cviku dosažen. Tento příznak dobře rozlišuje například cviky Zvednutí ramen a Ohyb paží do svícnu. Obrázek 10: Průběh úhlu zvednutí pravé HK u cviku Zvedání ramen (a) a Ohyb paží do svícnu (b). Průměr u těchto signálů je odlišný.
Výpočet průměru:

\[
\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i
\]

(5)

Směrodatná odchylka

Směrodatná odchylka určuje, jak moc jsou hodnoty v signálu navzájem rozdílné. Průměr u signálu, kde hodnoty kolísají, může být stejný jako u stálého signálu, směrodatná odchylka nikoliv.

\[
s = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2}
\]

(6)

Obrázek 11: Zvednutí HK u cviku Nádech-výdech (a) a cviku Ohyb paží do svícnu (b). Průměr je u obou signálů téměř totožný, i přesto je možné je rozlišit pomocí směrodatné odchylky.
Počet lokálních maxim z filtrovaného signálu

Pokud jsou ze signálu odfiltrovány vysoké frekvence, které většinou vycházejí z nepřesnosti měřené, je možné zjistit počet lokálních maxim v signálu.

Obrázek 12: Úhel v levém lokti. V signálu (a)- Ohyb paží do svícnu jsou po odfiltrování nalezeny 2 lokální maxima. V signálu (b) bude nalezeno jedno lokální maximum.

Délka signálu

Délka signálu je jeden časově neinvariantní příznak. Cviky je možné odlišit i na základě délky jejich trvání. Například dřep je zajisté delší než jeden cyklus u cviku kroužení rameny.

Další příznaky jsou stejné, avšak pro první derivaci signálu.

Průměr první derivace

Směrodatná odchylka první derivace

Počet lokálních maxim v první derivaci
4 Uživatelský manuál

V rámci této práce byla vytvořena sada softwaru pro snímání, úpravu, vyhledávání a porovnávání pohybových dat. Tato kapitola slouží jako manuál pro použití vytvořených programovacích prostředků, které shrnuje následující tabulka

<table>
<thead>
<tr>
<th>Software</th>
<th>SW a HW požadavky</th>
<th>Popis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kinect for Windows Runtime</td>
<td>OS Windows 7/8, .NET 4.0, Dvoujádrový procesor 2,66 GHz, 2 GB RAM, DirectX 9.0c</td>
<td>Běhové prostředí pro aplikace využívající Kinect</td>
</tr>
<tr>
<td>SkeletonRecorder</td>
<td>Kinect for Windows Runtime, Hloubkovou kameru Kinect,</td>
<td>Umožňuje nahrávat skeletální model lidské postavy do souboru s příponou .bin</td>
</tr>
<tr>
<td>Mova31</td>
<td>OS Windows 7/8, .NET 4.5</td>
<td>Umožňuje zpracovávat, prohlížet a exportovat nahrávky z programu SkeletonRecorder</td>
</tr>
<tr>
<td>Software pro testování</td>
<td>OS Windows, Linux, Mac OS, programové prostředí Matlab</td>
<td>Zpracovává hodnoty úhlů z textových souborů (vyexportovaných z aplikace Mova31) a provádí klasifikaci cviků</td>
</tr>
</tbody>
</table>

4.1 Systémové požadavky

Každá aplikace se liší svým účelem a vyžaduje jiné vybavení. Pro nahrávání pohybů lidské postavy pomoci aplikace Skeleton Recorder je nezbytná hloubková kamera Kinect a oficiální ovladače pro systém Windows, které jsou součástí volně stažitelného běhového prostředí [4]. Aplikace Mova31 sloužící pro úpravu a prohlížení pořízených záznamů, nevyžaduje instalaci zmíněných ovladačů. Výstupem z aplikace Mova31 je textový soubor obsahující průběh úhlů během cviku. S těmito textovými soubory pracují skripty programového prostředí Matlab, které je po zakoupení komerční či akademické licence dostupné pro desktopové systémy (Windows, Linux, Mac OS)

4.2 Instalace Kinect for Windows Runtime

Obrázek 14: Instalace Kinect for Windows Runtime, krok 2: průběh instalace
4.3 Aplikace Skeleton Recorder

Aplikace Skeleton Recorder slouží pro zachycení pohybu pomocí hloubkové kamery. Aplikaci není třeba instalovat, stačí spustit soubor s SkeletonRecorder.exe Po tomto úkonu se otevře následující okno (Error! Reference source not found.). Na černém plátně se v případě detekce lidské postavy zobrazí skeletální model v zelené barvě. V případě, že postava není detekována, plátno zůstává černé. V případě nepřipojení Kinectu k počítači je uživatel upozorněn textovým výsvětlem a plátno změní barvu na bílou.
Textové pole slouží k zadání názvu souboru, do kterého se bude nahrávka ukládat. Soubor je vhodné pojmenovat s příponou .bin. Nahrávání je indikováno změnou textu tlačítka na „Stop“. Po stisku tlačítka se nahrávání ukončí a soubor je k dispozici ve složce aplikace. Při zvolení nahrávání do již existujícího souboru se zobrazí upozornění o přepsání.

4.3.1 Pokyny pro práci s hloubkovou kamerou

Senzor Kinect měl být umístěn 0,6 až 1,8 m nad podlahou, neměl by být v přímém slunečním záření. Snímaná postava by se měla nacházet ve vzdálenosti přibližně 1,8 m, tak aby se celá nacházel v zorném poli Kinectu. V blízkosti snímané postavy by se neměly nacházet jiné předměty (například nábytek), zhoršuje se tím pravděpodobnost správné detekce postavy.

4.4 Aplikace Mova31

![Obrázek 17: grafické uživatelské rozhraní aplikace Mova31](image)

První část obrazovky, jak již bylo výše zmíněno, je určena k zobrazení a přehrávání pohybuícího se skeletonu. Pod číslem 1 je zobrazen aktuální obraz nahráného skeletonu, který provádí cvik. Vedle čísla 2 se nachází tlačítko, kterým je možno spustit přehrávání zachyceného cvičení. U čísla 3 je počet snímků, které byly již přehrány, u čísla 4 naopak počet snímků, který zbývá do konce přehrávání zachyceného pohybu. V dolní části tohoto okna se nacházejí prvky,
díky kterým je možné daný snímek dále stříhat na kratší úseky. Do řádku vedle čísla 5 se zadává počet aktuálně odehraných snímků neboli, počet odehraných snímků v bodě, kde chceme novu nahrávku začít. Do řádku vedle čísla 6 se vkládá číslo snímků v bodě, kdy nová nahrávka bude končit. Tlačítko uprostřed – číslo 7 - slouží k definitivnímu vytvoření nového úseku, který se posléze automaticky uloží na konec seznamu v prostřední části obrazovky.

 Funkce přejmenování a smazání zasahuje jak do databáze, tak do samotného souboru, jenž je uložen ve složce aplikace. Do databáze se ukládá název souboru a relevantní úhly, pokud dojde ke změně, identifikační čtvereček vlevo od názvu nahrávky zčervená. Pro prohlížení souborů není nutné pracovat a ukládat nahrávky do databáze. Pro načtení kompletní nahrávky je vždy vyžadována přítomnost daného souboru ve složce aplikace.

4.5 Software pro testování

Software pro testování porovnávání je napsán v programovacím jazyku Matlab. Jeho fungování je popsáno v implementační části 5.4.

5 Implementace

V této kapitole popisuji konkrétní implementaci navrženého řešení. Byly vytvořeny dvě aplikace pro snímání a zpracování pohybových dat, datový formát pro jejich ukládání a sada funkcí pro porovnávání.

5.1 Použité technologie

Software pro aplikaci Skeleton Recorder a Mova31 je vyvinut pro platformu .NET. Byl použit objektově orientovaný programovací jazyk C#. Grafické uživatelské rozhraní je vytvořeno ve WPF (Windows Presentation Foundation). Aplikace Mova31 využívá návrhový vzor MVVM (Model View ViewModel). Databáze zajišťuje Microsoft SQL server Compact 4.0. Databáze je obsažena v přenositelném souboru a pro přístup není třeba instalovat databázový server, ten je obsažen v přiložených knihovnách. Přístup k databázi zajišťuje Entity Framework, pomocí dotazovacího jazyka LINQ.

5.2 Aplikace Skeleton Recorder

Tato aplikace získává data z hloubkové kamery a ukládá je vhodným způsobem do binárního souboru v nedefinovaném a úsporném formátu.

5.2.1 Přístup k datům z hloubkové kamery

5.2.2 Struktura souboru pro ukládání dat

Soubor pro uložení pohybových dat byl navrhnut způsobem, aby obsahoval všechny důležité informace a jeho kapacita byla co nejmenší. Na začátku každé nahrávky je uloženo datum počátku nahrávky, poté jsou ukládány jednotlivé snímky. Každý snímek má časovou značku znázorňující počet milisekund od počátku nahrávání, číslo kostry (Kinect může detekovat více postav) a pozici všech kloubů.

Obrázek 19: Struktura souboru pro ukládání pohybových dat.

Z výše popsané struktury s datovým typem a známé informace o frekvenci snímání, je možné vypočítat velikost souboru pro časový úsek. Pro jeden snímek:

\[
\text{počet bitů na jeden snímek} = 32 + 8 + 20(8 + 3.32) = 2120 \text{ bitů}
\]

Při frekvenci 30 snímků za vteřinu má velikost hodinového záznamu:

\[
\text{velikost hodinového záznamu} = 2120 \times 30 \times 3600 = 28620000 \text{ bitů} = 28,62 \text{ MB}
\]
5.3 Aplikace Mova31

Aplikace využívá návrhový vzor MVVM, který umožňuje propojit grafické uživatelské rozhraní s daty pro zobrazení. Na následujícím obrázku je diagram tříd, které jsou součástí hlavního ViewModelu (třída `MainViewModel`).

Čísly jsou označeny položky, které si odpovídají s čísly na následujícím obrázku. Takto je znázorněn vztah mezi ViewModel a uživatelským rozhraním.
Aplikační úkony, jako je načítání souborů a ukládání do databáze jsou v třídách složky Services.

Třída MathMV obsahuje metody pro výpočty vzdáleností a úhlů mezi jednotlivými klouby.
Aplikace pracuje s databází, do které se ukládá definice úhlů (*MotionValueTypes*) a názvy souborů (*SkeletonVideo*). Přístup a správa databáze je oddělena do samostatného projektu s názvem *Mova31_DataAccess*.

Obrázek 22: Databázový model aplikace.

Zároveň aplikace pracuje s soubory s příponou .bin. Struktura souboru je popsána v kapitole 5.2.2 a respektuje strukturu ViewModelu (třídy *SkeletonVideoData, FrameViewModel* a *JointViewModel*), která je popsána na obrázku Obrázek 20. Průběhy úhlů nejsou nikde ukládány, při spuštění aplikace jsou všechny počítány z dat pozic kloubů. Pro zobrazení grafů je využita opensourcová knihovna oxyplot [18].
5.4 Software pro testování

V rámci práce byl vytvořen software pro testování porovnávání jednotlivých cviků. Tento software je psaný v programovacím jazyku matlab. Byly vytvořeny tři funkce a jeden spustitelný soubor.

fileLoader.m

getFeatures.m

Funkce sloužící pro výpočet předem nedefinovaných příznaků (kapitola 3.4.1). Vstupním parametrem jsou hodnoty signálu, funkce vrací vektor příznaků a vektor jejich názvů.

computeFeatures.m

Vstupním parametrem této funkce je matice dat. Počet řádků odpovídá počtu signálů. Výstupem je matice s vypočítanými příznaky

SCRIPT.m

Spustitelný soubor obsahující načítání, zpracování a porovnávání pohybových dat z textových souborů. Výsledkem spuštění je proměnná result, která obsahuje vzdálenosti testovacích dat od vytvořených šablon cviků. Pomocí minima je možné najít nejблиžší cvik a určit tak správnost klasifikace. Vyhodnocení klasifikace je popsáno v kapitole 6.3.

6 Experiment a otestování

Pro testování klasifikačního algoritmu byly vybrány čtyři níže popsané cviky celkem v 64 nahrávkách. Testování bylo provedeno v programovém prostředí Matlab.
6.1 Výběr cviků pro klasifikaci

V této podkapitole popisují omezení použité hloubkové kamery a cviky, které lze s tímto technickým vybavením vhodně natáčet a analyzovat.

6.1.1 Omezení hloubkové kamery

Výše popsaná nepřesnost vychází ze skutečnosti, že části lidského těla se při cviku nádech-výdech překrývají.

Kontrola cviků se provádí pouze pomocí pohybů jednotlivých končetin v prostoru. Se zminěným technickým vybavením není možné kontrolovat další ostatní důležité aspekty správného cvičení, jako je například fáze dechového cyklu.

6.1.2 Vhodné cviky

Následující souhrn znázorňuje vybrané cviky a úhly, které jsou použity pro klasifikaci.

Dřep

Cvik začíná ve stoje s předpaženými horními končetinami. Během cviku dochází k ohnutí v kolenu. Úhly na kterých se provádí klasifikace, jsou:

- Ohyb v lokti (měl by být neustále 180°)
- Úhel předpažení (loket-rameno-druhé rameno)
- Úhel zvednutí horní končetiny (loket-rameno-kyčel)
- Úhel v kolenu (mění se v průběhu cviku)

Obrázek 24: Částečný průběh cviku dřep.
Kroužení v ramenou

Zvedání a kroužení v ramenou, při snaze mít uvolněné (volně spuštěné) ruce. Úhly pro kontrolu:

- Úhel v rameni (páteř-střed ramen-rameno)
- Úhel v rameni k lokti (loket-rameno-střed)
- Zvednutí HK (loket – rameno -kyčel)
- Úhel v kolenou

![Obrázek 25: Cvik kroužení rameny. Rozdíl se zdá být nepatrný, ale je měřitelný.](image)

Rozdíl v popsaném úhle mezi jednotlivými snímký vypadá nepatrně. Na následujícím grafu je znázorněný průběh úhlu, ze kterého je změna patrná.

![Obrázek 26: Průběh úhlu v rameni, během cviku kroužení rameny.](image)
Nádech – výdech s úklonem

Při nádechu má osoba zvednuté ruce nad hlavou, s výdechem se pouští dolů a předklání se. Kontroluje se:

- Ohyb v lokti
- Úhel úklonu (rameno – kyčel – koleno)
- Úhel zvednutí horní končetiny (loket – rameno - kyčel)

Obrázek 27: Cvik nádech a výdech.
Ohyb paží do svícnu

Cvik ve stojí, ve kterém osoba provádí ohyb paží do úhlu devadesáti stupňů. Kontrolují se zvednuté paže a úhel v lokti:

- Ohyb v lokti (mění se ze 180° na 90°)
- Úhel zvednutí horní končetiny
- Úhel v rameni k lokti

![Ohyb paží do svícnu](image)

Obrázek 28: Cvik ohyb paží do svícnu.

6.2 Dostupná data

Pro účely klasifikace bylo pořízeno 64 nahrávek cvičících osob. Každý ze čtyř cviků je tedy nahrán šestnáctkrát. Pro všechny záznamy byly vypočítány příznaky pohybu. Pro každý cvik bylo zvoleno 5 provedení, ze kterých byla odvozena zprůměrováním příslušných příznaků šablona daného cviku. Každá nahrávka z testovací množiny byla porovnávána s každou šablonou a výsledky jsou zhodnoceny v následující kapitole.

6.3 Vyhodnocení klasifikace

Následující tabulky shrnují výsledky klasifikace. Čísla v tabulkách jsou velikosti vzdáleností mezi konkrétním provedením cviku a danou šablonou. Každá tabulka zobrazuje množinu provedení stejného cviku. Nejmenší číslo v řádku (největší podobnost) odpovídá
klasifikaci pro konkrétní šablonu. Správné klasifikace jsou podbarveny zeleně, špatné klasifikace červeně.

Tabulka 3: Vyhodnocení klasifikace pro cvik Dřep. Celkem jedna chybná klasifikace. Devátý dřep je nesprávně klasifikován jako ohyb paží

<table>
<thead>
<tr>
<th>Provedení cviku / šablonu</th>
<th>Dřep</th>
<th>Nádech-výdech</th>
<th>Ohyb paží</th>
<th>Ramena</th>
</tr>
</thead>
<tbody>
<tr>
<td>dřep 1</td>
<td>1,70</td>
<td>4,20</td>
<td>2,88</td>
<td>3,57</td>
</tr>
<tr>
<td>dřep 2</td>
<td>1,45</td>
<td>3,22</td>
<td>2,41</td>
<td>3,19</td>
</tr>
<tr>
<td>dřep 3</td>
<td>1,73</td>
<td>3,19</td>
<td>2,66</td>
<td>3,37</td>
</tr>
<tr>
<td>dřep 4</td>
<td>1,22</td>
<td>3,16</td>
<td>1,68</td>
<td>2,31</td>
</tr>
<tr>
<td>dřep 5</td>
<td>1,60</td>
<td>4,17</td>
<td>2,18</td>
<td>2,78</td>
</tr>
<tr>
<td>dřep 6</td>
<td>1,48</td>
<td>4,01</td>
<td>1,99</td>
<td>3,15</td>
</tr>
<tr>
<td>dřep 7</td>
<td>1,15</td>
<td>3,73</td>
<td>1,90</td>
<td>2,85</td>
</tr>
<tr>
<td>dřep 8</td>
<td>2,72</td>
<td>4,68</td>
<td>3,13</td>
<td>2,96</td>
</tr>
<tr>
<td>dřep 9</td>
<td>2,36</td>
<td>3,82</td>
<td>2,32</td>
<td>3,27</td>
</tr>
<tr>
<td>dřep 10</td>
<td>1,44</td>
<td>3,78</td>
<td>1,85</td>
<td>2,25</td>
</tr>
<tr>
<td>dřep 11</td>
<td>2,23</td>
<td>4,39</td>
<td>2,62</td>
<td>2,88</td>
</tr>
</tbody>
</table>

Tabulka 4: Vyhodnocení klasifikace pro cvik Nádech-výdech. Žádná chybná klasifikace

<table>
<thead>
<tr>
<th>Provedení cviku / šablonu</th>
<th>Dřep</th>
<th>Nádech-výdech</th>
<th>Ohyb paží</th>
<th>Ramena</th>
</tr>
</thead>
<tbody>
<tr>
<td>nádech-výdech 1</td>
<td>2,70</td>
<td>1,36</td>
<td>3,46</td>
<td>3,68</td>
</tr>
<tr>
<td>nádech-výdech 2</td>
<td>3,65</td>
<td>1,04</td>
<td>4,47</td>
<td>5,12</td>
</tr>
<tr>
<td>nádech-výdech 3</td>
<td>5,11</td>
<td>2,55</td>
<td>5,47</td>
<td>5,77</td>
</tr>
<tr>
<td>nádech-výdech 4</td>
<td>2,90</td>
<td>1,25</td>
<td>3,13</td>
<td>3,55</td>
</tr>
<tr>
<td>nádech-výdech 5</td>
<td>3,30</td>
<td>1,02</td>
<td>4,19</td>
<td>4,20</td>
</tr>
<tr>
<td>nádech-výdech 6</td>
<td>3,58</td>
<td>1,91</td>
<td>4,36</td>
<td>4,75</td>
</tr>
<tr>
<td>nádech-výdech 7</td>
<td>4,07</td>
<td>2,28</td>
<td>4,63</td>
<td>4,78</td>
</tr>
<tr>
<td>nádech-výdech 8</td>
<td>2,63</td>
<td>1,88</td>
<td>3,49</td>
<td>4,03</td>
</tr>
<tr>
<td>nádech-výdech 9</td>
<td>4,49</td>
<td>2,47</td>
<td>4,91</td>
<td>5,62</td>
</tr>
<tr>
<td>nádech-výdech 10</td>
<td>3,45</td>
<td>2,73</td>
<td>3,98</td>
<td>4,68</td>
</tr>
<tr>
<td>nádech-výdech 11</td>
<td>4,08</td>
<td>1,54</td>
<td>4,95</td>
<td>5,17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Provedení cviku / šablona</th>
<th>Dřep</th>
<th>Nádech-výdech</th>
<th>Ohyb paží</th>
<th>Ramena</th>
</tr>
</thead>
<tbody>
<tr>
<td>ohyb paží 1</td>
<td>3,34</td>
<td>5,25</td>
<td>2,48</td>
<td>1,93</td>
</tr>
<tr>
<td>ohyb paží 2</td>
<td>2,87</td>
<td>3,40</td>
<td>1,15</td>
<td>2,01</td>
</tr>
<tr>
<td>ohyb paží 3</td>
<td>3,08</td>
<td>3,50</td>
<td>1,13</td>
<td>2,06</td>
</tr>
<tr>
<td>ohyb paží 4</td>
<td>2,59</td>
<td>3,82</td>
<td>0,95</td>
<td>1,61</td>
</tr>
<tr>
<td>ohyb paží 5</td>
<td>2,91</td>
<td>3,89</td>
<td>1,48</td>
<td>1,68</td>
</tr>
<tr>
<td>ohyb paží 6</td>
<td>2,92</td>
<td>3,90</td>
<td>1,17</td>
<td>1,82</td>
</tr>
<tr>
<td>ohyb paží 7</td>
<td>3,28</td>
<td>4,09</td>
<td>1,11</td>
<td>2,47</td>
</tr>
<tr>
<td>ohyb paží 8</td>
<td>2,69</td>
<td>4,22</td>
<td>1,19</td>
<td>1,39</td>
</tr>
<tr>
<td>ohyb paží 9</td>
<td>2,81</td>
<td>3,78</td>
<td>0,98</td>
<td>1,76</td>
</tr>
<tr>
<td>ohyb paží 10</td>
<td>2,98</td>
<td>4,12</td>
<td>2,10</td>
<td>2,39</td>
</tr>
<tr>
<td>ohyb paží 11</td>
<td>2,79</td>
<td>4,28</td>
<td>1,75</td>
<td>1,76</td>
</tr>
</tbody>
</table>

Tabulka 6: Výsledek klasifikace pro cvik Kroužení rameny. Žádná chybná klasifikace.

<table>
<thead>
<tr>
<th>Provedení cviku / šablona</th>
<th>Dřep</th>
<th>Nádech-výdech</th>
<th>Ohyb paží</th>
<th>Ramena</th>
</tr>
</thead>
<tbody>
<tr>
<td>ramena 1</td>
<td>3,62</td>
<td>4,99</td>
<td>3,01</td>
<td>1,52</td>
</tr>
<tr>
<td>ramena 2</td>
<td>2,54</td>
<td>4,39</td>
<td>1,91</td>
<td>0,90</td>
</tr>
<tr>
<td>ramena 3</td>
<td>2,47</td>
<td>4,15</td>
<td>1,63</td>
<td>0,81</td>
</tr>
<tr>
<td>ramena 4</td>
<td>2,82</td>
<td>4,82</td>
<td>2,15</td>
<td>1,13</td>
</tr>
<tr>
<td>ramena 5</td>
<td>2,52</td>
<td>3,36</td>
<td>1,86</td>
<td>1,36</td>
</tr>
<tr>
<td>ramena 6</td>
<td>2,60</td>
<td>4,21</td>
<td>1,56</td>
<td>0,79</td>
</tr>
<tr>
<td>ramena 7</td>
<td>2,85</td>
<td>4,52</td>
<td>1,86</td>
<td>1,23</td>
</tr>
<tr>
<td>ramena 8</td>
<td>3,12</td>
<td>4,34</td>
<td>2,19</td>
<td>1,23</td>
</tr>
<tr>
<td>ramena 9</td>
<td>3,42</td>
<td>4,98</td>
<td>2,33</td>
<td>1,45</td>
</tr>
<tr>
<td>ramena 10</td>
<td>2,72</td>
<td>4,48</td>
<td>2,51</td>
<td>1,54</td>
</tr>
<tr>
<td>ramena 11</td>
<td>3,37</td>
<td>4,90</td>
<td>2,50</td>
<td>1,15</td>
</tr>
</tbody>
</table>

Ze 44 klasifikací jsou dvě nesprávné. Na testovacích datech má klasifikátor úspěšnost 95,5 %.
7 Závěr

Pro snímání pohybů lidské postavy je možné použít různých systémů lišící se svou cenou, přesností a hardwarovými nároky. Pro snímání pohybů v domácí péči je vhodná kamera Kinect. Tato hloubková kamera dokáže trojrozměrně snímat prostor a vyhledat v něm lidskou postavu. Díky volně dostupným ovladačům je možné zpracovávat data z hloubkové kamery na běžném PC.

Rozpoznávání pohybů lidského těla se využívá ve filmovém či herném průmyslu pro animování postav. V medicíně se využívá takovýchto systémů pro analýzu chůze, analýzu zranění pohybového aparátu, či rehabilitaci. Právě k rehabilitaci v domácí péči směřuje projekt, jehož součástí je tato diplomová práce. V mnoha případech je při návštěvě fyzioterapeuta kladen důraz na provádění cviků v domácí péči. Kamera Kinect a vytvořený software by mohl být součástí systému umožňující kontrolovat domácí cvičení bez nutnosti zásahu fyzioterapeutického pracovníka.

Úhly je možné exportovat do textových souborů a vyhodnotit pomocí přiložených funkcí v programovém prostředí Matlab. Matlab byl použit pouze pro výpočet a testování příznaků a předpokládá se implementace algoritmů do aplikace Mova31. Pohyby se porovnávají pomocí průběhů úhlů, ze kterých se počítají vhodně zvolené příznaky. Samotné porovnávání je díky tomuto výpočtu mnohem rychlejší. Pro účely testování bylo nahráno celkem 64 provedení čtyř různých cvíků. 20 provedení bylo použito pro tvorbu průměrných cvíků-šablon. K těmto šablonám je počítána vzdálenost všech ostatních nahrávek. Klasifikace na nahrávky probíhá zjištěným nejmenším vzdáleností k šabloně. Vytvořený klasifikátor dosahuje na testovacích datech úspěšnosti 95 %.
8 Použitá literatura

Příloha – obsah CD

Přiložené CD obsahuje tuto vypracovanou práci, zdrojové kódy, spustitelné soubory aplikací a instalační soubor pro Kinect for Windows Runtime.

Instalační soubor s názvem *KinectRuntime-v1.8-Setup.exe* je v kořenovém adresáři. Dále se v kořenovém adresáři nachází složka *Zdrojové kódy*. V podsložkách jsou zdrojové kódy jednotlivých aplikací. Pro spuštění aplikace SkeletonRecorder slouží soubor: `\Zdrojové kódy\SkeletonRecorder\bin\Debug\SkeletonRecorder.exe`. Pro spuštění aplikace Mova31 soubor: `\Zdrojové kódy\Mova31\Mova31\bin\Debug\Mova31.exe`